[RISCV] Refactor predicates for rvv intrinsic patterns.
[llvm-project.git] / llvm / lib / Analysis / Loads.cpp
blob0dd08dee47447037cb8471d23a23af1fc0687146
1 //===- Loads.cpp - Local load analysis ------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file defines simple local analyses for load instructions.
11 //===----------------------------------------------------------------------===//
13 #include "llvm/Analysis/Loads.h"
14 #include "llvm/Analysis/AliasAnalysis.h"
15 #include "llvm/Analysis/AssumeBundleQueries.h"
16 #include "llvm/Analysis/LoopInfo.h"
17 #include "llvm/Analysis/MemoryBuiltins.h"
18 #include "llvm/Analysis/MemoryLocation.h"
19 #include "llvm/Analysis/ScalarEvolution.h"
20 #include "llvm/Analysis/ScalarEvolutionExpressions.h"
21 #include "llvm/Analysis/ValueTracking.h"
22 #include "llvm/IR/DataLayout.h"
23 #include "llvm/IR/IntrinsicInst.h"
24 #include "llvm/IR/Module.h"
25 #include "llvm/IR/Operator.h"
27 using namespace llvm;
29 static bool isAligned(const Value *Base, const APInt &Offset, Align Alignment,
30 const DataLayout &DL) {
31 Align BA = Base->getPointerAlignment(DL);
32 const APInt APAlign(Offset.getBitWidth(), Alignment.value());
33 assert(APAlign.isPowerOf2() && "must be a power of 2!");
34 return BA >= Alignment && !(Offset & (APAlign - 1));
37 /// Test if V is always a pointer to allocated and suitably aligned memory for
38 /// a simple load or store.
39 static bool isDereferenceableAndAlignedPointer(
40 const Value *V, Align Alignment, const APInt &Size, const DataLayout &DL,
41 const Instruction *CtxI, AssumptionCache *AC, const DominatorTree *DT,
42 const TargetLibraryInfo *TLI, SmallPtrSetImpl<const Value *> &Visited,
43 unsigned MaxDepth) {
44 assert(V->getType()->isPointerTy() && "Base must be pointer");
46 // Recursion limit.
47 if (MaxDepth-- == 0)
48 return false;
50 // Already visited? Bail out, we've likely hit unreachable code.
51 if (!Visited.insert(V).second)
52 return false;
54 // Note that it is not safe to speculate into a malloc'd region because
55 // malloc may return null.
57 // For GEPs, determine if the indexing lands within the allocated object.
58 if (const GEPOperator *GEP = dyn_cast<GEPOperator>(V)) {
59 const Value *Base = GEP->getPointerOperand();
61 APInt Offset(DL.getIndexTypeSizeInBits(GEP->getType()), 0);
62 if (!GEP->accumulateConstantOffset(DL, Offset) || Offset.isNegative() ||
63 !Offset.urem(APInt(Offset.getBitWidth(), Alignment.value()))
64 .isMinValue())
65 return false;
67 // If the base pointer is dereferenceable for Offset+Size bytes, then the
68 // GEP (== Base + Offset) is dereferenceable for Size bytes. If the base
69 // pointer is aligned to Align bytes, and the Offset is divisible by Align
70 // then the GEP (== Base + Offset == k_0 * Align + k_1 * Align) is also
71 // aligned to Align bytes.
73 // Offset and Size may have different bit widths if we have visited an
74 // addrspacecast, so we can't do arithmetic directly on the APInt values.
75 return isDereferenceableAndAlignedPointer(
76 Base, Alignment, Offset + Size.sextOrTrunc(Offset.getBitWidth()), DL,
77 CtxI, AC, DT, TLI, Visited, MaxDepth);
80 // bitcast instructions are no-ops as far as dereferenceability is concerned.
81 if (const BitCastOperator *BC = dyn_cast<BitCastOperator>(V)) {
82 if (BC->getSrcTy()->isPointerTy())
83 return isDereferenceableAndAlignedPointer(
84 BC->getOperand(0), Alignment, Size, DL, CtxI, AC, DT, TLI,
85 Visited, MaxDepth);
88 // Recurse into both hands of select.
89 if (const SelectInst *Sel = dyn_cast<SelectInst>(V)) {
90 return isDereferenceableAndAlignedPointer(Sel->getTrueValue(), Alignment,
91 Size, DL, CtxI, AC, DT, TLI,
92 Visited, MaxDepth) &&
93 isDereferenceableAndAlignedPointer(Sel->getFalseValue(), Alignment,
94 Size, DL, CtxI, AC, DT, TLI,
95 Visited, MaxDepth);
98 bool CheckForNonNull, CheckForFreed;
99 APInt KnownDerefBytes(Size.getBitWidth(),
100 V->getPointerDereferenceableBytes(DL, CheckForNonNull,
101 CheckForFreed));
102 if (KnownDerefBytes.getBoolValue() && KnownDerefBytes.uge(Size) &&
103 !CheckForFreed)
104 if (!CheckForNonNull || isKnownNonZero(V, DL, 0, AC, CtxI, DT)) {
105 // As we recursed through GEPs to get here, we've incrementally checked
106 // that each step advanced by a multiple of the alignment. If our base is
107 // properly aligned, then the original offset accessed must also be.
108 APInt Offset(DL.getTypeStoreSizeInBits(V->getType()), 0);
109 return isAligned(V, Offset, Alignment, DL);
112 /// TODO refactor this function to be able to search independently for
113 /// Dereferencability and Alignment requirements.
116 if (const auto *Call = dyn_cast<CallBase>(V)) {
117 if (auto *RP = getArgumentAliasingToReturnedPointer(Call, true))
118 return isDereferenceableAndAlignedPointer(RP, Alignment, Size, DL, CtxI,
119 AC, DT, TLI, Visited, MaxDepth);
121 // If we have a call we can't recurse through, check to see if this is an
122 // allocation function for which we can establish an minimum object size.
123 // Such a minimum object size is analogous to a deref_or_null attribute in
124 // that we still need to prove the result non-null at point of use.
125 // NOTE: We can only use the object size as a base fact as we a) need to
126 // prove alignment too, and b) don't want the compile time impact of a
127 // separate recursive walk.
128 ObjectSizeOpts Opts;
129 // TODO: It may be okay to round to align, but that would imply that
130 // accessing slightly out of bounds was legal, and we're currently
131 // inconsistent about that. For the moment, be conservative.
132 Opts.RoundToAlign = false;
133 Opts.NullIsUnknownSize = true;
134 uint64_t ObjSize;
135 if (getObjectSize(V, ObjSize, DL, TLI, Opts)) {
136 APInt KnownDerefBytes(Size.getBitWidth(), ObjSize);
137 if (KnownDerefBytes.getBoolValue() && KnownDerefBytes.uge(Size) &&
138 isKnownNonZero(V, DL, 0, AC, CtxI, DT) && !V->canBeFreed()) {
139 // As we recursed through GEPs to get here, we've incrementally
140 // checked that each step advanced by a multiple of the alignment. If
141 // our base is properly aligned, then the original offset accessed
142 // must also be.
143 APInt Offset(DL.getTypeStoreSizeInBits(V->getType()), 0);
144 return isAligned(V, Offset, Alignment, DL);
149 // For gc.relocate, look through relocations
150 if (const GCRelocateInst *RelocateInst = dyn_cast<GCRelocateInst>(V))
151 return isDereferenceableAndAlignedPointer(RelocateInst->getDerivedPtr(),
152 Alignment, Size, DL, CtxI, AC, DT,
153 TLI, Visited, MaxDepth);
155 if (const AddrSpaceCastOperator *ASC = dyn_cast<AddrSpaceCastOperator>(V))
156 return isDereferenceableAndAlignedPointer(ASC->getOperand(0), Alignment,
157 Size, DL, CtxI, AC, DT, TLI,
158 Visited, MaxDepth);
160 if (CtxI) {
161 /// Look through assumes to see if both dereferencability and alignment can
162 /// be provent by an assume
163 RetainedKnowledge AlignRK;
164 RetainedKnowledge DerefRK;
165 if (getKnowledgeForValue(
166 V, {Attribute::Dereferenceable, Attribute::Alignment}, AC,
167 [&](RetainedKnowledge RK, Instruction *Assume, auto) {
168 if (!isValidAssumeForContext(Assume, CtxI))
169 return false;
170 if (RK.AttrKind == Attribute::Alignment)
171 AlignRK = std::max(AlignRK, RK);
172 if (RK.AttrKind == Attribute::Dereferenceable)
173 DerefRK = std::max(DerefRK, RK);
174 if (AlignRK && DerefRK && AlignRK.ArgValue >= Alignment.value() &&
175 DerefRK.ArgValue >= Size.getZExtValue())
176 return true; // We have found what we needed so we stop looking
177 return false; // Other assumes may have better information. so
178 // keep looking
180 return true;
183 // If we don't know, assume the worst.
184 return false;
187 bool llvm::isDereferenceableAndAlignedPointer(
188 const Value *V, Align Alignment, const APInt &Size, const DataLayout &DL,
189 const Instruction *CtxI, AssumptionCache *AC, const DominatorTree *DT,
190 const TargetLibraryInfo *TLI) {
191 // Note: At the moment, Size can be zero. This ends up being interpreted as
192 // a query of whether [Base, V] is dereferenceable and V is aligned (since
193 // that's what the implementation happened to do). It's unclear if this is
194 // the desired semantic, but at least SelectionDAG does exercise this case.
196 SmallPtrSet<const Value *, 32> Visited;
197 return ::isDereferenceableAndAlignedPointer(V, Alignment, Size, DL, CtxI, AC,
198 DT, TLI, Visited, 16);
201 bool llvm::isDereferenceableAndAlignedPointer(
202 const Value *V, Type *Ty, Align Alignment, const DataLayout &DL,
203 const Instruction *CtxI, AssumptionCache *AC, const DominatorTree *DT,
204 const TargetLibraryInfo *TLI) {
205 // For unsized types or scalable vectors we don't know exactly how many bytes
206 // are dereferenced, so bail out.
207 if (!Ty->isSized() || Ty->isScalableTy())
208 return false;
210 // When dereferenceability information is provided by a dereferenceable
211 // attribute, we know exactly how many bytes are dereferenceable. If we can
212 // determine the exact offset to the attributed variable, we can use that
213 // information here.
215 APInt AccessSize(DL.getPointerTypeSizeInBits(V->getType()),
216 DL.getTypeStoreSize(Ty));
217 return isDereferenceableAndAlignedPointer(V, Alignment, AccessSize, DL, CtxI,
218 AC, DT, TLI);
221 bool llvm::isDereferenceablePointer(const Value *V, Type *Ty,
222 const DataLayout &DL,
223 const Instruction *CtxI,
224 AssumptionCache *AC,
225 const DominatorTree *DT,
226 const TargetLibraryInfo *TLI) {
227 return isDereferenceableAndAlignedPointer(V, Ty, Align(1), DL, CtxI, AC, DT,
228 TLI);
231 /// Test if A and B will obviously have the same value.
233 /// This includes recognizing that %t0 and %t1 will have the same
234 /// value in code like this:
235 /// \code
236 /// %t0 = getelementptr \@a, 0, 3
237 /// store i32 0, i32* %t0
238 /// %t1 = getelementptr \@a, 0, 3
239 /// %t2 = load i32* %t1
240 /// \endcode
242 static bool AreEquivalentAddressValues(const Value *A, const Value *B) {
243 // Test if the values are trivially equivalent.
244 if (A == B)
245 return true;
247 // Test if the values come from identical arithmetic instructions.
248 // Use isIdenticalToWhenDefined instead of isIdenticalTo because
249 // this function is only used when one address use dominates the
250 // other, which means that they'll always either have the same
251 // value or one of them will have an undefined value.
252 if (isa<BinaryOperator>(A) || isa<CastInst>(A) || isa<PHINode>(A) ||
253 isa<GetElementPtrInst>(A))
254 if (const Instruction *BI = dyn_cast<Instruction>(B))
255 if (cast<Instruction>(A)->isIdenticalToWhenDefined(BI))
256 return true;
258 // Otherwise they may not be equivalent.
259 return false;
262 bool llvm::isDereferenceableAndAlignedInLoop(LoadInst *LI, Loop *L,
263 ScalarEvolution &SE,
264 DominatorTree &DT,
265 AssumptionCache *AC) {
266 auto &DL = LI->getModule()->getDataLayout();
267 Value *Ptr = LI->getPointerOperand();
269 APInt EltSize(DL.getIndexTypeSizeInBits(Ptr->getType()),
270 DL.getTypeStoreSize(LI->getType()).getFixedValue());
271 const Align Alignment = LI->getAlign();
273 Instruction *HeaderFirstNonPHI = L->getHeader()->getFirstNonPHI();
275 // If given a uniform (i.e. non-varying) address, see if we can prove the
276 // access is safe within the loop w/o needing predication.
277 if (L->isLoopInvariant(Ptr))
278 return isDereferenceableAndAlignedPointer(Ptr, Alignment, EltSize, DL,
279 HeaderFirstNonPHI, AC, &DT);
281 // Otherwise, check to see if we have a repeating access pattern where we can
282 // prove that all accesses are well aligned and dereferenceable.
283 auto *AddRec = dyn_cast<SCEVAddRecExpr>(SE.getSCEV(Ptr));
284 if (!AddRec || AddRec->getLoop() != L || !AddRec->isAffine())
285 return false;
286 auto* Step = dyn_cast<SCEVConstant>(AddRec->getStepRecurrence(SE));
287 if (!Step)
288 return false;
290 auto TC = SE.getSmallConstantMaxTripCount(L);
291 if (!TC)
292 return false;
294 // TODO: Handle overlapping accesses.
295 // We should be computing AccessSize as (TC - 1) * Step + EltSize.
296 if (EltSize.sgt(Step->getAPInt()))
297 return false;
299 // Compute the total access size for access patterns with unit stride and
300 // patterns with gaps. For patterns with unit stride, Step and EltSize are the
301 // same.
302 // For patterns with gaps (i.e. non unit stride), we are
303 // accessing EltSize bytes at every Step.
304 APInt AccessSize = TC * Step->getAPInt();
306 assert(SE.isLoopInvariant(AddRec->getStart(), L) &&
307 "implied by addrec definition");
308 Value *Base = nullptr;
309 if (auto *StartS = dyn_cast<SCEVUnknown>(AddRec->getStart())) {
310 Base = StartS->getValue();
311 } else if (auto *StartS = dyn_cast<SCEVAddExpr>(AddRec->getStart())) {
312 // Handle (NewBase + offset) as start value.
313 const auto *Offset = dyn_cast<SCEVConstant>(StartS->getOperand(0));
314 const auto *NewBase = dyn_cast<SCEVUnknown>(StartS->getOperand(1));
315 if (StartS->getNumOperands() == 2 && Offset && NewBase) {
316 // For the moment, restrict ourselves to the case where the offset is a
317 // multiple of the requested alignment and the base is aligned.
318 // TODO: generalize if a case found which warrants
319 if (Offset->getAPInt().urem(Alignment.value()) != 0)
320 return false;
321 Base = NewBase->getValue();
322 bool Overflow = false;
323 AccessSize = AccessSize.uadd_ov(Offset->getAPInt(), Overflow);
324 if (Overflow)
325 return false;
329 if (!Base)
330 return false;
332 // For the moment, restrict ourselves to the case where the access size is a
333 // multiple of the requested alignment and the base is aligned.
334 // TODO: generalize if a case found which warrants
335 if (EltSize.urem(Alignment.value()) != 0)
336 return false;
337 return isDereferenceableAndAlignedPointer(Base, Alignment, AccessSize, DL,
338 HeaderFirstNonPHI, AC, &DT);
341 /// Check if executing a load of this pointer value cannot trap.
343 /// If DT and ScanFrom are specified this method performs context-sensitive
344 /// analysis and returns true if it is safe to load immediately before ScanFrom.
346 /// If it is not obviously safe to load from the specified pointer, we do
347 /// a quick local scan of the basic block containing \c ScanFrom, to determine
348 /// if the address is already accessed.
350 /// This uses the pointee type to determine how many bytes need to be safe to
351 /// load from the pointer.
352 bool llvm::isSafeToLoadUnconditionally(Value *V, Align Alignment, APInt &Size,
353 const DataLayout &DL,
354 Instruction *ScanFrom,
355 AssumptionCache *AC,
356 const DominatorTree *DT,
357 const TargetLibraryInfo *TLI) {
358 // If DT is not specified we can't make context-sensitive query
359 const Instruction* CtxI = DT ? ScanFrom : nullptr;
360 if (isDereferenceableAndAlignedPointer(V, Alignment, Size, DL, CtxI, AC, DT,
361 TLI))
362 return true;
364 if (!ScanFrom)
365 return false;
367 if (Size.getBitWidth() > 64)
368 return false;
369 const uint64_t LoadSize = Size.getZExtValue();
371 // Otherwise, be a little bit aggressive by scanning the local block where we
372 // want to check to see if the pointer is already being loaded or stored
373 // from/to. If so, the previous load or store would have already trapped,
374 // so there is no harm doing an extra load (also, CSE will later eliminate
375 // the load entirely).
376 BasicBlock::iterator BBI = ScanFrom->getIterator(),
377 E = ScanFrom->getParent()->begin();
379 // We can at least always strip pointer casts even though we can't use the
380 // base here.
381 V = V->stripPointerCasts();
383 while (BBI != E) {
384 --BBI;
386 // If we see a free or a call which may write to memory (i.e. which might do
387 // a free) the pointer could be marked invalid.
388 if (isa<CallInst>(BBI) && BBI->mayWriteToMemory() &&
389 !isa<LifetimeIntrinsic>(BBI) && !isa<DbgInfoIntrinsic>(BBI))
390 return false;
392 Value *AccessedPtr;
393 Type *AccessedTy;
394 Align AccessedAlign;
395 if (LoadInst *LI = dyn_cast<LoadInst>(BBI)) {
396 // Ignore volatile loads. The execution of a volatile load cannot
397 // be used to prove an address is backed by regular memory; it can,
398 // for example, point to an MMIO register.
399 if (LI->isVolatile())
400 continue;
401 AccessedPtr = LI->getPointerOperand();
402 AccessedTy = LI->getType();
403 AccessedAlign = LI->getAlign();
404 } else if (StoreInst *SI = dyn_cast<StoreInst>(BBI)) {
405 // Ignore volatile stores (see comment for loads).
406 if (SI->isVolatile())
407 continue;
408 AccessedPtr = SI->getPointerOperand();
409 AccessedTy = SI->getValueOperand()->getType();
410 AccessedAlign = SI->getAlign();
411 } else
412 continue;
414 if (AccessedAlign < Alignment)
415 continue;
417 // Handle trivial cases.
418 if (AccessedPtr == V &&
419 LoadSize <= DL.getTypeStoreSize(AccessedTy))
420 return true;
422 if (AreEquivalentAddressValues(AccessedPtr->stripPointerCasts(), V) &&
423 LoadSize <= DL.getTypeStoreSize(AccessedTy))
424 return true;
426 return false;
429 bool llvm::isSafeToLoadUnconditionally(Value *V, Type *Ty, Align Alignment,
430 const DataLayout &DL,
431 Instruction *ScanFrom,
432 AssumptionCache *AC,
433 const DominatorTree *DT,
434 const TargetLibraryInfo *TLI) {
435 TypeSize TySize = DL.getTypeStoreSize(Ty);
436 if (TySize.isScalable())
437 return false;
438 APInt Size(DL.getIndexTypeSizeInBits(V->getType()), TySize.getFixedValue());
439 return isSafeToLoadUnconditionally(V, Alignment, Size, DL, ScanFrom, AC, DT,
440 TLI);
443 /// DefMaxInstsToScan - the default number of maximum instructions
444 /// to scan in the block, used by FindAvailableLoadedValue().
445 /// FindAvailableLoadedValue() was introduced in r60148, to improve jump
446 /// threading in part by eliminating partially redundant loads.
447 /// At that point, the value of MaxInstsToScan was already set to '6'
448 /// without documented explanation.
449 cl::opt<unsigned>
450 llvm::DefMaxInstsToScan("available-load-scan-limit", cl::init(6), cl::Hidden,
451 cl::desc("Use this to specify the default maximum number of instructions "
452 "to scan backward from a given instruction, when searching for "
453 "available loaded value"));
455 Value *llvm::FindAvailableLoadedValue(LoadInst *Load,
456 BasicBlock *ScanBB,
457 BasicBlock::iterator &ScanFrom,
458 unsigned MaxInstsToScan,
459 AAResults *AA, bool *IsLoad,
460 unsigned *NumScanedInst) {
461 // Don't CSE load that is volatile or anything stronger than unordered.
462 if (!Load->isUnordered())
463 return nullptr;
465 MemoryLocation Loc = MemoryLocation::get(Load);
466 return findAvailablePtrLoadStore(Loc, Load->getType(), Load->isAtomic(),
467 ScanBB, ScanFrom, MaxInstsToScan, AA, IsLoad,
468 NumScanedInst);
471 // Check if the load and the store have the same base, constant offsets and
472 // non-overlapping access ranges.
473 static bool areNonOverlapSameBaseLoadAndStore(const Value *LoadPtr,
474 Type *LoadTy,
475 const Value *StorePtr,
476 Type *StoreTy,
477 const DataLayout &DL) {
478 APInt LoadOffset(DL.getIndexTypeSizeInBits(LoadPtr->getType()), 0);
479 APInt StoreOffset(DL.getIndexTypeSizeInBits(StorePtr->getType()), 0);
480 const Value *LoadBase = LoadPtr->stripAndAccumulateConstantOffsets(
481 DL, LoadOffset, /* AllowNonInbounds */ false);
482 const Value *StoreBase = StorePtr->stripAndAccumulateConstantOffsets(
483 DL, StoreOffset, /* AllowNonInbounds */ false);
484 if (LoadBase != StoreBase)
485 return false;
486 auto LoadAccessSize = LocationSize::precise(DL.getTypeStoreSize(LoadTy));
487 auto StoreAccessSize = LocationSize::precise(DL.getTypeStoreSize(StoreTy));
488 ConstantRange LoadRange(LoadOffset,
489 LoadOffset + LoadAccessSize.toRaw());
490 ConstantRange StoreRange(StoreOffset,
491 StoreOffset + StoreAccessSize.toRaw());
492 return LoadRange.intersectWith(StoreRange).isEmptySet();
495 static Value *getAvailableLoadStore(Instruction *Inst, const Value *Ptr,
496 Type *AccessTy, bool AtLeastAtomic,
497 const DataLayout &DL, bool *IsLoadCSE) {
498 // If this is a load of Ptr, the loaded value is available.
499 // (This is true even if the load is volatile or atomic, although
500 // those cases are unlikely.)
501 if (LoadInst *LI = dyn_cast<LoadInst>(Inst)) {
502 // We can value forward from an atomic to a non-atomic, but not the
503 // other way around.
504 if (LI->isAtomic() < AtLeastAtomic)
505 return nullptr;
507 Value *LoadPtr = LI->getPointerOperand()->stripPointerCasts();
508 if (!AreEquivalentAddressValues(LoadPtr, Ptr))
509 return nullptr;
511 if (CastInst::isBitOrNoopPointerCastable(LI->getType(), AccessTy, DL)) {
512 if (IsLoadCSE)
513 *IsLoadCSE = true;
514 return LI;
518 // If this is a store through Ptr, the value is available!
519 // (This is true even if the store is volatile or atomic, although
520 // those cases are unlikely.)
521 if (StoreInst *SI = dyn_cast<StoreInst>(Inst)) {
522 // We can value forward from an atomic to a non-atomic, but not the
523 // other way around.
524 if (SI->isAtomic() < AtLeastAtomic)
525 return nullptr;
527 Value *StorePtr = SI->getPointerOperand()->stripPointerCasts();
528 if (!AreEquivalentAddressValues(StorePtr, Ptr))
529 return nullptr;
531 if (IsLoadCSE)
532 *IsLoadCSE = false;
534 Value *Val = SI->getValueOperand();
535 if (CastInst::isBitOrNoopPointerCastable(Val->getType(), AccessTy, DL))
536 return Val;
538 TypeSize StoreSize = DL.getTypeSizeInBits(Val->getType());
539 TypeSize LoadSize = DL.getTypeSizeInBits(AccessTy);
540 if (TypeSize::isKnownLE(LoadSize, StoreSize))
541 if (auto *C = dyn_cast<Constant>(Val))
542 return ConstantFoldLoadFromConst(C, AccessTy, DL);
545 if (auto *MSI = dyn_cast<MemSetInst>(Inst)) {
546 // Don't forward from (non-atomic) memset to atomic load.
547 if (AtLeastAtomic)
548 return nullptr;
550 // Only handle constant memsets.
551 auto *Val = dyn_cast<ConstantInt>(MSI->getValue());
552 auto *Len = dyn_cast<ConstantInt>(MSI->getLength());
553 if (!Val || !Len)
554 return nullptr;
556 // TODO: Handle offsets.
557 Value *Dst = MSI->getDest();
558 if (!AreEquivalentAddressValues(Dst, Ptr))
559 return nullptr;
561 if (IsLoadCSE)
562 *IsLoadCSE = false;
564 TypeSize LoadTypeSize = DL.getTypeSizeInBits(AccessTy);
565 if (LoadTypeSize.isScalable())
566 return nullptr;
568 // Make sure the read bytes are contained in the memset.
569 uint64_t LoadSize = LoadTypeSize.getFixedValue();
570 if ((Len->getValue() * 8).ult(LoadSize))
571 return nullptr;
573 APInt Splat = LoadSize >= 8 ? APInt::getSplat(LoadSize, Val->getValue())
574 : Val->getValue().trunc(LoadSize);
575 ConstantInt *SplatC = ConstantInt::get(MSI->getContext(), Splat);
576 if (CastInst::isBitOrNoopPointerCastable(SplatC->getType(), AccessTy, DL))
577 return SplatC;
579 return nullptr;
582 return nullptr;
585 Value *llvm::findAvailablePtrLoadStore(
586 const MemoryLocation &Loc, Type *AccessTy, bool AtLeastAtomic,
587 BasicBlock *ScanBB, BasicBlock::iterator &ScanFrom, unsigned MaxInstsToScan,
588 AAResults *AA, bool *IsLoadCSE, unsigned *NumScanedInst) {
589 if (MaxInstsToScan == 0)
590 MaxInstsToScan = ~0U;
592 const DataLayout &DL = ScanBB->getModule()->getDataLayout();
593 const Value *StrippedPtr = Loc.Ptr->stripPointerCasts();
595 while (ScanFrom != ScanBB->begin()) {
596 // We must ignore debug info directives when counting (otherwise they
597 // would affect codegen).
598 Instruction *Inst = &*--ScanFrom;
599 if (Inst->isDebugOrPseudoInst())
600 continue;
602 // Restore ScanFrom to expected value in case next test succeeds
603 ScanFrom++;
605 if (NumScanedInst)
606 ++(*NumScanedInst);
608 // Don't scan huge blocks.
609 if (MaxInstsToScan-- == 0)
610 return nullptr;
612 --ScanFrom;
614 if (Value *Available = getAvailableLoadStore(Inst, StrippedPtr, AccessTy,
615 AtLeastAtomic, DL, IsLoadCSE))
616 return Available;
618 // Try to get the store size for the type.
619 if (StoreInst *SI = dyn_cast<StoreInst>(Inst)) {
620 Value *StorePtr = SI->getPointerOperand()->stripPointerCasts();
622 // If both StrippedPtr and StorePtr reach all the way to an alloca or
623 // global and they are different, ignore the store. This is a trivial form
624 // of alias analysis that is important for reg2mem'd code.
625 if ((isa<AllocaInst>(StrippedPtr) || isa<GlobalVariable>(StrippedPtr)) &&
626 (isa<AllocaInst>(StorePtr) || isa<GlobalVariable>(StorePtr)) &&
627 StrippedPtr != StorePtr)
628 continue;
630 if (!AA) {
631 // When AA isn't available, but if the load and the store have the same
632 // base, constant offsets and non-overlapping access ranges, ignore the
633 // store. This is a simple form of alias analysis that is used by the
634 // inliner. FIXME: use BasicAA if possible.
635 if (areNonOverlapSameBaseLoadAndStore(
636 Loc.Ptr, AccessTy, SI->getPointerOperand(),
637 SI->getValueOperand()->getType(), DL))
638 continue;
639 } else {
640 // If we have alias analysis and it says the store won't modify the
641 // loaded value, ignore the store.
642 if (!isModSet(AA->getModRefInfo(SI, Loc)))
643 continue;
646 // Otherwise the store that may or may not alias the pointer, bail out.
647 ++ScanFrom;
648 return nullptr;
651 // If this is some other instruction that may clobber Ptr, bail out.
652 if (Inst->mayWriteToMemory()) {
653 // If alias analysis claims that it really won't modify the load,
654 // ignore it.
655 if (AA && !isModSet(AA->getModRefInfo(Inst, Loc)))
656 continue;
658 // May modify the pointer, bail out.
659 ++ScanFrom;
660 return nullptr;
664 // Got to the start of the block, we didn't find it, but are done for this
665 // block.
666 return nullptr;
669 Value *llvm::FindAvailableLoadedValue(LoadInst *Load, AAResults &AA,
670 bool *IsLoadCSE,
671 unsigned MaxInstsToScan) {
672 const DataLayout &DL = Load->getModule()->getDataLayout();
673 Value *StrippedPtr = Load->getPointerOperand()->stripPointerCasts();
674 BasicBlock *ScanBB = Load->getParent();
675 Type *AccessTy = Load->getType();
676 bool AtLeastAtomic = Load->isAtomic();
678 if (!Load->isUnordered())
679 return nullptr;
681 // Try to find an available value first, and delay expensive alias analysis
682 // queries until later.
683 Value *Available = nullptr;;
684 SmallVector<Instruction *> MustNotAliasInsts;
685 for (Instruction &Inst : make_range(++Load->getReverseIterator(),
686 ScanBB->rend())) {
687 if (Inst.isDebugOrPseudoInst())
688 continue;
690 if (MaxInstsToScan-- == 0)
691 return nullptr;
693 Available = getAvailableLoadStore(&Inst, StrippedPtr, AccessTy,
694 AtLeastAtomic, DL, IsLoadCSE);
695 if (Available)
696 break;
698 if (Inst.mayWriteToMemory())
699 MustNotAliasInsts.push_back(&Inst);
702 // If we found an available value, ensure that the instructions in between
703 // did not modify the memory location.
704 if (Available) {
705 MemoryLocation Loc = MemoryLocation::get(Load);
706 for (Instruction *Inst : MustNotAliasInsts)
707 if (isModSet(AA.getModRefInfo(Inst, Loc)))
708 return nullptr;
711 return Available;
714 bool llvm::canReplacePointersIfEqual(Value *A, Value *B, const DataLayout &DL,
715 Instruction *CtxI) {
716 Type *Ty = A->getType();
717 assert(Ty == B->getType() && Ty->isPointerTy() &&
718 "values must have matching pointer types");
720 // NOTE: The checks in the function are incomplete and currently miss illegal
721 // cases! The current implementation is a starting point and the
722 // implementation should be made stricter over time.
723 if (auto *C = dyn_cast<Constant>(B)) {
724 // Do not allow replacing a pointer with a constant pointer, unless it is
725 // either null or at least one byte is dereferenceable.
726 APInt OneByte(DL.getPointerTypeSizeInBits(Ty), 1);
727 return C->isNullValue() ||
728 isDereferenceableAndAlignedPointer(B, Align(1), OneByte, DL, CtxI);
731 return true;