1 //===- bolt/Core/BinaryEmitter.cpp - Emit code and data -------------------===//
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
7 //===----------------------------------------------------------------------===//
9 // This file implements the collection of functions and classes used for
10 // emission of code and data into object/binary file.
12 //===----------------------------------------------------------------------===//
14 #include "bolt/Core/BinaryEmitter.h"
15 #include "bolt/Core/BinaryContext.h"
16 #include "bolt/Core/BinaryFunction.h"
17 #include "bolt/Core/DebugData.h"
18 #include "bolt/Core/FunctionLayout.h"
19 #include "bolt/Utils/CommandLineOpts.h"
20 #include "bolt/Utils/Utils.h"
21 #include "llvm/DebugInfo/DWARF/DWARFCompileUnit.h"
22 #include "llvm/MC/MCSection.h"
23 #include "llvm/MC/MCStreamer.h"
24 #include "llvm/Support/CommandLine.h"
25 #include "llvm/Support/LEB128.h"
26 #include "llvm/Support/SMLoc.h"
28 #define DEBUG_TYPE "bolt"
35 extern cl::opt
<JumpTableSupportLevel
> JumpTables
;
36 extern cl::opt
<bool> PreserveBlocksAlignment
;
38 cl::opt
<bool> AlignBlocks("align-blocks", cl::desc("align basic blocks"),
39 cl::cat(BoltOptCategory
));
41 static cl::list
<std::string
>
42 BreakFunctionNames("break-funcs",
44 cl::desc("list of functions to core dump on (debugging)"),
45 cl::value_desc("func1,func2,func3,..."),
47 cl::cat(BoltCategory
));
49 static cl::list
<std::string
>
50 FunctionPadSpec("pad-funcs",
52 cl::desc("list of functions to pad with amount of bytes"),
53 cl::value_desc("func1:pad1,func2:pad2,func3:pad3,..."),
55 cl::cat(BoltCategory
));
57 static cl::opt
<bool> MarkFuncs(
59 cl::desc("mark function boundaries with break instruction to make "
60 "sure we accidentally don't cross them"),
61 cl::ReallyHidden
, cl::cat(BoltCategory
));
63 static cl::opt
<bool> PrintJumpTables("print-jump-tables",
64 cl::desc("print jump tables"), cl::Hidden
,
65 cl::cat(BoltCategory
));
68 X86AlignBranchBoundaryHotOnly("x86-align-branch-boundary-hot-only",
69 cl::desc("only apply branch boundary alignment in hot code"),
71 cl::cat(BoltOptCategory
));
73 size_t padFunction(const BinaryFunction
&Function
) {
74 static std::map
<std::string
, size_t> FunctionPadding
;
76 if (FunctionPadding
.empty() && !FunctionPadSpec
.empty()) {
77 for (std::string
&Spec
: FunctionPadSpec
) {
78 size_t N
= Spec
.find(':');
79 if (N
== std::string::npos
)
81 std::string Name
= Spec
.substr(0, N
);
82 size_t Padding
= std::stoull(Spec
.substr(N
+ 1));
83 FunctionPadding
[Name
] = Padding
;
87 for (auto &FPI
: FunctionPadding
) {
88 std::string Name
= FPI
.first
;
89 size_t Padding
= FPI
.second
;
90 if (Function
.hasNameRegex(Name
))
100 using JumpTable
= bolt::JumpTable
;
102 class BinaryEmitter
{
104 BinaryEmitter(const BinaryEmitter
&) = delete;
105 BinaryEmitter
&operator=(const BinaryEmitter
&) = delete;
107 MCStreamer
&Streamer
;
111 BinaryEmitter(MCStreamer
&Streamer
, BinaryContext
&BC
)
112 : Streamer(Streamer
), BC(BC
) {}
114 /// Emit all code and data.
115 void emitAll(StringRef OrgSecPrefix
);
117 /// Emit function code. The caller is responsible for emitting function
118 /// symbol(s) and setting the section to emit the code to.
119 void emitFunctionBody(BinaryFunction
&BF
, FunctionFragment
&FF
,
120 bool EmitCodeOnly
= false);
123 /// Emit function code.
124 void emitFunctions();
126 /// Emit a single function.
127 bool emitFunction(BinaryFunction
&BF
, FunctionFragment
&FF
);
129 /// Helper for emitFunctionBody to write data inside a function
130 /// (used for AArch64)
131 void emitConstantIslands(BinaryFunction
&BF
, bool EmitColdPart
,
132 BinaryFunction
*OnBehalfOf
= nullptr);
134 /// Emit jump tables for the function.
135 void emitJumpTables(const BinaryFunction
&BF
);
137 /// Emit jump table data. Callee supplies sections for the data.
138 void emitJumpTable(const JumpTable
&JT
, MCSection
*HotSection
,
139 MCSection
*ColdSection
);
141 void emitCFIInstruction(const MCCFIInstruction
&Inst
) const;
143 /// Emit exception handling ranges for the function.
144 void emitLSDA(BinaryFunction
&BF
, const FunctionFragment
&FF
);
146 /// Emit line number information corresponding to \p NewLoc. \p PrevLoc
147 /// provides a context for de-duplication of line number info.
148 /// \p FirstInstr indicates if \p NewLoc represents the first instruction
149 /// in a sequence, such as a function fragment.
151 /// If \p NewLoc location matches \p PrevLoc, no new line number entry will be
152 /// created and the function will return \p PrevLoc while \p InstrLabel will
153 /// be ignored. Otherwise, the caller should use \p InstrLabel to mark the
154 /// corresponding instruction by emitting \p InstrLabel before it.
155 /// If \p InstrLabel is set by the caller, its value will be used with \p
156 /// \p NewLoc. If it was nullptr on entry, it will be populated with a pointer
157 /// to a new temp symbol used with \p NewLoc.
159 /// Return new current location which is either \p NewLoc or \p PrevLoc.
160 SMLoc
emitLineInfo(const BinaryFunction
&BF
, SMLoc NewLoc
, SMLoc PrevLoc
,
161 bool FirstInstr
, MCSymbol
*&InstrLabel
);
163 /// Use \p FunctionEndSymbol to mark the end of the line info sequence.
164 /// Note that it does not automatically result in the insertion of the EOS
165 /// marker in the line table program, but provides one to the DWARF generator
166 /// when it needs it.
167 void emitLineInfoEnd(const BinaryFunction
&BF
, MCSymbol
*FunctionEndSymbol
);
169 /// Emit debug line info for unprocessed functions from CUs that include
170 /// emitted functions.
171 void emitDebugLineInfoForOriginalFunctions();
173 /// Emit debug line for CUs that were not modified.
174 void emitDebugLineInfoForUnprocessedCUs();
176 /// Emit data sections that have code references in them.
177 void emitDataSections(StringRef OrgSecPrefix
);
180 } // anonymous namespace
182 void BinaryEmitter::emitAll(StringRef OrgSecPrefix
) {
183 Streamer
.initSections(false, *BC
.STI
);
184 Streamer
.setUseAssemblerInfoForParsing(false);
186 if (opts::UpdateDebugSections
&& BC
.isELF()) {
187 // Force the emission of debug line info into allocatable section to ensure
188 // JITLink will process it.
190 // NB: on MachO all sections are required for execution, hence no need
191 // to change flags/attributes.
192 MCSectionELF
*ELFDwarfLineSection
=
193 static_cast<MCSectionELF
*>(BC
.MOFI
->getDwarfLineSection());
194 ELFDwarfLineSection
->setFlags(ELF::SHF_ALLOC
);
195 MCSectionELF
*ELFDwarfLineStrSection
=
196 static_cast<MCSectionELF
*>(BC
.MOFI
->getDwarfLineStrSection());
197 ELFDwarfLineStrSection
->setFlags(ELF::SHF_ALLOC
);
200 if (RuntimeLibrary
*RtLibrary
= BC
.getRuntimeLibrary())
201 RtLibrary
->emitBinary(BC
, Streamer
);
203 BC
.getTextSection()->setAlignment(Align(opts::AlignText
));
207 if (opts::UpdateDebugSections
) {
208 emitDebugLineInfoForOriginalFunctions();
209 DwarfLineTable::emit(BC
, Streamer
);
212 emitDataSections(OrgSecPrefix
);
214 // TODO Enable for Mach-O once BinaryContext::getDataSection supports it.
216 AddressMap::emit(Streamer
, BC
);
217 Streamer
.setUseAssemblerInfoForParsing(true);
220 void BinaryEmitter::emitFunctions() {
221 auto emit
= [&](const std::vector
<BinaryFunction
*> &Functions
) {
222 const bool HasProfile
= BC
.NumProfiledFuncs
> 0;
223 const bool OriginalAllowAutoPadding
= Streamer
.getAllowAutoPadding();
224 for (BinaryFunction
*Function
: Functions
) {
225 if (!BC
.shouldEmit(*Function
))
228 LLVM_DEBUG(dbgs() << "BOLT: generating code for function \"" << *Function
229 << "\" : " << Function
->getFunctionNumber() << '\n');
231 // Was any part of the function emitted.
232 bool Emitted
= false;
234 // Turn off Intel JCC Erratum mitigation for cold code if requested
235 if (HasProfile
&& opts::X86AlignBranchBoundaryHotOnly
&&
236 !Function
->hasValidProfile())
237 Streamer
.setAllowAutoPadding(false);
239 FunctionLayout
&Layout
= Function
->getLayout();
240 Emitted
|= emitFunction(*Function
, Layout
.getMainFragment());
242 if (Function
->isSplit()) {
243 if (opts::X86AlignBranchBoundaryHotOnly
)
244 Streamer
.setAllowAutoPadding(false);
246 assert((Layout
.fragment_size() == 1 || Function
->isSimple()) &&
247 "Only simple functions can have fragments");
248 for (FunctionFragment
&FF
: Layout
.getSplitFragments()) {
249 // Skip empty fragments so no symbols and sections for empty fragments
251 if (FF
.empty() && !Function
->hasConstantIsland())
253 Emitted
|= emitFunction(*Function
, FF
);
257 Streamer
.setAllowAutoPadding(OriginalAllowAutoPadding
);
260 Function
->setEmitted(/*KeepCFG=*/opts::PrintCacheMetrics
);
264 // Mark the start of hot text.
266 Streamer
.switchSection(BC
.getTextSection());
267 Streamer
.emitLabel(BC
.getHotTextStartSymbol());
270 // Emit functions in sorted order.
271 std::vector
<BinaryFunction
*> SortedFunctions
= BC
.getSortedFunctions();
272 emit(SortedFunctions
);
274 // Emit functions added by BOLT.
275 emit(BC
.getInjectedBinaryFunctions());
277 // Mark the end of hot text.
279 if (BC
.HasWarmSection
)
280 Streamer
.switchSection(BC
.getCodeSection(BC
.getWarmCodeSectionName()));
282 Streamer
.switchSection(BC
.getTextSection());
283 Streamer
.emitLabel(BC
.getHotTextEndSymbol());
287 bool BinaryEmitter::emitFunction(BinaryFunction
&Function
,
288 FunctionFragment
&FF
) {
289 if (Function
.size() == 0 && !Function
.hasIslandsInfo())
292 if (Function
.getState() == BinaryFunction::State::Empty
)
295 // Avoid emitting function without instructions when overwriting the original
296 // function in-place. Otherwise, emit the empty function to define the symbol.
297 if (!BC
.HasRelocations
&& !Function
.hasNonPseudoInstructions())
301 BC
.getCodeSection(Function
.getCodeSectionName(FF
.getFragmentNum()));
302 Streamer
.switchSection(Section
);
303 Section
->setHasInstructions(true);
304 BC
.Ctx
->addGenDwarfSection(Section
);
306 if (BC
.HasRelocations
) {
307 // Set section alignment to at least maximum possible object alignment.
308 // We need this to support LongJmp and other passes that calculates
310 Section
->ensureMinAlignment(Align(opts::AlignFunctions
));
312 Streamer
.emitCodeAlignment(Function
.getMinAlign(), &*BC
.STI
);
313 uint16_t MaxAlignBytes
= FF
.isSplitFragment()
314 ? Function
.getMaxColdAlignmentBytes()
315 : Function
.getMaxAlignmentBytes();
316 if (MaxAlignBytes
> 0)
317 Streamer
.emitCodeAlignment(Function
.getAlign(), &*BC
.STI
, MaxAlignBytes
);
319 Streamer
.emitCodeAlignment(Function
.getAlign(), &*BC
.STI
);
322 MCContext
&Context
= Streamer
.getContext();
323 const MCAsmInfo
*MAI
= Context
.getAsmInfo();
325 MCSymbol
*const StartSymbol
= Function
.getSymbol(FF
.getFragmentNum());
327 // Emit all symbols associated with the main function entry.
328 if (FF
.isMainFragment()) {
329 for (MCSymbol
*Symbol
: Function
.getSymbols()) {
330 Streamer
.emitSymbolAttribute(Symbol
, MCSA_ELF_TypeFunction
);
331 Streamer
.emitLabel(Symbol
);
334 Streamer
.emitSymbolAttribute(StartSymbol
, MCSA_ELF_TypeFunction
);
335 Streamer
.emitLabel(StartSymbol
);
339 if (Function
.hasCFI()) {
340 Streamer
.emitCFIStartProc(/*IsSimple=*/false);
341 if (Function
.getPersonalityFunction() != nullptr)
342 Streamer
.emitCFIPersonality(Function
.getPersonalityFunction(),
343 Function
.getPersonalityEncoding());
344 MCSymbol
*LSDASymbol
= Function
.getLSDASymbol(FF
.getFragmentNum());
346 Streamer
.emitCFILsda(LSDASymbol
, BC
.LSDAEncoding
);
348 Streamer
.emitCFILsda(0, dwarf::DW_EH_PE_omit
);
349 // Emit CFI instructions relative to the CIE
350 for (const MCCFIInstruction
&CFIInstr
: Function
.cie()) {
351 // Only write CIE CFI insns that LLVM will not already emit
352 const std::vector
<MCCFIInstruction
> &FrameInstrs
=
353 MAI
->getInitialFrameState();
354 if (!llvm::is_contained(FrameInstrs
, CFIInstr
))
355 emitCFIInstruction(CFIInstr
);
359 assert((Function
.empty() || !(*Function
.begin()).isCold()) &&
360 "first basic block should never be cold");
362 // Emit UD2 at the beginning if requested by user.
363 if (!opts::BreakFunctionNames
.empty()) {
364 for (std::string
&Name
: opts::BreakFunctionNames
) {
365 if (Function
.hasNameRegex(Name
)) {
366 Streamer
.emitIntValue(0x0B0F, 2); // UD2: 0F 0B
373 emitFunctionBody(Function
, FF
, /*EmitCodeOnly=*/false);
375 // Emit padding if requested.
376 if (size_t Padding
= opts::padFunction(Function
)) {
377 LLVM_DEBUG(dbgs() << "BOLT-DEBUG: padding function " << Function
<< " with "
378 << Padding
<< " bytes\n");
379 Streamer
.emitFill(Padding
, MAI
->getTextAlignFillValue());
383 Streamer
.emitBytes(BC
.MIB
->getTrapFillValue());
386 if (Function
.hasCFI())
387 Streamer
.emitCFIEndProc();
389 MCSymbol
*EndSymbol
= Function
.getFunctionEndLabel(FF
.getFragmentNum());
390 Streamer
.emitLabel(EndSymbol
);
392 if (MAI
->hasDotTypeDotSizeDirective()) {
393 const MCExpr
*SizeExpr
= MCBinaryExpr::createSub(
394 MCSymbolRefExpr::create(EndSymbol
, Context
),
395 MCSymbolRefExpr::create(StartSymbol
, Context
), Context
);
396 Streamer
.emitELFSize(StartSymbol
, SizeExpr
);
399 if (opts::UpdateDebugSections
&& Function
.getDWARFUnit())
400 emitLineInfoEnd(Function
, EndSymbol
);
402 // Exception handling info for the function.
403 emitLSDA(Function
, FF
);
405 if (FF
.isMainFragment() && opts::JumpTables
> JTS_NONE
)
406 emitJumpTables(Function
);
411 void BinaryEmitter::emitFunctionBody(BinaryFunction
&BF
, FunctionFragment
&FF
,
413 if (!EmitCodeOnly
&& FF
.isSplitFragment() && BF
.hasConstantIsland()) {
414 assert(BF
.getLayout().isHotColdSplit() &&
415 "Constant island support only with hot/cold split");
416 BF
.duplicateConstantIslands();
419 // Track the first emitted instruction with debug info.
420 bool FirstInstr
= true;
421 for (BinaryBasicBlock
*const BB
: FF
) {
422 if ((opts::AlignBlocks
|| opts::PreserveBlocksAlignment
) &&
423 BB
->getAlignment() > 1)
424 Streamer
.emitCodeAlignment(BB
->getAlign(), &*BC
.STI
,
425 BB
->getAlignmentMaxBytes());
426 Streamer
.emitLabel(BB
->getLabel());
428 if (MCSymbol
*EntrySymbol
= BF
.getSecondaryEntryPointSymbol(*BB
))
429 Streamer
.emitLabel(EntrySymbol
);
433 for (auto I
= BB
->begin(), E
= BB
->end(); I
!= E
; ++I
) {
436 if (EmitCodeOnly
&& BC
.MIB
->isPseudo(Instr
))
439 // Handle pseudo instructions.
440 if (BC
.MIB
->isCFI(Instr
)) {
441 emitCFIInstruction(*BF
.getCFIFor(Instr
));
446 // A symbol to be emitted before the instruction to mark its location.
447 MCSymbol
*InstrLabel
= BC
.MIB
->getInstLabel(Instr
);
449 if (opts::UpdateDebugSections
&& BF
.getDWARFUnit()) {
450 LastLocSeen
= emitLineInfo(BF
, Instr
.getLoc(), LastLocSeen
,
451 FirstInstr
, InstrLabel
);
455 // Prepare to tag this location with a label if we need to keep track of
456 // the location of calls/returns for BOLT address translation maps
457 if (BF
.requiresAddressTranslation() && BC
.MIB
->getOffset(Instr
)) {
458 const uint32_t Offset
= *BC
.MIB
->getOffset(Instr
);
460 InstrLabel
= BC
.Ctx
->createTempSymbol();
461 BB
->getLocSyms().emplace_back(Offset
, InstrLabel
);
465 Streamer
.emitLabel(InstrLabel
);
468 // Emit sized NOPs via MCAsmBackend::writeNopData() interface on x86.
469 // This is a workaround for invalid NOPs handling by asm/disasm layer.
470 if (BC
.isX86() && BC
.MIB
->isNoop(Instr
)) {
471 if (std::optional
<uint32_t> Size
= BC
.MIB
->getSize(Instr
)) {
472 SmallString
<15> Code
;
473 raw_svector_ostream
VecOS(Code
);
474 BC
.MAB
->writeNopData(VecOS
, *Size
, BC
.STI
.get());
475 Streamer
.emitBytes(Code
);
480 Streamer
.emitInstruction(Instr
, *BC
.STI
);
485 emitConstantIslands(BF
, FF
.isSplitFragment());
488 void BinaryEmitter::emitConstantIslands(BinaryFunction
&BF
, bool EmitColdPart
,
489 BinaryFunction
*OnBehalfOf
) {
490 if (!BF
.hasIslandsInfo())
493 BinaryFunction::IslandInfo
&Islands
= BF
.getIslandInfo();
494 if (Islands
.DataOffsets
.empty() && Islands
.Dependency
.empty())
497 // AArch64 requires CI to be aligned to 8 bytes due to access instructions
498 // restrictions. E.g. the ldr with imm, where imm must be aligned to 8 bytes.
499 const uint16_t Alignment
= OnBehalfOf
500 ? OnBehalfOf
->getConstantIslandAlignment()
501 : BF
.getConstantIslandAlignment();
502 Streamer
.emitCodeAlignment(Align(Alignment
), &*BC
.STI
);
506 Streamer
.emitLabel(BF
.getFunctionConstantIslandLabel());
508 Streamer
.emitLabel(BF
.getFunctionColdConstantIslandLabel());
511 assert((!OnBehalfOf
|| Islands
.Proxies
[OnBehalfOf
].size() > 0) &&
512 "spurious OnBehalfOf constant island emission");
514 assert(!BF
.isInjected() &&
515 "injected functions should not have constant islands");
516 // Raw contents of the function.
517 StringRef SectionContents
= BF
.getOriginSection()->getContents();
519 // Raw contents of the function.
520 StringRef FunctionContents
= SectionContents
.substr(
521 BF
.getAddress() - BF
.getOriginSection()->getAddress(), BF
.getMaxSize());
523 if (opts::Verbosity
&& !OnBehalfOf
)
524 BC
.outs() << "BOLT-INFO: emitting constant island for function " << BF
527 // We split the island into smaller blocks and output labels between them.
528 auto IS
= Islands
.Offsets
.begin();
529 for (auto DataIter
= Islands
.DataOffsets
.begin();
530 DataIter
!= Islands
.DataOffsets
.end(); ++DataIter
) {
531 uint64_t FunctionOffset
= *DataIter
;
532 uint64_t EndOffset
= 0ULL;
534 // Determine size of this data chunk
535 auto NextData
= std::next(DataIter
);
536 auto CodeIter
= Islands
.CodeOffsets
.lower_bound(*DataIter
);
537 if (CodeIter
== Islands
.CodeOffsets
.end() &&
538 NextData
== Islands
.DataOffsets
.end())
539 EndOffset
= BF
.getMaxSize();
540 else if (CodeIter
== Islands
.CodeOffsets
.end())
541 EndOffset
= *NextData
;
542 else if (NextData
== Islands
.DataOffsets
.end())
543 EndOffset
= *CodeIter
;
545 EndOffset
= (*CodeIter
> *NextData
) ? *NextData
: *CodeIter
;
547 if (FunctionOffset
== EndOffset
)
548 continue; // Size is zero, nothing to emit
550 auto emitCI
= [&](uint64_t &FunctionOffset
, uint64_t EndOffset
) {
551 if (FunctionOffset
>= EndOffset
)
554 for (auto It
= Islands
.Relocations
.lower_bound(FunctionOffset
);
555 It
!= Islands
.Relocations
.end(); ++It
) {
556 if (It
->first
>= EndOffset
)
559 const Relocation
&Relocation
= It
->second
;
560 if (FunctionOffset
< Relocation
.Offset
) {
562 FunctionContents
.slice(FunctionOffset
, Relocation
.Offset
));
563 FunctionOffset
= Relocation
.Offset
;
567 dbgs() << "BOLT-DEBUG: emitting constant island relocation"
568 << " for " << BF
<< " at offset 0x"
569 << Twine::utohexstr(Relocation
.Offset
) << " with size "
570 << Relocation::getSizeForType(Relocation
.Type
) << '\n');
572 FunctionOffset
+= Relocation
.emit(&Streamer
);
575 assert(FunctionOffset
<= EndOffset
&& "overflow error");
576 if (FunctionOffset
< EndOffset
) {
577 Streamer
.emitBytes(FunctionContents
.slice(FunctionOffset
, EndOffset
));
578 FunctionOffset
= EndOffset
;
582 // Emit labels, relocs and data
583 while (IS
!= Islands
.Offsets
.end() && IS
->first
< EndOffset
) {
584 auto NextLabelOffset
=
585 IS
== Islands
.Offsets
.end() ? EndOffset
: IS
->first
;
586 auto NextStop
= std::min(NextLabelOffset
, EndOffset
);
587 assert(NextStop
<= EndOffset
&& "internal overflow error");
588 emitCI(FunctionOffset
, NextStop
);
589 if (IS
!= Islands
.Offsets
.end() && FunctionOffset
== IS
->first
) {
590 // This is a slightly complex code to decide which label to emit. We
591 // have 4 cases to handle: regular symbol, cold symbol, regular or cold
592 // symbol being emitted on behalf of an external function.
595 LLVM_DEBUG(dbgs() << "BOLT-DEBUG: emitted label "
596 << IS
->second
->getName() << " at offset 0x"
597 << Twine::utohexstr(IS
->first
) << '\n');
598 if (IS
->second
->isUndefined())
599 Streamer
.emitLabel(IS
->second
);
601 assert(BF
.hasName(std::string(IS
->second
->getName())));
602 } else if (Islands
.ColdSymbols
.count(IS
->second
) != 0) {
604 << "BOLT-DEBUG: emitted label "
605 << Islands
.ColdSymbols
[IS
->second
]->getName() << '\n');
606 if (Islands
.ColdSymbols
[IS
->second
]->isUndefined())
607 Streamer
.emitLabel(Islands
.ColdSymbols
[IS
->second
]);
611 if (MCSymbol
*Sym
= Islands
.Proxies
[OnBehalfOf
][IS
->second
]) {
612 LLVM_DEBUG(dbgs() << "BOLT-DEBUG: emitted label "
613 << Sym
->getName() << '\n');
614 Streamer
.emitLabel(Sym
);
616 } else if (MCSymbol
*Sym
=
617 Islands
.ColdProxies
[OnBehalfOf
][IS
->second
]) {
618 LLVM_DEBUG(dbgs() << "BOLT-DEBUG: emitted label " << Sym
->getName()
620 Streamer
.emitLabel(Sym
);
626 assert(FunctionOffset
<= EndOffset
&& "overflow error");
627 emitCI(FunctionOffset
, EndOffset
);
629 assert(IS
== Islands
.Offsets
.end() && "some symbols were not emitted!");
633 // Now emit constant islands from other functions that we may have used in
635 for (BinaryFunction
*ExternalFunc
: Islands
.Dependency
)
636 emitConstantIslands(*ExternalFunc
, EmitColdPart
, &BF
);
639 SMLoc
BinaryEmitter::emitLineInfo(const BinaryFunction
&BF
, SMLoc NewLoc
,
640 SMLoc PrevLoc
, bool FirstInstr
,
641 MCSymbol
*&InstrLabel
) {
642 DWARFUnit
*FunctionCU
= BF
.getDWARFUnit();
643 const DWARFDebugLine::LineTable
*FunctionLineTable
= BF
.getDWARFLineTable();
644 assert(FunctionCU
&& "cannot emit line info for function without CU");
646 DebugLineTableRowRef RowReference
= DebugLineTableRowRef::fromSMLoc(NewLoc
);
648 // Check if no new line info needs to be emitted.
649 if (RowReference
== DebugLineTableRowRef::NULL_ROW
||
650 NewLoc
.getPointer() == PrevLoc
.getPointer())
653 unsigned CurrentFilenum
= 0;
654 const DWARFDebugLine::LineTable
*CurrentLineTable
= FunctionLineTable
;
656 // If the CU id from the current instruction location does not
657 // match the CU id from the current function, it means that we
658 // have come across some inlined code. We must look up the CU
659 // for the instruction's original function and get the line table
661 const uint64_t FunctionUnitIndex
= FunctionCU
->getOffset();
662 const uint32_t CurrentUnitIndex
= RowReference
.DwCompileUnitIndex
;
663 if (CurrentUnitIndex
!= FunctionUnitIndex
) {
664 CurrentLineTable
= BC
.DwCtx
->getLineTableForUnit(
665 BC
.DwCtx
->getCompileUnitForOffset(CurrentUnitIndex
));
666 // Add filename from the inlined function to the current CU.
667 CurrentFilenum
= BC
.addDebugFilenameToUnit(
668 FunctionUnitIndex
, CurrentUnitIndex
,
669 CurrentLineTable
->Rows
[RowReference
.RowIndex
- 1].File
);
672 const DWARFDebugLine::Row
&CurrentRow
=
673 CurrentLineTable
->Rows
[RowReference
.RowIndex
- 1];
675 CurrentFilenum
= CurrentRow
.File
;
677 unsigned Flags
= (DWARF2_FLAG_IS_STMT
* CurrentRow
.IsStmt
) |
678 (DWARF2_FLAG_BASIC_BLOCK
* CurrentRow
.BasicBlock
) |
679 (DWARF2_FLAG_PROLOGUE_END
* CurrentRow
.PrologueEnd
) |
680 (DWARF2_FLAG_EPILOGUE_BEGIN
* CurrentRow
.EpilogueBegin
);
682 // Always emit is_stmt at the beginning of function fragment.
684 Flags
|= DWARF2_FLAG_IS_STMT
;
686 BC
.Ctx
->setCurrentDwarfLoc(CurrentFilenum
, CurrentRow
.Line
, CurrentRow
.Column
,
687 Flags
, CurrentRow
.Isa
, CurrentRow
.Discriminator
);
688 const MCDwarfLoc
&DwarfLoc
= BC
.Ctx
->getCurrentDwarfLoc();
689 BC
.Ctx
->clearDwarfLocSeen();
692 InstrLabel
= BC
.Ctx
->createTempSymbol();
694 BC
.getDwarfLineTable(FunctionUnitIndex
)
696 .addLineEntry(MCDwarfLineEntry(InstrLabel
, DwarfLoc
),
697 Streamer
.getCurrentSectionOnly());
702 void BinaryEmitter::emitLineInfoEnd(const BinaryFunction
&BF
,
703 MCSymbol
*FunctionEndLabel
) {
704 DWARFUnit
*FunctionCU
= BF
.getDWARFUnit();
705 assert(FunctionCU
&& "DWARF unit expected");
706 BC
.Ctx
->setCurrentDwarfLoc(0, 0, 0, DWARF2_FLAG_END_SEQUENCE
, 0, 0);
707 const MCDwarfLoc
&DwarfLoc
= BC
.Ctx
->getCurrentDwarfLoc();
708 BC
.Ctx
->clearDwarfLocSeen();
709 BC
.getDwarfLineTable(FunctionCU
->getOffset())
711 .addLineEntry(MCDwarfLineEntry(FunctionEndLabel
, DwarfLoc
),
712 Streamer
.getCurrentSectionOnly());
715 void BinaryEmitter::emitJumpTables(const BinaryFunction
&BF
) {
716 MCSection
*ReadOnlySection
= BC
.MOFI
->getReadOnlySection();
717 MCSection
*ReadOnlyColdSection
= BC
.MOFI
->getContext().getELFSection(
718 ".rodata.cold", ELF::SHT_PROGBITS
, ELF::SHF_ALLOC
);
720 if (!BF
.hasJumpTables())
723 if (opts::PrintJumpTables
)
724 BC
.outs() << "BOLT-INFO: jump tables for function " << BF
<< ":\n";
726 for (auto &JTI
: BF
.jumpTables()) {
727 JumpTable
&JT
= *JTI
.second
;
728 // Only emit shared jump tables once, when processing the first parent
729 if (JT
.Parents
.size() > 1 && JT
.Parents
[0] != &BF
)
731 if (opts::PrintJumpTables
)
733 if (opts::JumpTables
== JTS_BASIC
&& BC
.HasRelocations
) {
736 MCSection
*HotSection
, *ColdSection
;
737 if (opts::JumpTables
== JTS_BASIC
) {
738 // In non-relocation mode we have to emit jump tables in local sections.
739 // This way we only overwrite them when the corresponding function is
741 std::string Name
= ".local." + JT
.Labels
[0]->getName().str();
742 std::replace(Name
.begin(), Name
.end(), '/', '.');
743 BinarySection
&Section
=
744 BC
.registerOrUpdateSection(Name
, ELF::SHT_PROGBITS
, ELF::SHF_ALLOC
);
745 Section
.setAnonymous(true);
746 JT
.setOutputSection(Section
);
747 HotSection
= BC
.getDataSection(Name
);
748 ColdSection
= HotSection
;
751 HotSection
= ReadOnlySection
;
752 ColdSection
= ReadOnlyColdSection
;
754 HotSection
= BF
.hasProfile() ? ReadOnlySection
: ReadOnlyColdSection
;
755 ColdSection
= HotSection
;
758 emitJumpTable(JT
, HotSection
, ColdSection
);
763 void BinaryEmitter::emitJumpTable(const JumpTable
&JT
, MCSection
*HotSection
,
764 MCSection
*ColdSection
) {
765 // Pre-process entries for aggressive splitting.
766 // Each label represents a separate switch table and gets its own count
767 // determining its destination.
768 std::map
<MCSymbol
*, uint64_t> LabelCounts
;
769 if (opts::JumpTables
> JTS_SPLIT
&& !JT
.Counts
.empty()) {
770 auto It
= JT
.Labels
.find(0);
771 assert(It
!= JT
.Labels
.end());
772 MCSymbol
*CurrentLabel
= It
->second
;
773 uint64_t CurrentLabelCount
= 0;
774 for (unsigned Index
= 0; Index
< JT
.Entries
.size(); ++Index
) {
775 auto LI
= JT
.Labels
.find(Index
* JT
.EntrySize
);
776 if (LI
!= JT
.Labels
.end()) {
777 LabelCounts
[CurrentLabel
] = CurrentLabelCount
;
778 CurrentLabel
= LI
->second
;
779 CurrentLabelCount
= 0;
781 CurrentLabelCount
+= JT
.Counts
[Index
].Count
;
783 LabelCounts
[CurrentLabel
] = CurrentLabelCount
;
785 Streamer
.switchSection(JT
.Count
> 0 ? HotSection
: ColdSection
);
786 Streamer
.emitValueToAlignment(Align(JT
.EntrySize
));
788 MCSymbol
*LastLabel
= nullptr;
790 for (MCSymbol
*Entry
: JT
.Entries
) {
791 auto LI
= JT
.Labels
.find(Offset
);
792 if (LI
!= JT
.Labels
.end()) {
794 dbgs() << "BOLT-DEBUG: emitting jump table " << LI
->second
->getName()
795 << " (originally was at address 0x"
796 << Twine::utohexstr(JT
.getAddress() + Offset
)
797 << (Offset
? ") as part of larger jump table\n" : ")\n");
799 if (!LabelCounts
.empty()) {
800 LLVM_DEBUG(dbgs() << "BOLT-DEBUG: jump table count: "
801 << LabelCounts
[LI
->second
] << '\n');
802 if (LabelCounts
[LI
->second
] > 0)
803 Streamer
.switchSection(HotSection
);
805 Streamer
.switchSection(ColdSection
);
806 Streamer
.emitValueToAlignment(Align(JT
.EntrySize
));
808 // Emit all labels registered at the address of this jump table
809 // to sync with our global symbol table. We may have two labels
810 // registered at this address if one label was created via
811 // getOrCreateGlobalSymbol() (e.g. LEA instructions referencing
812 // this location) and another via getOrCreateJumpTable(). This
813 // creates a race where the symbols created by these two
814 // functions may or may not be the same, but they are both
815 // registered in our symbol table at the same address. By
816 // emitting them all here we make sure there is no ambiguity
817 // that depends on the order that these symbols were created, so
818 // whenever this address is referenced in the binary, it is
819 // certain to point to the jump table identified at this
821 if (BinaryData
*BD
= BC
.getBinaryDataByName(LI
->second
->getName())) {
822 for (MCSymbol
*S
: BD
->getSymbols())
823 Streamer
.emitLabel(S
);
825 Streamer
.emitLabel(LI
->second
);
827 LastLabel
= LI
->second
;
829 if (JT
.Type
== JumpTable::JTT_NORMAL
) {
830 Streamer
.emitSymbolValue(Entry
, JT
.OutputEntrySize
);
832 const MCSymbolRefExpr
*JTExpr
=
833 MCSymbolRefExpr::create(LastLabel
, Streamer
.getContext());
834 const MCSymbolRefExpr
*E
=
835 MCSymbolRefExpr::create(Entry
, Streamer
.getContext());
836 const MCBinaryExpr
*Value
=
837 MCBinaryExpr::createSub(E
, JTExpr
, Streamer
.getContext());
838 Streamer
.emitValue(Value
, JT
.EntrySize
);
840 Offset
+= JT
.EntrySize
;
844 void BinaryEmitter::emitCFIInstruction(const MCCFIInstruction
&Inst
) const {
845 switch (Inst
.getOperation()) {
847 llvm_unreachable("Unexpected instruction");
848 case MCCFIInstruction::OpDefCfaOffset
:
849 Streamer
.emitCFIDefCfaOffset(Inst
.getOffset());
851 case MCCFIInstruction::OpAdjustCfaOffset
:
852 Streamer
.emitCFIAdjustCfaOffset(Inst
.getOffset());
854 case MCCFIInstruction::OpDefCfa
:
855 Streamer
.emitCFIDefCfa(Inst
.getRegister(), Inst
.getOffset());
857 case MCCFIInstruction::OpDefCfaRegister
:
858 Streamer
.emitCFIDefCfaRegister(Inst
.getRegister());
860 case MCCFIInstruction::OpOffset
:
861 Streamer
.emitCFIOffset(Inst
.getRegister(), Inst
.getOffset());
863 case MCCFIInstruction::OpRegister
:
864 Streamer
.emitCFIRegister(Inst
.getRegister(), Inst
.getRegister2());
866 case MCCFIInstruction::OpWindowSave
:
867 Streamer
.emitCFIWindowSave();
869 case MCCFIInstruction::OpNegateRAState
:
870 Streamer
.emitCFINegateRAState();
872 case MCCFIInstruction::OpSameValue
:
873 Streamer
.emitCFISameValue(Inst
.getRegister());
875 case MCCFIInstruction::OpGnuArgsSize
:
876 Streamer
.emitCFIGnuArgsSize(Inst
.getOffset());
878 case MCCFIInstruction::OpEscape
:
879 Streamer
.AddComment(Inst
.getComment());
880 Streamer
.emitCFIEscape(Inst
.getValues());
882 case MCCFIInstruction::OpRestore
:
883 Streamer
.emitCFIRestore(Inst
.getRegister());
885 case MCCFIInstruction::OpUndefined
:
886 Streamer
.emitCFIUndefined(Inst
.getRegister());
891 // The code is based on EHStreamer::emitExceptionTable().
892 void BinaryEmitter::emitLSDA(BinaryFunction
&BF
, const FunctionFragment
&FF
) {
893 const BinaryFunction::CallSitesRange Sites
=
894 BF
.getCallSites(FF
.getFragmentNum());
898 Streamer
.switchSection(BC
.MOFI
->getLSDASection());
900 const unsigned TTypeEncoding
= BF
.getLSDATypeEncoding();
901 const unsigned TTypeEncodingSize
= BC
.getDWARFEncodingSize(TTypeEncoding
);
902 const uint16_t TTypeAlignment
= 4;
904 // Type tables have to be aligned at 4 bytes.
905 Streamer
.emitValueToAlignment(Align(TTypeAlignment
));
907 // Emit the LSDA label.
908 MCSymbol
*LSDASymbol
= BF
.getLSDASymbol(FF
.getFragmentNum());
909 assert(LSDASymbol
&& "no LSDA symbol set");
910 Streamer
.emitLabel(LSDASymbol
);
912 // Corresponding FDE start.
913 const MCSymbol
*StartSymbol
= BF
.getSymbol(FF
.getFragmentNum());
915 // Emit the LSDA header.
917 // If LPStart is omitted, then the start of the FDE is used as a base for
918 // landing pad displacements. Then, if a cold fragment starts with a landing
919 // pad, this means that the first landing pad offset will be 0. However, C++
920 // runtime treats 0 as if there is no landing pad present, thus we *must* emit
921 // non-zero offsets for all valid LPs.
923 // As a solution, for fixed-address binaries we set LPStart to 0, and for
924 // position-independent binaries we set LP start to FDE start minus one byte
925 // for FDEs that start with a landing pad.
926 const bool NeedsLPAdjustment
= !FF
.empty() && FF
.front()->isLandingPad();
927 std::function
<void(const MCSymbol
*)> emitLandingPad
;
928 if (BC
.HasFixedLoadAddress
) {
929 Streamer
.emitIntValue(dwarf::DW_EH_PE_udata4
, 1); // LPStart format
930 Streamer
.emitIntValue(0, 4); // LPStart
931 emitLandingPad
= [&](const MCSymbol
*LPSymbol
) {
933 Streamer
.emitSymbolValue(LPSymbol
, 4);
935 Streamer
.emitIntValue(0, 4);
938 if (NeedsLPAdjustment
) {
939 // Use relative LPStart format and emit LPStart as [SymbolStart - 1].
940 Streamer
.emitIntValue(dwarf::DW_EH_PE_pcrel
| dwarf::DW_EH_PE_sdata4
, 1);
941 MCSymbol
*DotSymbol
= BC
.Ctx
->createTempSymbol("LPBase");
942 Streamer
.emitLabel(DotSymbol
);
944 const MCExpr
*LPStartExpr
= MCBinaryExpr::createSub(
945 MCSymbolRefExpr::create(StartSymbol
, *BC
.Ctx
),
946 MCSymbolRefExpr::create(DotSymbol
, *BC
.Ctx
), *BC
.Ctx
);
947 LPStartExpr
= MCBinaryExpr::createSub(
948 LPStartExpr
, MCConstantExpr::create(1, *BC
.Ctx
), *BC
.Ctx
);
949 Streamer
.emitValue(LPStartExpr
, 4);
951 // DW_EH_PE_omit means FDE start (StartSymbol) will be used as LPStart.
952 Streamer
.emitIntValue(dwarf::DW_EH_PE_omit
, 1);
954 emitLandingPad
= [&](const MCSymbol
*LPSymbol
) {
956 const MCExpr
*LPOffsetExpr
= MCBinaryExpr::createSub(
957 MCSymbolRefExpr::create(LPSymbol
, *BC
.Ctx
),
958 MCSymbolRefExpr::create(StartSymbol
, *BC
.Ctx
), *BC
.Ctx
);
959 if (NeedsLPAdjustment
)
960 LPOffsetExpr
= MCBinaryExpr::createAdd(
961 LPOffsetExpr
, MCConstantExpr::create(1, *BC
.Ctx
), *BC
.Ctx
);
962 Streamer
.emitULEB128Value(LPOffsetExpr
);
964 Streamer
.emitULEB128IntValue(0);
969 Streamer
.emitIntValue(TTypeEncoding
, 1); // TType format
971 MCSymbol
*TTBaseLabel
= nullptr;
972 if (TTypeEncoding
!= dwarf::DW_EH_PE_omit
) {
973 TTBaseLabel
= BC
.Ctx
->createTempSymbol("TTBase");
974 MCSymbol
*TTBaseRefLabel
= BC
.Ctx
->createTempSymbol("TTBaseRef");
975 Streamer
.emitAbsoluteSymbolDiffAsULEB128(TTBaseLabel
, TTBaseRefLabel
);
976 Streamer
.emitLabel(TTBaseRefLabel
);
979 // Emit encoding of entries in the call site table. The format is used for the
980 // call site start, length, and corresponding landing pad.
981 if (BC
.HasFixedLoadAddress
)
982 Streamer
.emitIntValue(dwarf::DW_EH_PE_sdata4
, 1);
984 Streamer
.emitIntValue(dwarf::DW_EH_PE_uleb128
, 1);
986 MCSymbol
*CSTStartLabel
= BC
.Ctx
->createTempSymbol("CSTStart");
987 MCSymbol
*CSTEndLabel
= BC
.Ctx
->createTempSymbol("CSTEnd");
988 Streamer
.emitAbsoluteSymbolDiffAsULEB128(CSTEndLabel
, CSTStartLabel
);
990 Streamer
.emitLabel(CSTStartLabel
);
991 for (const auto &FragmentCallSite
: Sites
) {
992 const BinaryFunction::CallSite
&CallSite
= FragmentCallSite
.second
;
993 const MCSymbol
*BeginLabel
= CallSite
.Start
;
994 const MCSymbol
*EndLabel
= CallSite
.End
;
996 assert(BeginLabel
&& "start EH label expected");
997 assert(EndLabel
&& "end EH label expected");
999 // Start of the range is emitted relative to the start of current
1000 // function split part.
1001 if (BC
.HasFixedLoadAddress
) {
1002 Streamer
.emitAbsoluteSymbolDiff(BeginLabel
, StartSymbol
, 4);
1003 Streamer
.emitAbsoluteSymbolDiff(EndLabel
, BeginLabel
, 4);
1005 Streamer
.emitAbsoluteSymbolDiffAsULEB128(BeginLabel
, StartSymbol
);
1006 Streamer
.emitAbsoluteSymbolDiffAsULEB128(EndLabel
, BeginLabel
);
1008 emitLandingPad(CallSite
.LP
);
1009 Streamer
.emitULEB128IntValue(CallSite
.Action
);
1011 Streamer
.emitLabel(CSTEndLabel
);
1013 // Write out action, type, and type index tables at the end.
1015 // For action and type index tables there's no need to change the original
1016 // table format unless we are doing function splitting, in which case we can
1017 // split and optimize the tables.
1019 // For type table we (re-)encode the table using TTypeEncoding matching
1020 // the current assembler mode.
1021 for (uint8_t const &Byte
: BF
.getLSDAActionTable())
1022 Streamer
.emitIntValue(Byte
, 1);
1024 const BinaryFunction::LSDATypeTableTy
&TypeTable
=
1025 (TTypeEncoding
& dwarf::DW_EH_PE_indirect
) ? BF
.getLSDATypeAddressTable()
1026 : BF
.getLSDATypeTable();
1027 assert(TypeTable
.size() == BF
.getLSDATypeTable().size() &&
1028 "indirect type table size mismatch");
1030 Streamer
.emitValueToAlignment(Align(TTypeAlignment
));
1032 for (int Index
= TypeTable
.size() - 1; Index
>= 0; --Index
) {
1033 const uint64_t TypeAddress
= TypeTable
[Index
];
1034 switch (TTypeEncoding
& 0x70) {
1036 llvm_unreachable("unsupported TTypeEncoding");
1037 case dwarf::DW_EH_PE_absptr
:
1038 Streamer
.emitIntValue(TypeAddress
, TTypeEncodingSize
);
1040 case dwarf::DW_EH_PE_pcrel
: {
1042 const MCSymbol
*TypeSymbol
=
1043 BC
.getOrCreateGlobalSymbol(TypeAddress
, "TI", 0, TTypeAlignment
);
1044 MCSymbol
*DotSymbol
= BC
.Ctx
->createNamedTempSymbol();
1045 Streamer
.emitLabel(DotSymbol
);
1046 const MCBinaryExpr
*SubDotExpr
= MCBinaryExpr::createSub(
1047 MCSymbolRefExpr::create(TypeSymbol
, *BC
.Ctx
),
1048 MCSymbolRefExpr::create(DotSymbol
, *BC
.Ctx
), *BC
.Ctx
);
1049 Streamer
.emitValue(SubDotExpr
, TTypeEncodingSize
);
1051 Streamer
.emitIntValue(0, TTypeEncodingSize
);
1058 if (TTypeEncoding
!= dwarf::DW_EH_PE_omit
)
1059 Streamer
.emitLabel(TTBaseLabel
);
1061 for (uint8_t const &Byte
: BF
.getLSDATypeIndexTable())
1062 Streamer
.emitIntValue(Byte
, 1);
1065 void BinaryEmitter::emitDebugLineInfoForOriginalFunctions() {
1066 // If a function is in a CU containing at least one processed function, we
1067 // have to rewrite the whole line table for that CU. For unprocessed functions
1068 // we use data from the input line table.
1069 for (auto &It
: BC
.getBinaryFunctions()) {
1070 const BinaryFunction
&Function
= It
.second
;
1072 // If the function was emitted, its line info was emitted with it.
1073 if (Function
.isEmitted())
1076 const DWARFDebugLine::LineTable
*LineTable
= Function
.getDWARFLineTable();
1078 continue; // nothing to update for this function
1080 const uint64_t Address
= Function
.getAddress();
1081 std::vector
<uint32_t> Results
;
1082 if (!LineTable
->lookupAddressRange(
1083 {Address
, object::SectionedAddress::UndefSection
},
1084 Function
.getSize(), Results
))
1087 if (Results
.empty())
1090 // The first row returned could be the last row matching the start address.
1091 // Find the first row with the same address that is not the end of the
1093 uint64_t FirstRow
= Results
.front();
1094 while (FirstRow
> 0) {
1095 const DWARFDebugLine::Row
&PrevRow
= LineTable
->Rows
[FirstRow
- 1];
1096 if (PrevRow
.Address
.Address
!= Address
|| PrevRow
.EndSequence
)
1101 const uint64_t EndOfSequenceAddress
=
1102 Function
.getAddress() + Function
.getMaxSize();
1103 BC
.getDwarfLineTable(Function
.getDWARFUnit()->getOffset())
1104 .addLineTableSequence(LineTable
, FirstRow
, Results
.back(),
1105 EndOfSequenceAddress
);
1108 // For units that are completely unprocessed, use original debug line contents
1109 // eliminating the need to regenerate line info program.
1110 emitDebugLineInfoForUnprocessedCUs();
1113 void BinaryEmitter::emitDebugLineInfoForUnprocessedCUs() {
1114 // Sorted list of section offsets provides boundaries for section fragments,
1115 // where each fragment is the unit's contribution to debug line section.
1116 std::vector
<uint64_t> StmtListOffsets
;
1117 StmtListOffsets
.reserve(BC
.DwCtx
->getNumCompileUnits());
1118 for (const std::unique_ptr
<DWARFUnit
> &CU
: BC
.DwCtx
->compile_units()) {
1119 DWARFDie CUDie
= CU
->getUnitDIE();
1120 auto StmtList
= dwarf::toSectionOffset(CUDie
.find(dwarf::DW_AT_stmt_list
));
1124 StmtListOffsets
.push_back(*StmtList
);
1126 llvm::sort(StmtListOffsets
);
1128 // For each CU that was not processed, emit its line info as a binary blob.
1129 for (const std::unique_ptr
<DWARFUnit
> &CU
: BC
.DwCtx
->compile_units()) {
1130 if (BC
.ProcessedCUs
.count(CU
.get()))
1133 DWARFDie CUDie
= CU
->getUnitDIE();
1134 auto StmtList
= dwarf::toSectionOffset(CUDie
.find(dwarf::DW_AT_stmt_list
));
1138 StringRef DebugLineContents
= CU
->getLineSection().Data
;
1140 const uint64_t Begin
= *StmtList
;
1142 // Statement list ends where the next unit contribution begins, or at the
1143 // end of the section.
1144 auto It
= llvm::upper_bound(StmtListOffsets
, Begin
);
1145 const uint64_t End
=
1146 It
== StmtListOffsets
.end() ? DebugLineContents
.size() : *It
;
1148 BC
.getDwarfLineTable(CU
->getOffset())
1149 .addRawContents(DebugLineContents
.slice(Begin
, End
));
1153 void BinaryEmitter::emitDataSections(StringRef OrgSecPrefix
) {
1154 for (BinarySection
&Section
: BC
.sections()) {
1155 if (!Section
.hasRelocations())
1158 StringRef Prefix
= Section
.hasSectionRef() ? OrgSecPrefix
: "";
1159 Section
.emitAsData(Streamer
, Prefix
+ Section
.getName());
1160 Section
.clearRelocations();
1167 void emitBinaryContext(MCStreamer
&Streamer
, BinaryContext
&BC
,
1168 StringRef OrgSecPrefix
) {
1169 BinaryEmitter(Streamer
, BC
).emitAll(OrgSecPrefix
);
1172 void emitFunctionBody(MCStreamer
&Streamer
, BinaryFunction
&BF
,
1173 FunctionFragment
&FF
, bool EmitCodeOnly
) {
1174 BinaryEmitter(Streamer
, BF
.getBinaryContext())
1175 .emitFunctionBody(BF
, FF
, EmitCodeOnly
);