[rtsan] Remove mkfifoat interceptor (#116997)
[llvm-project.git] / mlir / lib / Conversion / NVGPUToNVVM / NVGPUToNVVM.cpp
blob34a6b1d506540dc9272569e0c6d88f166624c5e5
1 //===- NVGPUToNVVM.cpp - NVGPU to NVVM dialect conversion -----------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
9 #include "mlir/Conversion/NVGPUToNVVM/NVGPUToNVVM.h"
11 #include "mlir/Conversion/GPUCommon/GPUCommonPass.h"
12 #include "mlir/Conversion/LLVMCommon/ConversionTarget.h"
13 #include "mlir/Conversion/LLVMCommon/Pattern.h"
14 #include "mlir/Conversion/LLVMCommon/VectorPattern.h"
15 #include "mlir/Dialect/Arith/IR/Arith.h"
16 #include "mlir/Dialect/GPU/IR/GPUDialect.h"
17 #include "mlir/Dialect/LLVMIR/LLVMDialect.h"
18 #include "mlir/Dialect/LLVMIR/LLVMTypes.h"
19 #include "mlir/Dialect/LLVMIR/NVVMDialect.h"
20 #include "mlir/Dialect/MemRef/IR/MemRef.h"
21 #include "mlir/Dialect/NVGPU/IR/NVGPUDialect.h"
22 #include "mlir/Dialect/SCF/Transforms/Patterns.h"
23 #include "mlir/IR/BuiltinTypes.h"
24 #include "mlir/IR/ImplicitLocOpBuilder.h"
25 #include "mlir/IR/PatternMatch.h"
26 #include "mlir/IR/TypeUtilities.h"
27 #include "mlir/IR/Value.h"
28 #include "mlir/Pass/Pass.h"
29 #include "llvm/Support/Debug.h"
30 #include "llvm/Support/ErrorHandling.h"
31 #include "llvm/Support/raw_ostream.h"
32 #include <optional>
34 #define DEBUG_TYPE "nvgpu-to-nvvm"
35 #define DBGS() (llvm::dbgs() << '[' << DEBUG_TYPE << "] ")
36 #define DBGSE() (llvm::dbgs())
38 namespace mlir {
39 #define GEN_PASS_DEF_CONVERTNVGPUTONVVMPASS
40 #include "mlir/Conversion/Passes.h.inc"
41 } // namespace mlir
43 using namespace mlir;
45 /// Number of bits that needs to be excluded when building matrix descriptor for
46 /// wgmma operations.
47 constexpr int exclude4LSB = 4;
49 /// GPU has 32 bit registers, this function truncates values when larger width
50 /// is not needed.
51 static Value truncToI32(ImplicitLocOpBuilder &b, Value value) {
52 Type type = value.getType();
53 assert(llvm::isa<IntegerType>(type) && "expected an integer Value");
54 if (type.getIntOrFloatBitWidth() <= 32)
55 return value;
56 return b.create<LLVM::TruncOp>(b.getI32Type(), value);
59 /// Returns the type for the intrinsic given the vectorResultType of the
60 /// `gpu.mma.sync` operation.
61 static Type inferIntrinsicResultType(Type vectorResultType) {
62 MLIRContext *ctx = vectorResultType.getContext();
63 auto a = cast<LLVM::LLVMArrayType>(vectorResultType);
64 auto f16x2Ty = LLVM::getFixedVectorType(Float16Type::get(ctx), 2);
65 auto i32Ty = IntegerType::get(ctx, 32);
66 auto i32x2Ty = LLVM::getFixedVectorType(i32Ty, 2);
67 Type f64Ty = Float64Type::get(ctx);
68 Type f64x2Ty = LLVM::getFixedVectorType(f64Ty, 2);
69 Type f32Ty = Float32Type::get(ctx);
70 Type f32x2Ty = LLVM::getFixedVectorType(f32Ty, 2);
71 if (a.getElementType() == f16x2Ty) {
72 return LLVM::LLVMStructType::getLiteral(
73 ctx, SmallVector<Type>(a.getNumElements(), f16x2Ty));
75 if (a.getElementType() == i32x2Ty) {
76 return LLVM::LLVMStructType::getLiteral(
77 ctx,
78 SmallVector<Type>(static_cast<size_t>(a.getNumElements()) * 2, i32Ty));
80 if (a.getElementType() == f64x2Ty) {
81 return LLVM::LLVMStructType::getLiteral(ctx, {f64Ty, f64Ty});
83 if (a.getElementType() == f32x2Ty) {
84 return LLVM::LLVMStructType::getLiteral(
85 ctx,
86 SmallVector<Type>(static_cast<size_t>(a.getNumElements()) * 2, f32Ty));
88 if (a.getElementType() == LLVM::getFixedVectorType(f32Ty, 1)) {
89 return LLVM::LLVMStructType::getLiteral(
90 ctx, SmallVector<Type>(static_cast<size_t>(a.getNumElements()), f32Ty));
92 return vectorResultType;
95 /// Convert the SSA result of the NVVM intrinsic `nvvm.mma.sync` (which is
96 /// always an LLVM struct) into a fragment that is compatible with the vector
97 /// type of this operation. This involves extracting elements from the struct
98 /// and inserting them into an LLVM array. These extra data-movement
99 /// operations should be canonicalized away by the LLVM backend.
100 static Value convertIntrinsicResult(Location loc, Type intrinsicResultType,
101 Type resultType, Value intrinsicResult,
102 RewriterBase &rewriter) {
103 MLIRContext *ctx = rewriter.getContext();
104 auto structType = dyn_cast<LLVM::LLVMStructType>(intrinsicResultType);
105 auto arrayType = dyn_cast<LLVM::LLVMArrayType>(resultType);
106 Type i32Ty = rewriter.getI32Type();
107 Type f32Ty = rewriter.getF32Type();
108 Type f64Ty = rewriter.getF64Type();
109 Type f16x2Ty = LLVM::getFixedVectorType(rewriter.getF16Type(), 2);
110 Type i32x2Ty = LLVM::getFixedVectorType(i32Ty, 2);
111 Type f64x2Ty = LLVM::getFixedVectorType(f64Ty, 2);
112 Type f32x2Ty = LLVM::getFixedVectorType(f32Ty, 2);
113 Type f32x1Ty = LLVM::getFixedVectorType(f32Ty, 1);
115 auto makeConst = [&](int32_t index) -> Value {
116 return rewriter.create<LLVM::ConstantOp>(loc, IntegerType::get(ctx, 32),
117 rewriter.getI32IntegerAttr(index));
120 if (arrayType) {
121 SmallVector<Value, 4> elements;
123 // The intrinsic returns 32-bit wide elements in a form which can be
124 // directly bitcasted and inserted into the result vector.
125 if (arrayType.getElementType() == f16x2Ty ||
126 arrayType.getElementType() == f32x1Ty) {
127 for (unsigned i = 0; i < structType.getBody().size(); i++) {
128 Value el =
129 rewriter.create<LLVM::ExtractValueOp>(loc, intrinsicResult, i);
130 el = rewriter.createOrFold<LLVM::BitcastOp>(
131 loc, arrayType.getElementType(), el);
132 elements.push_back(el);
136 // The intrinsic returns i32, f64, and f32 values as individual scalars,
137 // even when the result is notionally a 64-bit wide element (e.g. f32x2). We
138 // need to extract them from the struct and pack them into the 64-bit wide
139 // rows of the vector result.
140 if (arrayType.getElementType() == i32x2Ty ||
141 arrayType.getElementType() == f64x2Ty ||
142 arrayType.getElementType() == f32x2Ty) {
144 for (unsigned i = 0, e = structType.getBody().size() / 2; i < e; i++) {
145 Value vec =
146 rewriter.create<LLVM::UndefOp>(loc, arrayType.getElementType());
147 Value x1 =
148 rewriter.create<LLVM::ExtractValueOp>(loc, intrinsicResult, i * 2);
149 Value x2 = rewriter.create<LLVM::ExtractValueOp>(loc, intrinsicResult,
150 i * 2 + 1);
151 vec = rewriter.create<LLVM::InsertElementOp>(loc, vec.getType(), vec,
152 x1, makeConst(0));
153 vec = rewriter.create<LLVM::InsertElementOp>(loc, vec.getType(), vec,
154 x2, makeConst(1));
155 elements.push_back(vec);
159 // Create the final vectorized result.
160 Value result = rewriter.create<LLVM::UndefOp>(loc, arrayType);
161 for (const auto &el : llvm::enumerate(elements)) {
162 result = rewriter.create<LLVM::InsertValueOp>(loc, result, el.value(),
163 el.index());
165 return result;
168 return intrinsicResult;
171 /// The `gpu.mma.sync` converter below expects matrix fragment operands to be
172 /// given as 2D `vectors` where the rows are 32b or 64b wide. The
173 /// `nvvm.mma.sync` op expects these argments to be a given in a long list of
174 /// scalars of certain types. This function helps unpack the `vector` arguments
175 /// and cast them to the types expected by `nvvm.mma.sync`.
176 static SmallVector<Value> unpackOperandVector(ImplicitLocOpBuilder &b,
177 Value operand,
178 NVVM::MMATypes operandPtxType) {
179 SmallVector<Value> result;
180 Type i32Ty = b.getI32Type();
181 Type f64Ty = b.getF64Type();
182 Type f32Ty = b.getF32Type();
183 Type i64Ty = b.getI64Type();
184 Type i8x4Ty = LLVM::getFixedVectorType(b.getI8Type(), 4);
185 Type i4x8Ty = LLVM::getFixedVectorType(b.getIntegerType(4), 8);
186 Type f32x1Ty = LLVM::getFixedVectorType(f32Ty, 1);
187 auto arrayTy = cast<LLVM::LLVMArrayType>(operand.getType());
189 for (unsigned i = 0, e = arrayTy.getNumElements(); i < e; ++i) {
190 Value toUse = b.create<LLVM::ExtractValueOp>(operand, i);
192 // For 4xi8 vectors, the intrinsic expects these to be provided as i32
193 // scalar types.
194 if (arrayTy.getElementType() == i8x4Ty ||
195 arrayTy.getElementType() == i4x8Ty ||
196 (arrayTy.getElementType() == f32x1Ty &&
197 operandPtxType == NVVM::MMATypes::tf32)) {
198 result.push_back(b.create<LLVM::BitcastOp>(i32Ty, toUse));
199 continue;
202 // For some element types (i32, f32, f64), we need to unpack the inner
203 // vector/array type as well because the intrinsic expects individual
204 // scalars to be provided.
205 VectorType innerArrayTy = dyn_cast<VectorType>(arrayTy.getElementType());
206 if (innerArrayTy && (innerArrayTy.getElementType() == i32Ty ||
207 innerArrayTy.getElementType() == f64Ty ||
208 innerArrayTy.getElementType() == f32Ty)) {
209 for (unsigned idx = 0, innerSize = innerArrayTy.getNumElements();
210 idx < innerSize; idx++) {
211 result.push_back(b.create<LLVM::ExtractElementOp>(
212 toUse,
213 b.create<LLVM::ConstantOp>(i64Ty, b.getI64IntegerAttr(idx))));
215 continue;
217 result.push_back(toUse);
219 return result;
222 /// Returns whether mbarrier object has shared memory address space.
223 static bool isMbarrierShared(nvgpu::MBarrierGroupType barrierType) {
224 return (mlir::nvgpu::NVGPUDialect::isSharedMemoryAddressSpace(
225 barrierType.getMemorySpace()));
228 /// Returns the memory space attribute of the mbarrier object.
229 Attribute nvgpu::getMbarrierMemorySpace(MLIRContext *context,
230 nvgpu::MBarrierGroupType barrierType) {
231 Attribute memorySpace = {};
232 if (isMbarrierShared(barrierType)) {
233 memorySpace =
234 IntegerAttr::get(IntegerType::get(context, 64),
235 nvgpu::NVGPUDialect::kSharedMemoryAddressSpace);
237 return memorySpace;
240 /// Returns memref type of the mbarrier object. The type is defined in the
241 /// MBarrierGroupType.
242 MemRefType nvgpu::getMBarrierMemrefType(MLIRContext *context,
243 nvgpu::MBarrierGroupType barrierType) {
244 Attribute memorySpace = nvgpu::getMbarrierMemorySpace(context, barrierType);
245 MemRefLayoutAttrInterface layout;
246 return MemRefType::get({barrierType.getNumBarriers()},
247 IntegerType::get(context, 64), layout, memorySpace);
250 namespace {
252 struct MmaLdMatrixOpToNVVM : public ConvertOpToLLVMPattern<nvgpu::LdMatrixOp> {
253 using ConvertOpToLLVMPattern<nvgpu::LdMatrixOp>::ConvertOpToLLVMPattern;
255 LogicalResult
256 matchAndRewrite(nvgpu::LdMatrixOp op, OpAdaptor adaptor,
257 ConversionPatternRewriter &rewriter) const override {
258 MLIRContext *ctx = getContext();
259 ImplicitLocOpBuilder b(op.getLoc(), rewriter);
261 // The result type of ldmatrix will always be a struct of 32bit integer
262 // registers if more than one 32bit value is returned. Otherwise, the result
263 // is a single i32. The result type of the GPU operation is always a vector
264 // of shape (NumRegisters, VectorRegister) where VectorRegister is the
265 // vector type of the result and always 32 bits long. We bitcast the result
266 // of the NVVM::LdMatrix to this vector type.
267 auto vectorResultType = dyn_cast<VectorType>(op->getResultTypes()[0]);
268 if (!vectorResultType) {
269 return failure();
271 Type innerVectorType = LLVM::getFixedVectorType(
272 vectorResultType.getElementType(), vectorResultType.getDimSize(1));
274 int64_t num32BitRegs = vectorResultType.getDimSize(0);
276 Type ldMatrixResultType;
277 if (num32BitRegs > 1) {
278 ldMatrixResultType = LLVM::LLVMStructType::getLiteral(
279 ctx, SmallVector<Type>(num32BitRegs, rewriter.getI32Type()));
280 } else {
281 ldMatrixResultType = rewriter.getI32Type();
284 auto srcMemrefType = cast<MemRefType>(op.getSrcMemref().getType());
285 Value srcPtr =
286 getStridedElementPtr(b.getLoc(), srcMemrefType, adaptor.getSrcMemref(),
287 adaptor.getIndices(), rewriter);
288 Value ldMatrixResult = b.create<NVVM::LdMatrixOp>(
289 ldMatrixResultType, srcPtr,
290 /*num=*/op.getNumTiles(),
291 /*layout=*/op.getTranspose() ? NVVM::MMALayout::col
292 : NVVM::MMALayout::row);
294 // The ldmatrix operation returns either a single i32 value or a struct of
295 // i32 values. Here we unpack those values and cast them back to their
296 // actual vector type (still of width 32b) and repack them into a result
297 // struct.
298 Type finalResultType = typeConverter->convertType(vectorResultType);
299 Value result = b.create<LLVM::UndefOp>(finalResultType);
300 for (int64_t i = 0, e = vectorResultType.getDimSize(0); i < e; i++) {
301 Value i32Register =
302 num32BitRegs > 1 ? b.create<LLVM::ExtractValueOp>(ldMatrixResult, i)
303 : ldMatrixResult;
304 Value casted = b.create<LLVM::BitcastOp>(innerVectorType, i32Register);
305 result = b.create<LLVM::InsertValueOp>(result, casted, i);
308 rewriter.replaceOp(op, result);
309 return success();
313 /// Convert the given type into the corresponding PTX type (NVVM::MMATypes
314 /// enum).
315 static FailureOr<NVVM::MMATypes> getNvvmMmaType(Type t) {
316 Type elType = getElementTypeOrSelf(t);
317 if (elType.isInteger(8))
318 return NVVM::MMATypes::s8;
319 if (elType.isInteger(4))
320 return NVVM::MMATypes::s4;
321 if (elType.isF16())
322 return NVVM::MMATypes::f16;
323 if (elType.isF64())
324 return NVVM::MMATypes::f64;
325 if (elType.isF32())
326 return NVVM::MMATypes::tf32;
327 return failure();
330 struct MmaSyncOptoNVVM : public ConvertOpToLLVMPattern<nvgpu::MmaSyncOp> {
331 using ConvertOpToLLVMPattern<nvgpu::MmaSyncOp>::ConvertOpToLLVMPattern;
333 LogicalResult
334 matchAndRewrite(nvgpu::MmaSyncOp op, OpAdaptor adaptor,
335 ConversionPatternRewriter &rewriter) const override {
336 ImplicitLocOpBuilder b(op.getLoc(), rewriter);
337 // Get the shapes of the MMAMatrix type being used. The shapes will
338 // choose which intrinsic this op will be lowered to.
339 VectorType aType = op.getMatrixA().getType();
340 VectorType bType = op.getMatrixA().getType();
341 VectorType cType = op.getMatrixC().getType();
343 std::array<int64_t, 3> gemmShape = op.getMmaShapeAsArray();
345 // Tensor Cores (mma.sync) on F32 works only with TensorFloat32 (TF32).
346 bool tf32Enabled = op->hasAttr(op.getTf32EnabledAttrName());
347 if (aType.getElementType().isF32() && !tf32Enabled)
348 return failure();
350 FailureOr<NVVM::MMATypes> ptxTypeA = getNvvmMmaType(aType);
351 if (failed(ptxTypeA))
352 return op->emitOpError("failed to deduce operand PTX types");
353 FailureOr<NVVM::MMATypes> ptxTypeB = getNvvmMmaType(bType);
354 if (failed(ptxTypeB))
355 return op->emitOpError("failed to deduce operand PTX types");
356 std::optional<NVVM::MMATypes> ptxTypeC =
357 NVVM::MmaOp::inferOperandMMAType(cType.getElementType(),
358 /*isAccumulator=*/true);
359 if (!ptxTypeC)
360 return op->emitError(
361 "could not infer the PTX type for the accumulator/result");
363 // TODO: add an attribute to the op to customize this behavior.
364 std::optional<NVVM::MMAIntOverflow> overflow(std::nullopt);
365 if (isa<IntegerType>(aType.getElementType()))
366 overflow = NVVM::MMAIntOverflow::satfinite;
368 SmallVector<Value> matA =
369 unpackOperandVector(b, adaptor.getMatrixA(), *ptxTypeA);
370 SmallVector<Value> matB =
371 unpackOperandVector(b, adaptor.getMatrixB(), *ptxTypeB);
372 SmallVector<Value> matC =
373 unpackOperandVector(b, adaptor.getMatrixC(), *ptxTypeC);
375 Type desiredRetTy = typeConverter->convertType(op->getResultTypes()[0]);
376 Type intrinsicResTy = inferIntrinsicResultType(
377 typeConverter->convertType(op->getResultTypes()[0]));
378 Value intrinsicResult = b.create<NVVM::MmaOp>(
379 intrinsicResTy, matA, matB, matC,
380 /*shape=*/gemmShape,
381 /*b1Op=*/std::nullopt,
382 /*intOverflow=*/overflow,
383 /*multiplicandPtxTypes=*/
384 std::array<NVVM::MMATypes, 2>{*ptxTypeA, *ptxTypeB},
385 /*multiplicandLayouts=*/
386 std::array<NVVM::MMALayout, 2>{NVVM::MMALayout::row,
387 NVVM::MMALayout::col});
388 rewriter.replaceOp(op, convertIntrinsicResult(op.getLoc(), intrinsicResTy,
389 desiredRetTy, intrinsicResult,
390 rewriter));
391 return success();
395 struct ConvertNVGPUToNVVMPass
396 : public impl::ConvertNVGPUToNVVMPassBase<ConvertNVGPUToNVVMPass> {
397 using Base::Base;
399 void getDependentDialects(DialectRegistry &registry) const override {
400 registry.insert<memref::MemRefDialect, LLVM::LLVMDialect, NVVM::NVVMDialect,
401 arith::ArithDialect>();
404 void runOnOperation() override {
405 LowerToLLVMOptions options(&getContext());
406 RewritePatternSet patterns(&getContext());
407 LLVMTypeConverter converter(&getContext(), options);
408 IRRewriter rewriter(&getContext());
409 populateGpuMemorySpaceAttributeConversions(
410 converter, [](gpu::AddressSpace space) -> unsigned {
411 switch (space) {
412 case gpu::AddressSpace::Global:
413 return static_cast<unsigned>(
414 NVVM::NVVMMemorySpace::kGlobalMemorySpace);
415 case gpu::AddressSpace::Workgroup:
416 return static_cast<unsigned>(
417 NVVM::NVVMMemorySpace::kSharedMemorySpace);
418 case gpu::AddressSpace::Private:
419 return 0;
421 llvm_unreachable("unknown address space enum value");
422 return 0;
424 /// device-side async tokens cannot be materialized in nvvm. We just
425 /// convert them to a dummy i32 type in order to easily drop them during
426 /// conversion.
427 converter.addConversion([&](nvgpu::DeviceAsyncTokenType type) -> Type {
428 return converter.convertType(IntegerType::get(type.getContext(), 32));
430 converter.addConversion([&](nvgpu::WarpgroupAccumulatorType type) -> Type {
431 Type elemType = type.getFragmented().getElementType();
432 int64_t sizeM = type.getFragmented().getDimSize(0);
433 int64_t sizeN = type.getFragmented().getDimSize(1);
435 unsigned numMembers;
436 if (elemType.isF32() || elemType.isInteger(32))
437 numMembers = sizeN / 2;
438 else if (elemType.isF16())
439 numMembers = sizeN / 4;
440 else
441 llvm_unreachable("unsupported type for warpgroup accumulator");
443 SmallVector<Type> innerStructBody;
444 for (unsigned i = 0; i < numMembers; i++)
445 innerStructBody.push_back(elemType);
446 auto innerStructType =
447 LLVM::LLVMStructType::getLiteral(type.getContext(), innerStructBody);
449 SmallVector<Type> structBody;
450 for (int i = 0; i < sizeM; i += kWgmmaSizeM)
451 structBody.push_back(innerStructType);
453 auto convertedType =
454 LLVM::LLVMStructType::getLiteral(type.getContext(), structBody);
455 return converter.convertType(convertedType);
457 converter.addConversion([&](nvgpu::MBarrierTokenType type) -> Type {
458 return converter.convertType(IntegerType::get(type.getContext(), 64));
460 converter.addConversion(
461 [&](nvgpu::WarpgroupMatrixDescriptorType type) -> Type {
462 return converter.convertType(IntegerType::get(type.getContext(), 64));
464 converter.addConversion([&](nvgpu::MBarrierGroupType type) -> Type {
465 return converter.convertType(
466 nvgpu::getMBarrierMemrefType(rewriter.getContext(), type));
468 converter.addConversion([&](nvgpu::TensorMapDescriptorType type) -> Type {
469 return LLVM::LLVMPointerType::get(type.getContext());
471 populateNVGPUToNVVMConversionPatterns(converter, patterns);
472 LLVMConversionTarget target(getContext());
473 target.addLegalDialect<::mlir::LLVM::LLVMDialect>();
474 target.addLegalDialect<::mlir::arith::ArithDialect>();
475 target.addLegalDialect<::mlir::memref::MemRefDialect>();
476 target.addLegalDialect<::mlir::NVVM::NVVMDialect>();
477 mlir::scf::populateSCFStructuralTypeConversionsAndLegality(
478 converter, patterns, target);
479 if (failed(applyPartialConversion(getOperation(), target,
480 std::move(patterns))))
481 signalPassFailure();
485 /// Returns the constraints for the sparse MMA inline assembly instruction.
486 static std::string buildMmaSparseAsmConstraintString(unsigned matASize,
487 unsigned matBSize,
488 unsigned matCSize) {
489 std::string str;
490 llvm::raw_string_ostream ss(str);
491 for (unsigned i = 0; i < matCSize; i++)
492 ss << "=r,";
493 for (unsigned i = 0; i < matASize + matBSize + matCSize; i++)
494 ss << "r,";
495 // The final operand is for the sparsity metadata.
496 // The sparsity selector appears as direct literal.
497 ss << "r";
498 return str;
501 /// Returns the string for the `mma.sp.sync` instruction that corresponds to
502 /// the given parameters. Note that this function doesn't do any validation,
503 /// it's expected that the provided parameters correspond to a valid
504 /// instruction.
505 static std::string buildMmaSparseAsmString(
506 const std::array<int64_t, 3> &shape, unsigned matASize, unsigned matBSize,
507 unsigned matCSize, NVVM::MMATypes ptxTypeA, NVVM::MMATypes ptxTypeB,
508 NVVM::MMATypes ptxTypeC, NVVM::MMATypes ptxTypeD,
509 std::optional<NVVM::MMAIntOverflow> overflow, unsigned metaDataSelector) {
510 auto ptxTypeStr = [](NVVM::MMATypes ptxType) {
511 return NVVM::stringifyMMATypes(ptxType);
514 std::string asmStr;
515 llvm::raw_string_ostream ss(asmStr);
516 ss << "mma.sp.sync.aligned.m" << shape[0] << "n" << shape[1] << "k"
517 << shape[2] << ".row.col.";
519 if (overflow)
520 ss << NVVM::stringifyMMAIntOverflow(*overflow) << ".";
522 ss << ptxTypeStr(ptxTypeD) << "." << ptxTypeStr(ptxTypeA) << "."
523 << ptxTypeStr(ptxTypeB) << "." << ptxTypeStr(ptxTypeC) << " ";
524 unsigned asmArgIdx = 0;
526 // The operand string is structured into sections `{matC elements...},
527 // {matA elements...}, {matB elements...}, {matC elements}`.
528 for (const auto arrSize : {matCSize, matASize, matBSize, matCSize}) {
529 ss << "{";
530 for (unsigned i = 0; i < arrSize; i++)
531 ss << "$" << asmArgIdx++ << (i < arrSize - 1 ? "," : "");
532 ss << "},";
534 ss << "$" << asmArgIdx++ << ",";
535 assert(metaDataSelector <= 1);
536 ss << "0x" << metaDataSelector << ";";
537 return asmStr;
540 /// Builds an inline assembly operation corresponding to the specified MMA
541 /// sparse sync operation.
542 static FailureOr<LLVM::InlineAsmOp> emitMmaSparseSyncOpAsm(
543 ImplicitLocOpBuilder &b, NVVM::MMATypes ptxTypeA, NVVM::MMATypes ptxTypeB,
544 NVVM::MMATypes ptxTypeC, NVVM::MMATypes ptxTypeD,
545 std::optional<NVVM::MMAIntOverflow> overflow, ArrayRef<Value> unpackedAData,
546 ArrayRef<Value> unpackedB, ArrayRef<Value> unpackedC, Value indexData,
547 int64_t metadataSelector, const std::array<int64_t, 3> &shape,
548 Type intrinsicResultType) {
549 auto asmDialectAttr =
550 LLVM::AsmDialectAttr::get(b.getContext(), LLVM::AsmDialect::AD_ATT);
552 const unsigned matASize = unpackedAData.size();
553 const unsigned matBSize = unpackedB.size();
554 const unsigned matCSize = unpackedC.size();
556 std::string asmStr = buildMmaSparseAsmString(
557 shape, matASize, matBSize, matCSize, ptxTypeA, ptxTypeB, ptxTypeC,
558 ptxTypeD, overflow, metadataSelector);
559 std::string constraintStr =
560 buildMmaSparseAsmConstraintString(matASize, matBSize, matCSize);
562 SmallVector<Value> asmVals;
563 asmVals.reserve(matASize + matBSize + matCSize + 1);
564 for (ArrayRef<Value> args : {unpackedAData, unpackedB, unpackedC})
565 llvm::append_range(asmVals, args);
566 asmVals.push_back(indexData);
568 return b.create<LLVM::InlineAsmOp>(
569 /*resultTypes=*/intrinsicResultType,
570 /*operands=*/asmVals,
571 /*asm_string=*/asmStr,
572 /*constraints=*/constraintStr,
573 /*has_side_effects=*/true,
574 /*is_align_stack=*/false,
575 /*asm_dialect=*/asmDialectAttr,
576 /*operand_attrs=*/ArrayAttr());
579 /// Lowers `nvgpu.mma.sp.sync` to inline assembly.
580 struct NVGPUMmaSparseSyncLowering
581 : public ConvertOpToLLVMPattern<nvgpu::MmaSparseSyncOp> {
582 using ConvertOpToLLVMPattern<nvgpu::MmaSparseSyncOp>::ConvertOpToLLVMPattern;
584 LogicalResult
585 matchAndRewrite(nvgpu::MmaSparseSyncOp op, OpAdaptor adaptor,
586 ConversionPatternRewriter &rewriter) const override {
587 ImplicitLocOpBuilder b(op.getLoc(), rewriter);
588 // Get the shapes of the MMAMatrix type being used. The shapes will
589 // choose which intrinsic this op will be lowered to.
590 VectorType aType = op.getMatrixA().getType();
591 VectorType bType = op.getMatrixB().getType();
592 VectorType cType = op.getMatrixC().getType();
594 FailureOr<NVVM::MMATypes> ptxTypeA = getNvvmMmaType(aType);
595 if (failed(ptxTypeA))
596 return op->emitOpError("failed to deduce operand PTX types");
597 FailureOr<NVVM::MMATypes> ptxTypeB = getNvvmMmaType(bType);
598 if (failed(ptxTypeB))
599 return op->emitOpError("failed to deduce operand PTX types");
600 std::optional<NVVM::MMATypes> ptxTypeC =
601 NVVM::MmaOp::inferOperandMMAType(cType.getElementType(),
602 /*isAccumulator=*/true);
603 if (!ptxTypeC)
604 return op->emitError(
605 "could not infer the PTX type for the accumulator/result");
607 // Same as `mma.sync`, F32 works only with TensorFloat32 (TF32).
608 bool tf32Enabled = op->hasAttr(op.getTf32EnabledAttrName());
609 if (aType.getElementType().isF32() && !tf32Enabled)
610 return failure();
612 // TODO: add an attribute to the op to customize this behavior.
613 std::optional<NVVM::MMAIntOverflow> overflow(std::nullopt);
614 if (isa<IntegerType>(aType.getElementType()))
615 overflow = NVVM::MMAIntOverflow::satfinite;
617 SmallVector<Value> matA =
618 unpackOperandVector(b, adaptor.getMatrixA(), *ptxTypeA);
619 SmallVector<Value> matB =
620 unpackOperandVector(b, adaptor.getMatrixB(), *ptxTypeB);
621 SmallVector<Value> matC =
622 unpackOperandVector(b, adaptor.getMatrixC(), *ptxTypeC);
624 Type desiredRetTy = typeConverter->convertType(op->getResultTypes()[0]);
625 Type intrinsicResTy = inferIntrinsicResultType(
626 typeConverter->convertType(op->getResultTypes()[0]));
628 // Bitcast the sparse metadata from vector<2xf16> to an i32.
629 Value sparseMetadata = adaptor.getSparseMetadata();
630 if (sparseMetadata.getType() !=
631 LLVM::getFixedVectorType(rewriter.getI16Type(), 2))
632 return op->emitOpError() << "Expected metadata type to be LLVM "
633 "VectorType of 2 i16 elements";
634 sparseMetadata =
635 b.create<LLVM::BitcastOp>(rewriter.getI32Type(), sparseMetadata);
637 FailureOr<LLVM::InlineAsmOp> intrinsicResult = emitMmaSparseSyncOpAsm(
638 b, *ptxTypeA, *ptxTypeB, *ptxTypeC, *ptxTypeC, overflow, matA, matB,
639 matC, sparseMetadata, op.getSparsitySelector(), op.getMmaShapeAsArray(),
640 intrinsicResTy);
641 if (failed(intrinsicResult))
642 return failure();
644 assert((*intrinsicResult).getNumResults() == 1 &&
645 "expected inline asm op returns a single LLVM struct type");
646 rewriter.replaceOp(
647 op, convertIntrinsicResult(op.getLoc(), intrinsicResTy, desiredRetTy,
648 (*intrinsicResult)->getResult(0), rewriter));
649 return success();
653 struct NVGPUAsyncCopyLowering
654 : public ConvertOpToLLVMPattern<nvgpu::DeviceAsyncCopyOp> {
655 using ConvertOpToLLVMPattern<
656 nvgpu::DeviceAsyncCopyOp>::ConvertOpToLLVMPattern;
658 LogicalResult
659 matchAndRewrite(nvgpu::DeviceAsyncCopyOp op, OpAdaptor adaptor,
660 ConversionPatternRewriter &rewriter) const override {
661 ImplicitLocOpBuilder b(op.getLoc(), rewriter);
662 Location loc = op.getLoc();
663 auto dstMemrefType = cast<MemRefType>(op.getDst().getType());
664 Value dstPtr =
665 getStridedElementPtr(b.getLoc(), dstMemrefType, adaptor.getDst(),
666 adaptor.getDstIndices(), rewriter);
667 FailureOr<unsigned> dstAddressSpace =
668 getTypeConverter()->getMemRefAddressSpace(dstMemrefType);
669 if (failed(dstAddressSpace))
670 return rewriter.notifyMatchFailure(
671 loc, "destination memref address space not convertible to integer");
673 auto srcMemrefType = cast<MemRefType>(op.getSrc().getType());
674 FailureOr<unsigned> srcAddressSpace =
675 getTypeConverter()->getMemRefAddressSpace(srcMemrefType);
676 if (failed(srcAddressSpace))
677 return rewriter.notifyMatchFailure(
678 loc, "source memref address space not convertible to integer");
680 Value scrPtr = getStridedElementPtr(loc, srcMemrefType, adaptor.getSrc(),
681 adaptor.getSrcIndices(), rewriter);
682 // Intrinsics takes a global pointer so we need an address space cast.
683 auto srcPointerGlobalType = LLVM::LLVMPointerType::get(
684 op->getContext(), NVVM::NVVMMemorySpace::kGlobalMemorySpace);
685 scrPtr = b.create<LLVM::AddrSpaceCastOp>(srcPointerGlobalType, scrPtr);
686 int64_t dstElements = adaptor.getDstElements().getZExtValue();
687 int64_t sizeInBytes =
688 (dstMemrefType.getElementTypeBitWidth() * dstElements) / 8;
689 // When the optional SrcElements argument is *not* present, the regular
690 // CpAsyncOp is generated. CopyAsyncOp reads bytes from source (global
691 // memory) to fill DstElements number of elements in the destination
692 // (shared memory).
693 Value srcBytes = adaptor.getSrcElements();
694 if (srcBytes) {
695 // When the optional SrcElements argument is present, the source (global
696 // memory) of CpAsyncOp is read only for SrcElements number of elements.
697 // The rest of the DstElements in the destination (shared memory) are
698 // filled with zeros.
699 Value c3I32 =
700 b.create<LLVM::ConstantOp>(b.getI32Type(), b.getI32IntegerAttr(3));
701 Value bitwidth = b.create<LLVM::ConstantOp>(
702 b.getI32Type(),
703 b.getI32IntegerAttr(srcMemrefType.getElementTypeBitWidth()));
704 Value srcElementsI32 = b.create<LLVM::TruncOp>(b.getI32Type(), srcBytes);
705 srcBytes = b.create<LLVM::LShrOp>(
706 b.create<LLVM::MulOp>(bitwidth, srcElementsI32), c3I32);
708 // Cache global (.cg) for 16 dst bytes, Cache all (.ca) for sizes other than
709 // 16 dst bytes.
710 NVVM::LoadCacheModifierKind cacheModifier =
711 (op.getBypassL1().value_or(false) && sizeInBytes == 16)
712 ? NVVM::LoadCacheModifierKind::CG
713 : NVVM::LoadCacheModifierKind::CA;
715 b.create<NVVM::CpAsyncOp>(
716 dstPtr, scrPtr, rewriter.getI32IntegerAttr(sizeInBytes),
717 NVVM::LoadCacheModifierKindAttr::get(op->getContext(), cacheModifier),
718 srcBytes);
720 // Drop the result token.
721 Value zero = b.create<LLVM::ConstantOp>(
722 IntegerType::get(op.getContext(), 32), rewriter.getI32IntegerAttr(0));
723 rewriter.replaceOp(op, zero);
724 return success();
728 struct NVGPUAsyncCreateGroupLowering
729 : public ConvertOpToLLVMPattern<nvgpu::DeviceAsyncCreateGroupOp> {
730 using ConvertOpToLLVMPattern<
731 nvgpu::DeviceAsyncCreateGroupOp>::ConvertOpToLLVMPattern;
733 LogicalResult
734 matchAndRewrite(nvgpu::DeviceAsyncCreateGroupOp op, OpAdaptor adaptor,
735 ConversionPatternRewriter &rewriter) const override {
736 rewriter.create<NVVM::CpAsyncCommitGroupOp>(op.getLoc());
737 // Drop the result token.
738 Value zero = rewriter.create<LLVM::ConstantOp>(
739 op->getLoc(), IntegerType::get(op.getContext(), 32),
740 rewriter.getI32IntegerAttr(0));
741 rewriter.replaceOp(op, zero);
742 return success();
746 struct NVGPUAsyncWaitLowering
747 : public ConvertOpToLLVMPattern<nvgpu::DeviceAsyncWaitOp> {
748 using ConvertOpToLLVMPattern<
749 nvgpu::DeviceAsyncWaitOp>::ConvertOpToLLVMPattern;
751 LogicalResult
752 matchAndRewrite(nvgpu::DeviceAsyncWaitOp op, OpAdaptor adaptor,
753 ConversionPatternRewriter &rewriter) const override {
754 // If numGroup is not present pick 0 as a conservative correct value.
755 int32_t numGroups = adaptor.getNumGroups().value_or(0);
756 rewriter.create<NVVM::CpAsyncWaitGroupOp>(op.getLoc(), numGroups);
757 rewriter.eraseOp(op);
758 return success();
762 /// Creates mbarrier object in shared memory
763 struct NVGPUMBarrierCreateLowering
764 : public ConvertOpToLLVMPattern<nvgpu::MBarrierCreateOp> {
765 using ConvertOpToLLVMPattern<nvgpu::MBarrierCreateOp>::ConvertOpToLLVMPattern;
767 template <typename moduleT>
768 memref::GlobalOp generateGlobalBarrier(ConversionPatternRewriter &rewriter,
769 Operation *funcOp, moduleT moduleOp,
770 MemRefType barrierType) const {
771 SymbolTable symbolTable(moduleOp);
772 OpBuilder::InsertionGuard guard(rewriter);
773 rewriter.setInsertionPoint(&moduleOp.front());
774 auto global = rewriter.create<memref::GlobalOp>(
775 funcOp->getLoc(), "__mbarrier",
776 /*sym_visibility=*/rewriter.getStringAttr("private"),
777 /*type=*/barrierType,
778 /*initial_value=*/ElementsAttr(),
779 /*constant=*/false,
780 /*alignment=*/rewriter.getI64IntegerAttr(8));
781 symbolTable.insert(global);
782 return global;
785 LogicalResult
786 matchAndRewrite(nvgpu::MBarrierCreateOp op, OpAdaptor adaptor,
787 ConversionPatternRewriter &rewriter) const override {
788 Operation *funcOp = op->getParentOp();
789 MemRefType barrierType = nvgpu::getMBarrierMemrefType(
790 rewriter.getContext(), op.getBarriers().getType());
792 memref::GlobalOp global;
793 if (auto moduleOp = funcOp->getParentOfType<gpu::GPUModuleOp>())
794 global = generateGlobalBarrier(rewriter, funcOp, moduleOp, barrierType);
795 else if (auto moduleOp = funcOp->getParentOfType<ModuleOp>())
796 global = generateGlobalBarrier(rewriter, funcOp, moduleOp, barrierType);
798 rewriter.setInsertionPoint(op);
799 rewriter.replaceOpWithNewOp<memref::GetGlobalOp>(op, barrierType,
800 global.getName());
801 return success();
805 /// Base class for lowering mbarrier operations to nvvm intrinsics.
806 template <typename SourceOp>
807 struct MBarrierBasePattern : public ConvertOpToLLVMPattern<SourceOp> {
808 public:
809 using ConvertOpToLLVMPattern<SourceOp>::ConvertOpToLLVMPattern;
810 /// Returns the base pointer of the mbarrier object.
811 Value getMbarrierPtr(ImplicitLocOpBuilder &b,
812 nvgpu::MBarrierGroupType mbarType, Value memrefDesc,
813 Value mbarId,
814 ConversionPatternRewriter &rewriter) const {
815 MemRefType mbarrierMemrefType =
816 nvgpu::getMBarrierMemrefType(rewriter.getContext(), mbarType);
817 return ConvertToLLVMPattern::getStridedElementPtr(
818 b.getLoc(), mbarrierMemrefType, memrefDesc, {mbarId}, rewriter);
822 /// Lowers `nvgpu.mbarrier.init` to `nvvm.mbarrier.init`
823 struct NVGPUMBarrierInitLowering
824 : public MBarrierBasePattern<nvgpu::MBarrierInitOp> {
825 using MBarrierBasePattern<nvgpu::MBarrierInitOp>::MBarrierBasePattern;
827 LogicalResult
828 matchAndRewrite(nvgpu::MBarrierInitOp op, OpAdaptor adaptor,
829 ConversionPatternRewriter &rewriter) const override {
830 ImplicitLocOpBuilder b(op->getLoc(), rewriter);
831 nvgpu::MBarrierGroupType mbarrierType = op.getBarriers().getType();
832 rewriter.setInsertionPoint(op);
833 Value barrier = getMbarrierPtr(b, mbarrierType, adaptor.getBarriers(),
834 adaptor.getMbarId(), rewriter);
835 Value count = truncToI32(b, adaptor.getCount());
836 if (isMbarrierShared(mbarrierType)) {
837 rewriter.replaceOpWithNewOp<NVVM::MBarrierInitSharedOp>(
838 op, barrier, count, adaptor.getPredicate());
839 } else {
840 rewriter.replaceOpWithNewOp<NVVM::MBarrierInitOp>(op, barrier, count,
841 adaptor.getPredicate());
843 return success();
847 /// Lowers `nvgpu.mbarrier.arrive` to `nvvm.mbarrier.arrive`
848 struct NVGPUMBarrierArriveLowering
849 : public MBarrierBasePattern<nvgpu::MBarrierArriveOp> {
850 using MBarrierBasePattern<nvgpu::MBarrierArriveOp>::MBarrierBasePattern;
851 LogicalResult
852 matchAndRewrite(nvgpu::MBarrierArriveOp op, OpAdaptor adaptor,
853 ConversionPatternRewriter &rewriter) const override {
854 ImplicitLocOpBuilder b(op->getLoc(), rewriter);
855 Value barrier =
856 getMbarrierPtr(b, op.getBarriers().getType(), adaptor.getBarriers(),
857 adaptor.getMbarId(), rewriter);
858 Type tokenType = getTypeConverter()->convertType(
859 nvgpu::MBarrierTokenType::get(op->getContext()));
860 if (isMbarrierShared(op.getBarriers().getType())) {
861 rewriter.replaceOpWithNewOp<NVVM::MBarrierArriveSharedOp>(op, tokenType,
862 barrier);
863 } else {
864 rewriter.replaceOpWithNewOp<NVVM::MBarrierArriveOp>(op, tokenType,
865 barrier);
867 return success();
871 /// Lowers `nvgpu.mbarrier.arrive.nocomplete` to
872 /// `nvvm.mbarrier.arrive.nocomplete`
873 struct NVGPUMBarrierArriveNoCompleteLowering
874 : public MBarrierBasePattern<nvgpu::MBarrierArriveNoCompleteOp> {
875 using MBarrierBasePattern<
876 nvgpu::MBarrierArriveNoCompleteOp>::MBarrierBasePattern;
877 LogicalResult
878 matchAndRewrite(nvgpu::MBarrierArriveNoCompleteOp op, OpAdaptor adaptor,
879 ConversionPatternRewriter &rewriter) const override {
880 ImplicitLocOpBuilder b(op->getLoc(), rewriter);
881 Value barrier =
882 getMbarrierPtr(b, op.getBarriers().getType(), adaptor.getBarriers(),
883 adaptor.getMbarId(), rewriter);
884 Type tokenType = getTypeConverter()->convertType(
885 nvgpu::MBarrierTokenType::get(op->getContext()));
886 Value count = truncToI32(b, adaptor.getCount());
887 if (isMbarrierShared(op.getBarriers().getType())) {
888 rewriter.replaceOpWithNewOp<NVVM::MBarrierArriveNocompleteSharedOp>(
889 op, tokenType, barrier, count);
890 } else {
891 rewriter.replaceOpWithNewOp<NVVM::MBarrierArriveNocompleteOp>(
892 op, tokenType, barrier, count);
894 return success();
898 /// Lowers `nvgpu.mbarrier.test.wait` to `nvvm.mbarrier.test.wait`
899 struct NVGPUMBarrierTestWaitLowering
900 : public MBarrierBasePattern<nvgpu::MBarrierTestWaitOp> {
901 using MBarrierBasePattern<nvgpu::MBarrierTestWaitOp>::MBarrierBasePattern;
902 LogicalResult
903 matchAndRewrite(nvgpu::MBarrierTestWaitOp op, OpAdaptor adaptor,
904 ConversionPatternRewriter &rewriter) const override {
905 ImplicitLocOpBuilder b(op->getLoc(), rewriter);
906 Value barrier =
907 getMbarrierPtr(b, op.getBarriers().getType(), adaptor.getBarriers(),
908 adaptor.getMbarId(), rewriter);
909 Type retType = rewriter.getI1Type();
910 if (isMbarrierShared(op.getBarriers().getType())) {
911 rewriter.replaceOpWithNewOp<NVVM::MBarrierTestWaitSharedOp>(
912 op, retType, barrier, adaptor.getToken());
913 } else {
914 rewriter.replaceOpWithNewOp<NVVM::MBarrierTestWaitOp>(
915 op, retType, barrier, adaptor.getToken());
917 return success();
921 struct NVGPUMBarrierArriveExpectTxLowering
922 : public MBarrierBasePattern<nvgpu::MBarrierArriveExpectTxOp> {
923 using MBarrierBasePattern<
924 nvgpu::MBarrierArriveExpectTxOp>::MBarrierBasePattern;
925 LogicalResult
926 matchAndRewrite(nvgpu::MBarrierArriveExpectTxOp op, OpAdaptor adaptor,
927 ConversionPatternRewriter &rewriter) const override {
928 ImplicitLocOpBuilder b(op->getLoc(), rewriter);
929 Value barrier =
930 getMbarrierPtr(b, op.getBarriers().getType(), adaptor.getBarriers(),
931 adaptor.getMbarId(), rewriter);
932 Value txcount = truncToI32(b, adaptor.getTxcount());
934 if (isMbarrierShared(op.getBarriers().getType())) {
935 rewriter.replaceOpWithNewOp<NVVM::MBarrierArriveExpectTxSharedOp>(
936 op, barrier, txcount, adaptor.getPredicate());
937 return success();
940 rewriter.replaceOpWithNewOp<NVVM::MBarrierArriveExpectTxOp>(
941 op, barrier, txcount, adaptor.getPredicate());
942 return success();
946 struct NVGPUMBarrierTryWaitParityLowering
947 : public MBarrierBasePattern<nvgpu::MBarrierTryWaitParityOp> {
948 using MBarrierBasePattern<
949 nvgpu::MBarrierTryWaitParityOp>::MBarrierBasePattern;
950 LogicalResult
951 matchAndRewrite(nvgpu::MBarrierTryWaitParityOp op, OpAdaptor adaptor,
952 ConversionPatternRewriter &rewriter) const override {
953 ImplicitLocOpBuilder b(op->getLoc(), rewriter);
954 Value barrier =
955 getMbarrierPtr(b, op.getBarriers().getType(), adaptor.getBarriers(),
956 adaptor.getMbarId(), rewriter);
957 Value ticks = truncToI32(b, adaptor.getTicks());
958 Value phase =
959 b.create<LLVM::ZExtOp>(b.getI32Type(), adaptor.getPhaseParity());
961 if (isMbarrierShared(op.getBarriers().getType())) {
962 rewriter.replaceOpWithNewOp<NVVM::MBarrierTryWaitParitySharedOp>(
963 op, barrier, phase, ticks);
964 return success();
967 rewriter.replaceOpWithNewOp<NVVM::MBarrierTryWaitParityOp>(op, barrier,
968 phase, ticks);
969 return success();
973 struct NVGPUTmaAsyncLoadOpLowering
974 : public MBarrierBasePattern<nvgpu::TmaAsyncLoadOp> {
975 using MBarrierBasePattern<nvgpu::TmaAsyncLoadOp>::MBarrierBasePattern;
976 LogicalResult
977 matchAndRewrite(nvgpu::TmaAsyncLoadOp op, OpAdaptor adaptor,
978 ConversionPatternRewriter &rewriter) const override {
979 ImplicitLocOpBuilder b(op->getLoc(), rewriter);
980 auto srcMemrefType = cast<MemRefType>(op.getDst().getType());
981 Value dest = getStridedElementPtr(op->getLoc(), srcMemrefType,
982 adaptor.getDst(), {}, rewriter);
983 Value barrier =
984 getMbarrierPtr(b, op.getBarriers().getType(), adaptor.getBarriers(),
985 adaptor.getMbarId(), rewriter);
987 SmallVector<Value> coords = adaptor.getCoordinates();
988 for (auto [index, value] : llvm::enumerate(coords)) {
989 coords[index] = truncToI32(b, value);
991 rewriter.replaceOpWithNewOp<NVVM::CpAsyncBulkTensorGlobalToSharedClusterOp>(
992 op, dest, adaptor.getTensorMapDescriptor(), coords, barrier,
993 ValueRange{}, adaptor.getMulticastMask(), Value{},
994 adaptor.getPredicate());
995 return success();
999 struct NVGPUTmaAsyncStoreOpLowering
1000 : public MBarrierBasePattern<nvgpu::TmaAsyncStoreOp> {
1001 using MBarrierBasePattern<nvgpu::TmaAsyncStoreOp>::MBarrierBasePattern;
1002 LogicalResult
1003 matchAndRewrite(nvgpu::TmaAsyncStoreOp op, OpAdaptor adaptor,
1004 ConversionPatternRewriter &rewriter) const override {
1005 ImplicitLocOpBuilder b(op->getLoc(), rewriter);
1006 auto srcMemrefType = cast<MemRefType>(op.getSrc().getType());
1007 Value dest = getStridedElementPtr(op->getLoc(), srcMemrefType,
1008 adaptor.getSrc(), {}, rewriter);
1009 SmallVector<Value> coords = adaptor.getCoordinates();
1010 for (auto [index, value] : llvm::enumerate(coords)) {
1011 coords[index] = truncToI32(b, value);
1014 rewriter.replaceOpWithNewOp<NVVM::CpAsyncBulkTensorSharedCTAToGlobalOp>(
1015 op, adaptor.getTensorMapDescriptor(), dest, coords,
1016 adaptor.getPredicate());
1017 return success();
1021 struct NVGPUGenerateWarpgroupDescriptorLowering
1022 : public ConvertOpToLLVMPattern<nvgpu::WarpgroupGenerateDescriptorOp> {
1023 using ConvertOpToLLVMPattern<
1024 nvgpu::WarpgroupGenerateDescriptorOp>::ConvertOpToLLVMPattern;
1026 LogicalResult
1027 matchAndRewrite(nvgpu::WarpgroupGenerateDescriptorOp op, OpAdaptor adaptor,
1028 ConversionPatternRewriter &rewriter) const override {
1030 ImplicitLocOpBuilder b(op->getLoc(), rewriter);
1032 nvgpu::TensorMapSwizzleKind swizzleKind =
1033 op.getTensorMap().getType().getSwizzle();
1035 unsigned layout =
1036 (swizzleKind == nvgpu::TensorMapSwizzleKind::SWIZZLE_128B) ? 128
1037 : (swizzleKind == nvgpu::TensorMapSwizzleKind::SWIZZLE_64B) ? 64
1038 : (swizzleKind == nvgpu::TensorMapSwizzleKind::SWIZZLE_32B) ? 32
1039 : 1;
1040 unsigned swizzle =
1041 (swizzleKind == nvgpu::TensorMapSwizzleKind::SWIZZLE_128B) ? 1
1042 : (swizzleKind == nvgpu::TensorMapSwizzleKind::SWIZZLE_64B) ? 2
1043 : (swizzleKind == nvgpu::TensorMapSwizzleKind::SWIZZLE_32B) ? 3
1044 : 0;
1046 auto ti64 = b.getIntegerType(64);
1047 auto makeConst = [&](uint64_t index) -> Value {
1048 return b.create<LLVM::ConstantOp>(ti64, b.getI64IntegerAttr(index));
1050 auto shiftLeft = [&](Value value, unsigned shift) -> Value {
1051 return b.create<LLVM::ShlOp>(ti64, value, makeConst(shift));
1053 auto shiftRight = [&](Value value, unsigned shift) -> Value {
1054 return b.create<LLVM::LShrOp>(ti64, value, makeConst(shift));
1056 auto insertBit = [&](Value desc, Value val, int startBit) {
1057 return b.create<LLVM::OrOp>(ti64, desc, shiftLeft(val, startBit));
1060 int64_t sizeN = op.getTensorMap().getType().getTensor().getDimSize(0);
1061 uint64_t strideDimVal = (layout << 3) >> exclude4LSB;
1062 uint64_t leadDimVal = (sizeN * layout) >> exclude4LSB;
1063 uint64_t offsetVal = 0;
1065 Value strideDim = makeConst(strideDimVal);
1066 Value leadDim = makeConst(leadDimVal);
1068 Value baseAddr = getStridedElementPtr(
1069 op->getLoc(), cast<MemRefType>(op.getTensor().getType()),
1070 adaptor.getTensor(), {}, rewriter);
1071 Value basePtr = b.create<LLVM::PtrToIntOp>(ti64, baseAddr);
1072 // Just use 14 bits for base address
1073 Value basePtr14bit = shiftRight(shiftLeft(basePtr, 46), 50);
1075 int startSwizzleBit = 62, startOffsetBit = 49, startStrideBit = 32,
1076 startLeadBit = 16, startBaseAddrBit = 0;
1077 Value dsc = makeConst(0);
1078 // // [62,64) swizzle type
1079 dsc = insertBit(dsc, makeConst(swizzle), startSwizzleBit);
1080 // // [49,52) base_offset
1081 dsc = insertBit(dsc, makeConst(offsetVal), startOffsetBit);
1082 // // [32,46) stride
1083 dsc = insertBit(dsc, strideDim, startStrideBit);
1084 // // [16,30) leading dimension
1085 dsc = insertBit(dsc, leadDim, startLeadBit);
1086 // // [0,14) start_address
1087 dsc = insertBit(dsc, basePtr14bit, startBaseAddrBit);
1089 LLVM_DEBUG(DBGS() << "Generating warpgroup.descriptor: "
1090 << "leading_off:" << leadDimVal << "\t"
1091 << "stride_off :" << strideDimVal << "\t"
1092 << "base_offset:" << offsetVal << "\t"
1093 << "layout_type:" << swizzle << " ("
1094 << nvgpu::stringifyTensorMapSwizzleKind(swizzleKind)
1095 << ")\n start_addr : " << baseAddr << "\n");
1097 rewriter.replaceOp(op, dsc);
1098 return success();
1102 static Value makeI64Const(ImplicitLocOpBuilder &b, int32_t index) {
1103 return b.create<LLVM::ConstantOp>(b.getIntegerType(64),
1104 b.getI32IntegerAttr(index));
1107 /// Returns a Value that holds data type enum that is expected by CUDA driver.
1108 static Value elementTypeAsLLVMConstant(ImplicitLocOpBuilder &b, Type type) {
1109 // Enum is from CUDA driver API
1110 // https://docs.nvidia.com/cuda/cuda-driver-api/group__CUDA__TYPES.html
1111 enum CUtensorMapDataTypeEnum {
1112 CU_TENSOR_MAP_DATA_TYPE_UINT8 = 0,
1113 CU_TENSOR_MAP_DATA_TYPE_UINT16,
1114 CU_TENSOR_MAP_DATA_TYPE_UINT32,
1115 CU_TENSOR_MAP_DATA_TYPE_INT32,
1116 CU_TENSOR_MAP_DATA_TYPE_UINT64,
1117 CU_TENSOR_MAP_DATA_TYPE_INT64,
1118 CU_TENSOR_MAP_DATA_TYPE_FLOAT16,
1119 CU_TENSOR_MAP_DATA_TYPE_FLOAT32,
1120 CU_TENSOR_MAP_DATA_TYPE_FLOAT64,
1121 CU_TENSOR_MAP_DATA_TYPE_BFLOAT16,
1122 CU_TENSOR_MAP_DATA_TYPE_FLOAT32_FTZ,
1123 CU_TENSOR_MAP_DATA_TYPE_TFLOAT32,
1124 CU_TENSOR_MAP_DATA_TYPE_TFLOAT32_FTZ
1127 if (type.isUnsignedInteger(8))
1128 return makeI64Const(b, CU_TENSOR_MAP_DATA_TYPE_UINT8);
1129 if (type.isUnsignedInteger(16))
1130 return makeI64Const(b, CU_TENSOR_MAP_DATA_TYPE_UINT16);
1131 if (type.isUnsignedInteger(32))
1132 return makeI64Const(b, CU_TENSOR_MAP_DATA_TYPE_UINT32);
1133 if (type.isUnsignedInteger(64))
1134 return makeI64Const(b, CU_TENSOR_MAP_DATA_TYPE_UINT64);
1135 if (type.isSignlessInteger(32))
1136 return makeI64Const(b, CU_TENSOR_MAP_DATA_TYPE_INT32);
1137 if (type.isSignlessInteger(64))
1138 return makeI64Const(b, CU_TENSOR_MAP_DATA_TYPE_INT64);
1139 if (type.isF16())
1140 return makeI64Const(b, CU_TENSOR_MAP_DATA_TYPE_FLOAT16);
1141 if (type.isF32())
1142 return makeI64Const(b, CU_TENSOR_MAP_DATA_TYPE_FLOAT32);
1143 if (type.isF64())
1144 return makeI64Const(b, CU_TENSOR_MAP_DATA_TYPE_FLOAT64);
1145 if (type.isBF16())
1146 return makeI64Const(b, CU_TENSOR_MAP_DATA_TYPE_BFLOAT16);
1148 llvm_unreachable("Not supported data type");
1151 struct NVGPUTmaCreateDescriptorOpLowering
1152 : public ConvertOpToLLVMPattern<nvgpu::TmaCreateDescriptorOp> {
1153 using ConvertOpToLLVMPattern<
1154 nvgpu::TmaCreateDescriptorOp>::ConvertOpToLLVMPattern;
1155 LogicalResult
1156 matchAndRewrite(nvgpu::TmaCreateDescriptorOp op, OpAdaptor adaptor,
1157 ConversionPatternRewriter &rewriter) const override {
1158 ImplicitLocOpBuilder b(op->getLoc(), rewriter);
1159 auto llvmPointerType = LLVM::LLVMPointerType::get(op->getContext());
1160 Type llvmInt64Type = IntegerType::get(op->getContext(), 64);
1162 Value tensorElementType =
1163 elementTypeAsLLVMConstant(b, op.getTensor().getType().getElementType());
1164 auto promotedOperands = getTypeConverter()->promoteOperands(
1165 b.getLoc(), op->getOperands(), adaptor.getOperands(), b);
1167 Value boxArrayPtr = b.create<LLVM::AllocaOp>(llvmPointerType, llvmInt64Type,
1168 makeI64Const(b, 5));
1169 for (auto [index, value] : llvm::enumerate(adaptor.getBoxDimensions())) {
1170 Value gep = b.create<LLVM::GEPOp>(llvmPointerType, llvmPointerType,
1171 boxArrayPtr, makeI64Const(b, index));
1172 b.create<LLVM::StoreOp>(value, gep);
1175 nvgpu::TensorMapDescriptorType desc = op.getTensorMap().getType();
1176 // Set Arguments for the function call
1177 SmallVector<Value> arguments;
1178 arguments.push_back(promotedOperands[0]); // rank
1179 arguments.push_back(promotedOperands[1]); // descriptor
1180 arguments.push_back(tensorElementType); // data type
1181 arguments.push_back(
1182 makeI64Const(b, (int)desc.getInterleave())); // interleave
1183 arguments.push_back(makeI64Const(b, (int)desc.getSwizzle())); // swizzle
1184 arguments.push_back(makeI64Const(b, (int)desc.getL2promo())); // l2promo
1185 arguments.push_back(makeI64Const(b, (int)desc.getOob())); // oob
1186 arguments.push_back(boxArrayPtr); // box dimensions
1188 // Set data types of the arguments
1189 SmallVector<Type> argTypes = {
1190 llvmInt64Type, /* int64_t tensorRank */
1191 llvmPointerType, /* ptr */
1192 llvmInt64Type, /* int64_t */
1193 llvmInt64Type, /* int64_t */
1194 llvmInt64Type, /* int64_t */
1195 llvmInt64Type, /* int64_t */
1196 llvmInt64Type, /* int64_t */
1197 llvmPointerType /* ptr */
1199 FunctionCallBuilder hostRegisterCallBuilder = {
1200 "mgpuTensorMapEncodeTiledMemref", llvmPointerType, argTypes};
1201 Value tensorMap =
1202 hostRegisterCallBuilder.create(b.getLoc(), b, arguments).getResult();
1204 rewriter.replaceOp(op, tensorMap);
1205 return success();
1209 struct NVGPUWarpgroupMmaOpLowering
1210 : public ConvertOpToLLVMPattern<nvgpu::WarpgroupMmaOp> {
1211 using ConvertOpToLLVMPattern<nvgpu::WarpgroupMmaOp>::ConvertOpToLLVMPattern;
1213 /// This is a helper class to generate required NVVM Ops for warp-group level
1214 /// matrix multiplication.
1215 /// When the given GEMM shape is larger than the shape of
1216 /// a wgmma instrution in PTX, it can generate multiple NVVM::WgmmaMmaAsyncOp
1217 /// Op(s), group and execute them asynchronously. The class also handles
1218 /// waiting for completion and iterates through WarpgroupMatrixDescriptor to
1219 /// create descriptors for each instruction.
1221 /// For example this is the case when the shape of GEMM is 128x128x128
1223 /// nvvm.wgmma.fence.aligned
1225 /// nvvm.wgmma.mma.async descA, descB
1226 /// iterate(descA, descB)
1227 /// nvvm.wgmma.mma.async descA, descB
1228 /// [6x times more]
1230 /// nvvm.wgmma.group.sync.aligned
1231 /// nvvm.wgmma.wait.group.sync [groupId]
1233 class WarpgroupGemm {
1234 nvgpu::WarpgroupMmaOp op;
1235 ImplicitLocOpBuilder b;
1236 OpAdaptor adaptor;
1238 // Entire shape of the given Op
1239 int64_t totalM, totalN, totalK;
1241 // Shape of one wgmma instruction
1242 int wgmmaM = 0, wgmmaN = 0, wgmmaK = 0;
1244 // Iteration counts for GEMM
1245 int iterationM = 0, iterationN = 0, iterationK = 0;
1247 /// The function returns the shape of wgmma instruction that is defined in
1248 /// PTX programming guide.
1249 /// https://docs.nvidia.com/cuda/parallel-thread-execution/index.html#asynchronous-warpgroup-level-matrix-shape
1250 void findWgmmaShape(int64_t sizeM, int64_t sizeN, Type inputElemType) {
1251 wgmmaM = 64;
1252 wgmmaN = sizeN;
1253 if (inputElemType.isTF32()) {
1254 wgmmaK = 8;
1255 } else if (inputElemType.isF16() || inputElemType.isBF16()) {
1256 wgmmaK = 16;
1257 } else if (inputElemType.isFloat8E4M3FN() ||
1258 inputElemType.isFloat8E5M2() || inputElemType.isInteger(16)) {
1259 wgmmaK = 32;
1260 } else if (inputElemType.isInteger(1)) {
1261 wgmmaK = 256;
1262 } else {
1263 llvm_unreachable("msg: not supported K shape");
1265 LLVM_DEBUG(DBGS() << "Generating WgmmaMmaAsyncOp shape[m = " << wgmmaM
1266 << ", n = " << wgmmaN << ", k = " << wgmmaK << "]\n");
1269 /// Generates WGMMATypesAttr from MLIR Type
1270 NVVM::WGMMATypesAttr generateWgmmaType(Type type,
1271 bool useF32 = false) const {
1272 auto getWgmmaType = [=](Type elemType) {
1273 if (elemType.isF32() || elemType.isTF32())
1274 return useF32 ? NVVM::WGMMATypes::f32 : NVVM::WGMMATypes::tf32;
1275 if (elemType.isF16())
1276 return NVVM::WGMMATypes::f16;
1277 if (elemType.isBF16())
1278 return NVVM::WGMMATypes::bf16;
1279 if (elemType.isFloat8E4M3FN())
1280 return NVVM::WGMMATypes::e4m3;
1281 if (elemType.isFloat8E5M2())
1282 return NVVM::WGMMATypes::e5m2;
1283 if (elemType.isInteger(1))
1284 return NVVM::WGMMATypes::b1;
1285 if (elemType.isInteger(8))
1286 return NVVM::WGMMATypes::s8;
1287 if (elemType.isUnsignedInteger(8))
1288 return NVVM::WGMMATypes::u8;
1289 if (elemType.isInteger(32))
1290 return NVVM::WGMMATypes::s32;
1291 llvm_unreachable("unsupported type");
1293 return NVVM::WGMMATypesAttr::get(op->getContext(), getWgmmaType(type));
1296 /// Generates layout attribute for the input matrix for wgmma instruction
1297 NVVM::MMALayoutAttr
1298 generateWgmmaLayout(std::optional<bool> transpose) const {
1299 if (transpose.value_or(false))
1300 return NVVM::MMALayoutAttr::get(op->getContext(), NVVM::MMALayout::col);
1301 return NVVM::MMALayoutAttr::get(op->getContext(), NVVM::MMALayout::row);
1304 /// Generates shape attribute for wgmma instruction
1305 NVVM::MMAShapeAttr generateWgmmaShape() const {
1306 return NVVM::MMAShapeAttr::get(op->getContext(), wgmmaM, wgmmaN, wgmmaK);
1309 /// Generates scale attributes of output matrix for wgmma instruction
1310 NVVM::WGMMAScaleOutAttr generateScaleOut() const {
1311 return NVVM::WGMMAScaleOutAttr::get(op->getContext(),
1312 NVVM::WGMMAScaleOut::one);
1314 /// Generates scale attributes of input matrix for wgmma instruction
1315 NVVM::WGMMAScaleInAttr generateScaleIn() const {
1316 return NVVM::WGMMAScaleInAttr::get(op->getContext(),
1317 NVVM::WGMMAScaleIn::one);
1320 /// Basic function to generate Add
1321 Value makeAdd(Value lhs, Value rhs) {
1322 return b.create<LLVM::AddOp>(lhs.getType(), lhs, rhs);
1325 /// Moves the descriptor pointer of matrix-A for the next wgmma instruction.
1326 /// Currently, it only handles row-major.
1328 /// It moves the pointer like below for [128][64] size:
1329 /// +2 +4 +6
1330 /// ↓ ↓ ↓
1331 /// descA ---> +--+--+--+--+
1332 /// |->|->|->|->|
1333 /// | | | | |
1334 /// | | | | |
1335 /// | | | | |
1336 /// descA+512---> +-----------+
1337 /// | | | | |
1338 /// | | | | |
1339 /// | | | | |
1340 /// | | | | |
1341 /// +-----------+
1343 Value iterateDescriptorA(Value desc, int i, int j, int k) {
1344 MemRefType matrixTypeA = op.getDescriptorA().getType().getTensor();
1345 Type elemA = matrixTypeA.getElementType();
1346 int byte = elemA.getIntOrFloatBitWidth() / 8;
1347 int tileShapeA = matrixTypeA.getDimSize(1);
1348 int incrementVal = ((wgmmaK * k) + (totalK * tileShapeA * i)) * byte;
1349 incrementVal = incrementVal >> exclude4LSB;
1350 LLVM_DEBUG(DBGS() << "\t\t[m: " << i << " n: " << j << " k: " << k
1351 << "] [wgmma descriptors] Descriptor A + "
1352 << incrementVal << " | \t ");
1353 if (!incrementVal)
1354 return desc;
1355 return makeAdd(desc, makeI64Const(b, incrementVal));
1358 /// Moves the descriptor pointer of matrix-B for the next wgmma instruction.
1359 /// Currently, it only handles column-major.
1361 /// It moves the pointer like below for [128][64] size:
1362 /// descB ---> +--+--+--+--+--+--+--+--+
1363 /// |↓ | | | | | | | |
1364 /// |↓ | | | | | | | |
1365 /// |↓ | | | | | | | |
1366 /// |↓ | | | | | | | |
1367 /// +--+--+--+--+--+--+--+--+
1369 Value iterateDescriptorB(Value desc, int i, int j, int k) {
1370 MemRefType matrixTypeB = op.getDescriptorB().getType().getTensor();
1371 Type elemB = matrixTypeB.getElementType();
1372 int byte = elemB.getIntOrFloatBitWidth() / 8;
1373 int incrementVal = matrixTypeB.getDimSize(0) * wgmmaK * k * byte;
1374 incrementVal = incrementVal >> exclude4LSB;
1375 LLVM_DEBUG(DBGSE() << "Descriptor B + " << incrementVal << "\n");
1376 if (!incrementVal)
1377 return desc;
1378 return makeAdd(desc, makeI64Const(b, incrementVal));
1381 /// This function generates a WgmmaMmaAsyncOp using provided GMMA matrix
1382 /// descriptors and arranges them based on induction variables: i, j, and k.
1383 Value generateWgmma(int i, int j, int k, Value matrixC) {
1384 LLVM_DEBUG(DBGS() << "\t wgmma."
1385 << "m" << wgmmaM << "n" << wgmmaN << "k" << wgmmaK
1386 << "(A[" << (iterationM * wgmmaM) << ":"
1387 << (iterationM * wgmmaM) + wgmmaM << "]["
1388 << (iterationK * wgmmaK) << ":"
1389 << (iterationK * wgmmaK + wgmmaK) << "] * "
1390 << " B[" << (iterationK * wgmmaK) << ":"
1391 << (iterationK * wgmmaK + wgmmaK) << "][" << 0 << ":"
1392 << wgmmaN << "])\n");
1394 Value descriptorA = iterateDescriptorA(adaptor.getDescriptorA(), i, j, k);
1395 Value descriptorB = iterateDescriptorB(adaptor.getDescriptorB(), i, j, k);
1397 Type elemA = op.getDescriptorA().getType().getTensor().getElementType();
1398 NVVM::WGMMATypesAttr itypeA = generateWgmmaType(elemA);
1400 Type elemB = op.getDescriptorB().getType().getTensor().getElementType();
1401 NVVM::WGMMATypesAttr itypeB = generateWgmmaType(elemB);
1403 Type elemD = op.getMatrixC().getType().getFragmented().getElementType();
1404 NVVM::WGMMATypesAttr itypeD = generateWgmmaType(elemD, true);
1406 NVVM::MMAShapeAttr shape = generateWgmmaShape();
1407 NVVM::WGMMAScaleOutAttr scaleOut = generateScaleOut();
1408 NVVM::WGMMAScaleInAttr scaleIn = generateScaleIn();
1409 NVVM::MMALayoutAttr layoutA = generateWgmmaLayout(op.getTransposeA());
1410 NVVM::MMALayoutAttr layoutB = generateWgmmaLayout(!op.getTransposeB());
1412 auto overflow = NVVM::MMAIntOverflowAttr::get(
1413 op->getContext(), NVVM::MMAIntOverflow::wrapped);
1415 return b.create<NVVM::WgmmaMmaAsyncOp>(
1416 matrixC.getType(), matrixC, descriptorA, descriptorB, shape, itypeA,
1417 itypeB, itypeD, scaleOut, scaleIn, scaleIn, layoutA, layoutB,
1418 overflow);
1421 /// Generates multiple wgmma instructions to complete the given GEMM shape
1422 Value generateWgmmaGroup() {
1423 Value wgmmaResult =
1424 b.create<LLVM::UndefOp>(adaptor.getMatrixC().getType());
1426 // Perform GEMM
1427 SmallVector<Value> wgmmaResults;
1428 for (int i = 0; i < iterationM; ++i) {
1429 Value matrixC = b.create<LLVM::ExtractValueOp>(adaptor.getMatrixC(), i);
1430 for (int j = 0; j < iterationN; ++j)
1431 for (int k = 0; k < iterationK; ++k)
1432 matrixC = generateWgmma(i, j, k, matrixC);
1433 wgmmaResults.push_back(matrixC);
1435 for (auto [idx, matrix] : llvm::enumerate(wgmmaResults)) {
1436 wgmmaResult = b.create<LLVM::InsertValueOp>(wgmmaResult.getType(),
1437 wgmmaResult, matrix, idx);
1439 return wgmmaResult;
1442 public:
1443 WarpgroupGemm(nvgpu::WarpgroupMmaOp op, ImplicitLocOpBuilder &b,
1444 OpAdaptor adaptor)
1445 : op(op), b(b), adaptor(adaptor) {
1446 // Find the entire GEMM Shape
1447 totalM = op.getDescriptorA().getType().getTensor().getDimSize(0);
1448 totalN = op.getDescriptorB().getType().getTensor().getDimSize(1);
1449 totalK = op.getDescriptorA().getType().getTensor().getDimSize(1);
1450 LLVM_DEBUG(DBGS() << "===--- GEMM D[" << totalM << "][" << totalN
1451 << "] += A[" << totalM << "][" << totalK << "] * B["
1452 << totalK << "][" << totalN << "] ---===\n");
1454 // Find the shape for one wgmma instruction
1455 findWgmmaShape(
1456 totalM, totalN,
1457 op.getDescriptorA().getType().getTensor().getElementType());
1459 // Iterations counts to complete the given shape with wgmma shape
1460 iterationM = totalM / wgmmaM;
1461 iterationN = totalN / wgmmaN;
1462 iterationK = totalK / wgmmaK;
1465 /// Generates WgmmaMmaAsync Ops to complete the specified GEMM shape. It
1466 /// includes generating a fence Op (WgmmaFenceAlignedOp) before the
1467 /// instructions and group synchronization, as well as waiting
1468 /// (WgmmaGroupSyncAlignedOp) for group synchronization
1469 /// (WgmmaWaitGroupSyncOp) after the instructions.
1470 Value generateWarpgroupMma() {
1471 b.create<NVVM::WgmmaFenceAlignedOp>();
1472 Value wgmmaResult = generateWgmmaGroup();
1473 b.create<NVVM::WgmmaGroupSyncAlignedOp>();
1474 b.create<NVVM::WgmmaWaitGroupSyncOp>(op.getWaitGroup());
1475 return wgmmaResult;
1478 LogicalResult
1479 matchAndRewrite(nvgpu::WarpgroupMmaOp op, OpAdaptor adaptor,
1480 ConversionPatternRewriter &rewriter) const override {
1481 ImplicitLocOpBuilder b(op->getLoc(), rewriter);
1483 // Step 1. Build a helper class
1484 WarpgroupGemm warpgroupGemm(op, b, adaptor);
1486 // Step 2. Get the entire GEMM Shape
1487 Value wgmmaResult = warpgroupGemm.generateWarpgroupMma();
1489 // Step 3. Replace fragmented result struct with the op results
1490 rewriter.replaceOp(op, wgmmaResult);
1491 return success();
1495 struct NVGPUWarpgroupMmaStoreOpLowering
1496 : public ConvertOpToLLVMPattern<nvgpu::WarpgroupMmaStoreOp> {
1497 using ConvertOpToLLVMPattern<
1498 nvgpu::WarpgroupMmaStoreOp>::ConvertOpToLLVMPattern;
1500 /// This function stores a fragmented register matrix owned by a warp group
1501 /// (128 threads) into a memref. Each thread has 64 registers, each the size
1502 /// of a struct.
1503 /// Here is what each threads (T) holds, each `d` is struct value with a
1504 /// number.
1506 /// Threads in warp-group (128 threads) and what they owns in the matrixD:
1507 /// 0-31 Warp-0 -> MatrixD[0:15 ][0:N]
1508 /// 32-63 Warp-1 -> MatrixD[16:31][0:N]
1509 /// 64-95 Warp-2 -> MatrixD[32:47][0:N]
1510 /// 96-127 Warp-3 -> MatrixD[48:64][0:N]
1512 /// Matrix-D:
1513 /// +______________________________________________________________________+
1514 /// | 0-1 | 2-3 | 4-5 | 6-7 | 8-9 | 10-11|..|N-8,N-7 |
1515 /// 0 | T0:d0-d1 |T1:d0-d1 |T2:d0-d1 |T3:d0-d1 |T0:d4-d5| T1:d4-d5..|T0:dX-dY|
1516 /// 1 | T4:d0-d1 |T5:d0-d1 |T6:d0-d1 |T7:d0-d1 |T4:d4-d5| T5:d4-d5..|T4:dX-dY|
1517 /// ..| .........|.........|.........|.........|........|...........|........|
1518 /// 8 | T0:d2-d3 |T1:d2-d3 |T2:d2-d3 |T3:d2-d3 |T0:d6-d7|T1:d6-d7,..|T0:dZ-dW|
1519 /// 9 | T4:d2-d3 |T5:d2-d3 |T6:d2-d3 |T7:d2-d3 |T4:d6-d7| T5:d6-d7..|T4:dZ-dW|
1520 /// ..| .........|.........|.........|.........|........|...........|........|
1521 /// 15| T28:d2-d3|T29:d2-d3|T30:d2-d3|T31:d2-d3|........|...........|........|
1522 /// 16| T32:d2-d3|T33:d2-d3|T34:d2-d3|T35:d2-d3|........|...........|........|
1523 /// ..| .........|.........|.........|.........|........|...........|........|
1524 /// 32| T64:d2-d3|T65:d2-d3|T66:d2-d3|T67:d2-d3|........|...........|........|
1525 /// ..| .........|.........|.........|.........|........|...........|........|
1526 /// 48| T96:d2-d3|T97:d2-d3|T98:d2-d3|T99:d2-d3|........|...........|........|
1527 /// ..| .........|.........|.........|.........|........|...........|........|
1528 /// +______________________________________________________________________+
1530 /// \param rewriter: The pattern rewriter.
1531 /// \param matrixD: Result of the warp-group MMA operation (fragmented
1532 /// matrix). It is holded by a thread and a struct with 64 elements.
1533 /// \param dstMemref: The memref where the registers will be stored.
1534 /// \param offset: the offset within the memref where the registers will be
1535 /// stored.
1536 void storeFragmentedMatrix(ImplicitLocOpBuilder &b, Value matrixD,
1537 TypedValue<MemRefType> dstMemref,
1538 int offset) const {
1539 Type i32 = b.getI32Type();
1541 auto makeConst = [&](int32_t index) -> Value {
1542 return b.create<LLVM::ConstantOp>(i32, b.getI32IntegerAttr(index));
1544 Value c1 = makeConst(1);
1545 Value c2 = makeConst(2);
1546 Value c4 = makeConst(4);
1547 Value c8 = makeConst(8);
1548 Value c16 = makeConst(16);
1549 Value warpSize = makeConst(kWarpSize);
1551 auto makeMul = [&](Value lhs, Value rhs) -> Value {
1552 return b.create<LLVM::MulOp>(lhs.getType(), lhs, rhs);
1554 auto makeAdd = [&](Value lhs, Value rhs) -> Value {
1555 return b.create<LLVM::AddOp>(lhs.getType(), lhs, rhs);
1558 auto makeExtractAndStore = [&](int i, Value wgmmaResult, Value x, Value y,
1559 TypedValue<::mlir::MemRefType> memref) {
1560 Type it = b.getIndexType();
1561 Value idx = b.create<arith::IndexCastOp>(it, x);
1562 Value idy0 = b.create<arith::IndexCastOp>(it, y);
1563 Value idy1 = b.create<arith::IndexCastOp>(it, makeAdd(y, c1));
1564 Value d0 = b.create<LLVM::ExtractValueOp>(wgmmaResult, i);
1565 Value d1 = b.create<LLVM::ExtractValueOp>(wgmmaResult, i + 1);
1566 b.create<memref::StoreOp>(d0, memref, ValueRange{idx, idy0});
1567 b.create<memref::StoreOp>(d1, memref, ValueRange{idx, idy1});
1570 Value tidx = b.create<NVVM::ThreadIdXOp>(i32);
1571 Value laneId = b.create<LLVM::URemOp>(i32, tidx, warpSize);
1572 Value warpId = b.create<LLVM::UDivOp>(i32, tidx, warpSize);
1573 Value lane4Id = b.create<LLVM::UDivOp>(i32, laneId, c4);
1574 Value lane4modId = b.create<LLVM::URemOp>(i32, laneId, c4);
1576 Value tj = makeMul(lane4modId, c2);
1577 Value ti = makeAdd(lane4Id, makeMul(warpId, c16));
1578 if (offset)
1579 ti = makeAdd(ti, makeConst(offset));
1581 auto structType = cast<LLVM::LLVMStructType>(matrixD.getType());
1583 // Number of 32-bit registers owns per thread
1584 constexpr unsigned numAdjacentRegisters = 2;
1585 // Number of 8x8 matrices one below another per warp
1586 constexpr unsigned numStackedMatrices = 2;
1588 size_t storeCount = (structType.getBody().size() /
1589 (numStackedMatrices * numAdjacentRegisters));
1591 for (size_t i = 0; i < numStackedMatrices; ++i) {
1592 Value idx = makeAdd(ti, makeMul(makeConst(i), c8));
1593 for (size_t j = 0; j < storeCount; ++j) {
1594 Value idy = makeAdd(tj, makeMul(makeConst(j), c8));
1595 size_t structIndex = (i * numAdjacentRegisters) +
1596 (j * (numStackedMatrices * numAdjacentRegisters));
1597 makeExtractAndStore(structIndex, matrixD, idx, idy, dstMemref);
1602 LogicalResult
1603 matchAndRewrite(nvgpu::WarpgroupMmaStoreOp op, OpAdaptor adaptor,
1604 ConversionPatternRewriter &rewriter) const override {
1605 int offset = 0;
1606 ImplicitLocOpBuilder b(op->getLoc(), rewriter);
1607 Value matriDValue = adaptor.getMatrixD();
1608 auto stype = cast<LLVM::LLVMStructType>(matriDValue.getType());
1609 for (auto [idx, matrixD] : llvm::enumerate(stype.getBody())) {
1610 auto structType = cast<LLVM::LLVMStructType>(matrixD);
1611 Value innerStructValue = b.create<LLVM::ExtractValueOp>(matriDValue, idx);
1612 storeFragmentedMatrix(b, innerStructValue, op.getDstMemref(), offset);
1613 offset += structType.getBody().size();
1615 rewriter.eraseOp(op);
1616 return success();
1620 struct NVGPUWarpgroupMmaInitAccumulatorOpLowering
1621 : public ConvertOpToLLVMPattern<nvgpu::WarpgroupMmaInitAccumulatorOp> {
1622 using ConvertOpToLLVMPattern<
1623 nvgpu::WarpgroupMmaInitAccumulatorOp>::ConvertOpToLLVMPattern;
1624 LogicalResult
1625 matchAndRewrite(nvgpu::WarpgroupMmaInitAccumulatorOp op, OpAdaptor adaptor,
1626 ConversionPatternRewriter &rewriter) const override {
1627 ImplicitLocOpBuilder b(op->getLoc(), rewriter);
1628 LLVM::LLVMStructType packStructType = cast<LLVM::LLVMStructType>(
1629 getTypeConverter()->convertType(op.getMatrixC().getType()));
1630 Type elemType = cast<LLVM::LLVMStructType>(packStructType.getBody().front())
1631 .getBody()
1632 .front();
1633 Value zero = b.create<LLVM::ConstantOp>(elemType, b.getZeroAttr(elemType));
1634 Value packStruct = b.create<LLVM::UndefOp>(packStructType);
1635 SmallVector<Value> innerStructs;
1636 // Unpack the structs and set all values to zero
1637 for (auto [idx, s] : llvm::enumerate(packStructType.getBody())) {
1638 auto structType = cast<LLVM::LLVMStructType>(s);
1639 Value structValue = b.create<LLVM::ExtractValueOp>(packStruct, idx);
1640 for (unsigned i = 0; i < structType.getBody().size(); ++i) {
1641 structValue = b.create<LLVM::InsertValueOp>(
1642 structType, structValue, zero, ArrayRef<int64_t>({i}));
1644 innerStructs.push_back(structValue);
1646 // Pack the inner structs into a single struct
1647 for (auto [idx, matrix] : llvm::enumerate(innerStructs)) {
1648 packStruct = b.create<LLVM::InsertValueOp>(packStruct.getType(),
1649 packStruct, matrix, idx);
1651 rewriter.replaceOp(op, packStruct);
1652 return success();
1656 struct NVGPUTmaPrefetchOpLowering
1657 : public ConvertOpToLLVMPattern<nvgpu::TmaPrefetchOp> {
1658 using ConvertOpToLLVMPattern<nvgpu::TmaPrefetchOp>::ConvertOpToLLVMPattern;
1659 LogicalResult
1660 matchAndRewrite(nvgpu::TmaPrefetchOp op, OpAdaptor adaptor,
1661 ConversionPatternRewriter &rewriter) const override {
1662 rewriter.replaceOpWithNewOp<NVVM::PrefetchTensorMapOp>(
1663 op, adaptor.getTensorMapDescriptor(), adaptor.getPredicate());
1664 return success();
1668 struct NVGPURcpOpLowering : public ConvertOpToLLVMPattern<nvgpu::RcpOp> {
1669 using ConvertOpToLLVMPattern<nvgpu::RcpOp>::ConvertOpToLLVMPattern;
1670 LogicalResult
1671 matchAndRewrite(nvgpu::RcpOp op, OpAdaptor adaptor,
1672 ConversionPatternRewriter &rewriter) const override {
1673 ImplicitLocOpBuilder b(op->getLoc(), rewriter);
1674 auto i64Ty = b.getI64Type();
1675 auto f32Ty = b.getF32Type();
1676 VectorType inTy = op.getIn().getType();
1677 // apply rcp.approx.ftz.f on each element in vector.
1678 auto convert1DVec = [&](Type llvm1DVectorTy, Value inVec) {
1679 Value ret1DVec = b.create<LLVM::UndefOp>(llvm1DVectorTy);
1680 int numElems = llvm::cast<VectorType>(llvm1DVectorTy).getNumElements();
1681 for (int i = 0; i < numElems; i++) {
1682 Value idx = b.create<LLVM::ConstantOp>(i64Ty, b.getI64IntegerAttr(i));
1683 Value elem = b.create<LLVM::ExtractElementOp>(inVec, idx);
1684 Value dst = b.create<NVVM::RcpApproxFtzF32Op>(f32Ty, elem);
1685 ret1DVec = b.create<LLVM::InsertElementOp>(ret1DVec, dst, idx);
1687 return ret1DVec;
1689 if (inTy.getRank() == 1) {
1690 rewriter.replaceOp(op, convert1DVec(inTy, adaptor.getIn()));
1691 return success();
1693 return LLVM::detail::handleMultidimensionalVectors(
1694 op.getOperation(), adaptor.getOperands(), *(this->getTypeConverter()),
1695 [&](Type llvm1DVectorTy, ValueRange operands) -> Value {
1696 OpAdaptor adaptor(operands);
1697 return convert1DVec(llvm1DVectorTy, adaptor.getIn());
1699 rewriter);
1702 } // namespace
1704 void mlir::populateNVGPUToNVVMConversionPatterns(
1705 const LLVMTypeConverter &converter, RewritePatternSet &patterns) {
1706 patterns.add<
1707 NVGPUMBarrierCreateLowering, // nvgpu.mbarrier.create
1708 NVGPUMBarrierInitLowering, // nvgpu.mbarrier.init
1709 NVGPUMBarrierArriveLowering, // nvgpu.mbarrier.arrive
1710 NVGPUMBarrierArriveNoCompleteLowering, // nvgpu.mbarrier.arrive.no_complete
1711 NVGPUMBarrierTestWaitLowering, // nvgpu.mbarrier.test_wait_parity
1712 NVGPUMBarrierTryWaitParityLowering, // nvgpu.mbarrier.try_wait_parity
1713 NVGPUTmaAsyncLoadOpLowering, // nvgpu.tma.async.load
1714 NVGPUTmaAsyncStoreOpLowering, // nvgpu.tma.async.store
1715 NVGPUTmaCreateDescriptorOpLowering, // nvgpu.tma.create.descriptor
1716 NVGPUTmaPrefetchOpLowering, // nvgpu.tma.prefetch.descriptor
1717 NVGPUMBarrierArriveExpectTxLowering, // nvgpu.mbarrier.arrive.expect_tx
1718 NVGPUGenerateWarpgroupDescriptorLowering, // nvgpu.warpgroup.generate.descriptor
1719 NVGPUWarpgroupMmaOpLowering, // nvgpu.warpgroup.mma
1720 NVGPUWarpgroupMmaStoreOpLowering, // nvgpu.warpgroup.mma.store
1721 NVGPUWarpgroupMmaInitAccumulatorOpLowering, // nvgpu.warpgroup.mma.init.accumulator
1722 MmaSyncOptoNVVM, MmaLdMatrixOpToNVVM, NVGPUAsyncCopyLowering,
1723 NVGPUAsyncCreateGroupLowering, NVGPUAsyncWaitLowering,
1724 NVGPUMmaSparseSyncLowering, NVGPURcpOpLowering>(converter);