[RISCV] Refactor predicates for rvv intrinsic patterns.
[llvm-project.git] / llvm / lib / Analysis / LazyValueInfo.cpp
blob789c2902369b94447c26676291ad5b49dc6fb5d0
1 //===- LazyValueInfo.cpp - Value constraint analysis ------------*- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file defines the interface for lazy computation of value constraint
10 // information.
12 //===----------------------------------------------------------------------===//
14 #include "llvm/Analysis/LazyValueInfo.h"
15 #include "llvm/ADT/DenseSet.h"
16 #include "llvm/ADT/STLExtras.h"
17 #include "llvm/Analysis/AssumptionCache.h"
18 #include "llvm/Analysis/ConstantFolding.h"
19 #include "llvm/Analysis/InstructionSimplify.h"
20 #include "llvm/Analysis/TargetLibraryInfo.h"
21 #include "llvm/Analysis/ValueLattice.h"
22 #include "llvm/Analysis/ValueTracking.h"
23 #include "llvm/IR/AssemblyAnnotationWriter.h"
24 #include "llvm/IR/CFG.h"
25 #include "llvm/IR/ConstantRange.h"
26 #include "llvm/IR/Constants.h"
27 #include "llvm/IR/DataLayout.h"
28 #include "llvm/IR/Dominators.h"
29 #include "llvm/IR/Instructions.h"
30 #include "llvm/IR/IntrinsicInst.h"
31 #include "llvm/IR/Intrinsics.h"
32 #include "llvm/IR/LLVMContext.h"
33 #include "llvm/IR/PatternMatch.h"
34 #include "llvm/IR/ValueHandle.h"
35 #include "llvm/InitializePasses.h"
36 #include "llvm/Support/Debug.h"
37 #include "llvm/Support/FormattedStream.h"
38 #include "llvm/Support/KnownBits.h"
39 #include "llvm/Support/raw_ostream.h"
40 #include <optional>
41 using namespace llvm;
42 using namespace PatternMatch;
44 #define DEBUG_TYPE "lazy-value-info"
46 // This is the number of worklist items we will process to try to discover an
47 // answer for a given value.
48 static const unsigned MaxProcessedPerValue = 500;
50 char LazyValueInfoWrapperPass::ID = 0;
51 LazyValueInfoWrapperPass::LazyValueInfoWrapperPass() : FunctionPass(ID) {
52 initializeLazyValueInfoWrapperPassPass(*PassRegistry::getPassRegistry());
54 INITIALIZE_PASS_BEGIN(LazyValueInfoWrapperPass, "lazy-value-info",
55 "Lazy Value Information Analysis", false, true)
56 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)
57 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass)
58 INITIALIZE_PASS_END(LazyValueInfoWrapperPass, "lazy-value-info",
59 "Lazy Value Information Analysis", false, true)
61 namespace llvm {
62 FunctionPass *createLazyValueInfoPass() { return new LazyValueInfoWrapperPass(); }
65 AnalysisKey LazyValueAnalysis::Key;
67 /// Returns true if this lattice value represents at most one possible value.
68 /// This is as precise as any lattice value can get while still representing
69 /// reachable code.
70 static bool hasSingleValue(const ValueLatticeElement &Val) {
71 if (Val.isConstantRange() &&
72 Val.getConstantRange().isSingleElement())
73 // Integer constants are single element ranges
74 return true;
75 if (Val.isConstant())
76 // Non integer constants
77 return true;
78 return false;
81 /// Combine two sets of facts about the same value into a single set of
82 /// facts. Note that this method is not suitable for merging facts along
83 /// different paths in a CFG; that's what the mergeIn function is for. This
84 /// is for merging facts gathered about the same value at the same location
85 /// through two independent means.
86 /// Notes:
87 /// * This method does not promise to return the most precise possible lattice
88 /// value implied by A and B. It is allowed to return any lattice element
89 /// which is at least as strong as *either* A or B (unless our facts
90 /// conflict, see below).
91 /// * Due to unreachable code, the intersection of two lattice values could be
92 /// contradictory. If this happens, we return some valid lattice value so as
93 /// not confuse the rest of LVI. Ideally, we'd always return Undefined, but
94 /// we do not make this guarantee. TODO: This would be a useful enhancement.
95 static ValueLatticeElement intersect(const ValueLatticeElement &A,
96 const ValueLatticeElement &B) {
97 // Undefined is the strongest state. It means the value is known to be along
98 // an unreachable path.
99 if (A.isUnknown())
100 return A;
101 if (B.isUnknown())
102 return B;
104 // If we gave up for one, but got a useable fact from the other, use it.
105 if (A.isOverdefined())
106 return B;
107 if (B.isOverdefined())
108 return A;
110 // Can't get any more precise than constants.
111 if (hasSingleValue(A))
112 return A;
113 if (hasSingleValue(B))
114 return B;
116 // Could be either constant range or not constant here.
117 if (!A.isConstantRange() || !B.isConstantRange()) {
118 // TODO: Arbitrary choice, could be improved
119 return A;
122 // Intersect two constant ranges
123 ConstantRange Range =
124 A.getConstantRange().intersectWith(B.getConstantRange());
125 // Note: An empty range is implicitly converted to unknown or undef depending
126 // on MayIncludeUndef internally.
127 return ValueLatticeElement::getRange(
128 std::move(Range), /*MayIncludeUndef=*/A.isConstantRangeIncludingUndef() ||
129 B.isConstantRangeIncludingUndef());
132 //===----------------------------------------------------------------------===//
133 // LazyValueInfoCache Decl
134 //===----------------------------------------------------------------------===//
136 namespace {
137 /// A callback value handle updates the cache when values are erased.
138 class LazyValueInfoCache;
139 struct LVIValueHandle final : public CallbackVH {
140 LazyValueInfoCache *Parent;
142 LVIValueHandle(Value *V, LazyValueInfoCache *P = nullptr)
143 : CallbackVH(V), Parent(P) { }
145 void deleted() override;
146 void allUsesReplacedWith(Value *V) override {
147 deleted();
150 } // end anonymous namespace
152 namespace {
153 using NonNullPointerSet = SmallDenseSet<AssertingVH<Value>, 2>;
155 /// This is the cache kept by LazyValueInfo which
156 /// maintains information about queries across the clients' queries.
157 class LazyValueInfoCache {
158 /// This is all of the cached information for one basic block. It contains
159 /// the per-value lattice elements, as well as a separate set for
160 /// overdefined values to reduce memory usage. Additionally pointers
161 /// dereferenced in the block are cached for nullability queries.
162 struct BlockCacheEntry {
163 SmallDenseMap<AssertingVH<Value>, ValueLatticeElement, 4> LatticeElements;
164 SmallDenseSet<AssertingVH<Value>, 4> OverDefined;
165 // std::nullopt indicates that the nonnull pointers for this basic block
166 // block have not been computed yet.
167 std::optional<NonNullPointerSet> NonNullPointers;
170 /// Cached information per basic block.
171 DenseMap<PoisoningVH<BasicBlock>, std::unique_ptr<BlockCacheEntry>>
172 BlockCache;
173 /// Set of value handles used to erase values from the cache on deletion.
174 DenseSet<LVIValueHandle, DenseMapInfo<Value *>> ValueHandles;
176 const BlockCacheEntry *getBlockEntry(BasicBlock *BB) const {
177 auto It = BlockCache.find_as(BB);
178 if (It == BlockCache.end())
179 return nullptr;
180 return It->second.get();
183 BlockCacheEntry *getOrCreateBlockEntry(BasicBlock *BB) {
184 auto It = BlockCache.find_as(BB);
185 if (It == BlockCache.end())
186 It = BlockCache.insert({ BB, std::make_unique<BlockCacheEntry>() })
187 .first;
189 return It->second.get();
192 void addValueHandle(Value *Val) {
193 auto HandleIt = ValueHandles.find_as(Val);
194 if (HandleIt == ValueHandles.end())
195 ValueHandles.insert({ Val, this });
198 public:
199 void insertResult(Value *Val, BasicBlock *BB,
200 const ValueLatticeElement &Result) {
201 BlockCacheEntry *Entry = getOrCreateBlockEntry(BB);
203 // Insert over-defined values into their own cache to reduce memory
204 // overhead.
205 if (Result.isOverdefined())
206 Entry->OverDefined.insert(Val);
207 else
208 Entry->LatticeElements.insert({ Val, Result });
210 addValueHandle(Val);
213 std::optional<ValueLatticeElement>
214 getCachedValueInfo(Value *V, BasicBlock *BB) const {
215 const BlockCacheEntry *Entry = getBlockEntry(BB);
216 if (!Entry)
217 return std::nullopt;
219 if (Entry->OverDefined.count(V))
220 return ValueLatticeElement::getOverdefined();
222 auto LatticeIt = Entry->LatticeElements.find_as(V);
223 if (LatticeIt == Entry->LatticeElements.end())
224 return std::nullopt;
226 return LatticeIt->second;
229 bool isNonNullAtEndOfBlock(
230 Value *V, BasicBlock *BB,
231 function_ref<NonNullPointerSet(BasicBlock *)> InitFn) {
232 BlockCacheEntry *Entry = getOrCreateBlockEntry(BB);
233 if (!Entry->NonNullPointers) {
234 Entry->NonNullPointers = InitFn(BB);
235 for (Value *V : *Entry->NonNullPointers)
236 addValueHandle(V);
239 return Entry->NonNullPointers->count(V);
242 /// clear - Empty the cache.
243 void clear() {
244 BlockCache.clear();
245 ValueHandles.clear();
248 /// Inform the cache that a given value has been deleted.
249 void eraseValue(Value *V);
251 /// This is part of the update interface to inform the cache
252 /// that a block has been deleted.
253 void eraseBlock(BasicBlock *BB);
255 /// Updates the cache to remove any influence an overdefined value in
256 /// OldSucc might have (unless also overdefined in NewSucc). This just
257 /// flushes elements from the cache and does not add any.
258 void threadEdgeImpl(BasicBlock *OldSucc,BasicBlock *NewSucc);
262 void LazyValueInfoCache::eraseValue(Value *V) {
263 for (auto &Pair : BlockCache) {
264 Pair.second->LatticeElements.erase(V);
265 Pair.second->OverDefined.erase(V);
266 if (Pair.second->NonNullPointers)
267 Pair.second->NonNullPointers->erase(V);
270 auto HandleIt = ValueHandles.find_as(V);
271 if (HandleIt != ValueHandles.end())
272 ValueHandles.erase(HandleIt);
275 void LVIValueHandle::deleted() {
276 // This erasure deallocates *this, so it MUST happen after we're done
277 // using any and all members of *this.
278 Parent->eraseValue(*this);
281 void LazyValueInfoCache::eraseBlock(BasicBlock *BB) {
282 BlockCache.erase(BB);
285 void LazyValueInfoCache::threadEdgeImpl(BasicBlock *OldSucc,
286 BasicBlock *NewSucc) {
287 // When an edge in the graph has been threaded, values that we could not
288 // determine a value for before (i.e. were marked overdefined) may be
289 // possible to solve now. We do NOT try to proactively update these values.
290 // Instead, we clear their entries from the cache, and allow lazy updating to
291 // recompute them when needed.
293 // The updating process is fairly simple: we need to drop cached info
294 // for all values that were marked overdefined in OldSucc, and for those same
295 // values in any successor of OldSucc (except NewSucc) in which they were
296 // also marked overdefined.
297 std::vector<BasicBlock*> worklist;
298 worklist.push_back(OldSucc);
300 const BlockCacheEntry *Entry = getBlockEntry(OldSucc);
301 if (!Entry || Entry->OverDefined.empty())
302 return; // Nothing to process here.
303 SmallVector<Value *, 4> ValsToClear(Entry->OverDefined.begin(),
304 Entry->OverDefined.end());
306 // Use a worklist to perform a depth-first search of OldSucc's successors.
307 // NOTE: We do not need a visited list since any blocks we have already
308 // visited will have had their overdefined markers cleared already, and we
309 // thus won't loop to their successors.
310 while (!worklist.empty()) {
311 BasicBlock *ToUpdate = worklist.back();
312 worklist.pop_back();
314 // Skip blocks only accessible through NewSucc.
315 if (ToUpdate == NewSucc) continue;
317 // If a value was marked overdefined in OldSucc, and is here too...
318 auto OI = BlockCache.find_as(ToUpdate);
319 if (OI == BlockCache.end() || OI->second->OverDefined.empty())
320 continue;
321 auto &ValueSet = OI->second->OverDefined;
323 bool changed = false;
324 for (Value *V : ValsToClear) {
325 if (!ValueSet.erase(V))
326 continue;
328 // If we removed anything, then we potentially need to update
329 // blocks successors too.
330 changed = true;
333 if (!changed) continue;
335 llvm::append_range(worklist, successors(ToUpdate));
340 namespace {
341 /// An assembly annotator class to print LazyValueCache information in
342 /// comments.
343 class LazyValueInfoImpl;
344 class LazyValueInfoAnnotatedWriter : public AssemblyAnnotationWriter {
345 LazyValueInfoImpl *LVIImpl;
346 // While analyzing which blocks we can solve values for, we need the dominator
347 // information.
348 DominatorTree &DT;
350 public:
351 LazyValueInfoAnnotatedWriter(LazyValueInfoImpl *L, DominatorTree &DTree)
352 : LVIImpl(L), DT(DTree) {}
354 void emitBasicBlockStartAnnot(const BasicBlock *BB,
355 formatted_raw_ostream &OS) override;
357 void emitInstructionAnnot(const Instruction *I,
358 formatted_raw_ostream &OS) override;
361 namespace {
362 // The actual implementation of the lazy analysis and update. Note that the
363 // inheritance from LazyValueInfoCache is intended to be temporary while
364 // splitting the code and then transitioning to a has-a relationship.
365 class LazyValueInfoImpl {
367 /// Cached results from previous queries
368 LazyValueInfoCache TheCache;
370 /// This stack holds the state of the value solver during a query.
371 /// It basically emulates the callstack of the naive
372 /// recursive value lookup process.
373 SmallVector<std::pair<BasicBlock*, Value*>, 8> BlockValueStack;
375 /// Keeps track of which block-value pairs are in BlockValueStack.
376 DenseSet<std::pair<BasicBlock*, Value*> > BlockValueSet;
378 /// Push BV onto BlockValueStack unless it's already in there.
379 /// Returns true on success.
380 bool pushBlockValue(const std::pair<BasicBlock *, Value *> &BV) {
381 if (!BlockValueSet.insert(BV).second)
382 return false; // It's already in the stack.
384 LLVM_DEBUG(dbgs() << "PUSH: " << *BV.second << " in "
385 << BV.first->getName() << "\n");
386 BlockValueStack.push_back(BV);
387 return true;
390 AssumptionCache *AC; ///< A pointer to the cache of @llvm.assume calls.
391 const DataLayout &DL; ///< A mandatory DataLayout
393 /// Declaration of the llvm.experimental.guard() intrinsic,
394 /// if it exists in the module.
395 Function *GuardDecl;
397 std::optional<ValueLatticeElement> getBlockValue(Value *Val, BasicBlock *BB,
398 Instruction *CxtI);
399 std::optional<ValueLatticeElement> getEdgeValue(Value *V, BasicBlock *F,
400 BasicBlock *T,
401 Instruction *CxtI = nullptr);
403 // These methods process one work item and may add more. A false value
404 // returned means that the work item was not completely processed and must
405 // be revisited after going through the new items.
406 bool solveBlockValue(Value *Val, BasicBlock *BB);
407 std::optional<ValueLatticeElement> solveBlockValueImpl(Value *Val,
408 BasicBlock *BB);
409 std::optional<ValueLatticeElement> solveBlockValueNonLocal(Value *Val,
410 BasicBlock *BB);
411 std::optional<ValueLatticeElement> solveBlockValuePHINode(PHINode *PN,
412 BasicBlock *BB);
413 std::optional<ValueLatticeElement> solveBlockValueSelect(SelectInst *S,
414 BasicBlock *BB);
415 std::optional<ConstantRange> getRangeFor(Value *V, Instruction *CxtI,
416 BasicBlock *BB);
417 std::optional<ValueLatticeElement> solveBlockValueBinaryOpImpl(
418 Instruction *I, BasicBlock *BB,
419 std::function<ConstantRange(const ConstantRange &, const ConstantRange &)>
420 OpFn);
421 std::optional<ValueLatticeElement>
422 solveBlockValueBinaryOp(BinaryOperator *BBI, BasicBlock *BB);
423 std::optional<ValueLatticeElement> solveBlockValueCast(CastInst *CI,
424 BasicBlock *BB);
425 std::optional<ValueLatticeElement>
426 solveBlockValueOverflowIntrinsic(WithOverflowInst *WO, BasicBlock *BB);
427 std::optional<ValueLatticeElement> solveBlockValueIntrinsic(IntrinsicInst *II,
428 BasicBlock *BB);
429 std::optional<ValueLatticeElement>
430 solveBlockValueExtractValue(ExtractValueInst *EVI, BasicBlock *BB);
431 bool isNonNullAtEndOfBlock(Value *Val, BasicBlock *BB);
432 void intersectAssumeOrGuardBlockValueConstantRange(Value *Val,
433 ValueLatticeElement &BBLV,
434 Instruction *BBI);
436 void solve();
438 public:
439 /// This is the query interface to determine the lattice value for the
440 /// specified Value* at the context instruction (if specified) or at the
441 /// start of the block.
442 ValueLatticeElement getValueInBlock(Value *V, BasicBlock *BB,
443 Instruction *CxtI = nullptr);
445 /// This is the query interface to determine the lattice value for the
446 /// specified Value* at the specified instruction using only information
447 /// from assumes/guards and range metadata. Unlike getValueInBlock(), no
448 /// recursive query is performed.
449 ValueLatticeElement getValueAt(Value *V, Instruction *CxtI);
451 /// This is the query interface to determine the lattice
452 /// value for the specified Value* that is true on the specified edge.
453 ValueLatticeElement getValueOnEdge(Value *V, BasicBlock *FromBB,
454 BasicBlock *ToBB,
455 Instruction *CxtI = nullptr);
457 /// Complete flush all previously computed values
458 void clear() {
459 TheCache.clear();
462 /// Printing the LazyValueInfo Analysis.
463 void printLVI(Function &F, DominatorTree &DTree, raw_ostream &OS) {
464 LazyValueInfoAnnotatedWriter Writer(this, DTree);
465 F.print(OS, &Writer);
468 /// This is part of the update interface to inform the cache
469 /// that a block has been deleted.
470 void eraseBlock(BasicBlock *BB) {
471 TheCache.eraseBlock(BB);
474 /// This is the update interface to inform the cache that an edge from
475 /// PredBB to OldSucc has been threaded to be from PredBB to NewSucc.
476 void threadEdge(BasicBlock *PredBB,BasicBlock *OldSucc,BasicBlock *NewSucc);
478 LazyValueInfoImpl(AssumptionCache *AC, const DataLayout &DL,
479 Function *GuardDecl)
480 : AC(AC), DL(DL), GuardDecl(GuardDecl) {}
482 } // end anonymous namespace
485 void LazyValueInfoImpl::solve() {
486 SmallVector<std::pair<BasicBlock *, Value *>, 8> StartingStack(
487 BlockValueStack.begin(), BlockValueStack.end());
489 unsigned processedCount = 0;
490 while (!BlockValueStack.empty()) {
491 processedCount++;
492 // Abort if we have to process too many values to get a result for this one.
493 // Because of the design of the overdefined cache currently being per-block
494 // to avoid naming-related issues (IE it wants to try to give different
495 // results for the same name in different blocks), overdefined results don't
496 // get cached globally, which in turn means we will often try to rediscover
497 // the same overdefined result again and again. Once something like
498 // PredicateInfo is used in LVI or CVP, we should be able to make the
499 // overdefined cache global, and remove this throttle.
500 if (processedCount > MaxProcessedPerValue) {
501 LLVM_DEBUG(
502 dbgs() << "Giving up on stack because we are getting too deep\n");
503 // Fill in the original values
504 while (!StartingStack.empty()) {
505 std::pair<BasicBlock *, Value *> &e = StartingStack.back();
506 TheCache.insertResult(e.second, e.first,
507 ValueLatticeElement::getOverdefined());
508 StartingStack.pop_back();
510 BlockValueSet.clear();
511 BlockValueStack.clear();
512 return;
514 std::pair<BasicBlock *, Value *> e = BlockValueStack.back();
515 assert(BlockValueSet.count(e) && "Stack value should be in BlockValueSet!");
517 if (solveBlockValue(e.second, e.first)) {
518 // The work item was completely processed.
519 assert(BlockValueStack.back() == e && "Nothing should have been pushed!");
520 #ifndef NDEBUG
521 std::optional<ValueLatticeElement> BBLV =
522 TheCache.getCachedValueInfo(e.second, e.first);
523 assert(BBLV && "Result should be in cache!");
524 LLVM_DEBUG(
525 dbgs() << "POP " << *e.second << " in " << e.first->getName() << " = "
526 << *BBLV << "\n");
527 #endif
529 BlockValueStack.pop_back();
530 BlockValueSet.erase(e);
531 } else {
532 // More work needs to be done before revisiting.
533 assert(BlockValueStack.back() != e && "Stack should have been pushed!");
538 std::optional<ValueLatticeElement>
539 LazyValueInfoImpl::getBlockValue(Value *Val, BasicBlock *BB,
540 Instruction *CxtI) {
541 // If already a constant, there is nothing to compute.
542 if (Constant *VC = dyn_cast<Constant>(Val))
543 return ValueLatticeElement::get(VC);
545 if (std::optional<ValueLatticeElement> OptLatticeVal =
546 TheCache.getCachedValueInfo(Val, BB)) {
547 intersectAssumeOrGuardBlockValueConstantRange(Val, *OptLatticeVal, CxtI);
548 return OptLatticeVal;
551 // We have hit a cycle, assume overdefined.
552 if (!pushBlockValue({ BB, Val }))
553 return ValueLatticeElement::getOverdefined();
555 // Yet to be resolved.
556 return std::nullopt;
559 static ValueLatticeElement getFromRangeMetadata(Instruction *BBI) {
560 switch (BBI->getOpcode()) {
561 default: break;
562 case Instruction::Load:
563 case Instruction::Call:
564 case Instruction::Invoke:
565 if (MDNode *Ranges = BBI->getMetadata(LLVMContext::MD_range))
566 if (isa<IntegerType>(BBI->getType())) {
567 return ValueLatticeElement::getRange(
568 getConstantRangeFromMetadata(*Ranges));
570 break;
572 // Nothing known - will be intersected with other facts
573 return ValueLatticeElement::getOverdefined();
576 bool LazyValueInfoImpl::solveBlockValue(Value *Val, BasicBlock *BB) {
577 assert(!isa<Constant>(Val) && "Value should not be constant");
578 assert(!TheCache.getCachedValueInfo(Val, BB) &&
579 "Value should not be in cache");
581 // Hold off inserting this value into the Cache in case we have to return
582 // false and come back later.
583 std::optional<ValueLatticeElement> Res = solveBlockValueImpl(Val, BB);
584 if (!Res)
585 // Work pushed, will revisit
586 return false;
588 TheCache.insertResult(Val, BB, *Res);
589 return true;
592 std::optional<ValueLatticeElement>
593 LazyValueInfoImpl::solveBlockValueImpl(Value *Val, BasicBlock *BB) {
594 Instruction *BBI = dyn_cast<Instruction>(Val);
595 if (!BBI || BBI->getParent() != BB)
596 return solveBlockValueNonLocal(Val, BB);
598 if (PHINode *PN = dyn_cast<PHINode>(BBI))
599 return solveBlockValuePHINode(PN, BB);
601 if (auto *SI = dyn_cast<SelectInst>(BBI))
602 return solveBlockValueSelect(SI, BB);
604 // If this value is a nonnull pointer, record it's range and bailout. Note
605 // that for all other pointer typed values, we terminate the search at the
606 // definition. We could easily extend this to look through geps, bitcasts,
607 // and the like to prove non-nullness, but it's not clear that's worth it
608 // compile time wise. The context-insensitive value walk done inside
609 // isKnownNonZero gets most of the profitable cases at much less expense.
610 // This does mean that we have a sensitivity to where the defining
611 // instruction is placed, even if it could legally be hoisted much higher.
612 // That is unfortunate.
613 PointerType *PT = dyn_cast<PointerType>(BBI->getType());
614 if (PT && isKnownNonZero(BBI, DL))
615 return ValueLatticeElement::getNot(ConstantPointerNull::get(PT));
617 if (BBI->getType()->isIntegerTy()) {
618 if (auto *CI = dyn_cast<CastInst>(BBI))
619 return solveBlockValueCast(CI, BB);
621 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(BBI))
622 return solveBlockValueBinaryOp(BO, BB);
624 if (auto *EVI = dyn_cast<ExtractValueInst>(BBI))
625 return solveBlockValueExtractValue(EVI, BB);
627 if (auto *II = dyn_cast<IntrinsicInst>(BBI))
628 return solveBlockValueIntrinsic(II, BB);
631 LLVM_DEBUG(dbgs() << " compute BB '" << BB->getName()
632 << "' - unknown inst def found.\n");
633 return getFromRangeMetadata(BBI);
636 static void AddNonNullPointer(Value *Ptr, NonNullPointerSet &PtrSet) {
637 // TODO: Use NullPointerIsDefined instead.
638 if (Ptr->getType()->getPointerAddressSpace() == 0)
639 PtrSet.insert(getUnderlyingObject(Ptr));
642 static void AddNonNullPointersByInstruction(
643 Instruction *I, NonNullPointerSet &PtrSet) {
644 if (LoadInst *L = dyn_cast<LoadInst>(I)) {
645 AddNonNullPointer(L->getPointerOperand(), PtrSet);
646 } else if (StoreInst *S = dyn_cast<StoreInst>(I)) {
647 AddNonNullPointer(S->getPointerOperand(), PtrSet);
648 } else if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(I)) {
649 if (MI->isVolatile()) return;
651 // FIXME: check whether it has a valuerange that excludes zero?
652 ConstantInt *Len = dyn_cast<ConstantInt>(MI->getLength());
653 if (!Len || Len->isZero()) return;
655 AddNonNullPointer(MI->getRawDest(), PtrSet);
656 if (MemTransferInst *MTI = dyn_cast<MemTransferInst>(MI))
657 AddNonNullPointer(MTI->getRawSource(), PtrSet);
661 bool LazyValueInfoImpl::isNonNullAtEndOfBlock(Value *Val, BasicBlock *BB) {
662 if (NullPointerIsDefined(BB->getParent(),
663 Val->getType()->getPointerAddressSpace()))
664 return false;
666 Val = Val->stripInBoundsOffsets();
667 return TheCache.isNonNullAtEndOfBlock(Val, BB, [](BasicBlock *BB) {
668 NonNullPointerSet NonNullPointers;
669 for (Instruction &I : *BB)
670 AddNonNullPointersByInstruction(&I, NonNullPointers);
671 return NonNullPointers;
675 std::optional<ValueLatticeElement>
676 LazyValueInfoImpl::solveBlockValueNonLocal(Value *Val, BasicBlock *BB) {
677 ValueLatticeElement Result; // Start Undefined.
679 // If this is the entry block, we must be asking about an argument. The
680 // value is overdefined.
681 if (BB->isEntryBlock()) {
682 assert(isa<Argument>(Val) && "Unknown live-in to the entry block");
683 return ValueLatticeElement::getOverdefined();
686 // Loop over all of our predecessors, merging what we know from them into
687 // result. If we encounter an unexplored predecessor, we eagerly explore it
688 // in a depth first manner. In practice, this has the effect of discovering
689 // paths we can't analyze eagerly without spending compile times analyzing
690 // other paths. This heuristic benefits from the fact that predecessors are
691 // frequently arranged such that dominating ones come first and we quickly
692 // find a path to function entry. TODO: We should consider explicitly
693 // canonicalizing to make this true rather than relying on this happy
694 // accident.
695 for (BasicBlock *Pred : predecessors(BB)) {
696 std::optional<ValueLatticeElement> EdgeResult = getEdgeValue(Val, Pred, BB);
697 if (!EdgeResult)
698 // Explore that input, then return here
699 return std::nullopt;
701 Result.mergeIn(*EdgeResult);
703 // If we hit overdefined, exit early. The BlockVals entry is already set
704 // to overdefined.
705 if (Result.isOverdefined()) {
706 LLVM_DEBUG(dbgs() << " compute BB '" << BB->getName()
707 << "' - overdefined because of pred '"
708 << Pred->getName() << "' (non local).\n");
709 return Result;
713 // Return the merged value, which is more precise than 'overdefined'.
714 assert(!Result.isOverdefined());
715 return Result;
718 std::optional<ValueLatticeElement>
719 LazyValueInfoImpl::solveBlockValuePHINode(PHINode *PN, BasicBlock *BB) {
720 ValueLatticeElement Result; // Start Undefined.
722 // Loop over all of our predecessors, merging what we know from them into
723 // result. See the comment about the chosen traversal order in
724 // solveBlockValueNonLocal; the same reasoning applies here.
725 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
726 BasicBlock *PhiBB = PN->getIncomingBlock(i);
727 Value *PhiVal = PN->getIncomingValue(i);
728 // Note that we can provide PN as the context value to getEdgeValue, even
729 // though the results will be cached, because PN is the value being used as
730 // the cache key in the caller.
731 std::optional<ValueLatticeElement> EdgeResult =
732 getEdgeValue(PhiVal, PhiBB, BB, PN);
733 if (!EdgeResult)
734 // Explore that input, then return here
735 return std::nullopt;
737 Result.mergeIn(*EdgeResult);
739 // If we hit overdefined, exit early. The BlockVals entry is already set
740 // to overdefined.
741 if (Result.isOverdefined()) {
742 LLVM_DEBUG(dbgs() << " compute BB '" << BB->getName()
743 << "' - overdefined because of pred (local).\n");
745 return Result;
749 // Return the merged value, which is more precise than 'overdefined'.
750 assert(!Result.isOverdefined() && "Possible PHI in entry block?");
751 return Result;
754 static ValueLatticeElement getValueFromCondition(Value *Val, Value *Cond,
755 bool isTrueDest = true);
757 // If we can determine a constraint on the value given conditions assumed by
758 // the program, intersect those constraints with BBLV
759 void LazyValueInfoImpl::intersectAssumeOrGuardBlockValueConstantRange(
760 Value *Val, ValueLatticeElement &BBLV, Instruction *BBI) {
761 BBI = BBI ? BBI : dyn_cast<Instruction>(Val);
762 if (!BBI)
763 return;
765 BasicBlock *BB = BBI->getParent();
766 for (auto &AssumeVH : AC->assumptionsFor(Val)) {
767 if (!AssumeVH)
768 continue;
770 // Only check assumes in the block of the context instruction. Other
771 // assumes will have already been taken into account when the value was
772 // propagated from predecessor blocks.
773 auto *I = cast<CallInst>(AssumeVH);
774 if (I->getParent() != BB || !isValidAssumeForContext(I, BBI))
775 continue;
777 BBLV = intersect(BBLV, getValueFromCondition(Val, I->getArgOperand(0)));
780 // If guards are not used in the module, don't spend time looking for them
781 if (GuardDecl && !GuardDecl->use_empty() &&
782 BBI->getIterator() != BB->begin()) {
783 for (Instruction &I : make_range(std::next(BBI->getIterator().getReverse()),
784 BB->rend())) {
785 Value *Cond = nullptr;
786 if (match(&I, m_Intrinsic<Intrinsic::experimental_guard>(m_Value(Cond))))
787 BBLV = intersect(BBLV, getValueFromCondition(Val, Cond));
791 if (BBLV.isOverdefined()) {
792 // Check whether we're checking at the terminator, and the pointer has
793 // been dereferenced in this block.
794 PointerType *PTy = dyn_cast<PointerType>(Val->getType());
795 if (PTy && BB->getTerminator() == BBI &&
796 isNonNullAtEndOfBlock(Val, BB))
797 BBLV = ValueLatticeElement::getNot(ConstantPointerNull::get(PTy));
801 static ConstantRange getConstantRangeOrFull(const ValueLatticeElement &Val,
802 Type *Ty, const DataLayout &DL) {
803 if (Val.isConstantRange())
804 return Val.getConstantRange();
805 return ConstantRange::getFull(DL.getTypeSizeInBits(Ty));
808 std::optional<ValueLatticeElement>
809 LazyValueInfoImpl::solveBlockValueSelect(SelectInst *SI, BasicBlock *BB) {
810 // Recurse on our inputs if needed
811 std::optional<ValueLatticeElement> OptTrueVal =
812 getBlockValue(SI->getTrueValue(), BB, SI);
813 if (!OptTrueVal)
814 return std::nullopt;
815 ValueLatticeElement &TrueVal = *OptTrueVal;
817 std::optional<ValueLatticeElement> OptFalseVal =
818 getBlockValue(SI->getFalseValue(), BB, SI);
819 if (!OptFalseVal)
820 return std::nullopt;
821 ValueLatticeElement &FalseVal = *OptFalseVal;
823 if (TrueVal.isConstantRange() || FalseVal.isConstantRange()) {
824 const ConstantRange &TrueCR =
825 getConstantRangeOrFull(TrueVal, SI->getType(), DL);
826 const ConstantRange &FalseCR =
827 getConstantRangeOrFull(FalseVal, SI->getType(), DL);
828 Value *LHS = nullptr;
829 Value *RHS = nullptr;
830 SelectPatternResult SPR = matchSelectPattern(SI, LHS, RHS);
831 // Is this a min specifically of our two inputs? (Avoid the risk of
832 // ValueTracking getting smarter looking back past our immediate inputs.)
833 if (SelectPatternResult::isMinOrMax(SPR.Flavor) &&
834 ((LHS == SI->getTrueValue() && RHS == SI->getFalseValue()) ||
835 (RHS == SI->getTrueValue() && LHS == SI->getFalseValue()))) {
836 ConstantRange ResultCR = [&]() {
837 switch (SPR.Flavor) {
838 default:
839 llvm_unreachable("unexpected minmax type!");
840 case SPF_SMIN: /// Signed minimum
841 return TrueCR.smin(FalseCR);
842 case SPF_UMIN: /// Unsigned minimum
843 return TrueCR.umin(FalseCR);
844 case SPF_SMAX: /// Signed maximum
845 return TrueCR.smax(FalseCR);
846 case SPF_UMAX: /// Unsigned maximum
847 return TrueCR.umax(FalseCR);
849 }();
850 return ValueLatticeElement::getRange(
851 ResultCR, TrueVal.isConstantRangeIncludingUndef() ||
852 FalseVal.isConstantRangeIncludingUndef());
855 if (SPR.Flavor == SPF_ABS) {
856 if (LHS == SI->getTrueValue())
857 return ValueLatticeElement::getRange(
858 TrueCR.abs(), TrueVal.isConstantRangeIncludingUndef());
859 if (LHS == SI->getFalseValue())
860 return ValueLatticeElement::getRange(
861 FalseCR.abs(), FalseVal.isConstantRangeIncludingUndef());
864 if (SPR.Flavor == SPF_NABS) {
865 ConstantRange Zero(APInt::getZero(TrueCR.getBitWidth()));
866 if (LHS == SI->getTrueValue())
867 return ValueLatticeElement::getRange(
868 Zero.sub(TrueCR.abs()), FalseVal.isConstantRangeIncludingUndef());
869 if (LHS == SI->getFalseValue())
870 return ValueLatticeElement::getRange(
871 Zero.sub(FalseCR.abs()), FalseVal.isConstantRangeIncludingUndef());
875 // Can we constrain the facts about the true and false values by using the
876 // condition itself? This shows up with idioms like e.g. select(a > 5, a, 5).
877 // TODO: We could potentially refine an overdefined true value above.
878 Value *Cond = SI->getCondition();
879 TrueVal = intersect(TrueVal,
880 getValueFromCondition(SI->getTrueValue(), Cond, true));
881 FalseVal = intersect(FalseVal,
882 getValueFromCondition(SI->getFalseValue(), Cond, false));
884 ValueLatticeElement Result = TrueVal;
885 Result.mergeIn(FalseVal);
886 return Result;
889 std::optional<ConstantRange>
890 LazyValueInfoImpl::getRangeFor(Value *V, Instruction *CxtI, BasicBlock *BB) {
891 std::optional<ValueLatticeElement> OptVal = getBlockValue(V, BB, CxtI);
892 if (!OptVal)
893 return std::nullopt;
894 return getConstantRangeOrFull(*OptVal, V->getType(), DL);
897 std::optional<ValueLatticeElement>
898 LazyValueInfoImpl::solveBlockValueCast(CastInst *CI, BasicBlock *BB) {
899 // Without knowing how wide the input is, we can't analyze it in any useful
900 // way.
901 if (!CI->getOperand(0)->getType()->isSized())
902 return ValueLatticeElement::getOverdefined();
904 // Filter out casts we don't know how to reason about before attempting to
905 // recurse on our operand. This can cut a long search short if we know we're
906 // not going to be able to get any useful information anways.
907 switch (CI->getOpcode()) {
908 case Instruction::Trunc:
909 case Instruction::SExt:
910 case Instruction::ZExt:
911 case Instruction::BitCast:
912 break;
913 default:
914 // Unhandled instructions are overdefined.
915 LLVM_DEBUG(dbgs() << " compute BB '" << BB->getName()
916 << "' - overdefined (unknown cast).\n");
917 return ValueLatticeElement::getOverdefined();
920 // Figure out the range of the LHS. If that fails, we still apply the
921 // transfer rule on the full set since we may be able to locally infer
922 // interesting facts.
923 std::optional<ConstantRange> LHSRes = getRangeFor(CI->getOperand(0), CI, BB);
924 if (!LHSRes)
925 // More work to do before applying this transfer rule.
926 return std::nullopt;
927 const ConstantRange &LHSRange = *LHSRes;
929 const unsigned ResultBitWidth = CI->getType()->getIntegerBitWidth();
931 // NOTE: We're currently limited by the set of operations that ConstantRange
932 // can evaluate symbolically. Enhancing that set will allows us to analyze
933 // more definitions.
934 return ValueLatticeElement::getRange(LHSRange.castOp(CI->getOpcode(),
935 ResultBitWidth));
938 std::optional<ValueLatticeElement>
939 LazyValueInfoImpl::solveBlockValueBinaryOpImpl(
940 Instruction *I, BasicBlock *BB,
941 std::function<ConstantRange(const ConstantRange &, const ConstantRange &)>
942 OpFn) {
943 // Figure out the ranges of the operands. If that fails, use a
944 // conservative range, but apply the transfer rule anyways. This
945 // lets us pick up facts from expressions like "and i32 (call i32
946 // @foo()), 32"
947 std::optional<ConstantRange> LHSRes = getRangeFor(I->getOperand(0), I, BB);
948 std::optional<ConstantRange> RHSRes = getRangeFor(I->getOperand(1), I, BB);
949 if (!LHSRes || !RHSRes)
950 // More work to do before applying this transfer rule.
951 return std::nullopt;
953 const ConstantRange &LHSRange = *LHSRes;
954 const ConstantRange &RHSRange = *RHSRes;
955 return ValueLatticeElement::getRange(OpFn(LHSRange, RHSRange));
958 std::optional<ValueLatticeElement>
959 LazyValueInfoImpl::solveBlockValueBinaryOp(BinaryOperator *BO, BasicBlock *BB) {
960 assert(BO->getOperand(0)->getType()->isSized() &&
961 "all operands to binary operators are sized");
962 if (auto *OBO = dyn_cast<OverflowingBinaryOperator>(BO)) {
963 unsigned NoWrapKind = 0;
964 if (OBO->hasNoUnsignedWrap())
965 NoWrapKind |= OverflowingBinaryOperator::NoUnsignedWrap;
966 if (OBO->hasNoSignedWrap())
967 NoWrapKind |= OverflowingBinaryOperator::NoSignedWrap;
969 return solveBlockValueBinaryOpImpl(
970 BO, BB,
971 [BO, NoWrapKind](const ConstantRange &CR1, const ConstantRange &CR2) {
972 return CR1.overflowingBinaryOp(BO->getOpcode(), CR2, NoWrapKind);
976 return solveBlockValueBinaryOpImpl(
977 BO, BB, [BO](const ConstantRange &CR1, const ConstantRange &CR2) {
978 return CR1.binaryOp(BO->getOpcode(), CR2);
982 std::optional<ValueLatticeElement>
983 LazyValueInfoImpl::solveBlockValueOverflowIntrinsic(WithOverflowInst *WO,
984 BasicBlock *BB) {
985 return solveBlockValueBinaryOpImpl(
986 WO, BB, [WO](const ConstantRange &CR1, const ConstantRange &CR2) {
987 return CR1.binaryOp(WO->getBinaryOp(), CR2);
991 std::optional<ValueLatticeElement>
992 LazyValueInfoImpl::solveBlockValueIntrinsic(IntrinsicInst *II, BasicBlock *BB) {
993 ValueLatticeElement MetadataVal = getFromRangeMetadata(II);
994 if (!ConstantRange::isIntrinsicSupported(II->getIntrinsicID())) {
995 LLVM_DEBUG(dbgs() << " compute BB '" << BB->getName()
996 << "' - unknown intrinsic.\n");
997 return MetadataVal;
1000 SmallVector<ConstantRange, 2> OpRanges;
1001 for (Value *Op : II->args()) {
1002 std::optional<ConstantRange> Range = getRangeFor(Op, II, BB);
1003 if (!Range)
1004 return std::nullopt;
1005 OpRanges.push_back(*Range);
1008 return intersect(ValueLatticeElement::getRange(ConstantRange::intrinsic(
1009 II->getIntrinsicID(), OpRanges)),
1010 MetadataVal);
1013 std::optional<ValueLatticeElement>
1014 LazyValueInfoImpl::solveBlockValueExtractValue(ExtractValueInst *EVI,
1015 BasicBlock *BB) {
1016 if (auto *WO = dyn_cast<WithOverflowInst>(EVI->getAggregateOperand()))
1017 if (EVI->getNumIndices() == 1 && *EVI->idx_begin() == 0)
1018 return solveBlockValueOverflowIntrinsic(WO, BB);
1020 // Handle extractvalue of insertvalue to allow further simplification
1021 // based on replaced with.overflow intrinsics.
1022 if (Value *V = simplifyExtractValueInst(
1023 EVI->getAggregateOperand(), EVI->getIndices(),
1024 EVI->getModule()->getDataLayout()))
1025 return getBlockValue(V, BB, EVI);
1027 LLVM_DEBUG(dbgs() << " compute BB '" << BB->getName()
1028 << "' - overdefined (unknown extractvalue).\n");
1029 return ValueLatticeElement::getOverdefined();
1032 static bool matchICmpOperand(APInt &Offset, Value *LHS, Value *Val,
1033 ICmpInst::Predicate Pred) {
1034 if (LHS == Val)
1035 return true;
1037 // Handle range checking idiom produced by InstCombine. We will subtract the
1038 // offset from the allowed range for RHS in this case.
1039 const APInt *C;
1040 if (match(LHS, m_Add(m_Specific(Val), m_APInt(C)))) {
1041 Offset = *C;
1042 return true;
1045 // Handle the symmetric case. This appears in saturation patterns like
1046 // (x == 16) ? 16 : (x + 1).
1047 if (match(Val, m_Add(m_Specific(LHS), m_APInt(C)))) {
1048 Offset = -*C;
1049 return true;
1052 // If (x | y) < C, then (x < C) && (y < C).
1053 if (match(LHS, m_c_Or(m_Specific(Val), m_Value())) &&
1054 (Pred == ICmpInst::ICMP_ULT || Pred == ICmpInst::ICMP_ULE))
1055 return true;
1057 // If (x & y) > C, then (x > C) && (y > C).
1058 if (match(LHS, m_c_And(m_Specific(Val), m_Value())) &&
1059 (Pred == ICmpInst::ICMP_UGT || Pred == ICmpInst::ICMP_UGE))
1060 return true;
1062 return false;
1065 /// Get value range for a "(Val + Offset) Pred RHS" condition.
1066 static ValueLatticeElement getValueFromSimpleICmpCondition(
1067 CmpInst::Predicate Pred, Value *RHS, const APInt &Offset) {
1068 ConstantRange RHSRange(RHS->getType()->getIntegerBitWidth(),
1069 /*isFullSet=*/true);
1070 if (ConstantInt *CI = dyn_cast<ConstantInt>(RHS))
1071 RHSRange = ConstantRange(CI->getValue());
1072 else if (Instruction *I = dyn_cast<Instruction>(RHS))
1073 if (auto *Ranges = I->getMetadata(LLVMContext::MD_range))
1074 RHSRange = getConstantRangeFromMetadata(*Ranges);
1076 ConstantRange TrueValues =
1077 ConstantRange::makeAllowedICmpRegion(Pred, RHSRange);
1078 return ValueLatticeElement::getRange(TrueValues.subtract(Offset));
1081 static ValueLatticeElement getValueFromICmpCondition(Value *Val, ICmpInst *ICI,
1082 bool isTrueDest) {
1083 Value *LHS = ICI->getOperand(0);
1084 Value *RHS = ICI->getOperand(1);
1086 // Get the predicate that must hold along the considered edge.
1087 CmpInst::Predicate EdgePred =
1088 isTrueDest ? ICI->getPredicate() : ICI->getInversePredicate();
1090 if (isa<Constant>(RHS)) {
1091 if (ICI->isEquality() && LHS == Val) {
1092 if (EdgePred == ICmpInst::ICMP_EQ)
1093 return ValueLatticeElement::get(cast<Constant>(RHS));
1094 else if (!isa<UndefValue>(RHS))
1095 return ValueLatticeElement::getNot(cast<Constant>(RHS));
1099 Type *Ty = Val->getType();
1100 if (!Ty->isIntegerTy())
1101 return ValueLatticeElement::getOverdefined();
1103 unsigned BitWidth = Ty->getScalarSizeInBits();
1104 APInt Offset(BitWidth, 0);
1105 if (matchICmpOperand(Offset, LHS, Val, EdgePred))
1106 return getValueFromSimpleICmpCondition(EdgePred, RHS, Offset);
1108 CmpInst::Predicate SwappedPred = CmpInst::getSwappedPredicate(EdgePred);
1109 if (matchICmpOperand(Offset, RHS, Val, SwappedPred))
1110 return getValueFromSimpleICmpCondition(SwappedPred, LHS, Offset);
1112 const APInt *Mask, *C;
1113 if (match(LHS, m_And(m_Specific(Val), m_APInt(Mask))) &&
1114 match(RHS, m_APInt(C))) {
1115 // If (Val & Mask) == C then all the masked bits are known and we can
1116 // compute a value range based on that.
1117 if (EdgePred == ICmpInst::ICMP_EQ) {
1118 KnownBits Known;
1119 Known.Zero = ~*C & *Mask;
1120 Known.One = *C & *Mask;
1121 return ValueLatticeElement::getRange(
1122 ConstantRange::fromKnownBits(Known, /*IsSigned*/ false));
1124 // If (Val & Mask) != 0 then the value must be larger than the lowest set
1125 // bit of Mask.
1126 if (EdgePred == ICmpInst::ICMP_NE && !Mask->isZero() && C->isZero()) {
1127 return ValueLatticeElement::getRange(ConstantRange::getNonEmpty(
1128 APInt::getOneBitSet(BitWidth, Mask->countr_zero()),
1129 APInt::getZero(BitWidth)));
1133 // If (X urem Modulus) >= C, then X >= C.
1134 // If trunc X >= C, then X >= C.
1135 // TODO: An upper bound could be computed as well.
1136 if (match(LHS, m_CombineOr(m_URem(m_Specific(Val), m_Value()),
1137 m_Trunc(m_Specific(Val)))) &&
1138 match(RHS, m_APInt(C))) {
1139 // Use the icmp region so we don't have to deal with different predicates.
1140 ConstantRange CR = ConstantRange::makeExactICmpRegion(EdgePred, *C);
1141 if (!CR.isEmptySet())
1142 return ValueLatticeElement::getRange(ConstantRange::getNonEmpty(
1143 CR.getUnsignedMin().zext(BitWidth), APInt(BitWidth, 0)));
1146 return ValueLatticeElement::getOverdefined();
1149 // Handle conditions of the form
1150 // extractvalue(op.with.overflow(%x, C), 1).
1151 static ValueLatticeElement getValueFromOverflowCondition(
1152 Value *Val, WithOverflowInst *WO, bool IsTrueDest) {
1153 // TODO: This only works with a constant RHS for now. We could also compute
1154 // the range of the RHS, but this doesn't fit into the current structure of
1155 // the edge value calculation.
1156 const APInt *C;
1157 if (WO->getLHS() != Val || !match(WO->getRHS(), m_APInt(C)))
1158 return ValueLatticeElement::getOverdefined();
1160 // Calculate the possible values of %x for which no overflow occurs.
1161 ConstantRange NWR = ConstantRange::makeExactNoWrapRegion(
1162 WO->getBinaryOp(), *C, WO->getNoWrapKind());
1164 // If overflow is false, %x is constrained to NWR. If overflow is true, %x is
1165 // constrained to it's inverse (all values that might cause overflow).
1166 if (IsTrueDest)
1167 NWR = NWR.inverse();
1168 return ValueLatticeElement::getRange(NWR);
1171 // Tracks a Value * condition and whether we're interested in it or its inverse
1172 typedef PointerIntPair<Value *, 1, bool> CondValue;
1174 static std::optional<ValueLatticeElement> getValueFromConditionImpl(
1175 Value *Val, CondValue CondVal, bool isRevisit,
1176 SmallDenseMap<CondValue, ValueLatticeElement> &Visited,
1177 SmallVectorImpl<CondValue> &Worklist) {
1179 Value *Cond = CondVal.getPointer();
1180 bool isTrueDest = CondVal.getInt();
1181 if (!isRevisit) {
1182 if (ICmpInst *ICI = dyn_cast<ICmpInst>(Cond))
1183 return getValueFromICmpCondition(Val, ICI, isTrueDest);
1185 if (auto *EVI = dyn_cast<ExtractValueInst>(Cond))
1186 if (auto *WO = dyn_cast<WithOverflowInst>(EVI->getAggregateOperand()))
1187 if (EVI->getNumIndices() == 1 && *EVI->idx_begin() == 1)
1188 return getValueFromOverflowCondition(Val, WO, isTrueDest);
1191 Value *N;
1192 if (match(Cond, m_Not(m_Value(N)))) {
1193 CondValue NKey(N, !isTrueDest);
1194 auto NV = Visited.find(NKey);
1195 if (NV == Visited.end()) {
1196 Worklist.push_back(NKey);
1197 return std::nullopt;
1199 return NV->second;
1202 Value *L, *R;
1203 bool IsAnd;
1204 if (match(Cond, m_LogicalAnd(m_Value(L), m_Value(R))))
1205 IsAnd = true;
1206 else if (match(Cond, m_LogicalOr(m_Value(L), m_Value(R))))
1207 IsAnd = false;
1208 else
1209 return ValueLatticeElement::getOverdefined();
1211 auto LV = Visited.find(CondValue(L, isTrueDest));
1212 auto RV = Visited.find(CondValue(R, isTrueDest));
1214 // if (L && R) -> intersect L and R
1215 // if (!(L || R)) -> intersect !L and !R
1216 // if (L || R) -> union L and R
1217 // if (!(L && R)) -> union !L and !R
1218 if ((isTrueDest ^ IsAnd) && (LV != Visited.end())) {
1219 ValueLatticeElement V = LV->second;
1220 if (V.isOverdefined())
1221 return V;
1222 if (RV != Visited.end()) {
1223 V.mergeIn(RV->second);
1224 return V;
1228 if (LV == Visited.end() || RV == Visited.end()) {
1229 assert(!isRevisit);
1230 if (LV == Visited.end())
1231 Worklist.push_back(CondValue(L, isTrueDest));
1232 if (RV == Visited.end())
1233 Worklist.push_back(CondValue(R, isTrueDest));
1234 return std::nullopt;
1237 return intersect(LV->second, RV->second);
1240 ValueLatticeElement getValueFromCondition(Value *Val, Value *Cond,
1241 bool isTrueDest) {
1242 assert(Cond && "precondition");
1243 SmallDenseMap<CondValue, ValueLatticeElement> Visited;
1244 SmallVector<CondValue> Worklist;
1246 CondValue CondKey(Cond, isTrueDest);
1247 Worklist.push_back(CondKey);
1248 do {
1249 CondValue CurrentCond = Worklist.back();
1250 // Insert an Overdefined placeholder into the set to prevent
1251 // infinite recursion if there exists IRs that use not
1252 // dominated by its def as in this example:
1253 // "%tmp3 = or i1 undef, %tmp4"
1254 // "%tmp4 = or i1 undef, %tmp3"
1255 auto Iter =
1256 Visited.try_emplace(CurrentCond, ValueLatticeElement::getOverdefined());
1257 bool isRevisit = !Iter.second;
1258 std::optional<ValueLatticeElement> Result = getValueFromConditionImpl(
1259 Val, CurrentCond, isRevisit, Visited, Worklist);
1260 if (Result) {
1261 Visited[CurrentCond] = *Result;
1262 Worklist.pop_back();
1264 } while (!Worklist.empty());
1266 auto Result = Visited.find(CondKey);
1267 assert(Result != Visited.end());
1268 return Result->second;
1271 // Return true if Usr has Op as an operand, otherwise false.
1272 static bool usesOperand(User *Usr, Value *Op) {
1273 return is_contained(Usr->operands(), Op);
1276 // Return true if the instruction type of Val is supported by
1277 // constantFoldUser(). Currently CastInst, BinaryOperator and FreezeInst only.
1278 // Call this before calling constantFoldUser() to find out if it's even worth
1279 // attempting to call it.
1280 static bool isOperationFoldable(User *Usr) {
1281 return isa<CastInst>(Usr) || isa<BinaryOperator>(Usr) || isa<FreezeInst>(Usr);
1284 // Check if Usr can be simplified to an integer constant when the value of one
1285 // of its operands Op is an integer constant OpConstVal. If so, return it as an
1286 // lattice value range with a single element or otherwise return an overdefined
1287 // lattice value.
1288 static ValueLatticeElement constantFoldUser(User *Usr, Value *Op,
1289 const APInt &OpConstVal,
1290 const DataLayout &DL) {
1291 assert(isOperationFoldable(Usr) && "Precondition");
1292 Constant* OpConst = Constant::getIntegerValue(Op->getType(), OpConstVal);
1293 // Check if Usr can be simplified to a constant.
1294 if (auto *CI = dyn_cast<CastInst>(Usr)) {
1295 assert(CI->getOperand(0) == Op && "Operand 0 isn't Op");
1296 if (auto *C = dyn_cast_or_null<ConstantInt>(
1297 simplifyCastInst(CI->getOpcode(), OpConst,
1298 CI->getDestTy(), DL))) {
1299 return ValueLatticeElement::getRange(ConstantRange(C->getValue()));
1301 } else if (auto *BO = dyn_cast<BinaryOperator>(Usr)) {
1302 bool Op0Match = BO->getOperand(0) == Op;
1303 bool Op1Match = BO->getOperand(1) == Op;
1304 assert((Op0Match || Op1Match) &&
1305 "Operand 0 nor Operand 1 isn't a match");
1306 Value *LHS = Op0Match ? OpConst : BO->getOperand(0);
1307 Value *RHS = Op1Match ? OpConst : BO->getOperand(1);
1308 if (auto *C = dyn_cast_or_null<ConstantInt>(
1309 simplifyBinOp(BO->getOpcode(), LHS, RHS, DL))) {
1310 return ValueLatticeElement::getRange(ConstantRange(C->getValue()));
1312 } else if (isa<FreezeInst>(Usr)) {
1313 assert(cast<FreezeInst>(Usr)->getOperand(0) == Op && "Operand 0 isn't Op");
1314 return ValueLatticeElement::getRange(ConstantRange(OpConstVal));
1316 return ValueLatticeElement::getOverdefined();
1319 /// Compute the value of Val on the edge BBFrom -> BBTo. Returns false if
1320 /// Val is not constrained on the edge. Result is unspecified if return value
1321 /// is false.
1322 static std::optional<ValueLatticeElement> getEdgeValueLocal(Value *Val,
1323 BasicBlock *BBFrom,
1324 BasicBlock *BBTo) {
1325 // TODO: Handle more complex conditionals. If (v == 0 || v2 < 1) is false, we
1326 // know that v != 0.
1327 if (BranchInst *BI = dyn_cast<BranchInst>(BBFrom->getTerminator())) {
1328 // If this is a conditional branch and only one successor goes to BBTo, then
1329 // we may be able to infer something from the condition.
1330 if (BI->isConditional() &&
1331 BI->getSuccessor(0) != BI->getSuccessor(1)) {
1332 bool isTrueDest = BI->getSuccessor(0) == BBTo;
1333 assert(BI->getSuccessor(!isTrueDest) == BBTo &&
1334 "BBTo isn't a successor of BBFrom");
1335 Value *Condition = BI->getCondition();
1337 // If V is the condition of the branch itself, then we know exactly what
1338 // it is.
1339 if (Condition == Val)
1340 return ValueLatticeElement::get(ConstantInt::get(
1341 Type::getInt1Ty(Val->getContext()), isTrueDest));
1343 // If the condition of the branch is an equality comparison, we may be
1344 // able to infer the value.
1345 ValueLatticeElement Result = getValueFromCondition(Val, Condition,
1346 isTrueDest);
1347 if (!Result.isOverdefined())
1348 return Result;
1350 if (User *Usr = dyn_cast<User>(Val)) {
1351 assert(Result.isOverdefined() && "Result isn't overdefined");
1352 // Check with isOperationFoldable() first to avoid linearly iterating
1353 // over the operands unnecessarily which can be expensive for
1354 // instructions with many operands.
1355 if (isa<IntegerType>(Usr->getType()) && isOperationFoldable(Usr)) {
1356 const DataLayout &DL = BBTo->getModule()->getDataLayout();
1357 if (usesOperand(Usr, Condition)) {
1358 // If Val has Condition as an operand and Val can be folded into a
1359 // constant with either Condition == true or Condition == false,
1360 // propagate the constant.
1361 // eg.
1362 // ; %Val is true on the edge to %then.
1363 // %Val = and i1 %Condition, true.
1364 // br %Condition, label %then, label %else
1365 APInt ConditionVal(1, isTrueDest ? 1 : 0);
1366 Result = constantFoldUser(Usr, Condition, ConditionVal, DL);
1367 } else {
1368 // If one of Val's operand has an inferred value, we may be able to
1369 // infer the value of Val.
1370 // eg.
1371 // ; %Val is 94 on the edge to %then.
1372 // %Val = add i8 %Op, 1
1373 // %Condition = icmp eq i8 %Op, 93
1374 // br i1 %Condition, label %then, label %else
1375 for (unsigned i = 0; i < Usr->getNumOperands(); ++i) {
1376 Value *Op = Usr->getOperand(i);
1377 ValueLatticeElement OpLatticeVal =
1378 getValueFromCondition(Op, Condition, isTrueDest);
1379 if (std::optional<APInt> OpConst =
1380 OpLatticeVal.asConstantInteger()) {
1381 Result = constantFoldUser(Usr, Op, *OpConst, DL);
1382 break;
1388 if (!Result.isOverdefined())
1389 return Result;
1393 // If the edge was formed by a switch on the value, then we may know exactly
1394 // what it is.
1395 if (SwitchInst *SI = dyn_cast<SwitchInst>(BBFrom->getTerminator())) {
1396 Value *Condition = SI->getCondition();
1397 if (!isa<IntegerType>(Val->getType()))
1398 return std::nullopt;
1399 bool ValUsesConditionAndMayBeFoldable = false;
1400 if (Condition != Val) {
1401 // Check if Val has Condition as an operand.
1402 if (User *Usr = dyn_cast<User>(Val))
1403 ValUsesConditionAndMayBeFoldable = isOperationFoldable(Usr) &&
1404 usesOperand(Usr, Condition);
1405 if (!ValUsesConditionAndMayBeFoldable)
1406 return std::nullopt;
1408 assert((Condition == Val || ValUsesConditionAndMayBeFoldable) &&
1409 "Condition != Val nor Val doesn't use Condition");
1411 bool DefaultCase = SI->getDefaultDest() == BBTo;
1412 unsigned BitWidth = Val->getType()->getIntegerBitWidth();
1413 ConstantRange EdgesVals(BitWidth, DefaultCase/*isFullSet*/);
1415 for (auto Case : SI->cases()) {
1416 APInt CaseValue = Case.getCaseValue()->getValue();
1417 ConstantRange EdgeVal(CaseValue);
1418 if (ValUsesConditionAndMayBeFoldable) {
1419 User *Usr = cast<User>(Val);
1420 const DataLayout &DL = BBTo->getModule()->getDataLayout();
1421 ValueLatticeElement EdgeLatticeVal =
1422 constantFoldUser(Usr, Condition, CaseValue, DL);
1423 if (EdgeLatticeVal.isOverdefined())
1424 return std::nullopt;
1425 EdgeVal = EdgeLatticeVal.getConstantRange();
1427 if (DefaultCase) {
1428 // It is possible that the default destination is the destination of
1429 // some cases. We cannot perform difference for those cases.
1430 // We know Condition != CaseValue in BBTo. In some cases we can use
1431 // this to infer Val == f(Condition) is != f(CaseValue). For now, we
1432 // only do this when f is identity (i.e. Val == Condition), but we
1433 // should be able to do this for any injective f.
1434 if (Case.getCaseSuccessor() != BBTo && Condition == Val)
1435 EdgesVals = EdgesVals.difference(EdgeVal);
1436 } else if (Case.getCaseSuccessor() == BBTo)
1437 EdgesVals = EdgesVals.unionWith(EdgeVal);
1439 return ValueLatticeElement::getRange(std::move(EdgesVals));
1441 return std::nullopt;
1444 /// Compute the value of Val on the edge BBFrom -> BBTo or the value at
1445 /// the basic block if the edge does not constrain Val.
1446 std::optional<ValueLatticeElement>
1447 LazyValueInfoImpl::getEdgeValue(Value *Val, BasicBlock *BBFrom,
1448 BasicBlock *BBTo, Instruction *CxtI) {
1449 // If already a constant, there is nothing to compute.
1450 if (Constant *VC = dyn_cast<Constant>(Val))
1451 return ValueLatticeElement::get(VC);
1453 ValueLatticeElement LocalResult =
1454 getEdgeValueLocal(Val, BBFrom, BBTo)
1455 .value_or(ValueLatticeElement::getOverdefined());
1456 if (hasSingleValue(LocalResult))
1457 // Can't get any more precise here
1458 return LocalResult;
1460 std::optional<ValueLatticeElement> OptInBlock =
1461 getBlockValue(Val, BBFrom, BBFrom->getTerminator());
1462 if (!OptInBlock)
1463 return std::nullopt;
1464 ValueLatticeElement &InBlock = *OptInBlock;
1466 // We can use the context instruction (generically the ultimate instruction
1467 // the calling pass is trying to simplify) here, even though the result of
1468 // this function is generally cached when called from the solve* functions
1469 // (and that cached result might be used with queries using a different
1470 // context instruction), because when this function is called from the solve*
1471 // functions, the context instruction is not provided. When called from
1472 // LazyValueInfoImpl::getValueOnEdge, the context instruction is provided,
1473 // but then the result is not cached.
1474 intersectAssumeOrGuardBlockValueConstantRange(Val, InBlock, CxtI);
1476 return intersect(LocalResult, InBlock);
1479 ValueLatticeElement LazyValueInfoImpl::getValueInBlock(Value *V, BasicBlock *BB,
1480 Instruction *CxtI) {
1481 LLVM_DEBUG(dbgs() << "LVI Getting block end value " << *V << " at '"
1482 << BB->getName() << "'\n");
1484 assert(BlockValueStack.empty() && BlockValueSet.empty());
1485 std::optional<ValueLatticeElement> OptResult = getBlockValue(V, BB, CxtI);
1486 if (!OptResult) {
1487 solve();
1488 OptResult = getBlockValue(V, BB, CxtI);
1489 assert(OptResult && "Value not available after solving");
1492 ValueLatticeElement Result = *OptResult;
1493 LLVM_DEBUG(dbgs() << " Result = " << Result << "\n");
1494 return Result;
1497 ValueLatticeElement LazyValueInfoImpl::getValueAt(Value *V, Instruction *CxtI) {
1498 LLVM_DEBUG(dbgs() << "LVI Getting value " << *V << " at '" << CxtI->getName()
1499 << "'\n");
1501 if (auto *C = dyn_cast<Constant>(V))
1502 return ValueLatticeElement::get(C);
1504 ValueLatticeElement Result = ValueLatticeElement::getOverdefined();
1505 if (auto *I = dyn_cast<Instruction>(V))
1506 Result = getFromRangeMetadata(I);
1507 intersectAssumeOrGuardBlockValueConstantRange(V, Result, CxtI);
1509 LLVM_DEBUG(dbgs() << " Result = " << Result << "\n");
1510 return Result;
1513 ValueLatticeElement LazyValueInfoImpl::
1514 getValueOnEdge(Value *V, BasicBlock *FromBB, BasicBlock *ToBB,
1515 Instruction *CxtI) {
1516 LLVM_DEBUG(dbgs() << "LVI Getting edge value " << *V << " from '"
1517 << FromBB->getName() << "' to '" << ToBB->getName()
1518 << "'\n");
1520 std::optional<ValueLatticeElement> Result =
1521 getEdgeValue(V, FromBB, ToBB, CxtI);
1522 if (!Result) {
1523 solve();
1524 Result = getEdgeValue(V, FromBB, ToBB, CxtI);
1525 assert(Result && "More work to do after problem solved?");
1528 LLVM_DEBUG(dbgs() << " Result = " << *Result << "\n");
1529 return *Result;
1532 void LazyValueInfoImpl::threadEdge(BasicBlock *PredBB, BasicBlock *OldSucc,
1533 BasicBlock *NewSucc) {
1534 TheCache.threadEdgeImpl(OldSucc, NewSucc);
1537 //===----------------------------------------------------------------------===//
1538 // LazyValueInfo Impl
1539 //===----------------------------------------------------------------------===//
1541 /// This lazily constructs the LazyValueInfoImpl.
1542 static LazyValueInfoImpl &getImpl(void *&PImpl, AssumptionCache *AC,
1543 const Module *M) {
1544 if (!PImpl) {
1545 assert(M && "getCache() called with a null Module");
1546 const DataLayout &DL = M->getDataLayout();
1547 Function *GuardDecl = M->getFunction(
1548 Intrinsic::getName(Intrinsic::experimental_guard));
1549 PImpl = new LazyValueInfoImpl(AC, DL, GuardDecl);
1551 return *static_cast<LazyValueInfoImpl*>(PImpl);
1554 bool LazyValueInfoWrapperPass::runOnFunction(Function &F) {
1555 Info.AC = &getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F);
1556 Info.TLI = &getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(F);
1558 if (Info.PImpl)
1559 getImpl(Info.PImpl, Info.AC, F.getParent()).clear();
1561 // Fully lazy.
1562 return false;
1565 void LazyValueInfoWrapperPass::getAnalysisUsage(AnalysisUsage &AU) const {
1566 AU.setPreservesAll();
1567 AU.addRequired<AssumptionCacheTracker>();
1568 AU.addRequired<TargetLibraryInfoWrapperPass>();
1571 LazyValueInfo &LazyValueInfoWrapperPass::getLVI() { return Info; }
1573 LazyValueInfo::~LazyValueInfo() { releaseMemory(); }
1575 void LazyValueInfo::releaseMemory() {
1576 // If the cache was allocated, free it.
1577 if (PImpl) {
1578 delete &getImpl(PImpl, AC, nullptr);
1579 PImpl = nullptr;
1583 bool LazyValueInfo::invalidate(Function &F, const PreservedAnalyses &PA,
1584 FunctionAnalysisManager::Invalidator &Inv) {
1585 // We need to invalidate if we have either failed to preserve this analyses
1586 // result directly or if any of its dependencies have been invalidated.
1587 auto PAC = PA.getChecker<LazyValueAnalysis>();
1588 if (!(PAC.preserved() || PAC.preservedSet<AllAnalysesOn<Function>>()))
1589 return true;
1591 return false;
1594 void LazyValueInfoWrapperPass::releaseMemory() { Info.releaseMemory(); }
1596 LazyValueInfo LazyValueAnalysis::run(Function &F,
1597 FunctionAnalysisManager &FAM) {
1598 auto &AC = FAM.getResult<AssumptionAnalysis>(F);
1599 auto &TLI = FAM.getResult<TargetLibraryAnalysis>(F);
1601 return LazyValueInfo(&AC, &F.getParent()->getDataLayout(), &TLI);
1604 /// Returns true if we can statically tell that this value will never be a
1605 /// "useful" constant. In practice, this means we've got something like an
1606 /// alloca or a malloc call for which a comparison against a constant can
1607 /// only be guarding dead code. Note that we are potentially giving up some
1608 /// precision in dead code (a constant result) in favour of avoiding a
1609 /// expensive search for a easily answered common query.
1610 static bool isKnownNonConstant(Value *V) {
1611 V = V->stripPointerCasts();
1612 // The return val of alloc cannot be a Constant.
1613 if (isa<AllocaInst>(V))
1614 return true;
1615 return false;
1618 Constant *LazyValueInfo::getConstant(Value *V, Instruction *CxtI) {
1619 // Bail out early if V is known not to be a Constant.
1620 if (isKnownNonConstant(V))
1621 return nullptr;
1623 BasicBlock *BB = CxtI->getParent();
1624 ValueLatticeElement Result =
1625 getImpl(PImpl, AC, BB->getModule()).getValueInBlock(V, BB, CxtI);
1627 if (Result.isConstant())
1628 return Result.getConstant();
1629 if (Result.isConstantRange()) {
1630 const ConstantRange &CR = Result.getConstantRange();
1631 if (const APInt *SingleVal = CR.getSingleElement())
1632 return ConstantInt::get(V->getContext(), *SingleVal);
1634 return nullptr;
1637 ConstantRange LazyValueInfo::getConstantRange(Value *V, Instruction *CxtI,
1638 bool UndefAllowed) {
1639 assert(V->getType()->isIntegerTy());
1640 unsigned Width = V->getType()->getIntegerBitWidth();
1641 BasicBlock *BB = CxtI->getParent();
1642 ValueLatticeElement Result =
1643 getImpl(PImpl, AC, BB->getModule()).getValueInBlock(V, BB, CxtI);
1644 if (Result.isUnknown())
1645 return ConstantRange::getEmpty(Width);
1646 if (Result.isConstantRange(UndefAllowed))
1647 return Result.getConstantRange(UndefAllowed);
1648 // We represent ConstantInt constants as constant ranges but other kinds
1649 // of integer constants, i.e. ConstantExpr will be tagged as constants
1650 assert(!(Result.isConstant() && isa<ConstantInt>(Result.getConstant())) &&
1651 "ConstantInt value must be represented as constantrange");
1652 return ConstantRange::getFull(Width);
1655 ConstantRange LazyValueInfo::getConstantRangeAtUse(const Use &U,
1656 bool UndefAllowed) {
1657 Value *V = U.get();
1658 ConstantRange CR =
1659 getConstantRange(V, cast<Instruction>(U.getUser()), UndefAllowed);
1661 // Check whether the only (possibly transitive) use of the value is in a
1662 // position where V can be constrained by a select or branch condition.
1663 const Use *CurrU = &U;
1664 // TODO: Increase limit?
1665 const unsigned MaxUsesToInspect = 3;
1666 for (unsigned I = 0; I < MaxUsesToInspect; ++I) {
1667 std::optional<ValueLatticeElement> CondVal;
1668 auto *CurrI = cast<Instruction>(CurrU->getUser());
1669 if (auto *SI = dyn_cast<SelectInst>(CurrI)) {
1670 // If the value is undef, a different value may be chosen in
1671 // the select condition and at use.
1672 if (!isGuaranteedNotToBeUndefOrPoison(SI->getCondition(), AC))
1673 break;
1674 if (CurrU->getOperandNo() == 1)
1675 CondVal = getValueFromCondition(V, SI->getCondition(), true);
1676 else if (CurrU->getOperandNo() == 2)
1677 CondVal = getValueFromCondition(V, SI->getCondition(), false);
1678 } else if (auto *PHI = dyn_cast<PHINode>(CurrI)) {
1679 // TODO: Use non-local query?
1680 CondVal =
1681 getEdgeValueLocal(V, PHI->getIncomingBlock(*CurrU), PHI->getParent());
1683 if (CondVal && CondVal->isConstantRange())
1684 CR = CR.intersectWith(CondVal->getConstantRange());
1686 // Only follow one-use chain, to allow direct intersection of conditions.
1687 // If there are multiple uses, we would have to intersect with the union of
1688 // all conditions at different uses.
1689 // Stop walking if we hit a non-speculatable instruction. Even if the
1690 // result is only used under a specific condition, executing the
1691 // instruction itself may cause side effects or UB already.
1692 // This also disallows looking through phi nodes: If the phi node is part
1693 // of a cycle, we might end up reasoning about values from different cycle
1694 // iterations (PR60629).
1695 if (!CurrI->hasOneUse() || !isSafeToSpeculativelyExecute(CurrI))
1696 break;
1697 CurrU = &*CurrI->use_begin();
1699 return CR;
1702 /// Determine whether the specified value is known to be a
1703 /// constant on the specified edge. Return null if not.
1704 Constant *LazyValueInfo::getConstantOnEdge(Value *V, BasicBlock *FromBB,
1705 BasicBlock *ToBB,
1706 Instruction *CxtI) {
1707 Module *M = FromBB->getModule();
1708 ValueLatticeElement Result =
1709 getImpl(PImpl, AC, M).getValueOnEdge(V, FromBB, ToBB, CxtI);
1711 if (Result.isConstant())
1712 return Result.getConstant();
1713 if (Result.isConstantRange()) {
1714 const ConstantRange &CR = Result.getConstantRange();
1715 if (const APInt *SingleVal = CR.getSingleElement())
1716 return ConstantInt::get(V->getContext(), *SingleVal);
1718 return nullptr;
1721 ConstantRange LazyValueInfo::getConstantRangeOnEdge(Value *V,
1722 BasicBlock *FromBB,
1723 BasicBlock *ToBB,
1724 Instruction *CxtI) {
1725 unsigned Width = V->getType()->getIntegerBitWidth();
1726 Module *M = FromBB->getModule();
1727 ValueLatticeElement Result =
1728 getImpl(PImpl, AC, M).getValueOnEdge(V, FromBB, ToBB, CxtI);
1730 if (Result.isUnknown())
1731 return ConstantRange::getEmpty(Width);
1732 if (Result.isConstantRange())
1733 return Result.getConstantRange();
1734 // We represent ConstantInt constants as constant ranges but other kinds
1735 // of integer constants, i.e. ConstantExpr will be tagged as constants
1736 assert(!(Result.isConstant() && isa<ConstantInt>(Result.getConstant())) &&
1737 "ConstantInt value must be represented as constantrange");
1738 return ConstantRange::getFull(Width);
1741 static LazyValueInfo::Tristate
1742 getPredicateResult(unsigned Pred, Constant *C, const ValueLatticeElement &Val,
1743 const DataLayout &DL, TargetLibraryInfo *TLI) {
1744 // If we know the value is a constant, evaluate the conditional.
1745 Constant *Res = nullptr;
1746 if (Val.isConstant()) {
1747 Res = ConstantFoldCompareInstOperands(Pred, Val.getConstant(), C, DL, TLI);
1748 if (ConstantInt *ResCI = dyn_cast<ConstantInt>(Res))
1749 return ResCI->isZero() ? LazyValueInfo::False : LazyValueInfo::True;
1750 return LazyValueInfo::Unknown;
1753 if (Val.isConstantRange()) {
1754 ConstantInt *CI = dyn_cast<ConstantInt>(C);
1755 if (!CI) return LazyValueInfo::Unknown;
1757 const ConstantRange &CR = Val.getConstantRange();
1758 if (Pred == ICmpInst::ICMP_EQ) {
1759 if (!CR.contains(CI->getValue()))
1760 return LazyValueInfo::False;
1762 if (CR.isSingleElement())
1763 return LazyValueInfo::True;
1764 } else if (Pred == ICmpInst::ICMP_NE) {
1765 if (!CR.contains(CI->getValue()))
1766 return LazyValueInfo::True;
1768 if (CR.isSingleElement())
1769 return LazyValueInfo::False;
1770 } else {
1771 // Handle more complex predicates.
1772 ConstantRange TrueValues = ConstantRange::makeExactICmpRegion(
1773 (ICmpInst::Predicate)Pred, CI->getValue());
1774 if (TrueValues.contains(CR))
1775 return LazyValueInfo::True;
1776 if (TrueValues.inverse().contains(CR))
1777 return LazyValueInfo::False;
1779 return LazyValueInfo::Unknown;
1782 if (Val.isNotConstant()) {
1783 // If this is an equality comparison, we can try to fold it knowing that
1784 // "V != C1".
1785 if (Pred == ICmpInst::ICMP_EQ) {
1786 // !C1 == C -> false iff C1 == C.
1787 Res = ConstantFoldCompareInstOperands(ICmpInst::ICMP_NE,
1788 Val.getNotConstant(), C, DL,
1789 TLI);
1790 if (Res->isNullValue())
1791 return LazyValueInfo::False;
1792 } else if (Pred == ICmpInst::ICMP_NE) {
1793 // !C1 != C -> true iff C1 == C.
1794 Res = ConstantFoldCompareInstOperands(ICmpInst::ICMP_NE,
1795 Val.getNotConstant(), C, DL,
1796 TLI);
1797 if (Res->isNullValue())
1798 return LazyValueInfo::True;
1800 return LazyValueInfo::Unknown;
1803 return LazyValueInfo::Unknown;
1806 /// Determine whether the specified value comparison with a constant is known to
1807 /// be true or false on the specified CFG edge. Pred is a CmpInst predicate.
1808 LazyValueInfo::Tristate
1809 LazyValueInfo::getPredicateOnEdge(unsigned Pred, Value *V, Constant *C,
1810 BasicBlock *FromBB, BasicBlock *ToBB,
1811 Instruction *CxtI) {
1812 Module *M = FromBB->getModule();
1813 ValueLatticeElement Result =
1814 getImpl(PImpl, AC, M).getValueOnEdge(V, FromBB, ToBB, CxtI);
1816 return getPredicateResult(Pred, C, Result, M->getDataLayout(), TLI);
1819 LazyValueInfo::Tristate
1820 LazyValueInfo::getPredicateAt(unsigned Pred, Value *V, Constant *C,
1821 Instruction *CxtI, bool UseBlockValue) {
1822 // Is or is not NonNull are common predicates being queried. If
1823 // isKnownNonZero can tell us the result of the predicate, we can
1824 // return it quickly. But this is only a fastpath, and falling
1825 // through would still be correct.
1826 Module *M = CxtI->getModule();
1827 const DataLayout &DL = M->getDataLayout();
1828 if (V->getType()->isPointerTy() && C->isNullValue() &&
1829 isKnownNonZero(V->stripPointerCastsSameRepresentation(), DL)) {
1830 if (Pred == ICmpInst::ICMP_EQ)
1831 return LazyValueInfo::False;
1832 else if (Pred == ICmpInst::ICMP_NE)
1833 return LazyValueInfo::True;
1836 ValueLatticeElement Result = UseBlockValue
1837 ? getImpl(PImpl, AC, M).getValueInBlock(V, CxtI->getParent(), CxtI)
1838 : getImpl(PImpl, AC, M).getValueAt(V, CxtI);
1839 Tristate Ret = getPredicateResult(Pred, C, Result, DL, TLI);
1840 if (Ret != Unknown)
1841 return Ret;
1843 // Note: The following bit of code is somewhat distinct from the rest of LVI;
1844 // LVI as a whole tries to compute a lattice value which is conservatively
1845 // correct at a given location. In this case, we have a predicate which we
1846 // weren't able to prove about the merged result, and we're pushing that
1847 // predicate back along each incoming edge to see if we can prove it
1848 // separately for each input. As a motivating example, consider:
1849 // bb1:
1850 // %v1 = ... ; constantrange<1, 5>
1851 // br label %merge
1852 // bb2:
1853 // %v2 = ... ; constantrange<10, 20>
1854 // br label %merge
1855 // merge:
1856 // %phi = phi [%v1, %v2] ; constantrange<1,20>
1857 // %pred = icmp eq i32 %phi, 8
1858 // We can't tell from the lattice value for '%phi' that '%pred' is false
1859 // along each path, but by checking the predicate over each input separately,
1860 // we can.
1861 // We limit the search to one step backwards from the current BB and value.
1862 // We could consider extending this to search further backwards through the
1863 // CFG and/or value graph, but there are non-obvious compile time vs quality
1864 // tradeoffs.
1865 BasicBlock *BB = CxtI->getParent();
1867 // Function entry or an unreachable block. Bail to avoid confusing
1868 // analysis below.
1869 pred_iterator PI = pred_begin(BB), PE = pred_end(BB);
1870 if (PI == PE)
1871 return Unknown;
1873 // If V is a PHI node in the same block as the context, we need to ask
1874 // questions about the predicate as applied to the incoming value along
1875 // each edge. This is useful for eliminating cases where the predicate is
1876 // known along all incoming edges.
1877 if (auto *PHI = dyn_cast<PHINode>(V))
1878 if (PHI->getParent() == BB) {
1879 Tristate Baseline = Unknown;
1880 for (unsigned i = 0, e = PHI->getNumIncomingValues(); i < e; i++) {
1881 Value *Incoming = PHI->getIncomingValue(i);
1882 BasicBlock *PredBB = PHI->getIncomingBlock(i);
1883 // Note that PredBB may be BB itself.
1884 Tristate Result =
1885 getPredicateOnEdge(Pred, Incoming, C, PredBB, BB, CxtI);
1887 // Keep going as long as we've seen a consistent known result for
1888 // all inputs.
1889 Baseline = (i == 0) ? Result /* First iteration */
1890 : (Baseline == Result ? Baseline
1891 : Unknown); /* All others */
1892 if (Baseline == Unknown)
1893 break;
1895 if (Baseline != Unknown)
1896 return Baseline;
1899 // For a comparison where the V is outside this block, it's possible
1900 // that we've branched on it before. Look to see if the value is known
1901 // on all incoming edges.
1902 if (!isa<Instruction>(V) || cast<Instruction>(V)->getParent() != BB) {
1903 // For predecessor edge, determine if the comparison is true or false
1904 // on that edge. If they're all true or all false, we can conclude
1905 // the value of the comparison in this block.
1906 Tristate Baseline = getPredicateOnEdge(Pred, V, C, *PI, BB, CxtI);
1907 if (Baseline != Unknown) {
1908 // Check that all remaining incoming values match the first one.
1909 while (++PI != PE) {
1910 Tristate Ret = getPredicateOnEdge(Pred, V, C, *PI, BB, CxtI);
1911 if (Ret != Baseline)
1912 break;
1914 // If we terminated early, then one of the values didn't match.
1915 if (PI == PE) {
1916 return Baseline;
1921 return Unknown;
1924 LazyValueInfo::Tristate LazyValueInfo::getPredicateAt(unsigned P, Value *LHS,
1925 Value *RHS,
1926 Instruction *CxtI,
1927 bool UseBlockValue) {
1928 CmpInst::Predicate Pred = (CmpInst::Predicate)P;
1930 if (auto *C = dyn_cast<Constant>(RHS))
1931 return getPredicateAt(P, LHS, C, CxtI, UseBlockValue);
1932 if (auto *C = dyn_cast<Constant>(LHS))
1933 return getPredicateAt(CmpInst::getSwappedPredicate(Pred), RHS, C, CxtI,
1934 UseBlockValue);
1936 // Got two non-Constant values. Try to determine the comparison results based
1937 // on the block values of the two operands, e.g. because they have
1938 // non-overlapping ranges.
1939 if (UseBlockValue) {
1940 Module *M = CxtI->getModule();
1941 ValueLatticeElement L =
1942 getImpl(PImpl, AC, M).getValueInBlock(LHS, CxtI->getParent(), CxtI);
1943 if (L.isOverdefined())
1944 return LazyValueInfo::Unknown;
1946 ValueLatticeElement R =
1947 getImpl(PImpl, AC, M).getValueInBlock(RHS, CxtI->getParent(), CxtI);
1948 Type *Ty = CmpInst::makeCmpResultType(LHS->getType());
1949 if (Constant *Res = L.getCompare((CmpInst::Predicate)P, Ty, R,
1950 M->getDataLayout())) {
1951 if (Res->isNullValue())
1952 return LazyValueInfo::False;
1953 if (Res->isOneValue())
1954 return LazyValueInfo::True;
1957 return LazyValueInfo::Unknown;
1960 void LazyValueInfo::threadEdge(BasicBlock *PredBB, BasicBlock *OldSucc,
1961 BasicBlock *NewSucc) {
1962 if (PImpl) {
1963 getImpl(PImpl, AC, PredBB->getModule())
1964 .threadEdge(PredBB, OldSucc, NewSucc);
1968 void LazyValueInfo::eraseBlock(BasicBlock *BB) {
1969 if (PImpl) {
1970 getImpl(PImpl, AC, BB->getModule()).eraseBlock(BB);
1974 void LazyValueInfo::clear(const Module *M) {
1975 if (PImpl) {
1976 getImpl(PImpl, AC, M).clear();
1980 void LazyValueInfo::printLVI(Function &F, DominatorTree &DTree, raw_ostream &OS) {
1981 if (PImpl) {
1982 getImpl(PImpl, AC, F.getParent()).printLVI(F, DTree, OS);
1986 // Print the LVI for the function arguments at the start of each basic block.
1987 void LazyValueInfoAnnotatedWriter::emitBasicBlockStartAnnot(
1988 const BasicBlock *BB, formatted_raw_ostream &OS) {
1989 // Find if there are latticevalues defined for arguments of the function.
1990 auto *F = BB->getParent();
1991 for (const auto &Arg : F->args()) {
1992 ValueLatticeElement Result = LVIImpl->getValueInBlock(
1993 const_cast<Argument *>(&Arg), const_cast<BasicBlock *>(BB));
1994 if (Result.isUnknown())
1995 continue;
1996 OS << "; LatticeVal for: '" << Arg << "' is: " << Result << "\n";
2000 // This function prints the LVI analysis for the instruction I at the beginning
2001 // of various basic blocks. It relies on calculated values that are stored in
2002 // the LazyValueInfoCache, and in the absence of cached values, recalculate the
2003 // LazyValueInfo for `I`, and print that info.
2004 void LazyValueInfoAnnotatedWriter::emitInstructionAnnot(
2005 const Instruction *I, formatted_raw_ostream &OS) {
2007 auto *ParentBB = I->getParent();
2008 SmallPtrSet<const BasicBlock*, 16> BlocksContainingLVI;
2009 // We can generate (solve) LVI values only for blocks that are dominated by
2010 // the I's parent. However, to avoid generating LVI for all dominating blocks,
2011 // that contain redundant/uninteresting information, we print LVI for
2012 // blocks that may use this LVI information (such as immediate successor
2013 // blocks, and blocks that contain uses of `I`).
2014 auto printResult = [&](const BasicBlock *BB) {
2015 if (!BlocksContainingLVI.insert(BB).second)
2016 return;
2017 ValueLatticeElement Result = LVIImpl->getValueInBlock(
2018 const_cast<Instruction *>(I), const_cast<BasicBlock *>(BB));
2019 OS << "; LatticeVal for: '" << *I << "' in BB: '";
2020 BB->printAsOperand(OS, false);
2021 OS << "' is: " << Result << "\n";
2024 printResult(ParentBB);
2025 // Print the LVI analysis results for the immediate successor blocks, that
2026 // are dominated by `ParentBB`.
2027 for (const auto *BBSucc : successors(ParentBB))
2028 if (DT.dominates(ParentBB, BBSucc))
2029 printResult(BBSucc);
2031 // Print LVI in blocks where `I` is used.
2032 for (const auto *U : I->users())
2033 if (auto *UseI = dyn_cast<Instruction>(U))
2034 if (!isa<PHINode>(UseI) || DT.dominates(ParentBB, UseI->getParent()))
2035 printResult(UseI->getParent());
2039 namespace {
2040 // Printer class for LazyValueInfo results.
2041 class LazyValueInfoPrinter : public FunctionPass {
2042 public:
2043 static char ID; // Pass identification, replacement for typeid
2044 LazyValueInfoPrinter() : FunctionPass(ID) {
2045 initializeLazyValueInfoPrinterPass(*PassRegistry::getPassRegistry());
2048 void getAnalysisUsage(AnalysisUsage &AU) const override {
2049 AU.setPreservesAll();
2050 AU.addRequired<LazyValueInfoWrapperPass>();
2051 AU.addRequired<DominatorTreeWrapperPass>();
2054 // Get the mandatory dominator tree analysis and pass this in to the
2055 // LVIPrinter. We cannot rely on the LVI's DT, since it's optional.
2056 bool runOnFunction(Function &F) override {
2057 dbgs() << "LVI for function '" << F.getName() << "':\n";
2058 auto &LVI = getAnalysis<LazyValueInfoWrapperPass>().getLVI();
2059 auto &DTree = getAnalysis<DominatorTreeWrapperPass>().getDomTree();
2060 LVI.printLVI(F, DTree, dbgs());
2061 return false;
2066 char LazyValueInfoPrinter::ID = 0;
2067 INITIALIZE_PASS_BEGIN(LazyValueInfoPrinter, "print-lazy-value-info",
2068 "Lazy Value Info Printer Pass", false, false)
2069 INITIALIZE_PASS_DEPENDENCY(LazyValueInfoWrapperPass)
2070 INITIALIZE_PASS_END(LazyValueInfoPrinter, "print-lazy-value-info",
2071 "Lazy Value Info Printer Pass", false, false)