[AArch64] Prevent argument promotion of vector with size > 128 bits (#70034)
[llvm-project.git] / llvm / lib / Target / AArch64 / AArch64FrameLowering.cpp
blob880de7d0306a7e1d60bd4c936eee6ab0d99ba46a
1 //===- AArch64FrameLowering.cpp - AArch64 Frame Lowering -------*- C++ -*-====//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file contains the AArch64 implementation of TargetFrameLowering class.
11 // On AArch64, stack frames are structured as follows:
13 // The stack grows downward.
15 // All of the individual frame areas on the frame below are optional, i.e. it's
16 // possible to create a function so that the particular area isn't present
17 // in the frame.
19 // At function entry, the "frame" looks as follows:
21 // | | Higher address
22 // |-----------------------------------|
23 // | |
24 // | arguments passed on the stack |
25 // | |
26 // |-----------------------------------| <- sp
27 // | | Lower address
30 // After the prologue has run, the frame has the following general structure.
31 // Note that this doesn't depict the case where a red-zone is used. Also,
32 // technically the last frame area (VLAs) doesn't get created until in the
33 // main function body, after the prologue is run. However, it's depicted here
34 // for completeness.
36 // | | Higher address
37 // |-----------------------------------|
38 // | |
39 // | arguments passed on the stack |
40 // | |
41 // |-----------------------------------|
42 // | |
43 // | (Win64 only) varargs from reg |
44 // | |
45 // |-----------------------------------|
46 // | |
47 // | callee-saved gpr registers | <--.
48 // | | | On Darwin platforms these
49 // |- - - - - - - - - - - - - - - - - -| | callee saves are swapped,
50 // | prev_lr | | (frame record first)
51 // | prev_fp | <--'
52 // | async context if needed |
53 // | (a.k.a. "frame record") |
54 // |-----------------------------------| <- fp(=x29)
55 // | |
56 // | callee-saved fp/simd/SVE regs |
57 // | |
58 // |-----------------------------------|
59 // | |
60 // | SVE stack objects |
61 // | |
62 // |-----------------------------------|
63 // |.empty.space.to.make.part.below....|
64 // |.aligned.in.case.it.needs.more.than| (size of this area is unknown at
65 // |.the.standard.16-byte.alignment....| compile time; if present)
66 // |-----------------------------------|
67 // | |
68 // | local variables of fixed size |
69 // | including spill slots |
70 // |-----------------------------------| <- bp(not defined by ABI,
71 // |.variable-sized.local.variables....| LLVM chooses X19)
72 // |.(VLAs)............................| (size of this area is unknown at
73 // |...................................| compile time)
74 // |-----------------------------------| <- sp
75 // | | Lower address
78 // To access the data in a frame, at-compile time, a constant offset must be
79 // computable from one of the pointers (fp, bp, sp) to access it. The size
80 // of the areas with a dotted background cannot be computed at compile-time
81 // if they are present, making it required to have all three of fp, bp and
82 // sp to be set up to be able to access all contents in the frame areas,
83 // assuming all of the frame areas are non-empty.
85 // For most functions, some of the frame areas are empty. For those functions,
86 // it may not be necessary to set up fp or bp:
87 // * A base pointer is definitely needed when there are both VLAs and local
88 // variables with more-than-default alignment requirements.
89 // * A frame pointer is definitely needed when there are local variables with
90 // more-than-default alignment requirements.
92 // For Darwin platforms the frame-record (fp, lr) is stored at the top of the
93 // callee-saved area, since the unwind encoding does not allow for encoding
94 // this dynamically and existing tools depend on this layout. For other
95 // platforms, the frame-record is stored at the bottom of the (gpr) callee-saved
96 // area to allow SVE stack objects (allocated directly below the callee-saves,
97 // if available) to be accessed directly from the framepointer.
98 // The SVE spill/fill instructions have VL-scaled addressing modes such
99 // as:
100 // ldr z8, [fp, #-7 mul vl]
101 // For SVE the size of the vector length (VL) is not known at compile-time, so
102 // '#-7 mul vl' is an offset that can only be evaluated at runtime. With this
103 // layout, we don't need to add an unscaled offset to the framepointer before
104 // accessing the SVE object in the frame.
106 // In some cases when a base pointer is not strictly needed, it is generated
107 // anyway when offsets from the frame pointer to access local variables become
108 // so large that the offset can't be encoded in the immediate fields of loads
109 // or stores.
111 // Outgoing function arguments must be at the bottom of the stack frame when
112 // calling another function. If we do not have variable-sized stack objects, we
113 // can allocate a "reserved call frame" area at the bottom of the local
114 // variable area, large enough for all outgoing calls. If we do have VLAs, then
115 // the stack pointer must be decremented and incremented around each call to
116 // make space for the arguments below the VLAs.
118 // FIXME: also explain the redzone concept.
120 // An example of the prologue:
122 // .globl __foo
123 // .align 2
124 // __foo:
125 // Ltmp0:
126 // .cfi_startproc
127 // .cfi_personality 155, ___gxx_personality_v0
128 // Leh_func_begin:
129 // .cfi_lsda 16, Lexception33
131 // stp xa,bx, [sp, -#offset]!
132 // ...
133 // stp x28, x27, [sp, #offset-32]
134 // stp fp, lr, [sp, #offset-16]
135 // add fp, sp, #offset - 16
136 // sub sp, sp, #1360
138 // The Stack:
139 // +-------------------------------------------+
140 // 10000 | ........ | ........ | ........ | ........ |
141 // 10004 | ........ | ........ | ........ | ........ |
142 // +-------------------------------------------+
143 // 10008 | ........ | ........ | ........ | ........ |
144 // 1000c | ........ | ........ | ........ | ........ |
145 // +===========================================+
146 // 10010 | X28 Register |
147 // 10014 | X28 Register |
148 // +-------------------------------------------+
149 // 10018 | X27 Register |
150 // 1001c | X27 Register |
151 // +===========================================+
152 // 10020 | Frame Pointer |
153 // 10024 | Frame Pointer |
154 // +-------------------------------------------+
155 // 10028 | Link Register |
156 // 1002c | Link Register |
157 // +===========================================+
158 // 10030 | ........ | ........ | ........ | ........ |
159 // 10034 | ........ | ........ | ........ | ........ |
160 // +-------------------------------------------+
161 // 10038 | ........ | ........ | ........ | ........ |
162 // 1003c | ........ | ........ | ........ | ........ |
163 // +-------------------------------------------+
165 // [sp] = 10030 :: >>initial value<<
166 // sp = 10020 :: stp fp, lr, [sp, #-16]!
167 // fp = sp == 10020 :: mov fp, sp
168 // [sp] == 10020 :: stp x28, x27, [sp, #-16]!
169 // sp == 10010 :: >>final value<<
171 // The frame pointer (w29) points to address 10020. If we use an offset of
172 // '16' from 'w29', we get the CFI offsets of -8 for w30, -16 for w29, -24
173 // for w27, and -32 for w28:
175 // Ltmp1:
176 // .cfi_def_cfa w29, 16
177 // Ltmp2:
178 // .cfi_offset w30, -8
179 // Ltmp3:
180 // .cfi_offset w29, -16
181 // Ltmp4:
182 // .cfi_offset w27, -24
183 // Ltmp5:
184 // .cfi_offset w28, -32
186 //===----------------------------------------------------------------------===//
188 #include "AArch64FrameLowering.h"
189 #include "AArch64InstrInfo.h"
190 #include "AArch64MachineFunctionInfo.h"
191 #include "AArch64RegisterInfo.h"
192 #include "AArch64Subtarget.h"
193 #include "AArch64TargetMachine.h"
194 #include "MCTargetDesc/AArch64AddressingModes.h"
195 #include "MCTargetDesc/AArch64MCTargetDesc.h"
196 #include "llvm/ADT/ScopeExit.h"
197 #include "llvm/ADT/SmallVector.h"
198 #include "llvm/ADT/Statistic.h"
199 #include "llvm/CodeGen/LivePhysRegs.h"
200 #include "llvm/CodeGen/MachineBasicBlock.h"
201 #include "llvm/CodeGen/MachineFrameInfo.h"
202 #include "llvm/CodeGen/MachineFunction.h"
203 #include "llvm/CodeGen/MachineInstr.h"
204 #include "llvm/CodeGen/MachineInstrBuilder.h"
205 #include "llvm/CodeGen/MachineMemOperand.h"
206 #include "llvm/CodeGen/MachineModuleInfo.h"
207 #include "llvm/CodeGen/MachineOperand.h"
208 #include "llvm/CodeGen/MachineRegisterInfo.h"
209 #include "llvm/CodeGen/RegisterScavenging.h"
210 #include "llvm/CodeGen/TargetInstrInfo.h"
211 #include "llvm/CodeGen/TargetRegisterInfo.h"
212 #include "llvm/CodeGen/TargetSubtargetInfo.h"
213 #include "llvm/CodeGen/WinEHFuncInfo.h"
214 #include "llvm/IR/Attributes.h"
215 #include "llvm/IR/CallingConv.h"
216 #include "llvm/IR/DataLayout.h"
217 #include "llvm/IR/DebugLoc.h"
218 #include "llvm/IR/Function.h"
219 #include "llvm/MC/MCAsmInfo.h"
220 #include "llvm/MC/MCDwarf.h"
221 #include "llvm/Support/CommandLine.h"
222 #include "llvm/Support/Debug.h"
223 #include "llvm/Support/ErrorHandling.h"
224 #include "llvm/Support/MathExtras.h"
225 #include "llvm/Support/raw_ostream.h"
226 #include "llvm/Target/TargetMachine.h"
227 #include "llvm/Target/TargetOptions.h"
228 #include <cassert>
229 #include <cstdint>
230 #include <iterator>
231 #include <optional>
232 #include <vector>
234 using namespace llvm;
236 #define DEBUG_TYPE "frame-info"
238 static cl::opt<bool> EnableRedZone("aarch64-redzone",
239 cl::desc("enable use of redzone on AArch64"),
240 cl::init(false), cl::Hidden);
242 static cl::opt<bool>
243 ReverseCSRRestoreSeq("reverse-csr-restore-seq",
244 cl::desc("reverse the CSR restore sequence"),
245 cl::init(false), cl::Hidden);
247 static cl::opt<bool> StackTaggingMergeSetTag(
248 "stack-tagging-merge-settag",
249 cl::desc("merge settag instruction in function epilog"), cl::init(true),
250 cl::Hidden);
252 static cl::opt<bool> OrderFrameObjects("aarch64-order-frame-objects",
253 cl::desc("sort stack allocations"),
254 cl::init(true), cl::Hidden);
256 cl::opt<bool> EnableHomogeneousPrologEpilog(
257 "homogeneous-prolog-epilog", cl::Hidden,
258 cl::desc("Emit homogeneous prologue and epilogue for the size "
259 "optimization (default = off)"));
261 STATISTIC(NumRedZoneFunctions, "Number of functions using red zone");
263 /// Returns how much of the incoming argument stack area (in bytes) we should
264 /// clean up in an epilogue. For the C calling convention this will be 0, for
265 /// guaranteed tail call conventions it can be positive (a normal return or a
266 /// tail call to a function that uses less stack space for arguments) or
267 /// negative (for a tail call to a function that needs more stack space than us
268 /// for arguments).
269 static int64_t getArgumentStackToRestore(MachineFunction &MF,
270 MachineBasicBlock &MBB) {
271 MachineBasicBlock::iterator MBBI = MBB.getLastNonDebugInstr();
272 AArch64FunctionInfo *AFI = MF.getInfo<AArch64FunctionInfo>();
273 bool IsTailCallReturn = (MBB.end() != MBBI)
274 ? AArch64InstrInfo::isTailCallReturnInst(*MBBI)
275 : false;
277 int64_t ArgumentPopSize = 0;
278 if (IsTailCallReturn) {
279 MachineOperand &StackAdjust = MBBI->getOperand(1);
281 // For a tail-call in a callee-pops-arguments environment, some or all of
282 // the stack may actually be in use for the call's arguments, this is
283 // calculated during LowerCall and consumed here...
284 ArgumentPopSize = StackAdjust.getImm();
285 } else {
286 // ... otherwise the amount to pop is *all* of the argument space,
287 // conveniently stored in the MachineFunctionInfo by
288 // LowerFormalArguments. This will, of course, be zero for the C calling
289 // convention.
290 ArgumentPopSize = AFI->getArgumentStackToRestore();
293 return ArgumentPopSize;
296 static bool produceCompactUnwindFrame(MachineFunction &MF);
297 static bool needsWinCFI(const MachineFunction &MF);
298 static StackOffset getSVEStackSize(const MachineFunction &MF);
300 /// Returns true if a homogeneous prolog or epilog code can be emitted
301 /// for the size optimization. If possible, a frame helper call is injected.
302 /// When Exit block is given, this check is for epilog.
303 bool AArch64FrameLowering::homogeneousPrologEpilog(
304 MachineFunction &MF, MachineBasicBlock *Exit) const {
305 if (!MF.getFunction().hasMinSize())
306 return false;
307 if (!EnableHomogeneousPrologEpilog)
308 return false;
309 if (ReverseCSRRestoreSeq)
310 return false;
311 if (EnableRedZone)
312 return false;
314 // TODO: Window is supported yet.
315 if (needsWinCFI(MF))
316 return false;
317 // TODO: SVE is not supported yet.
318 if (getSVEStackSize(MF))
319 return false;
321 // Bail on stack adjustment needed on return for simplicity.
322 const MachineFrameInfo &MFI = MF.getFrameInfo();
323 const TargetRegisterInfo *RegInfo = MF.getSubtarget().getRegisterInfo();
324 if (MFI.hasVarSizedObjects() || RegInfo->hasStackRealignment(MF))
325 return false;
326 if (Exit && getArgumentStackToRestore(MF, *Exit))
327 return false;
329 auto *AFI = MF.getInfo<AArch64FunctionInfo>();
330 if (AFI->hasSwiftAsyncContext())
331 return false;
333 // If there are an odd number of GPRs before LR and FP in the CSRs list,
334 // they will not be paired into one RegPairInfo, which is incompatible with
335 // the assumption made by the homogeneous prolog epilog pass.
336 const MCPhysReg *CSRegs = MF.getRegInfo().getCalleeSavedRegs();
337 unsigned NumGPRs = 0;
338 for (unsigned I = 0; CSRegs[I]; ++I) {
339 Register Reg = CSRegs[I];
340 if (Reg == AArch64::LR) {
341 assert(CSRegs[I + 1] == AArch64::FP);
342 if (NumGPRs % 2 != 0)
343 return false;
344 break;
346 if (AArch64::GPR64RegClass.contains(Reg))
347 ++NumGPRs;
350 return true;
353 /// Returns true if CSRs should be paired.
354 bool AArch64FrameLowering::producePairRegisters(MachineFunction &MF) const {
355 return produceCompactUnwindFrame(MF) || homogeneousPrologEpilog(MF);
358 /// This is the biggest offset to the stack pointer we can encode in aarch64
359 /// instructions (without using a separate calculation and a temp register).
360 /// Note that the exception here are vector stores/loads which cannot encode any
361 /// displacements (see estimateRSStackSizeLimit(), isAArch64FrameOffsetLegal()).
362 static const unsigned DefaultSafeSPDisplacement = 255;
364 /// Look at each instruction that references stack frames and return the stack
365 /// size limit beyond which some of these instructions will require a scratch
366 /// register during their expansion later.
367 static unsigned estimateRSStackSizeLimit(MachineFunction &MF) {
368 // FIXME: For now, just conservatively guestimate based on unscaled indexing
369 // range. We'll end up allocating an unnecessary spill slot a lot, but
370 // realistically that's not a big deal at this stage of the game.
371 for (MachineBasicBlock &MBB : MF) {
372 for (MachineInstr &MI : MBB) {
373 if (MI.isDebugInstr() || MI.isPseudo() ||
374 MI.getOpcode() == AArch64::ADDXri ||
375 MI.getOpcode() == AArch64::ADDSXri)
376 continue;
378 for (const MachineOperand &MO : MI.operands()) {
379 if (!MO.isFI())
380 continue;
382 StackOffset Offset;
383 if (isAArch64FrameOffsetLegal(MI, Offset, nullptr, nullptr, nullptr) ==
384 AArch64FrameOffsetCannotUpdate)
385 return 0;
389 return DefaultSafeSPDisplacement;
392 TargetStackID::Value
393 AArch64FrameLowering::getStackIDForScalableVectors() const {
394 return TargetStackID::ScalableVector;
397 /// Returns the size of the fixed object area (allocated next to sp on entry)
398 /// On Win64 this may include a var args area and an UnwindHelp object for EH.
399 static unsigned getFixedObjectSize(const MachineFunction &MF,
400 const AArch64FunctionInfo *AFI, bool IsWin64,
401 bool IsFunclet) {
402 if (!IsWin64 || IsFunclet) {
403 return AFI->getTailCallReservedStack();
404 } else {
405 if (AFI->getTailCallReservedStack() != 0)
406 report_fatal_error("cannot generate ABI-changing tail call for Win64");
407 // Var args are stored here in the primary function.
408 const unsigned VarArgsArea = AFI->getVarArgsGPRSize();
409 // To support EH funclets we allocate an UnwindHelp object
410 const unsigned UnwindHelpObject = (MF.hasEHFunclets() ? 8 : 0);
411 return alignTo(VarArgsArea + UnwindHelpObject, 16);
415 /// Returns the size of the entire SVE stackframe (calleesaves + spills).
416 static StackOffset getSVEStackSize(const MachineFunction &MF) {
417 const AArch64FunctionInfo *AFI = MF.getInfo<AArch64FunctionInfo>();
418 return StackOffset::getScalable((int64_t)AFI->getStackSizeSVE());
421 bool AArch64FrameLowering::canUseRedZone(const MachineFunction &MF) const {
422 if (!EnableRedZone)
423 return false;
425 // Don't use the red zone if the function explicitly asks us not to.
426 // This is typically used for kernel code.
427 const AArch64Subtarget &Subtarget = MF.getSubtarget<AArch64Subtarget>();
428 const unsigned RedZoneSize =
429 Subtarget.getTargetLowering()->getRedZoneSize(MF.getFunction());
430 if (!RedZoneSize)
431 return false;
433 const MachineFrameInfo &MFI = MF.getFrameInfo();
434 const AArch64FunctionInfo *AFI = MF.getInfo<AArch64FunctionInfo>();
435 uint64_t NumBytes = AFI->getLocalStackSize();
437 return !(MFI.hasCalls() || hasFP(MF) || NumBytes > RedZoneSize ||
438 getSVEStackSize(MF));
441 /// hasFP - Return true if the specified function should have a dedicated frame
442 /// pointer register.
443 bool AArch64FrameLowering::hasFP(const MachineFunction &MF) const {
444 const MachineFrameInfo &MFI = MF.getFrameInfo();
445 const TargetRegisterInfo *RegInfo = MF.getSubtarget().getRegisterInfo();
447 // Win64 EH requires a frame pointer if funclets are present, as the locals
448 // are accessed off the frame pointer in both the parent function and the
449 // funclets.
450 if (MF.hasEHFunclets())
451 return true;
452 // Retain behavior of always omitting the FP for leaf functions when possible.
453 if (MF.getTarget().Options.DisableFramePointerElim(MF))
454 return true;
455 if (MFI.hasVarSizedObjects() || MFI.isFrameAddressTaken() ||
456 MFI.hasStackMap() || MFI.hasPatchPoint() ||
457 RegInfo->hasStackRealignment(MF))
458 return true;
459 // With large callframes around we may need to use FP to access the scavenging
460 // emergency spillslot.
462 // Unfortunately some calls to hasFP() like machine verifier ->
463 // getReservedReg() -> hasFP in the middle of global isel are too early
464 // to know the max call frame size. Hopefully conservatively returning "true"
465 // in those cases is fine.
466 // DefaultSafeSPDisplacement is fine as we only emergency spill GP regs.
467 if (!MFI.isMaxCallFrameSizeComputed() ||
468 MFI.getMaxCallFrameSize() > DefaultSafeSPDisplacement)
469 return true;
471 return false;
474 /// hasReservedCallFrame - Under normal circumstances, when a frame pointer is
475 /// not required, we reserve argument space for call sites in the function
476 /// immediately on entry to the current function. This eliminates the need for
477 /// add/sub sp brackets around call sites. Returns true if the call frame is
478 /// included as part of the stack frame.
479 bool
480 AArch64FrameLowering::hasReservedCallFrame(const MachineFunction &MF) const {
481 return !MF.getFrameInfo().hasVarSizedObjects();
484 MachineBasicBlock::iterator AArch64FrameLowering::eliminateCallFramePseudoInstr(
485 MachineFunction &MF, MachineBasicBlock &MBB,
486 MachineBasicBlock::iterator I) const {
487 const AArch64InstrInfo *TII =
488 static_cast<const AArch64InstrInfo *>(MF.getSubtarget().getInstrInfo());
489 DebugLoc DL = I->getDebugLoc();
490 unsigned Opc = I->getOpcode();
491 bool IsDestroy = Opc == TII->getCallFrameDestroyOpcode();
492 uint64_t CalleePopAmount = IsDestroy ? I->getOperand(1).getImm() : 0;
494 if (!hasReservedCallFrame(MF)) {
495 int64_t Amount = I->getOperand(0).getImm();
496 Amount = alignTo(Amount, getStackAlign());
497 if (!IsDestroy)
498 Amount = -Amount;
500 // N.b. if CalleePopAmount is valid but zero (i.e. callee would pop, but it
501 // doesn't have to pop anything), then the first operand will be zero too so
502 // this adjustment is a no-op.
503 if (CalleePopAmount == 0) {
504 // FIXME: in-function stack adjustment for calls is limited to 24-bits
505 // because there's no guaranteed temporary register available.
507 // ADD/SUB (immediate) has only LSL #0 and LSL #12 available.
508 // 1) For offset <= 12-bit, we use LSL #0
509 // 2) For 12-bit <= offset <= 24-bit, we use two instructions. One uses
510 // LSL #0, and the other uses LSL #12.
512 // Most call frames will be allocated at the start of a function so
513 // this is OK, but it is a limitation that needs dealing with.
514 assert(Amount > -0xffffff && Amount < 0xffffff && "call frame too large");
515 emitFrameOffset(MBB, I, DL, AArch64::SP, AArch64::SP,
516 StackOffset::getFixed(Amount), TII);
518 } else if (CalleePopAmount != 0) {
519 // If the calling convention demands that the callee pops arguments from the
520 // stack, we want to add it back if we have a reserved call frame.
521 assert(CalleePopAmount < 0xffffff && "call frame too large");
522 emitFrameOffset(MBB, I, DL, AArch64::SP, AArch64::SP,
523 StackOffset::getFixed(-(int64_t)CalleePopAmount), TII);
525 return MBB.erase(I);
528 void AArch64FrameLowering::emitCalleeSavedGPRLocations(
529 MachineBasicBlock &MBB, MachineBasicBlock::iterator MBBI) const {
530 MachineFunction &MF = *MBB.getParent();
531 MachineFrameInfo &MFI = MF.getFrameInfo();
533 const std::vector<CalleeSavedInfo> &CSI = MFI.getCalleeSavedInfo();
534 if (CSI.empty())
535 return;
537 const TargetSubtargetInfo &STI = MF.getSubtarget();
538 const TargetRegisterInfo &TRI = *STI.getRegisterInfo();
539 const TargetInstrInfo &TII = *STI.getInstrInfo();
540 DebugLoc DL = MBB.findDebugLoc(MBBI);
542 for (const auto &Info : CSI) {
543 if (MFI.getStackID(Info.getFrameIdx()) == TargetStackID::ScalableVector)
544 continue;
546 assert(!Info.isSpilledToReg() && "Spilling to registers not implemented");
547 unsigned DwarfReg = TRI.getDwarfRegNum(Info.getReg(), true);
549 int64_t Offset =
550 MFI.getObjectOffset(Info.getFrameIdx()) - getOffsetOfLocalArea();
551 unsigned CFIIndex = MF.addFrameInst(
552 MCCFIInstruction::createOffset(nullptr, DwarfReg, Offset));
553 BuildMI(MBB, MBBI, DL, TII.get(TargetOpcode::CFI_INSTRUCTION))
554 .addCFIIndex(CFIIndex)
555 .setMIFlags(MachineInstr::FrameSetup);
559 void AArch64FrameLowering::emitCalleeSavedSVELocations(
560 MachineBasicBlock &MBB, MachineBasicBlock::iterator MBBI) const {
561 MachineFunction &MF = *MBB.getParent();
562 MachineFrameInfo &MFI = MF.getFrameInfo();
564 // Add callee saved registers to move list.
565 const std::vector<CalleeSavedInfo> &CSI = MFI.getCalleeSavedInfo();
566 if (CSI.empty())
567 return;
569 const TargetSubtargetInfo &STI = MF.getSubtarget();
570 const TargetRegisterInfo &TRI = *STI.getRegisterInfo();
571 const TargetInstrInfo &TII = *STI.getInstrInfo();
572 DebugLoc DL = MBB.findDebugLoc(MBBI);
573 AArch64FunctionInfo &AFI = *MF.getInfo<AArch64FunctionInfo>();
575 for (const auto &Info : CSI) {
576 if (!(MFI.getStackID(Info.getFrameIdx()) == TargetStackID::ScalableVector))
577 continue;
579 // Not all unwinders may know about SVE registers, so assume the lowest
580 // common demoninator.
581 assert(!Info.isSpilledToReg() && "Spilling to registers not implemented");
582 unsigned Reg = Info.getReg();
583 if (!static_cast<const AArch64RegisterInfo &>(TRI).regNeedsCFI(Reg, Reg))
584 continue;
586 StackOffset Offset =
587 StackOffset::getScalable(MFI.getObjectOffset(Info.getFrameIdx())) -
588 StackOffset::getFixed(AFI.getCalleeSavedStackSize(MFI));
590 unsigned CFIIndex = MF.addFrameInst(createCFAOffset(TRI, Reg, Offset));
591 BuildMI(MBB, MBBI, DL, TII.get(TargetOpcode::CFI_INSTRUCTION))
592 .addCFIIndex(CFIIndex)
593 .setMIFlags(MachineInstr::FrameSetup);
597 static void insertCFISameValue(const MCInstrDesc &Desc, MachineFunction &MF,
598 MachineBasicBlock &MBB,
599 MachineBasicBlock::iterator InsertPt,
600 unsigned DwarfReg) {
601 unsigned CFIIndex =
602 MF.addFrameInst(MCCFIInstruction::createSameValue(nullptr, DwarfReg));
603 BuildMI(MBB, InsertPt, DebugLoc(), Desc).addCFIIndex(CFIIndex);
606 void AArch64FrameLowering::resetCFIToInitialState(
607 MachineBasicBlock &MBB) const {
609 MachineFunction &MF = *MBB.getParent();
610 const auto &Subtarget = MF.getSubtarget<AArch64Subtarget>();
611 const TargetInstrInfo &TII = *Subtarget.getInstrInfo();
612 const auto &TRI =
613 static_cast<const AArch64RegisterInfo &>(*Subtarget.getRegisterInfo());
614 const auto &MFI = *MF.getInfo<AArch64FunctionInfo>();
616 const MCInstrDesc &CFIDesc = TII.get(TargetOpcode::CFI_INSTRUCTION);
617 DebugLoc DL;
619 // Reset the CFA to `SP + 0`.
620 MachineBasicBlock::iterator InsertPt = MBB.begin();
621 unsigned CFIIndex = MF.addFrameInst(MCCFIInstruction::cfiDefCfa(
622 nullptr, TRI.getDwarfRegNum(AArch64::SP, true), 0));
623 BuildMI(MBB, InsertPt, DL, CFIDesc).addCFIIndex(CFIIndex);
625 // Flip the RA sign state.
626 if (MFI.shouldSignReturnAddress(MF)) {
627 CFIIndex = MF.addFrameInst(MCCFIInstruction::createNegateRAState(nullptr));
628 BuildMI(MBB, InsertPt, DL, CFIDesc).addCFIIndex(CFIIndex);
631 // Shadow call stack uses X18, reset it.
632 if (MFI.needsShadowCallStackPrologueEpilogue(MF))
633 insertCFISameValue(CFIDesc, MF, MBB, InsertPt,
634 TRI.getDwarfRegNum(AArch64::X18, true));
636 // Emit .cfi_same_value for callee-saved registers.
637 const std::vector<CalleeSavedInfo> &CSI =
638 MF.getFrameInfo().getCalleeSavedInfo();
639 for (const auto &Info : CSI) {
640 unsigned Reg = Info.getReg();
641 if (!TRI.regNeedsCFI(Reg, Reg))
642 continue;
643 insertCFISameValue(CFIDesc, MF, MBB, InsertPt,
644 TRI.getDwarfRegNum(Reg, true));
648 static void emitCalleeSavedRestores(MachineBasicBlock &MBB,
649 MachineBasicBlock::iterator MBBI,
650 bool SVE) {
651 MachineFunction &MF = *MBB.getParent();
652 MachineFrameInfo &MFI = MF.getFrameInfo();
654 const std::vector<CalleeSavedInfo> &CSI = MFI.getCalleeSavedInfo();
655 if (CSI.empty())
656 return;
658 const TargetSubtargetInfo &STI = MF.getSubtarget();
659 const TargetRegisterInfo &TRI = *STI.getRegisterInfo();
660 const TargetInstrInfo &TII = *STI.getInstrInfo();
661 DebugLoc DL = MBB.findDebugLoc(MBBI);
663 for (const auto &Info : CSI) {
664 if (SVE !=
665 (MFI.getStackID(Info.getFrameIdx()) == TargetStackID::ScalableVector))
666 continue;
668 unsigned Reg = Info.getReg();
669 if (SVE &&
670 !static_cast<const AArch64RegisterInfo &>(TRI).regNeedsCFI(Reg, Reg))
671 continue;
673 unsigned CFIIndex = MF.addFrameInst(MCCFIInstruction::createRestore(
674 nullptr, TRI.getDwarfRegNum(Info.getReg(), true)));
675 BuildMI(MBB, MBBI, DL, TII.get(TargetOpcode::CFI_INSTRUCTION))
676 .addCFIIndex(CFIIndex)
677 .setMIFlags(MachineInstr::FrameDestroy);
681 void AArch64FrameLowering::emitCalleeSavedGPRRestores(
682 MachineBasicBlock &MBB, MachineBasicBlock::iterator MBBI) const {
683 emitCalleeSavedRestores(MBB, MBBI, false);
686 void AArch64FrameLowering::emitCalleeSavedSVERestores(
687 MachineBasicBlock &MBB, MachineBasicBlock::iterator MBBI) const {
688 emitCalleeSavedRestores(MBB, MBBI, true);
691 static MCRegister getRegisterOrZero(MCRegister Reg, bool HasSVE) {
692 switch (Reg.id()) {
693 default:
694 // The called routine is expected to preserve r19-r28
695 // r29 and r30 are used as frame pointer and link register resp.
696 return 0;
698 // GPRs
699 #define CASE(n) \
700 case AArch64::W##n: \
701 case AArch64::X##n: \
702 return AArch64::X##n
703 CASE(0);
704 CASE(1);
705 CASE(2);
706 CASE(3);
707 CASE(4);
708 CASE(5);
709 CASE(6);
710 CASE(7);
711 CASE(8);
712 CASE(9);
713 CASE(10);
714 CASE(11);
715 CASE(12);
716 CASE(13);
717 CASE(14);
718 CASE(15);
719 CASE(16);
720 CASE(17);
721 CASE(18);
722 #undef CASE
724 // FPRs
725 #define CASE(n) \
726 case AArch64::B##n: \
727 case AArch64::H##n: \
728 case AArch64::S##n: \
729 case AArch64::D##n: \
730 case AArch64::Q##n: \
731 return HasSVE ? AArch64::Z##n : AArch64::Q##n
732 CASE(0);
733 CASE(1);
734 CASE(2);
735 CASE(3);
736 CASE(4);
737 CASE(5);
738 CASE(6);
739 CASE(7);
740 CASE(8);
741 CASE(9);
742 CASE(10);
743 CASE(11);
744 CASE(12);
745 CASE(13);
746 CASE(14);
747 CASE(15);
748 CASE(16);
749 CASE(17);
750 CASE(18);
751 CASE(19);
752 CASE(20);
753 CASE(21);
754 CASE(22);
755 CASE(23);
756 CASE(24);
757 CASE(25);
758 CASE(26);
759 CASE(27);
760 CASE(28);
761 CASE(29);
762 CASE(30);
763 CASE(31);
764 #undef CASE
768 void AArch64FrameLowering::emitZeroCallUsedRegs(BitVector RegsToZero,
769 MachineBasicBlock &MBB) const {
770 // Insertion point.
771 MachineBasicBlock::iterator MBBI = MBB.getFirstTerminator();
773 // Fake a debug loc.
774 DebugLoc DL;
775 if (MBBI != MBB.end())
776 DL = MBBI->getDebugLoc();
778 const MachineFunction &MF = *MBB.getParent();
779 const AArch64Subtarget &STI = MF.getSubtarget<AArch64Subtarget>();
780 const AArch64RegisterInfo &TRI = *STI.getRegisterInfo();
782 BitVector GPRsToZero(TRI.getNumRegs());
783 BitVector FPRsToZero(TRI.getNumRegs());
784 bool HasSVE = STI.hasSVE();
785 for (MCRegister Reg : RegsToZero.set_bits()) {
786 if (TRI.isGeneralPurposeRegister(MF, Reg)) {
787 // For GPRs, we only care to clear out the 64-bit register.
788 if (MCRegister XReg = getRegisterOrZero(Reg, HasSVE))
789 GPRsToZero.set(XReg);
790 } else if (AArch64::FPR128RegClass.contains(Reg) ||
791 AArch64::FPR64RegClass.contains(Reg) ||
792 AArch64::FPR32RegClass.contains(Reg) ||
793 AArch64::FPR16RegClass.contains(Reg) ||
794 AArch64::FPR8RegClass.contains(Reg)) {
795 // For FPRs,
796 if (MCRegister XReg = getRegisterOrZero(Reg, HasSVE))
797 FPRsToZero.set(XReg);
801 const AArch64InstrInfo &TII = *STI.getInstrInfo();
803 // Zero out GPRs.
804 for (MCRegister Reg : GPRsToZero.set_bits())
805 TII.buildClearRegister(Reg, MBB, MBBI, DL);
807 // Zero out FP/vector registers.
808 for (MCRegister Reg : FPRsToZero.set_bits())
809 TII.buildClearRegister(Reg, MBB, MBBI, DL);
811 if (HasSVE) {
812 for (MCRegister PReg :
813 {AArch64::P0, AArch64::P1, AArch64::P2, AArch64::P3, AArch64::P4,
814 AArch64::P5, AArch64::P6, AArch64::P7, AArch64::P8, AArch64::P9,
815 AArch64::P10, AArch64::P11, AArch64::P12, AArch64::P13, AArch64::P14,
816 AArch64::P15}) {
817 if (RegsToZero[PReg])
818 BuildMI(MBB, MBBI, DL, TII.get(AArch64::PFALSE), PReg);
823 // Find a scratch register that we can use at the start of the prologue to
824 // re-align the stack pointer. We avoid using callee-save registers since they
825 // may appear to be free when this is called from canUseAsPrologue (during
826 // shrink wrapping), but then no longer be free when this is called from
827 // emitPrologue.
829 // FIXME: This is a bit conservative, since in the above case we could use one
830 // of the callee-save registers as a scratch temp to re-align the stack pointer,
831 // but we would then have to make sure that we were in fact saving at least one
832 // callee-save register in the prologue, which is additional complexity that
833 // doesn't seem worth the benefit.
834 static unsigned findScratchNonCalleeSaveRegister(MachineBasicBlock *MBB) {
835 MachineFunction *MF = MBB->getParent();
837 // If MBB is an entry block, use X9 as the scratch register
838 if (&MF->front() == MBB)
839 return AArch64::X9;
841 const AArch64Subtarget &Subtarget = MF->getSubtarget<AArch64Subtarget>();
842 const AArch64RegisterInfo &TRI = *Subtarget.getRegisterInfo();
843 LivePhysRegs LiveRegs(TRI);
844 LiveRegs.addLiveIns(*MBB);
846 // Mark callee saved registers as used so we will not choose them.
847 const MCPhysReg *CSRegs = MF->getRegInfo().getCalleeSavedRegs();
848 for (unsigned i = 0; CSRegs[i]; ++i)
849 LiveRegs.addReg(CSRegs[i]);
851 // Prefer X9 since it was historically used for the prologue scratch reg.
852 const MachineRegisterInfo &MRI = MF->getRegInfo();
853 if (LiveRegs.available(MRI, AArch64::X9))
854 return AArch64::X9;
856 for (unsigned Reg : AArch64::GPR64RegClass) {
857 if (LiveRegs.available(MRI, Reg))
858 return Reg;
860 return AArch64::NoRegister;
863 bool AArch64FrameLowering::canUseAsPrologue(
864 const MachineBasicBlock &MBB) const {
865 const MachineFunction *MF = MBB.getParent();
866 MachineBasicBlock *TmpMBB = const_cast<MachineBasicBlock *>(&MBB);
867 const AArch64Subtarget &Subtarget = MF->getSubtarget<AArch64Subtarget>();
868 const AArch64RegisterInfo *RegInfo = Subtarget.getRegisterInfo();
870 // Don't need a scratch register if we're not going to re-align the stack.
871 if (!RegInfo->hasStackRealignment(*MF))
872 return true;
873 // Otherwise, we can use any block as long as it has a scratch register
874 // available.
875 return findScratchNonCalleeSaveRegister(TmpMBB) != AArch64::NoRegister;
878 static bool windowsRequiresStackProbe(MachineFunction &MF,
879 uint64_t StackSizeInBytes) {
880 const AArch64Subtarget &Subtarget = MF.getSubtarget<AArch64Subtarget>();
881 if (!Subtarget.isTargetWindows())
882 return false;
883 const Function &F = MF.getFunction();
884 // TODO: When implementing stack protectors, take that into account
885 // for the probe threshold.
886 unsigned StackProbeSize =
887 F.getFnAttributeAsParsedInteger("stack-probe-size", 4096);
888 return (StackSizeInBytes >= StackProbeSize) &&
889 !F.hasFnAttribute("no-stack-arg-probe");
892 static bool needsWinCFI(const MachineFunction &MF) {
893 const Function &F = MF.getFunction();
894 return MF.getTarget().getMCAsmInfo()->usesWindowsCFI() &&
895 F.needsUnwindTableEntry();
898 bool AArch64FrameLowering::shouldCombineCSRLocalStackBump(
899 MachineFunction &MF, uint64_t StackBumpBytes) const {
900 AArch64FunctionInfo *AFI = MF.getInfo<AArch64FunctionInfo>();
901 const MachineFrameInfo &MFI = MF.getFrameInfo();
902 const AArch64Subtarget &Subtarget = MF.getSubtarget<AArch64Subtarget>();
903 const AArch64RegisterInfo *RegInfo = Subtarget.getRegisterInfo();
904 if (homogeneousPrologEpilog(MF))
905 return false;
907 if (AFI->getLocalStackSize() == 0)
908 return false;
910 // For WinCFI, if optimizing for size, prefer to not combine the stack bump
911 // (to force a stp with predecrement) to match the packed unwind format,
912 // provided that there actually are any callee saved registers to merge the
913 // decrement with.
914 // This is potentially marginally slower, but allows using the packed
915 // unwind format for functions that both have a local area and callee saved
916 // registers. Using the packed unwind format notably reduces the size of
917 // the unwind info.
918 if (needsWinCFI(MF) && AFI->getCalleeSavedStackSize() > 0 &&
919 MF.getFunction().hasOptSize())
920 return false;
922 // 512 is the maximum immediate for stp/ldp that will be used for
923 // callee-save save/restores
924 if (StackBumpBytes >= 512 || windowsRequiresStackProbe(MF, StackBumpBytes))
925 return false;
927 if (MFI.hasVarSizedObjects())
928 return false;
930 if (RegInfo->hasStackRealignment(MF))
931 return false;
933 // This isn't strictly necessary, but it simplifies things a bit since the
934 // current RedZone handling code assumes the SP is adjusted by the
935 // callee-save save/restore code.
936 if (canUseRedZone(MF))
937 return false;
939 // When there is an SVE area on the stack, always allocate the
940 // callee-saves and spills/locals separately.
941 if (getSVEStackSize(MF))
942 return false;
944 return true;
947 bool AArch64FrameLowering::shouldCombineCSRLocalStackBumpInEpilogue(
948 MachineBasicBlock &MBB, unsigned StackBumpBytes) const {
949 if (!shouldCombineCSRLocalStackBump(*MBB.getParent(), StackBumpBytes))
950 return false;
952 if (MBB.empty())
953 return true;
955 // Disable combined SP bump if the last instruction is an MTE tag store. It
956 // is almost always better to merge SP adjustment into those instructions.
957 MachineBasicBlock::iterator LastI = MBB.getFirstTerminator();
958 MachineBasicBlock::iterator Begin = MBB.begin();
959 while (LastI != Begin) {
960 --LastI;
961 if (LastI->isTransient())
962 continue;
963 if (!LastI->getFlag(MachineInstr::FrameDestroy))
964 break;
966 switch (LastI->getOpcode()) {
967 case AArch64::STGloop:
968 case AArch64::STZGloop:
969 case AArch64::STGi:
970 case AArch64::STZGi:
971 case AArch64::ST2Gi:
972 case AArch64::STZ2Gi:
973 return false;
974 default:
975 return true;
977 llvm_unreachable("unreachable");
980 // Given a load or a store instruction, generate an appropriate unwinding SEH
981 // code on Windows.
982 static MachineBasicBlock::iterator InsertSEH(MachineBasicBlock::iterator MBBI,
983 const TargetInstrInfo &TII,
984 MachineInstr::MIFlag Flag) {
985 unsigned Opc = MBBI->getOpcode();
986 MachineBasicBlock *MBB = MBBI->getParent();
987 MachineFunction &MF = *MBB->getParent();
988 DebugLoc DL = MBBI->getDebugLoc();
989 unsigned ImmIdx = MBBI->getNumOperands() - 1;
990 int Imm = MBBI->getOperand(ImmIdx).getImm();
991 MachineInstrBuilder MIB;
992 const AArch64Subtarget &Subtarget = MF.getSubtarget<AArch64Subtarget>();
993 const AArch64RegisterInfo *RegInfo = Subtarget.getRegisterInfo();
995 switch (Opc) {
996 default:
997 llvm_unreachable("No SEH Opcode for this instruction");
998 case AArch64::LDPDpost:
999 Imm = -Imm;
1000 [[fallthrough]];
1001 case AArch64::STPDpre: {
1002 unsigned Reg0 = RegInfo->getSEHRegNum(MBBI->getOperand(1).getReg());
1003 unsigned Reg1 = RegInfo->getSEHRegNum(MBBI->getOperand(2).getReg());
1004 MIB = BuildMI(MF, DL, TII.get(AArch64::SEH_SaveFRegP_X))
1005 .addImm(Reg0)
1006 .addImm(Reg1)
1007 .addImm(Imm * 8)
1008 .setMIFlag(Flag);
1009 break;
1011 case AArch64::LDPXpost:
1012 Imm = -Imm;
1013 [[fallthrough]];
1014 case AArch64::STPXpre: {
1015 Register Reg0 = MBBI->getOperand(1).getReg();
1016 Register Reg1 = MBBI->getOperand(2).getReg();
1017 if (Reg0 == AArch64::FP && Reg1 == AArch64::LR)
1018 MIB = BuildMI(MF, DL, TII.get(AArch64::SEH_SaveFPLR_X))
1019 .addImm(Imm * 8)
1020 .setMIFlag(Flag);
1021 else
1022 MIB = BuildMI(MF, DL, TII.get(AArch64::SEH_SaveRegP_X))
1023 .addImm(RegInfo->getSEHRegNum(Reg0))
1024 .addImm(RegInfo->getSEHRegNum(Reg1))
1025 .addImm(Imm * 8)
1026 .setMIFlag(Flag);
1027 break;
1029 case AArch64::LDRDpost:
1030 Imm = -Imm;
1031 [[fallthrough]];
1032 case AArch64::STRDpre: {
1033 unsigned Reg = RegInfo->getSEHRegNum(MBBI->getOperand(1).getReg());
1034 MIB = BuildMI(MF, DL, TII.get(AArch64::SEH_SaveFReg_X))
1035 .addImm(Reg)
1036 .addImm(Imm)
1037 .setMIFlag(Flag);
1038 break;
1040 case AArch64::LDRXpost:
1041 Imm = -Imm;
1042 [[fallthrough]];
1043 case AArch64::STRXpre: {
1044 unsigned Reg = RegInfo->getSEHRegNum(MBBI->getOperand(1).getReg());
1045 MIB = BuildMI(MF, DL, TII.get(AArch64::SEH_SaveReg_X))
1046 .addImm(Reg)
1047 .addImm(Imm)
1048 .setMIFlag(Flag);
1049 break;
1051 case AArch64::STPDi:
1052 case AArch64::LDPDi: {
1053 unsigned Reg0 = RegInfo->getSEHRegNum(MBBI->getOperand(0).getReg());
1054 unsigned Reg1 = RegInfo->getSEHRegNum(MBBI->getOperand(1).getReg());
1055 MIB = BuildMI(MF, DL, TII.get(AArch64::SEH_SaveFRegP))
1056 .addImm(Reg0)
1057 .addImm(Reg1)
1058 .addImm(Imm * 8)
1059 .setMIFlag(Flag);
1060 break;
1062 case AArch64::STPXi:
1063 case AArch64::LDPXi: {
1064 Register Reg0 = MBBI->getOperand(0).getReg();
1065 Register Reg1 = MBBI->getOperand(1).getReg();
1066 if (Reg0 == AArch64::FP && Reg1 == AArch64::LR)
1067 MIB = BuildMI(MF, DL, TII.get(AArch64::SEH_SaveFPLR))
1068 .addImm(Imm * 8)
1069 .setMIFlag(Flag);
1070 else
1071 MIB = BuildMI(MF, DL, TII.get(AArch64::SEH_SaveRegP))
1072 .addImm(RegInfo->getSEHRegNum(Reg0))
1073 .addImm(RegInfo->getSEHRegNum(Reg1))
1074 .addImm(Imm * 8)
1075 .setMIFlag(Flag);
1076 break;
1078 case AArch64::STRXui:
1079 case AArch64::LDRXui: {
1080 int Reg = RegInfo->getSEHRegNum(MBBI->getOperand(0).getReg());
1081 MIB = BuildMI(MF, DL, TII.get(AArch64::SEH_SaveReg))
1082 .addImm(Reg)
1083 .addImm(Imm * 8)
1084 .setMIFlag(Flag);
1085 break;
1087 case AArch64::STRDui:
1088 case AArch64::LDRDui: {
1089 unsigned Reg = RegInfo->getSEHRegNum(MBBI->getOperand(0).getReg());
1090 MIB = BuildMI(MF, DL, TII.get(AArch64::SEH_SaveFReg))
1091 .addImm(Reg)
1092 .addImm(Imm * 8)
1093 .setMIFlag(Flag);
1094 break;
1097 auto I = MBB->insertAfter(MBBI, MIB);
1098 return I;
1101 // Fix up the SEH opcode associated with the save/restore instruction.
1102 static void fixupSEHOpcode(MachineBasicBlock::iterator MBBI,
1103 unsigned LocalStackSize) {
1104 MachineOperand *ImmOpnd = nullptr;
1105 unsigned ImmIdx = MBBI->getNumOperands() - 1;
1106 switch (MBBI->getOpcode()) {
1107 default:
1108 llvm_unreachable("Fix the offset in the SEH instruction");
1109 case AArch64::SEH_SaveFPLR:
1110 case AArch64::SEH_SaveRegP:
1111 case AArch64::SEH_SaveReg:
1112 case AArch64::SEH_SaveFRegP:
1113 case AArch64::SEH_SaveFReg:
1114 ImmOpnd = &MBBI->getOperand(ImmIdx);
1115 break;
1117 if (ImmOpnd)
1118 ImmOpnd->setImm(ImmOpnd->getImm() + LocalStackSize);
1121 // Convert callee-save register save/restore instruction to do stack pointer
1122 // decrement/increment to allocate/deallocate the callee-save stack area by
1123 // converting store/load to use pre/post increment version.
1124 static MachineBasicBlock::iterator convertCalleeSaveRestoreToSPPrePostIncDec(
1125 MachineBasicBlock &MBB, MachineBasicBlock::iterator MBBI,
1126 const DebugLoc &DL, const TargetInstrInfo *TII, int CSStackSizeInc,
1127 bool NeedsWinCFI, bool *HasWinCFI, bool EmitCFI,
1128 MachineInstr::MIFlag FrameFlag = MachineInstr::FrameSetup,
1129 int CFAOffset = 0) {
1130 unsigned NewOpc;
1131 switch (MBBI->getOpcode()) {
1132 default:
1133 llvm_unreachable("Unexpected callee-save save/restore opcode!");
1134 case AArch64::STPXi:
1135 NewOpc = AArch64::STPXpre;
1136 break;
1137 case AArch64::STPDi:
1138 NewOpc = AArch64::STPDpre;
1139 break;
1140 case AArch64::STPQi:
1141 NewOpc = AArch64::STPQpre;
1142 break;
1143 case AArch64::STRXui:
1144 NewOpc = AArch64::STRXpre;
1145 break;
1146 case AArch64::STRDui:
1147 NewOpc = AArch64::STRDpre;
1148 break;
1149 case AArch64::STRQui:
1150 NewOpc = AArch64::STRQpre;
1151 break;
1152 case AArch64::LDPXi:
1153 NewOpc = AArch64::LDPXpost;
1154 break;
1155 case AArch64::LDPDi:
1156 NewOpc = AArch64::LDPDpost;
1157 break;
1158 case AArch64::LDPQi:
1159 NewOpc = AArch64::LDPQpost;
1160 break;
1161 case AArch64::LDRXui:
1162 NewOpc = AArch64::LDRXpost;
1163 break;
1164 case AArch64::LDRDui:
1165 NewOpc = AArch64::LDRDpost;
1166 break;
1167 case AArch64::LDRQui:
1168 NewOpc = AArch64::LDRQpost;
1169 break;
1171 // Get rid of the SEH code associated with the old instruction.
1172 if (NeedsWinCFI) {
1173 auto SEH = std::next(MBBI);
1174 if (AArch64InstrInfo::isSEHInstruction(*SEH))
1175 SEH->eraseFromParent();
1178 TypeSize Scale = TypeSize::Fixed(1);
1179 unsigned Width;
1180 int64_t MinOffset, MaxOffset;
1181 bool Success = static_cast<const AArch64InstrInfo *>(TII)->getMemOpInfo(
1182 NewOpc, Scale, Width, MinOffset, MaxOffset);
1183 (void)Success;
1184 assert(Success && "unknown load/store opcode");
1186 // If the first store isn't right where we want SP then we can't fold the
1187 // update in so create a normal arithmetic instruction instead.
1188 MachineFunction &MF = *MBB.getParent();
1189 if (MBBI->getOperand(MBBI->getNumOperands() - 1).getImm() != 0 ||
1190 CSStackSizeInc < MinOffset || CSStackSizeInc > MaxOffset) {
1191 emitFrameOffset(MBB, MBBI, DL, AArch64::SP, AArch64::SP,
1192 StackOffset::getFixed(CSStackSizeInc), TII, FrameFlag,
1193 false, false, nullptr, EmitCFI,
1194 StackOffset::getFixed(CFAOffset));
1196 return std::prev(MBBI);
1199 MachineInstrBuilder MIB = BuildMI(MBB, MBBI, DL, TII->get(NewOpc));
1200 MIB.addReg(AArch64::SP, RegState::Define);
1202 // Copy all operands other than the immediate offset.
1203 unsigned OpndIdx = 0;
1204 for (unsigned OpndEnd = MBBI->getNumOperands() - 1; OpndIdx < OpndEnd;
1205 ++OpndIdx)
1206 MIB.add(MBBI->getOperand(OpndIdx));
1208 assert(MBBI->getOperand(OpndIdx).getImm() == 0 &&
1209 "Unexpected immediate offset in first/last callee-save save/restore "
1210 "instruction!");
1211 assert(MBBI->getOperand(OpndIdx - 1).getReg() == AArch64::SP &&
1212 "Unexpected base register in callee-save save/restore instruction!");
1213 assert(CSStackSizeInc % Scale == 0);
1214 MIB.addImm(CSStackSizeInc / (int)Scale);
1216 MIB.setMIFlags(MBBI->getFlags());
1217 MIB.setMemRefs(MBBI->memoperands());
1219 // Generate a new SEH code that corresponds to the new instruction.
1220 if (NeedsWinCFI) {
1221 *HasWinCFI = true;
1222 InsertSEH(*MIB, *TII, FrameFlag);
1225 if (EmitCFI) {
1226 unsigned CFIIndex = MF.addFrameInst(
1227 MCCFIInstruction::cfiDefCfaOffset(nullptr, CFAOffset - CSStackSizeInc));
1228 BuildMI(MBB, MBBI, DL, TII->get(TargetOpcode::CFI_INSTRUCTION))
1229 .addCFIIndex(CFIIndex)
1230 .setMIFlags(FrameFlag);
1233 return std::prev(MBB.erase(MBBI));
1236 // Fixup callee-save register save/restore instructions to take into account
1237 // combined SP bump by adding the local stack size to the stack offsets.
1238 static void fixupCalleeSaveRestoreStackOffset(MachineInstr &MI,
1239 uint64_t LocalStackSize,
1240 bool NeedsWinCFI,
1241 bool *HasWinCFI) {
1242 if (AArch64InstrInfo::isSEHInstruction(MI))
1243 return;
1245 unsigned Opc = MI.getOpcode();
1246 unsigned Scale;
1247 switch (Opc) {
1248 case AArch64::STPXi:
1249 case AArch64::STRXui:
1250 case AArch64::STPDi:
1251 case AArch64::STRDui:
1252 case AArch64::LDPXi:
1253 case AArch64::LDRXui:
1254 case AArch64::LDPDi:
1255 case AArch64::LDRDui:
1256 Scale = 8;
1257 break;
1258 case AArch64::STPQi:
1259 case AArch64::STRQui:
1260 case AArch64::LDPQi:
1261 case AArch64::LDRQui:
1262 Scale = 16;
1263 break;
1264 default:
1265 llvm_unreachable("Unexpected callee-save save/restore opcode!");
1268 unsigned OffsetIdx = MI.getNumExplicitOperands() - 1;
1269 assert(MI.getOperand(OffsetIdx - 1).getReg() == AArch64::SP &&
1270 "Unexpected base register in callee-save save/restore instruction!");
1271 // Last operand is immediate offset that needs fixing.
1272 MachineOperand &OffsetOpnd = MI.getOperand(OffsetIdx);
1273 // All generated opcodes have scaled offsets.
1274 assert(LocalStackSize % Scale == 0);
1275 OffsetOpnd.setImm(OffsetOpnd.getImm() + LocalStackSize / Scale);
1277 if (NeedsWinCFI) {
1278 *HasWinCFI = true;
1279 auto MBBI = std::next(MachineBasicBlock::iterator(MI));
1280 assert(MBBI != MI.getParent()->end() && "Expecting a valid instruction");
1281 assert(AArch64InstrInfo::isSEHInstruction(*MBBI) &&
1282 "Expecting a SEH instruction");
1283 fixupSEHOpcode(MBBI, LocalStackSize);
1287 static bool isTargetWindows(const MachineFunction &MF) {
1288 return MF.getSubtarget<AArch64Subtarget>().isTargetWindows();
1291 // Convenience function to determine whether I is an SVE callee save.
1292 static bool IsSVECalleeSave(MachineBasicBlock::iterator I) {
1293 switch (I->getOpcode()) {
1294 default:
1295 return false;
1296 case AArch64::STR_ZXI:
1297 case AArch64::STR_PXI:
1298 case AArch64::LDR_ZXI:
1299 case AArch64::LDR_PXI:
1300 return I->getFlag(MachineInstr::FrameSetup) ||
1301 I->getFlag(MachineInstr::FrameDestroy);
1305 static void emitShadowCallStackPrologue(const TargetInstrInfo &TII,
1306 MachineFunction &MF,
1307 MachineBasicBlock &MBB,
1308 MachineBasicBlock::iterator MBBI,
1309 const DebugLoc &DL, bool NeedsWinCFI,
1310 bool NeedsUnwindInfo) {
1311 // Shadow call stack prolog: str x30, [x18], #8
1312 BuildMI(MBB, MBBI, DL, TII.get(AArch64::STRXpost))
1313 .addReg(AArch64::X18, RegState::Define)
1314 .addReg(AArch64::LR)
1315 .addReg(AArch64::X18)
1316 .addImm(8)
1317 .setMIFlag(MachineInstr::FrameSetup);
1319 // This instruction also makes x18 live-in to the entry block.
1320 MBB.addLiveIn(AArch64::X18);
1322 if (NeedsWinCFI)
1323 BuildMI(MBB, MBBI, DL, TII.get(AArch64::SEH_Nop))
1324 .setMIFlag(MachineInstr::FrameSetup);
1326 if (NeedsUnwindInfo) {
1327 // Emit a CFI instruction that causes 8 to be subtracted from the value of
1328 // x18 when unwinding past this frame.
1329 static const char CFIInst[] = {
1330 dwarf::DW_CFA_val_expression,
1331 18, // register
1332 2, // length
1333 static_cast<char>(unsigned(dwarf::DW_OP_breg18)),
1334 static_cast<char>(-8) & 0x7f, // addend (sleb128)
1336 unsigned CFIIndex = MF.addFrameInst(MCCFIInstruction::createEscape(
1337 nullptr, StringRef(CFIInst, sizeof(CFIInst))));
1338 BuildMI(MBB, MBBI, DL, TII.get(AArch64::CFI_INSTRUCTION))
1339 .addCFIIndex(CFIIndex)
1340 .setMIFlag(MachineInstr::FrameSetup);
1344 static void emitShadowCallStackEpilogue(const TargetInstrInfo &TII,
1345 MachineFunction &MF,
1346 MachineBasicBlock &MBB,
1347 MachineBasicBlock::iterator MBBI,
1348 const DebugLoc &DL) {
1349 // Shadow call stack epilog: ldr x30, [x18, #-8]!
1350 BuildMI(MBB, MBBI, DL, TII.get(AArch64::LDRXpre))
1351 .addReg(AArch64::X18, RegState::Define)
1352 .addReg(AArch64::LR, RegState::Define)
1353 .addReg(AArch64::X18)
1354 .addImm(-8)
1355 .setMIFlag(MachineInstr::FrameDestroy);
1357 if (MF.getInfo<AArch64FunctionInfo>()->needsAsyncDwarfUnwindInfo(MF)) {
1358 unsigned CFIIndex =
1359 MF.addFrameInst(MCCFIInstruction::createRestore(nullptr, 18));
1360 BuildMI(MBB, MBBI, DL, TII.get(TargetOpcode::CFI_INSTRUCTION))
1361 .addCFIIndex(CFIIndex)
1362 .setMIFlags(MachineInstr::FrameDestroy);
1366 // Define the current CFA rule to use the provided FP.
1367 static void emitDefineCFAWithFP(MachineFunction &MF, MachineBasicBlock &MBB,
1368 MachineBasicBlock::iterator MBBI,
1369 const DebugLoc &DL, unsigned FixedObject) {
1370 const AArch64Subtarget &STI = MF.getSubtarget<AArch64Subtarget>();
1371 const AArch64RegisterInfo *TRI = STI.getRegisterInfo();
1372 const TargetInstrInfo *TII = STI.getInstrInfo();
1373 AArch64FunctionInfo *AFI = MF.getInfo<AArch64FunctionInfo>();
1375 const int OffsetToFirstCalleeSaveFromFP =
1376 AFI->getCalleeSaveBaseToFrameRecordOffset() -
1377 AFI->getCalleeSavedStackSize();
1378 Register FramePtr = TRI->getFrameRegister(MF);
1379 unsigned Reg = TRI->getDwarfRegNum(FramePtr, true);
1380 unsigned CFIIndex = MF.addFrameInst(MCCFIInstruction::cfiDefCfa(
1381 nullptr, Reg, FixedObject - OffsetToFirstCalleeSaveFromFP));
1382 BuildMI(MBB, MBBI, DL, TII->get(TargetOpcode::CFI_INSTRUCTION))
1383 .addCFIIndex(CFIIndex)
1384 .setMIFlags(MachineInstr::FrameSetup);
1387 void AArch64FrameLowering::emitPrologue(MachineFunction &MF,
1388 MachineBasicBlock &MBB) const {
1389 MachineBasicBlock::iterator MBBI = MBB.begin();
1390 const MachineFrameInfo &MFI = MF.getFrameInfo();
1391 const Function &F = MF.getFunction();
1392 const AArch64Subtarget &Subtarget = MF.getSubtarget<AArch64Subtarget>();
1393 const AArch64RegisterInfo *RegInfo = Subtarget.getRegisterInfo();
1394 const TargetInstrInfo *TII = Subtarget.getInstrInfo();
1395 MachineModuleInfo &MMI = MF.getMMI();
1396 AArch64FunctionInfo *AFI = MF.getInfo<AArch64FunctionInfo>();
1397 bool EmitCFI = AFI->needsDwarfUnwindInfo(MF);
1398 bool EmitAsyncCFI = AFI->needsAsyncDwarfUnwindInfo(MF);
1399 bool HasFP = hasFP(MF);
1400 bool NeedsWinCFI = needsWinCFI(MF);
1401 bool HasWinCFI = false;
1402 auto Cleanup = make_scope_exit([&]() { MF.setHasWinCFI(HasWinCFI); });
1404 bool IsFunclet = MBB.isEHFuncletEntry();
1406 // At this point, we're going to decide whether or not the function uses a
1407 // redzone. In most cases, the function doesn't have a redzone so let's
1408 // assume that's false and set it to true in the case that there's a redzone.
1409 AFI->setHasRedZone(false);
1411 // Debug location must be unknown since the first debug location is used
1412 // to determine the end of the prologue.
1413 DebugLoc DL;
1415 const auto &MFnI = *MF.getInfo<AArch64FunctionInfo>();
1416 if (MFnI.needsShadowCallStackPrologueEpilogue(MF))
1417 emitShadowCallStackPrologue(*TII, MF, MBB, MBBI, DL, NeedsWinCFI,
1418 MFnI.needsDwarfUnwindInfo(MF));
1420 if (MFnI.shouldSignReturnAddress(MF)) {
1421 BuildMI(MBB, MBBI, DL, TII->get(AArch64::PAUTH_PROLOGUE))
1422 .setMIFlag(MachineInstr::FrameSetup);
1423 if (NeedsWinCFI)
1424 HasWinCFI = true; // AArch64PointerAuth pass will insert SEH_PACSignLR
1427 if (EmitCFI && MFnI.isMTETagged()) {
1428 BuildMI(MBB, MBBI, DL, TII->get(AArch64::EMITMTETAGGED))
1429 .setMIFlag(MachineInstr::FrameSetup);
1432 // We signal the presence of a Swift extended frame to external tools by
1433 // storing FP with 0b0001 in bits 63:60. In normal userland operation a simple
1434 // ORR is sufficient, it is assumed a Swift kernel would initialize the TBI
1435 // bits so that is still true.
1436 if (HasFP && AFI->hasSwiftAsyncContext()) {
1437 switch (MF.getTarget().Options.SwiftAsyncFramePointer) {
1438 case SwiftAsyncFramePointerMode::DeploymentBased:
1439 if (Subtarget.swiftAsyncContextIsDynamicallySet()) {
1440 // The special symbol below is absolute and has a *value* that can be
1441 // combined with the frame pointer to signal an extended frame.
1442 BuildMI(MBB, MBBI, DL, TII->get(AArch64::LOADgot), AArch64::X16)
1443 .addExternalSymbol("swift_async_extendedFramePointerFlags",
1444 AArch64II::MO_GOT);
1445 if (NeedsWinCFI) {
1446 BuildMI(MBB, MBBI, DL, TII->get(AArch64::SEH_Nop))
1447 .setMIFlags(MachineInstr::FrameSetup);
1448 HasWinCFI = true;
1450 BuildMI(MBB, MBBI, DL, TII->get(AArch64::ORRXrs), AArch64::FP)
1451 .addUse(AArch64::FP)
1452 .addUse(AArch64::X16)
1453 .addImm(Subtarget.isTargetILP32() ? 32 : 0);
1454 if (NeedsWinCFI) {
1455 BuildMI(MBB, MBBI, DL, TII->get(AArch64::SEH_Nop))
1456 .setMIFlags(MachineInstr::FrameSetup);
1457 HasWinCFI = true;
1459 break;
1461 [[fallthrough]];
1463 case SwiftAsyncFramePointerMode::Always:
1464 // ORR x29, x29, #0x1000_0000_0000_0000
1465 BuildMI(MBB, MBBI, DL, TII->get(AArch64::ORRXri), AArch64::FP)
1466 .addUse(AArch64::FP)
1467 .addImm(0x1100)
1468 .setMIFlag(MachineInstr::FrameSetup);
1469 if (NeedsWinCFI) {
1470 BuildMI(MBB, MBBI, DL, TII->get(AArch64::SEH_Nop))
1471 .setMIFlags(MachineInstr::FrameSetup);
1472 HasWinCFI = true;
1474 break;
1476 case SwiftAsyncFramePointerMode::Never:
1477 break;
1481 // All calls are tail calls in GHC calling conv, and functions have no
1482 // prologue/epilogue.
1483 if (MF.getFunction().getCallingConv() == CallingConv::GHC)
1484 return;
1486 // Set tagged base pointer to the requested stack slot.
1487 // Ideally it should match SP value after prologue.
1488 std::optional<int> TBPI = AFI->getTaggedBasePointerIndex();
1489 if (TBPI)
1490 AFI->setTaggedBasePointerOffset(-MFI.getObjectOffset(*TBPI));
1491 else
1492 AFI->setTaggedBasePointerOffset(MFI.getStackSize());
1494 const StackOffset &SVEStackSize = getSVEStackSize(MF);
1496 // getStackSize() includes all the locals in its size calculation. We don't
1497 // include these locals when computing the stack size of a funclet, as they
1498 // are allocated in the parent's stack frame and accessed via the frame
1499 // pointer from the funclet. We only save the callee saved registers in the
1500 // funclet, which are really the callee saved registers of the parent
1501 // function, including the funclet.
1502 int64_t NumBytes = IsFunclet ? getWinEHFuncletFrameSize(MF)
1503 : MFI.getStackSize();
1504 if (!AFI->hasStackFrame() && !windowsRequiresStackProbe(MF, NumBytes)) {
1505 assert(!HasFP && "unexpected function without stack frame but with FP");
1506 assert(!SVEStackSize &&
1507 "unexpected function without stack frame but with SVE objects");
1508 // All of the stack allocation is for locals.
1509 AFI->setLocalStackSize(NumBytes);
1510 if (!NumBytes)
1511 return;
1512 // REDZONE: If the stack size is less than 128 bytes, we don't need
1513 // to actually allocate.
1514 if (canUseRedZone(MF)) {
1515 AFI->setHasRedZone(true);
1516 ++NumRedZoneFunctions;
1517 } else {
1518 emitFrameOffset(MBB, MBBI, DL, AArch64::SP, AArch64::SP,
1519 StackOffset::getFixed(-NumBytes), TII,
1520 MachineInstr::FrameSetup, false, NeedsWinCFI, &HasWinCFI);
1521 if (EmitCFI) {
1522 // Label used to tie together the PROLOG_LABEL and the MachineMoves.
1523 MCSymbol *FrameLabel = MMI.getContext().createTempSymbol();
1524 // Encode the stack size of the leaf function.
1525 unsigned CFIIndex = MF.addFrameInst(
1526 MCCFIInstruction::cfiDefCfaOffset(FrameLabel, NumBytes));
1527 BuildMI(MBB, MBBI, DL, TII->get(TargetOpcode::CFI_INSTRUCTION))
1528 .addCFIIndex(CFIIndex)
1529 .setMIFlags(MachineInstr::FrameSetup);
1533 if (NeedsWinCFI) {
1534 HasWinCFI = true;
1535 BuildMI(MBB, MBBI, DL, TII->get(AArch64::SEH_PrologEnd))
1536 .setMIFlag(MachineInstr::FrameSetup);
1539 return;
1542 bool IsWin64 =
1543 Subtarget.isCallingConvWin64(MF.getFunction().getCallingConv());
1544 unsigned FixedObject = getFixedObjectSize(MF, AFI, IsWin64, IsFunclet);
1546 auto PrologueSaveSize = AFI->getCalleeSavedStackSize() + FixedObject;
1547 // All of the remaining stack allocations are for locals.
1548 AFI->setLocalStackSize(NumBytes - PrologueSaveSize);
1549 bool CombineSPBump = shouldCombineCSRLocalStackBump(MF, NumBytes);
1550 bool HomPrologEpilog = homogeneousPrologEpilog(MF);
1551 if (CombineSPBump) {
1552 assert(!SVEStackSize && "Cannot combine SP bump with SVE");
1553 emitFrameOffset(MBB, MBBI, DL, AArch64::SP, AArch64::SP,
1554 StackOffset::getFixed(-NumBytes), TII,
1555 MachineInstr::FrameSetup, false, NeedsWinCFI, &HasWinCFI,
1556 EmitAsyncCFI);
1557 NumBytes = 0;
1558 } else if (HomPrologEpilog) {
1559 // Stack has been already adjusted.
1560 NumBytes -= PrologueSaveSize;
1561 } else if (PrologueSaveSize != 0) {
1562 MBBI = convertCalleeSaveRestoreToSPPrePostIncDec(
1563 MBB, MBBI, DL, TII, -PrologueSaveSize, NeedsWinCFI, &HasWinCFI,
1564 EmitAsyncCFI);
1565 NumBytes -= PrologueSaveSize;
1567 assert(NumBytes >= 0 && "Negative stack allocation size!?");
1569 // Move past the saves of the callee-saved registers, fixing up the offsets
1570 // and pre-inc if we decided to combine the callee-save and local stack
1571 // pointer bump above.
1572 MachineBasicBlock::iterator End = MBB.end();
1573 while (MBBI != End && MBBI->getFlag(MachineInstr::FrameSetup) &&
1574 !IsSVECalleeSave(MBBI)) {
1575 if (CombineSPBump)
1576 fixupCalleeSaveRestoreStackOffset(*MBBI, AFI->getLocalStackSize(),
1577 NeedsWinCFI, &HasWinCFI);
1578 ++MBBI;
1581 // For funclets the FP belongs to the containing function.
1582 if (!IsFunclet && HasFP) {
1583 // Only set up FP if we actually need to.
1584 int64_t FPOffset = AFI->getCalleeSaveBaseToFrameRecordOffset();
1586 if (CombineSPBump)
1587 FPOffset += AFI->getLocalStackSize();
1589 if (AFI->hasSwiftAsyncContext()) {
1590 // Before we update the live FP we have to ensure there's a valid (or
1591 // null) asynchronous context in its slot just before FP in the frame
1592 // record, so store it now.
1593 const auto &Attrs = MF.getFunction().getAttributes();
1594 bool HaveInitialContext = Attrs.hasAttrSomewhere(Attribute::SwiftAsync);
1595 if (HaveInitialContext)
1596 MBB.addLiveIn(AArch64::X22);
1597 Register Reg = HaveInitialContext ? AArch64::X22 : AArch64::XZR;
1598 BuildMI(MBB, MBBI, DL, TII->get(AArch64::StoreSwiftAsyncContext))
1599 .addUse(Reg)
1600 .addUse(AArch64::SP)
1601 .addImm(FPOffset - 8)
1602 .setMIFlags(MachineInstr::FrameSetup);
1603 if (NeedsWinCFI) {
1604 // WinCFI and arm64e, where StoreSwiftAsyncContext is expanded
1605 // to multiple instructions, should be mutually-exclusive.
1606 assert(Subtarget.getTargetTriple().getArchName() != "arm64e");
1607 BuildMI(MBB, MBBI, DL, TII->get(AArch64::SEH_Nop))
1608 .setMIFlags(MachineInstr::FrameSetup);
1609 HasWinCFI = true;
1613 if (HomPrologEpilog) {
1614 auto Prolog = MBBI;
1615 --Prolog;
1616 assert(Prolog->getOpcode() == AArch64::HOM_Prolog);
1617 Prolog->addOperand(MachineOperand::CreateImm(FPOffset));
1618 } else {
1619 // Issue sub fp, sp, FPOffset or
1620 // mov fp,sp when FPOffset is zero.
1621 // Note: All stores of callee-saved registers are marked as "FrameSetup".
1622 // This code marks the instruction(s) that set the FP also.
1623 emitFrameOffset(MBB, MBBI, DL, AArch64::FP, AArch64::SP,
1624 StackOffset::getFixed(FPOffset), TII,
1625 MachineInstr::FrameSetup, false, NeedsWinCFI, &HasWinCFI);
1626 if (NeedsWinCFI && HasWinCFI) {
1627 BuildMI(MBB, MBBI, DL, TII->get(AArch64::SEH_PrologEnd))
1628 .setMIFlag(MachineInstr::FrameSetup);
1629 // After setting up the FP, the rest of the prolog doesn't need to be
1630 // included in the SEH unwind info.
1631 NeedsWinCFI = false;
1634 if (EmitAsyncCFI)
1635 emitDefineCFAWithFP(MF, MBB, MBBI, DL, FixedObject);
1638 // Now emit the moves for whatever callee saved regs we have (including FP,
1639 // LR if those are saved). Frame instructions for SVE register are emitted
1640 // later, after the instruction which actually save SVE regs.
1641 if (EmitAsyncCFI)
1642 emitCalleeSavedGPRLocations(MBB, MBBI);
1644 // Alignment is required for the parent frame, not the funclet
1645 const bool NeedsRealignment =
1646 NumBytes && !IsFunclet && RegInfo->hasStackRealignment(MF);
1647 int64_t RealignmentPadding =
1648 (NeedsRealignment && MFI.getMaxAlign() > Align(16))
1649 ? MFI.getMaxAlign().value() - 16
1650 : 0;
1652 if (windowsRequiresStackProbe(MF, NumBytes + RealignmentPadding)) {
1653 uint64_t NumWords = (NumBytes + RealignmentPadding) >> 4;
1654 if (NeedsWinCFI) {
1655 HasWinCFI = true;
1656 // alloc_l can hold at most 256MB, so assume that NumBytes doesn't
1657 // exceed this amount. We need to move at most 2^24 - 1 into x15.
1658 // This is at most two instructions, MOVZ follwed by MOVK.
1659 // TODO: Fix to use multiple stack alloc unwind codes for stacks
1660 // exceeding 256MB in size.
1661 if (NumBytes >= (1 << 28))
1662 report_fatal_error("Stack size cannot exceed 256MB for stack "
1663 "unwinding purposes");
1665 uint32_t LowNumWords = NumWords & 0xFFFF;
1666 BuildMI(MBB, MBBI, DL, TII->get(AArch64::MOVZXi), AArch64::X15)
1667 .addImm(LowNumWords)
1668 .addImm(AArch64_AM::getShifterImm(AArch64_AM::LSL, 0))
1669 .setMIFlag(MachineInstr::FrameSetup);
1670 BuildMI(MBB, MBBI, DL, TII->get(AArch64::SEH_Nop))
1671 .setMIFlag(MachineInstr::FrameSetup);
1672 if ((NumWords & 0xFFFF0000) != 0) {
1673 BuildMI(MBB, MBBI, DL, TII->get(AArch64::MOVKXi), AArch64::X15)
1674 .addReg(AArch64::X15)
1675 .addImm((NumWords & 0xFFFF0000) >> 16) // High half
1676 .addImm(AArch64_AM::getShifterImm(AArch64_AM::LSL, 16))
1677 .setMIFlag(MachineInstr::FrameSetup);
1678 BuildMI(MBB, MBBI, DL, TII->get(AArch64::SEH_Nop))
1679 .setMIFlag(MachineInstr::FrameSetup);
1681 } else {
1682 BuildMI(MBB, MBBI, DL, TII->get(AArch64::MOVi64imm), AArch64::X15)
1683 .addImm(NumWords)
1684 .setMIFlags(MachineInstr::FrameSetup);
1687 const char* ChkStk = Subtarget.getChkStkName();
1688 switch (MF.getTarget().getCodeModel()) {
1689 case CodeModel::Tiny:
1690 case CodeModel::Small:
1691 case CodeModel::Medium:
1692 case CodeModel::Kernel:
1693 BuildMI(MBB, MBBI, DL, TII->get(AArch64::BL))
1694 .addExternalSymbol(ChkStk)
1695 .addReg(AArch64::X15, RegState::Implicit)
1696 .addReg(AArch64::X16, RegState::Implicit | RegState::Define | RegState::Dead)
1697 .addReg(AArch64::X17, RegState::Implicit | RegState::Define | RegState::Dead)
1698 .addReg(AArch64::NZCV, RegState::Implicit | RegState::Define | RegState::Dead)
1699 .setMIFlags(MachineInstr::FrameSetup);
1700 if (NeedsWinCFI) {
1701 HasWinCFI = true;
1702 BuildMI(MBB, MBBI, DL, TII->get(AArch64::SEH_Nop))
1703 .setMIFlag(MachineInstr::FrameSetup);
1705 break;
1706 case CodeModel::Large:
1707 BuildMI(MBB, MBBI, DL, TII->get(AArch64::MOVaddrEXT))
1708 .addReg(AArch64::X16, RegState::Define)
1709 .addExternalSymbol(ChkStk)
1710 .addExternalSymbol(ChkStk)
1711 .setMIFlags(MachineInstr::FrameSetup);
1712 if (NeedsWinCFI) {
1713 HasWinCFI = true;
1714 BuildMI(MBB, MBBI, DL, TII->get(AArch64::SEH_Nop))
1715 .setMIFlag(MachineInstr::FrameSetup);
1718 BuildMI(MBB, MBBI, DL, TII->get(getBLRCallOpcode(MF)))
1719 .addReg(AArch64::X16, RegState::Kill)
1720 .addReg(AArch64::X15, RegState::Implicit | RegState::Define)
1721 .addReg(AArch64::X16, RegState::Implicit | RegState::Define | RegState::Dead)
1722 .addReg(AArch64::X17, RegState::Implicit | RegState::Define | RegState::Dead)
1723 .addReg(AArch64::NZCV, RegState::Implicit | RegState::Define | RegState::Dead)
1724 .setMIFlags(MachineInstr::FrameSetup);
1725 if (NeedsWinCFI) {
1726 HasWinCFI = true;
1727 BuildMI(MBB, MBBI, DL, TII->get(AArch64::SEH_Nop))
1728 .setMIFlag(MachineInstr::FrameSetup);
1730 break;
1733 BuildMI(MBB, MBBI, DL, TII->get(AArch64::SUBXrx64), AArch64::SP)
1734 .addReg(AArch64::SP, RegState::Kill)
1735 .addReg(AArch64::X15, RegState::Kill)
1736 .addImm(AArch64_AM::getArithExtendImm(AArch64_AM::UXTX, 4))
1737 .setMIFlags(MachineInstr::FrameSetup);
1738 if (NeedsWinCFI) {
1739 HasWinCFI = true;
1740 BuildMI(MBB, MBBI, DL, TII->get(AArch64::SEH_StackAlloc))
1741 .addImm(NumBytes)
1742 .setMIFlag(MachineInstr::FrameSetup);
1744 NumBytes = 0;
1746 if (RealignmentPadding > 0) {
1747 if (RealignmentPadding >= 4096) {
1748 BuildMI(MBB, MBBI, DL, TII->get(AArch64::MOVi64imm))
1749 .addReg(AArch64::X16, RegState::Define)
1750 .addImm(RealignmentPadding)
1751 .setMIFlags(MachineInstr::FrameSetup);
1752 BuildMI(MBB, MBBI, DL, TII->get(AArch64::ADDXrx64), AArch64::X15)
1753 .addReg(AArch64::SP)
1754 .addReg(AArch64::X16, RegState::Kill)
1755 .addImm(AArch64_AM::getArithExtendImm(AArch64_AM::UXTX, 0))
1756 .setMIFlag(MachineInstr::FrameSetup);
1757 } else {
1758 BuildMI(MBB, MBBI, DL, TII->get(AArch64::ADDXri), AArch64::X15)
1759 .addReg(AArch64::SP)
1760 .addImm(RealignmentPadding)
1761 .addImm(0)
1762 .setMIFlag(MachineInstr::FrameSetup);
1765 uint64_t AndMask = ~(MFI.getMaxAlign().value() - 1);
1766 BuildMI(MBB, MBBI, DL, TII->get(AArch64::ANDXri), AArch64::SP)
1767 .addReg(AArch64::X15, RegState::Kill)
1768 .addImm(AArch64_AM::encodeLogicalImmediate(AndMask, 64));
1769 AFI->setStackRealigned(true);
1771 // No need for SEH instructions here; if we're realigning the stack,
1772 // we've set a frame pointer and already finished the SEH prologue.
1773 assert(!NeedsWinCFI);
1777 StackOffset AllocateBefore = SVEStackSize, AllocateAfter = {};
1778 MachineBasicBlock::iterator CalleeSavesBegin = MBBI, CalleeSavesEnd = MBBI;
1780 // Process the SVE callee-saves to determine what space needs to be
1781 // allocated.
1782 if (int64_t CalleeSavedSize = AFI->getSVECalleeSavedStackSize()) {
1783 // Find callee save instructions in frame.
1784 CalleeSavesBegin = MBBI;
1785 assert(IsSVECalleeSave(CalleeSavesBegin) && "Unexpected instruction");
1786 while (IsSVECalleeSave(MBBI) && MBBI != MBB.getFirstTerminator())
1787 ++MBBI;
1788 CalleeSavesEnd = MBBI;
1790 AllocateBefore = StackOffset::getScalable(CalleeSavedSize);
1791 AllocateAfter = SVEStackSize - AllocateBefore;
1794 // Allocate space for the callee saves (if any).
1795 emitFrameOffset(
1796 MBB, CalleeSavesBegin, DL, AArch64::SP, AArch64::SP, -AllocateBefore, TII,
1797 MachineInstr::FrameSetup, false, false, nullptr,
1798 EmitAsyncCFI && !HasFP && AllocateBefore,
1799 StackOffset::getFixed((int64_t)MFI.getStackSize() - NumBytes));
1801 if (EmitAsyncCFI)
1802 emitCalleeSavedSVELocations(MBB, CalleeSavesEnd);
1804 // Finally allocate remaining SVE stack space.
1805 emitFrameOffset(MBB, CalleeSavesEnd, DL, AArch64::SP, AArch64::SP,
1806 -AllocateAfter, TII, MachineInstr::FrameSetup, false, false,
1807 nullptr, EmitAsyncCFI && !HasFP && AllocateAfter,
1808 AllocateBefore + StackOffset::getFixed(
1809 (int64_t)MFI.getStackSize() - NumBytes));
1811 // Allocate space for the rest of the frame.
1812 if (NumBytes) {
1813 unsigned scratchSPReg = AArch64::SP;
1815 if (NeedsRealignment) {
1816 scratchSPReg = findScratchNonCalleeSaveRegister(&MBB);
1817 assert(scratchSPReg != AArch64::NoRegister);
1820 // If we're a leaf function, try using the red zone.
1821 if (!canUseRedZone(MF)) {
1822 // FIXME: in the case of dynamic re-alignment, NumBytes doesn't have
1823 // the correct value here, as NumBytes also includes padding bytes,
1824 // which shouldn't be counted here.
1825 emitFrameOffset(
1826 MBB, MBBI, DL, scratchSPReg, AArch64::SP,
1827 StackOffset::getFixed(-NumBytes), TII, MachineInstr::FrameSetup,
1828 false, NeedsWinCFI, &HasWinCFI, EmitAsyncCFI && !HasFP,
1829 SVEStackSize +
1830 StackOffset::getFixed((int64_t)MFI.getStackSize() - NumBytes));
1832 if (NeedsRealignment) {
1833 assert(MFI.getMaxAlign() > Align(1));
1834 assert(scratchSPReg != AArch64::SP);
1836 // SUB X9, SP, NumBytes
1837 // -- X9 is temporary register, so shouldn't contain any live data here,
1838 // -- free to use. This is already produced by emitFrameOffset above.
1839 // AND SP, X9, 0b11111...0000
1840 uint64_t AndMask = ~(MFI.getMaxAlign().value() - 1);
1842 BuildMI(MBB, MBBI, DL, TII->get(AArch64::ANDXri), AArch64::SP)
1843 .addReg(scratchSPReg, RegState::Kill)
1844 .addImm(AArch64_AM::encodeLogicalImmediate(AndMask, 64));
1845 AFI->setStackRealigned(true);
1847 // No need for SEH instructions here; if we're realigning the stack,
1848 // we've set a frame pointer and already finished the SEH prologue.
1849 assert(!NeedsWinCFI);
1853 // If we need a base pointer, set it up here. It's whatever the value of the
1854 // stack pointer is at this point. Any variable size objects will be allocated
1855 // after this, so we can still use the base pointer to reference locals.
1857 // FIXME: Clarify FrameSetup flags here.
1858 // Note: Use emitFrameOffset() like above for FP if the FrameSetup flag is
1859 // needed.
1860 // For funclets the BP belongs to the containing function.
1861 if (!IsFunclet && RegInfo->hasBasePointer(MF)) {
1862 TII->copyPhysReg(MBB, MBBI, DL, RegInfo->getBaseRegister(), AArch64::SP,
1863 false);
1864 if (NeedsWinCFI) {
1865 HasWinCFI = true;
1866 BuildMI(MBB, MBBI, DL, TII->get(AArch64::SEH_Nop))
1867 .setMIFlag(MachineInstr::FrameSetup);
1871 // The very last FrameSetup instruction indicates the end of prologue. Emit a
1872 // SEH opcode indicating the prologue end.
1873 if (NeedsWinCFI && HasWinCFI) {
1874 BuildMI(MBB, MBBI, DL, TII->get(AArch64::SEH_PrologEnd))
1875 .setMIFlag(MachineInstr::FrameSetup);
1878 // SEH funclets are passed the frame pointer in X1. If the parent
1879 // function uses the base register, then the base register is used
1880 // directly, and is not retrieved from X1.
1881 if (IsFunclet && F.hasPersonalityFn()) {
1882 EHPersonality Per = classifyEHPersonality(F.getPersonalityFn());
1883 if (isAsynchronousEHPersonality(Per)) {
1884 BuildMI(MBB, MBBI, DL, TII->get(TargetOpcode::COPY), AArch64::FP)
1885 .addReg(AArch64::X1)
1886 .setMIFlag(MachineInstr::FrameSetup);
1887 MBB.addLiveIn(AArch64::X1);
1891 if (EmitCFI && !EmitAsyncCFI) {
1892 if (HasFP) {
1893 emitDefineCFAWithFP(MF, MBB, MBBI, DL, FixedObject);
1894 } else {
1895 StackOffset TotalSize =
1896 SVEStackSize + StackOffset::getFixed((int64_t)MFI.getStackSize());
1897 unsigned CFIIndex = MF.addFrameInst(createDefCFA(
1898 *RegInfo, /*FrameReg=*/AArch64::SP, /*Reg=*/AArch64::SP, TotalSize,
1899 /*LastAdjustmentWasScalable=*/false));
1900 BuildMI(MBB, MBBI, DL, TII->get(TargetOpcode::CFI_INSTRUCTION))
1901 .addCFIIndex(CFIIndex)
1902 .setMIFlags(MachineInstr::FrameSetup);
1904 emitCalleeSavedGPRLocations(MBB, MBBI);
1905 emitCalleeSavedSVELocations(MBB, MBBI);
1909 static bool isFuncletReturnInstr(const MachineInstr &MI) {
1910 switch (MI.getOpcode()) {
1911 default:
1912 return false;
1913 case AArch64::CATCHRET:
1914 case AArch64::CLEANUPRET:
1915 return true;
1919 void AArch64FrameLowering::emitEpilogue(MachineFunction &MF,
1920 MachineBasicBlock &MBB) const {
1921 MachineBasicBlock::iterator MBBI = MBB.getLastNonDebugInstr();
1922 MachineFrameInfo &MFI = MF.getFrameInfo();
1923 AArch64FunctionInfo *AFI = MF.getInfo<AArch64FunctionInfo>();
1924 const AArch64Subtarget &Subtarget = MF.getSubtarget<AArch64Subtarget>();
1925 const TargetInstrInfo *TII = Subtarget.getInstrInfo();
1926 DebugLoc DL;
1927 bool NeedsWinCFI = needsWinCFI(MF);
1928 bool EmitCFI = AFI->needsAsyncDwarfUnwindInfo(MF);
1929 bool HasWinCFI = false;
1930 bool IsFunclet = false;
1932 if (MBB.end() != MBBI) {
1933 DL = MBBI->getDebugLoc();
1934 IsFunclet = isFuncletReturnInstr(*MBBI);
1937 MachineBasicBlock::iterator EpilogStartI = MBB.end();
1939 auto FinishingTouches = make_scope_exit([&]() {
1940 if (AFI->shouldSignReturnAddress(MF)) {
1941 BuildMI(MBB, MBB.getFirstTerminator(), DL,
1942 TII->get(AArch64::PAUTH_EPILOGUE))
1943 .setMIFlag(MachineInstr::FrameDestroy);
1944 if (NeedsWinCFI)
1945 HasWinCFI = true; // AArch64PointerAuth pass will insert SEH_PACSignLR
1947 if (AFI->needsShadowCallStackPrologueEpilogue(MF))
1948 emitShadowCallStackEpilogue(*TII, MF, MBB, MBB.getFirstTerminator(), DL);
1949 if (EmitCFI)
1950 emitCalleeSavedGPRRestores(MBB, MBB.getFirstTerminator());
1951 if (HasWinCFI) {
1952 BuildMI(MBB, MBB.getFirstTerminator(), DL,
1953 TII->get(AArch64::SEH_EpilogEnd))
1954 .setMIFlag(MachineInstr::FrameDestroy);
1955 if (!MF.hasWinCFI())
1956 MF.setHasWinCFI(true);
1958 if (NeedsWinCFI) {
1959 assert(EpilogStartI != MBB.end());
1960 if (!HasWinCFI)
1961 MBB.erase(EpilogStartI);
1965 int64_t NumBytes = IsFunclet ? getWinEHFuncletFrameSize(MF)
1966 : MFI.getStackSize();
1968 // All calls are tail calls in GHC calling conv, and functions have no
1969 // prologue/epilogue.
1970 if (MF.getFunction().getCallingConv() == CallingConv::GHC)
1971 return;
1973 // How much of the stack used by incoming arguments this function is expected
1974 // to restore in this particular epilogue.
1975 int64_t ArgumentStackToRestore = getArgumentStackToRestore(MF, MBB);
1976 bool IsWin64 =
1977 Subtarget.isCallingConvWin64(MF.getFunction().getCallingConv());
1978 unsigned FixedObject = getFixedObjectSize(MF, AFI, IsWin64, IsFunclet);
1980 int64_t AfterCSRPopSize = ArgumentStackToRestore;
1981 auto PrologueSaveSize = AFI->getCalleeSavedStackSize() + FixedObject;
1982 // We cannot rely on the local stack size set in emitPrologue if the function
1983 // has funclets, as funclets have different local stack size requirements, and
1984 // the current value set in emitPrologue may be that of the containing
1985 // function.
1986 if (MF.hasEHFunclets())
1987 AFI->setLocalStackSize(NumBytes - PrologueSaveSize);
1988 if (homogeneousPrologEpilog(MF, &MBB)) {
1989 assert(!NeedsWinCFI);
1990 auto LastPopI = MBB.getFirstTerminator();
1991 if (LastPopI != MBB.begin()) {
1992 auto HomogeneousEpilog = std::prev(LastPopI);
1993 if (HomogeneousEpilog->getOpcode() == AArch64::HOM_Epilog)
1994 LastPopI = HomogeneousEpilog;
1997 // Adjust local stack
1998 emitFrameOffset(MBB, LastPopI, DL, AArch64::SP, AArch64::SP,
1999 StackOffset::getFixed(AFI->getLocalStackSize()), TII,
2000 MachineInstr::FrameDestroy, false, NeedsWinCFI, &HasWinCFI);
2002 // SP has been already adjusted while restoring callee save regs.
2003 // We've bailed-out the case with adjusting SP for arguments.
2004 assert(AfterCSRPopSize == 0);
2005 return;
2007 bool CombineSPBump = shouldCombineCSRLocalStackBumpInEpilogue(MBB, NumBytes);
2008 // Assume we can't combine the last pop with the sp restore.
2010 bool CombineAfterCSRBump = false;
2011 if (!CombineSPBump && PrologueSaveSize != 0) {
2012 MachineBasicBlock::iterator Pop = std::prev(MBB.getFirstTerminator());
2013 while (Pop->getOpcode() == TargetOpcode::CFI_INSTRUCTION ||
2014 AArch64InstrInfo::isSEHInstruction(*Pop))
2015 Pop = std::prev(Pop);
2016 // Converting the last ldp to a post-index ldp is valid only if the last
2017 // ldp's offset is 0.
2018 const MachineOperand &OffsetOp = Pop->getOperand(Pop->getNumOperands() - 1);
2019 // If the offset is 0 and the AfterCSR pop is not actually trying to
2020 // allocate more stack for arguments (in space that an untimely interrupt
2021 // may clobber), convert it to a post-index ldp.
2022 if (OffsetOp.getImm() == 0 && AfterCSRPopSize >= 0) {
2023 convertCalleeSaveRestoreToSPPrePostIncDec(
2024 MBB, Pop, DL, TII, PrologueSaveSize, NeedsWinCFI, &HasWinCFI, EmitCFI,
2025 MachineInstr::FrameDestroy, PrologueSaveSize);
2026 } else {
2027 // If not, make sure to emit an add after the last ldp.
2028 // We're doing this by transfering the size to be restored from the
2029 // adjustment *before* the CSR pops to the adjustment *after* the CSR
2030 // pops.
2031 AfterCSRPopSize += PrologueSaveSize;
2032 CombineAfterCSRBump = true;
2036 // Move past the restores of the callee-saved registers.
2037 // If we plan on combining the sp bump of the local stack size and the callee
2038 // save stack size, we might need to adjust the CSR save and restore offsets.
2039 MachineBasicBlock::iterator LastPopI = MBB.getFirstTerminator();
2040 MachineBasicBlock::iterator Begin = MBB.begin();
2041 while (LastPopI != Begin) {
2042 --LastPopI;
2043 if (!LastPopI->getFlag(MachineInstr::FrameDestroy) ||
2044 IsSVECalleeSave(LastPopI)) {
2045 ++LastPopI;
2046 break;
2047 } else if (CombineSPBump)
2048 fixupCalleeSaveRestoreStackOffset(*LastPopI, AFI->getLocalStackSize(),
2049 NeedsWinCFI, &HasWinCFI);
2052 if (NeedsWinCFI) {
2053 // Note that there are cases where we insert SEH opcodes in the
2054 // epilogue when we had no SEH opcodes in the prologue. For
2055 // example, when there is no stack frame but there are stack
2056 // arguments. Insert the SEH_EpilogStart and remove it later if it
2057 // we didn't emit any SEH opcodes to avoid generating WinCFI for
2058 // functions that don't need it.
2059 BuildMI(MBB, LastPopI, DL, TII->get(AArch64::SEH_EpilogStart))
2060 .setMIFlag(MachineInstr::FrameDestroy);
2061 EpilogStartI = LastPopI;
2062 --EpilogStartI;
2065 if (hasFP(MF) && AFI->hasSwiftAsyncContext()) {
2066 switch (MF.getTarget().Options.SwiftAsyncFramePointer) {
2067 case SwiftAsyncFramePointerMode::DeploymentBased:
2068 // Avoid the reload as it is GOT relative, and instead fall back to the
2069 // hardcoded value below. This allows a mismatch between the OS and
2070 // application without immediately terminating on the difference.
2071 [[fallthrough]];
2072 case SwiftAsyncFramePointerMode::Always:
2073 // We need to reset FP to its untagged state on return. Bit 60 is
2074 // currently used to show the presence of an extended frame.
2076 // BIC x29, x29, #0x1000_0000_0000_0000
2077 BuildMI(MBB, MBB.getFirstTerminator(), DL, TII->get(AArch64::ANDXri),
2078 AArch64::FP)
2079 .addUse(AArch64::FP)
2080 .addImm(0x10fe)
2081 .setMIFlag(MachineInstr::FrameDestroy);
2082 if (NeedsWinCFI) {
2083 BuildMI(MBB, MBBI, DL, TII->get(AArch64::SEH_Nop))
2084 .setMIFlags(MachineInstr::FrameDestroy);
2085 HasWinCFI = true;
2087 break;
2089 case SwiftAsyncFramePointerMode::Never:
2090 break;
2094 const StackOffset &SVEStackSize = getSVEStackSize(MF);
2096 // If there is a single SP update, insert it before the ret and we're done.
2097 if (CombineSPBump) {
2098 assert(!SVEStackSize && "Cannot combine SP bump with SVE");
2100 // When we are about to restore the CSRs, the CFA register is SP again.
2101 if (EmitCFI && hasFP(MF)) {
2102 const AArch64RegisterInfo &RegInfo = *Subtarget.getRegisterInfo();
2103 unsigned Reg = RegInfo.getDwarfRegNum(AArch64::SP, true);
2104 unsigned CFIIndex =
2105 MF.addFrameInst(MCCFIInstruction::cfiDefCfa(nullptr, Reg, NumBytes));
2106 BuildMI(MBB, LastPopI, DL, TII->get(TargetOpcode::CFI_INSTRUCTION))
2107 .addCFIIndex(CFIIndex)
2108 .setMIFlags(MachineInstr::FrameDestroy);
2111 emitFrameOffset(MBB, MBB.getFirstTerminator(), DL, AArch64::SP, AArch64::SP,
2112 StackOffset::getFixed(NumBytes + (int64_t)AfterCSRPopSize),
2113 TII, MachineInstr::FrameDestroy, false, NeedsWinCFI,
2114 &HasWinCFI, EmitCFI, StackOffset::getFixed(NumBytes));
2115 return;
2118 NumBytes -= PrologueSaveSize;
2119 assert(NumBytes >= 0 && "Negative stack allocation size!?");
2121 // Process the SVE callee-saves to determine what space needs to be
2122 // deallocated.
2123 StackOffset DeallocateBefore = {}, DeallocateAfter = SVEStackSize;
2124 MachineBasicBlock::iterator RestoreBegin = LastPopI, RestoreEnd = LastPopI;
2125 if (int64_t CalleeSavedSize = AFI->getSVECalleeSavedStackSize()) {
2126 RestoreBegin = std::prev(RestoreEnd);
2127 while (RestoreBegin != MBB.begin() &&
2128 IsSVECalleeSave(std::prev(RestoreBegin)))
2129 --RestoreBegin;
2131 assert(IsSVECalleeSave(RestoreBegin) &&
2132 IsSVECalleeSave(std::prev(RestoreEnd)) && "Unexpected instruction");
2134 StackOffset CalleeSavedSizeAsOffset =
2135 StackOffset::getScalable(CalleeSavedSize);
2136 DeallocateBefore = SVEStackSize - CalleeSavedSizeAsOffset;
2137 DeallocateAfter = CalleeSavedSizeAsOffset;
2140 // Deallocate the SVE area.
2141 if (SVEStackSize) {
2142 // If we have stack realignment or variable sized objects on the stack,
2143 // restore the stack pointer from the frame pointer prior to SVE CSR
2144 // restoration.
2145 if (AFI->isStackRealigned() || MFI.hasVarSizedObjects()) {
2146 if (int64_t CalleeSavedSize = AFI->getSVECalleeSavedStackSize()) {
2147 // Set SP to start of SVE callee-save area from which they can
2148 // be reloaded. The code below will deallocate the stack space
2149 // space by moving FP -> SP.
2150 emitFrameOffset(MBB, RestoreBegin, DL, AArch64::SP, AArch64::FP,
2151 StackOffset::getScalable(-CalleeSavedSize), TII,
2152 MachineInstr::FrameDestroy);
2154 } else {
2155 if (AFI->getSVECalleeSavedStackSize()) {
2156 // Deallocate the non-SVE locals first before we can deallocate (and
2157 // restore callee saves) from the SVE area.
2158 emitFrameOffset(
2159 MBB, RestoreBegin, DL, AArch64::SP, AArch64::SP,
2160 StackOffset::getFixed(NumBytes), TII, MachineInstr::FrameDestroy,
2161 false, false, nullptr, EmitCFI && !hasFP(MF),
2162 SVEStackSize + StackOffset::getFixed(NumBytes + PrologueSaveSize));
2163 NumBytes = 0;
2166 emitFrameOffset(MBB, RestoreBegin, DL, AArch64::SP, AArch64::SP,
2167 DeallocateBefore, TII, MachineInstr::FrameDestroy, false,
2168 false, nullptr, EmitCFI && !hasFP(MF),
2169 SVEStackSize +
2170 StackOffset::getFixed(NumBytes + PrologueSaveSize));
2172 emitFrameOffset(MBB, RestoreEnd, DL, AArch64::SP, AArch64::SP,
2173 DeallocateAfter, TII, MachineInstr::FrameDestroy, false,
2174 false, nullptr, EmitCFI && !hasFP(MF),
2175 DeallocateAfter +
2176 StackOffset::getFixed(NumBytes + PrologueSaveSize));
2178 if (EmitCFI)
2179 emitCalleeSavedSVERestores(MBB, RestoreEnd);
2182 if (!hasFP(MF)) {
2183 bool RedZone = canUseRedZone(MF);
2184 // If this was a redzone leaf function, we don't need to restore the
2185 // stack pointer (but we may need to pop stack args for fastcc).
2186 if (RedZone && AfterCSRPopSize == 0)
2187 return;
2189 // Pop the local variables off the stack. If there are no callee-saved
2190 // registers, it means we are actually positioned at the terminator and can
2191 // combine stack increment for the locals and the stack increment for
2192 // callee-popped arguments into (possibly) a single instruction and be done.
2193 bool NoCalleeSaveRestore = PrologueSaveSize == 0;
2194 int64_t StackRestoreBytes = RedZone ? 0 : NumBytes;
2195 if (NoCalleeSaveRestore)
2196 StackRestoreBytes += AfterCSRPopSize;
2198 emitFrameOffset(
2199 MBB, LastPopI, DL, AArch64::SP, AArch64::SP,
2200 StackOffset::getFixed(StackRestoreBytes), TII,
2201 MachineInstr::FrameDestroy, false, NeedsWinCFI, &HasWinCFI, EmitCFI,
2202 StackOffset::getFixed((RedZone ? 0 : NumBytes) + PrologueSaveSize));
2204 // If we were able to combine the local stack pop with the argument pop,
2205 // then we're done.
2206 if (NoCalleeSaveRestore || AfterCSRPopSize == 0) {
2207 return;
2210 NumBytes = 0;
2213 // Restore the original stack pointer.
2214 // FIXME: Rather than doing the math here, we should instead just use
2215 // non-post-indexed loads for the restores if we aren't actually going to
2216 // be able to save any instructions.
2217 if (!IsFunclet && (MFI.hasVarSizedObjects() || AFI->isStackRealigned())) {
2218 emitFrameOffset(
2219 MBB, LastPopI, DL, AArch64::SP, AArch64::FP,
2220 StackOffset::getFixed(-AFI->getCalleeSaveBaseToFrameRecordOffset()),
2221 TII, MachineInstr::FrameDestroy, false, NeedsWinCFI, &HasWinCFI);
2222 } else if (NumBytes)
2223 emitFrameOffset(MBB, LastPopI, DL, AArch64::SP, AArch64::SP,
2224 StackOffset::getFixed(NumBytes), TII,
2225 MachineInstr::FrameDestroy, false, NeedsWinCFI, &HasWinCFI);
2227 // When we are about to restore the CSRs, the CFA register is SP again.
2228 if (EmitCFI && hasFP(MF)) {
2229 const AArch64RegisterInfo &RegInfo = *Subtarget.getRegisterInfo();
2230 unsigned Reg = RegInfo.getDwarfRegNum(AArch64::SP, true);
2231 unsigned CFIIndex = MF.addFrameInst(
2232 MCCFIInstruction::cfiDefCfa(nullptr, Reg, PrologueSaveSize));
2233 BuildMI(MBB, LastPopI, DL, TII->get(TargetOpcode::CFI_INSTRUCTION))
2234 .addCFIIndex(CFIIndex)
2235 .setMIFlags(MachineInstr::FrameDestroy);
2238 // This must be placed after the callee-save restore code because that code
2239 // assumes the SP is at the same location as it was after the callee-save save
2240 // code in the prologue.
2241 if (AfterCSRPopSize) {
2242 assert(AfterCSRPopSize > 0 && "attempting to reallocate arg stack that an "
2243 "interrupt may have clobbered");
2245 emitFrameOffset(
2246 MBB, MBB.getFirstTerminator(), DL, AArch64::SP, AArch64::SP,
2247 StackOffset::getFixed(AfterCSRPopSize), TII, MachineInstr::FrameDestroy,
2248 false, NeedsWinCFI, &HasWinCFI, EmitCFI,
2249 StackOffset::getFixed(CombineAfterCSRBump ? PrologueSaveSize : 0));
2253 bool AArch64FrameLowering::enableCFIFixup(MachineFunction &MF) const {
2254 return TargetFrameLowering::enableCFIFixup(MF) &&
2255 MF.getInfo<AArch64FunctionInfo>()->needsAsyncDwarfUnwindInfo(MF);
2258 /// getFrameIndexReference - Provide a base+offset reference to an FI slot for
2259 /// debug info. It's the same as what we use for resolving the code-gen
2260 /// references for now. FIXME: This can go wrong when references are
2261 /// SP-relative and simple call frames aren't used.
2262 StackOffset
2263 AArch64FrameLowering::getFrameIndexReference(const MachineFunction &MF, int FI,
2264 Register &FrameReg) const {
2265 return resolveFrameIndexReference(
2266 MF, FI, FrameReg,
2267 /*PreferFP=*/
2268 MF.getFunction().hasFnAttribute(Attribute::SanitizeHWAddress),
2269 /*ForSimm=*/false);
2272 StackOffset
2273 AArch64FrameLowering::getNonLocalFrameIndexReference(const MachineFunction &MF,
2274 int FI) const {
2275 return StackOffset::getFixed(getSEHFrameIndexOffset(MF, FI));
2278 static StackOffset getFPOffset(const MachineFunction &MF,
2279 int64_t ObjectOffset) {
2280 const auto *AFI = MF.getInfo<AArch64FunctionInfo>();
2281 const auto &Subtarget = MF.getSubtarget<AArch64Subtarget>();
2282 bool IsWin64 =
2283 Subtarget.isCallingConvWin64(MF.getFunction().getCallingConv());
2284 unsigned FixedObject =
2285 getFixedObjectSize(MF, AFI, IsWin64, /*IsFunclet=*/false);
2286 int64_t CalleeSaveSize = AFI->getCalleeSavedStackSize(MF.getFrameInfo());
2287 int64_t FPAdjust =
2288 CalleeSaveSize - AFI->getCalleeSaveBaseToFrameRecordOffset();
2289 return StackOffset::getFixed(ObjectOffset + FixedObject + FPAdjust);
2292 static StackOffset getStackOffset(const MachineFunction &MF,
2293 int64_t ObjectOffset) {
2294 const auto &MFI = MF.getFrameInfo();
2295 return StackOffset::getFixed(ObjectOffset + (int64_t)MFI.getStackSize());
2298 // TODO: This function currently does not work for scalable vectors.
2299 int AArch64FrameLowering::getSEHFrameIndexOffset(const MachineFunction &MF,
2300 int FI) const {
2301 const auto *RegInfo = static_cast<const AArch64RegisterInfo *>(
2302 MF.getSubtarget().getRegisterInfo());
2303 int ObjectOffset = MF.getFrameInfo().getObjectOffset(FI);
2304 return RegInfo->getLocalAddressRegister(MF) == AArch64::FP
2305 ? getFPOffset(MF, ObjectOffset).getFixed()
2306 : getStackOffset(MF, ObjectOffset).getFixed();
2309 StackOffset AArch64FrameLowering::resolveFrameIndexReference(
2310 const MachineFunction &MF, int FI, Register &FrameReg, bool PreferFP,
2311 bool ForSimm) const {
2312 const auto &MFI = MF.getFrameInfo();
2313 int64_t ObjectOffset = MFI.getObjectOffset(FI);
2314 bool isFixed = MFI.isFixedObjectIndex(FI);
2315 bool isSVE = MFI.getStackID(FI) == TargetStackID::ScalableVector;
2316 return resolveFrameOffsetReference(MF, ObjectOffset, isFixed, isSVE, FrameReg,
2317 PreferFP, ForSimm);
2320 StackOffset AArch64FrameLowering::resolveFrameOffsetReference(
2321 const MachineFunction &MF, int64_t ObjectOffset, bool isFixed, bool isSVE,
2322 Register &FrameReg, bool PreferFP, bool ForSimm) const {
2323 const auto &MFI = MF.getFrameInfo();
2324 const auto *RegInfo = static_cast<const AArch64RegisterInfo *>(
2325 MF.getSubtarget().getRegisterInfo());
2326 const auto *AFI = MF.getInfo<AArch64FunctionInfo>();
2327 const auto &Subtarget = MF.getSubtarget<AArch64Subtarget>();
2329 int64_t FPOffset = getFPOffset(MF, ObjectOffset).getFixed();
2330 int64_t Offset = getStackOffset(MF, ObjectOffset).getFixed();
2331 bool isCSR =
2332 !isFixed && ObjectOffset >= -((int)AFI->getCalleeSavedStackSize(MFI));
2334 const StackOffset &SVEStackSize = getSVEStackSize(MF);
2336 // Use frame pointer to reference fixed objects. Use it for locals if
2337 // there are VLAs or a dynamically realigned SP (and thus the SP isn't
2338 // reliable as a base). Make sure useFPForScavengingIndex() does the
2339 // right thing for the emergency spill slot.
2340 bool UseFP = false;
2341 if (AFI->hasStackFrame() && !isSVE) {
2342 // We shouldn't prefer using the FP to access fixed-sized stack objects when
2343 // there are scalable (SVE) objects in between the FP and the fixed-sized
2344 // objects.
2345 PreferFP &= !SVEStackSize;
2347 // Note: Keeping the following as multiple 'if' statements rather than
2348 // merging to a single expression for readability.
2350 // Argument access should always use the FP.
2351 if (isFixed) {
2352 UseFP = hasFP(MF);
2353 } else if (isCSR && RegInfo->hasStackRealignment(MF)) {
2354 // References to the CSR area must use FP if we're re-aligning the stack
2355 // since the dynamically-sized alignment padding is between the SP/BP and
2356 // the CSR area.
2357 assert(hasFP(MF) && "Re-aligned stack must have frame pointer");
2358 UseFP = true;
2359 } else if (hasFP(MF) && !RegInfo->hasStackRealignment(MF)) {
2360 // If the FPOffset is negative and we're producing a signed immediate, we
2361 // have to keep in mind that the available offset range for negative
2362 // offsets is smaller than for positive ones. If an offset is available
2363 // via the FP and the SP, use whichever is closest.
2364 bool FPOffsetFits = !ForSimm || FPOffset >= -256;
2365 PreferFP |= Offset > -FPOffset && !SVEStackSize;
2367 if (MFI.hasVarSizedObjects()) {
2368 // If we have variable sized objects, we can use either FP or BP, as the
2369 // SP offset is unknown. We can use the base pointer if we have one and
2370 // FP is not preferred. If not, we're stuck with using FP.
2371 bool CanUseBP = RegInfo->hasBasePointer(MF);
2372 if (FPOffsetFits && CanUseBP) // Both are ok. Pick the best.
2373 UseFP = PreferFP;
2374 else if (!CanUseBP) // Can't use BP. Forced to use FP.
2375 UseFP = true;
2376 // else we can use BP and FP, but the offset from FP won't fit.
2377 // That will make us scavenge registers which we can probably avoid by
2378 // using BP. If it won't fit for BP either, we'll scavenge anyway.
2379 } else if (FPOffset >= 0) {
2380 // Use SP or FP, whichever gives us the best chance of the offset
2381 // being in range for direct access. If the FPOffset is positive,
2382 // that'll always be best, as the SP will be even further away.
2383 UseFP = true;
2384 } else if (MF.hasEHFunclets() && !RegInfo->hasBasePointer(MF)) {
2385 // Funclets access the locals contained in the parent's stack frame
2386 // via the frame pointer, so we have to use the FP in the parent
2387 // function.
2388 (void) Subtarget;
2389 assert(
2390 Subtarget.isCallingConvWin64(MF.getFunction().getCallingConv()) &&
2391 "Funclets should only be present on Win64");
2392 UseFP = true;
2393 } else {
2394 // We have the choice between FP and (SP or BP).
2395 if (FPOffsetFits && PreferFP) // If FP is the best fit, use it.
2396 UseFP = true;
2401 assert(
2402 ((isFixed || isCSR) || !RegInfo->hasStackRealignment(MF) || !UseFP) &&
2403 "In the presence of dynamic stack pointer realignment, "
2404 "non-argument/CSR objects cannot be accessed through the frame pointer");
2406 if (isSVE) {
2407 StackOffset FPOffset =
2408 StackOffset::get(-AFI->getCalleeSaveBaseToFrameRecordOffset(), ObjectOffset);
2409 StackOffset SPOffset =
2410 SVEStackSize +
2411 StackOffset::get(MFI.getStackSize() - AFI->getCalleeSavedStackSize(),
2412 ObjectOffset);
2413 // Always use the FP for SVE spills if available and beneficial.
2414 if (hasFP(MF) && (SPOffset.getFixed() ||
2415 FPOffset.getScalable() < SPOffset.getScalable() ||
2416 RegInfo->hasStackRealignment(MF))) {
2417 FrameReg = RegInfo->getFrameRegister(MF);
2418 return FPOffset;
2421 FrameReg = RegInfo->hasBasePointer(MF) ? RegInfo->getBaseRegister()
2422 : (unsigned)AArch64::SP;
2423 return SPOffset;
2426 StackOffset ScalableOffset = {};
2427 if (UseFP && !(isFixed || isCSR))
2428 ScalableOffset = -SVEStackSize;
2429 if (!UseFP && (isFixed || isCSR))
2430 ScalableOffset = SVEStackSize;
2432 if (UseFP) {
2433 FrameReg = RegInfo->getFrameRegister(MF);
2434 return StackOffset::getFixed(FPOffset) + ScalableOffset;
2437 // Use the base pointer if we have one.
2438 if (RegInfo->hasBasePointer(MF))
2439 FrameReg = RegInfo->getBaseRegister();
2440 else {
2441 assert(!MFI.hasVarSizedObjects() &&
2442 "Can't use SP when we have var sized objects.");
2443 FrameReg = AArch64::SP;
2444 // If we're using the red zone for this function, the SP won't actually
2445 // be adjusted, so the offsets will be negative. They're also all
2446 // within range of the signed 9-bit immediate instructions.
2447 if (canUseRedZone(MF))
2448 Offset -= AFI->getLocalStackSize();
2451 return StackOffset::getFixed(Offset) + ScalableOffset;
2454 static unsigned getPrologueDeath(MachineFunction &MF, unsigned Reg) {
2455 // Do not set a kill flag on values that are also marked as live-in. This
2456 // happens with the @llvm-returnaddress intrinsic and with arguments passed in
2457 // callee saved registers.
2458 // Omitting the kill flags is conservatively correct even if the live-in
2459 // is not used after all.
2460 bool IsLiveIn = MF.getRegInfo().isLiveIn(Reg);
2461 return getKillRegState(!IsLiveIn);
2464 static bool produceCompactUnwindFrame(MachineFunction &MF) {
2465 const AArch64Subtarget &Subtarget = MF.getSubtarget<AArch64Subtarget>();
2466 AttributeList Attrs = MF.getFunction().getAttributes();
2467 return Subtarget.isTargetMachO() &&
2468 !(Subtarget.getTargetLowering()->supportSwiftError() &&
2469 Attrs.hasAttrSomewhere(Attribute::SwiftError)) &&
2470 MF.getFunction().getCallingConv() != CallingConv::SwiftTail;
2473 static bool invalidateWindowsRegisterPairing(unsigned Reg1, unsigned Reg2,
2474 bool NeedsWinCFI, bool IsFirst,
2475 const TargetRegisterInfo *TRI) {
2476 // If we are generating register pairs for a Windows function that requires
2477 // EH support, then pair consecutive registers only. There are no unwind
2478 // opcodes for saves/restores of non-consectuve register pairs.
2479 // The unwind opcodes are save_regp, save_regp_x, save_fregp, save_frepg_x,
2480 // save_lrpair.
2481 // https://docs.microsoft.com/en-us/cpp/build/arm64-exception-handling
2483 if (Reg2 == AArch64::FP)
2484 return true;
2485 if (!NeedsWinCFI)
2486 return false;
2487 if (TRI->getEncodingValue(Reg2) == TRI->getEncodingValue(Reg1) + 1)
2488 return false;
2489 // If pairing a GPR with LR, the pair can be described by the save_lrpair
2490 // opcode. If this is the first register pair, it would end up with a
2491 // predecrement, but there's no save_lrpair_x opcode, so we can only do this
2492 // if LR is paired with something else than the first register.
2493 // The save_lrpair opcode requires the first register to be an odd one.
2494 if (Reg1 >= AArch64::X19 && Reg1 <= AArch64::X27 &&
2495 (Reg1 - AArch64::X19) % 2 == 0 && Reg2 == AArch64::LR && !IsFirst)
2496 return false;
2497 return true;
2500 /// Returns true if Reg1 and Reg2 cannot be paired using a ldp/stp instruction.
2501 /// WindowsCFI requires that only consecutive registers can be paired.
2502 /// LR and FP need to be allocated together when the frame needs to save
2503 /// the frame-record. This means any other register pairing with LR is invalid.
2504 static bool invalidateRegisterPairing(unsigned Reg1, unsigned Reg2,
2505 bool UsesWinAAPCS, bool NeedsWinCFI,
2506 bool NeedsFrameRecord, bool IsFirst,
2507 const TargetRegisterInfo *TRI) {
2508 if (UsesWinAAPCS)
2509 return invalidateWindowsRegisterPairing(Reg1, Reg2, NeedsWinCFI, IsFirst,
2510 TRI);
2512 // If we need to store the frame record, don't pair any register
2513 // with LR other than FP.
2514 if (NeedsFrameRecord)
2515 return Reg2 == AArch64::LR;
2517 return false;
2520 namespace {
2522 struct RegPairInfo {
2523 unsigned Reg1 = AArch64::NoRegister;
2524 unsigned Reg2 = AArch64::NoRegister;
2525 int FrameIdx;
2526 int Offset;
2527 enum RegType { GPR, FPR64, FPR128, PPR, ZPR } Type;
2529 RegPairInfo() = default;
2531 bool isPaired() const { return Reg2 != AArch64::NoRegister; }
2533 unsigned getScale() const {
2534 switch (Type) {
2535 case PPR:
2536 return 2;
2537 case GPR:
2538 case FPR64:
2539 return 8;
2540 case ZPR:
2541 case FPR128:
2542 return 16;
2544 llvm_unreachable("Unsupported type");
2547 bool isScalable() const { return Type == PPR || Type == ZPR; }
2550 } // end anonymous namespace
2552 static void computeCalleeSaveRegisterPairs(
2553 MachineFunction &MF, ArrayRef<CalleeSavedInfo> CSI,
2554 const TargetRegisterInfo *TRI, SmallVectorImpl<RegPairInfo> &RegPairs,
2555 bool NeedsFrameRecord) {
2557 if (CSI.empty())
2558 return;
2560 bool IsWindows = isTargetWindows(MF);
2561 bool NeedsWinCFI = needsWinCFI(MF);
2562 AArch64FunctionInfo *AFI = MF.getInfo<AArch64FunctionInfo>();
2563 MachineFrameInfo &MFI = MF.getFrameInfo();
2564 CallingConv::ID CC = MF.getFunction().getCallingConv();
2565 unsigned Count = CSI.size();
2566 (void)CC;
2567 // MachO's compact unwind format relies on all registers being stored in
2568 // pairs.
2569 assert((!produceCompactUnwindFrame(MF) || CC == CallingConv::PreserveMost ||
2570 CC == CallingConv::PreserveAll || CC == CallingConv::CXX_FAST_TLS ||
2571 CC == CallingConv::Win64 || (Count & 1) == 0) &&
2572 "Odd number of callee-saved regs to spill!");
2573 int ByteOffset = AFI->getCalleeSavedStackSize();
2574 int StackFillDir = -1;
2575 int RegInc = 1;
2576 unsigned FirstReg = 0;
2577 if (NeedsWinCFI) {
2578 // For WinCFI, fill the stack from the bottom up.
2579 ByteOffset = 0;
2580 StackFillDir = 1;
2581 // As the CSI array is reversed to match PrologEpilogInserter, iterate
2582 // backwards, to pair up registers starting from lower numbered registers.
2583 RegInc = -1;
2584 FirstReg = Count - 1;
2586 int ScalableByteOffset = AFI->getSVECalleeSavedStackSize();
2587 bool NeedGapToAlignStack = AFI->hasCalleeSaveStackFreeSpace();
2589 // When iterating backwards, the loop condition relies on unsigned wraparound.
2590 for (unsigned i = FirstReg; i < Count; i += RegInc) {
2591 RegPairInfo RPI;
2592 RPI.Reg1 = CSI[i].getReg();
2594 if (AArch64::GPR64RegClass.contains(RPI.Reg1))
2595 RPI.Type = RegPairInfo::GPR;
2596 else if (AArch64::FPR64RegClass.contains(RPI.Reg1))
2597 RPI.Type = RegPairInfo::FPR64;
2598 else if (AArch64::FPR128RegClass.contains(RPI.Reg1))
2599 RPI.Type = RegPairInfo::FPR128;
2600 else if (AArch64::ZPRRegClass.contains(RPI.Reg1))
2601 RPI.Type = RegPairInfo::ZPR;
2602 else if (AArch64::PPRRegClass.contains(RPI.Reg1))
2603 RPI.Type = RegPairInfo::PPR;
2604 else
2605 llvm_unreachable("Unsupported register class.");
2607 // Add the next reg to the pair if it is in the same register class.
2608 if (unsigned(i + RegInc) < Count) {
2609 Register NextReg = CSI[i + RegInc].getReg();
2610 bool IsFirst = i == FirstReg;
2611 switch (RPI.Type) {
2612 case RegPairInfo::GPR:
2613 if (AArch64::GPR64RegClass.contains(NextReg) &&
2614 !invalidateRegisterPairing(RPI.Reg1, NextReg, IsWindows,
2615 NeedsWinCFI, NeedsFrameRecord, IsFirst,
2616 TRI))
2617 RPI.Reg2 = NextReg;
2618 break;
2619 case RegPairInfo::FPR64:
2620 if (AArch64::FPR64RegClass.contains(NextReg) &&
2621 !invalidateWindowsRegisterPairing(RPI.Reg1, NextReg, NeedsWinCFI,
2622 IsFirst, TRI))
2623 RPI.Reg2 = NextReg;
2624 break;
2625 case RegPairInfo::FPR128:
2626 if (AArch64::FPR128RegClass.contains(NextReg))
2627 RPI.Reg2 = NextReg;
2628 break;
2629 case RegPairInfo::PPR:
2630 case RegPairInfo::ZPR:
2631 break;
2635 // GPRs and FPRs are saved in pairs of 64-bit regs. We expect the CSI
2636 // list to come in sorted by frame index so that we can issue the store
2637 // pair instructions directly. Assert if we see anything otherwise.
2639 // The order of the registers in the list is controlled by
2640 // getCalleeSavedRegs(), so they will always be in-order, as well.
2641 assert((!RPI.isPaired() ||
2642 (CSI[i].getFrameIdx() + RegInc == CSI[i + RegInc].getFrameIdx())) &&
2643 "Out of order callee saved regs!");
2645 assert((!RPI.isPaired() || !NeedsFrameRecord || RPI.Reg2 != AArch64::FP ||
2646 RPI.Reg1 == AArch64::LR) &&
2647 "FrameRecord must be allocated together with LR");
2649 // Windows AAPCS has FP and LR reversed.
2650 assert((!RPI.isPaired() || !NeedsFrameRecord || RPI.Reg1 != AArch64::FP ||
2651 RPI.Reg2 == AArch64::LR) &&
2652 "FrameRecord must be allocated together with LR");
2654 // MachO's compact unwind format relies on all registers being stored in
2655 // adjacent register pairs.
2656 assert((!produceCompactUnwindFrame(MF) || CC == CallingConv::PreserveMost ||
2657 CC == CallingConv::PreserveAll || CC == CallingConv::CXX_FAST_TLS ||
2658 CC == CallingConv::Win64 ||
2659 (RPI.isPaired() &&
2660 ((RPI.Reg1 == AArch64::LR && RPI.Reg2 == AArch64::FP) ||
2661 RPI.Reg1 + 1 == RPI.Reg2))) &&
2662 "Callee-save registers not saved as adjacent register pair!");
2664 RPI.FrameIdx = CSI[i].getFrameIdx();
2665 if (NeedsWinCFI &&
2666 RPI.isPaired()) // RPI.FrameIdx must be the lower index of the pair
2667 RPI.FrameIdx = CSI[i + RegInc].getFrameIdx();
2669 int Scale = RPI.getScale();
2671 int OffsetPre = RPI.isScalable() ? ScalableByteOffset : ByteOffset;
2672 assert(OffsetPre % Scale == 0);
2674 if (RPI.isScalable())
2675 ScalableByteOffset += StackFillDir * Scale;
2676 else
2677 ByteOffset += StackFillDir * (RPI.isPaired() ? 2 * Scale : Scale);
2679 // Swift's async context is directly before FP, so allocate an extra
2680 // 8 bytes for it.
2681 if (NeedsFrameRecord && AFI->hasSwiftAsyncContext() &&
2682 ((!IsWindows && RPI.Reg2 == AArch64::FP) ||
2683 (IsWindows && RPI.Reg2 == AArch64::LR)))
2684 ByteOffset += StackFillDir * 8;
2686 assert(!(RPI.isScalable() && RPI.isPaired()) &&
2687 "Paired spill/fill instructions don't exist for SVE vectors");
2689 // Round up size of non-pair to pair size if we need to pad the
2690 // callee-save area to ensure 16-byte alignment.
2691 if (NeedGapToAlignStack && !NeedsWinCFI &&
2692 !RPI.isScalable() && RPI.Type != RegPairInfo::FPR128 &&
2693 !RPI.isPaired() && ByteOffset % 16 != 0) {
2694 ByteOffset += 8 * StackFillDir;
2695 assert(MFI.getObjectAlign(RPI.FrameIdx) <= Align(16));
2696 // A stack frame with a gap looks like this, bottom up:
2697 // d9, d8. x21, gap, x20, x19.
2698 // Set extra alignment on the x21 object to create the gap above it.
2699 MFI.setObjectAlignment(RPI.FrameIdx, Align(16));
2700 NeedGapToAlignStack = false;
2703 int OffsetPost = RPI.isScalable() ? ScalableByteOffset : ByteOffset;
2704 assert(OffsetPost % Scale == 0);
2705 // If filling top down (default), we want the offset after incrementing it.
2706 // If filling bottom up (WinCFI) we need the original offset.
2707 int Offset = NeedsWinCFI ? OffsetPre : OffsetPost;
2709 // The FP, LR pair goes 8 bytes into our expanded 24-byte slot so that the
2710 // Swift context can directly precede FP.
2711 if (NeedsFrameRecord && AFI->hasSwiftAsyncContext() &&
2712 ((!IsWindows && RPI.Reg2 == AArch64::FP) ||
2713 (IsWindows && RPI.Reg2 == AArch64::LR)))
2714 Offset += 8;
2715 RPI.Offset = Offset / Scale;
2717 assert(((!RPI.isScalable() && RPI.Offset >= -64 && RPI.Offset <= 63) ||
2718 (RPI.isScalable() && RPI.Offset >= -256 && RPI.Offset <= 255)) &&
2719 "Offset out of bounds for LDP/STP immediate");
2721 // Save the offset to frame record so that the FP register can point to the
2722 // innermost frame record (spilled FP and LR registers).
2723 if (NeedsFrameRecord && ((!IsWindows && RPI.Reg1 == AArch64::LR &&
2724 RPI.Reg2 == AArch64::FP) ||
2725 (IsWindows && RPI.Reg1 == AArch64::FP &&
2726 RPI.Reg2 == AArch64::LR)))
2727 AFI->setCalleeSaveBaseToFrameRecordOffset(Offset);
2729 RegPairs.push_back(RPI);
2730 if (RPI.isPaired())
2731 i += RegInc;
2733 if (NeedsWinCFI) {
2734 // If we need an alignment gap in the stack, align the topmost stack
2735 // object. A stack frame with a gap looks like this, bottom up:
2736 // x19, d8. d9, gap.
2737 // Set extra alignment on the topmost stack object (the first element in
2738 // CSI, which goes top down), to create the gap above it.
2739 if (AFI->hasCalleeSaveStackFreeSpace())
2740 MFI.setObjectAlignment(CSI[0].getFrameIdx(), Align(16));
2741 // We iterated bottom up over the registers; flip RegPairs back to top
2742 // down order.
2743 std::reverse(RegPairs.begin(), RegPairs.end());
2747 bool AArch64FrameLowering::spillCalleeSavedRegisters(
2748 MachineBasicBlock &MBB, MachineBasicBlock::iterator MI,
2749 ArrayRef<CalleeSavedInfo> CSI, const TargetRegisterInfo *TRI) const {
2750 MachineFunction &MF = *MBB.getParent();
2751 const TargetInstrInfo &TII = *MF.getSubtarget().getInstrInfo();
2752 bool NeedsWinCFI = needsWinCFI(MF);
2753 DebugLoc DL;
2754 SmallVector<RegPairInfo, 8> RegPairs;
2756 computeCalleeSaveRegisterPairs(MF, CSI, TRI, RegPairs, hasFP(MF));
2758 const MachineRegisterInfo &MRI = MF.getRegInfo();
2759 if (homogeneousPrologEpilog(MF)) {
2760 auto MIB = BuildMI(MBB, MI, DL, TII.get(AArch64::HOM_Prolog))
2761 .setMIFlag(MachineInstr::FrameSetup);
2763 for (auto &RPI : RegPairs) {
2764 MIB.addReg(RPI.Reg1);
2765 MIB.addReg(RPI.Reg2);
2767 // Update register live in.
2768 if (!MRI.isReserved(RPI.Reg1))
2769 MBB.addLiveIn(RPI.Reg1);
2770 if (RPI.isPaired() && !MRI.isReserved(RPI.Reg2))
2771 MBB.addLiveIn(RPI.Reg2);
2773 return true;
2775 for (const RegPairInfo &RPI : llvm::reverse(RegPairs)) {
2776 unsigned Reg1 = RPI.Reg1;
2777 unsigned Reg2 = RPI.Reg2;
2778 unsigned StrOpc;
2780 // Issue sequence of spills for cs regs. The first spill may be converted
2781 // to a pre-decrement store later by emitPrologue if the callee-save stack
2782 // area allocation can't be combined with the local stack area allocation.
2783 // For example:
2784 // stp x22, x21, [sp, #0] // addImm(+0)
2785 // stp x20, x19, [sp, #16] // addImm(+2)
2786 // stp fp, lr, [sp, #32] // addImm(+4)
2787 // Rationale: This sequence saves uop updates compared to a sequence of
2788 // pre-increment spills like stp xi,xj,[sp,#-16]!
2789 // Note: Similar rationale and sequence for restores in epilog.
2790 unsigned Size;
2791 Align Alignment;
2792 switch (RPI.Type) {
2793 case RegPairInfo::GPR:
2794 StrOpc = RPI.isPaired() ? AArch64::STPXi : AArch64::STRXui;
2795 Size = 8;
2796 Alignment = Align(8);
2797 break;
2798 case RegPairInfo::FPR64:
2799 StrOpc = RPI.isPaired() ? AArch64::STPDi : AArch64::STRDui;
2800 Size = 8;
2801 Alignment = Align(8);
2802 break;
2803 case RegPairInfo::FPR128:
2804 StrOpc = RPI.isPaired() ? AArch64::STPQi : AArch64::STRQui;
2805 Size = 16;
2806 Alignment = Align(16);
2807 break;
2808 case RegPairInfo::ZPR:
2809 StrOpc = AArch64::STR_ZXI;
2810 Size = 16;
2811 Alignment = Align(16);
2812 break;
2813 case RegPairInfo::PPR:
2814 StrOpc = AArch64::STR_PXI;
2815 Size = 2;
2816 Alignment = Align(2);
2817 break;
2819 LLVM_DEBUG(dbgs() << "CSR spill: (" << printReg(Reg1, TRI);
2820 if (RPI.isPaired()) dbgs() << ", " << printReg(Reg2, TRI);
2821 dbgs() << ") -> fi#(" << RPI.FrameIdx;
2822 if (RPI.isPaired()) dbgs() << ", " << RPI.FrameIdx + 1;
2823 dbgs() << ")\n");
2825 assert((!NeedsWinCFI || !(Reg1 == AArch64::LR && Reg2 == AArch64::FP)) &&
2826 "Windows unwdinding requires a consecutive (FP,LR) pair");
2827 // Windows unwind codes require consecutive registers if registers are
2828 // paired. Make the switch here, so that the code below will save (x,x+1)
2829 // and not (x+1,x).
2830 unsigned FrameIdxReg1 = RPI.FrameIdx;
2831 unsigned FrameIdxReg2 = RPI.FrameIdx + 1;
2832 if (NeedsWinCFI && RPI.isPaired()) {
2833 std::swap(Reg1, Reg2);
2834 std::swap(FrameIdxReg1, FrameIdxReg2);
2836 MachineInstrBuilder MIB = BuildMI(MBB, MI, DL, TII.get(StrOpc));
2837 if (!MRI.isReserved(Reg1))
2838 MBB.addLiveIn(Reg1);
2839 if (RPI.isPaired()) {
2840 if (!MRI.isReserved(Reg2))
2841 MBB.addLiveIn(Reg2);
2842 MIB.addReg(Reg2, getPrologueDeath(MF, Reg2));
2843 MIB.addMemOperand(MF.getMachineMemOperand(
2844 MachinePointerInfo::getFixedStack(MF, FrameIdxReg2),
2845 MachineMemOperand::MOStore, Size, Alignment));
2847 MIB.addReg(Reg1, getPrologueDeath(MF, Reg1))
2848 .addReg(AArch64::SP)
2849 .addImm(RPI.Offset) // [sp, #offset*scale],
2850 // where factor*scale is implicit
2851 .setMIFlag(MachineInstr::FrameSetup);
2852 MIB.addMemOperand(MF.getMachineMemOperand(
2853 MachinePointerInfo::getFixedStack(MF, FrameIdxReg1),
2854 MachineMemOperand::MOStore, Size, Alignment));
2855 if (NeedsWinCFI)
2856 InsertSEH(MIB, TII, MachineInstr::FrameSetup);
2858 // Update the StackIDs of the SVE stack slots.
2859 MachineFrameInfo &MFI = MF.getFrameInfo();
2860 if (RPI.Type == RegPairInfo::ZPR || RPI.Type == RegPairInfo::PPR)
2861 MFI.setStackID(RPI.FrameIdx, TargetStackID::ScalableVector);
2864 return true;
2867 bool AArch64FrameLowering::restoreCalleeSavedRegisters(
2868 MachineBasicBlock &MBB, MachineBasicBlock::iterator MBBI,
2869 MutableArrayRef<CalleeSavedInfo> CSI, const TargetRegisterInfo *TRI) const {
2870 MachineFunction &MF = *MBB.getParent();
2871 const TargetInstrInfo &TII = *MF.getSubtarget().getInstrInfo();
2872 DebugLoc DL;
2873 SmallVector<RegPairInfo, 8> RegPairs;
2874 bool NeedsWinCFI = needsWinCFI(MF);
2876 if (MBBI != MBB.end())
2877 DL = MBBI->getDebugLoc();
2879 computeCalleeSaveRegisterPairs(MF, CSI, TRI, RegPairs, hasFP(MF));
2881 auto EmitMI = [&](const RegPairInfo &RPI) -> MachineBasicBlock::iterator {
2882 unsigned Reg1 = RPI.Reg1;
2883 unsigned Reg2 = RPI.Reg2;
2885 // Issue sequence of restores for cs regs. The last restore may be converted
2886 // to a post-increment load later by emitEpilogue if the callee-save stack
2887 // area allocation can't be combined with the local stack area allocation.
2888 // For example:
2889 // ldp fp, lr, [sp, #32] // addImm(+4)
2890 // ldp x20, x19, [sp, #16] // addImm(+2)
2891 // ldp x22, x21, [sp, #0] // addImm(+0)
2892 // Note: see comment in spillCalleeSavedRegisters()
2893 unsigned LdrOpc;
2894 unsigned Size;
2895 Align Alignment;
2896 switch (RPI.Type) {
2897 case RegPairInfo::GPR:
2898 LdrOpc = RPI.isPaired() ? AArch64::LDPXi : AArch64::LDRXui;
2899 Size = 8;
2900 Alignment = Align(8);
2901 break;
2902 case RegPairInfo::FPR64:
2903 LdrOpc = RPI.isPaired() ? AArch64::LDPDi : AArch64::LDRDui;
2904 Size = 8;
2905 Alignment = Align(8);
2906 break;
2907 case RegPairInfo::FPR128:
2908 LdrOpc = RPI.isPaired() ? AArch64::LDPQi : AArch64::LDRQui;
2909 Size = 16;
2910 Alignment = Align(16);
2911 break;
2912 case RegPairInfo::ZPR:
2913 LdrOpc = AArch64::LDR_ZXI;
2914 Size = 16;
2915 Alignment = Align(16);
2916 break;
2917 case RegPairInfo::PPR:
2918 LdrOpc = AArch64::LDR_PXI;
2919 Size = 2;
2920 Alignment = Align(2);
2921 break;
2923 LLVM_DEBUG(dbgs() << "CSR restore: (" << printReg(Reg1, TRI);
2924 if (RPI.isPaired()) dbgs() << ", " << printReg(Reg2, TRI);
2925 dbgs() << ") -> fi#(" << RPI.FrameIdx;
2926 if (RPI.isPaired()) dbgs() << ", " << RPI.FrameIdx + 1;
2927 dbgs() << ")\n");
2929 // Windows unwind codes require consecutive registers if registers are
2930 // paired. Make the switch here, so that the code below will save (x,x+1)
2931 // and not (x+1,x).
2932 unsigned FrameIdxReg1 = RPI.FrameIdx;
2933 unsigned FrameIdxReg2 = RPI.FrameIdx + 1;
2934 if (NeedsWinCFI && RPI.isPaired()) {
2935 std::swap(Reg1, Reg2);
2936 std::swap(FrameIdxReg1, FrameIdxReg2);
2938 MachineInstrBuilder MIB = BuildMI(MBB, MBBI, DL, TII.get(LdrOpc));
2939 if (RPI.isPaired()) {
2940 MIB.addReg(Reg2, getDefRegState(true));
2941 MIB.addMemOperand(MF.getMachineMemOperand(
2942 MachinePointerInfo::getFixedStack(MF, FrameIdxReg2),
2943 MachineMemOperand::MOLoad, Size, Alignment));
2945 MIB.addReg(Reg1, getDefRegState(true))
2946 .addReg(AArch64::SP)
2947 .addImm(RPI.Offset) // [sp, #offset*scale]
2948 // where factor*scale is implicit
2949 .setMIFlag(MachineInstr::FrameDestroy);
2950 MIB.addMemOperand(MF.getMachineMemOperand(
2951 MachinePointerInfo::getFixedStack(MF, FrameIdxReg1),
2952 MachineMemOperand::MOLoad, Size, Alignment));
2953 if (NeedsWinCFI)
2954 InsertSEH(MIB, TII, MachineInstr::FrameDestroy);
2956 return MIB->getIterator();
2959 // SVE objects are always restored in reverse order.
2960 for (const RegPairInfo &RPI : reverse(RegPairs))
2961 if (RPI.isScalable())
2962 EmitMI(RPI);
2964 if (homogeneousPrologEpilog(MF, &MBB)) {
2965 auto MIB = BuildMI(MBB, MBBI, DL, TII.get(AArch64::HOM_Epilog))
2966 .setMIFlag(MachineInstr::FrameDestroy);
2967 for (auto &RPI : RegPairs) {
2968 MIB.addReg(RPI.Reg1, RegState::Define);
2969 MIB.addReg(RPI.Reg2, RegState::Define);
2971 return true;
2974 if (ReverseCSRRestoreSeq) {
2975 MachineBasicBlock::iterator First = MBB.end();
2976 for (const RegPairInfo &RPI : reverse(RegPairs)) {
2977 if (RPI.isScalable())
2978 continue;
2979 MachineBasicBlock::iterator It = EmitMI(RPI);
2980 if (First == MBB.end())
2981 First = It;
2983 if (First != MBB.end())
2984 MBB.splice(MBBI, &MBB, First);
2985 } else {
2986 for (const RegPairInfo &RPI : RegPairs) {
2987 if (RPI.isScalable())
2988 continue;
2989 (void)EmitMI(RPI);
2993 return true;
2996 void AArch64FrameLowering::determineCalleeSaves(MachineFunction &MF,
2997 BitVector &SavedRegs,
2998 RegScavenger *RS) const {
2999 // All calls are tail calls in GHC calling conv, and functions have no
3000 // prologue/epilogue.
3001 if (MF.getFunction().getCallingConv() == CallingConv::GHC)
3002 return;
3004 TargetFrameLowering::determineCalleeSaves(MF, SavedRegs, RS);
3005 const AArch64RegisterInfo *RegInfo = static_cast<const AArch64RegisterInfo *>(
3006 MF.getSubtarget().getRegisterInfo());
3007 const AArch64Subtarget &Subtarget = MF.getSubtarget<AArch64Subtarget>();
3008 AArch64FunctionInfo *AFI = MF.getInfo<AArch64FunctionInfo>();
3009 unsigned UnspilledCSGPR = AArch64::NoRegister;
3010 unsigned UnspilledCSGPRPaired = AArch64::NoRegister;
3012 MachineFrameInfo &MFI = MF.getFrameInfo();
3013 const MCPhysReg *CSRegs = MF.getRegInfo().getCalleeSavedRegs();
3015 unsigned BasePointerReg = RegInfo->hasBasePointer(MF)
3016 ? RegInfo->getBaseRegister()
3017 : (unsigned)AArch64::NoRegister;
3019 unsigned ExtraCSSpill = 0;
3020 bool HasUnpairedGPR64 = false;
3021 // Figure out which callee-saved registers to save/restore.
3022 for (unsigned i = 0; CSRegs[i]; ++i) {
3023 const unsigned Reg = CSRegs[i];
3025 // Add the base pointer register to SavedRegs if it is callee-save.
3026 if (Reg == BasePointerReg)
3027 SavedRegs.set(Reg);
3029 bool RegUsed = SavedRegs.test(Reg);
3030 unsigned PairedReg = AArch64::NoRegister;
3031 const bool RegIsGPR64 = AArch64::GPR64RegClass.contains(Reg);
3032 if (RegIsGPR64 || AArch64::FPR64RegClass.contains(Reg) ||
3033 AArch64::FPR128RegClass.contains(Reg)) {
3034 // Compensate for odd numbers of GP CSRs.
3035 // For now, all the known cases of odd number of CSRs are of GPRs.
3036 if (HasUnpairedGPR64)
3037 PairedReg = CSRegs[i % 2 == 0 ? i - 1 : i + 1];
3038 else
3039 PairedReg = CSRegs[i ^ 1];
3042 // If the function requires all the GP registers to save (SavedRegs),
3043 // and there are an odd number of GP CSRs at the same time (CSRegs),
3044 // PairedReg could be in a different register class from Reg, which would
3045 // lead to a FPR (usually D8) accidentally being marked saved.
3046 if (RegIsGPR64 && !AArch64::GPR64RegClass.contains(PairedReg)) {
3047 PairedReg = AArch64::NoRegister;
3048 HasUnpairedGPR64 = true;
3050 assert(PairedReg == AArch64::NoRegister ||
3051 AArch64::GPR64RegClass.contains(Reg, PairedReg) ||
3052 AArch64::FPR64RegClass.contains(Reg, PairedReg) ||
3053 AArch64::FPR128RegClass.contains(Reg, PairedReg));
3055 if (!RegUsed) {
3056 if (AArch64::GPR64RegClass.contains(Reg) &&
3057 !RegInfo->isReservedReg(MF, Reg)) {
3058 UnspilledCSGPR = Reg;
3059 UnspilledCSGPRPaired = PairedReg;
3061 continue;
3064 // MachO's compact unwind format relies on all registers being stored in
3065 // pairs.
3066 // FIXME: the usual format is actually better if unwinding isn't needed.
3067 if (producePairRegisters(MF) && PairedReg != AArch64::NoRegister &&
3068 !SavedRegs.test(PairedReg)) {
3069 SavedRegs.set(PairedReg);
3070 if (AArch64::GPR64RegClass.contains(PairedReg) &&
3071 !RegInfo->isReservedReg(MF, PairedReg))
3072 ExtraCSSpill = PairedReg;
3076 if (MF.getFunction().getCallingConv() == CallingConv::Win64 &&
3077 !Subtarget.isTargetWindows()) {
3078 // For Windows calling convention on a non-windows OS, where X18 is treated
3079 // as reserved, back up X18 when entering non-windows code (marked with the
3080 // Windows calling convention) and restore when returning regardless of
3081 // whether the individual function uses it - it might call other functions
3082 // that clobber it.
3083 SavedRegs.set(AArch64::X18);
3086 // Calculates the callee saved stack size.
3087 unsigned CSStackSize = 0;
3088 unsigned SVECSStackSize = 0;
3089 const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo();
3090 const MachineRegisterInfo &MRI = MF.getRegInfo();
3091 for (unsigned Reg : SavedRegs.set_bits()) {
3092 auto RegSize = TRI->getRegSizeInBits(Reg, MRI) / 8;
3093 if (AArch64::PPRRegClass.contains(Reg) ||
3094 AArch64::ZPRRegClass.contains(Reg))
3095 SVECSStackSize += RegSize;
3096 else
3097 CSStackSize += RegSize;
3100 // Save number of saved regs, so we can easily update CSStackSize later.
3101 unsigned NumSavedRegs = SavedRegs.count();
3103 // The frame record needs to be created by saving the appropriate registers
3104 uint64_t EstimatedStackSize = MFI.estimateStackSize(MF);
3105 if (hasFP(MF) ||
3106 windowsRequiresStackProbe(MF, EstimatedStackSize + CSStackSize + 16)) {
3107 SavedRegs.set(AArch64::FP);
3108 SavedRegs.set(AArch64::LR);
3111 LLVM_DEBUG(dbgs() << "*** determineCalleeSaves\nSaved CSRs:";
3112 for (unsigned Reg
3113 : SavedRegs.set_bits()) dbgs()
3114 << ' ' << printReg(Reg, RegInfo);
3115 dbgs() << "\n";);
3117 // If any callee-saved registers are used, the frame cannot be eliminated.
3118 int64_t SVEStackSize =
3119 alignTo(SVECSStackSize + estimateSVEStackObjectOffsets(MFI), 16);
3120 bool CanEliminateFrame = (SavedRegs.count() == 0) && !SVEStackSize;
3122 // The CSR spill slots have not been allocated yet, so estimateStackSize
3123 // won't include them.
3124 unsigned EstimatedStackSizeLimit = estimateRSStackSizeLimit(MF);
3126 // We may address some of the stack above the canonical frame address, either
3127 // for our own arguments or during a call. Include that in calculating whether
3128 // we have complicated addressing concerns.
3129 int64_t CalleeStackUsed = 0;
3130 for (int I = MFI.getObjectIndexBegin(); I != 0; ++I) {
3131 int64_t FixedOff = MFI.getObjectOffset(I);
3132 if (FixedOff > CalleeStackUsed) CalleeStackUsed = FixedOff;
3135 // Conservatively always assume BigStack when there are SVE spills.
3136 bool BigStack = SVEStackSize || (EstimatedStackSize + CSStackSize +
3137 CalleeStackUsed) > EstimatedStackSizeLimit;
3138 if (BigStack || !CanEliminateFrame || RegInfo->cannotEliminateFrame(MF))
3139 AFI->setHasStackFrame(true);
3141 // Estimate if we might need to scavenge a register at some point in order
3142 // to materialize a stack offset. If so, either spill one additional
3143 // callee-saved register or reserve a special spill slot to facilitate
3144 // register scavenging. If we already spilled an extra callee-saved register
3145 // above to keep the number of spills even, we don't need to do anything else
3146 // here.
3147 if (BigStack) {
3148 if (!ExtraCSSpill && UnspilledCSGPR != AArch64::NoRegister) {
3149 LLVM_DEBUG(dbgs() << "Spilling " << printReg(UnspilledCSGPR, RegInfo)
3150 << " to get a scratch register.\n");
3151 SavedRegs.set(UnspilledCSGPR);
3152 ExtraCSSpill = UnspilledCSGPR;
3154 // MachO's compact unwind format relies on all registers being stored in
3155 // pairs, so if we need to spill one extra for BigStack, then we need to
3156 // store the pair.
3157 if (producePairRegisters(MF)) {
3158 if (UnspilledCSGPRPaired == AArch64::NoRegister) {
3159 // Failed to make a pair for compact unwind format, revert spilling.
3160 if (produceCompactUnwindFrame(MF)) {
3161 SavedRegs.reset(UnspilledCSGPR);
3162 ExtraCSSpill = AArch64::NoRegister;
3164 } else
3165 SavedRegs.set(UnspilledCSGPRPaired);
3169 // If we didn't find an extra callee-saved register to spill, create
3170 // an emergency spill slot.
3171 if (!ExtraCSSpill || MF.getRegInfo().isPhysRegUsed(ExtraCSSpill)) {
3172 const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo();
3173 const TargetRegisterClass &RC = AArch64::GPR64RegClass;
3174 unsigned Size = TRI->getSpillSize(RC);
3175 Align Alignment = TRI->getSpillAlign(RC);
3176 int FI = MFI.CreateStackObject(Size, Alignment, false);
3177 RS->addScavengingFrameIndex(FI);
3178 LLVM_DEBUG(dbgs() << "No available CS registers, allocated fi#" << FI
3179 << " as the emergency spill slot.\n");
3183 // Adding the size of additional 64bit GPR saves.
3184 CSStackSize += 8 * (SavedRegs.count() - NumSavedRegs);
3186 // A Swift asynchronous context extends the frame record with a pointer
3187 // directly before FP.
3188 if (hasFP(MF) && AFI->hasSwiftAsyncContext())
3189 CSStackSize += 8;
3191 uint64_t AlignedCSStackSize = alignTo(CSStackSize, 16);
3192 LLVM_DEBUG(dbgs() << "Estimated stack frame size: "
3193 << EstimatedStackSize + AlignedCSStackSize
3194 << " bytes.\n");
3196 assert((!MFI.isCalleeSavedInfoValid() ||
3197 AFI->getCalleeSavedStackSize() == AlignedCSStackSize) &&
3198 "Should not invalidate callee saved info");
3200 // Round up to register pair alignment to avoid additional SP adjustment
3201 // instructions.
3202 AFI->setCalleeSavedStackSize(AlignedCSStackSize);
3203 AFI->setCalleeSaveStackHasFreeSpace(AlignedCSStackSize != CSStackSize);
3204 AFI->setSVECalleeSavedStackSize(alignTo(SVECSStackSize, 16));
3207 bool AArch64FrameLowering::assignCalleeSavedSpillSlots(
3208 MachineFunction &MF, const TargetRegisterInfo *RegInfo,
3209 std::vector<CalleeSavedInfo> &CSI, unsigned &MinCSFrameIndex,
3210 unsigned &MaxCSFrameIndex) const {
3211 bool NeedsWinCFI = needsWinCFI(MF);
3212 // To match the canonical windows frame layout, reverse the list of
3213 // callee saved registers to get them laid out by PrologEpilogInserter
3214 // in the right order. (PrologEpilogInserter allocates stack objects top
3215 // down. Windows canonical prologs store higher numbered registers at
3216 // the top, thus have the CSI array start from the highest registers.)
3217 if (NeedsWinCFI)
3218 std::reverse(CSI.begin(), CSI.end());
3220 if (CSI.empty())
3221 return true; // Early exit if no callee saved registers are modified!
3223 // Now that we know which registers need to be saved and restored, allocate
3224 // stack slots for them.
3225 MachineFrameInfo &MFI = MF.getFrameInfo();
3226 auto *AFI = MF.getInfo<AArch64FunctionInfo>();
3228 bool UsesWinAAPCS = isTargetWindows(MF);
3229 if (UsesWinAAPCS && hasFP(MF) && AFI->hasSwiftAsyncContext()) {
3230 int FrameIdx = MFI.CreateStackObject(8, Align(16), true);
3231 AFI->setSwiftAsyncContextFrameIdx(FrameIdx);
3232 if ((unsigned)FrameIdx < MinCSFrameIndex) MinCSFrameIndex = FrameIdx;
3233 if ((unsigned)FrameIdx > MaxCSFrameIndex) MaxCSFrameIndex = FrameIdx;
3236 for (auto &CS : CSI) {
3237 Register Reg = CS.getReg();
3238 const TargetRegisterClass *RC = RegInfo->getMinimalPhysRegClass(Reg);
3240 unsigned Size = RegInfo->getSpillSize(*RC);
3241 Align Alignment(RegInfo->getSpillAlign(*RC));
3242 int FrameIdx = MFI.CreateStackObject(Size, Alignment, true);
3243 CS.setFrameIdx(FrameIdx);
3245 if ((unsigned)FrameIdx < MinCSFrameIndex) MinCSFrameIndex = FrameIdx;
3246 if ((unsigned)FrameIdx > MaxCSFrameIndex) MaxCSFrameIndex = FrameIdx;
3248 // Grab 8 bytes below FP for the extended asynchronous frame info.
3249 if (hasFP(MF) && AFI->hasSwiftAsyncContext() && !UsesWinAAPCS &&
3250 Reg == AArch64::FP) {
3251 FrameIdx = MFI.CreateStackObject(8, Alignment, true);
3252 AFI->setSwiftAsyncContextFrameIdx(FrameIdx);
3253 if ((unsigned)FrameIdx < MinCSFrameIndex) MinCSFrameIndex = FrameIdx;
3254 if ((unsigned)FrameIdx > MaxCSFrameIndex) MaxCSFrameIndex = FrameIdx;
3257 return true;
3260 bool AArch64FrameLowering::enableStackSlotScavenging(
3261 const MachineFunction &MF) const {
3262 const AArch64FunctionInfo *AFI = MF.getInfo<AArch64FunctionInfo>();
3263 // If the function has streaming-mode changes, don't scavenge a
3264 // spillslot in the callee-save area, as that might require an
3265 // 'addvl' in the streaming-mode-changing call-sequence when the
3266 // function doesn't use a FP.
3267 if (AFI->hasStreamingModeChanges() && !hasFP(MF))
3268 return false;
3269 return AFI->hasCalleeSaveStackFreeSpace();
3272 /// returns true if there are any SVE callee saves.
3273 static bool getSVECalleeSaveSlotRange(const MachineFrameInfo &MFI,
3274 int &Min, int &Max) {
3275 Min = std::numeric_limits<int>::max();
3276 Max = std::numeric_limits<int>::min();
3278 if (!MFI.isCalleeSavedInfoValid())
3279 return false;
3281 const std::vector<CalleeSavedInfo> &CSI = MFI.getCalleeSavedInfo();
3282 for (auto &CS : CSI) {
3283 if (AArch64::ZPRRegClass.contains(CS.getReg()) ||
3284 AArch64::PPRRegClass.contains(CS.getReg())) {
3285 assert((Max == std::numeric_limits<int>::min() ||
3286 Max + 1 == CS.getFrameIdx()) &&
3287 "SVE CalleeSaves are not consecutive");
3289 Min = std::min(Min, CS.getFrameIdx());
3290 Max = std::max(Max, CS.getFrameIdx());
3293 return Min != std::numeric_limits<int>::max();
3296 // Process all the SVE stack objects and determine offsets for each
3297 // object. If AssignOffsets is true, the offsets get assigned.
3298 // Fills in the first and last callee-saved frame indices into
3299 // Min/MaxCSFrameIndex, respectively.
3300 // Returns the size of the stack.
3301 static int64_t determineSVEStackObjectOffsets(MachineFrameInfo &MFI,
3302 int &MinCSFrameIndex,
3303 int &MaxCSFrameIndex,
3304 bool AssignOffsets) {
3305 #ifndef NDEBUG
3306 // First process all fixed stack objects.
3307 for (int I = MFI.getObjectIndexBegin(); I != 0; ++I)
3308 assert(MFI.getStackID(I) != TargetStackID::ScalableVector &&
3309 "SVE vectors should never be passed on the stack by value, only by "
3310 "reference.");
3311 #endif
3313 auto Assign = [&MFI](int FI, int64_t Offset) {
3314 LLVM_DEBUG(dbgs() << "alloc FI(" << FI << ") at SP[" << Offset << "]\n");
3315 MFI.setObjectOffset(FI, Offset);
3318 int64_t Offset = 0;
3320 // Then process all callee saved slots.
3321 if (getSVECalleeSaveSlotRange(MFI, MinCSFrameIndex, MaxCSFrameIndex)) {
3322 // Assign offsets to the callee save slots.
3323 for (int I = MinCSFrameIndex; I <= MaxCSFrameIndex; ++I) {
3324 Offset += MFI.getObjectSize(I);
3325 Offset = alignTo(Offset, MFI.getObjectAlign(I));
3326 if (AssignOffsets)
3327 Assign(I, -Offset);
3331 // Ensure that the Callee-save area is aligned to 16bytes.
3332 Offset = alignTo(Offset, Align(16U));
3334 // Create a buffer of SVE objects to allocate and sort it.
3335 SmallVector<int, 8> ObjectsToAllocate;
3336 // If we have a stack protector, and we've previously decided that we have SVE
3337 // objects on the stack and thus need it to go in the SVE stack area, then it
3338 // needs to go first.
3339 int StackProtectorFI = -1;
3340 if (MFI.hasStackProtectorIndex()) {
3341 StackProtectorFI = MFI.getStackProtectorIndex();
3342 if (MFI.getStackID(StackProtectorFI) == TargetStackID::ScalableVector)
3343 ObjectsToAllocate.push_back(StackProtectorFI);
3345 for (int I = 0, E = MFI.getObjectIndexEnd(); I != E; ++I) {
3346 unsigned StackID = MFI.getStackID(I);
3347 if (StackID != TargetStackID::ScalableVector)
3348 continue;
3349 if (I == StackProtectorFI)
3350 continue;
3351 if (MaxCSFrameIndex >= I && I >= MinCSFrameIndex)
3352 continue;
3353 if (MFI.isDeadObjectIndex(I))
3354 continue;
3356 ObjectsToAllocate.push_back(I);
3359 // Allocate all SVE locals and spills
3360 for (unsigned FI : ObjectsToAllocate) {
3361 Align Alignment = MFI.getObjectAlign(FI);
3362 // FIXME: Given that the length of SVE vectors is not necessarily a power of
3363 // two, we'd need to align every object dynamically at runtime if the
3364 // alignment is larger than 16. This is not yet supported.
3365 if (Alignment > Align(16))
3366 report_fatal_error(
3367 "Alignment of scalable vectors > 16 bytes is not yet supported");
3369 Offset = alignTo(Offset + MFI.getObjectSize(FI), Alignment);
3370 if (AssignOffsets)
3371 Assign(FI, -Offset);
3374 return Offset;
3377 int64_t AArch64FrameLowering::estimateSVEStackObjectOffsets(
3378 MachineFrameInfo &MFI) const {
3379 int MinCSFrameIndex, MaxCSFrameIndex;
3380 return determineSVEStackObjectOffsets(MFI, MinCSFrameIndex, MaxCSFrameIndex, false);
3383 int64_t AArch64FrameLowering::assignSVEStackObjectOffsets(
3384 MachineFrameInfo &MFI, int &MinCSFrameIndex, int &MaxCSFrameIndex) const {
3385 return determineSVEStackObjectOffsets(MFI, MinCSFrameIndex, MaxCSFrameIndex,
3386 true);
3389 void AArch64FrameLowering::processFunctionBeforeFrameFinalized(
3390 MachineFunction &MF, RegScavenger *RS) const {
3391 MachineFrameInfo &MFI = MF.getFrameInfo();
3393 assert(getStackGrowthDirection() == TargetFrameLowering::StackGrowsDown &&
3394 "Upwards growing stack unsupported");
3396 int MinCSFrameIndex, MaxCSFrameIndex;
3397 int64_t SVEStackSize =
3398 assignSVEStackObjectOffsets(MFI, MinCSFrameIndex, MaxCSFrameIndex);
3400 AArch64FunctionInfo *AFI = MF.getInfo<AArch64FunctionInfo>();
3401 AFI->setStackSizeSVE(alignTo(SVEStackSize, 16U));
3402 AFI->setMinMaxSVECSFrameIndex(MinCSFrameIndex, MaxCSFrameIndex);
3404 // If this function isn't doing Win64-style C++ EH, we don't need to do
3405 // anything.
3406 if (!MF.hasEHFunclets())
3407 return;
3408 const TargetInstrInfo &TII = *MF.getSubtarget().getInstrInfo();
3409 WinEHFuncInfo &EHInfo = *MF.getWinEHFuncInfo();
3411 MachineBasicBlock &MBB = MF.front();
3412 auto MBBI = MBB.begin();
3413 while (MBBI != MBB.end() && MBBI->getFlag(MachineInstr::FrameSetup))
3414 ++MBBI;
3416 // Create an UnwindHelp object.
3417 // The UnwindHelp object is allocated at the start of the fixed object area
3418 int64_t FixedObject =
3419 getFixedObjectSize(MF, AFI, /*IsWin64*/ true, /*IsFunclet*/ false);
3420 int UnwindHelpFI = MFI.CreateFixedObject(/*Size*/ 8,
3421 /*SPOffset*/ -FixedObject,
3422 /*IsImmutable=*/false);
3423 EHInfo.UnwindHelpFrameIdx = UnwindHelpFI;
3425 // We need to store -2 into the UnwindHelp object at the start of the
3426 // function.
3427 DebugLoc DL;
3428 RS->enterBasicBlockEnd(MBB);
3429 RS->backward(std::prev(MBBI));
3430 Register DstReg = RS->FindUnusedReg(&AArch64::GPR64commonRegClass);
3431 assert(DstReg && "There must be a free register after frame setup");
3432 BuildMI(MBB, MBBI, DL, TII.get(AArch64::MOVi64imm), DstReg).addImm(-2);
3433 BuildMI(MBB, MBBI, DL, TII.get(AArch64::STURXi))
3434 .addReg(DstReg, getKillRegState(true))
3435 .addFrameIndex(UnwindHelpFI)
3436 .addImm(0);
3439 namespace {
3440 struct TagStoreInstr {
3441 MachineInstr *MI;
3442 int64_t Offset, Size;
3443 explicit TagStoreInstr(MachineInstr *MI, int64_t Offset, int64_t Size)
3444 : MI(MI), Offset(Offset), Size(Size) {}
3447 class TagStoreEdit {
3448 MachineFunction *MF;
3449 MachineBasicBlock *MBB;
3450 MachineRegisterInfo *MRI;
3451 // Tag store instructions that are being replaced.
3452 SmallVector<TagStoreInstr, 8> TagStores;
3453 // Combined memref arguments of the above instructions.
3454 SmallVector<MachineMemOperand *, 8> CombinedMemRefs;
3456 // Replace allocation tags in [FrameReg + FrameRegOffset, FrameReg +
3457 // FrameRegOffset + Size) with the address tag of SP.
3458 Register FrameReg;
3459 StackOffset FrameRegOffset;
3460 int64_t Size;
3461 // If not std::nullopt, move FrameReg to (FrameReg + FrameRegUpdate) at the
3462 // end.
3463 std::optional<int64_t> FrameRegUpdate;
3464 // MIFlags for any FrameReg updating instructions.
3465 unsigned FrameRegUpdateFlags;
3467 // Use zeroing instruction variants.
3468 bool ZeroData;
3469 DebugLoc DL;
3471 void emitUnrolled(MachineBasicBlock::iterator InsertI);
3472 void emitLoop(MachineBasicBlock::iterator InsertI);
3474 public:
3475 TagStoreEdit(MachineBasicBlock *MBB, bool ZeroData)
3476 : MBB(MBB), ZeroData(ZeroData) {
3477 MF = MBB->getParent();
3478 MRI = &MF->getRegInfo();
3480 // Add an instruction to be replaced. Instructions must be added in the
3481 // ascending order of Offset, and have to be adjacent.
3482 void addInstruction(TagStoreInstr I) {
3483 assert((TagStores.empty() ||
3484 TagStores.back().Offset + TagStores.back().Size == I.Offset) &&
3485 "Non-adjacent tag store instructions.");
3486 TagStores.push_back(I);
3488 void clear() { TagStores.clear(); }
3489 // Emit equivalent code at the given location, and erase the current set of
3490 // instructions. May skip if the replacement is not profitable. May invalidate
3491 // the input iterator and replace it with a valid one.
3492 void emitCode(MachineBasicBlock::iterator &InsertI,
3493 const AArch64FrameLowering *TFI, bool TryMergeSPUpdate);
3496 void TagStoreEdit::emitUnrolled(MachineBasicBlock::iterator InsertI) {
3497 const AArch64InstrInfo *TII =
3498 MF->getSubtarget<AArch64Subtarget>().getInstrInfo();
3500 const int64_t kMinOffset = -256 * 16;
3501 const int64_t kMaxOffset = 255 * 16;
3503 Register BaseReg = FrameReg;
3504 int64_t BaseRegOffsetBytes = FrameRegOffset.getFixed();
3505 if (BaseRegOffsetBytes < kMinOffset ||
3506 BaseRegOffsetBytes + (Size - Size % 32) > kMaxOffset ||
3507 // BaseReg can be FP, which is not necessarily aligned to 16-bytes. In
3508 // that case, BaseRegOffsetBytes will not be aligned to 16 bytes, which
3509 // is required for the offset of ST2G.
3510 BaseRegOffsetBytes % 16 != 0) {
3511 Register ScratchReg = MRI->createVirtualRegister(&AArch64::GPR64RegClass);
3512 emitFrameOffset(*MBB, InsertI, DL, ScratchReg, BaseReg,
3513 StackOffset::getFixed(BaseRegOffsetBytes), TII);
3514 BaseReg = ScratchReg;
3515 BaseRegOffsetBytes = 0;
3518 MachineInstr *LastI = nullptr;
3519 while (Size) {
3520 int64_t InstrSize = (Size > 16) ? 32 : 16;
3521 unsigned Opcode =
3522 InstrSize == 16
3523 ? (ZeroData ? AArch64::STZGi : AArch64::STGi)
3524 : (ZeroData ? AArch64::STZ2Gi : AArch64::ST2Gi);
3525 assert(BaseRegOffsetBytes % 16 == 0);
3526 MachineInstr *I = BuildMI(*MBB, InsertI, DL, TII->get(Opcode))
3527 .addReg(AArch64::SP)
3528 .addReg(BaseReg)
3529 .addImm(BaseRegOffsetBytes / 16)
3530 .setMemRefs(CombinedMemRefs);
3531 // A store to [BaseReg, #0] should go last for an opportunity to fold the
3532 // final SP adjustment in the epilogue.
3533 if (BaseRegOffsetBytes == 0)
3534 LastI = I;
3535 BaseRegOffsetBytes += InstrSize;
3536 Size -= InstrSize;
3539 if (LastI)
3540 MBB->splice(InsertI, MBB, LastI);
3543 void TagStoreEdit::emitLoop(MachineBasicBlock::iterator InsertI) {
3544 const AArch64InstrInfo *TII =
3545 MF->getSubtarget<AArch64Subtarget>().getInstrInfo();
3547 Register BaseReg = FrameRegUpdate
3548 ? FrameReg
3549 : MRI->createVirtualRegister(&AArch64::GPR64RegClass);
3550 Register SizeReg = MRI->createVirtualRegister(&AArch64::GPR64RegClass);
3552 emitFrameOffset(*MBB, InsertI, DL, BaseReg, FrameReg, FrameRegOffset, TII);
3554 int64_t LoopSize = Size;
3555 // If the loop size is not a multiple of 32, split off one 16-byte store at
3556 // the end to fold BaseReg update into.
3557 if (FrameRegUpdate && *FrameRegUpdate)
3558 LoopSize -= LoopSize % 32;
3559 MachineInstr *LoopI = BuildMI(*MBB, InsertI, DL,
3560 TII->get(ZeroData ? AArch64::STZGloop_wback
3561 : AArch64::STGloop_wback))
3562 .addDef(SizeReg)
3563 .addDef(BaseReg)
3564 .addImm(LoopSize)
3565 .addReg(BaseReg)
3566 .setMemRefs(CombinedMemRefs);
3567 if (FrameRegUpdate)
3568 LoopI->setFlags(FrameRegUpdateFlags);
3570 int64_t ExtraBaseRegUpdate =
3571 FrameRegUpdate ? (*FrameRegUpdate - FrameRegOffset.getFixed() - Size) : 0;
3572 if (LoopSize < Size) {
3573 assert(FrameRegUpdate);
3574 assert(Size - LoopSize == 16);
3575 // Tag 16 more bytes at BaseReg and update BaseReg.
3576 BuildMI(*MBB, InsertI, DL,
3577 TII->get(ZeroData ? AArch64::STZGPostIndex : AArch64::STGPostIndex))
3578 .addDef(BaseReg)
3579 .addReg(BaseReg)
3580 .addReg(BaseReg)
3581 .addImm(1 + ExtraBaseRegUpdate / 16)
3582 .setMemRefs(CombinedMemRefs)
3583 .setMIFlags(FrameRegUpdateFlags);
3584 } else if (ExtraBaseRegUpdate) {
3585 // Update BaseReg.
3586 BuildMI(
3587 *MBB, InsertI, DL,
3588 TII->get(ExtraBaseRegUpdate > 0 ? AArch64::ADDXri : AArch64::SUBXri))
3589 .addDef(BaseReg)
3590 .addReg(BaseReg)
3591 .addImm(std::abs(ExtraBaseRegUpdate))
3592 .addImm(0)
3593 .setMIFlags(FrameRegUpdateFlags);
3597 // Check if *II is a register update that can be merged into STGloop that ends
3598 // at (Reg + Size). RemainingOffset is the required adjustment to Reg after the
3599 // end of the loop.
3600 bool canMergeRegUpdate(MachineBasicBlock::iterator II, unsigned Reg,
3601 int64_t Size, int64_t *TotalOffset) {
3602 MachineInstr &MI = *II;
3603 if ((MI.getOpcode() == AArch64::ADDXri ||
3604 MI.getOpcode() == AArch64::SUBXri) &&
3605 MI.getOperand(0).getReg() == Reg && MI.getOperand(1).getReg() == Reg) {
3606 unsigned Shift = AArch64_AM::getShiftValue(MI.getOperand(3).getImm());
3607 int64_t Offset = MI.getOperand(2).getImm() << Shift;
3608 if (MI.getOpcode() == AArch64::SUBXri)
3609 Offset = -Offset;
3610 int64_t AbsPostOffset = std::abs(Offset - Size);
3611 const int64_t kMaxOffset =
3612 0xFFF; // Max encoding for unshifted ADDXri / SUBXri
3613 if (AbsPostOffset <= kMaxOffset && AbsPostOffset % 16 == 0) {
3614 *TotalOffset = Offset;
3615 return true;
3618 return false;
3621 void mergeMemRefs(const SmallVectorImpl<TagStoreInstr> &TSE,
3622 SmallVectorImpl<MachineMemOperand *> &MemRefs) {
3623 MemRefs.clear();
3624 for (auto &TS : TSE) {
3625 MachineInstr *MI = TS.MI;
3626 // An instruction without memory operands may access anything. Be
3627 // conservative and return an empty list.
3628 if (MI->memoperands_empty()) {
3629 MemRefs.clear();
3630 return;
3632 MemRefs.append(MI->memoperands_begin(), MI->memoperands_end());
3636 void TagStoreEdit::emitCode(MachineBasicBlock::iterator &InsertI,
3637 const AArch64FrameLowering *TFI,
3638 bool TryMergeSPUpdate) {
3639 if (TagStores.empty())
3640 return;
3641 TagStoreInstr &FirstTagStore = TagStores[0];
3642 TagStoreInstr &LastTagStore = TagStores[TagStores.size() - 1];
3643 Size = LastTagStore.Offset - FirstTagStore.Offset + LastTagStore.Size;
3644 DL = TagStores[0].MI->getDebugLoc();
3646 Register Reg;
3647 FrameRegOffset = TFI->resolveFrameOffsetReference(
3648 *MF, FirstTagStore.Offset, false /*isFixed*/, false /*isSVE*/, Reg,
3649 /*PreferFP=*/false, /*ForSimm=*/true);
3650 FrameReg = Reg;
3651 FrameRegUpdate = std::nullopt;
3653 mergeMemRefs(TagStores, CombinedMemRefs);
3655 LLVM_DEBUG(dbgs() << "Replacing adjacent STG instructions:\n";
3656 for (const auto &Instr
3657 : TagStores) { dbgs() << " " << *Instr.MI; });
3659 // Size threshold where a loop becomes shorter than a linear sequence of
3660 // tagging instructions.
3661 const int kSetTagLoopThreshold = 176;
3662 if (Size < kSetTagLoopThreshold) {
3663 if (TagStores.size() < 2)
3664 return;
3665 emitUnrolled(InsertI);
3666 } else {
3667 MachineInstr *UpdateInstr = nullptr;
3668 int64_t TotalOffset = 0;
3669 if (TryMergeSPUpdate) {
3670 // See if we can merge base register update into the STGloop.
3671 // This is done in AArch64LoadStoreOptimizer for "normal" stores,
3672 // but STGloop is way too unusual for that, and also it only
3673 // realistically happens in function epilogue. Also, STGloop is expanded
3674 // before that pass.
3675 if (InsertI != MBB->end() &&
3676 canMergeRegUpdate(InsertI, FrameReg, FrameRegOffset.getFixed() + Size,
3677 &TotalOffset)) {
3678 UpdateInstr = &*InsertI++;
3679 LLVM_DEBUG(dbgs() << "Folding SP update into loop:\n "
3680 << *UpdateInstr);
3684 if (!UpdateInstr && TagStores.size() < 2)
3685 return;
3687 if (UpdateInstr) {
3688 FrameRegUpdate = TotalOffset;
3689 FrameRegUpdateFlags = UpdateInstr->getFlags();
3691 emitLoop(InsertI);
3692 if (UpdateInstr)
3693 UpdateInstr->eraseFromParent();
3696 for (auto &TS : TagStores)
3697 TS.MI->eraseFromParent();
3700 bool isMergeableStackTaggingInstruction(MachineInstr &MI, int64_t &Offset,
3701 int64_t &Size, bool &ZeroData) {
3702 MachineFunction &MF = *MI.getParent()->getParent();
3703 const MachineFrameInfo &MFI = MF.getFrameInfo();
3705 unsigned Opcode = MI.getOpcode();
3706 ZeroData = (Opcode == AArch64::STZGloop || Opcode == AArch64::STZGi ||
3707 Opcode == AArch64::STZ2Gi);
3709 if (Opcode == AArch64::STGloop || Opcode == AArch64::STZGloop) {
3710 if (!MI.getOperand(0).isDead() || !MI.getOperand(1).isDead())
3711 return false;
3712 if (!MI.getOperand(2).isImm() || !MI.getOperand(3).isFI())
3713 return false;
3714 Offset = MFI.getObjectOffset(MI.getOperand(3).getIndex());
3715 Size = MI.getOperand(2).getImm();
3716 return true;
3719 if (Opcode == AArch64::STGi || Opcode == AArch64::STZGi)
3720 Size = 16;
3721 else if (Opcode == AArch64::ST2Gi || Opcode == AArch64::STZ2Gi)
3722 Size = 32;
3723 else
3724 return false;
3726 if (MI.getOperand(0).getReg() != AArch64::SP || !MI.getOperand(1).isFI())
3727 return false;
3729 Offset = MFI.getObjectOffset(MI.getOperand(1).getIndex()) +
3730 16 * MI.getOperand(2).getImm();
3731 return true;
3734 // Detect a run of memory tagging instructions for adjacent stack frame slots,
3735 // and replace them with a shorter instruction sequence:
3736 // * replace STG + STG with ST2G
3737 // * replace STGloop + STGloop with STGloop
3738 // This code needs to run when stack slot offsets are already known, but before
3739 // FrameIndex operands in STG instructions are eliminated.
3740 MachineBasicBlock::iterator tryMergeAdjacentSTG(MachineBasicBlock::iterator II,
3741 const AArch64FrameLowering *TFI,
3742 RegScavenger *RS) {
3743 bool FirstZeroData;
3744 int64_t Size, Offset;
3745 MachineInstr &MI = *II;
3746 MachineBasicBlock *MBB = MI.getParent();
3747 MachineBasicBlock::iterator NextI = ++II;
3748 if (&MI == &MBB->instr_back())
3749 return II;
3750 if (!isMergeableStackTaggingInstruction(MI, Offset, Size, FirstZeroData))
3751 return II;
3753 SmallVector<TagStoreInstr, 4> Instrs;
3754 Instrs.emplace_back(&MI, Offset, Size);
3756 constexpr int kScanLimit = 10;
3757 int Count = 0;
3758 for (MachineBasicBlock::iterator E = MBB->end();
3759 NextI != E && Count < kScanLimit; ++NextI) {
3760 MachineInstr &MI = *NextI;
3761 bool ZeroData;
3762 int64_t Size, Offset;
3763 // Collect instructions that update memory tags with a FrameIndex operand
3764 // and (when applicable) constant size, and whose output registers are dead
3765 // (the latter is almost always the case in practice). Since these
3766 // instructions effectively have no inputs or outputs, we are free to skip
3767 // any non-aliasing instructions in between without tracking used registers.
3768 if (isMergeableStackTaggingInstruction(MI, Offset, Size, ZeroData)) {
3769 if (ZeroData != FirstZeroData)
3770 break;
3771 Instrs.emplace_back(&MI, Offset, Size);
3772 continue;
3775 // Only count non-transient, non-tagging instructions toward the scan
3776 // limit.
3777 if (!MI.isTransient())
3778 ++Count;
3780 // Just in case, stop before the epilogue code starts.
3781 if (MI.getFlag(MachineInstr::FrameSetup) ||
3782 MI.getFlag(MachineInstr::FrameDestroy))
3783 break;
3785 // Reject anything that may alias the collected instructions.
3786 if (MI.mayLoadOrStore() || MI.hasUnmodeledSideEffects())
3787 break;
3790 // New code will be inserted after the last tagging instruction we've found.
3791 MachineBasicBlock::iterator InsertI = Instrs.back().MI;
3792 InsertI++;
3794 llvm::stable_sort(Instrs,
3795 [](const TagStoreInstr &Left, const TagStoreInstr &Right) {
3796 return Left.Offset < Right.Offset;
3799 // Make sure that we don't have any overlapping stores.
3800 int64_t CurOffset = Instrs[0].Offset;
3801 for (auto &Instr : Instrs) {
3802 if (CurOffset > Instr.Offset)
3803 return NextI;
3804 CurOffset = Instr.Offset + Instr.Size;
3807 // Find contiguous runs of tagged memory and emit shorter instruction
3808 // sequencies for them when possible.
3809 TagStoreEdit TSE(MBB, FirstZeroData);
3810 std::optional<int64_t> EndOffset;
3811 for (auto &Instr : Instrs) {
3812 if (EndOffset && *EndOffset != Instr.Offset) {
3813 // Found a gap.
3814 TSE.emitCode(InsertI, TFI, /*TryMergeSPUpdate = */ false);
3815 TSE.clear();
3818 TSE.addInstruction(Instr);
3819 EndOffset = Instr.Offset + Instr.Size;
3822 const MachineFunction *MF = MBB->getParent();
3823 // Multiple FP/SP updates in a loop cannot be described by CFI instructions.
3824 TSE.emitCode(
3825 InsertI, TFI, /*TryMergeSPUpdate = */
3826 !MF->getInfo<AArch64FunctionInfo>()->needsAsyncDwarfUnwindInfo(*MF));
3828 return InsertI;
3830 } // namespace
3832 void AArch64FrameLowering::processFunctionBeforeFrameIndicesReplaced(
3833 MachineFunction &MF, RegScavenger *RS = nullptr) const {
3834 if (StackTaggingMergeSetTag)
3835 for (auto &BB : MF)
3836 for (MachineBasicBlock::iterator II = BB.begin(); II != BB.end();)
3837 II = tryMergeAdjacentSTG(II, this, RS);
3840 /// For Win64 AArch64 EH, the offset to the Unwind object is from the SP
3841 /// before the update. This is easily retrieved as it is exactly the offset
3842 /// that is set in processFunctionBeforeFrameFinalized.
3843 StackOffset AArch64FrameLowering::getFrameIndexReferencePreferSP(
3844 const MachineFunction &MF, int FI, Register &FrameReg,
3845 bool IgnoreSPUpdates) const {
3846 const MachineFrameInfo &MFI = MF.getFrameInfo();
3847 if (IgnoreSPUpdates) {
3848 LLVM_DEBUG(dbgs() << "Offset from the SP for " << FI << " is "
3849 << MFI.getObjectOffset(FI) << "\n");
3850 FrameReg = AArch64::SP;
3851 return StackOffset::getFixed(MFI.getObjectOffset(FI));
3854 // Go to common code if we cannot provide sp + offset.
3855 if (MFI.hasVarSizedObjects() ||
3856 MF.getInfo<AArch64FunctionInfo>()->getStackSizeSVE() ||
3857 MF.getSubtarget().getRegisterInfo()->hasStackRealignment(MF))
3858 return getFrameIndexReference(MF, FI, FrameReg);
3860 FrameReg = AArch64::SP;
3861 return getStackOffset(MF, MFI.getObjectOffset(FI));
3864 /// The parent frame offset (aka dispFrame) is only used on X86_64 to retrieve
3865 /// the parent's frame pointer
3866 unsigned AArch64FrameLowering::getWinEHParentFrameOffset(
3867 const MachineFunction &MF) const {
3868 return 0;
3871 /// Funclets only need to account for space for the callee saved registers,
3872 /// as the locals are accounted for in the parent's stack frame.
3873 unsigned AArch64FrameLowering::getWinEHFuncletFrameSize(
3874 const MachineFunction &MF) const {
3875 // This is the size of the pushed CSRs.
3876 unsigned CSSize =
3877 MF.getInfo<AArch64FunctionInfo>()->getCalleeSavedStackSize();
3878 // This is the amount of stack a funclet needs to allocate.
3879 return alignTo(CSSize + MF.getFrameInfo().getMaxCallFrameSize(),
3880 getStackAlign());
3883 namespace {
3884 struct FrameObject {
3885 bool IsValid = false;
3886 // Index of the object in MFI.
3887 int ObjectIndex = 0;
3888 // Group ID this object belongs to.
3889 int GroupIndex = -1;
3890 // This object should be placed first (closest to SP).
3891 bool ObjectFirst = false;
3892 // This object's group (which always contains the object with
3893 // ObjectFirst==true) should be placed first.
3894 bool GroupFirst = false;
3897 class GroupBuilder {
3898 SmallVector<int, 8> CurrentMembers;
3899 int NextGroupIndex = 0;
3900 std::vector<FrameObject> &Objects;
3902 public:
3903 GroupBuilder(std::vector<FrameObject> &Objects) : Objects(Objects) {}
3904 void AddMember(int Index) { CurrentMembers.push_back(Index); }
3905 void EndCurrentGroup() {
3906 if (CurrentMembers.size() > 1) {
3907 // Create a new group with the current member list. This might remove them
3908 // from their pre-existing groups. That's OK, dealing with overlapping
3909 // groups is too hard and unlikely to make a difference.
3910 LLVM_DEBUG(dbgs() << "group:");
3911 for (int Index : CurrentMembers) {
3912 Objects[Index].GroupIndex = NextGroupIndex;
3913 LLVM_DEBUG(dbgs() << " " << Index);
3915 LLVM_DEBUG(dbgs() << "\n");
3916 NextGroupIndex++;
3918 CurrentMembers.clear();
3922 bool FrameObjectCompare(const FrameObject &A, const FrameObject &B) {
3923 // Objects at a lower index are closer to FP; objects at a higher index are
3924 // closer to SP.
3926 // For consistency in our comparison, all invalid objects are placed
3927 // at the end. This also allows us to stop walking when we hit the
3928 // first invalid item after it's all sorted.
3930 // The "first" object goes first (closest to SP), followed by the members of
3931 // the "first" group.
3933 // The rest are sorted by the group index to keep the groups together.
3934 // Higher numbered groups are more likely to be around longer (i.e. untagged
3935 // in the function epilogue and not at some earlier point). Place them closer
3936 // to SP.
3938 // If all else equal, sort by the object index to keep the objects in the
3939 // original order.
3940 return std::make_tuple(!A.IsValid, A.ObjectFirst, A.GroupFirst, A.GroupIndex,
3941 A.ObjectIndex) <
3942 std::make_tuple(!B.IsValid, B.ObjectFirst, B.GroupFirst, B.GroupIndex,
3943 B.ObjectIndex);
3945 } // namespace
3947 void AArch64FrameLowering::orderFrameObjects(
3948 const MachineFunction &MF, SmallVectorImpl<int> &ObjectsToAllocate) const {
3949 if (!OrderFrameObjects || ObjectsToAllocate.empty())
3950 return;
3952 const MachineFrameInfo &MFI = MF.getFrameInfo();
3953 std::vector<FrameObject> FrameObjects(MFI.getObjectIndexEnd());
3954 for (auto &Obj : ObjectsToAllocate) {
3955 FrameObjects[Obj].IsValid = true;
3956 FrameObjects[Obj].ObjectIndex = Obj;
3959 // Identify stack slots that are tagged at the same time.
3960 GroupBuilder GB(FrameObjects);
3961 for (auto &MBB : MF) {
3962 for (auto &MI : MBB) {
3963 if (MI.isDebugInstr())
3964 continue;
3965 int OpIndex;
3966 switch (MI.getOpcode()) {
3967 case AArch64::STGloop:
3968 case AArch64::STZGloop:
3969 OpIndex = 3;
3970 break;
3971 case AArch64::STGi:
3972 case AArch64::STZGi:
3973 case AArch64::ST2Gi:
3974 case AArch64::STZ2Gi:
3975 OpIndex = 1;
3976 break;
3977 default:
3978 OpIndex = -1;
3981 int TaggedFI = -1;
3982 if (OpIndex >= 0) {
3983 const MachineOperand &MO = MI.getOperand(OpIndex);
3984 if (MO.isFI()) {
3985 int FI = MO.getIndex();
3986 if (FI >= 0 && FI < MFI.getObjectIndexEnd() &&
3987 FrameObjects[FI].IsValid)
3988 TaggedFI = FI;
3992 // If this is a stack tagging instruction for a slot that is not part of a
3993 // group yet, either start a new group or add it to the current one.
3994 if (TaggedFI >= 0)
3995 GB.AddMember(TaggedFI);
3996 else
3997 GB.EndCurrentGroup();
3999 // Groups should never span multiple basic blocks.
4000 GB.EndCurrentGroup();
4003 // If the function's tagged base pointer is pinned to a stack slot, we want to
4004 // put that slot first when possible. This will likely place it at SP + 0,
4005 // and save one instruction when generating the base pointer because IRG does
4006 // not allow an immediate offset.
4007 const AArch64FunctionInfo &AFI = *MF.getInfo<AArch64FunctionInfo>();
4008 std::optional<int> TBPI = AFI.getTaggedBasePointerIndex();
4009 if (TBPI) {
4010 FrameObjects[*TBPI].ObjectFirst = true;
4011 FrameObjects[*TBPI].GroupFirst = true;
4012 int FirstGroupIndex = FrameObjects[*TBPI].GroupIndex;
4013 if (FirstGroupIndex >= 0)
4014 for (FrameObject &Object : FrameObjects)
4015 if (Object.GroupIndex == FirstGroupIndex)
4016 Object.GroupFirst = true;
4019 llvm::stable_sort(FrameObjects, FrameObjectCompare);
4021 int i = 0;
4022 for (auto &Obj : FrameObjects) {
4023 // All invalid items are sorted at the end, so it's safe to stop.
4024 if (!Obj.IsValid)
4025 break;
4026 ObjectsToAllocate[i++] = Obj.ObjectIndex;
4029 LLVM_DEBUG(dbgs() << "Final frame order:\n"; for (auto &Obj
4030 : FrameObjects) {
4031 if (!Obj.IsValid)
4032 break;
4033 dbgs() << " " << Obj.ObjectIndex << ": group " << Obj.GroupIndex;
4034 if (Obj.ObjectFirst)
4035 dbgs() << ", first";
4036 if (Obj.GroupFirst)
4037 dbgs() << ", group-first";
4038 dbgs() << "\n";