1 //===- ValueTracking.cpp - Walk computations to compute properties --------===//
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
7 //===----------------------------------------------------------------------===//
9 // This file contains routines that help analyze properties that chains of
12 //===----------------------------------------------------------------------===//
14 #include "llvm/Analysis/ValueTracking.h"
15 #include "llvm/ADT/APFloat.h"
16 #include "llvm/ADT/APInt.h"
17 #include "llvm/ADT/ArrayRef.h"
18 #include "llvm/ADT/STLExtras.h"
19 #include "llvm/ADT/ScopeExit.h"
20 #include "llvm/ADT/SmallPtrSet.h"
21 #include "llvm/ADT/SmallSet.h"
22 #include "llvm/ADT/SmallVector.h"
23 #include "llvm/ADT/StringRef.h"
24 #include "llvm/ADT/iterator_range.h"
25 #include "llvm/Analysis/AliasAnalysis.h"
26 #include "llvm/Analysis/AssumeBundleQueries.h"
27 #include "llvm/Analysis/AssumptionCache.h"
28 #include "llvm/Analysis/ConstantFolding.h"
29 #include "llvm/Analysis/GuardUtils.h"
30 #include "llvm/Analysis/InstructionSimplify.h"
31 #include "llvm/Analysis/Loads.h"
32 #include "llvm/Analysis/LoopInfo.h"
33 #include "llvm/Analysis/OptimizationRemarkEmitter.h"
34 #include "llvm/Analysis/TargetLibraryInfo.h"
35 #include "llvm/Analysis/VectorUtils.h"
36 #include "llvm/IR/Argument.h"
37 #include "llvm/IR/Attributes.h"
38 #include "llvm/IR/BasicBlock.h"
39 #include "llvm/IR/Constant.h"
40 #include "llvm/IR/ConstantRange.h"
41 #include "llvm/IR/Constants.h"
42 #include "llvm/IR/DerivedTypes.h"
43 #include "llvm/IR/DiagnosticInfo.h"
44 #include "llvm/IR/Dominators.h"
45 #include "llvm/IR/EHPersonalities.h"
46 #include "llvm/IR/Function.h"
47 #include "llvm/IR/GetElementPtrTypeIterator.h"
48 #include "llvm/IR/GlobalAlias.h"
49 #include "llvm/IR/GlobalValue.h"
50 #include "llvm/IR/GlobalVariable.h"
51 #include "llvm/IR/InstrTypes.h"
52 #include "llvm/IR/Instruction.h"
53 #include "llvm/IR/Instructions.h"
54 #include "llvm/IR/IntrinsicInst.h"
55 #include "llvm/IR/Intrinsics.h"
56 #include "llvm/IR/IntrinsicsAArch64.h"
57 #include "llvm/IR/IntrinsicsRISCV.h"
58 #include "llvm/IR/IntrinsicsX86.h"
59 #include "llvm/IR/LLVMContext.h"
60 #include "llvm/IR/Metadata.h"
61 #include "llvm/IR/Module.h"
62 #include "llvm/IR/Operator.h"
63 #include "llvm/IR/PatternMatch.h"
64 #include "llvm/IR/Type.h"
65 #include "llvm/IR/User.h"
66 #include "llvm/IR/Value.h"
67 #include "llvm/Support/Casting.h"
68 #include "llvm/Support/CommandLine.h"
69 #include "llvm/Support/Compiler.h"
70 #include "llvm/Support/ErrorHandling.h"
71 #include "llvm/Support/KnownBits.h"
72 #include "llvm/Support/MathExtras.h"
80 using namespace llvm::PatternMatch
;
82 // Controls the number of uses of the value searched for possible
83 // dominating comparisons.
84 static cl::opt
<unsigned> DomConditionsMaxUses("dom-conditions-max-uses",
85 cl::Hidden
, cl::init(20));
88 /// Returns the bitwidth of the given scalar or pointer type. For vector types,
89 /// returns the element type's bitwidth.
90 static unsigned getBitWidth(Type
*Ty
, const DataLayout
&DL
) {
91 if (unsigned BitWidth
= Ty
->getScalarSizeInBits())
94 return DL
.getPointerTypeSizeInBits(Ty
);
99 // Simplifying using an assume can only be done in a particular control-flow
100 // context (the context instruction provides that context). If an assume and
101 // the context instruction are not in the same block then the DT helps in
102 // figuring out if we can use it.
104 const DataLayout
&DL
;
106 const Instruction
*CxtI
;
107 const DominatorTree
*DT
;
109 // Unlike the other analyses, this may be a nullptr because not all clients
110 // provide it currently.
111 OptimizationRemarkEmitter
*ORE
;
113 /// If true, it is safe to use metadata during simplification.
116 Query(const DataLayout
&DL
, AssumptionCache
*AC
, const Instruction
*CxtI
,
117 const DominatorTree
*DT
, bool UseInstrInfo
,
118 OptimizationRemarkEmitter
*ORE
= nullptr)
119 : DL(DL
), AC(AC
), CxtI(CxtI
), DT(DT
), ORE(ORE
), IIQ(UseInstrInfo
) {}
122 } // end anonymous namespace
124 // Given the provided Value and, potentially, a context instruction, return
125 // the preferred context instruction (if any).
126 static const Instruction
*safeCxtI(const Value
*V
, const Instruction
*CxtI
) {
127 // If we've been provided with a context instruction, then use that (provided
128 // it has been inserted).
129 if (CxtI
&& CxtI
->getParent())
132 // If the value is really an already-inserted instruction, then use that.
133 CxtI
= dyn_cast
<Instruction
>(V
);
134 if (CxtI
&& CxtI
->getParent())
140 static const Instruction
*safeCxtI(const Value
*V1
, const Value
*V2
, const Instruction
*CxtI
) {
141 // If we've been provided with a context instruction, then use that (provided
142 // it has been inserted).
143 if (CxtI
&& CxtI
->getParent())
146 // If the value is really an already-inserted instruction, then use that.
147 CxtI
= dyn_cast
<Instruction
>(V1
);
148 if (CxtI
&& CxtI
->getParent())
151 CxtI
= dyn_cast
<Instruction
>(V2
);
152 if (CxtI
&& CxtI
->getParent())
158 static bool getShuffleDemandedElts(const ShuffleVectorInst
*Shuf
,
159 const APInt
&DemandedElts
,
160 APInt
&DemandedLHS
, APInt
&DemandedRHS
) {
161 if (isa
<ScalableVectorType
>(Shuf
->getType())) {
162 assert(DemandedElts
== APInt(1,1));
163 DemandedLHS
= DemandedRHS
= DemandedElts
;
168 cast
<FixedVectorType
>(Shuf
->getOperand(0)->getType())->getNumElements();
169 return llvm::getShuffleDemandedElts(NumElts
, Shuf
->getShuffleMask(),
170 DemandedElts
, DemandedLHS
, DemandedRHS
);
173 static void computeKnownBits(const Value
*V
, const APInt
&DemandedElts
,
174 KnownBits
&Known
, unsigned Depth
, const Query
&Q
);
176 static void computeKnownBits(const Value
*V
, KnownBits
&Known
, unsigned Depth
,
178 // Since the number of lanes in a scalable vector is unknown at compile time,
179 // we track one bit which is implicitly broadcast to all lanes. This means
180 // that all lanes in a scalable vector are considered demanded.
181 auto *FVTy
= dyn_cast
<FixedVectorType
>(V
->getType());
183 FVTy
? APInt::getAllOnes(FVTy
->getNumElements()) : APInt(1, 1);
184 computeKnownBits(V
, DemandedElts
, Known
, Depth
, Q
);
187 void llvm::computeKnownBits(const Value
*V
, KnownBits
&Known
,
188 const DataLayout
&DL
, unsigned Depth
,
189 AssumptionCache
*AC
, const Instruction
*CxtI
,
190 const DominatorTree
*DT
,
191 OptimizationRemarkEmitter
*ORE
, bool UseInstrInfo
) {
192 ::computeKnownBits(V
, Known
, Depth
,
193 Query(DL
, AC
, safeCxtI(V
, CxtI
), DT
, UseInstrInfo
, ORE
));
196 void llvm::computeKnownBits(const Value
*V
, const APInt
&DemandedElts
,
197 KnownBits
&Known
, const DataLayout
&DL
,
198 unsigned Depth
, AssumptionCache
*AC
,
199 const Instruction
*CxtI
, const DominatorTree
*DT
,
200 OptimizationRemarkEmitter
*ORE
, bool UseInstrInfo
) {
201 ::computeKnownBits(V
, DemandedElts
, Known
, Depth
,
202 Query(DL
, AC
, safeCxtI(V
, CxtI
), DT
, UseInstrInfo
, ORE
));
205 static KnownBits
computeKnownBits(const Value
*V
, const APInt
&DemandedElts
,
206 unsigned Depth
, const Query
&Q
);
208 static KnownBits
computeKnownBits(const Value
*V
, unsigned Depth
,
211 KnownBits
llvm::computeKnownBits(const Value
*V
, const DataLayout
&DL
,
212 unsigned Depth
, AssumptionCache
*AC
,
213 const Instruction
*CxtI
,
214 const DominatorTree
*DT
,
215 OptimizationRemarkEmitter
*ORE
,
217 return ::computeKnownBits(
218 V
, Depth
, Query(DL
, AC
, safeCxtI(V
, CxtI
), DT
, UseInstrInfo
, ORE
));
221 KnownBits
llvm::computeKnownBits(const Value
*V
, const APInt
&DemandedElts
,
222 const DataLayout
&DL
, unsigned Depth
,
223 AssumptionCache
*AC
, const Instruction
*CxtI
,
224 const DominatorTree
*DT
,
225 OptimizationRemarkEmitter
*ORE
,
227 return ::computeKnownBits(
228 V
, DemandedElts
, Depth
,
229 Query(DL
, AC
, safeCxtI(V
, CxtI
), DT
, UseInstrInfo
, ORE
));
232 bool llvm::haveNoCommonBitsSet(const Value
*LHS
, const Value
*RHS
,
233 const DataLayout
&DL
, AssumptionCache
*AC
,
234 const Instruction
*CxtI
, const DominatorTree
*DT
,
236 assert(LHS
->getType() == RHS
->getType() &&
237 "LHS and RHS should have the same type");
238 assert(LHS
->getType()->isIntOrIntVectorTy() &&
239 "LHS and RHS should be integers");
240 // Look for an inverted mask: (X & ~M) op (Y & M).
243 if (match(LHS
, m_c_And(m_Not(m_Value(M
)), m_Value())) &&
244 match(RHS
, m_c_And(m_Specific(M
), m_Value())))
246 if (match(RHS
, m_c_And(m_Not(m_Value(M
)), m_Value())) &&
247 match(LHS
, m_c_And(m_Specific(M
), m_Value())))
252 if (match(RHS
, m_c_And(m_Not(m_Specific(LHS
)), m_Value())) ||
253 match(LHS
, m_c_And(m_Not(m_Specific(RHS
)), m_Value())))
256 // X op ((X & Y) ^ Y) -- this is the canonical form of the previous pattern
260 m_c_Xor(m_c_And(m_Specific(LHS
), m_Value(Y
)), m_Deferred(Y
))) ||
261 match(LHS
, m_c_Xor(m_c_And(m_Specific(RHS
), m_Value(Y
)), m_Deferred(Y
))))
264 // Peek through extends to find a 'not' of the other side:
265 // (ext Y) op ext(~Y)
266 // (ext ~Y) op ext(Y)
267 if ((match(LHS
, m_ZExtOrSExt(m_Value(Y
))) &&
268 match(RHS
, m_ZExtOrSExt(m_Not(m_Specific(Y
))))) ||
269 (match(RHS
, m_ZExtOrSExt(m_Value(Y
))) &&
270 match(LHS
, m_ZExtOrSExt(m_Not(m_Specific(Y
))))))
273 // Look for: (A & B) op ~(A | B)
276 if (match(LHS
, m_And(m_Value(A
), m_Value(B
))) &&
277 match(RHS
, m_Not(m_c_Or(m_Specific(A
), m_Specific(B
)))))
279 if (match(RHS
, m_And(m_Value(A
), m_Value(B
))) &&
280 match(LHS
, m_Not(m_c_Or(m_Specific(A
), m_Specific(B
)))))
283 IntegerType
*IT
= cast
<IntegerType
>(LHS
->getType()->getScalarType());
284 KnownBits
LHSKnown(IT
->getBitWidth());
285 KnownBits
RHSKnown(IT
->getBitWidth());
286 computeKnownBits(LHS
, LHSKnown
, DL
, 0, AC
, CxtI
, DT
, nullptr, UseInstrInfo
);
287 computeKnownBits(RHS
, RHSKnown
, DL
, 0, AC
, CxtI
, DT
, nullptr, UseInstrInfo
);
288 return KnownBits::haveNoCommonBitsSet(LHSKnown
, RHSKnown
);
291 bool llvm::isOnlyUsedInZeroEqualityComparison(const Instruction
*I
) {
292 return !I
->user_empty() && all_of(I
->users(), [](const User
*U
) {
293 ICmpInst::Predicate P
;
294 return match(U
, m_ICmp(P
, m_Value(), m_Zero())) && ICmpInst::isEquality(P
);
298 static bool isKnownToBeAPowerOfTwo(const Value
*V
, bool OrZero
, unsigned Depth
,
301 bool llvm::isKnownToBeAPowerOfTwo(const Value
*V
, const DataLayout
&DL
,
302 bool OrZero
, unsigned Depth
,
303 AssumptionCache
*AC
, const Instruction
*CxtI
,
304 const DominatorTree
*DT
, bool UseInstrInfo
) {
305 return ::isKnownToBeAPowerOfTwo(
306 V
, OrZero
, Depth
, Query(DL
, AC
, safeCxtI(V
, CxtI
), DT
, UseInstrInfo
));
309 static bool isKnownNonZero(const Value
*V
, const APInt
&DemandedElts
,
310 unsigned Depth
, const Query
&Q
);
312 static bool isKnownNonZero(const Value
*V
, unsigned Depth
, const Query
&Q
);
314 bool llvm::isKnownNonZero(const Value
*V
, const DataLayout
&DL
, unsigned Depth
,
315 AssumptionCache
*AC
, const Instruction
*CxtI
,
316 const DominatorTree
*DT
, bool UseInstrInfo
) {
317 return ::isKnownNonZero(V
, Depth
,
318 Query(DL
, AC
, safeCxtI(V
, CxtI
), DT
, UseInstrInfo
));
321 bool llvm::isKnownNonNegative(const Value
*V
, const DataLayout
&DL
,
322 unsigned Depth
, AssumptionCache
*AC
,
323 const Instruction
*CxtI
, const DominatorTree
*DT
,
326 computeKnownBits(V
, DL
, Depth
, AC
, CxtI
, DT
, nullptr, UseInstrInfo
);
327 return Known
.isNonNegative();
330 bool llvm::isKnownPositive(const Value
*V
, const DataLayout
&DL
, unsigned Depth
,
331 AssumptionCache
*AC
, const Instruction
*CxtI
,
332 const DominatorTree
*DT
, bool UseInstrInfo
) {
333 if (auto *CI
= dyn_cast
<ConstantInt
>(V
))
334 return CI
->getValue().isStrictlyPositive();
336 // TODO: We'd doing two recursive queries here. We should factor this such
337 // that only a single query is needed.
338 return isKnownNonNegative(V
, DL
, Depth
, AC
, CxtI
, DT
, UseInstrInfo
) &&
339 isKnownNonZero(V
, DL
, Depth
, AC
, CxtI
, DT
, UseInstrInfo
);
342 bool llvm::isKnownNegative(const Value
*V
, const DataLayout
&DL
, unsigned Depth
,
343 AssumptionCache
*AC
, const Instruction
*CxtI
,
344 const DominatorTree
*DT
, bool UseInstrInfo
) {
346 computeKnownBits(V
, DL
, Depth
, AC
, CxtI
, DT
, nullptr, UseInstrInfo
);
347 return Known
.isNegative();
350 static bool isKnownNonEqual(const Value
*V1
, const Value
*V2
, unsigned Depth
,
353 bool llvm::isKnownNonEqual(const Value
*V1
, const Value
*V2
,
354 const DataLayout
&DL
, AssumptionCache
*AC
,
355 const Instruction
*CxtI
, const DominatorTree
*DT
,
357 return ::isKnownNonEqual(V1
, V2
, 0,
358 Query(DL
, AC
, safeCxtI(V2
, V1
, CxtI
), DT
,
359 UseInstrInfo
, /*ORE=*/nullptr));
362 static bool MaskedValueIsZero(const Value
*V
, const APInt
&Mask
, unsigned Depth
,
365 bool llvm::MaskedValueIsZero(const Value
*V
, const APInt
&Mask
,
366 const DataLayout
&DL
, unsigned Depth
,
367 AssumptionCache
*AC
, const Instruction
*CxtI
,
368 const DominatorTree
*DT
, bool UseInstrInfo
) {
369 return ::MaskedValueIsZero(
370 V
, Mask
, Depth
, Query(DL
, AC
, safeCxtI(V
, CxtI
), DT
, UseInstrInfo
));
373 static unsigned ComputeNumSignBits(const Value
*V
, const APInt
&DemandedElts
,
374 unsigned Depth
, const Query
&Q
);
376 static unsigned ComputeNumSignBits(const Value
*V
, unsigned Depth
,
378 auto *FVTy
= dyn_cast
<FixedVectorType
>(V
->getType());
380 FVTy
? APInt::getAllOnes(FVTy
->getNumElements()) : APInt(1, 1);
381 return ComputeNumSignBits(V
, DemandedElts
, Depth
, Q
);
384 unsigned llvm::ComputeNumSignBits(const Value
*V
, const DataLayout
&DL
,
385 unsigned Depth
, AssumptionCache
*AC
,
386 const Instruction
*CxtI
,
387 const DominatorTree
*DT
, bool UseInstrInfo
) {
388 return ::ComputeNumSignBits(
389 V
, Depth
, Query(DL
, AC
, safeCxtI(V
, CxtI
), DT
, UseInstrInfo
));
392 unsigned llvm::ComputeMaxSignificantBits(const Value
*V
, const DataLayout
&DL
,
393 unsigned Depth
, AssumptionCache
*AC
,
394 const Instruction
*CxtI
,
395 const DominatorTree
*DT
) {
396 unsigned SignBits
= ComputeNumSignBits(V
, DL
, Depth
, AC
, CxtI
, DT
);
397 return V
->getType()->getScalarSizeInBits() - SignBits
+ 1;
400 static void computeKnownBitsAddSub(bool Add
, const Value
*Op0
, const Value
*Op1
,
401 bool NSW
, const APInt
&DemandedElts
,
402 KnownBits
&KnownOut
, KnownBits
&Known2
,
403 unsigned Depth
, const Query
&Q
) {
404 computeKnownBits(Op1
, DemandedElts
, KnownOut
, Depth
+ 1, Q
);
406 // If one operand is unknown and we have no nowrap information,
407 // the result will be unknown independently of the second operand.
408 if (KnownOut
.isUnknown() && !NSW
)
411 computeKnownBits(Op0
, DemandedElts
, Known2
, Depth
+ 1, Q
);
412 KnownOut
= KnownBits::computeForAddSub(Add
, NSW
, Known2
, KnownOut
);
415 static void computeKnownBitsMul(const Value
*Op0
, const Value
*Op1
, bool NSW
,
416 const APInt
&DemandedElts
, KnownBits
&Known
,
417 KnownBits
&Known2
, unsigned Depth
,
419 computeKnownBits(Op1
, DemandedElts
, Known
, Depth
+ 1, Q
);
420 computeKnownBits(Op0
, DemandedElts
, Known2
, Depth
+ 1, Q
);
422 bool isKnownNegative
= false;
423 bool isKnownNonNegative
= false;
424 // If the multiplication is known not to overflow, compute the sign bit.
427 // The product of a number with itself is non-negative.
428 isKnownNonNegative
= true;
430 bool isKnownNonNegativeOp1
= Known
.isNonNegative();
431 bool isKnownNonNegativeOp0
= Known2
.isNonNegative();
432 bool isKnownNegativeOp1
= Known
.isNegative();
433 bool isKnownNegativeOp0
= Known2
.isNegative();
434 // The product of two numbers with the same sign is non-negative.
435 isKnownNonNegative
= (isKnownNegativeOp1
&& isKnownNegativeOp0
) ||
436 (isKnownNonNegativeOp1
&& isKnownNonNegativeOp0
);
437 // The product of a negative number and a non-negative number is either
439 if (!isKnownNonNegative
)
441 (isKnownNegativeOp1
&& isKnownNonNegativeOp0
&&
442 Known2
.isNonZero()) ||
443 (isKnownNegativeOp0
&& isKnownNonNegativeOp1
&& Known
.isNonZero());
447 bool SelfMultiply
= Op0
== Op1
;
448 // TODO: SelfMultiply can be poison, but not undef.
451 isGuaranteedNotToBeUndefOrPoison(Op0
, Q
.AC
, Q
.CxtI
, Q
.DT
, Depth
+ 1);
452 Known
= KnownBits::mul(Known
, Known2
, SelfMultiply
);
454 // Only make use of no-wrap flags if we failed to compute the sign bit
455 // directly. This matters if the multiplication always overflows, in
456 // which case we prefer to follow the result of the direct computation,
457 // though as the program is invoking undefined behaviour we can choose
458 // whatever we like here.
459 if (isKnownNonNegative
&& !Known
.isNegative())
460 Known
.makeNonNegative();
461 else if (isKnownNegative
&& !Known
.isNonNegative())
462 Known
.makeNegative();
465 void llvm::computeKnownBitsFromRangeMetadata(const MDNode
&Ranges
,
467 unsigned BitWidth
= Known
.getBitWidth();
468 unsigned NumRanges
= Ranges
.getNumOperands() / 2;
469 assert(NumRanges
>= 1);
471 Known
.Zero
.setAllBits();
472 Known
.One
.setAllBits();
474 for (unsigned i
= 0; i
< NumRanges
; ++i
) {
476 mdconst::extract
<ConstantInt
>(Ranges
.getOperand(2 * i
+ 0));
478 mdconst::extract
<ConstantInt
>(Ranges
.getOperand(2 * i
+ 1));
479 ConstantRange
Range(Lower
->getValue(), Upper
->getValue());
481 // The first CommonPrefixBits of all values in Range are equal.
482 unsigned CommonPrefixBits
=
483 (Range
.getUnsignedMax() ^ Range
.getUnsignedMin()).countl_zero();
484 APInt Mask
= APInt::getHighBitsSet(BitWidth
, CommonPrefixBits
);
485 APInt UnsignedMax
= Range
.getUnsignedMax().zextOrTrunc(BitWidth
);
486 Known
.One
&= UnsignedMax
& Mask
;
487 Known
.Zero
&= ~UnsignedMax
& Mask
;
491 static bool isEphemeralValueOf(const Instruction
*I
, const Value
*E
) {
492 SmallVector
<const Value
*, 16> WorkSet(1, I
);
493 SmallPtrSet
<const Value
*, 32> Visited
;
494 SmallPtrSet
<const Value
*, 16> EphValues
;
496 // The instruction defining an assumption's condition itself is always
497 // considered ephemeral to that assumption (even if it has other
498 // non-ephemeral users). See r246696's test case for an example.
499 if (is_contained(I
->operands(), E
))
502 while (!WorkSet
.empty()) {
503 const Value
*V
= WorkSet
.pop_back_val();
504 if (!Visited
.insert(V
).second
)
507 // If all uses of this value are ephemeral, then so is this value.
508 if (llvm::all_of(V
->users(), [&](const User
*U
) {
509 return EphValues
.count(U
);
514 if (V
== I
|| (isa
<Instruction
>(V
) &&
515 !cast
<Instruction
>(V
)->mayHaveSideEffects() &&
516 !cast
<Instruction
>(V
)->isTerminator())) {
518 if (const User
*U
= dyn_cast
<User
>(V
))
519 append_range(WorkSet
, U
->operands());
527 // Is this an intrinsic that cannot be speculated but also cannot trap?
528 bool llvm::isAssumeLikeIntrinsic(const Instruction
*I
) {
529 if (const IntrinsicInst
*CI
= dyn_cast
<IntrinsicInst
>(I
))
530 return CI
->isAssumeLikeIntrinsic();
535 bool llvm::isValidAssumeForContext(const Instruction
*Inv
,
536 const Instruction
*CxtI
,
537 const DominatorTree
*DT
) {
538 // There are two restrictions on the use of an assume:
539 // 1. The assume must dominate the context (or the control flow must
540 // reach the assume whenever it reaches the context).
541 // 2. The context must not be in the assume's set of ephemeral values
542 // (otherwise we will use the assume to prove that the condition
543 // feeding the assume is trivially true, thus causing the removal of
546 if (Inv
->getParent() == CxtI
->getParent()) {
547 // If Inv and CtxI are in the same block, check if the assume (Inv) is first
549 if (Inv
->comesBefore(CxtI
))
552 // Don't let an assume affect itself - this would cause the problems
553 // `isEphemeralValueOf` is trying to prevent, and it would also make
554 // the loop below go out of bounds.
558 // The context comes first, but they're both in the same block.
559 // Make sure there is nothing in between that might interrupt
560 // the control flow, not even CxtI itself.
561 // We limit the scan distance between the assume and its context instruction
562 // to avoid a compile-time explosion. This limit is chosen arbitrarily, so
563 // it can be adjusted if needed (could be turned into a cl::opt).
564 auto Range
= make_range(CxtI
->getIterator(), Inv
->getIterator());
565 if (!isGuaranteedToTransferExecutionToSuccessor(Range
, 15))
568 return !isEphemeralValueOf(Inv
, CxtI
);
571 // Inv and CxtI are in different blocks.
573 if (DT
->dominates(Inv
, CxtI
))
575 } else if (Inv
->getParent() == CxtI
->getParent()->getSinglePredecessor()) {
576 // We don't have a DT, but this trivially dominates.
583 static bool cmpExcludesZero(CmpInst::Predicate Pred
, const Value
*RHS
) {
584 // v u> y implies v != 0.
585 if (Pred
== ICmpInst::ICMP_UGT
)
588 // Special-case v != 0 to also handle v != null.
589 if (Pred
== ICmpInst::ICMP_NE
)
590 return match(RHS
, m_Zero());
592 // All other predicates - rely on generic ConstantRange handling.
594 if (!match(RHS
, m_APInt(C
)))
597 ConstantRange TrueValues
= ConstantRange::makeExactICmpRegion(Pred
, *C
);
598 return !TrueValues
.contains(APInt::getZero(C
->getBitWidth()));
601 static bool isKnownNonZeroFromAssume(const Value
*V
, const Query
&Q
) {
602 // Use of assumptions is context-sensitive. If we don't have a context, we
604 if (!Q
.AC
|| !Q
.CxtI
)
607 if (Q
.CxtI
&& V
->getType()->isPointerTy()) {
608 SmallVector
<Attribute::AttrKind
, 2> AttrKinds
{Attribute::NonNull
};
609 if (!NullPointerIsDefined(Q
.CxtI
->getFunction(),
610 V
->getType()->getPointerAddressSpace()))
611 AttrKinds
.push_back(Attribute::Dereferenceable
);
613 if (getKnowledgeValidInContext(V
, AttrKinds
, Q
.CxtI
, Q
.DT
, Q
.AC
))
617 for (auto &AssumeVH
: Q
.AC
->assumptionsFor(V
)) {
620 CallInst
*I
= cast
<CallInst
>(AssumeVH
);
621 assert(I
->getFunction() == Q
.CxtI
->getFunction() &&
622 "Got assumption for the wrong function!");
624 // Warning: This loop can end up being somewhat performance sensitive.
625 // We're running this loop for once for each value queried resulting in a
626 // runtime of ~O(#assumes * #values).
628 assert(I
->getCalledFunction()->getIntrinsicID() == Intrinsic::assume
&&
629 "must be an assume intrinsic");
632 CmpInst::Predicate Pred
;
633 auto m_V
= m_CombineOr(m_Specific(V
), m_PtrToInt(m_Specific(V
)));
634 if (!match(I
->getArgOperand(0), m_c_ICmp(Pred
, m_V
, m_Value(RHS
))))
637 if (cmpExcludesZero(Pred
, RHS
) && isValidAssumeForContext(I
, Q
.CxtI
, Q
.DT
))
644 static void computeKnownBitsFromCmp(const Value
*V
, const ICmpInst
*Cmp
,
645 KnownBits
&Known
, unsigned Depth
,
647 unsigned BitWidth
= Known
.getBitWidth();
648 // We are attempting to compute known bits for the operands of an assume.
649 // Do not try to use other assumptions for those recursive calls because
650 // that can lead to mutual recursion and a compile-time explosion.
651 // An example of the mutual recursion: computeKnownBits can call
652 // isKnownNonZero which calls computeKnownBitsFromAssume (this function)
655 QueryNoAC
.AC
= nullptr;
657 // Note that ptrtoint may change the bitwidth.
659 auto m_V
= m_CombineOr(m_Specific(V
), m_PtrToInt(m_Specific(V
)));
661 CmpInst::Predicate Pred
;
663 switch (Cmp
->getPredicate()) {
666 case ICmpInst::ICMP_EQ
:
668 if (match(Cmp
, m_c_ICmp(Pred
, m_V
, m_Value(A
)))) {
670 computeKnownBits(A
, Depth
+ 1, QueryNoAC
).anyextOrTrunc(BitWidth
);
671 Known
= Known
.unionWith(RHSKnown
);
673 } else if (match(Cmp
,
674 m_c_ICmp(Pred
, m_c_And(m_V
, m_Value(B
)), m_Value(A
)))) {
676 computeKnownBits(A
, Depth
+ 1, QueryNoAC
).anyextOrTrunc(BitWidth
);
677 KnownBits MaskKnown
=
678 computeKnownBits(B
, Depth
+ 1, QueryNoAC
).anyextOrTrunc(BitWidth
);
680 // For those bits in the mask that are known to be one, we can propagate
681 // known bits from the RHS to V.
682 Known
.Zero
|= RHSKnown
.Zero
& MaskKnown
.One
;
683 Known
.One
|= RHSKnown
.One
& MaskKnown
.One
;
684 // assume(~(v & b) = a)
685 } else if (match(Cmp
, m_c_ICmp(Pred
, m_Not(m_c_And(m_V
, m_Value(B
))),
688 computeKnownBits(A
, Depth
+ 1, QueryNoAC
).anyextOrTrunc(BitWidth
);
689 KnownBits MaskKnown
=
690 computeKnownBits(B
, Depth
+ 1, QueryNoAC
).anyextOrTrunc(BitWidth
);
692 // For those bits in the mask that are known to be one, we can propagate
693 // inverted known bits from the RHS to V.
694 Known
.Zero
|= RHSKnown
.One
& MaskKnown
.One
;
695 Known
.One
|= RHSKnown
.Zero
& MaskKnown
.One
;
697 } else if (match(Cmp
,
698 m_c_ICmp(Pred
, m_c_Or(m_V
, m_Value(B
)), m_Value(A
)))) {
700 computeKnownBits(A
, Depth
+ 1, QueryNoAC
).anyextOrTrunc(BitWidth
);
702 computeKnownBits(B
, Depth
+ 1, QueryNoAC
).anyextOrTrunc(BitWidth
);
704 // For those bits in B that are known to be zero, we can propagate known
705 // bits from the RHS to V.
706 Known
.Zero
|= RHSKnown
.Zero
& BKnown
.Zero
;
707 Known
.One
|= RHSKnown
.One
& BKnown
.Zero
;
708 // assume(~(v | b) = a)
709 } else if (match(Cmp
, m_c_ICmp(Pred
, m_Not(m_c_Or(m_V
, m_Value(B
))),
712 computeKnownBits(A
, Depth
+ 1, QueryNoAC
).anyextOrTrunc(BitWidth
);
714 computeKnownBits(B
, Depth
+ 1, QueryNoAC
).anyextOrTrunc(BitWidth
);
716 // For those bits in B that are known to be zero, we can propagate
717 // inverted known bits from the RHS to V.
718 Known
.Zero
|= RHSKnown
.One
& BKnown
.Zero
;
719 Known
.One
|= RHSKnown
.Zero
& BKnown
.Zero
;
721 } else if (match(Cmp
,
722 m_c_ICmp(Pred
, m_c_Xor(m_V
, m_Value(B
)), m_Value(A
)))) {
724 computeKnownBits(A
, Depth
+ 1, QueryNoAC
).anyextOrTrunc(BitWidth
);
726 computeKnownBits(B
, Depth
+ 1, QueryNoAC
).anyextOrTrunc(BitWidth
);
728 // For those bits in B that are known to be zero, we can propagate known
729 // bits from the RHS to V. For those bits in B that are known to be one,
730 // we can propagate inverted known bits from the RHS to V.
731 Known
.Zero
|= RHSKnown
.Zero
& BKnown
.Zero
;
732 Known
.One
|= RHSKnown
.One
& BKnown
.Zero
;
733 Known
.Zero
|= RHSKnown
.One
& BKnown
.One
;
734 Known
.One
|= RHSKnown
.Zero
& BKnown
.One
;
735 // assume(~(v ^ b) = a)
736 } else if (match(Cmp
, m_c_ICmp(Pred
, m_Not(m_c_Xor(m_V
, m_Value(B
))),
739 computeKnownBits(A
, Depth
+ 1, QueryNoAC
).anyextOrTrunc(BitWidth
);
741 computeKnownBits(B
, Depth
+ 1, QueryNoAC
).anyextOrTrunc(BitWidth
);
743 // For those bits in B that are known to be zero, we can propagate
744 // inverted known bits from the RHS to V. For those bits in B that are
745 // known to be one, we can propagate known bits from the RHS to V.
746 Known
.Zero
|= RHSKnown
.One
& BKnown
.Zero
;
747 Known
.One
|= RHSKnown
.Zero
& BKnown
.Zero
;
748 Known
.Zero
|= RHSKnown
.Zero
& BKnown
.One
;
749 Known
.One
|= RHSKnown
.One
& BKnown
.One
;
750 // assume(v << c = a)
751 } else if (match(Cmp
, m_c_ICmp(Pred
, m_Shl(m_V
, m_ConstantInt(C
)),
755 computeKnownBits(A
, Depth
+ 1, QueryNoAC
).anyextOrTrunc(BitWidth
);
757 // For those bits in RHS that are known, we can propagate them to known
758 // bits in V shifted to the right by C.
759 RHSKnown
.Zero
.lshrInPlace(C
);
760 RHSKnown
.One
.lshrInPlace(C
);
761 Known
= Known
.unionWith(RHSKnown
);
762 // assume(~(v << c) = a)
763 } else if (match(Cmp
, m_c_ICmp(Pred
, m_Not(m_Shl(m_V
, m_ConstantInt(C
))),
767 computeKnownBits(A
, Depth
+ 1, QueryNoAC
).anyextOrTrunc(BitWidth
);
768 // For those bits in RHS that are known, we can propagate them inverted
769 // to known bits in V shifted to the right by C.
770 RHSKnown
.One
.lshrInPlace(C
);
771 Known
.Zero
|= RHSKnown
.One
;
772 RHSKnown
.Zero
.lshrInPlace(C
);
773 Known
.One
|= RHSKnown
.Zero
;
774 // assume(v >> c = a)
775 } else if (match(Cmp
, m_c_ICmp(Pred
, m_Shr(m_V
, m_ConstantInt(C
)),
779 computeKnownBits(A
, Depth
+ 1, QueryNoAC
).anyextOrTrunc(BitWidth
);
780 // For those bits in RHS that are known, we can propagate them to known
781 // bits in V shifted to the right by C.
782 Known
.Zero
|= RHSKnown
.Zero
<< C
;
783 Known
.One
|= RHSKnown
.One
<< C
;
784 // assume(~(v >> c) = a)
785 } else if (match(Cmp
, m_c_ICmp(Pred
, m_Not(m_Shr(m_V
, m_ConstantInt(C
))),
789 computeKnownBits(A
, Depth
+ 1, QueryNoAC
).anyextOrTrunc(BitWidth
);
790 // For those bits in RHS that are known, we can propagate them inverted
791 // to known bits in V shifted to the right by C.
792 Known
.Zero
|= RHSKnown
.One
<< C
;
793 Known
.One
|= RHSKnown
.Zero
<< C
;
796 case ICmpInst::ICMP_SGE
:
797 // assume(v >=_s c) where c is non-negative
798 if (match(Cmp
, m_ICmp(Pred
, m_V
, m_Value(A
)))) {
800 computeKnownBits(A
, Depth
+ 1, QueryNoAC
).anyextOrTrunc(BitWidth
);
802 if (RHSKnown
.isNonNegative()) {
803 // We know that the sign bit is zero.
804 Known
.makeNonNegative();
808 case ICmpInst::ICMP_SGT
:
809 // assume(v >_s c) where c is at least -1.
810 if (match(Cmp
, m_ICmp(Pred
, m_V
, m_Value(A
)))) {
812 computeKnownBits(A
, Depth
+ 1, QueryNoAC
).anyextOrTrunc(BitWidth
);
814 if (RHSKnown
.isAllOnes() || RHSKnown
.isNonNegative()) {
815 // We know that the sign bit is zero.
816 Known
.makeNonNegative();
820 case ICmpInst::ICMP_SLE
:
821 // assume(v <=_s c) where c is negative
822 if (match(Cmp
, m_ICmp(Pred
, m_V
, m_Value(A
)))) {
824 computeKnownBits(A
, Depth
+ 1, QueryNoAC
).anyextOrTrunc(BitWidth
);
826 if (RHSKnown
.isNegative()) {
827 // We know that the sign bit is one.
828 Known
.makeNegative();
832 case ICmpInst::ICMP_SLT
:
833 // assume(v <_s c) where c is non-positive
834 if (match(Cmp
, m_ICmp(Pred
, m_V
, m_Value(A
)))) {
836 computeKnownBits(A
, Depth
+ 1, QueryNoAC
).anyextOrTrunc(BitWidth
);
838 if (RHSKnown
.isZero() || RHSKnown
.isNegative()) {
839 // We know that the sign bit is one.
840 Known
.makeNegative();
844 case ICmpInst::ICMP_ULE
:
846 if (match(Cmp
, m_ICmp(Pred
, m_V
, m_Value(A
)))) {
848 computeKnownBits(A
, Depth
+ 1, QueryNoAC
).anyextOrTrunc(BitWidth
);
850 // Whatever high bits in c are zero are known to be zero.
851 Known
.Zero
.setHighBits(RHSKnown
.countMinLeadingZeros());
854 case ICmpInst::ICMP_ULT
:
856 if (match(Cmp
, m_ICmp(Pred
, m_V
, m_Value(A
)))) {
858 computeKnownBits(A
, Depth
+ 1, QueryNoAC
).anyextOrTrunc(BitWidth
);
860 // If the RHS is known zero, then this assumption must be wrong (nothing
861 // is unsigned less than zero). Signal a conflict and get out of here.
862 if (RHSKnown
.isZero()) {
863 Known
.Zero
.setAllBits();
864 Known
.One
.setAllBits();
868 // Whatever high bits in c are zero are known to be zero (if c is a power
869 // of 2, then one more).
870 if (isKnownToBeAPowerOfTwo(A
, false, Depth
+ 1, QueryNoAC
))
871 Known
.Zero
.setHighBits(RHSKnown
.countMinLeadingZeros() + 1);
873 Known
.Zero
.setHighBits(RHSKnown
.countMinLeadingZeros());
876 case ICmpInst::ICMP_NE
: {
877 // assume (v & b != 0) where b is a power of 2
879 if (match(Cmp
, m_ICmp(Pred
, m_c_And(m_V
, m_Power2(BPow2
)), m_Zero()))) {
880 Known
.One
|= BPow2
->zextOrTrunc(BitWidth
);
886 static void computeKnownBitsFromAssume(const Value
*V
, KnownBits
&Known
,
887 unsigned Depth
, const Query
&Q
) {
888 // Use of assumptions is context-sensitive. If we don't have a context, we
890 if (!Q
.AC
|| !Q
.CxtI
)
893 unsigned BitWidth
= Known
.getBitWidth();
895 // Refine Known set if the pointer alignment is set by assume bundles.
896 if (V
->getType()->isPointerTy()) {
897 if (RetainedKnowledge RK
= getKnowledgeValidInContext(
898 V
, { Attribute::Alignment
}, Q
.CxtI
, Q
.DT
, Q
.AC
)) {
899 if (isPowerOf2_64(RK
.ArgValue
))
900 Known
.Zero
.setLowBits(Log2_64(RK
.ArgValue
));
904 // Note that the patterns below need to be kept in sync with the code
905 // in AssumptionCache::updateAffectedValues.
907 for (auto &AssumeVH
: Q
.AC
->assumptionsFor(V
)) {
910 CallInst
*I
= cast
<CallInst
>(AssumeVH
);
911 assert(I
->getParent()->getParent() == Q
.CxtI
->getParent()->getParent() &&
912 "Got assumption for the wrong function!");
914 // Warning: This loop can end up being somewhat performance sensitive.
915 // We're running this loop for once for each value queried resulting in a
916 // runtime of ~O(#assumes * #values).
918 assert(I
->getCalledFunction()->getIntrinsicID() == Intrinsic::assume
&&
919 "must be an assume intrinsic");
921 Value
*Arg
= I
->getArgOperand(0);
923 if (Arg
== V
&& isValidAssumeForContext(I
, Q
.CxtI
, Q
.DT
)) {
924 assert(BitWidth
== 1 && "assume operand is not i1?");
929 if (match(Arg
, m_Not(m_Specific(V
))) &&
930 isValidAssumeForContext(I
, Q
.CxtI
, Q
.DT
)) {
931 assert(BitWidth
== 1 && "assume operand is not i1?");
937 // The remaining tests are all recursive, so bail out if we hit the limit.
938 if (Depth
== MaxAnalysisRecursionDepth
)
941 ICmpInst
*Cmp
= dyn_cast
<ICmpInst
>(Arg
);
945 if (!isValidAssumeForContext(I
, Q
.CxtI
, Q
.DT
))
948 computeKnownBitsFromCmp(V
, Cmp
, Known
, Depth
, Q
);
951 // If assumptions conflict with each other or previous known bits, then we
952 // have a logical fallacy. It's possible that the assumption is not reachable,
953 // so this isn't a real bug. On the other hand, the program may have undefined
954 // behavior, or we might have a bug in the compiler. We can't assert/crash, so
955 // clear out the known bits, try to warn the user, and hope for the best.
956 if (Known
.Zero
.intersects(Known
.One
)) {
961 auto *CxtI
= const_cast<Instruction
*>(Q
.CxtI
);
962 return OptimizationRemarkAnalysis("value-tracking", "BadAssumption",
964 << "Detected conflicting code assumptions. Program may "
965 "have undefined behavior, or compiler may have "
971 /// Compute known bits from a shift operator, including those with a
972 /// non-constant shift amount. Known is the output of this function. Known2 is a
973 /// pre-allocated temporary with the same bit width as Known and on return
974 /// contains the known bit of the shift value source. KF is an
975 /// operator-specific function that, given the known-bits and a shift amount,
976 /// compute the implied known-bits of the shift operator's result respectively
977 /// for that shift amount. The results from calling KF are conservatively
978 /// combined for all permitted shift amounts.
979 static void computeKnownBitsFromShiftOperator(
980 const Operator
*I
, const APInt
&DemandedElts
, KnownBits
&Known
,
981 KnownBits
&Known2
, unsigned Depth
, const Query
&Q
,
982 function_ref
<KnownBits(const KnownBits
&, const KnownBits
&)> KF
) {
983 unsigned BitWidth
= Known
.getBitWidth();
984 computeKnownBits(I
->getOperand(0), DemandedElts
, Known2
, Depth
+ 1, Q
);
985 computeKnownBits(I
->getOperand(1), DemandedElts
, Known
, Depth
+ 1, Q
);
987 // Note: We cannot use Known.Zero.getLimitedValue() here, because if
988 // BitWidth > 64 and any upper bits are known, we'll end up returning the
989 // limit value (which implies all bits are known).
990 uint64_t ShiftAmtKZ
= Known
.Zero
.zextOrTrunc(64).getZExtValue();
991 uint64_t ShiftAmtKO
= Known
.One
.zextOrTrunc(64).getZExtValue();
992 bool ShiftAmtIsConstant
= Known
.isConstant();
993 bool MaxShiftAmtIsOutOfRange
= Known
.getMaxValue().uge(BitWidth
);
995 if (ShiftAmtIsConstant
) {
996 Known
= KF(Known2
, Known
);
998 // If the known bits conflict, this must be an overflowing left shift, so
999 // the shift result is poison. We can return anything we want. Choose 0 for
1000 // the best folding opportunity.
1001 if (Known
.hasConflict())
1007 // If the shift amount could be greater than or equal to the bit-width of the
1008 // LHS, the value could be poison, but bail out because the check below is
1010 // TODO: Should we just carry on?
1011 if (MaxShiftAmtIsOutOfRange
) {
1016 // It would be more-clearly correct to use the two temporaries for this
1017 // calculation. Reusing the APInts here to prevent unnecessary allocations.
1020 // If we know the shifter operand is nonzero, we can sometimes infer more
1021 // known bits. However this is expensive to compute, so be lazy about it and
1022 // only compute it when absolutely necessary.
1023 std::optional
<bool> ShifterOperandIsNonZero
;
1025 // Early exit if we can't constrain any well-defined shift amount.
1026 if (!(ShiftAmtKZ
& (PowerOf2Ceil(BitWidth
) - 1)) &&
1027 !(ShiftAmtKO
& (PowerOf2Ceil(BitWidth
) - 1))) {
1028 ShifterOperandIsNonZero
=
1029 isKnownNonZero(I
->getOperand(1), DemandedElts
, Depth
+ 1, Q
);
1030 if (!*ShifterOperandIsNonZero
)
1034 Known
.Zero
.setAllBits();
1035 Known
.One
.setAllBits();
1036 for (unsigned ShiftAmt
= 0; ShiftAmt
< BitWidth
; ++ShiftAmt
) {
1037 // Combine the shifted known input bits only for those shift amounts
1038 // compatible with its known constraints.
1039 if ((ShiftAmt
& ~ShiftAmtKZ
) != ShiftAmt
)
1041 if ((ShiftAmt
| ShiftAmtKO
) != ShiftAmt
)
1043 // If we know the shifter is nonzero, we may be able to infer more known
1044 // bits. This check is sunk down as far as possible to avoid the expensive
1045 // call to isKnownNonZero if the cheaper checks above fail.
1046 if (ShiftAmt
== 0) {
1047 if (!ShifterOperandIsNonZero
)
1048 ShifterOperandIsNonZero
=
1049 isKnownNonZero(I
->getOperand(1), DemandedElts
, Depth
+ 1, Q
);
1050 if (*ShifterOperandIsNonZero
)
1054 Known
= Known
.intersectWith(
1055 KF(Known2
, KnownBits::makeConstant(APInt(32, ShiftAmt
))));
1058 // If the known bits conflict, the result is poison. Return a 0 and hope the
1059 // caller can further optimize that.
1060 if (Known
.hasConflict())
1064 static KnownBits
getKnownBitsFromAndXorOr(const Operator
*I
,
1065 const APInt
&DemandedElts
,
1066 const KnownBits
&KnownLHS
,
1067 const KnownBits
&KnownRHS
,
1068 unsigned Depth
, const Query
&Q
) {
1069 unsigned BitWidth
= KnownLHS
.getBitWidth();
1070 KnownBits
KnownOut(BitWidth
);
1072 bool HasKnownOne
= !KnownLHS
.One
.isZero() || !KnownRHS
.One
.isZero();
1073 Value
*X
= nullptr, *Y
= nullptr;
1075 switch (I
->getOpcode()) {
1076 case Instruction::And
:
1077 KnownOut
= KnownLHS
& KnownRHS
;
1079 // and(x, -x) is common idioms that will clear all but lowest set
1080 // bit. If we have a single known bit in x, we can clear all bits
1082 // TODO: instcombine often reassociates independent `and` which can hide
1083 // this pattern. Try to match and(x, and(-x, y)) / and(and(x, y), -x).
1084 if (HasKnownOne
&& match(I
, m_c_And(m_Value(X
), m_Neg(m_Deferred(X
))))) {
1085 // -(-x) == x so using whichever (LHS/RHS) gets us a better result.
1086 if (KnownLHS
.countMaxTrailingZeros() <= KnownRHS
.countMaxTrailingZeros())
1087 KnownOut
= KnownLHS
.blsi();
1089 KnownOut
= KnownRHS
.blsi();
1092 case Instruction::Or
:
1093 KnownOut
= KnownLHS
| KnownRHS
;
1095 case Instruction::Xor
:
1096 KnownOut
= KnownLHS
^ KnownRHS
;
1097 // xor(x, x-1) is common idioms that will clear all but lowest set
1098 // bit. If we have a single known bit in x, we can clear all bits
1100 // TODO: xor(x, x-1) is often rewritting as xor(x, x-C) where C !=
1101 // -1 but for the purpose of demanded bits (xor(x, x-C) &
1102 // Demanded) == (xor(x, x-1) & Demanded). Extend the xor pattern
1103 // to use arbitrary C if xor(x, x-C) as the same as xor(x, x-1).
1105 match(I
, m_c_Xor(m_Value(X
), m_c_Add(m_Deferred(X
), m_AllOnes())))) {
1106 const KnownBits
&XBits
= I
->getOperand(0) == X
? KnownLHS
: KnownRHS
;
1107 KnownOut
= XBits
.blsmsk();
1111 llvm_unreachable("Invalid Op used in 'analyzeKnownBitsFromAndXorOr'");
1114 // and(x, add (x, -1)) is a common idiom that always clears the low bit;
1115 // xor/or(x, add (x, -1)) is an idiom that will always set the low bit.
1116 // here we handle the more general case of adding any odd number by
1117 // matching the form and/xor/or(x, add(x, y)) where y is odd.
1118 // TODO: This could be generalized to clearing any bit set in y where the
1119 // following bit is known to be unset in y.
1120 if (!KnownOut
.Zero
[0] && !KnownOut
.One
[0] &&
1121 (match(I
, m_c_BinOp(m_Value(X
), m_c_Add(m_Deferred(X
), m_Value(Y
)))) ||
1122 match(I
, m_c_BinOp(m_Value(X
), m_Sub(m_Deferred(X
), m_Value(Y
)))) ||
1123 match(I
, m_c_BinOp(m_Value(X
), m_Sub(m_Value(Y
), m_Deferred(X
)))))) {
1124 KnownBits
KnownY(BitWidth
);
1125 computeKnownBits(Y
, DemandedElts
, KnownY
, Depth
+ 1, Q
);
1126 if (KnownY
.countMinTrailingOnes() > 0) {
1128 KnownOut
.Zero
.setBit(0);
1130 KnownOut
.One
.setBit(0);
1136 // Public so this can be used in `SimplifyDemandedUseBits`.
1137 KnownBits
llvm::analyzeKnownBitsFromAndXorOr(
1138 const Operator
*I
, const KnownBits
&KnownLHS
, const KnownBits
&KnownRHS
,
1139 unsigned Depth
, const DataLayout
&DL
, AssumptionCache
*AC
,
1140 const Instruction
*CxtI
, const DominatorTree
*DT
,
1141 OptimizationRemarkEmitter
*ORE
, bool UseInstrInfo
) {
1142 auto *FVTy
= dyn_cast
<FixedVectorType
>(I
->getType());
1143 APInt DemandedElts
=
1144 FVTy
? APInt::getAllOnes(FVTy
->getNumElements()) : APInt(1, 1);
1146 return getKnownBitsFromAndXorOr(
1147 I
, DemandedElts
, KnownLHS
, KnownRHS
, Depth
,
1148 Query(DL
, AC
, safeCxtI(I
, CxtI
), DT
, UseInstrInfo
, ORE
));
1151 ConstantRange
llvm::getVScaleRange(const Function
*F
, unsigned BitWidth
) {
1152 Attribute Attr
= F
->getFnAttribute(Attribute::VScaleRange
);
1153 // Without vscale_range, we only know that vscale is non-zero.
1154 if (!Attr
.isValid())
1155 return ConstantRange(APInt(BitWidth
, 1), APInt::getZero(BitWidth
));
1157 unsigned AttrMin
= Attr
.getVScaleRangeMin();
1158 // Minimum is larger than vscale width, result is always poison.
1159 if ((unsigned)llvm::bit_width(AttrMin
) > BitWidth
)
1160 return ConstantRange::getEmpty(BitWidth
);
1162 APInt
Min(BitWidth
, AttrMin
);
1163 std::optional
<unsigned> AttrMax
= Attr
.getVScaleRangeMax();
1164 if (!AttrMax
|| (unsigned)llvm::bit_width(*AttrMax
) > BitWidth
)
1165 return ConstantRange(Min
, APInt::getZero(BitWidth
));
1167 return ConstantRange(Min
, APInt(BitWidth
, *AttrMax
) + 1);
1170 static void computeKnownBitsFromOperator(const Operator
*I
,
1171 const APInt
&DemandedElts
,
1172 KnownBits
&Known
, unsigned Depth
,
1174 unsigned BitWidth
= Known
.getBitWidth();
1176 KnownBits
Known2(BitWidth
);
1177 switch (I
->getOpcode()) {
1179 case Instruction::Load
:
1181 Q
.IIQ
.getMetadata(cast
<LoadInst
>(I
), LLVMContext::MD_range
))
1182 computeKnownBitsFromRangeMetadata(*MD
, Known
);
1184 case Instruction::And
:
1185 computeKnownBits(I
->getOperand(1), DemandedElts
, Known
, Depth
+ 1, Q
);
1186 computeKnownBits(I
->getOperand(0), DemandedElts
, Known2
, Depth
+ 1, Q
);
1188 Known
= getKnownBitsFromAndXorOr(I
, DemandedElts
, Known2
, Known
, Depth
, Q
);
1190 case Instruction::Or
:
1191 computeKnownBits(I
->getOperand(1), DemandedElts
, Known
, Depth
+ 1, Q
);
1192 computeKnownBits(I
->getOperand(0), DemandedElts
, Known2
, Depth
+ 1, Q
);
1194 Known
= getKnownBitsFromAndXorOr(I
, DemandedElts
, Known2
, Known
, Depth
, Q
);
1196 case Instruction::Xor
:
1197 computeKnownBits(I
->getOperand(1), DemandedElts
, Known
, Depth
+ 1, Q
);
1198 computeKnownBits(I
->getOperand(0), DemandedElts
, Known2
, Depth
+ 1, Q
);
1200 Known
= getKnownBitsFromAndXorOr(I
, DemandedElts
, Known2
, Known
, Depth
, Q
);
1202 case Instruction::Mul
: {
1203 bool NSW
= Q
.IIQ
.hasNoSignedWrap(cast
<OverflowingBinaryOperator
>(I
));
1204 computeKnownBitsMul(I
->getOperand(0), I
->getOperand(1), NSW
, DemandedElts
,
1205 Known
, Known2
, Depth
, Q
);
1208 case Instruction::UDiv
: {
1209 computeKnownBits(I
->getOperand(0), Known
, Depth
+ 1, Q
);
1210 computeKnownBits(I
->getOperand(1), Known2
, Depth
+ 1, Q
);
1212 KnownBits::udiv(Known
, Known2
, Q
.IIQ
.isExact(cast
<BinaryOperator
>(I
)));
1215 case Instruction::SDiv
: {
1216 computeKnownBits(I
->getOperand(0), Known
, Depth
+ 1, Q
);
1217 computeKnownBits(I
->getOperand(1), Known2
, Depth
+ 1, Q
);
1219 KnownBits::sdiv(Known
, Known2
, Q
.IIQ
.isExact(cast
<BinaryOperator
>(I
)));
1222 case Instruction::Select
: {
1223 const Value
*LHS
= nullptr, *RHS
= nullptr;
1224 SelectPatternFlavor SPF
= matchSelectPattern(I
, LHS
, RHS
).Flavor
;
1225 if (SelectPatternResult::isMinOrMax(SPF
)) {
1226 computeKnownBits(RHS
, Known
, Depth
+ 1, Q
);
1227 computeKnownBits(LHS
, Known2
, Depth
+ 1, Q
);
1230 llvm_unreachable("Unhandled select pattern flavor!");
1232 Known
= KnownBits::smax(Known
, Known2
);
1235 Known
= KnownBits::smin(Known
, Known2
);
1238 Known
= KnownBits::umax(Known
, Known2
);
1241 Known
= KnownBits::umin(Known
, Known2
);
1247 computeKnownBits(I
->getOperand(2), Known
, Depth
+ 1, Q
);
1248 computeKnownBits(I
->getOperand(1), Known2
, Depth
+ 1, Q
);
1250 // Only known if known in both the LHS and RHS.
1251 Known
= Known
.intersectWith(Known2
);
1253 if (SPF
== SPF_ABS
) {
1254 // RHS from matchSelectPattern returns the negation part of abs pattern.
1255 // If the negate has an NSW flag we can assume the sign bit of the result
1256 // will be 0 because that makes abs(INT_MIN) undefined.
1257 if (match(RHS
, m_Neg(m_Specific(LHS
))) &&
1258 Q
.IIQ
.hasNoSignedWrap(cast
<OverflowingBinaryOperator
>(RHS
)))
1259 Known
.Zero
.setSignBit();
1264 case Instruction::FPTrunc
:
1265 case Instruction::FPExt
:
1266 case Instruction::FPToUI
:
1267 case Instruction::FPToSI
:
1268 case Instruction::SIToFP
:
1269 case Instruction::UIToFP
:
1270 break; // Can't work with floating point.
1271 case Instruction::PtrToInt
:
1272 case Instruction::IntToPtr
:
1273 // Fall through and handle them the same as zext/trunc.
1275 case Instruction::ZExt
:
1276 case Instruction::Trunc
: {
1277 Type
*SrcTy
= I
->getOperand(0)->getType();
1279 unsigned SrcBitWidth
;
1280 // Note that we handle pointer operands here because of inttoptr/ptrtoint
1281 // which fall through here.
1282 Type
*ScalarTy
= SrcTy
->getScalarType();
1283 SrcBitWidth
= ScalarTy
->isPointerTy() ?
1284 Q
.DL
.getPointerTypeSizeInBits(ScalarTy
) :
1285 Q
.DL
.getTypeSizeInBits(ScalarTy
);
1287 assert(SrcBitWidth
&& "SrcBitWidth can't be zero");
1288 Known
= Known
.anyextOrTrunc(SrcBitWidth
);
1289 computeKnownBits(I
->getOperand(0), Known
, Depth
+ 1, Q
);
1290 Known
= Known
.zextOrTrunc(BitWidth
);
1293 case Instruction::BitCast
: {
1294 Type
*SrcTy
= I
->getOperand(0)->getType();
1295 if (SrcTy
->isIntOrPtrTy() &&
1296 // TODO: For now, not handling conversions like:
1297 // (bitcast i64 %x to <2 x i32>)
1298 !I
->getType()->isVectorTy()) {
1299 computeKnownBits(I
->getOperand(0), Known
, Depth
+ 1, Q
);
1303 // Handle cast from vector integer type to scalar or vector integer.
1304 auto *SrcVecTy
= dyn_cast
<FixedVectorType
>(SrcTy
);
1305 if (!SrcVecTy
|| !SrcVecTy
->getElementType()->isIntegerTy() ||
1306 !I
->getType()->isIntOrIntVectorTy() ||
1307 isa
<ScalableVectorType
>(I
->getType()))
1310 // Look through a cast from narrow vector elements to wider type.
1311 // Examples: v4i32 -> v2i64, v3i8 -> v24
1312 unsigned SubBitWidth
= SrcVecTy
->getScalarSizeInBits();
1313 if (BitWidth
% SubBitWidth
== 0) {
1314 // Known bits are automatically intersected across demanded elements of a
1315 // vector. So for example, if a bit is computed as known zero, it must be
1316 // zero across all demanded elements of the vector.
1318 // For this bitcast, each demanded element of the output is sub-divided
1319 // across a set of smaller vector elements in the source vector. To get
1320 // the known bits for an entire element of the output, compute the known
1321 // bits for each sub-element sequentially. This is done by shifting the
1322 // one-set-bit demanded elements parameter across the sub-elements for
1323 // consecutive calls to computeKnownBits. We are using the demanded
1324 // elements parameter as a mask operator.
1326 // The known bits of each sub-element are then inserted into place
1327 // (dependent on endian) to form the full result of known bits.
1328 unsigned NumElts
= DemandedElts
.getBitWidth();
1329 unsigned SubScale
= BitWidth
/ SubBitWidth
;
1330 APInt SubDemandedElts
= APInt::getZero(NumElts
* SubScale
);
1331 for (unsigned i
= 0; i
!= NumElts
; ++i
) {
1332 if (DemandedElts
[i
])
1333 SubDemandedElts
.setBit(i
* SubScale
);
1336 KnownBits
KnownSrc(SubBitWidth
);
1337 for (unsigned i
= 0; i
!= SubScale
; ++i
) {
1338 computeKnownBits(I
->getOperand(0), SubDemandedElts
.shl(i
), KnownSrc
,
1340 unsigned ShiftElt
= Q
.DL
.isLittleEndian() ? i
: SubScale
- 1 - i
;
1341 Known
.insertBits(KnownSrc
, ShiftElt
* SubBitWidth
);
1346 case Instruction::SExt
: {
1347 // Compute the bits in the result that are not present in the input.
1348 unsigned SrcBitWidth
= I
->getOperand(0)->getType()->getScalarSizeInBits();
1350 Known
= Known
.trunc(SrcBitWidth
);
1351 computeKnownBits(I
->getOperand(0), Known
, Depth
+ 1, Q
);
1352 // If the sign bit of the input is known set or clear, then we know the
1353 // top bits of the result.
1354 Known
= Known
.sext(BitWidth
);
1357 case Instruction::Shl
: {
1358 bool NSW
= Q
.IIQ
.hasNoSignedWrap(cast
<OverflowingBinaryOperator
>(I
));
1359 auto KF
= [NSW
](const KnownBits
&KnownVal
, const KnownBits
&KnownAmt
) {
1360 KnownBits Result
= KnownBits::shl(KnownVal
, KnownAmt
);
1361 // If this shift has "nsw" keyword, then the result is either a poison
1362 // value or has the same sign bit as the first operand.
1364 if (KnownVal
.Zero
.isSignBitSet())
1365 Result
.Zero
.setSignBit();
1366 if (KnownVal
.One
.isSignBitSet())
1367 Result
.One
.setSignBit();
1371 computeKnownBitsFromShiftOperator(I
, DemandedElts
, Known
, Known2
, Depth
, Q
,
1373 // Trailing zeros of a right-shifted constant never decrease.
1375 if (match(I
->getOperand(0), m_APInt(C
)))
1376 Known
.Zero
.setLowBits(C
->countr_zero());
1379 case Instruction::LShr
: {
1380 auto KF
= [](const KnownBits
&KnownVal
, const KnownBits
&KnownAmt
) {
1381 return KnownBits::lshr(KnownVal
, KnownAmt
);
1383 computeKnownBitsFromShiftOperator(I
, DemandedElts
, Known
, Known2
, Depth
, Q
,
1385 // Leading zeros of a left-shifted constant never decrease.
1387 if (match(I
->getOperand(0), m_APInt(C
)))
1388 Known
.Zero
.setHighBits(C
->countl_zero());
1391 case Instruction::AShr
: {
1392 auto KF
= [](const KnownBits
&KnownVal
, const KnownBits
&KnownAmt
) {
1393 return KnownBits::ashr(KnownVal
, KnownAmt
);
1395 computeKnownBitsFromShiftOperator(I
, DemandedElts
, Known
, Known2
, Depth
, Q
,
1399 case Instruction::Sub
: {
1400 bool NSW
= Q
.IIQ
.hasNoSignedWrap(cast
<OverflowingBinaryOperator
>(I
));
1401 computeKnownBitsAddSub(false, I
->getOperand(0), I
->getOperand(1), NSW
,
1402 DemandedElts
, Known
, Known2
, Depth
, Q
);
1405 case Instruction::Add
: {
1406 bool NSW
= Q
.IIQ
.hasNoSignedWrap(cast
<OverflowingBinaryOperator
>(I
));
1407 computeKnownBitsAddSub(true, I
->getOperand(0), I
->getOperand(1), NSW
,
1408 DemandedElts
, Known
, Known2
, Depth
, Q
);
1411 case Instruction::SRem
:
1412 computeKnownBits(I
->getOperand(0), Known
, Depth
+ 1, Q
);
1413 computeKnownBits(I
->getOperand(1), Known2
, Depth
+ 1, Q
);
1414 Known
= KnownBits::srem(Known
, Known2
);
1417 case Instruction::URem
:
1418 computeKnownBits(I
->getOperand(0), Known
, Depth
+ 1, Q
);
1419 computeKnownBits(I
->getOperand(1), Known2
, Depth
+ 1, Q
);
1420 Known
= KnownBits::urem(Known
, Known2
);
1422 case Instruction::Alloca
:
1423 Known
.Zero
.setLowBits(Log2(cast
<AllocaInst
>(I
)->getAlign()));
1425 case Instruction::GetElementPtr
: {
1426 // Analyze all of the subscripts of this getelementptr instruction
1427 // to determine if we can prove known low zero bits.
1428 computeKnownBits(I
->getOperand(0), Known
, Depth
+ 1, Q
);
1429 // Accumulate the constant indices in a separate variable
1430 // to minimize the number of calls to computeForAddSub.
1431 APInt
AccConstIndices(BitWidth
, 0, /*IsSigned*/ true);
1433 gep_type_iterator GTI
= gep_type_begin(I
);
1434 for (unsigned i
= 1, e
= I
->getNumOperands(); i
!= e
; ++i
, ++GTI
) {
1435 // TrailZ can only become smaller, short-circuit if we hit zero.
1436 if (Known
.isUnknown())
1439 Value
*Index
= I
->getOperand(i
);
1441 // Handle case when index is zero.
1442 Constant
*CIndex
= dyn_cast
<Constant
>(Index
);
1443 if (CIndex
&& CIndex
->isZeroValue())
1446 if (StructType
*STy
= GTI
.getStructTypeOrNull()) {
1447 // Handle struct member offset arithmetic.
1450 "Access to structure field must be known at compile time");
1452 if (CIndex
->getType()->isVectorTy())
1453 Index
= CIndex
->getSplatValue();
1455 unsigned Idx
= cast
<ConstantInt
>(Index
)->getZExtValue();
1456 const StructLayout
*SL
= Q
.DL
.getStructLayout(STy
);
1457 uint64_t Offset
= SL
->getElementOffset(Idx
);
1458 AccConstIndices
+= Offset
;
1462 // Handle array index arithmetic.
1463 Type
*IndexedTy
= GTI
.getIndexedType();
1464 if (!IndexedTy
->isSized()) {
1469 unsigned IndexBitWidth
= Index
->getType()->getScalarSizeInBits();
1470 KnownBits
IndexBits(IndexBitWidth
);
1471 computeKnownBits(Index
, IndexBits
, Depth
+ 1, Q
);
1472 TypeSize IndexTypeSize
= Q
.DL
.getTypeAllocSize(IndexedTy
);
1473 uint64_t TypeSizeInBytes
= IndexTypeSize
.getKnownMinValue();
1474 KnownBits
ScalingFactor(IndexBitWidth
);
1475 // Multiply by current sizeof type.
1476 // &A[i] == A + i * sizeof(*A[i]).
1477 if (IndexTypeSize
.isScalable()) {
1478 // For scalable types the only thing we know about sizeof is
1479 // that this is a multiple of the minimum size.
1480 ScalingFactor
.Zero
.setLowBits(llvm::countr_zero(TypeSizeInBytes
));
1481 } else if (IndexBits
.isConstant()) {
1482 APInt IndexConst
= IndexBits
.getConstant();
1483 APInt
ScalingFactor(IndexBitWidth
, TypeSizeInBytes
);
1484 IndexConst
*= ScalingFactor
;
1485 AccConstIndices
+= IndexConst
.sextOrTrunc(BitWidth
);
1489 KnownBits::makeConstant(APInt(IndexBitWidth
, TypeSizeInBytes
));
1491 IndexBits
= KnownBits::mul(IndexBits
, ScalingFactor
);
1493 // If the offsets have a different width from the pointer, according
1494 // to the language reference we need to sign-extend or truncate them
1495 // to the width of the pointer.
1496 IndexBits
= IndexBits
.sextOrTrunc(BitWidth
);
1498 // Note that inbounds does *not* guarantee nsw for the addition, as only
1499 // the offset is signed, while the base address is unsigned.
1500 Known
= KnownBits::computeForAddSub(
1501 /*Add=*/true, /*NSW=*/false, Known
, IndexBits
);
1503 if (!Known
.isUnknown() && !AccConstIndices
.isZero()) {
1504 KnownBits Index
= KnownBits::makeConstant(AccConstIndices
);
1505 Known
= KnownBits::computeForAddSub(
1506 /*Add=*/true, /*NSW=*/false, Known
, Index
);
1510 case Instruction::PHI
: {
1511 const PHINode
*P
= cast
<PHINode
>(I
);
1512 BinaryOperator
*BO
= nullptr;
1513 Value
*R
= nullptr, *L
= nullptr;
1514 if (matchSimpleRecurrence(P
, BO
, R
, L
)) {
1515 // Handle the case of a simple two-predecessor recurrence PHI.
1516 // There's a lot more that could theoretically be done here, but
1517 // this is sufficient to catch some interesting cases.
1518 unsigned Opcode
= BO
->getOpcode();
1520 // If this is a shift recurrence, we know the bits being shifted in.
1521 // We can combine that with information about the start value of the
1522 // recurrence to conclude facts about the result.
1523 if ((Opcode
== Instruction::LShr
|| Opcode
== Instruction::AShr
||
1524 Opcode
== Instruction::Shl
) &&
1525 BO
->getOperand(0) == I
) {
1527 // We have matched a recurrence of the form:
1528 // %iv = [R, %entry], [%iv.next, %backedge]
1529 // %iv.next = shift_op %iv, L
1531 // Recurse with the phi context to avoid concern about whether facts
1532 // inferred hold at original context instruction. TODO: It may be
1533 // correct to use the original context. IF warranted, explore and
1534 // add sufficient tests to cover.
1537 computeKnownBits(R
, DemandedElts
, Known2
, Depth
+ 1, RecQ
);
1539 case Instruction::Shl
:
1540 // A shl recurrence will only increase the tailing zeros
1541 Known
.Zero
.setLowBits(Known2
.countMinTrailingZeros());
1543 case Instruction::LShr
:
1544 // A lshr recurrence will preserve the leading zeros of the
1546 Known
.Zero
.setHighBits(Known2
.countMinLeadingZeros());
1548 case Instruction::AShr
:
1549 // An ashr recurrence will extend the initial sign bit
1550 Known
.Zero
.setHighBits(Known2
.countMinLeadingZeros());
1551 Known
.One
.setHighBits(Known2
.countMinLeadingOnes());
1556 // Check for operations that have the property that if
1557 // both their operands have low zero bits, the result
1558 // will have low zero bits.
1559 if (Opcode
== Instruction::Add
||
1560 Opcode
== Instruction::Sub
||
1561 Opcode
== Instruction::And
||
1562 Opcode
== Instruction::Or
||
1563 Opcode
== Instruction::Mul
) {
1564 // Change the context instruction to the "edge" that flows into the
1565 // phi. This is important because that is where the value is actually
1566 // "evaluated" even though it is used later somewhere else. (see also
1570 unsigned OpNum
= P
->getOperand(0) == R
? 0 : 1;
1571 Instruction
*RInst
= P
->getIncomingBlock(OpNum
)->getTerminator();
1572 Instruction
*LInst
= P
->getIncomingBlock(1-OpNum
)->getTerminator();
1574 // Ok, we have a PHI of the form L op= R. Check for low
1577 computeKnownBits(R
, Known2
, Depth
+ 1, RecQ
);
1579 // We need to take the minimum number of known bits
1580 KnownBits
Known3(BitWidth
);
1582 computeKnownBits(L
, Known3
, Depth
+ 1, RecQ
);
1584 Known
.Zero
.setLowBits(std::min(Known2
.countMinTrailingZeros(),
1585 Known3
.countMinTrailingZeros()));
1587 auto *OverflowOp
= dyn_cast
<OverflowingBinaryOperator
>(BO
);
1588 if (OverflowOp
&& Q
.IIQ
.hasNoSignedWrap(OverflowOp
)) {
1589 // If initial value of recurrence is nonnegative, and we are adding
1590 // a nonnegative number with nsw, the result can only be nonnegative
1591 // or poison value regardless of the number of times we execute the
1592 // add in phi recurrence. If initial value is negative and we are
1593 // adding a negative number with nsw, the result can only be
1594 // negative or poison value. Similar arguments apply to sub and mul.
1596 // (add non-negative, non-negative) --> non-negative
1597 // (add negative, negative) --> negative
1598 if (Opcode
== Instruction::Add
) {
1599 if (Known2
.isNonNegative() && Known3
.isNonNegative())
1600 Known
.makeNonNegative();
1601 else if (Known2
.isNegative() && Known3
.isNegative())
1602 Known
.makeNegative();
1605 // (sub nsw non-negative, negative) --> non-negative
1606 // (sub nsw negative, non-negative) --> negative
1607 else if (Opcode
== Instruction::Sub
&& BO
->getOperand(0) == I
) {
1608 if (Known2
.isNonNegative() && Known3
.isNegative())
1609 Known
.makeNonNegative();
1610 else if (Known2
.isNegative() && Known3
.isNonNegative())
1611 Known
.makeNegative();
1614 // (mul nsw non-negative, non-negative) --> non-negative
1615 else if (Opcode
== Instruction::Mul
&& Known2
.isNonNegative() &&
1616 Known3
.isNonNegative())
1617 Known
.makeNonNegative();
1624 // Unreachable blocks may have zero-operand PHI nodes.
1625 if (P
->getNumIncomingValues() == 0)
1628 // Otherwise take the unions of the known bit sets of the operands,
1629 // taking conservative care to avoid excessive recursion.
1630 if (Depth
< MaxAnalysisRecursionDepth
- 1 && Known
.isUnknown()) {
1631 // Skip if every incoming value references to ourself.
1632 if (isa_and_nonnull
<UndefValue
>(P
->hasConstantValue()))
1635 Known
.Zero
.setAllBits();
1636 Known
.One
.setAllBits();
1637 for (unsigned u
= 0, e
= P
->getNumIncomingValues(); u
< e
; ++u
) {
1638 Value
*IncValue
= P
->getIncomingValue(u
);
1639 // Skip direct self references.
1640 if (IncValue
== P
) continue;
1642 // Change the context instruction to the "edge" that flows into the
1643 // phi. This is important because that is where the value is actually
1644 // "evaluated" even though it is used later somewhere else. (see also
1647 RecQ
.CxtI
= P
->getIncomingBlock(u
)->getTerminator();
1649 Known2
= KnownBits(BitWidth
);
1651 // Recurse, but cap the recursion to one level, because we don't
1652 // want to waste time spinning around in loops.
1653 computeKnownBits(IncValue
, Known2
, MaxAnalysisRecursionDepth
- 1, RecQ
);
1655 // If this failed, see if we can use a conditional branch into the phi
1656 // to help us determine the range of the value.
1657 if (Known2
.isUnknown()) {
1658 ICmpInst::Predicate Pred
;
1660 BasicBlock
*TrueSucc
, *FalseSucc
;
1661 // TODO: Use RHS Value and compute range from its known bits.
1662 if (match(RecQ
.CxtI
,
1663 m_Br(m_c_ICmp(Pred
, m_Specific(IncValue
), m_APInt(RHSC
)),
1664 m_BasicBlock(TrueSucc
), m_BasicBlock(FalseSucc
)))) {
1665 // Check for cases of duplicate successors.
1666 if ((TrueSucc
== P
->getParent()) != (FalseSucc
== P
->getParent())) {
1667 // If we're using the false successor, invert the predicate.
1668 if (FalseSucc
== P
->getParent())
1669 Pred
= CmpInst::getInversePredicate(Pred
);
1672 case CmpInst::Predicate::ICMP_EQ
:
1673 Known2
= KnownBits::makeConstant(*RHSC
);
1675 case CmpInst::Predicate::ICMP_ULE
:
1676 Known2
.Zero
.setHighBits(RHSC
->countl_zero());
1678 case CmpInst::Predicate::ICMP_ULT
:
1679 Known2
.Zero
.setHighBits((*RHSC
- 1).countl_zero());
1682 // TODO - add additional integer predicate handling.
1689 Known
= Known
.intersectWith(Known2
);
1690 // If all bits have been ruled out, there's no need to check
1692 if (Known
.isUnknown())
1698 case Instruction::Call
:
1699 case Instruction::Invoke
:
1700 // If range metadata is attached to this call, set known bits from that,
1701 // and then intersect with known bits based on other properties of the
1704 Q
.IIQ
.getMetadata(cast
<Instruction
>(I
), LLVMContext::MD_range
))
1705 computeKnownBitsFromRangeMetadata(*MD
, Known
);
1706 if (const Value
*RV
= cast
<CallBase
>(I
)->getReturnedArgOperand()) {
1707 computeKnownBits(RV
, Known2
, Depth
+ 1, Q
);
1708 Known
= Known
.unionWith(Known2
);
1710 if (const IntrinsicInst
*II
= dyn_cast
<IntrinsicInst
>(I
)) {
1711 switch (II
->getIntrinsicID()) {
1713 case Intrinsic::abs
: {
1714 computeKnownBits(I
->getOperand(0), Known2
, Depth
+ 1, Q
);
1715 bool IntMinIsPoison
= match(II
->getArgOperand(1), m_One());
1716 Known
= Known2
.abs(IntMinIsPoison
);
1719 case Intrinsic::bitreverse
:
1720 computeKnownBits(I
->getOperand(0), DemandedElts
, Known2
, Depth
+ 1, Q
);
1721 Known
.Zero
|= Known2
.Zero
.reverseBits();
1722 Known
.One
|= Known2
.One
.reverseBits();
1724 case Intrinsic::bswap
:
1725 computeKnownBits(I
->getOperand(0), DemandedElts
, Known2
, Depth
+ 1, Q
);
1726 Known
.Zero
|= Known2
.Zero
.byteSwap();
1727 Known
.One
|= Known2
.One
.byteSwap();
1729 case Intrinsic::ctlz
: {
1730 computeKnownBits(I
->getOperand(0), Known2
, Depth
+ 1, Q
);
1731 // If we have a known 1, its position is our upper bound.
1732 unsigned PossibleLZ
= Known2
.countMaxLeadingZeros();
1733 // If this call is poison for 0 input, the result will be less than 2^n.
1734 if (II
->getArgOperand(1) == ConstantInt::getTrue(II
->getContext()))
1735 PossibleLZ
= std::min(PossibleLZ
, BitWidth
- 1);
1736 unsigned LowBits
= llvm::bit_width(PossibleLZ
);
1737 Known
.Zero
.setBitsFrom(LowBits
);
1740 case Intrinsic::cttz
: {
1741 computeKnownBits(I
->getOperand(0), Known2
, Depth
+ 1, Q
);
1742 // If we have a known 1, its position is our upper bound.
1743 unsigned PossibleTZ
= Known2
.countMaxTrailingZeros();
1744 // If this call is poison for 0 input, the result will be less than 2^n.
1745 if (II
->getArgOperand(1) == ConstantInt::getTrue(II
->getContext()))
1746 PossibleTZ
= std::min(PossibleTZ
, BitWidth
- 1);
1747 unsigned LowBits
= llvm::bit_width(PossibleTZ
);
1748 Known
.Zero
.setBitsFrom(LowBits
);
1751 case Intrinsic::ctpop
: {
1752 computeKnownBits(I
->getOperand(0), Known2
, Depth
+ 1, Q
);
1753 // We can bound the space the count needs. Also, bits known to be zero
1754 // can't contribute to the population.
1755 unsigned BitsPossiblySet
= Known2
.countMaxPopulation();
1756 unsigned LowBits
= llvm::bit_width(BitsPossiblySet
);
1757 Known
.Zero
.setBitsFrom(LowBits
);
1758 // TODO: we could bound KnownOne using the lower bound on the number
1759 // of bits which might be set provided by popcnt KnownOne2.
1762 case Intrinsic::fshr
:
1763 case Intrinsic::fshl
: {
1765 if (!match(I
->getOperand(2), m_APInt(SA
)))
1768 // Normalize to funnel shift left.
1769 uint64_t ShiftAmt
= SA
->urem(BitWidth
);
1770 if (II
->getIntrinsicID() == Intrinsic::fshr
)
1771 ShiftAmt
= BitWidth
- ShiftAmt
;
1773 KnownBits
Known3(BitWidth
);
1774 computeKnownBits(I
->getOperand(0), Known2
, Depth
+ 1, Q
);
1775 computeKnownBits(I
->getOperand(1), Known3
, Depth
+ 1, Q
);
1778 Known2
.Zero
.shl(ShiftAmt
) | Known3
.Zero
.lshr(BitWidth
- ShiftAmt
);
1780 Known2
.One
.shl(ShiftAmt
) | Known3
.One
.lshr(BitWidth
- ShiftAmt
);
1783 case Intrinsic::uadd_sat
:
1784 case Intrinsic::usub_sat
: {
1785 bool IsAdd
= II
->getIntrinsicID() == Intrinsic::uadd_sat
;
1786 computeKnownBits(I
->getOperand(0), Known
, Depth
+ 1, Q
);
1787 computeKnownBits(I
->getOperand(1), Known2
, Depth
+ 1, Q
);
1789 // Add: Leading ones of either operand are preserved.
1790 // Sub: Leading zeros of LHS and leading ones of RHS are preserved
1791 // as leading zeros in the result.
1792 unsigned LeadingKnown
;
1794 LeadingKnown
= std::max(Known
.countMinLeadingOnes(),
1795 Known2
.countMinLeadingOnes());
1797 LeadingKnown
= std::max(Known
.countMinLeadingZeros(),
1798 Known2
.countMinLeadingOnes());
1800 Known
= KnownBits::computeForAddSub(
1801 IsAdd
, /* NSW */ false, Known
, Known2
);
1803 // We select between the operation result and all-ones/zero
1804 // respectively, so we can preserve known ones/zeros.
1806 Known
.One
.setHighBits(LeadingKnown
);
1807 Known
.Zero
.clearAllBits();
1809 Known
.Zero
.setHighBits(LeadingKnown
);
1810 Known
.One
.clearAllBits();
1814 case Intrinsic::umin
:
1815 computeKnownBits(I
->getOperand(0), Known
, Depth
+ 1, Q
);
1816 computeKnownBits(I
->getOperand(1), Known2
, Depth
+ 1, Q
);
1817 Known
= KnownBits::umin(Known
, Known2
);
1819 case Intrinsic::umax
:
1820 computeKnownBits(I
->getOperand(0), Known
, Depth
+ 1, Q
);
1821 computeKnownBits(I
->getOperand(1), Known2
, Depth
+ 1, Q
);
1822 Known
= KnownBits::umax(Known
, Known2
);
1824 case Intrinsic::smin
:
1825 computeKnownBits(I
->getOperand(0), Known
, Depth
+ 1, Q
);
1826 computeKnownBits(I
->getOperand(1), Known2
, Depth
+ 1, Q
);
1827 Known
= KnownBits::smin(Known
, Known2
);
1829 case Intrinsic::smax
:
1830 computeKnownBits(I
->getOperand(0), Known
, Depth
+ 1, Q
);
1831 computeKnownBits(I
->getOperand(1), Known2
, Depth
+ 1, Q
);
1832 Known
= KnownBits::smax(Known
, Known2
);
1834 case Intrinsic::x86_sse42_crc32_64_64
:
1835 Known
.Zero
.setBitsFrom(32);
1837 case Intrinsic::riscv_vsetvli
:
1838 case Intrinsic::riscv_vsetvlimax
:
1839 // Assume that VL output is >= 65536.
1840 // TODO: Take SEW and LMUL into account.
1842 Known
.Zero
.setBitsFrom(17);
1844 case Intrinsic::vscale
: {
1845 if (!II
->getParent() || !II
->getFunction())
1848 Known
= getVScaleRange(II
->getFunction(), BitWidth
).toKnownBits();
1854 case Instruction::ShuffleVector
: {
1855 auto *Shuf
= dyn_cast
<ShuffleVectorInst
>(I
);
1856 // FIXME: Do we need to handle ConstantExpr involving shufflevectors?
1861 // For undef elements, we don't know anything about the common state of
1862 // the shuffle result.
1863 APInt DemandedLHS
, DemandedRHS
;
1864 if (!getShuffleDemandedElts(Shuf
, DemandedElts
, DemandedLHS
, DemandedRHS
)) {
1868 Known
.One
.setAllBits();
1869 Known
.Zero
.setAllBits();
1870 if (!!DemandedLHS
) {
1871 const Value
*LHS
= Shuf
->getOperand(0);
1872 computeKnownBits(LHS
, DemandedLHS
, Known
, Depth
+ 1, Q
);
1873 // If we don't know any bits, early out.
1874 if (Known
.isUnknown())
1877 if (!!DemandedRHS
) {
1878 const Value
*RHS
= Shuf
->getOperand(1);
1879 computeKnownBits(RHS
, DemandedRHS
, Known2
, Depth
+ 1, Q
);
1880 Known
= Known
.intersectWith(Known2
);
1884 case Instruction::InsertElement
: {
1885 if (isa
<ScalableVectorType
>(I
->getType())) {
1889 const Value
*Vec
= I
->getOperand(0);
1890 const Value
*Elt
= I
->getOperand(1);
1891 auto *CIdx
= dyn_cast
<ConstantInt
>(I
->getOperand(2));
1892 // Early out if the index is non-constant or out-of-range.
1893 unsigned NumElts
= DemandedElts
.getBitWidth();
1894 if (!CIdx
|| CIdx
->getValue().uge(NumElts
)) {
1898 Known
.One
.setAllBits();
1899 Known
.Zero
.setAllBits();
1900 unsigned EltIdx
= CIdx
->getZExtValue();
1901 // Do we demand the inserted element?
1902 if (DemandedElts
[EltIdx
]) {
1903 computeKnownBits(Elt
, Known
, Depth
+ 1, Q
);
1904 // If we don't know any bits, early out.
1905 if (Known
.isUnknown())
1908 // We don't need the base vector element that has been inserted.
1909 APInt DemandedVecElts
= DemandedElts
;
1910 DemandedVecElts
.clearBit(EltIdx
);
1911 if (!!DemandedVecElts
) {
1912 computeKnownBits(Vec
, DemandedVecElts
, Known2
, Depth
+ 1, Q
);
1913 Known
= Known
.intersectWith(Known2
);
1917 case Instruction::ExtractElement
: {
1918 // Look through extract element. If the index is non-constant or
1919 // out-of-range demand all elements, otherwise just the extracted element.
1920 const Value
*Vec
= I
->getOperand(0);
1921 const Value
*Idx
= I
->getOperand(1);
1922 auto *CIdx
= dyn_cast
<ConstantInt
>(Idx
);
1923 if (isa
<ScalableVectorType
>(Vec
->getType())) {
1924 // FIXME: there's probably *something* we can do with scalable vectors
1928 unsigned NumElts
= cast
<FixedVectorType
>(Vec
->getType())->getNumElements();
1929 APInt DemandedVecElts
= APInt::getAllOnes(NumElts
);
1930 if (CIdx
&& CIdx
->getValue().ult(NumElts
))
1931 DemandedVecElts
= APInt::getOneBitSet(NumElts
, CIdx
->getZExtValue());
1932 computeKnownBits(Vec
, DemandedVecElts
, Known
, Depth
+ 1, Q
);
1935 case Instruction::ExtractValue
:
1936 if (IntrinsicInst
*II
= dyn_cast
<IntrinsicInst
>(I
->getOperand(0))) {
1937 const ExtractValueInst
*EVI
= cast
<ExtractValueInst
>(I
);
1938 if (EVI
->getNumIndices() != 1) break;
1939 if (EVI
->getIndices()[0] == 0) {
1940 switch (II
->getIntrinsicID()) {
1942 case Intrinsic::uadd_with_overflow
:
1943 case Intrinsic::sadd_with_overflow
:
1944 computeKnownBitsAddSub(true, II
->getArgOperand(0),
1945 II
->getArgOperand(1), false, DemandedElts
,
1946 Known
, Known2
, Depth
, Q
);
1948 case Intrinsic::usub_with_overflow
:
1949 case Intrinsic::ssub_with_overflow
:
1950 computeKnownBitsAddSub(false, II
->getArgOperand(0),
1951 II
->getArgOperand(1), false, DemandedElts
,
1952 Known
, Known2
, Depth
, Q
);
1954 case Intrinsic::umul_with_overflow
:
1955 case Intrinsic::smul_with_overflow
:
1956 computeKnownBitsMul(II
->getArgOperand(0), II
->getArgOperand(1), false,
1957 DemandedElts
, Known
, Known2
, Depth
, Q
);
1963 case Instruction::Freeze
:
1964 if (isGuaranteedNotToBePoison(I
->getOperand(0), Q
.AC
, Q
.CxtI
, Q
.DT
,
1966 computeKnownBits(I
->getOperand(0), Known
, Depth
+ 1, Q
);
1971 /// Determine which bits of V are known to be either zero or one and return
1973 KnownBits
computeKnownBits(const Value
*V
, const APInt
&DemandedElts
,
1974 unsigned Depth
, const Query
&Q
) {
1975 KnownBits
Known(getBitWidth(V
->getType(), Q
.DL
));
1976 computeKnownBits(V
, DemandedElts
, Known
, Depth
, Q
);
1980 /// Determine which bits of V are known to be either zero or one and return
1982 KnownBits
computeKnownBits(const Value
*V
, unsigned Depth
, const Query
&Q
) {
1983 KnownBits
Known(getBitWidth(V
->getType(), Q
.DL
));
1984 computeKnownBits(V
, Known
, Depth
, Q
);
1988 /// Determine which bits of V are known to be either zero or one and return
1989 /// them in the Known bit set.
1991 /// NOTE: we cannot consider 'undef' to be "IsZero" here. The problem is that
1992 /// we cannot optimize based on the assumption that it is zero without changing
1993 /// it to be an explicit zero. If we don't change it to zero, other code could
1994 /// optimized based on the contradictory assumption that it is non-zero.
1995 /// Because instcombine aggressively folds operations with undef args anyway,
1996 /// this won't lose us code quality.
1998 /// This function is defined on values with integer type, values with pointer
1999 /// type, and vectors of integers. In the case
2000 /// where V is a vector, known zero, and known one values are the
2001 /// same width as the vector element, and the bit is set only if it is true
2002 /// for all of the demanded elements in the vector specified by DemandedElts.
2003 void computeKnownBits(const Value
*V
, const APInt
&DemandedElts
,
2004 KnownBits
&Known
, unsigned Depth
, const Query
&Q
) {
2005 if (!DemandedElts
) {
2006 // No demanded elts, better to assume we don't know anything.
2011 assert(V
&& "No Value?");
2012 assert(Depth
<= MaxAnalysisRecursionDepth
&& "Limit Search Depth");
2015 Type
*Ty
= V
->getType();
2016 unsigned BitWidth
= Known
.getBitWidth();
2018 assert((Ty
->isIntOrIntVectorTy(BitWidth
) || Ty
->isPtrOrPtrVectorTy()) &&
2019 "Not integer or pointer type!");
2021 if (auto *FVTy
= dyn_cast
<FixedVectorType
>(Ty
)) {
2023 FVTy
->getNumElements() == DemandedElts
.getBitWidth() &&
2024 "DemandedElt width should equal the fixed vector number of elements");
2026 assert(DemandedElts
== APInt(1, 1) &&
2027 "DemandedElt width should be 1 for scalars or scalable vectors");
2030 Type
*ScalarTy
= Ty
->getScalarType();
2031 if (ScalarTy
->isPointerTy()) {
2032 assert(BitWidth
== Q
.DL
.getPointerTypeSizeInBits(ScalarTy
) &&
2033 "V and Known should have same BitWidth");
2035 assert(BitWidth
== Q
.DL
.getTypeSizeInBits(ScalarTy
) &&
2036 "V and Known should have same BitWidth");
2041 if (match(V
, m_APInt(C
))) {
2042 // We know all of the bits for a scalar constant or a splat vector constant!
2043 Known
= KnownBits::makeConstant(*C
);
2046 // Null and aggregate-zero are all-zeros.
2047 if (isa
<ConstantPointerNull
>(V
) || isa
<ConstantAggregateZero
>(V
)) {
2051 // Handle a constant vector by taking the intersection of the known bits of
2053 if (const ConstantDataVector
*CDV
= dyn_cast
<ConstantDataVector
>(V
)) {
2054 assert(!isa
<ScalableVectorType
>(V
->getType()));
2055 // We know that CDV must be a vector of integers. Take the intersection of
2057 Known
.Zero
.setAllBits(); Known
.One
.setAllBits();
2058 for (unsigned i
= 0, e
= CDV
->getNumElements(); i
!= e
; ++i
) {
2059 if (!DemandedElts
[i
])
2061 APInt Elt
= CDV
->getElementAsAPInt(i
);
2068 if (const auto *CV
= dyn_cast
<ConstantVector
>(V
)) {
2069 assert(!isa
<ScalableVectorType
>(V
->getType()));
2070 // We know that CV must be a vector of integers. Take the intersection of
2072 Known
.Zero
.setAllBits(); Known
.One
.setAllBits();
2073 for (unsigned i
= 0, e
= CV
->getNumOperands(); i
!= e
; ++i
) {
2074 if (!DemandedElts
[i
])
2076 Constant
*Element
= CV
->getAggregateElement(i
);
2077 auto *ElementCI
= dyn_cast_or_null
<ConstantInt
>(Element
);
2082 const APInt
&Elt
= ElementCI
->getValue();
2089 // Start out not knowing anything.
2092 // We can't imply anything about undefs.
2093 if (isa
<UndefValue
>(V
))
2096 // There's no point in looking through other users of ConstantData for
2097 // assumptions. Confirm that we've handled them all.
2098 assert(!isa
<ConstantData
>(V
) && "Unhandled constant data!");
2100 // All recursive calls that increase depth must come after this.
2101 if (Depth
== MaxAnalysisRecursionDepth
)
2104 // A weak GlobalAlias is totally unknown. A non-weak GlobalAlias has
2105 // the bits of its aliasee.
2106 if (const GlobalAlias
*GA
= dyn_cast
<GlobalAlias
>(V
)) {
2107 if (!GA
->isInterposable())
2108 computeKnownBits(GA
->getAliasee(), Known
, Depth
+ 1, Q
);
2112 if (const Operator
*I
= dyn_cast
<Operator
>(V
))
2113 computeKnownBitsFromOperator(I
, DemandedElts
, Known
, Depth
, Q
);
2115 // Aligned pointers have trailing zeros - refine Known.Zero set
2116 if (isa
<PointerType
>(V
->getType())) {
2117 Align Alignment
= V
->getPointerAlignment(Q
.DL
);
2118 Known
.Zero
.setLowBits(Log2(Alignment
));
2121 // computeKnownBitsFromAssume strictly refines Known.
2122 // Therefore, we run them after computeKnownBitsFromOperator.
2124 // Check whether a nearby assume intrinsic can determine some known bits.
2125 computeKnownBitsFromAssume(V
, Known
, Depth
, Q
);
2127 assert((Known
.Zero
& Known
.One
) == 0 && "Bits known to be one AND zero?");
2130 /// Try to detect a recurrence that the value of the induction variable is
2131 /// always a power of two (or zero).
2132 static bool isPowerOfTwoRecurrence(const PHINode
*PN
, bool OrZero
,
2133 unsigned Depth
, Query
&Q
) {
2134 BinaryOperator
*BO
= nullptr;
2135 Value
*Start
= nullptr, *Step
= nullptr;
2136 if (!matchSimpleRecurrence(PN
, BO
, Start
, Step
))
2139 // Initial value must be a power of two.
2140 for (const Use
&U
: PN
->operands()) {
2141 if (U
.get() == Start
) {
2142 // Initial value comes from a different BB, need to adjust context
2143 // instruction for analysis.
2144 Q
.CxtI
= PN
->getIncomingBlock(U
)->getTerminator();
2145 if (!isKnownToBeAPowerOfTwo(Start
, OrZero
, Depth
, Q
))
2150 // Except for Mul, the induction variable must be on the left side of the
2151 // increment expression, otherwise its value can be arbitrary.
2152 if (BO
->getOpcode() != Instruction::Mul
&& BO
->getOperand(1) != Step
)
2155 Q
.CxtI
= BO
->getParent()->getTerminator();
2156 switch (BO
->getOpcode()) {
2157 case Instruction::Mul
:
2158 // Power of two is closed under multiplication.
2159 return (OrZero
|| Q
.IIQ
.hasNoUnsignedWrap(BO
) ||
2160 Q
.IIQ
.hasNoSignedWrap(BO
)) &&
2161 isKnownToBeAPowerOfTwo(Step
, OrZero
, Depth
, Q
);
2162 case Instruction::SDiv
:
2163 // Start value must not be signmask for signed division, so simply being a
2164 // power of two is not sufficient, and it has to be a constant.
2165 if (!match(Start
, m_Power2()) || match(Start
, m_SignMask()))
2168 case Instruction::UDiv
:
2169 // Divisor must be a power of two.
2170 // If OrZero is false, cannot guarantee induction variable is non-zero after
2171 // division, same for Shr, unless it is exact division.
2172 return (OrZero
|| Q
.IIQ
.isExact(BO
)) &&
2173 isKnownToBeAPowerOfTwo(Step
, false, Depth
, Q
);
2174 case Instruction::Shl
:
2175 return OrZero
|| Q
.IIQ
.hasNoUnsignedWrap(BO
) || Q
.IIQ
.hasNoSignedWrap(BO
);
2176 case Instruction::AShr
:
2177 if (!match(Start
, m_Power2()) || match(Start
, m_SignMask()))
2180 case Instruction::LShr
:
2181 return OrZero
|| Q
.IIQ
.isExact(BO
);
2187 /// Return true if the given value is known to have exactly one
2188 /// bit set when defined. For vectors return true if every element is known to
2189 /// be a power of two when defined. Supports values with integer or pointer
2190 /// types and vectors of integers.
2191 bool isKnownToBeAPowerOfTwo(const Value
*V
, bool OrZero
, unsigned Depth
,
2193 assert(Depth
<= MaxAnalysisRecursionDepth
&& "Limit Search Depth");
2195 // Attempt to match against constants.
2196 if (OrZero
&& match(V
, m_Power2OrZero()))
2198 if (match(V
, m_Power2()))
2201 // 1 << X is clearly a power of two if the one is not shifted off the end. If
2202 // it is shifted off the end then the result is undefined.
2203 if (match(V
, m_Shl(m_One(), m_Value())))
2206 // (signmask) >>l X is clearly a power of two if the one is not shifted off
2207 // the bottom. If it is shifted off the bottom then the result is undefined.
2208 if (match(V
, m_LShr(m_SignMask(), m_Value())))
2211 // The remaining tests are all recursive, so bail out if we hit the limit.
2212 if (Depth
++ == MaxAnalysisRecursionDepth
)
2215 Value
*X
= nullptr, *Y
= nullptr;
2216 // A shift left or a logical shift right of a power of two is a power of two
2218 if (OrZero
&& (match(V
, m_Shl(m_Value(X
), m_Value())) ||
2219 match(V
, m_LShr(m_Value(X
), m_Value()))))
2220 return isKnownToBeAPowerOfTwo(X
, /*OrZero*/ true, Depth
, Q
);
2222 if (const ZExtInst
*ZI
= dyn_cast
<ZExtInst
>(V
))
2223 return isKnownToBeAPowerOfTwo(ZI
->getOperand(0), OrZero
, Depth
, Q
);
2225 if (const SelectInst
*SI
= dyn_cast
<SelectInst
>(V
))
2226 return isKnownToBeAPowerOfTwo(SI
->getTrueValue(), OrZero
, Depth
, Q
) &&
2227 isKnownToBeAPowerOfTwo(SI
->getFalseValue(), OrZero
, Depth
, Q
);
2229 // Peek through min/max.
2230 if (match(V
, m_MaxOrMin(m_Value(X
), m_Value(Y
)))) {
2231 return isKnownToBeAPowerOfTwo(X
, OrZero
, Depth
, Q
) &&
2232 isKnownToBeAPowerOfTwo(Y
, OrZero
, Depth
, Q
);
2235 if (OrZero
&& match(V
, m_And(m_Value(X
), m_Value(Y
)))) {
2236 // A power of two and'd with anything is a power of two or zero.
2237 if (isKnownToBeAPowerOfTwo(X
, /*OrZero*/ true, Depth
, Q
) ||
2238 isKnownToBeAPowerOfTwo(Y
, /*OrZero*/ true, Depth
, Q
))
2240 // X & (-X) is always a power of two or zero.
2241 if (match(X
, m_Neg(m_Specific(Y
))) || match(Y
, m_Neg(m_Specific(X
))))
2246 // Adding a power-of-two or zero to the same power-of-two or zero yields
2247 // either the original power-of-two, a larger power-of-two or zero.
2248 if (match(V
, m_Add(m_Value(X
), m_Value(Y
)))) {
2249 const OverflowingBinaryOperator
*VOBO
= cast
<OverflowingBinaryOperator
>(V
);
2250 if (OrZero
|| Q
.IIQ
.hasNoUnsignedWrap(VOBO
) ||
2251 Q
.IIQ
.hasNoSignedWrap(VOBO
)) {
2252 if (match(X
, m_And(m_Specific(Y
), m_Value())) ||
2253 match(X
, m_And(m_Value(), m_Specific(Y
))))
2254 if (isKnownToBeAPowerOfTwo(Y
, OrZero
, Depth
, Q
))
2256 if (match(Y
, m_And(m_Specific(X
), m_Value())) ||
2257 match(Y
, m_And(m_Value(), m_Specific(X
))))
2258 if (isKnownToBeAPowerOfTwo(X
, OrZero
, Depth
, Q
))
2261 unsigned BitWidth
= V
->getType()->getScalarSizeInBits();
2262 KnownBits
LHSBits(BitWidth
);
2263 computeKnownBits(X
, LHSBits
, Depth
, Q
);
2265 KnownBits
RHSBits(BitWidth
);
2266 computeKnownBits(Y
, RHSBits
, Depth
, Q
);
2267 // If i8 V is a power of two or zero:
2268 // ZeroBits: 1 1 1 0 1 1 1 1
2269 // ~ZeroBits: 0 0 0 1 0 0 0 0
2270 if ((~(LHSBits
.Zero
& RHSBits
.Zero
)).isPowerOf2())
2271 // If OrZero isn't set, we cannot give back a zero result.
2272 // Make sure either the LHS or RHS has a bit set.
2273 if (OrZero
|| RHSBits
.One
.getBoolValue() || LHSBits
.One
.getBoolValue())
2278 // A PHI node is power of two if all incoming values are power of two, or if
2279 // it is an induction variable where in each step its value is a power of two.
2280 if (const PHINode
*PN
= dyn_cast
<PHINode
>(V
)) {
2283 // Check if it is an induction variable and always power of two.
2284 if (isPowerOfTwoRecurrence(PN
, OrZero
, Depth
, RecQ
))
2287 // Recursively check all incoming values. Limit recursion to 2 levels, so
2288 // that search complexity is limited to number of operands^2.
2289 unsigned NewDepth
= std::max(Depth
, MaxAnalysisRecursionDepth
- 1);
2290 return llvm::all_of(PN
->operands(), [&](const Use
&U
) {
2291 // Value is power of 2 if it is coming from PHI node itself by induction.
2295 // Change the context instruction to the incoming block where it is
2297 RecQ
.CxtI
= PN
->getIncomingBlock(U
)->getTerminator();
2298 return isKnownToBeAPowerOfTwo(U
.get(), OrZero
, NewDepth
, RecQ
);
2302 // An exact divide or right shift can only shift off zero bits, so the result
2303 // is a power of two only if the first operand is a power of two and not
2304 // copying a sign bit (sdiv int_min, 2).
2305 if (match(V
, m_Exact(m_LShr(m_Value(), m_Value()))) ||
2306 match(V
, m_Exact(m_UDiv(m_Value(), m_Value())))) {
2307 return isKnownToBeAPowerOfTwo(cast
<Operator
>(V
)->getOperand(0), OrZero
,
2314 /// Test whether a GEP's result is known to be non-null.
2316 /// Uses properties inherent in a GEP to try to determine whether it is known
2319 /// Currently this routine does not support vector GEPs.
2320 static bool isGEPKnownNonNull(const GEPOperator
*GEP
, unsigned Depth
,
2322 const Function
*F
= nullptr;
2323 if (const Instruction
*I
= dyn_cast
<Instruction
>(GEP
))
2324 F
= I
->getFunction();
2326 if (!GEP
->isInBounds() ||
2327 NullPointerIsDefined(F
, GEP
->getPointerAddressSpace()))
2330 // FIXME: Support vector-GEPs.
2331 assert(GEP
->getType()->isPointerTy() && "We only support plain pointer GEP");
2333 // If the base pointer is non-null, we cannot walk to a null address with an
2334 // inbounds GEP in address space zero.
2335 if (isKnownNonZero(GEP
->getPointerOperand(), Depth
, Q
))
2338 // Walk the GEP operands and see if any operand introduces a non-zero offset.
2339 // If so, then the GEP cannot produce a null pointer, as doing so would
2340 // inherently violate the inbounds contract within address space zero.
2341 for (gep_type_iterator GTI
= gep_type_begin(GEP
), GTE
= gep_type_end(GEP
);
2342 GTI
!= GTE
; ++GTI
) {
2343 // Struct types are easy -- they must always be indexed by a constant.
2344 if (StructType
*STy
= GTI
.getStructTypeOrNull()) {
2345 ConstantInt
*OpC
= cast
<ConstantInt
>(GTI
.getOperand());
2346 unsigned ElementIdx
= OpC
->getZExtValue();
2347 const StructLayout
*SL
= Q
.DL
.getStructLayout(STy
);
2348 uint64_t ElementOffset
= SL
->getElementOffset(ElementIdx
);
2349 if (ElementOffset
> 0)
2354 // If we have a zero-sized type, the index doesn't matter. Keep looping.
2355 if (Q
.DL
.getTypeAllocSize(GTI
.getIndexedType()).isZero())
2358 // Fast path the constant operand case both for efficiency and so we don't
2359 // increment Depth when just zipping down an all-constant GEP.
2360 if (ConstantInt
*OpC
= dyn_cast
<ConstantInt
>(GTI
.getOperand())) {
2366 // We post-increment Depth here because while isKnownNonZero increments it
2367 // as well, when we pop back up that increment won't persist. We don't want
2368 // to recurse 10k times just because we have 10k GEP operands. We don't
2369 // bail completely out because we want to handle constant GEPs regardless
2371 if (Depth
++ >= MaxAnalysisRecursionDepth
)
2374 if (isKnownNonZero(GTI
.getOperand(), Depth
, Q
))
2381 static bool isKnownNonNullFromDominatingCondition(const Value
*V
,
2382 const Instruction
*CtxI
,
2383 const DominatorTree
*DT
) {
2384 assert(!isa
<Constant
>(V
) && "Called for constant?");
2389 unsigned NumUsesExplored
= 0;
2390 for (const auto *U
: V
->users()) {
2391 // Avoid massive lists
2392 if (NumUsesExplored
>= DomConditionsMaxUses
)
2396 // If the value is used as an argument to a call or invoke, then argument
2397 // attributes may provide an answer about null-ness.
2398 if (const auto *CB
= dyn_cast
<CallBase
>(U
))
2399 if (auto *CalledFunc
= CB
->getCalledFunction())
2400 for (const Argument
&Arg
: CalledFunc
->args())
2401 if (CB
->getArgOperand(Arg
.getArgNo()) == V
&&
2402 Arg
.hasNonNullAttr(/* AllowUndefOrPoison */ false) &&
2403 DT
->dominates(CB
, CtxI
))
2406 // If the value is used as a load/store, then the pointer must be non null.
2407 if (V
== getLoadStorePointerOperand(U
)) {
2408 const Instruction
*I
= cast
<Instruction
>(U
);
2409 if (!NullPointerIsDefined(I
->getFunction(),
2410 V
->getType()->getPointerAddressSpace()) &&
2411 DT
->dominates(I
, CtxI
))
2415 // Consider only compare instructions uniquely controlling a branch
2417 CmpInst::Predicate Pred
;
2418 if (!match(U
, m_c_ICmp(Pred
, m_Specific(V
), m_Value(RHS
))))
2422 if (cmpExcludesZero(Pred
, RHS
))
2423 NonNullIfTrue
= true;
2424 else if (cmpExcludesZero(CmpInst::getInversePredicate(Pred
), RHS
))
2425 NonNullIfTrue
= false;
2429 SmallVector
<const User
*, 4> WorkList
;
2430 SmallPtrSet
<const User
*, 4> Visited
;
2431 for (const auto *CmpU
: U
->users()) {
2432 assert(WorkList
.empty() && "Should be!");
2433 if (Visited
.insert(CmpU
).second
)
2434 WorkList
.push_back(CmpU
);
2436 while (!WorkList
.empty()) {
2437 auto *Curr
= WorkList
.pop_back_val();
2439 // If a user is an AND, add all its users to the work list. We only
2440 // propagate "pred != null" condition through AND because it is only
2441 // correct to assume that all conditions of AND are met in true branch.
2442 // TODO: Support similar logic of OR and EQ predicate?
2444 if (match(Curr
, m_LogicalAnd(m_Value(), m_Value()))) {
2445 for (const auto *CurrU
: Curr
->users())
2446 if (Visited
.insert(CurrU
).second
)
2447 WorkList
.push_back(CurrU
);
2451 if (const BranchInst
*BI
= dyn_cast
<BranchInst
>(Curr
)) {
2452 assert(BI
->isConditional() && "uses a comparison!");
2454 BasicBlock
*NonNullSuccessor
=
2455 BI
->getSuccessor(NonNullIfTrue
? 0 : 1);
2456 BasicBlockEdge
Edge(BI
->getParent(), NonNullSuccessor
);
2457 if (Edge
.isSingleEdge() && DT
->dominates(Edge
, CtxI
->getParent()))
2459 } else if (NonNullIfTrue
&& isGuard(Curr
) &&
2460 DT
->dominates(cast
<Instruction
>(Curr
), CtxI
)) {
2470 /// Does the 'Range' metadata (which must be a valid MD_range operand list)
2471 /// ensure that the value it's attached to is never Value? 'RangeType' is
2472 /// is the type of the value described by the range.
2473 static bool rangeMetadataExcludesValue(const MDNode
* Ranges
, const APInt
& Value
) {
2474 const unsigned NumRanges
= Ranges
->getNumOperands() / 2;
2475 assert(NumRanges
>= 1);
2476 for (unsigned i
= 0; i
< NumRanges
; ++i
) {
2477 ConstantInt
*Lower
=
2478 mdconst::extract
<ConstantInt
>(Ranges
->getOperand(2 * i
+ 0));
2479 ConstantInt
*Upper
=
2480 mdconst::extract
<ConstantInt
>(Ranges
->getOperand(2 * i
+ 1));
2481 ConstantRange
Range(Lower
->getValue(), Upper
->getValue());
2482 if (Range
.contains(Value
))
2488 /// Try to detect a recurrence that monotonically increases/decreases from a
2489 /// non-zero starting value. These are common as induction variables.
2490 static bool isNonZeroRecurrence(const PHINode
*PN
) {
2491 BinaryOperator
*BO
= nullptr;
2492 Value
*Start
= nullptr, *Step
= nullptr;
2493 const APInt
*StartC
, *StepC
;
2494 if (!matchSimpleRecurrence(PN
, BO
, Start
, Step
) ||
2495 !match(Start
, m_APInt(StartC
)) || StartC
->isZero())
2498 switch (BO
->getOpcode()) {
2499 case Instruction::Add
:
2500 // Starting from non-zero and stepping away from zero can never wrap back
2502 return BO
->hasNoUnsignedWrap() ||
2503 (BO
->hasNoSignedWrap() && match(Step
, m_APInt(StepC
)) &&
2504 StartC
->isNegative() == StepC
->isNegative());
2505 case Instruction::Mul
:
2506 return (BO
->hasNoUnsignedWrap() || BO
->hasNoSignedWrap()) &&
2507 match(Step
, m_APInt(StepC
)) && !StepC
->isZero();
2508 case Instruction::Shl
:
2509 return BO
->hasNoUnsignedWrap() || BO
->hasNoSignedWrap();
2510 case Instruction::AShr
:
2511 case Instruction::LShr
:
2512 return BO
->isExact();
2518 static bool isNonZeroAdd(const APInt
&DemandedElts
, unsigned Depth
,
2519 const Query
&Q
, unsigned BitWidth
, Value
*X
, Value
*Y
,
2521 KnownBits XKnown
= computeKnownBits(X
, DemandedElts
, Depth
, Q
);
2522 KnownBits YKnown
= computeKnownBits(Y
, DemandedElts
, Depth
, Q
);
2524 // If X and Y are both non-negative (as signed values) then their sum is not
2525 // zero unless both X and Y are zero.
2526 if (XKnown
.isNonNegative() && YKnown
.isNonNegative())
2527 if (isKnownNonZero(Y
, DemandedElts
, Depth
, Q
) ||
2528 isKnownNonZero(X
, DemandedElts
, Depth
, Q
))
2531 // If X and Y are both negative (as signed values) then their sum is not
2532 // zero unless both X and Y equal INT_MIN.
2533 if (XKnown
.isNegative() && YKnown
.isNegative()) {
2534 APInt Mask
= APInt::getSignedMaxValue(BitWidth
);
2535 // The sign bit of X is set. If some other bit is set then X is not equal
2537 if (XKnown
.One
.intersects(Mask
))
2539 // The sign bit of Y is set. If some other bit is set then Y is not equal
2541 if (YKnown
.One
.intersects(Mask
))
2545 // The sum of a non-negative number and a power of two is not zero.
2546 if (XKnown
.isNonNegative() &&
2547 isKnownToBeAPowerOfTwo(Y
, /*OrZero*/ false, Depth
, Q
))
2549 if (YKnown
.isNonNegative() &&
2550 isKnownToBeAPowerOfTwo(X
, /*OrZero*/ false, Depth
, Q
))
2553 return KnownBits::computeForAddSub(/*Add*/ true, NSW
, XKnown
, YKnown
)
2557 static bool isNonZeroSub(const APInt
&DemandedElts
, unsigned Depth
,
2558 const Query
&Q
, unsigned BitWidth
, Value
*X
,
2560 if (auto *C
= dyn_cast
<Constant
>(X
))
2561 if (C
->isNullValue() && isKnownNonZero(Y
, DemandedElts
, Depth
, Q
))
2564 KnownBits XKnown
= computeKnownBits(X
, DemandedElts
, Depth
, Q
);
2565 if (XKnown
.isUnknown())
2567 KnownBits YKnown
= computeKnownBits(Y
, DemandedElts
, Depth
, Q
);
2568 // If X != Y then X - Y is non zero.
2569 std::optional
<bool> ne
= KnownBits::ne(XKnown
, YKnown
);
2570 // If we are unable to compute if X != Y, we won't be able to do anything
2571 // computing the knownbits of the sub expression so just return here.
2575 static bool isNonZeroShift(const Operator
*I
, const APInt
&DemandedElts
,
2576 unsigned Depth
, const Query
&Q
,
2577 const KnownBits
&KnownVal
) {
2578 auto ShiftOp
= [&](const APInt
&Lhs
, const APInt
&Rhs
) {
2579 switch (I
->getOpcode()) {
2580 case Instruction::Shl
:
2581 return Lhs
.shl(Rhs
);
2582 case Instruction::LShr
:
2583 return Lhs
.lshr(Rhs
);
2584 case Instruction::AShr
:
2585 return Lhs
.ashr(Rhs
);
2587 llvm_unreachable("Unknown Shift Opcode");
2591 auto InvShiftOp
= [&](const APInt
&Lhs
, const APInt
&Rhs
) {
2592 switch (I
->getOpcode()) {
2593 case Instruction::Shl
:
2594 return Lhs
.lshr(Rhs
);
2595 case Instruction::LShr
:
2596 case Instruction::AShr
:
2597 return Lhs
.shl(Rhs
);
2599 llvm_unreachable("Unknown Shift Opcode");
2603 if (KnownVal
.isUnknown())
2606 KnownBits KnownCnt
=
2607 computeKnownBits(I
->getOperand(1), DemandedElts
, Depth
, Q
);
2608 APInt MaxShift
= KnownCnt
.getMaxValue();
2609 unsigned NumBits
= KnownVal
.getBitWidth();
2610 if (MaxShift
.uge(NumBits
))
2613 if (!ShiftOp(KnownVal
.One
, MaxShift
).isZero())
2616 // If all of the bits shifted out are known to be zero, and Val is known
2617 // non-zero then at least one non-zero bit must remain.
2618 if (InvShiftOp(KnownVal
.Zero
, NumBits
- MaxShift
)
2619 .eq(InvShiftOp(APInt::getAllOnes(NumBits
), NumBits
- MaxShift
)) &&
2620 isKnownNonZero(I
->getOperand(0), DemandedElts
, Depth
, Q
))
2626 /// Return true if the given value is known to be non-zero when defined. For
2627 /// vectors, return true if every demanded element is known to be non-zero when
2628 /// defined. For pointers, if the context instruction and dominator tree are
2629 /// specified, perform context-sensitive analysis and return true if the
2630 /// pointer couldn't possibly be null at the specified instruction.
2631 /// Supports values with integer or pointer type and vectors of integers.
2632 bool isKnownNonZero(const Value
*V
, const APInt
&DemandedElts
, unsigned Depth
,
2636 Type
*Ty
= V
->getType();
2637 assert(Depth
<= MaxAnalysisRecursionDepth
&& "Limit Search Depth");
2639 if (auto *FVTy
= dyn_cast
<FixedVectorType
>(Ty
)) {
2641 FVTy
->getNumElements() == DemandedElts
.getBitWidth() &&
2642 "DemandedElt width should equal the fixed vector number of elements");
2644 assert(DemandedElts
== APInt(1, 1) &&
2645 "DemandedElt width should be 1 for scalars");
2649 if (auto *C
= dyn_cast
<Constant
>(V
)) {
2650 if (C
->isNullValue())
2652 if (isa
<ConstantInt
>(C
))
2653 // Must be non-zero due to null test above.
2656 // For constant vectors, check that all elements are undefined or known
2657 // non-zero to determine that the whole vector is known non-zero.
2658 if (auto *VecTy
= dyn_cast
<FixedVectorType
>(C
->getType())) {
2659 for (unsigned i
= 0, e
= VecTy
->getNumElements(); i
!= e
; ++i
) {
2660 if (!DemandedElts
[i
])
2662 Constant
*Elt
= C
->getAggregateElement(i
);
2663 if (!Elt
|| Elt
->isNullValue())
2665 if (!isa
<UndefValue
>(Elt
) && !isa
<ConstantInt
>(Elt
))
2671 // A global variable in address space 0 is non null unless extern weak
2672 // or an absolute symbol reference. Other address spaces may have null as a
2673 // valid address for a global, so we can't assume anything.
2674 if (const GlobalValue
*GV
= dyn_cast
<GlobalValue
>(V
)) {
2675 if (!GV
->isAbsoluteSymbolRef() && !GV
->hasExternalWeakLinkage() &&
2676 GV
->getType()->getAddressSpace() == 0)
2680 // For constant expressions, fall through to the Operator code below.
2681 if (!isa
<ConstantExpr
>(V
))
2685 if (auto *I
= dyn_cast
<Instruction
>(V
)) {
2686 if (MDNode
*Ranges
= Q
.IIQ
.getMetadata(I
, LLVMContext::MD_range
)) {
2687 // If the possible ranges don't contain zero, then the value is
2688 // definitely non-zero.
2689 if (auto *Ty
= dyn_cast
<IntegerType
>(V
->getType())) {
2690 const APInt
ZeroValue(Ty
->getBitWidth(), 0);
2691 if (rangeMetadataExcludesValue(Ranges
, ZeroValue
))
2697 if (!isa
<Constant
>(V
) && isKnownNonZeroFromAssume(V
, Q
))
2700 // Some of the tests below are recursive, so bail out if we hit the limit.
2701 if (Depth
++ >= MaxAnalysisRecursionDepth
)
2704 // Check for pointer simplifications.
2706 if (PointerType
*PtrTy
= dyn_cast
<PointerType
>(V
->getType())) {
2707 // Alloca never returns null, malloc might.
2708 if (isa
<AllocaInst
>(V
) && Q
.DL
.getAllocaAddrSpace() == 0)
2711 // A byval, inalloca may not be null in a non-default addres space. A
2712 // nonnull argument is assumed never 0.
2713 if (const Argument
*A
= dyn_cast
<Argument
>(V
)) {
2714 if (((A
->hasPassPointeeByValueCopyAttr() &&
2715 !NullPointerIsDefined(A
->getParent(), PtrTy
->getAddressSpace())) ||
2716 A
->hasNonNullAttr()))
2720 // A Load tagged with nonnull metadata is never null.
2721 if (const LoadInst
*LI
= dyn_cast
<LoadInst
>(V
))
2722 if (Q
.IIQ
.getMetadata(LI
, LLVMContext::MD_nonnull
))
2725 if (const auto *Call
= dyn_cast
<CallBase
>(V
)) {
2726 if (Call
->isReturnNonNull())
2728 if (const auto *RP
= getArgumentAliasingToReturnedPointer(Call
, true))
2729 return isKnownNonZero(RP
, Depth
, Q
);
2733 if (!isa
<Constant
>(V
) &&
2734 isKnownNonNullFromDominatingCondition(V
, Q
.CxtI
, Q
.DT
))
2737 const Operator
*I
= dyn_cast
<Operator
>(V
);
2741 unsigned BitWidth
= getBitWidth(V
->getType()->getScalarType(), Q
.DL
);
2742 switch (I
->getOpcode()) {
2743 case Instruction::GetElementPtr
:
2744 if (I
->getType()->isPointerTy())
2745 return isGEPKnownNonNull(cast
<GEPOperator
>(I
), Depth
, Q
);
2747 case Instruction::BitCast
: {
2748 // We need to be a bit careful here. We can only peek through the bitcast
2749 // if the scalar size of elements in the operand are smaller than and a
2750 // multiple of the size they are casting too. Take three cases:
2753 // bitcast <2 x i16> %NonZero to <4 x i8>
2755 // %NonZero can have 2 non-zero i16 elements, but isKnownNonZero on a
2756 // <4 x i8> requires that all 4 i8 elements be non-zero which isn't
2757 // guranteed (imagine just sign bit set in the 2 i16 elements).
2760 // bitcast <4 x i3> %NonZero to <3 x i4>
2762 // Even though the scalar size of the src (`i3`) is smaller than the
2763 // scalar size of the dst `i4`, because `i3` is not a multiple of `i4`
2764 // its possible for the `3 x i4` elements to be zero because there are
2765 // some elements in the destination that don't contain any full src
2769 // bitcast <4 x i8> %NonZero to <2 x i16>
2771 // This is always safe as non-zero in the 4 i8 elements implies
2772 // non-zero in the combination of any two adjacent ones. Since i8 is a
2773 // multiple of i16, each i16 is guranteed to have 2 full i8 elements.
2774 // This all implies the 2 i16 elements are non-zero.
2775 Type
*FromTy
= I
->getOperand(0)->getType();
2776 if ((FromTy
->isIntOrIntVectorTy() || FromTy
->isPtrOrPtrVectorTy()) &&
2777 (BitWidth
% getBitWidth(FromTy
->getScalarType(), Q
.DL
)) == 0)
2778 return isKnownNonZero(I
->getOperand(0), Depth
, Q
);
2780 case Instruction::IntToPtr
:
2781 // Note that we have to take special care to avoid looking through
2782 // truncating casts, e.g., int2ptr/ptr2int with appropriate sizes, as well
2783 // as casts that can alter the value, e.g., AddrSpaceCasts.
2784 if (!isa
<ScalableVectorType
>(I
->getType()) &&
2785 Q
.DL
.getTypeSizeInBits(I
->getOperand(0)->getType()).getFixedValue() <=
2786 Q
.DL
.getTypeSizeInBits(I
->getType()).getFixedValue())
2787 return isKnownNonZero(I
->getOperand(0), Depth
, Q
);
2789 case Instruction::PtrToInt
:
2790 // Similar to int2ptr above, we can look through ptr2int here if the cast
2791 // is a no-op or an extend and not a truncate.
2792 if (!isa
<ScalableVectorType
>(I
->getType()) &&
2793 Q
.DL
.getTypeSizeInBits(I
->getOperand(0)->getType()).getFixedValue() <=
2794 Q
.DL
.getTypeSizeInBits(I
->getType()).getFixedValue())
2795 return isKnownNonZero(I
->getOperand(0), Depth
, Q
);
2797 case Instruction::Sub
:
2798 return isNonZeroSub(DemandedElts
, Depth
, Q
, BitWidth
, I
->getOperand(0),
2800 case Instruction::Or
:
2801 // X | Y != 0 if X != 0 or Y != 0.
2802 return isKnownNonZero(I
->getOperand(1), DemandedElts
, Depth
, Q
) ||
2803 isKnownNonZero(I
->getOperand(0), DemandedElts
, Depth
, Q
);
2804 case Instruction::SExt
:
2805 case Instruction::ZExt
:
2806 // ext X != 0 if X != 0.
2807 return isKnownNonZero(I
->getOperand(0), Depth
, Q
);
2809 case Instruction::Shl
: {
2810 // shl nsw/nuw can't remove any non-zero bits.
2811 const OverflowingBinaryOperator
*BO
= cast
<OverflowingBinaryOperator
>(V
);
2812 if (Q
.IIQ
.hasNoUnsignedWrap(BO
) || Q
.IIQ
.hasNoSignedWrap(BO
))
2813 return isKnownNonZero(I
->getOperand(0), Depth
, Q
);
2815 // shl X, Y != 0 if X is odd. Note that the value of the shift is undefined
2816 // if the lowest bit is shifted off the end.
2817 KnownBits
Known(BitWidth
);
2818 computeKnownBits(I
->getOperand(0), DemandedElts
, Known
, Depth
, Q
);
2822 return isNonZeroShift(I
, DemandedElts
, Depth
, Q
, Known
);
2824 case Instruction::LShr
:
2825 case Instruction::AShr
: {
2826 // shr exact can only shift out zero bits.
2827 const PossiblyExactOperator
*BO
= cast
<PossiblyExactOperator
>(V
);
2829 return isKnownNonZero(I
->getOperand(0), Depth
, Q
);
2831 // shr X, Y != 0 if X is negative. Note that the value of the shift is not
2832 // defined if the sign bit is shifted off the end.
2834 computeKnownBits(I
->getOperand(0), DemandedElts
, Depth
, Q
);
2835 if (Known
.isNegative())
2838 return isNonZeroShift(I
, DemandedElts
, Depth
, Q
, Known
);
2840 case Instruction::UDiv
:
2841 case Instruction::SDiv
:
2843 // div exact can only produce a zero if the dividend is zero.
2844 if (cast
<PossiblyExactOperator
>(I
)->isExact())
2845 return isKnownNonZero(I
->getOperand(0), DemandedElts
, Depth
, Q
);
2846 if (I
->getOpcode() == Instruction::UDiv
) {
2847 std::optional
<bool> XUgeY
;
2849 computeKnownBits(I
->getOperand(0), DemandedElts
, Depth
, Q
);
2850 if (!XKnown
.isUnknown()) {
2852 computeKnownBits(I
->getOperand(1), DemandedElts
, Depth
, Q
);
2853 // If X u>= Y then div is non zero (0/0 is UB).
2854 XUgeY
= KnownBits::uge(XKnown
, YKnown
);
2856 // If X is total unknown or X u< Y we won't be able to prove non-zero
2857 // with compute known bits so just return early.
2858 return XUgeY
&& *XUgeY
;
2861 case Instruction::Add
: {
2864 // If Add has nuw wrap flag, then if either X or Y is non-zero the result is
2866 auto *BO
= cast
<OverflowingBinaryOperator
>(V
);
2867 if (Q
.IIQ
.hasNoUnsignedWrap(BO
))
2868 return isKnownNonZero(I
->getOperand(1), DemandedElts
, Depth
, Q
) ||
2869 isKnownNonZero(I
->getOperand(0), DemandedElts
, Depth
, Q
);
2871 return isNonZeroAdd(DemandedElts
, Depth
, Q
, BitWidth
, I
->getOperand(0),
2872 I
->getOperand(1), Q
.IIQ
.hasNoSignedWrap(BO
));
2874 case Instruction::Mul
: {
2875 // If X and Y are non-zero then so is X * Y as long as the multiplication
2876 // does not overflow.
2877 const OverflowingBinaryOperator
*BO
= cast
<OverflowingBinaryOperator
>(V
);
2878 if (Q
.IIQ
.hasNoSignedWrap(BO
) || Q
.IIQ
.hasNoUnsignedWrap(BO
))
2879 return isKnownNonZero(I
->getOperand(0), DemandedElts
, Depth
, Q
) &&
2880 isKnownNonZero(I
->getOperand(1), DemandedElts
, Depth
, Q
);
2882 // If either X or Y is odd, then if the other is non-zero the result can't
2885 computeKnownBits(I
->getOperand(0), DemandedElts
, Depth
, Q
);
2887 return isKnownNonZero(I
->getOperand(1), DemandedElts
, Depth
, Q
);
2890 computeKnownBits(I
->getOperand(1), DemandedElts
, Depth
, Q
);
2892 return XKnown
.isNonZero() ||
2893 isKnownNonZero(I
->getOperand(0), DemandedElts
, Depth
, Q
);
2895 // If there exists any subset of X (sX) and subset of Y (sY) s.t sX * sY is
2896 // non-zero, then X * Y is non-zero. We can find sX and sY by just taking
2897 // the the lowest known One of X and Y. If they are non-zero, the result
2898 // must be non-zero. We can check if LSB(X) * LSB(Y) != 0 by doing
2899 // X.CountLeadingZeros + Y.CountLeadingZeros < BitWidth.
2900 return (XKnown
.countMaxTrailingZeros() + YKnown
.countMaxTrailingZeros()) <
2903 case Instruction::Select
:
2904 // (C ? X : Y) != 0 if X != 0 and Y != 0.
2905 if (isKnownNonZero(I
->getOperand(1), DemandedElts
, Depth
, Q
) &&
2906 isKnownNonZero(I
->getOperand(2), DemandedElts
, Depth
, Q
))
2909 case Instruction::PHI
: {
2910 auto *PN
= cast
<PHINode
>(I
);
2911 if (Q
.IIQ
.UseInstrInfo
&& isNonZeroRecurrence(PN
))
2914 // Check if all incoming values are non-zero using recursion.
2916 unsigned NewDepth
= std::max(Depth
, MaxAnalysisRecursionDepth
- 1);
2917 return llvm::all_of(PN
->operands(), [&](const Use
&U
) {
2920 RecQ
.CxtI
= PN
->getIncomingBlock(U
)->getTerminator();
2921 return isKnownNonZero(U
.get(), DemandedElts
, NewDepth
, RecQ
);
2924 case Instruction::ExtractElement
:
2925 if (const auto *EEI
= dyn_cast
<ExtractElementInst
>(V
)) {
2926 const Value
*Vec
= EEI
->getVectorOperand();
2927 const Value
*Idx
= EEI
->getIndexOperand();
2928 auto *CIdx
= dyn_cast
<ConstantInt
>(Idx
);
2929 if (auto *VecTy
= dyn_cast
<FixedVectorType
>(Vec
->getType())) {
2930 unsigned NumElts
= VecTy
->getNumElements();
2931 APInt DemandedVecElts
= APInt::getAllOnes(NumElts
);
2932 if (CIdx
&& CIdx
->getValue().ult(NumElts
))
2933 DemandedVecElts
= APInt::getOneBitSet(NumElts
, CIdx
->getZExtValue());
2934 return isKnownNonZero(Vec
, DemandedVecElts
, Depth
, Q
);
2938 case Instruction::Freeze
:
2939 return isKnownNonZero(I
->getOperand(0), Depth
, Q
) &&
2940 isGuaranteedNotToBePoison(I
->getOperand(0), Q
.AC
, Q
.CxtI
, Q
.DT
,
2942 case Instruction::Call
:
2943 if (auto *II
= dyn_cast
<IntrinsicInst
>(I
)) {
2944 switch (II
->getIntrinsicID()) {
2945 case Intrinsic::sshl_sat
:
2946 case Intrinsic::ushl_sat
:
2947 case Intrinsic::abs
:
2948 case Intrinsic::bitreverse
:
2949 case Intrinsic::bswap
:
2950 case Intrinsic::ctpop
:
2951 return isKnownNonZero(II
->getArgOperand(0), DemandedElts
, Depth
, Q
);
2952 case Intrinsic::ssub_sat
:
2953 return isNonZeroSub(DemandedElts
, Depth
, Q
, BitWidth
,
2954 II
->getArgOperand(0), II
->getArgOperand(1));
2955 case Intrinsic::sadd_sat
:
2956 return isNonZeroAdd(DemandedElts
, Depth
, Q
, BitWidth
,
2957 II
->getArgOperand(0), II
->getArgOperand(1),
2959 case Intrinsic::umax
:
2960 case Intrinsic::uadd_sat
:
2961 return isKnownNonZero(II
->getArgOperand(1), DemandedElts
, Depth
, Q
) ||
2962 isKnownNonZero(II
->getArgOperand(0), DemandedElts
, Depth
, Q
);
2963 case Intrinsic::smin
:
2964 case Intrinsic::smax
: {
2965 auto KnownOpImpliesNonZero
= [&](const KnownBits
&K
) {
2966 return II
->getIntrinsicID() == Intrinsic::smin
2968 : K
.isStrictlyPositive();
2971 computeKnownBits(II
->getArgOperand(0), DemandedElts
, Depth
, Q
);
2972 if (KnownOpImpliesNonZero(XKnown
))
2975 computeKnownBits(II
->getArgOperand(1), DemandedElts
, Depth
, Q
);
2976 if (KnownOpImpliesNonZero(YKnown
))
2979 if (XKnown
.isNonZero() && YKnown
.isNonZero())
2983 case Intrinsic::umin
:
2984 return isKnownNonZero(II
->getArgOperand(0), DemandedElts
, Depth
, Q
) &&
2985 isKnownNonZero(II
->getArgOperand(1), DemandedElts
, Depth
, Q
);
2986 case Intrinsic::cttz
:
2987 return computeKnownBits(II
->getArgOperand(0), DemandedElts
, Depth
, Q
)
2989 case Intrinsic::ctlz
:
2990 return computeKnownBits(II
->getArgOperand(0), DemandedElts
, Depth
, Q
)
2992 case Intrinsic::fshr
:
2993 case Intrinsic::fshl
:
2994 // If Op0 == Op1, this is a rotate. rotate(x, y) != 0 iff x != 0.
2995 if (II
->getArgOperand(0) == II
->getArgOperand(1))
2996 return isKnownNonZero(II
->getArgOperand(0), DemandedElts
, Depth
, Q
);
2998 case Intrinsic::vscale
:
3007 KnownBits
Known(BitWidth
);
3008 computeKnownBits(V
, DemandedElts
, Known
, Depth
, Q
);
3009 return Known
.One
!= 0;
3012 bool isKnownNonZero(const Value
* V
, unsigned Depth
, const Query
& Q
) {
3013 auto *FVTy
= dyn_cast
<FixedVectorType
>(V
->getType());
3014 APInt DemandedElts
=
3015 FVTy
? APInt::getAllOnes(FVTy
->getNumElements()) : APInt(1, 1);
3016 return isKnownNonZero(V
, DemandedElts
, Depth
, Q
);
3019 /// If the pair of operators are the same invertible function, return the
3020 /// the operands of the function corresponding to each input. Otherwise,
3021 /// return std::nullopt. An invertible function is one that is 1-to-1 and maps
3022 /// every input value to exactly one output value. This is equivalent to
3023 /// saying that Op1 and Op2 are equal exactly when the specified pair of
3024 /// operands are equal, (except that Op1 and Op2 may be poison more often.)
3025 static std::optional
<std::pair
<Value
*, Value
*>>
3026 getInvertibleOperands(const Operator
*Op1
,
3027 const Operator
*Op2
) {
3028 if (Op1
->getOpcode() != Op2
->getOpcode())
3029 return std::nullopt
;
3031 auto getOperands
= [&](unsigned OpNum
) -> auto {
3032 return std::make_pair(Op1
->getOperand(OpNum
), Op2
->getOperand(OpNum
));
3035 switch (Op1
->getOpcode()) {
3038 case Instruction::Add
:
3039 case Instruction::Sub
:
3040 if (Op1
->getOperand(0) == Op2
->getOperand(0))
3041 return getOperands(1);
3042 if (Op1
->getOperand(1) == Op2
->getOperand(1))
3043 return getOperands(0);
3045 case Instruction::Mul
: {
3046 // invertible if A * B == (A * B) mod 2^N where A, and B are integers
3047 // and N is the bitwdith. The nsw case is non-obvious, but proven by
3048 // alive2: https://alive2.llvm.org/ce/z/Z6D5qK
3049 auto *OBO1
= cast
<OverflowingBinaryOperator
>(Op1
);
3050 auto *OBO2
= cast
<OverflowingBinaryOperator
>(Op2
);
3051 if ((!OBO1
->hasNoUnsignedWrap() || !OBO2
->hasNoUnsignedWrap()) &&
3052 (!OBO1
->hasNoSignedWrap() || !OBO2
->hasNoSignedWrap()))
3055 // Assume operand order has been canonicalized
3056 if (Op1
->getOperand(1) == Op2
->getOperand(1) &&
3057 isa
<ConstantInt
>(Op1
->getOperand(1)) &&
3058 !cast
<ConstantInt
>(Op1
->getOperand(1))->isZero())
3059 return getOperands(0);
3062 case Instruction::Shl
: {
3063 // Same as multiplies, with the difference that we don't need to check
3064 // for a non-zero multiply. Shifts always multiply by non-zero.
3065 auto *OBO1
= cast
<OverflowingBinaryOperator
>(Op1
);
3066 auto *OBO2
= cast
<OverflowingBinaryOperator
>(Op2
);
3067 if ((!OBO1
->hasNoUnsignedWrap() || !OBO2
->hasNoUnsignedWrap()) &&
3068 (!OBO1
->hasNoSignedWrap() || !OBO2
->hasNoSignedWrap()))
3071 if (Op1
->getOperand(1) == Op2
->getOperand(1))
3072 return getOperands(0);
3075 case Instruction::AShr
:
3076 case Instruction::LShr
: {
3077 auto *PEO1
= cast
<PossiblyExactOperator
>(Op1
);
3078 auto *PEO2
= cast
<PossiblyExactOperator
>(Op2
);
3079 if (!PEO1
->isExact() || !PEO2
->isExact())
3082 if (Op1
->getOperand(1) == Op2
->getOperand(1))
3083 return getOperands(0);
3086 case Instruction::SExt
:
3087 case Instruction::ZExt
:
3088 if (Op1
->getOperand(0)->getType() == Op2
->getOperand(0)->getType())
3089 return getOperands(0);
3091 case Instruction::PHI
: {
3092 const PHINode
*PN1
= cast
<PHINode
>(Op1
);
3093 const PHINode
*PN2
= cast
<PHINode
>(Op2
);
3095 // If PN1 and PN2 are both recurrences, can we prove the entire recurrences
3096 // are a single invertible function of the start values? Note that repeated
3097 // application of an invertible function is also invertible
3098 BinaryOperator
*BO1
= nullptr;
3099 Value
*Start1
= nullptr, *Step1
= nullptr;
3100 BinaryOperator
*BO2
= nullptr;
3101 Value
*Start2
= nullptr, *Step2
= nullptr;
3102 if (PN1
->getParent() != PN2
->getParent() ||
3103 !matchSimpleRecurrence(PN1
, BO1
, Start1
, Step1
) ||
3104 !matchSimpleRecurrence(PN2
, BO2
, Start2
, Step2
))
3107 auto Values
= getInvertibleOperands(cast
<Operator
>(BO1
),
3108 cast
<Operator
>(BO2
));
3112 // We have to be careful of mutually defined recurrences here. Ex:
3113 // * X_i = X_(i-1) OP Y_(i-1), and Y_i = X_(i-1) OP V
3114 // * X_i = Y_i = X_(i-1) OP Y_(i-1)
3115 // The invertibility of these is complicated, and not worth reasoning
3117 if (Values
->first
!= PN1
|| Values
->second
!= PN2
)
3120 return std::make_pair(Start1
, Start2
);
3123 return std::nullopt
;
3126 /// Return true if V2 == V1 + X, where X is known non-zero.
3127 static bool isAddOfNonZero(const Value
*V1
, const Value
*V2
, unsigned Depth
,
3129 const BinaryOperator
*BO
= dyn_cast
<BinaryOperator
>(V1
);
3130 if (!BO
|| BO
->getOpcode() != Instruction::Add
)
3132 Value
*Op
= nullptr;
3133 if (V2
== BO
->getOperand(0))
3134 Op
= BO
->getOperand(1);
3135 else if (V2
== BO
->getOperand(1))
3136 Op
= BO
->getOperand(0);
3139 return isKnownNonZero(Op
, Depth
+ 1, Q
);
3142 /// Return true if V2 == V1 * C, where V1 is known non-zero, C is not 0/1 and
3143 /// the multiplication is nuw or nsw.
3144 static bool isNonEqualMul(const Value
*V1
, const Value
*V2
, unsigned Depth
,
3146 if (auto *OBO
= dyn_cast
<OverflowingBinaryOperator
>(V2
)) {
3148 return match(OBO
, m_Mul(m_Specific(V1
), m_APInt(C
))) &&
3149 (OBO
->hasNoUnsignedWrap() || OBO
->hasNoSignedWrap()) &&
3150 !C
->isZero() && !C
->isOne() && isKnownNonZero(V1
, Depth
+ 1, Q
);
3155 /// Return true if V2 == V1 << C, where V1 is known non-zero, C is not 0 and
3156 /// the shift is nuw or nsw.
3157 static bool isNonEqualShl(const Value
*V1
, const Value
*V2
, unsigned Depth
,
3159 if (auto *OBO
= dyn_cast
<OverflowingBinaryOperator
>(V2
)) {
3161 return match(OBO
, m_Shl(m_Specific(V1
), m_APInt(C
))) &&
3162 (OBO
->hasNoUnsignedWrap() || OBO
->hasNoSignedWrap()) &&
3163 !C
->isZero() && isKnownNonZero(V1
, Depth
+ 1, Q
);
3168 static bool isNonEqualPHIs(const PHINode
*PN1
, const PHINode
*PN2
,
3169 unsigned Depth
, const Query
&Q
) {
3170 // Check two PHIs are in same block.
3171 if (PN1
->getParent() != PN2
->getParent())
3174 SmallPtrSet
<const BasicBlock
*, 8> VisitedBBs
;
3175 bool UsedFullRecursion
= false;
3176 for (const BasicBlock
*IncomBB
: PN1
->blocks()) {
3177 if (!VisitedBBs
.insert(IncomBB
).second
)
3178 continue; // Don't reprocess blocks that we have dealt with already.
3179 const Value
*IV1
= PN1
->getIncomingValueForBlock(IncomBB
);
3180 const Value
*IV2
= PN2
->getIncomingValueForBlock(IncomBB
);
3181 const APInt
*C1
, *C2
;
3182 if (match(IV1
, m_APInt(C1
)) && match(IV2
, m_APInt(C2
)) && *C1
!= *C2
)
3185 // Only one pair of phi operands is allowed for full recursion.
3186 if (UsedFullRecursion
)
3190 RecQ
.CxtI
= IncomBB
->getTerminator();
3191 if (!isKnownNonEqual(IV1
, IV2
, Depth
+ 1, RecQ
))
3193 UsedFullRecursion
= true;
3198 /// Return true if it is known that V1 != V2.
3199 static bool isKnownNonEqual(const Value
*V1
, const Value
*V2
, unsigned Depth
,
3203 if (V1
->getType() != V2
->getType())
3204 // We can't look through casts yet.
3207 if (Depth
>= MaxAnalysisRecursionDepth
)
3210 // See if we can recurse through (exactly one of) our operands. This
3211 // requires our operation be 1-to-1 and map every input value to exactly
3212 // one output value. Such an operation is invertible.
3213 auto *O1
= dyn_cast
<Operator
>(V1
);
3214 auto *O2
= dyn_cast
<Operator
>(V2
);
3215 if (O1
&& O2
&& O1
->getOpcode() == O2
->getOpcode()) {
3216 if (auto Values
= getInvertibleOperands(O1
, O2
))
3217 return isKnownNonEqual(Values
->first
, Values
->second
, Depth
+ 1, Q
);
3219 if (const PHINode
*PN1
= dyn_cast
<PHINode
>(V1
)) {
3220 const PHINode
*PN2
= cast
<PHINode
>(V2
);
3221 // FIXME: This is missing a generalization to handle the case where one is
3222 // a PHI and another one isn't.
3223 if (isNonEqualPHIs(PN1
, PN2
, Depth
, Q
))
3228 if (isAddOfNonZero(V1
, V2
, Depth
, Q
) || isAddOfNonZero(V2
, V1
, Depth
, Q
))
3231 if (isNonEqualMul(V1
, V2
, Depth
, Q
) || isNonEqualMul(V2
, V1
, Depth
, Q
))
3234 if (isNonEqualShl(V1
, V2
, Depth
, Q
) || isNonEqualShl(V2
, V1
, Depth
, Q
))
3237 if (V1
->getType()->isIntOrIntVectorTy()) {
3238 // Are any known bits in V1 contradictory to known bits in V2? If V1
3239 // has a known zero where V2 has a known one, they must not be equal.
3240 KnownBits Known1
= computeKnownBits(V1
, Depth
, Q
);
3241 KnownBits Known2
= computeKnownBits(V2
, Depth
, Q
);
3243 if (Known1
.Zero
.intersects(Known2
.One
) ||
3244 Known2
.Zero
.intersects(Known1
.One
))
3250 /// Return true if 'V & Mask' is known to be zero. We use this predicate to
3251 /// simplify operations downstream. Mask is known to be zero for bits that V
3254 /// This function is defined on values with integer type, values with pointer
3255 /// type, and vectors of integers. In the case
3256 /// where V is a vector, the mask, known zero, and known one values are the
3257 /// same width as the vector element, and the bit is set only if it is true
3258 /// for all of the elements in the vector.
3259 bool MaskedValueIsZero(const Value
*V
, const APInt
&Mask
, unsigned Depth
,
3261 KnownBits
Known(Mask
.getBitWidth());
3262 computeKnownBits(V
, Known
, Depth
, Q
);
3263 return Mask
.isSubsetOf(Known
.Zero
);
3266 // Match a signed min+max clamp pattern like smax(smin(In, CHigh), CLow).
3267 // Returns the input and lower/upper bounds.
3268 static bool isSignedMinMaxClamp(const Value
*Select
, const Value
*&In
,
3269 const APInt
*&CLow
, const APInt
*&CHigh
) {
3270 assert(isa
<Operator
>(Select
) &&
3271 cast
<Operator
>(Select
)->getOpcode() == Instruction::Select
&&
3272 "Input should be a Select!");
3274 const Value
*LHS
= nullptr, *RHS
= nullptr;
3275 SelectPatternFlavor SPF
= matchSelectPattern(Select
, LHS
, RHS
).Flavor
;
3276 if (SPF
!= SPF_SMAX
&& SPF
!= SPF_SMIN
)
3279 if (!match(RHS
, m_APInt(CLow
)))
3282 const Value
*LHS2
= nullptr, *RHS2
= nullptr;
3283 SelectPatternFlavor SPF2
= matchSelectPattern(LHS
, LHS2
, RHS2
).Flavor
;
3284 if (getInverseMinMaxFlavor(SPF
) != SPF2
)
3287 if (!match(RHS2
, m_APInt(CHigh
)))
3290 if (SPF
== SPF_SMIN
)
3291 std::swap(CLow
, CHigh
);
3294 return CLow
->sle(*CHigh
);
3297 static bool isSignedMinMaxIntrinsicClamp(const IntrinsicInst
*II
,
3299 const APInt
*&CHigh
) {
3300 assert((II
->getIntrinsicID() == Intrinsic::smin
||
3301 II
->getIntrinsicID() == Intrinsic::smax
) && "Must be smin/smax");
3303 Intrinsic::ID InverseID
= getInverseMinMaxIntrinsic(II
->getIntrinsicID());
3304 auto *InnerII
= dyn_cast
<IntrinsicInst
>(II
->getArgOperand(0));
3305 if (!InnerII
|| InnerII
->getIntrinsicID() != InverseID
||
3306 !match(II
->getArgOperand(1), m_APInt(CLow
)) ||
3307 !match(InnerII
->getArgOperand(1), m_APInt(CHigh
)))
3310 if (II
->getIntrinsicID() == Intrinsic::smin
)
3311 std::swap(CLow
, CHigh
);
3312 return CLow
->sle(*CHigh
);
3315 /// For vector constants, loop over the elements and find the constant with the
3316 /// minimum number of sign bits. Return 0 if the value is not a vector constant
3317 /// or if any element was not analyzed; otherwise, return the count for the
3318 /// element with the minimum number of sign bits.
3319 static unsigned computeNumSignBitsVectorConstant(const Value
*V
,
3320 const APInt
&DemandedElts
,
3322 const auto *CV
= dyn_cast
<Constant
>(V
);
3323 if (!CV
|| !isa
<FixedVectorType
>(CV
->getType()))
3326 unsigned MinSignBits
= TyBits
;
3327 unsigned NumElts
= cast
<FixedVectorType
>(CV
->getType())->getNumElements();
3328 for (unsigned i
= 0; i
!= NumElts
; ++i
) {
3329 if (!DemandedElts
[i
])
3331 // If we find a non-ConstantInt, bail out.
3332 auto *Elt
= dyn_cast_or_null
<ConstantInt
>(CV
->getAggregateElement(i
));
3336 MinSignBits
= std::min(MinSignBits
, Elt
->getValue().getNumSignBits());
3342 static unsigned ComputeNumSignBitsImpl(const Value
*V
,
3343 const APInt
&DemandedElts
,
3344 unsigned Depth
, const Query
&Q
);
3346 static unsigned ComputeNumSignBits(const Value
*V
, const APInt
&DemandedElts
,
3347 unsigned Depth
, const Query
&Q
) {
3348 unsigned Result
= ComputeNumSignBitsImpl(V
, DemandedElts
, Depth
, Q
);
3349 assert(Result
> 0 && "At least one sign bit needs to be present!");
3353 /// Return the number of times the sign bit of the register is replicated into
3354 /// the other bits. We know that at least 1 bit is always equal to the sign bit
3355 /// (itself), but other cases can give us information. For example, immediately
3356 /// after an "ashr X, 2", we know that the top 3 bits are all equal to each
3357 /// other, so we return 3. For vectors, return the number of sign bits for the
3358 /// vector element with the minimum number of known sign bits of the demanded
3359 /// elements in the vector specified by DemandedElts.
3360 static unsigned ComputeNumSignBitsImpl(const Value
*V
,
3361 const APInt
&DemandedElts
,
3362 unsigned Depth
, const Query
&Q
) {
3363 Type
*Ty
= V
->getType();
3365 assert(Depth
<= MaxAnalysisRecursionDepth
&& "Limit Search Depth");
3367 if (auto *FVTy
= dyn_cast
<FixedVectorType
>(Ty
)) {
3369 FVTy
->getNumElements() == DemandedElts
.getBitWidth() &&
3370 "DemandedElt width should equal the fixed vector number of elements");
3372 assert(DemandedElts
== APInt(1, 1) &&
3373 "DemandedElt width should be 1 for scalars");
3377 // We return the minimum number of sign bits that are guaranteed to be present
3378 // in V, so for undef we have to conservatively return 1. We don't have the
3379 // same behavior for poison though -- that's a FIXME today.
3381 Type
*ScalarTy
= Ty
->getScalarType();
3382 unsigned TyBits
= ScalarTy
->isPointerTy() ?
3383 Q
.DL
.getPointerTypeSizeInBits(ScalarTy
) :
3384 Q
.DL
.getTypeSizeInBits(ScalarTy
);
3387 unsigned FirstAnswer
= 1;
3389 // Note that ConstantInt is handled by the general computeKnownBits case
3392 if (Depth
== MaxAnalysisRecursionDepth
)
3395 if (auto *U
= dyn_cast
<Operator
>(V
)) {
3396 switch (Operator::getOpcode(V
)) {
3398 case Instruction::SExt
:
3399 Tmp
= TyBits
- U
->getOperand(0)->getType()->getScalarSizeInBits();
3400 return ComputeNumSignBits(U
->getOperand(0), Depth
+ 1, Q
) + Tmp
;
3402 case Instruction::SDiv
: {
3403 const APInt
*Denominator
;
3404 // sdiv X, C -> adds log(C) sign bits.
3405 if (match(U
->getOperand(1), m_APInt(Denominator
))) {
3407 // Ignore non-positive denominator.
3408 if (!Denominator
->isStrictlyPositive())
3411 // Calculate the incoming numerator bits.
3412 unsigned NumBits
= ComputeNumSignBits(U
->getOperand(0), Depth
+ 1, Q
);
3414 // Add floor(log(C)) bits to the numerator bits.
3415 return std::min(TyBits
, NumBits
+ Denominator
->logBase2());
3420 case Instruction::SRem
: {
3421 Tmp
= ComputeNumSignBits(U
->getOperand(0), Depth
+ 1, Q
);
3423 const APInt
*Denominator
;
3424 // srem X, C -> we know that the result is within [-C+1,C) when C is a
3425 // positive constant. This let us put a lower bound on the number of sign
3427 if (match(U
->getOperand(1), m_APInt(Denominator
))) {
3429 // Ignore non-positive denominator.
3430 if (Denominator
->isStrictlyPositive()) {
3431 // Calculate the leading sign bit constraints by examining the
3432 // denominator. Given that the denominator is positive, there are two
3435 // 1. The numerator is positive. The result range is [0,C) and
3436 // [0,C) u< (1 << ceilLogBase2(C)).
3438 // 2. The numerator is negative. Then the result range is (-C,0] and
3439 // integers in (-C,0] are either 0 or >u (-1 << ceilLogBase2(C)).
3441 // Thus a lower bound on the number of sign bits is `TyBits -
3442 // ceilLogBase2(C)`.
3444 unsigned ResBits
= TyBits
- Denominator
->ceilLogBase2();
3445 Tmp
= std::max(Tmp
, ResBits
);
3451 case Instruction::AShr
: {
3452 Tmp
= ComputeNumSignBits(U
->getOperand(0), Depth
+ 1, Q
);
3453 // ashr X, C -> adds C sign bits. Vectors too.
3455 if (match(U
->getOperand(1), m_APInt(ShAmt
))) {
3456 if (ShAmt
->uge(TyBits
))
3457 break; // Bad shift.
3458 unsigned ShAmtLimited
= ShAmt
->getZExtValue();
3459 Tmp
+= ShAmtLimited
;
3460 if (Tmp
> TyBits
) Tmp
= TyBits
;
3464 case Instruction::Shl
: {
3466 if (match(U
->getOperand(1), m_APInt(ShAmt
))) {
3467 // shl destroys sign bits.
3468 Tmp
= ComputeNumSignBits(U
->getOperand(0), Depth
+ 1, Q
);
3469 if (ShAmt
->uge(TyBits
) || // Bad shift.
3470 ShAmt
->uge(Tmp
)) break; // Shifted all sign bits out.
3471 Tmp2
= ShAmt
->getZExtValue();
3476 case Instruction::And
:
3477 case Instruction::Or
:
3478 case Instruction::Xor
: // NOT is handled here.
3479 // Logical binary ops preserve the number of sign bits at the worst.
3480 Tmp
= ComputeNumSignBits(U
->getOperand(0), Depth
+ 1, Q
);
3482 Tmp2
= ComputeNumSignBits(U
->getOperand(1), Depth
+ 1, Q
);
3483 FirstAnswer
= std::min(Tmp
, Tmp2
);
3484 // We computed what we know about the sign bits as our first
3485 // answer. Now proceed to the generic code that uses
3486 // computeKnownBits, and pick whichever answer is better.
3490 case Instruction::Select
: {
3491 // If we have a clamp pattern, we know that the number of sign bits will
3492 // be the minimum of the clamp min/max range.
3494 const APInt
*CLow
, *CHigh
;
3495 if (isSignedMinMaxClamp(U
, X
, CLow
, CHigh
))
3496 return std::min(CLow
->getNumSignBits(), CHigh
->getNumSignBits());
3498 Tmp
= ComputeNumSignBits(U
->getOperand(1), Depth
+ 1, Q
);
3499 if (Tmp
== 1) break;
3500 Tmp2
= ComputeNumSignBits(U
->getOperand(2), Depth
+ 1, Q
);
3501 return std::min(Tmp
, Tmp2
);
3504 case Instruction::Add
:
3505 // Add can have at most one carry bit. Thus we know that the output
3506 // is, at worst, one more bit than the inputs.
3507 Tmp
= ComputeNumSignBits(U
->getOperand(0), Depth
+ 1, Q
);
3508 if (Tmp
== 1) break;
3510 // Special case decrementing a value (ADD X, -1):
3511 if (const auto *CRHS
= dyn_cast
<Constant
>(U
->getOperand(1)))
3512 if (CRHS
->isAllOnesValue()) {
3513 KnownBits
Known(TyBits
);
3514 computeKnownBits(U
->getOperand(0), Known
, Depth
+ 1, Q
);
3516 // If the input is known to be 0 or 1, the output is 0/-1, which is
3517 // all sign bits set.
3518 if ((Known
.Zero
| 1).isAllOnes())
3521 // If we are subtracting one from a positive number, there is no carry
3522 // out of the result.
3523 if (Known
.isNonNegative())
3527 Tmp2
= ComputeNumSignBits(U
->getOperand(1), Depth
+ 1, Q
);
3528 if (Tmp2
== 1) break;
3529 return std::min(Tmp
, Tmp2
) - 1;
3531 case Instruction::Sub
:
3532 Tmp2
= ComputeNumSignBits(U
->getOperand(1), Depth
+ 1, Q
);
3533 if (Tmp2
== 1) break;
3536 if (const auto *CLHS
= dyn_cast
<Constant
>(U
->getOperand(0)))
3537 if (CLHS
->isNullValue()) {
3538 KnownBits
Known(TyBits
);
3539 computeKnownBits(U
->getOperand(1), Known
, Depth
+ 1, Q
);
3540 // If the input is known to be 0 or 1, the output is 0/-1, which is
3541 // all sign bits set.
3542 if ((Known
.Zero
| 1).isAllOnes())
3545 // If the input is known to be positive (the sign bit is known clear),
3546 // the output of the NEG has the same number of sign bits as the
3548 if (Known
.isNonNegative())
3551 // Otherwise, we treat this like a SUB.
3554 // Sub can have at most one carry bit. Thus we know that the output
3555 // is, at worst, one more bit than the inputs.
3556 Tmp
= ComputeNumSignBits(U
->getOperand(0), Depth
+ 1, Q
);
3557 if (Tmp
== 1) break;
3558 return std::min(Tmp
, Tmp2
) - 1;
3560 case Instruction::Mul
: {
3561 // The output of the Mul can be at most twice the valid bits in the
3563 unsigned SignBitsOp0
= ComputeNumSignBits(U
->getOperand(0), Depth
+ 1, Q
);
3564 if (SignBitsOp0
== 1) break;
3565 unsigned SignBitsOp1
= ComputeNumSignBits(U
->getOperand(1), Depth
+ 1, Q
);
3566 if (SignBitsOp1
== 1) break;
3567 unsigned OutValidBits
=
3568 (TyBits
- SignBitsOp0
+ 1) + (TyBits
- SignBitsOp1
+ 1);
3569 return OutValidBits
> TyBits
? 1 : TyBits
- OutValidBits
+ 1;
3572 case Instruction::PHI
: {
3573 const PHINode
*PN
= cast
<PHINode
>(U
);
3574 unsigned NumIncomingValues
= PN
->getNumIncomingValues();
3575 // Don't analyze large in-degree PHIs.
3576 if (NumIncomingValues
> 4) break;
3577 // Unreachable blocks may have zero-operand PHI nodes.
3578 if (NumIncomingValues
== 0) break;
3580 // Take the minimum of all incoming values. This can't infinitely loop
3581 // because of our depth threshold.
3584 for (unsigned i
= 0, e
= NumIncomingValues
; i
!= e
; ++i
) {
3585 if (Tmp
== 1) return Tmp
;
3586 RecQ
.CxtI
= PN
->getIncomingBlock(i
)->getTerminator();
3588 Tmp
, ComputeNumSignBits(PN
->getIncomingValue(i
), Depth
+ 1, RecQ
));
3593 case Instruction::Trunc
: {
3594 // If the input contained enough sign bits that some remain after the
3595 // truncation, then we can make use of that. Otherwise we don't know
3597 Tmp
= ComputeNumSignBits(U
->getOperand(0), Depth
+ 1, Q
);
3598 unsigned OperandTyBits
= U
->getOperand(0)->getType()->getScalarSizeInBits();
3599 if (Tmp
> (OperandTyBits
- TyBits
))
3600 return Tmp
- (OperandTyBits
- TyBits
);
3605 case Instruction::ExtractElement
:
3606 // Look through extract element. At the moment we keep this simple and
3607 // skip tracking the specific element. But at least we might find
3608 // information valid for all elements of the vector (for example if vector
3609 // is sign extended, shifted, etc).
3610 return ComputeNumSignBits(U
->getOperand(0), Depth
+ 1, Q
);
3612 case Instruction::ShuffleVector
: {
3613 // Collect the minimum number of sign bits that are shared by every vector
3614 // element referenced by the shuffle.
3615 auto *Shuf
= dyn_cast
<ShuffleVectorInst
>(U
);
3617 // FIXME: Add support for shufflevector constant expressions.
3620 APInt DemandedLHS
, DemandedRHS
;
3621 // For undef elements, we don't know anything about the common state of
3622 // the shuffle result.
3623 if (!getShuffleDemandedElts(Shuf
, DemandedElts
, DemandedLHS
, DemandedRHS
))
3625 Tmp
= std::numeric_limits
<unsigned>::max();
3626 if (!!DemandedLHS
) {
3627 const Value
*LHS
= Shuf
->getOperand(0);
3628 Tmp
= ComputeNumSignBits(LHS
, DemandedLHS
, Depth
+ 1, Q
);
3630 // If we don't know anything, early out and try computeKnownBits
3634 if (!!DemandedRHS
) {
3635 const Value
*RHS
= Shuf
->getOperand(1);
3636 Tmp2
= ComputeNumSignBits(RHS
, DemandedRHS
, Depth
+ 1, Q
);
3637 Tmp
= std::min(Tmp
, Tmp2
);
3639 // If we don't know anything, early out and try computeKnownBits
3643 assert(Tmp
<= TyBits
&& "Failed to determine minimum sign bits");
3646 case Instruction::Call
: {
3647 if (const auto *II
= dyn_cast
<IntrinsicInst
>(U
)) {
3648 switch (II
->getIntrinsicID()) {
3650 case Intrinsic::abs
:
3651 Tmp
= ComputeNumSignBits(U
->getOperand(0), Depth
+ 1, Q
);
3652 if (Tmp
== 1) break;
3654 // Absolute value reduces number of sign bits by at most 1.
3656 case Intrinsic::smin
:
3657 case Intrinsic::smax
: {
3658 const APInt
*CLow
, *CHigh
;
3659 if (isSignedMinMaxIntrinsicClamp(II
, CLow
, CHigh
))
3660 return std::min(CLow
->getNumSignBits(), CHigh
->getNumSignBits());
3668 // Finally, if we can prove that the top bits of the result are 0's or 1's,
3669 // use this information.
3671 // If we can examine all elements of a vector constant successfully, we're
3672 // done (we can't do any better than that). If not, keep trying.
3673 if (unsigned VecSignBits
=
3674 computeNumSignBitsVectorConstant(V
, DemandedElts
, TyBits
))
3677 KnownBits
Known(TyBits
);
3678 computeKnownBits(V
, DemandedElts
, Known
, Depth
, Q
);
3680 // If we know that the sign bit is either zero or one, determine the number of
3681 // identical bits in the top of the input value.
3682 return std::max(FirstAnswer
, Known
.countMinSignBits());
3685 Intrinsic::ID
llvm::getIntrinsicForCallSite(const CallBase
&CB
,
3686 const TargetLibraryInfo
*TLI
) {
3687 const Function
*F
= CB
.getCalledFunction();
3689 return Intrinsic::not_intrinsic
;
3691 if (F
->isIntrinsic())
3692 return F
->getIntrinsicID();
3694 // We are going to infer semantics of a library function based on mapping it
3695 // to an LLVM intrinsic. Check that the library function is available from
3696 // this callbase and in this environment.
3698 if (F
->hasLocalLinkage() || !TLI
|| !TLI
->getLibFunc(CB
, Func
) ||
3699 !CB
.onlyReadsMemory())
3700 return Intrinsic::not_intrinsic
;
3708 return Intrinsic::sin
;
3712 return Intrinsic::cos
;
3716 return Intrinsic::exp
;
3720 return Intrinsic::exp2
;
3724 return Intrinsic::log
;
3726 case LibFunc_log10f
:
3727 case LibFunc_log10l
:
3728 return Intrinsic::log10
;
3732 return Intrinsic::log2
;
3736 return Intrinsic::fabs
;
3740 return Intrinsic::minnum
;
3744 return Intrinsic::maxnum
;
3745 case LibFunc_copysign
:
3746 case LibFunc_copysignf
:
3747 case LibFunc_copysignl
:
3748 return Intrinsic::copysign
;
3750 case LibFunc_floorf
:
3751 case LibFunc_floorl
:
3752 return Intrinsic::floor
;
3756 return Intrinsic::ceil
;
3758 case LibFunc_truncf
:
3759 case LibFunc_truncl
:
3760 return Intrinsic::trunc
;
3764 return Intrinsic::rint
;
3765 case LibFunc_nearbyint
:
3766 case LibFunc_nearbyintf
:
3767 case LibFunc_nearbyintl
:
3768 return Intrinsic::nearbyint
;
3770 case LibFunc_roundf
:
3771 case LibFunc_roundl
:
3772 return Intrinsic::round
;
3773 case LibFunc_roundeven
:
3774 case LibFunc_roundevenf
:
3775 case LibFunc_roundevenl
:
3776 return Intrinsic::roundeven
;
3780 return Intrinsic::pow
;
3784 return Intrinsic::sqrt
;
3787 return Intrinsic::not_intrinsic
;
3790 /// Return true if we can prove that the specified FP value is never equal to
3792 /// NOTE: Do not check 'nsz' here because that fast-math-flag does not guarantee
3793 /// that a value is not -0.0. It only guarantees that -0.0 may be treated
3794 /// the same as +0.0 in floating-point ops.
3795 bool llvm::CannotBeNegativeZero(const Value
*V
, const TargetLibraryInfo
*TLI
,
3797 if (auto *CFP
= dyn_cast
<ConstantFP
>(V
))
3798 return !CFP
->getValueAPF().isNegZero();
3800 if (Depth
== MaxAnalysisRecursionDepth
)
3803 auto *Op
= dyn_cast
<Operator
>(V
);
3807 // (fadd x, 0.0) is guaranteed to return +0.0, not -0.0.
3808 if (match(Op
, m_FAdd(m_Value(), m_PosZeroFP())))
3811 // sitofp and uitofp turn into +0.0 for zero.
3812 if (isa
<SIToFPInst
>(Op
) || isa
<UIToFPInst
>(Op
))
3815 if (auto *Call
= dyn_cast
<CallInst
>(Op
)) {
3816 Intrinsic::ID IID
= getIntrinsicForCallSite(*Call
, TLI
);
3820 // sqrt(-0.0) = -0.0, no other negative results are possible.
3821 case Intrinsic::sqrt
:
3822 case Intrinsic::canonicalize
:
3823 return CannotBeNegativeZero(Call
->getArgOperand(0), TLI
, Depth
+ 1);
3824 case Intrinsic::experimental_constrained_sqrt
: {
3825 // NOTE: This rounding mode restriction may be too strict.
3826 const auto *CI
= cast
<ConstrainedFPIntrinsic
>(Call
);
3827 if (CI
->getRoundingMode() == RoundingMode::NearestTiesToEven
)
3828 return CannotBeNegativeZero(Call
->getArgOperand(0), TLI
, Depth
+ 1);
3833 case Intrinsic::fabs
:
3835 // sitofp and uitofp turn into +0.0 for zero.
3836 case Intrinsic::experimental_constrained_sitofp
:
3837 case Intrinsic::experimental_constrained_uitofp
:
3845 /// If \p SignBitOnly is true, test for a known 0 sign bit rather than a
3846 /// standard ordered compare. e.g. make -0.0 olt 0.0 be true because of the sign
3847 /// bit despite comparing equal.
3848 static bool cannotBeOrderedLessThanZeroImpl(const Value
*V
,
3849 const DataLayout
&DL
,
3850 const TargetLibraryInfo
*TLI
,
3851 bool SignBitOnly
, unsigned Depth
) {
3852 // TODO: This function does not do the right thing when SignBitOnly is true
3853 // and we're lowering to a hypothetical IEEE 754-compliant-but-evil platform
3854 // which flips the sign bits of NaNs. See
3855 // https://llvm.org/bugs/show_bug.cgi?id=31702.
3857 if (const ConstantFP
*CFP
= dyn_cast
<ConstantFP
>(V
)) {
3858 return !CFP
->getValueAPF().isNegative() ||
3859 (!SignBitOnly
&& CFP
->getValueAPF().isZero());
3862 // Handle vector of constants.
3863 if (auto *CV
= dyn_cast
<Constant
>(V
)) {
3864 if (auto *CVFVTy
= dyn_cast
<FixedVectorType
>(CV
->getType())) {
3865 unsigned NumElts
= CVFVTy
->getNumElements();
3866 for (unsigned i
= 0; i
!= NumElts
; ++i
) {
3867 auto *CFP
= dyn_cast_or_null
<ConstantFP
>(CV
->getAggregateElement(i
));
3870 if (CFP
->getValueAPF().isNegative() &&
3871 (SignBitOnly
|| !CFP
->getValueAPF().isZero()))
3875 // All non-negative ConstantFPs.
3880 if (Depth
== MaxAnalysisRecursionDepth
)
3883 const Operator
*I
= dyn_cast
<Operator
>(V
);
3887 switch (I
->getOpcode()) {
3890 // Unsigned integers are always nonnegative.
3891 case Instruction::UIToFP
:
3893 case Instruction::FDiv
:
3894 // X / X is always exactly 1.0 or a NaN.
3895 if (I
->getOperand(0) == I
->getOperand(1) &&
3896 (!SignBitOnly
|| cast
<FPMathOperator
>(I
)->hasNoNaNs()))
3899 // Set SignBitOnly for RHS, because X / -0.0 is -Inf (or NaN).
3900 return cannotBeOrderedLessThanZeroImpl(I
->getOperand(0), DL
, TLI
,
3901 SignBitOnly
, Depth
+ 1) &&
3902 cannotBeOrderedLessThanZeroImpl(I
->getOperand(1), DL
, TLI
,
3903 /*SignBitOnly*/ true, Depth
+ 1);
3904 case Instruction::FMul
:
3905 // X * X is always non-negative or a NaN.
3906 if (I
->getOperand(0) == I
->getOperand(1) &&
3907 (!SignBitOnly
|| cast
<FPMathOperator
>(I
)->hasNoNaNs()))
3911 case Instruction::FAdd
:
3912 case Instruction::FRem
:
3913 return cannotBeOrderedLessThanZeroImpl(I
->getOperand(0), DL
, TLI
,
3914 SignBitOnly
, Depth
+ 1) &&
3915 cannotBeOrderedLessThanZeroImpl(I
->getOperand(1), DL
, TLI
,
3916 SignBitOnly
, Depth
+ 1);
3917 case Instruction::Select
:
3918 return cannotBeOrderedLessThanZeroImpl(I
->getOperand(1), DL
, TLI
,
3919 SignBitOnly
, Depth
+ 1) &&
3920 cannotBeOrderedLessThanZeroImpl(I
->getOperand(2), DL
, TLI
,
3921 SignBitOnly
, Depth
+ 1);
3922 case Instruction::FPExt
:
3923 case Instruction::FPTrunc
:
3924 // Widening/narrowing never change sign.
3925 return cannotBeOrderedLessThanZeroImpl(I
->getOperand(0), DL
, TLI
,
3926 SignBitOnly
, Depth
+ 1);
3927 case Instruction::ExtractElement
:
3928 // Look through extract element. At the moment we keep this simple and skip
3929 // tracking the specific element. But at least we might find information
3930 // valid for all elements of the vector.
3931 return cannotBeOrderedLessThanZeroImpl(I
->getOperand(0), DL
, TLI
,
3932 SignBitOnly
, Depth
+ 1);
3933 case Instruction::Call
:
3934 const auto *CI
= cast
<CallInst
>(I
);
3935 Intrinsic::ID IID
= getIntrinsicForCallSite(*CI
, TLI
);
3939 case Intrinsic::canonicalize
:
3940 case Intrinsic::arithmetic_fence
:
3941 case Intrinsic::floor
:
3942 case Intrinsic::ceil
:
3943 case Intrinsic::trunc
:
3944 case Intrinsic::rint
:
3945 case Intrinsic::nearbyint
:
3946 case Intrinsic::round
:
3947 case Intrinsic::roundeven
:
3948 case Intrinsic::fptrunc_round
:
3949 return cannotBeOrderedLessThanZeroImpl(I
->getOperand(0), DL
, TLI
,
3950 SignBitOnly
, Depth
+ 1);
3951 case Intrinsic::maxnum
: {
3952 Value
*V0
= I
->getOperand(0), *V1
= I
->getOperand(1);
3953 auto isPositiveNum
= [&](Value
*V
) {
3955 // With SignBitOnly, this is tricky because the result of
3956 // maxnum(+0.0, -0.0) is unspecified. Just check if the operand is
3957 // a constant strictly greater than 0.0.
3959 return match(V
, m_APFloat(C
)) &&
3960 *C
> APFloat::getZero(C
->getSemantics());
3963 // -0.0 compares equal to 0.0, so if this operand is at least -0.0,
3964 // maxnum can't be ordered-less-than-zero.
3965 return isKnownNeverNaN(V
, DL
, TLI
) &&
3966 cannotBeOrderedLessThanZeroImpl(V
, DL
, TLI
, false, Depth
+ 1);
3969 // TODO: This could be improved. We could also check that neither operand
3970 // has its sign bit set (and at least 1 is not-NAN?).
3971 return isPositiveNum(V0
) || isPositiveNum(V1
);
3974 case Intrinsic::maximum
:
3975 return cannotBeOrderedLessThanZeroImpl(I
->getOperand(0), DL
, TLI
,
3976 SignBitOnly
, Depth
+ 1) ||
3977 cannotBeOrderedLessThanZeroImpl(I
->getOperand(1), DL
, TLI
,
3978 SignBitOnly
, Depth
+ 1);
3979 case Intrinsic::minnum
:
3980 case Intrinsic::minimum
:
3981 return cannotBeOrderedLessThanZeroImpl(I
->getOperand(0), DL
, TLI
,
3982 SignBitOnly
, Depth
+ 1) &&
3983 cannotBeOrderedLessThanZeroImpl(I
->getOperand(1), DL
, TLI
,
3984 SignBitOnly
, Depth
+ 1);
3985 case Intrinsic::exp
:
3986 case Intrinsic::exp2
:
3987 case Intrinsic::fabs
:
3989 case Intrinsic::copysign
:
3990 // Only the sign operand matters.
3991 return cannotBeOrderedLessThanZeroImpl(I
->getOperand(1), DL
, TLI
, true,
3993 case Intrinsic::sqrt
:
3994 // sqrt(x) is always >= -0 or NaN. Moreover, sqrt(x) == -0 iff x == -0.
3997 return CI
->hasNoNaNs() && (CI
->hasNoSignedZeros() ||
3998 CannotBeNegativeZero(CI
->getOperand(0), TLI
));
4000 case Intrinsic::powi
:
4001 if (ConstantInt
*Exponent
= dyn_cast
<ConstantInt
>(I
->getOperand(1))) {
4002 // powi(x,n) is non-negative if n is even.
4003 if (Exponent
->getBitWidth() <= 64 && Exponent
->getSExtValue() % 2u == 0)
4006 // TODO: This is not correct. Given that exp is an integer, here are the
4007 // ways that pow can return a negative value:
4009 // pow(x, exp) --> negative if exp is odd and x is negative.
4010 // pow(-0, exp) --> -inf if exp is negative odd.
4011 // pow(-0, exp) --> -0 if exp is positive odd.
4012 // pow(-inf, exp) --> -0 if exp is negative odd.
4013 // pow(-inf, exp) --> -inf if exp is positive odd.
4015 // Therefore, if !SignBitOnly, we can return true if x >= +0 or x is NaN,
4016 // but we must return false if x == -0. Unfortunately we do not currently
4017 // have a way of expressing this constraint. See details in
4018 // https://llvm.org/bugs/show_bug.cgi?id=31702.
4019 return cannotBeOrderedLessThanZeroImpl(I
->getOperand(0), DL
, TLI
,
4020 SignBitOnly
, Depth
+ 1);
4022 case Intrinsic::fma
:
4023 case Intrinsic::fmuladd
:
4024 // x*x+y is non-negative if y is non-negative.
4025 return I
->getOperand(0) == I
->getOperand(1) &&
4026 (!SignBitOnly
|| cast
<FPMathOperator
>(I
)->hasNoNaNs()) &&
4027 cannotBeOrderedLessThanZeroImpl(I
->getOperand(2), DL
, TLI
,
4028 SignBitOnly
, Depth
+ 1);
4035 bool llvm::CannotBeOrderedLessThanZero(const Value
*V
, const DataLayout
&DL
,
4036 const TargetLibraryInfo
*TLI
) {
4037 return cannotBeOrderedLessThanZeroImpl(V
, DL
, TLI
, false, 0);
4040 bool llvm::isKnownNeverInfinity(const Value
*V
, const DataLayout
&DL
,
4041 const TargetLibraryInfo
*TLI
, unsigned Depth
,
4042 AssumptionCache
*AC
, const Instruction
*CtxI
,
4043 const DominatorTree
*DT
,
4044 OptimizationRemarkEmitter
*ORE
,
4045 bool UseInstrInfo
) {
4046 assert(V
->getType()->isFPOrFPVectorTy() && "Querying for Inf on non-FP type");
4048 // If we're told that infinities won't happen, assume they won't.
4049 if (auto *FPMathOp
= dyn_cast
<FPMathOperator
>(V
))
4050 if (FPMathOp
->hasNoInfs())
4053 if (const auto *Arg
= dyn_cast
<Argument
>(V
)) {
4054 if ((Arg
->getNoFPClass() & fcInf
) == fcInf
)
4058 // TODO: Use fpclass like API for isKnown queries and distinguish +inf from
4060 if (const auto *CB
= dyn_cast
<CallBase
>(V
)) {
4061 if ((CB
->getRetNoFPClass() & fcInf
) == fcInf
)
4065 // Handle scalar constants.
4066 if (auto *CFP
= dyn_cast
<ConstantFP
>(V
))
4067 return !CFP
->isInfinity();
4069 if (Depth
== MaxAnalysisRecursionDepth
)
4072 if (auto *Inst
= dyn_cast
<Instruction
>(V
)) {
4073 switch (Inst
->getOpcode()) {
4074 case Instruction::Select
: {
4075 return isKnownNeverInfinity(Inst
->getOperand(1), DL
, TLI
, Depth
+ 1) &&
4076 isKnownNeverInfinity(Inst
->getOperand(2), DL
, TLI
, Depth
+ 1);
4078 case Instruction::SIToFP
:
4079 case Instruction::UIToFP
: {
4080 // Get width of largest magnitude integer (remove a bit if signed).
4081 // This still works for a signed minimum value because the largest FP
4082 // value is scaled by some fraction close to 2.0 (1.0 + 0.xxxx).
4083 int IntSize
= Inst
->getOperand(0)->getType()->getScalarSizeInBits();
4084 if (Inst
->getOpcode() == Instruction::SIToFP
)
4087 // If the exponent of the largest finite FP value can hold the largest
4088 // integer, the result of the cast must be finite.
4089 Type
*FPTy
= Inst
->getType()->getScalarType();
4090 return ilogb(APFloat::getLargest(FPTy
->getFltSemantics())) >= IntSize
;
4092 case Instruction::FNeg
:
4093 case Instruction::FPExt
: {
4094 // Peek through to source op. If it is not infinity, this is not infinity.
4095 return isKnownNeverInfinity(Inst
->getOperand(0), DL
, TLI
, Depth
+ 1);
4097 case Instruction::FPTrunc
: {
4098 // Need a range check.
4105 if (const auto *II
= dyn_cast
<IntrinsicInst
>(V
)) {
4106 switch (II
->getIntrinsicID()) {
4107 case Intrinsic::sin
:
4108 case Intrinsic::cos
:
4109 // Return NaN on infinite inputs.
4111 case Intrinsic::fabs
:
4112 case Intrinsic::sqrt
:
4113 case Intrinsic::canonicalize
:
4114 case Intrinsic::copysign
:
4115 case Intrinsic::arithmetic_fence
:
4116 case Intrinsic::trunc
:
4117 return isKnownNeverInfinity(Inst
->getOperand(0), DL
, TLI
, Depth
+ 1);
4118 case Intrinsic::floor
:
4119 case Intrinsic::ceil
:
4120 case Intrinsic::rint
:
4121 case Intrinsic::nearbyint
:
4122 case Intrinsic::round
:
4123 case Intrinsic::roundeven
:
4124 // PPC_FP128 is a special case.
4125 if (V
->getType()->isMultiUnitFPType())
4127 return isKnownNeverInfinity(Inst
->getOperand(0), DL
, TLI
, Depth
+ 1);
4128 case Intrinsic::fptrunc_round
:
4129 // Requires knowing the value range.
4131 case Intrinsic::minnum
:
4132 case Intrinsic::maxnum
:
4133 case Intrinsic::minimum
:
4134 case Intrinsic::maximum
:
4135 return isKnownNeverInfinity(Inst
->getOperand(0), DL
, TLI
, Depth
+ 1) &&
4136 isKnownNeverInfinity(Inst
->getOperand(1), DL
, TLI
, Depth
+ 1);
4137 case Intrinsic::log
:
4138 case Intrinsic::log10
:
4139 case Intrinsic::log2
:
4140 // log(+inf) -> +inf
4141 // log([+-]0.0) -> -inf
4144 // TODO: We lack API to check the == 0 case.
4146 case Intrinsic::exp
:
4147 case Intrinsic::exp2
:
4148 case Intrinsic::pow
:
4149 case Intrinsic::powi
:
4150 case Intrinsic::fma
:
4151 case Intrinsic::fmuladd
:
4152 // These can return infinities on overflow cases, so it's hard to prove
4153 // anything about it.
4161 // try to handle fixed width vector constants
4162 auto *VFVTy
= dyn_cast
<FixedVectorType
>(V
->getType());
4163 if (VFVTy
&& isa
<Constant
>(V
)) {
4164 // For vectors, verify that each element is not infinity.
4165 unsigned NumElts
= VFVTy
->getNumElements();
4166 for (unsigned i
= 0; i
!= NumElts
; ++i
) {
4167 Constant
*Elt
= cast
<Constant
>(V
)->getAggregateElement(i
);
4170 if (isa
<UndefValue
>(Elt
))
4172 auto *CElt
= dyn_cast
<ConstantFP
>(Elt
);
4173 if (!CElt
|| CElt
->isInfinity())
4176 // All elements were confirmed non-infinity or undefined.
4180 // was not able to prove that V never contains infinity
4184 bool llvm::SignBitMustBeZero(const Value
*V
, const DataLayout
&DL
,
4185 const TargetLibraryInfo
*TLI
) {
4186 return cannotBeOrderedLessThanZeroImpl(V
, DL
, TLI
, true, 0);
4189 bool llvm::isKnownNeverNaN(const Value
*V
, const DataLayout
&DL
,
4190 const TargetLibraryInfo
*TLI
, unsigned Depth
,
4191 AssumptionCache
*AC
, const Instruction
*CtxI
,
4192 const DominatorTree
*DT
,
4193 OptimizationRemarkEmitter
*ORE
, bool UseInstrInfo
) {
4194 assert(V
->getType()->isFPOrFPVectorTy() && "Querying for NaN on non-FP type");
4196 // If we're told that NaNs won't happen, assume they won't.
4197 if (auto *FPMathOp
= dyn_cast
<FPMathOperator
>(V
))
4198 if (FPMathOp
->hasNoNaNs())
4201 if (const auto *Arg
= dyn_cast
<Argument
>(V
)) {
4202 if ((Arg
->getNoFPClass() & fcNan
) == fcNan
)
4206 // TODO: Use fpclass like API for isKnown queries and distinguish snan from
4208 if (const auto *CB
= dyn_cast
<CallBase
>(V
)) {
4209 FPClassTest Mask
= CB
->getRetNoFPClass();
4210 if ((Mask
& fcNan
) == fcNan
)
4214 // Handle scalar constants.
4215 if (auto *CFP
= dyn_cast
<ConstantFP
>(V
))
4216 return !CFP
->isNaN();
4218 if (Depth
== MaxAnalysisRecursionDepth
)
4221 if (auto *Inst
= dyn_cast
<Instruction
>(V
)) {
4222 switch (Inst
->getOpcode()) {
4223 case Instruction::FAdd
:
4224 case Instruction::FSub
:
4225 // Adding positive and negative infinity produces NaN.
4226 return isKnownNeverNaN(Inst
->getOperand(0), DL
, TLI
, Depth
+ 1) &&
4227 isKnownNeverNaN(Inst
->getOperand(1), DL
, TLI
, Depth
+ 1) &&
4228 (isKnownNeverInfinity(Inst
->getOperand(0), DL
, TLI
, Depth
+ 1) ||
4229 isKnownNeverInfinity(Inst
->getOperand(1), DL
, TLI
, Depth
+ 1));
4231 case Instruction::FMul
:
4232 // Zero multiplied with infinity produces NaN.
4233 // FIXME: If neither side can be zero fmul never produces NaN.
4234 return isKnownNeverNaN(Inst
->getOperand(0), DL
, TLI
, Depth
+ 1) &&
4235 isKnownNeverInfinity(Inst
->getOperand(0), DL
, TLI
, Depth
+ 1) &&
4236 isKnownNeverNaN(Inst
->getOperand(1), DL
, TLI
, Depth
+ 1) &&
4237 isKnownNeverInfinity(Inst
->getOperand(1), DL
, TLI
, Depth
+ 1);
4239 case Instruction::FDiv
:
4240 case Instruction::FRem
:
4241 // FIXME: Only 0/0, Inf/Inf, Inf REM x and x REM 0 produce NaN.
4244 case Instruction::Select
: {
4245 return isKnownNeverNaN(Inst
->getOperand(1), DL
, TLI
, Depth
+ 1) &&
4246 isKnownNeverNaN(Inst
->getOperand(2), DL
, TLI
, Depth
+ 1);
4248 case Instruction::SIToFP
:
4249 case Instruction::UIToFP
:
4251 case Instruction::FPTrunc
:
4252 case Instruction::FPExt
:
4253 case Instruction::FNeg
:
4254 return isKnownNeverNaN(Inst
->getOperand(0), DL
, TLI
, Depth
+ 1);
4260 if (const auto *II
= dyn_cast
<IntrinsicInst
>(V
)) {
4261 switch (II
->getIntrinsicID()) {
4262 case Intrinsic::canonicalize
:
4263 case Intrinsic::fabs
:
4264 case Intrinsic::copysign
:
4265 case Intrinsic::exp
:
4266 case Intrinsic::exp2
:
4267 case Intrinsic::floor
:
4268 case Intrinsic::ceil
:
4269 case Intrinsic::trunc
:
4270 case Intrinsic::rint
:
4271 case Intrinsic::nearbyint
:
4272 case Intrinsic::round
:
4273 case Intrinsic::roundeven
:
4274 case Intrinsic::arithmetic_fence
:
4275 return isKnownNeverNaN(II
->getArgOperand(0), DL
, TLI
, Depth
+ 1);
4276 case Intrinsic::sqrt
:
4277 return isKnownNeverNaN(II
->getArgOperand(0), DL
, TLI
, Depth
+ 1) &&
4278 CannotBeOrderedLessThanZero(II
->getArgOperand(0), DL
, TLI
);
4279 case Intrinsic::minnum
:
4280 case Intrinsic::maxnum
:
4281 // If either operand is not NaN, the result is not NaN.
4282 return isKnownNeverNaN(II
->getArgOperand(0), DL
, TLI
, Depth
+ 1) ||
4283 isKnownNeverNaN(II
->getArgOperand(1), DL
, TLI
, Depth
+ 1);
4289 // Try to handle fixed width vector constants
4290 auto *VFVTy
= dyn_cast
<FixedVectorType
>(V
->getType());
4291 if (VFVTy
&& isa
<Constant
>(V
)) {
4292 // For vectors, verify that each element is not NaN.
4293 unsigned NumElts
= VFVTy
->getNumElements();
4294 for (unsigned i
= 0; i
!= NumElts
; ++i
) {
4295 Constant
*Elt
= cast
<Constant
>(V
)->getAggregateElement(i
);
4298 if (isa
<UndefValue
>(Elt
))
4300 auto *CElt
= dyn_cast
<ConstantFP
>(Elt
);
4301 if (!CElt
|| CElt
->isNaN())
4304 // All elements were confirmed not-NaN or undefined.
4308 // Was not able to prove that V never contains NaN
4312 /// Return true if it's possible to assume IEEE treatment of input denormals in
4313 /// \p F for \p Val.
4314 static bool inputDenormalIsIEEE(const Function
&F
, const Type
*Ty
) {
4315 Ty
= Ty
->getScalarType();
4316 return F
.getDenormalMode(Ty
->getFltSemantics()).Input
== DenormalMode::IEEE
;
4319 static bool inputDenormalIsIEEEOrPosZero(const Function
&F
, const Type
*Ty
) {
4320 Ty
= Ty
->getScalarType();
4321 DenormalMode Mode
= F
.getDenormalMode(Ty
->getFltSemantics());
4322 return Mode
.Input
== DenormalMode::IEEE
||
4323 Mode
.Input
== DenormalMode::PositiveZero
;
4326 static bool outputDenormalIsIEEEOrPosZero(const Function
&F
, const Type
*Ty
) {
4327 Ty
= Ty
->getScalarType();
4328 DenormalMode Mode
= F
.getDenormalMode(Ty
->getFltSemantics());
4329 return Mode
.Output
== DenormalMode::IEEE
||
4330 Mode
.Output
== DenormalMode::PositiveZero
;
4333 bool KnownFPClass::isKnownNeverLogicalZero(const Function
&F
, Type
*Ty
) const {
4334 return isKnownNeverZero() &&
4335 (isKnownNeverSubnormal() || inputDenormalIsIEEE(F
, Ty
));
4338 bool KnownFPClass::isKnownNeverLogicalNegZero(const Function
&F
,
4340 return isKnownNeverNegZero() &&
4341 (isKnownNeverNegSubnormal() || inputDenormalIsIEEEOrPosZero(F
, Ty
));
4344 bool KnownFPClass::isKnownNeverLogicalPosZero(const Function
&F
,
4346 if (!isKnownNeverPosZero())
4349 // If we know there are no denormals, nothing can be flushed to zero.
4350 if (isKnownNeverSubnormal())
4353 DenormalMode Mode
= F
.getDenormalMode(Ty
->getScalarType()->getFltSemantics());
4354 switch (Mode
.Input
) {
4355 case DenormalMode::IEEE
:
4357 case DenormalMode::PreserveSign
:
4358 // Negative subnormal won't flush to +0
4359 return isKnownNeverPosSubnormal();
4360 case DenormalMode::PositiveZero
:
4362 // Both positive and negative subnormal could flush to +0
4366 llvm_unreachable("covered switch over denormal mode");
4369 /// Returns a pair of values, which if passed to llvm.is.fpclass, returns the
4370 /// same result as an fcmp with the given operands.
4371 std::pair
<Value
*, FPClassTest
> llvm::fcmpToClassTest(FCmpInst::Predicate Pred
,
4373 Value
*LHS
, Value
*RHS
,
4374 bool LookThroughSrc
) {
4375 const APFloat
*ConstRHS
;
4376 if (!match(RHS
, m_APFloat(ConstRHS
)))
4377 return {nullptr, fcNone
};
4379 if (ConstRHS
->isZero()) {
4380 // Compares with fcNone are only exactly equal to fcZero if input denormals
4382 // TODO: Handle DAZ by expanding masks to cover subnormal cases.
4383 if (Pred
!= FCmpInst::FCMP_ORD
&& Pred
!= FCmpInst::FCMP_UNO
&&
4384 !inputDenormalIsIEEE(F
, LHS
->getType()))
4385 return {nullptr, fcNone
};
4388 case FCmpInst::FCMP_OEQ
: // Match x == 0.0
4389 return {LHS
, fcZero
};
4390 case FCmpInst::FCMP_UEQ
: // Match isnan(x) || (x == 0.0)
4391 return {LHS
, fcZero
| fcNan
};
4392 case FCmpInst::FCMP_UNE
: // Match (x != 0.0)
4393 return {LHS
, ~fcZero
};
4394 case FCmpInst::FCMP_ONE
: // Match !isnan(x) && x != 0.0
4395 return {LHS
, ~fcNan
& ~fcZero
};
4396 case FCmpInst::FCMP_ORD
:
4397 // Canonical form of ord/uno is with a zero. We could also handle
4398 // non-canonical other non-NaN constants or LHS == RHS.
4399 return {LHS
, ~fcNan
};
4400 case FCmpInst::FCMP_UNO
:
4401 return {LHS
, fcNan
};
4402 case FCmpInst::FCMP_OGT
: // x > 0
4403 return {LHS
, fcPosSubnormal
| fcPosNormal
| fcPosInf
};
4404 case FCmpInst::FCMP_UGT
: // isnan(x) || x > 0
4405 return {LHS
, fcPosSubnormal
| fcPosNormal
| fcPosInf
| fcNan
};
4406 case FCmpInst::FCMP_OGE
: // x >= 0
4407 return {LHS
, fcPositive
| fcNegZero
};
4408 case FCmpInst::FCMP_UGE
: // isnan(x) || x >= 0
4409 return {LHS
, fcPositive
| fcNegZero
| fcNan
};
4410 case FCmpInst::FCMP_OLT
: // x < 0
4411 return {LHS
, fcNegSubnormal
| fcNegNormal
| fcNegInf
};
4412 case FCmpInst::FCMP_ULT
: // isnan(x) || x < 0
4413 return {LHS
, fcNegSubnormal
| fcNegNormal
| fcNegInf
| fcNan
};
4414 case FCmpInst::FCMP_OLE
: // x <= 0
4415 return {LHS
, fcNegative
| fcPosZero
};
4416 case FCmpInst::FCMP_ULE
: // isnan(x) || x <= 0
4417 return {LHS
, fcNegative
| fcPosZero
| fcNan
};
4422 return {nullptr, fcNone
};
4426 const bool IsFabs
= LookThroughSrc
&& match(LHS
, m_FAbs(m_Value(Src
)));
4428 // Compute the test mask that would return true for the ordered comparisons.
4431 if (ConstRHS
->isInfinity()) {
4433 case FCmpInst::FCMP_OEQ
:
4434 case FCmpInst::FCMP_UNE
: {
4435 // Match __builtin_isinf patterns
4437 // fcmp oeq x, +inf -> is_fpclass x, fcPosInf
4438 // fcmp oeq fabs(x), +inf -> is_fpclass x, fcInf
4439 // fcmp oeq x, -inf -> is_fpclass x, fcNegInf
4440 // fcmp oeq fabs(x), -inf -> is_fpclass x, 0 -> false
4442 // fcmp une x, +inf -> is_fpclass x, ~fcPosInf
4443 // fcmp une fabs(x), +inf -> is_fpclass x, ~fcInf
4444 // fcmp une x, -inf -> is_fpclass x, ~fcNegInf
4445 // fcmp une fabs(x), -inf -> is_fpclass x, fcAllFlags -> true
4447 if (ConstRHS
->isNegative()) {
4459 case FCmpInst::FCMP_ONE
:
4460 case FCmpInst::FCMP_UEQ
: {
4461 // Match __builtin_isinf patterns
4462 // fcmp one x, -inf -> is_fpclass x, fcNegInf
4463 // fcmp one fabs(x), -inf -> is_fpclass x, ~fcNegInf & ~fcNan
4464 // fcmp one x, +inf -> is_fpclass x, ~fcNegInf & ~fcNan
4465 // fcmp one fabs(x), +inf -> is_fpclass x, ~fcInf & fcNan
4467 // fcmp ueq x, +inf -> is_fpclass x, fcPosInf|fcNan
4468 // fcmp ueq (fabs x), +inf -> is_fpclass x, fcInf|fcNan
4469 // fcmp ueq x, -inf -> is_fpclass x, fcNegInf|fcNan
4470 // fcmp ueq fabs(x), -inf -> is_fpclass x, fcNan
4471 if (ConstRHS
->isNegative()) {
4472 Mask
= ~fcNegInf
& ~fcNan
;
4476 Mask
= ~fcPosInf
& ~fcNan
;
4483 case FCmpInst::FCMP_OLT
:
4484 case FCmpInst::FCMP_UGE
: {
4485 if (ConstRHS
->isNegative()) // TODO
4486 return {nullptr, fcNone
};
4488 // fcmp olt fabs(x), +inf -> fcFinite
4489 // fcmp uge fabs(x), +inf -> ~fcFinite
4490 // fcmp olt x, +inf -> fcFinite|fcNegInf
4491 // fcmp uge x, +inf -> ~(fcFinite|fcNegInf)
4497 case FCmpInst::FCMP_OGE
:
4498 case FCmpInst::FCMP_ULT
: {
4499 if (ConstRHS
->isNegative()) // TODO
4500 return {nullptr, fcNone
};
4502 // fcmp oge fabs(x), +inf -> fcInf
4503 // fcmp oge x, +inf -> fcPosInf
4504 // fcmp ult fabs(x), +inf -> ~fcInf
4505 // fcmp ult x, +inf -> ~fcPosInf
4512 return {nullptr, fcNone
};
4514 } else if (ConstRHS
->isSmallestNormalized() && !ConstRHS
->isNegative()) {
4515 // Match pattern that's used in __builtin_isnormal.
4517 case FCmpInst::FCMP_OLT
:
4518 case FCmpInst::FCMP_UGE
: {
4519 // fcmp olt x, smallest_normal -> fcNegInf|fcNegNormal|fcSubnormal|fcZero
4520 // fcmp olt fabs(x), smallest_normal -> fcSubnormal|fcZero
4521 // fcmp uge x, smallest_normal -> fcNan|fcPosNormal|fcPosInf
4522 // fcmp uge fabs(x), smallest_normal -> ~(fcSubnormal|fcZero)
4523 Mask
= fcZero
| fcSubnormal
;
4525 Mask
|= fcNegNormal
| fcNegInf
;
4529 case FCmpInst::FCMP_OGE
:
4530 case FCmpInst::FCMP_ULT
: {
4531 // fcmp oge x, smallest_normal -> fcPosNormal | fcPosInf
4532 // fcmp oge fabs(x), smallest_normal -> fcInf | fcNormal
4533 // fcmp ult x, smallest_normal -> ~(fcPosNormal | fcPosInf)
4534 // fcmp ult fabs(x), smallest_normal -> ~(fcInf | fcNormal)
4535 Mask
= fcPosInf
| fcPosNormal
;
4537 Mask
|= fcNegInf
| fcNegNormal
;
4541 return {nullptr, fcNone
};
4544 return {nullptr, fcNone
};
4546 // Invert the comparison for the unordered cases.
4547 if (FCmpInst::isUnordered(Pred
))
4553 static FPClassTest
computeKnownFPClassFromAssumes(const Value
*V
,
4555 FPClassTest KnownFromAssume
= fcAllFlags
;
4557 // Try to restrict the floating-point classes based on information from
4559 for (auto &AssumeVH
: Q
.AC
->assumptionsFor(V
)) {
4562 CallInst
*I
= cast
<CallInst
>(AssumeVH
);
4563 const Function
*F
= I
->getFunction();
4565 assert(F
== Q
.CxtI
->getParent()->getParent() &&
4566 "Got assumption for the wrong function!");
4567 assert(I
->getCalledFunction()->getIntrinsicID() == Intrinsic::assume
&&
4568 "must be an assume intrinsic");
4570 if (!isValidAssumeForContext(I
, Q
.CxtI
, Q
.DT
))
4573 CmpInst::Predicate Pred
;
4575 uint64_t ClassVal
= 0;
4576 if (match(I
->getArgOperand(0), m_FCmp(Pred
, m_Value(LHS
), m_Value(RHS
)))) {
4577 auto [TestedValue
, TestedMask
] =
4578 fcmpToClassTest(Pred
, *F
, LHS
, RHS
, true);
4579 // First see if we can fold in fabs/fneg into the test.
4580 if (TestedValue
== V
)
4581 KnownFromAssume
&= TestedMask
;
4583 // Try again without the lookthrough if we found a different source
4585 auto [TestedValue
, TestedMask
] =
4586 fcmpToClassTest(Pred
, *F
, LHS
, RHS
, false);
4587 if (TestedValue
== V
)
4588 KnownFromAssume
&= TestedMask
;
4590 } else if (match(I
->getArgOperand(0),
4591 m_Intrinsic
<Intrinsic::is_fpclass
>(
4592 m_Value(LHS
), m_ConstantInt(ClassVal
)))) {
4593 KnownFromAssume
&= static_cast<FPClassTest
>(ClassVal
);
4597 return KnownFromAssume
;
4600 void computeKnownFPClass(const Value
*V
, const APInt
&DemandedElts
,
4601 FPClassTest InterestedClasses
, KnownFPClass
&Known
,
4602 unsigned Depth
, const Query
&Q
,
4603 const TargetLibraryInfo
*TLI
);
4605 static void computeKnownFPClass(const Value
*V
, KnownFPClass
&Known
,
4606 FPClassTest InterestedClasses
, unsigned Depth
,
4607 const Query
&Q
, const TargetLibraryInfo
*TLI
) {
4608 auto *FVTy
= dyn_cast
<FixedVectorType
>(V
->getType());
4609 APInt DemandedElts
=
4610 FVTy
? APInt::getAllOnes(FVTy
->getNumElements()) : APInt(1, 1);
4611 computeKnownFPClass(V
, DemandedElts
, InterestedClasses
, Known
, Depth
, Q
, TLI
);
4614 static void computeKnownFPClassForFPTrunc(const Operator
*Op
,
4615 const APInt
&DemandedElts
,
4616 FPClassTest InterestedClasses
,
4617 KnownFPClass
&Known
, unsigned Depth
,
4619 const TargetLibraryInfo
*TLI
) {
4620 if ((InterestedClasses
& fcNan
) == fcNone
)
4623 KnownFPClass KnownSrc
;
4624 computeKnownFPClass(Op
->getOperand(0), DemandedElts
, InterestedClasses
,
4625 KnownSrc
, Depth
+ 1, Q
, TLI
);
4626 if (KnownSrc
.isKnownNeverNaN())
4627 Known
.knownNot(fcNan
);
4629 // Infinity needs a range check.
4630 // TODO: Sign bit should be preserved
4633 // TODO: Merge implementations of isKnownNeverNaN, isKnownNeverInfinity,
4634 // CannotBeNegativeZero, cannotBeOrderedLessThanZero into here.
4636 void computeKnownFPClass(const Value
*V
, const APInt
&DemandedElts
,
4637 FPClassTest InterestedClasses
, KnownFPClass
&Known
,
4638 unsigned Depth
, const Query
&Q
,
4639 const TargetLibraryInfo
*TLI
) {
4640 assert(Known
.isUnknown() && "should not be called with known information");
4642 if (!DemandedElts
) {
4643 // No demanded elts, better to assume we don't know anything.
4648 assert(Depth
<= MaxAnalysisRecursionDepth
&& "Limit Search Depth");
4650 if (auto *CFP
= dyn_cast_or_null
<ConstantFP
>(V
)) {
4651 Known
.KnownFPClasses
= CFP
->getValueAPF().classify();
4652 Known
.SignBit
= CFP
->isNegative();
4656 // Try to handle fixed width vector constants
4657 auto *VFVTy
= dyn_cast
<FixedVectorType
>(V
->getType());
4658 const Constant
*CV
= dyn_cast
<Constant
>(V
);
4660 Known
.KnownFPClasses
= fcNone
;
4662 // For vectors, verify that each element is not NaN.
4663 unsigned NumElts
= VFVTy
->getNumElements();
4664 for (unsigned i
= 0; i
!= NumElts
; ++i
) {
4665 Constant
*Elt
= CV
->getAggregateElement(i
);
4667 Known
= KnownFPClass();
4670 if (isa
<UndefValue
>(Elt
))
4672 auto *CElt
= dyn_cast
<ConstantFP
>(Elt
);
4674 Known
= KnownFPClass();
4678 KnownFPClass KnownElt
{CElt
->getValueAPF().classify(), CElt
->isNegative()};
4685 FPClassTest KnownNotFromFlags
= fcNone
;
4686 if (const auto *CB
= dyn_cast
<CallBase
>(V
))
4687 KnownNotFromFlags
|= CB
->getRetNoFPClass();
4688 else if (const auto *Arg
= dyn_cast
<Argument
>(V
))
4689 KnownNotFromFlags
|= Arg
->getNoFPClass();
4691 const Operator
*Op
= dyn_cast
<Operator
>(V
);
4692 if (const FPMathOperator
*FPOp
= dyn_cast_or_null
<FPMathOperator
>(Op
)) {
4693 if (FPOp
->hasNoNaNs())
4694 KnownNotFromFlags
|= fcNan
;
4695 if (FPOp
->hasNoInfs())
4696 KnownNotFromFlags
|= fcInf
;
4700 FPClassTest AssumedClasses
= computeKnownFPClassFromAssumes(V
, Q
);
4701 KnownNotFromFlags
|= ~AssumedClasses
;
4704 // We no longer need to find out about these bits from inputs if we can
4705 // assume this from flags/attributes.
4706 InterestedClasses
&= ~KnownNotFromFlags
;
4708 auto ClearClassesFromFlags
= make_scope_exit([=, &Known
] {
4709 Known
.knownNot(KnownNotFromFlags
);
4715 // All recursive calls that increase depth must come after this.
4716 if (Depth
== MaxAnalysisRecursionDepth
)
4719 const unsigned Opc
= Op
->getOpcode();
4721 case Instruction::FNeg
: {
4722 computeKnownFPClass(Op
->getOperand(0), DemandedElts
, InterestedClasses
,
4723 Known
, Depth
+ 1, Q
, TLI
);
4727 case Instruction::Select
: {
4728 KnownFPClass Known2
;
4729 computeKnownFPClass(Op
->getOperand(1), DemandedElts
, InterestedClasses
,
4730 Known
, Depth
+ 1, Q
, TLI
);
4731 computeKnownFPClass(Op
->getOperand(2), DemandedElts
, InterestedClasses
,
4732 Known2
, Depth
+ 1, Q
, TLI
);
4736 case Instruction::Call
: {
4737 if (const IntrinsicInst
*II
= dyn_cast
<IntrinsicInst
>(Op
)) {
4738 const Intrinsic::ID IID
= II
->getIntrinsicID();
4740 case Intrinsic::fabs
: {
4741 if ((InterestedClasses
& (fcNan
| fcPositive
)) != fcNone
) {
4742 // If we only care about the sign bit we don't need to inspect the
4744 computeKnownFPClass(II
->getArgOperand(0), DemandedElts
,
4745 InterestedClasses
, Known
, Depth
+ 1, Q
, TLI
);
4751 case Intrinsic::copysign
: {
4752 KnownFPClass KnownSign
;
4754 computeKnownFPClass(II
->getArgOperand(0), DemandedElts
,
4755 InterestedClasses
, Known
, Depth
+ 1, Q
, TLI
);
4756 computeKnownFPClass(II
->getArgOperand(1), DemandedElts
,
4757 InterestedClasses
, KnownSign
, Depth
+ 1, Q
, TLI
);
4758 Known
.copysign(KnownSign
);
4761 case Intrinsic::fma
:
4762 case Intrinsic::fmuladd
: {
4763 if ((InterestedClasses
& fcNegative
) == fcNone
)
4766 if (II
->getArgOperand(0) != II
->getArgOperand(1))
4769 // The multiply cannot be -0 and therefore the add can't be -0
4770 Known
.knownNot(fcNegZero
);
4772 // x * x + y is non-negative if y is non-negative.
4773 KnownFPClass KnownAddend
;
4774 computeKnownFPClass(II
->getArgOperand(2), DemandedElts
,
4775 InterestedClasses
, KnownAddend
, Depth
+ 1, Q
, TLI
);
4777 // TODO: Known sign bit with no nans
4778 if (KnownAddend
.cannotBeOrderedLessThanZero())
4779 Known
.knownNot(fcNegative
);
4782 case Intrinsic::sqrt
: {
4783 KnownFPClass KnownSrc
;
4784 FPClassTest InterestedSrcs
= InterestedClasses
;
4785 if (InterestedClasses
& fcNan
)
4786 InterestedSrcs
|= KnownFPClass::OrderedLessThanZeroMask
;
4788 computeKnownFPClass(II
->getArgOperand(0), DemandedElts
,
4789 InterestedSrcs
, KnownSrc
, Depth
+ 1, Q
, TLI
);
4791 if (KnownSrc
.isKnownNeverPosInfinity())
4792 Known
.knownNot(fcPosInf
);
4793 if (KnownSrc
.isKnownNever(fcSNan
))
4794 Known
.knownNot(fcSNan
);
4796 // Any negative value besides -0 returns a nan.
4797 if (KnownSrc
.isKnownNeverNaN() &&
4798 KnownSrc
.cannotBeOrderedLessThanZero())
4799 Known
.knownNot(fcNan
);
4801 // The only negative value that can be returned is -0 for -0 inputs.
4802 Known
.knownNot(fcNegInf
| fcNegSubnormal
| fcNegNormal
);
4804 // If the input denormal mode could be PreserveSign, a negative
4805 // subnormal input could produce a negative zero output.
4806 if (KnownSrc
.isKnownNeverLogicalNegZero(*II
->getFunction(),
4808 Known
.knownNot(fcNegZero
);
4809 if (KnownSrc
.isKnownNeverNaN())
4810 Known
.SignBit
= false;
4815 case Intrinsic::sin
:
4816 case Intrinsic::cos
: {
4817 // Return NaN on infinite inputs.
4818 KnownFPClass KnownSrc
;
4819 computeKnownFPClass(II
->getArgOperand(0), DemandedElts
,
4820 InterestedClasses
, KnownSrc
, Depth
+ 1, Q
, TLI
);
4821 Known
.knownNot(fcInf
);
4822 if (KnownSrc
.isKnownNeverNaN() && KnownSrc
.isKnownNeverInfinity())
4823 Known
.knownNot(fcNan
);
4827 case Intrinsic::maxnum
:
4828 case Intrinsic::minnum
:
4829 case Intrinsic::minimum
:
4830 case Intrinsic::maximum
: {
4831 KnownFPClass KnownLHS
, KnownRHS
;
4832 computeKnownFPClass(II
->getArgOperand(0), DemandedElts
,
4833 InterestedClasses
, KnownLHS
, Depth
+ 1, Q
, TLI
);
4834 computeKnownFPClass(II
->getArgOperand(1), DemandedElts
,
4835 InterestedClasses
, KnownRHS
, Depth
+ 1, Q
, TLI
);
4838 KnownLHS
.isKnownNeverNaN() || KnownRHS
.isKnownNeverNaN();
4839 Known
= KnownLHS
| KnownRHS
;
4841 // If either operand is not NaN, the result is not NaN.
4842 if (NeverNaN
&& (IID
== Intrinsic::minnum
|| IID
== Intrinsic::maxnum
))
4843 Known
.knownNot(fcNan
);
4845 if (IID
== Intrinsic::maxnum
) {
4846 // If at least one operand is known to be positive, the result must be
4848 if ((KnownLHS
.cannotBeOrderedLessThanZero() &&
4849 KnownLHS
.isKnownNeverNaN()) ||
4850 (KnownRHS
.cannotBeOrderedLessThanZero() &&
4851 KnownRHS
.isKnownNeverNaN()))
4852 Known
.knownNot(KnownFPClass::OrderedLessThanZeroMask
);
4853 } else if (IID
== Intrinsic::maximum
) {
4854 // If at least one operand is known to be positive, the result must be
4856 if (KnownLHS
.cannotBeOrderedLessThanZero() ||
4857 KnownRHS
.cannotBeOrderedLessThanZero())
4858 Known
.knownNot(KnownFPClass::OrderedLessThanZeroMask
);
4859 } else if (IID
== Intrinsic::minnum
) {
4860 // If at least one operand is known to be negative, the result must be
4862 if ((KnownLHS
.cannotBeOrderedGreaterThanZero() &&
4863 KnownLHS
.isKnownNeverNaN()) ||
4864 (KnownRHS
.cannotBeOrderedGreaterThanZero() &&
4865 KnownRHS
.isKnownNeverNaN()))
4866 Known
.knownNot(KnownFPClass::OrderedGreaterThanZeroMask
);
4868 // If at least one operand is known to be negative, the result must be
4870 if (KnownLHS
.cannotBeOrderedGreaterThanZero() ||
4871 KnownRHS
.cannotBeOrderedGreaterThanZero())
4872 Known
.knownNot(KnownFPClass::OrderedGreaterThanZeroMask
);
4875 // Fixup zero handling if denormals could be returned as a zero.
4877 // As there's no spec for denormal flushing, be conservative with the
4878 // treatment of denormals that could be flushed to zero. For older
4879 // subtargets on AMDGPU the min/max instructions would not flush the
4880 // output and return the original value.
4882 // TODO: This could be refined based on the sign
4883 if ((Known
.KnownFPClasses
& fcZero
) != fcNone
&&
4884 !Known
.isKnownNeverSubnormal()) {
4885 const Function
*Parent
= II
->getFunction();
4886 DenormalMode Mode
= Parent
->getDenormalMode(
4887 II
->getType()->getScalarType()->getFltSemantics());
4888 if (Mode
!= DenormalMode::getIEEE())
4889 Known
.KnownFPClasses
|= fcZero
;
4894 case Intrinsic::canonicalize
: {
4895 computeKnownFPClass(II
->getArgOperand(0), DemandedElts
,
4896 InterestedClasses
, Known
, Depth
+ 1, Q
, TLI
);
4897 // Canonicalize is guaranteed to quiet signaling nans.
4898 Known
.knownNot(fcSNan
);
4900 // If the parent function flushes denormals, the canonical output cannot
4902 const fltSemantics
&FPType
=
4903 II
->getType()->getScalarType()->getFltSemantics();
4904 DenormalMode DenormMode
= II
->getFunction()->getDenormalMode(FPType
);
4905 if (DenormMode
.inputsAreZero() || DenormMode
.outputsAreZero())
4906 Known
.knownNot(fcSubnormal
);
4908 if (DenormMode
.Input
== DenormalMode::PositiveZero
||
4909 (DenormMode
.Output
== DenormalMode::PositiveZero
&&
4910 DenormMode
.Input
== DenormalMode::IEEE
))
4911 Known
.knownNot(fcNegZero
);
4915 case Intrinsic::trunc
: {
4916 KnownFPClass KnownSrc
;
4918 FPClassTest InterestedSrcs
= InterestedClasses
;
4919 if (InterestedClasses
& fcZero
)
4920 InterestedClasses
|= fcNormal
| fcSubnormal
;
4922 computeKnownFPClass(II
->getArgOperand(0), DemandedElts
, InterestedSrcs
,
4923 KnownSrc
, Depth
+ 1, Q
, TLI
);
4925 // Integer results cannot be subnormal.
4926 Known
.knownNot(fcSubnormal
);
4928 // trunc passes through infinities.
4929 if (KnownSrc
.isKnownNeverPosInfinity())
4930 Known
.knownNot(fcPosInf
);
4931 if (KnownSrc
.isKnownNeverNegInfinity())
4932 Known
.knownNot(fcNegInf
);
4934 // Non-constrained intrinsics do not guarantee signaling nan quieting.
4935 if (KnownSrc
.isKnownNeverNaN())
4936 Known
.knownNot(fcNan
);
4938 if (KnownSrc
.isKnownNever(fcPosNormal
))
4939 Known
.knownNot(fcPosNormal
);
4941 if (KnownSrc
.isKnownNever(fcNegNormal
))
4942 Known
.knownNot(fcNegNormal
);
4944 if (KnownSrc
.isKnownNever(fcPosZero
| fcPosSubnormal
| fcPosNormal
))
4945 Known
.knownNot(fcPosZero
);
4947 if (KnownSrc
.isKnownNever(fcNegZero
| fcNegSubnormal
| fcNegNormal
))
4948 Known
.knownNot(fcNegZero
);
4950 // Sign should be preserved
4951 Known
.SignBit
= KnownSrc
.SignBit
;
4954 case Intrinsic::exp
:
4955 case Intrinsic::exp2
: {
4956 Known
.knownNot(fcNegative
);
4957 if ((InterestedClasses
& fcNan
) == fcNone
)
4960 KnownFPClass KnownSrc
;
4961 computeKnownFPClass(II
->getArgOperand(0), DemandedElts
,
4962 InterestedClasses
, KnownSrc
, Depth
+ 1, Q
, TLI
);
4963 if (KnownSrc
.isKnownNeverNaN()) {
4964 Known
.knownNot(fcNan
);
4965 Known
.SignBit
= false;
4970 case Intrinsic::fptrunc_round
: {
4971 computeKnownFPClassForFPTrunc(Op
, DemandedElts
, InterestedClasses
,
4972 Known
, Depth
, Q
, TLI
);
4975 case Intrinsic::log
:
4976 case Intrinsic::log10
:
4977 case Intrinsic::log2
:
4978 case Intrinsic::experimental_constrained_log
:
4979 case Intrinsic::experimental_constrained_log10
:
4980 case Intrinsic::experimental_constrained_log2
: {
4981 // log(+inf) -> +inf
4982 // log([+-]0.0) -> -inf
4985 if ((InterestedClasses
& (fcNan
| fcInf
)) == fcNone
)
4988 FPClassTest InterestedSrcs
= InterestedClasses
;
4989 if ((InterestedClasses
& fcNegInf
) != fcNone
)
4990 InterestedSrcs
|= fcZero
| fcSubnormal
;
4991 if ((InterestedClasses
& fcNan
) != fcNone
)
4992 InterestedSrcs
|= fcNan
| (fcNegative
& ~fcNan
);
4994 KnownFPClass KnownSrc
;
4995 computeKnownFPClass(II
->getArgOperand(0), DemandedElts
, InterestedSrcs
,
4996 KnownSrc
, Depth
+ 1, Q
, TLI
);
4998 if (KnownSrc
.isKnownNeverPosInfinity())
4999 Known
.knownNot(fcPosInf
);
5001 if (KnownSrc
.isKnownNeverNaN() &&
5002 KnownSrc
.cannotBeOrderedLessThanZero())
5003 Known
.knownNot(fcNan
);
5005 if (KnownSrc
.isKnownNeverLogicalZero(*II
->getFunction(), II
->getType()))
5006 Known
.knownNot(fcNegInf
);
5010 case Intrinsic::powi
: {
5011 if ((InterestedClasses
& fcNegative
) == fcNone
)
5014 const Value
*Exp
= II
->getArgOperand(1);
5016 Exp
->getType()->getScalarType()->getIntegerBitWidth();
5017 KnownBits
ExponentKnownBits(BitWidth
);
5018 computeKnownBits(Exp
, DemandedElts
, ExponentKnownBits
, Depth
+ 1, Q
);
5020 if (ExponentKnownBits
.Zero
[0]) { // Is even
5021 Known
.knownNot(fcNegative
);
5025 // Given that exp is an integer, here are the
5026 // ways that pow can return a negative value:
5028 // pow(-x, exp) --> negative if exp is odd and x is negative.
5029 // pow(-0, exp) --> -inf if exp is negative odd.
5030 // pow(-0, exp) --> -0 if exp is positive odd.
5031 // pow(-inf, exp) --> -0 if exp is negative odd.
5032 // pow(-inf, exp) --> -inf if exp is positive odd.
5033 KnownFPClass KnownSrc
;
5034 computeKnownFPClass(II
->getArgOperand(0), DemandedElts
, fcNegative
,
5035 KnownSrc
, Depth
+ 1, Q
, TLI
);
5036 if (KnownSrc
.isKnownNever(fcNegative
))
5037 Known
.knownNot(fcNegative
);
5040 case Intrinsic::arithmetic_fence
: {
5041 computeKnownFPClass(II
->getArgOperand(0), DemandedElts
,
5042 InterestedClasses
, Known
, Depth
+ 1, Q
, TLI
);
5045 case Intrinsic::experimental_constrained_sitofp
:
5046 case Intrinsic::experimental_constrained_uitofp
:
5047 // Cannot produce nan
5048 Known
.knownNot(fcNan
);
5050 // sitofp and uitofp turn into +0.0 for zero.
5051 Known
.knownNot(fcNegZero
);
5053 // Integers cannot be subnormal
5054 Known
.knownNot(fcSubnormal
);
5056 if (IID
== Intrinsic::experimental_constrained_uitofp
)
5057 Known
.signBitMustBeZero();
5059 // TODO: Copy inf handling from instructions
5068 case Instruction::FAdd
:
5069 case Instruction::FSub
: {
5070 KnownFPClass KnownLHS
, KnownRHS
;
5071 computeKnownFPClass(Op
->getOperand(1), DemandedElts
, fcNan
| fcInf
,
5072 KnownRHS
, Depth
+ 1, Q
, TLI
);
5074 if (KnownRHS
.isKnownNeverNaN() || KnownRHS
.isKnownNeverNegZero() ||
5075 (Opc
== Instruction::FSub
&& KnownRHS
.isKnownNeverPosZero())) {
5076 // RHS is canonically cheaper to compute. Skip inspecting the LHS if
5077 // there's no point.
5078 computeKnownFPClass(Op
->getOperand(0), DemandedElts
, fcNan
| fcInf
,
5079 KnownLHS
, Depth
+ 1, Q
, TLI
);
5080 // Adding positive and negative infinity produces NaN.
5081 // TODO: Check sign of infinities.
5082 if (KnownLHS
.isKnownNeverNaN() && KnownRHS
.isKnownNeverNaN() &&
5083 (KnownLHS
.isKnownNeverInfinity() || KnownRHS
.isKnownNeverInfinity()))
5084 Known
.knownNot(fcNan
);
5086 const Function
*F
= cast
<Instruction
>(Op
)->getFunction();
5087 if (Op
->getOpcode() == Instruction::FAdd
) {
5088 // (fadd x, 0.0) is guaranteed to return +0.0, not -0.0.
5089 if ((KnownLHS
.isKnownNeverLogicalNegZero(*F
, Op
->getType()) ||
5090 KnownRHS
.isKnownNeverLogicalNegZero(*F
, Op
->getType())) &&
5091 // Make sure output negative denormal can't flush to -0
5092 outputDenormalIsIEEEOrPosZero(*F
, Op
->getType()))
5093 Known
.knownNot(fcNegZero
);
5095 // Only fsub -0, +0 can return -0
5096 if ((KnownLHS
.isKnownNeverLogicalNegZero(*F
, Op
->getType()) ||
5097 KnownRHS
.isKnownNeverLogicalPosZero(*F
, Op
->getType())) &&
5098 // Make sure output negative denormal can't flush to -0
5099 outputDenormalIsIEEEOrPosZero(*F
, Op
->getType()))
5100 Known
.knownNot(fcNegZero
);
5106 case Instruction::FMul
: {
5107 // X * X is always non-negative or a NaN.
5108 if (Op
->getOperand(0) == Op
->getOperand(1))
5109 Known
.knownNot(fcNegative
);
5111 if ((InterestedClasses
& fcNan
) != fcNan
)
5114 KnownFPClass KnownLHS
, KnownRHS
;
5115 computeKnownFPClass(Op
->getOperand(1), DemandedElts
,
5116 fcNan
| fcInf
| fcZero
| fcSubnormal
, KnownRHS
,
5118 if (KnownRHS
.isKnownNeverNaN() &&
5119 (KnownRHS
.isKnownNeverInfinity() || KnownRHS
.isKnownNeverZero())) {
5120 computeKnownFPClass(Op
->getOperand(0), DemandedElts
,
5121 fcNan
| fcInf
| fcZero
, KnownLHS
, Depth
+ 1, Q
, TLI
);
5122 if (!KnownLHS
.isKnownNeverNaN())
5125 const Function
*F
= cast
<Instruction
>(Op
)->getFunction();
5127 // If neither side can be zero (or nan) fmul never produces NaN.
5128 // TODO: Check operand combinations.
5129 // e.g. fmul nofpclass(inf nan zero), nofpclass(nan) -> nofpclass(nan)
5130 if ((KnownLHS
.isKnownNeverInfinity() ||
5131 KnownLHS
.isKnownNeverLogicalZero(*F
, Op
->getType())) &&
5132 (KnownRHS
.isKnownNeverInfinity() ||
5133 KnownRHS
.isKnownNeverLogicalZero(*F
, Op
->getType())))
5134 Known
.knownNot(fcNan
);
5139 case Instruction::FDiv
:
5140 case Instruction::FRem
: {
5141 if (Op
->getOperand(0) == Op
->getOperand(1)) {
5142 // TODO: Could filter out snan if we inspect the operand
5143 if (Op
->getOpcode() == Instruction::FDiv
) {
5144 // X / X is always exactly 1.0 or a NaN.
5145 Known
.KnownFPClasses
= fcNan
| fcPosNormal
;
5147 // X % X is always exactly [+-]0.0 or a NaN.
5148 Known
.KnownFPClasses
= fcNan
| fcZero
;
5154 const bool WantNan
= (InterestedClasses
& fcNan
) != fcNone
;
5155 const bool WantNegative
= (InterestedClasses
& fcNegative
) != fcNone
;
5156 const bool WantPositive
=
5157 Opc
== Instruction::FRem
&& (InterestedClasses
& fcPositive
) != fcNone
;
5158 if (!WantNan
&& !WantNegative
&& !WantPositive
)
5161 KnownFPClass KnownLHS
, KnownRHS
;
5163 computeKnownFPClass(Op
->getOperand(1), DemandedElts
,
5164 fcNan
| fcInf
| fcZero
| fcNegative
, KnownRHS
,
5167 bool KnowSomethingUseful
=
5168 KnownRHS
.isKnownNeverNaN() || KnownRHS
.isKnownNever(fcNegative
);
5170 if (KnowSomethingUseful
|| WantPositive
) {
5171 const FPClassTest InterestedLHS
=
5172 WantPositive
? fcAllFlags
5173 : fcNan
| fcInf
| fcZero
| fcSubnormal
| fcNegative
;
5175 computeKnownFPClass(Op
->getOperand(0), DemandedElts
,
5176 InterestedClasses
& InterestedLHS
, KnownLHS
,
5180 const Function
*F
= cast
<Instruction
>(Op
)->getFunction();
5182 if (Op
->getOpcode() == Instruction::FDiv
) {
5183 // Only 0/0, Inf/Inf produce NaN.
5184 if (KnownLHS
.isKnownNeverNaN() && KnownRHS
.isKnownNeverNaN() &&
5185 (KnownLHS
.isKnownNeverInfinity() ||
5186 KnownRHS
.isKnownNeverInfinity()) &&
5187 (KnownLHS
.isKnownNeverLogicalZero(*F
, Op
->getType()) ||
5188 KnownRHS
.isKnownNeverLogicalZero(*F
, Op
->getType()))) {
5189 Known
.knownNot(fcNan
);
5192 // X / -0.0 is -Inf (or NaN).
5194 if (KnownLHS
.isKnownNever(fcNegative
) && KnownRHS
.isKnownNever(fcNegative
))
5195 Known
.knownNot(fcNegative
);
5197 // Inf REM x and x REM 0 produce NaN.
5198 if (KnownLHS
.isKnownNeverNaN() && KnownRHS
.isKnownNeverNaN() &&
5199 KnownLHS
.isKnownNeverInfinity() &&
5200 KnownRHS
.isKnownNeverLogicalZero(*F
, Op
->getType())) {
5201 Known
.knownNot(fcNan
);
5204 // The sign for frem is the same as the first operand.
5205 if (KnownLHS
.cannotBeOrderedLessThanZero())
5206 Known
.knownNot(KnownFPClass::OrderedLessThanZeroMask
);
5207 if (KnownLHS
.cannotBeOrderedGreaterThanZero())
5208 Known
.knownNot(KnownFPClass::OrderedGreaterThanZeroMask
);
5210 // See if we can be more aggressive about the sign of 0.
5211 if (KnownLHS
.isKnownNever(fcNegative
))
5212 Known
.knownNot(fcNegative
);
5213 if (KnownLHS
.isKnownNever(fcPositive
))
5214 Known
.knownNot(fcPositive
);
5219 case Instruction::FPExt
: {
5220 // Infinity, nan and zero propagate from source.
5221 computeKnownFPClass(Op
->getOperand(0), DemandedElts
, InterestedClasses
,
5222 Known
, Depth
+ 1, Q
, TLI
);
5224 const fltSemantics
&DstTy
=
5225 Op
->getType()->getScalarType()->getFltSemantics();
5226 const fltSemantics
&SrcTy
=
5227 Op
->getOperand(0)->getType()->getScalarType()->getFltSemantics();
5229 // All subnormal inputs should be in the normal range in the result type.
5230 if (APFloat::isRepresentableAsNormalIn(SrcTy
, DstTy
))
5231 Known
.knownNot(fcSubnormal
);
5233 // Sign bit of a nan isn't guaranteed.
5234 if (!Known
.isKnownNeverNaN())
5235 Known
.SignBit
= std::nullopt
;
5238 case Instruction::FPTrunc
: {
5239 computeKnownFPClassForFPTrunc(Op
, DemandedElts
, InterestedClasses
, Known
,
5243 case Instruction::SIToFP
:
5244 case Instruction::UIToFP
: {
5245 // Cannot produce nan
5246 Known
.knownNot(fcNan
);
5248 // Integers cannot be subnormal
5249 Known
.knownNot(fcSubnormal
);
5251 // sitofp and uitofp turn into +0.0 for zero.
5252 Known
.knownNot(fcNegZero
);
5253 if (Op
->getOpcode() == Instruction::UIToFP
)
5254 Known
.signBitMustBeZero();
5256 if (InterestedClasses
& fcInf
) {
5257 // Get width of largest magnitude integer (remove a bit if signed).
5258 // This still works for a signed minimum value because the largest FP
5259 // value is scaled by some fraction close to 2.0 (1.0 + 0.xxxx).
5260 int IntSize
= Op
->getOperand(0)->getType()->getScalarSizeInBits();
5261 if (Op
->getOpcode() == Instruction::SIToFP
)
5264 // If the exponent of the largest finite FP value can hold the largest
5265 // integer, the result of the cast must be finite.
5266 Type
*FPTy
= Op
->getType()->getScalarType();
5267 if (ilogb(APFloat::getLargest(FPTy
->getFltSemantics())) >= IntSize
)
5268 Known
.knownNot(fcInf
);
5273 case Instruction::ExtractElement
: {
5274 // Look through extract element. If the index is non-constant or
5275 // out-of-range demand all elements, otherwise just the extracted element.
5276 const Value
*Vec
= Op
->getOperand(0);
5277 const Value
*Idx
= Op
->getOperand(1);
5278 auto *CIdx
= dyn_cast
<ConstantInt
>(Idx
);
5280 if (auto *VecTy
= dyn_cast
<FixedVectorType
>(Vec
->getType())) {
5281 unsigned NumElts
= VecTy
->getNumElements();
5282 APInt DemandedVecElts
= APInt::getAllOnes(NumElts
);
5283 if (CIdx
&& CIdx
->getValue().ult(NumElts
))
5284 DemandedVecElts
= APInt::getOneBitSet(NumElts
, CIdx
->getZExtValue());
5285 return computeKnownFPClass(Vec
, DemandedVecElts
, InterestedClasses
, Known
,
5291 case Instruction::InsertElement
: {
5292 if (isa
<ScalableVectorType
>(Op
->getType()))
5295 const Value
*Vec
= Op
->getOperand(0);
5296 const Value
*Elt
= Op
->getOperand(1);
5297 auto *CIdx
= dyn_cast
<ConstantInt
>(Op
->getOperand(2));
5298 // Early out if the index is non-constant or out-of-range.
5299 unsigned NumElts
= DemandedElts
.getBitWidth();
5300 if (!CIdx
|| CIdx
->getValue().uge(NumElts
))
5303 unsigned EltIdx
= CIdx
->getZExtValue();
5304 // Do we demand the inserted element?
5305 if (DemandedElts
[EltIdx
]) {
5306 computeKnownFPClass(Elt
, Known
, InterestedClasses
, Depth
+ 1, Q
, TLI
);
5307 // If we don't know any bits, early out.
5308 if (Known
.isUnknown())
5311 Known
.KnownFPClasses
= fcNone
;
5314 // We don't need the base vector element that has been inserted.
5315 APInt DemandedVecElts
= DemandedElts
;
5316 DemandedVecElts
.clearBit(EltIdx
);
5317 if (!!DemandedVecElts
) {
5318 KnownFPClass Known2
;
5319 computeKnownFPClass(Vec
, DemandedVecElts
, InterestedClasses
, Known2
,
5326 case Instruction::ShuffleVector
: {
5327 // For undef elements, we don't know anything about the common state of
5328 // the shuffle result.
5329 APInt DemandedLHS
, DemandedRHS
;
5330 auto *Shuf
= dyn_cast
<ShuffleVectorInst
>(Op
);
5331 if (!Shuf
|| !getShuffleDemandedElts(Shuf
, DemandedElts
, DemandedLHS
, DemandedRHS
))
5334 if (!!DemandedLHS
) {
5335 const Value
*LHS
= Shuf
->getOperand(0);
5336 computeKnownFPClass(LHS
, DemandedLHS
, InterestedClasses
, Known
,
5339 // If we don't know any bits, early out.
5340 if (Known
.isUnknown())
5343 Known
.KnownFPClasses
= fcNone
;
5346 if (!!DemandedRHS
) {
5347 KnownFPClass Known2
;
5348 const Value
*RHS
= Shuf
->getOperand(1);
5349 computeKnownFPClass(RHS
, DemandedRHS
, InterestedClasses
, Known2
,
5356 case Instruction::ExtractValue
: {
5357 computeKnownFPClass(Op
->getOperand(0), DemandedElts
, InterestedClasses
,
5358 Known
, Depth
+ 1, Q
, TLI
);
5366 KnownFPClass
llvm::computeKnownFPClass(
5367 const Value
*V
, const APInt
&DemandedElts
, const DataLayout
&DL
,
5368 FPClassTest InterestedClasses
, unsigned Depth
, const TargetLibraryInfo
*TLI
,
5369 AssumptionCache
*AC
, const Instruction
*CxtI
, const DominatorTree
*DT
,
5370 OptimizationRemarkEmitter
*ORE
, bool UseInstrInfo
) {
5371 KnownFPClass KnownClasses
;
5372 ::computeKnownFPClass(V
, DemandedElts
, InterestedClasses
, KnownClasses
, Depth
,
5373 Query(DL
, AC
, safeCxtI(V
, CxtI
), DT
, UseInstrInfo
, ORE
),
5375 return KnownClasses
;
5379 llvm::computeKnownFPClass(const Value
*V
, const DataLayout
&DL
,
5380 FPClassTest InterestedClasses
, unsigned Depth
,
5381 const TargetLibraryInfo
*TLI
, AssumptionCache
*AC
,
5382 const Instruction
*CxtI
, const DominatorTree
*DT
,
5383 OptimizationRemarkEmitter
*ORE
, bool UseInstrInfo
) {
5385 ::computeKnownFPClass(V
, Known
, InterestedClasses
, Depth
,
5386 Query(DL
, AC
, safeCxtI(V
, CxtI
), DT
, UseInstrInfo
, ORE
),
5391 Value
*llvm::isBytewiseValue(Value
*V
, const DataLayout
&DL
) {
5393 // All byte-wide stores are splatable, even of arbitrary variables.
5394 if (V
->getType()->isIntegerTy(8))
5397 LLVMContext
&Ctx
= V
->getContext();
5399 // Undef don't care.
5400 auto *UndefInt8
= UndefValue::get(Type::getInt8Ty(Ctx
));
5401 if (isa
<UndefValue
>(V
))
5404 // Return Undef for zero-sized type.
5405 if (!DL
.getTypeStoreSize(V
->getType()).isNonZero())
5408 Constant
*C
= dyn_cast
<Constant
>(V
);
5410 // Conceptually, we could handle things like:
5411 // %a = zext i8 %X to i16
5412 // %b = shl i16 %a, 8
5413 // %c = or i16 %a, %b
5414 // but until there is an example that actually needs this, it doesn't seem
5415 // worth worrying about.
5419 // Handle 'null' ConstantArrayZero etc.
5420 if (C
->isNullValue())
5421 return Constant::getNullValue(Type::getInt8Ty(Ctx
));
5423 // Constant floating-point values can be handled as integer values if the
5424 // corresponding integer value is "byteable". An important case is 0.0.
5425 if (ConstantFP
*CFP
= dyn_cast
<ConstantFP
>(C
)) {
5427 if (CFP
->getType()->isHalfTy())
5428 Ty
= Type::getInt16Ty(Ctx
);
5429 else if (CFP
->getType()->isFloatTy())
5430 Ty
= Type::getInt32Ty(Ctx
);
5431 else if (CFP
->getType()->isDoubleTy())
5432 Ty
= Type::getInt64Ty(Ctx
);
5433 // Don't handle long double formats, which have strange constraints.
5434 return Ty
? isBytewiseValue(ConstantExpr::getBitCast(CFP
, Ty
), DL
)
5438 // We can handle constant integers that are multiple of 8 bits.
5439 if (ConstantInt
*CI
= dyn_cast
<ConstantInt
>(C
)) {
5440 if (CI
->getBitWidth() % 8 == 0) {
5441 assert(CI
->getBitWidth() > 8 && "8 bits should be handled above!");
5442 if (!CI
->getValue().isSplat(8))
5444 return ConstantInt::get(Ctx
, CI
->getValue().trunc(8));
5448 if (auto *CE
= dyn_cast
<ConstantExpr
>(C
)) {
5449 if (CE
->getOpcode() == Instruction::IntToPtr
) {
5450 if (auto *PtrTy
= dyn_cast
<PointerType
>(CE
->getType())) {
5451 unsigned BitWidth
= DL
.getPointerSizeInBits(PtrTy
->getAddressSpace());
5452 return isBytewiseValue(
5453 ConstantExpr::getIntegerCast(CE
->getOperand(0),
5454 Type::getIntNTy(Ctx
, BitWidth
), false),
5460 auto Merge
= [&](Value
*LHS
, Value
*RHS
) -> Value
* {
5465 if (LHS
== UndefInt8
)
5467 if (RHS
== UndefInt8
)
5472 if (ConstantDataSequential
*CA
= dyn_cast
<ConstantDataSequential
>(C
)) {
5473 Value
*Val
= UndefInt8
;
5474 for (unsigned I
= 0, E
= CA
->getNumElements(); I
!= E
; ++I
)
5475 if (!(Val
= Merge(Val
, isBytewiseValue(CA
->getElementAsConstant(I
), DL
))))
5480 if (isa
<ConstantAggregate
>(C
)) {
5481 Value
*Val
= UndefInt8
;
5482 for (unsigned I
= 0, E
= C
->getNumOperands(); I
!= E
; ++I
)
5483 if (!(Val
= Merge(Val
, isBytewiseValue(C
->getOperand(I
), DL
))))
5488 // Don't try to handle the handful of other constants.
5492 // This is the recursive version of BuildSubAggregate. It takes a few different
5493 // arguments. Idxs is the index within the nested struct From that we are
5494 // looking at now (which is of type IndexedType). IdxSkip is the number of
5495 // indices from Idxs that should be left out when inserting into the resulting
5496 // struct. To is the result struct built so far, new insertvalue instructions
5498 static Value
*BuildSubAggregate(Value
*From
, Value
* To
, Type
*IndexedType
,
5499 SmallVectorImpl
<unsigned> &Idxs
,
5501 Instruction
*InsertBefore
) {
5502 StructType
*STy
= dyn_cast
<StructType
>(IndexedType
);
5504 // Save the original To argument so we can modify it
5506 // General case, the type indexed by Idxs is a struct
5507 for (unsigned i
= 0, e
= STy
->getNumElements(); i
!= e
; ++i
) {
5508 // Process each struct element recursively
5511 To
= BuildSubAggregate(From
, To
, STy
->getElementType(i
), Idxs
, IdxSkip
,
5515 // Couldn't find any inserted value for this index? Cleanup
5516 while (PrevTo
!= OrigTo
) {
5517 InsertValueInst
* Del
= cast
<InsertValueInst
>(PrevTo
);
5518 PrevTo
= Del
->getAggregateOperand();
5519 Del
->eraseFromParent();
5521 // Stop processing elements
5525 // If we successfully found a value for each of our subaggregates
5529 // Base case, the type indexed by SourceIdxs is not a struct, or not all of
5530 // the struct's elements had a value that was inserted directly. In the latter
5531 // case, perhaps we can't determine each of the subelements individually, but
5532 // we might be able to find the complete struct somewhere.
5534 // Find the value that is at that particular spot
5535 Value
*V
= FindInsertedValue(From
, Idxs
);
5540 // Insert the value in the new (sub) aggregate
5541 return InsertValueInst::Create(To
, V
, ArrayRef(Idxs
).slice(IdxSkip
), "tmp",
5545 // This helper takes a nested struct and extracts a part of it (which is again a
5546 // struct) into a new value. For example, given the struct:
5547 // { a, { b, { c, d }, e } }
5548 // and the indices "1, 1" this returns
5551 // It does this by inserting an insertvalue for each element in the resulting
5552 // struct, as opposed to just inserting a single struct. This will only work if
5553 // each of the elements of the substruct are known (ie, inserted into From by an
5554 // insertvalue instruction somewhere).
5556 // All inserted insertvalue instructions are inserted before InsertBefore
5557 static Value
*BuildSubAggregate(Value
*From
, ArrayRef
<unsigned> idx_range
,
5558 Instruction
*InsertBefore
) {
5559 assert(InsertBefore
&& "Must have someplace to insert!");
5560 Type
*IndexedType
= ExtractValueInst::getIndexedType(From
->getType(),
5562 Value
*To
= PoisonValue::get(IndexedType
);
5563 SmallVector
<unsigned, 10> Idxs(idx_range
.begin(), idx_range
.end());
5564 unsigned IdxSkip
= Idxs
.size();
5566 return BuildSubAggregate(From
, To
, IndexedType
, Idxs
, IdxSkip
, InsertBefore
);
5569 /// Given an aggregate and a sequence of indices, see if the scalar value
5570 /// indexed is already around as a register, for example if it was inserted
5571 /// directly into the aggregate.
5573 /// If InsertBefore is not null, this function will duplicate (modified)
5574 /// insertvalues when a part of a nested struct is extracted.
5575 Value
*llvm::FindInsertedValue(Value
*V
, ArrayRef
<unsigned> idx_range
,
5576 Instruction
*InsertBefore
) {
5577 // Nothing to index? Just return V then (this is useful at the end of our
5579 if (idx_range
.empty())
5581 // We have indices, so V should have an indexable type.
5582 assert((V
->getType()->isStructTy() || V
->getType()->isArrayTy()) &&
5583 "Not looking at a struct or array?");
5584 assert(ExtractValueInst::getIndexedType(V
->getType(), idx_range
) &&
5585 "Invalid indices for type?");
5587 if (Constant
*C
= dyn_cast
<Constant
>(V
)) {
5588 C
= C
->getAggregateElement(idx_range
[0]);
5589 if (!C
) return nullptr;
5590 return FindInsertedValue(C
, idx_range
.slice(1), InsertBefore
);
5593 if (InsertValueInst
*I
= dyn_cast
<InsertValueInst
>(V
)) {
5594 // Loop the indices for the insertvalue instruction in parallel with the
5595 // requested indices
5596 const unsigned *req_idx
= idx_range
.begin();
5597 for (const unsigned *i
= I
->idx_begin(), *e
= I
->idx_end();
5598 i
!= e
; ++i
, ++req_idx
) {
5599 if (req_idx
== idx_range
.end()) {
5600 // We can't handle this without inserting insertvalues
5604 // The requested index identifies a part of a nested aggregate. Handle
5605 // this specially. For example,
5606 // %A = insertvalue { i32, {i32, i32 } } undef, i32 10, 1, 0
5607 // %B = insertvalue { i32, {i32, i32 } } %A, i32 11, 1, 1
5608 // %C = extractvalue {i32, { i32, i32 } } %B, 1
5609 // This can be changed into
5610 // %A = insertvalue {i32, i32 } undef, i32 10, 0
5611 // %C = insertvalue {i32, i32 } %A, i32 11, 1
5612 // which allows the unused 0,0 element from the nested struct to be
5614 return BuildSubAggregate(V
, ArrayRef(idx_range
.begin(), req_idx
),
5618 // This insert value inserts something else than what we are looking for.
5619 // See if the (aggregate) value inserted into has the value we are
5620 // looking for, then.
5622 return FindInsertedValue(I
->getAggregateOperand(), idx_range
,
5625 // If we end up here, the indices of the insertvalue match with those
5626 // requested (though possibly only partially). Now we recursively look at
5627 // the inserted value, passing any remaining indices.
5628 return FindInsertedValue(I
->getInsertedValueOperand(),
5629 ArrayRef(req_idx
, idx_range
.end()), InsertBefore
);
5632 if (ExtractValueInst
*I
= dyn_cast
<ExtractValueInst
>(V
)) {
5633 // If we're extracting a value from an aggregate that was extracted from
5634 // something else, we can extract from that something else directly instead.
5635 // However, we will need to chain I's indices with the requested indices.
5637 // Calculate the number of indices required
5638 unsigned size
= I
->getNumIndices() + idx_range
.size();
5639 // Allocate some space to put the new indices in
5640 SmallVector
<unsigned, 5> Idxs
;
5642 // Add indices from the extract value instruction
5643 Idxs
.append(I
->idx_begin(), I
->idx_end());
5645 // Add requested indices
5646 Idxs
.append(idx_range
.begin(), idx_range
.end());
5648 assert(Idxs
.size() == size
5649 && "Number of indices added not correct?");
5651 return FindInsertedValue(I
->getAggregateOperand(), Idxs
, InsertBefore
);
5653 // Otherwise, we don't know (such as, extracting from a function return value
5654 // or load instruction)
5658 bool llvm::isGEPBasedOnPointerToString(const GEPOperator
*GEP
,
5659 unsigned CharSize
) {
5660 // Make sure the GEP has exactly three arguments.
5661 if (GEP
->getNumOperands() != 3)
5664 // Make sure the index-ee is a pointer to array of \p CharSize integers.
5666 ArrayType
*AT
= dyn_cast
<ArrayType
>(GEP
->getSourceElementType());
5667 if (!AT
|| !AT
->getElementType()->isIntegerTy(CharSize
))
5670 // Check to make sure that the first operand of the GEP is an integer and
5671 // has value 0 so that we are sure we're indexing into the initializer.
5672 const ConstantInt
*FirstIdx
= dyn_cast
<ConstantInt
>(GEP
->getOperand(1));
5673 if (!FirstIdx
|| !FirstIdx
->isZero())
5679 // If V refers to an initialized global constant, set Slice either to
5680 // its initializer if the size of its elements equals ElementSize, or,
5681 // for ElementSize == 8, to its representation as an array of unsiged
5682 // char. Return true on success.
5683 // Offset is in the unit "nr of ElementSize sized elements".
5684 bool llvm::getConstantDataArrayInfo(const Value
*V
,
5685 ConstantDataArraySlice
&Slice
,
5686 unsigned ElementSize
, uint64_t Offset
) {
5687 assert(V
&& "V should not be null.");
5688 assert((ElementSize
% 8) == 0 &&
5689 "ElementSize expected to be a multiple of the size of a byte.");
5690 unsigned ElementSizeInBytes
= ElementSize
/ 8;
5692 // Drill down into the pointer expression V, ignoring any intervening
5693 // casts, and determine the identity of the object it references along
5694 // with the cumulative byte offset into it.
5695 const GlobalVariable
*GV
=
5696 dyn_cast
<GlobalVariable
>(getUnderlyingObject(V
));
5697 if (!GV
|| !GV
->isConstant() || !GV
->hasDefinitiveInitializer())
5698 // Fail if V is not based on constant global object.
5701 const DataLayout
&DL
= GV
->getParent()->getDataLayout();
5702 APInt
Off(DL
.getIndexTypeSizeInBits(V
->getType()), 0);
5704 if (GV
!= V
->stripAndAccumulateConstantOffsets(DL
, Off
,
5705 /*AllowNonInbounds*/ true))
5706 // Fail if a constant offset could not be determined.
5709 uint64_t StartIdx
= Off
.getLimitedValue();
5710 if (StartIdx
== UINT64_MAX
)
5711 // Fail if the constant offset is excessive.
5714 // Off/StartIdx is in the unit of bytes. So we need to convert to number of
5715 // elements. Simply bail out if that isn't possible.
5716 if ((StartIdx
% ElementSizeInBytes
) != 0)
5719 Offset
+= StartIdx
/ ElementSizeInBytes
;
5720 ConstantDataArray
*Array
= nullptr;
5721 ArrayType
*ArrayTy
= nullptr;
5723 if (GV
->getInitializer()->isNullValue()) {
5724 Type
*GVTy
= GV
->getValueType();
5725 uint64_t SizeInBytes
= DL
.getTypeStoreSize(GVTy
).getFixedValue();
5726 uint64_t Length
= SizeInBytes
/ ElementSizeInBytes
;
5728 Slice
.Array
= nullptr;
5730 // Return an empty Slice for undersized constants to let callers
5731 // transform even undefined library calls into simpler, well-defined
5732 // expressions. This is preferable to making the calls although it
5733 // prevents sanitizers from detecting such calls.
5734 Slice
.Length
= Length
< Offset
? 0 : Length
- Offset
;
5738 auto *Init
= const_cast<Constant
*>(GV
->getInitializer());
5739 if (auto *ArrayInit
= dyn_cast
<ConstantDataArray
>(Init
)) {
5740 Type
*InitElTy
= ArrayInit
->getElementType();
5741 if (InitElTy
->isIntegerTy(ElementSize
)) {
5742 // If Init is an initializer for an array of the expected type
5743 // and size, use it as is.
5745 ArrayTy
= ArrayInit
->getType();
5750 if (ElementSize
!= 8)
5751 // TODO: Handle conversions to larger integral types.
5754 // Otherwise extract the portion of the initializer starting
5755 // at Offset as an array of bytes, and reset Offset.
5756 Init
= ReadByteArrayFromGlobal(GV
, Offset
);
5761 Array
= dyn_cast
<ConstantDataArray
>(Init
);
5762 ArrayTy
= dyn_cast
<ArrayType
>(Init
->getType());
5765 uint64_t NumElts
= ArrayTy
->getArrayNumElements();
5766 if (Offset
> NumElts
)
5769 Slice
.Array
= Array
;
5770 Slice
.Offset
= Offset
;
5771 Slice
.Length
= NumElts
- Offset
;
5775 /// Extract bytes from the initializer of the constant array V, which need
5776 /// not be a nul-terminated string. On success, store the bytes in Str and
5777 /// return true. When TrimAtNul is set, Str will contain only the bytes up
5778 /// to but not including the first nul. Return false on failure.
5779 bool llvm::getConstantStringInfo(const Value
*V
, StringRef
&Str
,
5781 ConstantDataArraySlice Slice
;
5782 if (!getConstantDataArrayInfo(V
, Slice
, 8))
5785 if (Slice
.Array
== nullptr) {
5787 // Return a nul-terminated string even for an empty Slice. This is
5788 // safe because all existing SimplifyLibcalls callers require string
5789 // arguments and the behavior of the functions they fold is undefined
5790 // otherwise. Folding the calls this way is preferable to making
5791 // the undefined library calls, even though it prevents sanitizers
5792 // from reporting such calls.
5796 if (Slice
.Length
== 1) {
5797 Str
= StringRef("", 1);
5800 // We cannot instantiate a StringRef as we do not have an appropriate string
5805 // Start out with the entire array in the StringRef.
5806 Str
= Slice
.Array
->getAsString();
5807 // Skip over 'offset' bytes.
5808 Str
= Str
.substr(Slice
.Offset
);
5811 // Trim off the \0 and anything after it. If the array is not nul
5812 // terminated, we just return the whole end of string. The client may know
5813 // some other way that the string is length-bound.
5814 Str
= Str
.substr(0, Str
.find('\0'));
5819 // These next two are very similar to the above, but also look through PHI
5821 // TODO: See if we can integrate these two together.
5823 /// If we can compute the length of the string pointed to by
5824 /// the specified pointer, return 'len+1'. If we can't, return 0.
5825 static uint64_t GetStringLengthH(const Value
*V
,
5826 SmallPtrSetImpl
<const PHINode
*> &PHIs
,
5827 unsigned CharSize
) {
5828 // Look through noop bitcast instructions.
5829 V
= V
->stripPointerCasts();
5831 // If this is a PHI node, there are two cases: either we have already seen it
5833 if (const PHINode
*PN
= dyn_cast
<PHINode
>(V
)) {
5834 if (!PHIs
.insert(PN
).second
)
5835 return ~0ULL; // already in the set.
5837 // If it was new, see if all the input strings are the same length.
5838 uint64_t LenSoFar
= ~0ULL;
5839 for (Value
*IncValue
: PN
->incoming_values()) {
5840 uint64_t Len
= GetStringLengthH(IncValue
, PHIs
, CharSize
);
5841 if (Len
== 0) return 0; // Unknown length -> unknown.
5843 if (Len
== ~0ULL) continue;
5845 if (Len
!= LenSoFar
&& LenSoFar
!= ~0ULL)
5846 return 0; // Disagree -> unknown.
5850 // Success, all agree.
5854 // strlen(select(c,x,y)) -> strlen(x) ^ strlen(y)
5855 if (const SelectInst
*SI
= dyn_cast
<SelectInst
>(V
)) {
5856 uint64_t Len1
= GetStringLengthH(SI
->getTrueValue(), PHIs
, CharSize
);
5857 if (Len1
== 0) return 0;
5858 uint64_t Len2
= GetStringLengthH(SI
->getFalseValue(), PHIs
, CharSize
);
5859 if (Len2
== 0) return 0;
5860 if (Len1
== ~0ULL) return Len2
;
5861 if (Len2
== ~0ULL) return Len1
;
5862 if (Len1
!= Len2
) return 0;
5866 // Otherwise, see if we can read the string.
5867 ConstantDataArraySlice Slice
;
5868 if (!getConstantDataArrayInfo(V
, Slice
, CharSize
))
5871 if (Slice
.Array
== nullptr)
5872 // Zeroinitializer (including an empty one).
5875 // Search for the first nul character. Return a conservative result even
5876 // when there is no nul. This is safe since otherwise the string function
5877 // being folded such as strlen is undefined, and can be preferable to
5878 // making the undefined library call.
5879 unsigned NullIndex
= 0;
5880 for (unsigned E
= Slice
.Length
; NullIndex
< E
; ++NullIndex
) {
5881 if (Slice
.Array
->getElementAsInteger(Slice
.Offset
+ NullIndex
) == 0)
5885 return NullIndex
+ 1;
5888 /// If we can compute the length of the string pointed to by
5889 /// the specified pointer, return 'len+1'. If we can't, return 0.
5890 uint64_t llvm::GetStringLength(const Value
*V
, unsigned CharSize
) {
5891 if (!V
->getType()->isPointerTy())
5894 SmallPtrSet
<const PHINode
*, 32> PHIs
;
5895 uint64_t Len
= GetStringLengthH(V
, PHIs
, CharSize
);
5896 // If Len is ~0ULL, we had an infinite phi cycle: this is dead code, so return
5897 // an empty string as a length.
5898 return Len
== ~0ULL ? 1 : Len
;
5902 llvm::getArgumentAliasingToReturnedPointer(const CallBase
*Call
,
5903 bool MustPreserveNullness
) {
5905 "getArgumentAliasingToReturnedPointer only works on nonnull calls");
5906 if (const Value
*RV
= Call
->getReturnedArgOperand())
5908 // This can be used only as a aliasing property.
5909 if (isIntrinsicReturningPointerAliasingArgumentWithoutCapturing(
5910 Call
, MustPreserveNullness
))
5911 return Call
->getArgOperand(0);
5915 bool llvm::isIntrinsicReturningPointerAliasingArgumentWithoutCapturing(
5916 const CallBase
*Call
, bool MustPreserveNullness
) {
5917 switch (Call
->getIntrinsicID()) {
5918 case Intrinsic::launder_invariant_group
:
5919 case Intrinsic::strip_invariant_group
:
5920 case Intrinsic::aarch64_irg
:
5921 case Intrinsic::aarch64_tagp
:
5923 case Intrinsic::ptrmask
:
5924 return !MustPreserveNullness
;
5930 /// \p PN defines a loop-variant pointer to an object. Check if the
5931 /// previous iteration of the loop was referring to the same object as \p PN.
5932 static bool isSameUnderlyingObjectInLoop(const PHINode
*PN
,
5933 const LoopInfo
*LI
) {
5934 // Find the loop-defined value.
5935 Loop
*L
= LI
->getLoopFor(PN
->getParent());
5936 if (PN
->getNumIncomingValues() != 2)
5939 // Find the value from previous iteration.
5940 auto *PrevValue
= dyn_cast
<Instruction
>(PN
->getIncomingValue(0));
5941 if (!PrevValue
|| LI
->getLoopFor(PrevValue
->getParent()) != L
)
5942 PrevValue
= dyn_cast
<Instruction
>(PN
->getIncomingValue(1));
5943 if (!PrevValue
|| LI
->getLoopFor(PrevValue
->getParent()) != L
)
5946 // If a new pointer is loaded in the loop, the pointer references a different
5947 // object in every iteration. E.g.:
5951 if (auto *Load
= dyn_cast
<LoadInst
>(PrevValue
))
5952 if (!L
->isLoopInvariant(Load
->getPointerOperand()))
5957 const Value
*llvm::getUnderlyingObject(const Value
*V
, unsigned MaxLookup
) {
5958 if (!V
->getType()->isPointerTy())
5960 for (unsigned Count
= 0; MaxLookup
== 0 || Count
< MaxLookup
; ++Count
) {
5961 if (auto *GEP
= dyn_cast
<GEPOperator
>(V
)) {
5962 V
= GEP
->getPointerOperand();
5963 } else if (Operator::getOpcode(V
) == Instruction::BitCast
||
5964 Operator::getOpcode(V
) == Instruction::AddrSpaceCast
) {
5965 V
= cast
<Operator
>(V
)->getOperand(0);
5966 if (!V
->getType()->isPointerTy())
5968 } else if (auto *GA
= dyn_cast
<GlobalAlias
>(V
)) {
5969 if (GA
->isInterposable())
5971 V
= GA
->getAliasee();
5973 if (auto *PHI
= dyn_cast
<PHINode
>(V
)) {
5974 // Look through single-arg phi nodes created by LCSSA.
5975 if (PHI
->getNumIncomingValues() == 1) {
5976 V
= PHI
->getIncomingValue(0);
5979 } else if (auto *Call
= dyn_cast
<CallBase
>(V
)) {
5980 // CaptureTracking can know about special capturing properties of some
5981 // intrinsics like launder.invariant.group, that can't be expressed with
5982 // the attributes, but have properties like returning aliasing pointer.
5983 // Because some analysis may assume that nocaptured pointer is not
5984 // returned from some special intrinsic (because function would have to
5985 // be marked with returns attribute), it is crucial to use this function
5986 // because it should be in sync with CaptureTracking. Not using it may
5987 // cause weird miscompilations where 2 aliasing pointers are assumed to
5989 if (auto *RP
= getArgumentAliasingToReturnedPointer(Call
, false)) {
5997 assert(V
->getType()->isPointerTy() && "Unexpected operand type!");
6002 void llvm::getUnderlyingObjects(const Value
*V
,
6003 SmallVectorImpl
<const Value
*> &Objects
,
6004 LoopInfo
*LI
, unsigned MaxLookup
) {
6005 SmallPtrSet
<const Value
*, 4> Visited
;
6006 SmallVector
<const Value
*, 4> Worklist
;
6007 Worklist
.push_back(V
);
6009 const Value
*P
= Worklist
.pop_back_val();
6010 P
= getUnderlyingObject(P
, MaxLookup
);
6012 if (!Visited
.insert(P
).second
)
6015 if (auto *SI
= dyn_cast
<SelectInst
>(P
)) {
6016 Worklist
.push_back(SI
->getTrueValue());
6017 Worklist
.push_back(SI
->getFalseValue());
6021 if (auto *PN
= dyn_cast
<PHINode
>(P
)) {
6022 // If this PHI changes the underlying object in every iteration of the
6023 // loop, don't look through it. Consider:
6026 // Prev = Curr; // Prev = PHI (Prev_0, Curr)
6030 // Prev is tracking Curr one iteration behind so they refer to different
6031 // underlying objects.
6032 if (!LI
|| !LI
->isLoopHeader(PN
->getParent()) ||
6033 isSameUnderlyingObjectInLoop(PN
, LI
))
6034 append_range(Worklist
, PN
->incoming_values());
6038 Objects
.push_back(P
);
6039 } while (!Worklist
.empty());
6042 /// This is the function that does the work of looking through basic
6043 /// ptrtoint+arithmetic+inttoptr sequences.
6044 static const Value
*getUnderlyingObjectFromInt(const Value
*V
) {
6046 if (const Operator
*U
= dyn_cast
<Operator
>(V
)) {
6047 // If we find a ptrtoint, we can transfer control back to the
6048 // regular getUnderlyingObjectFromInt.
6049 if (U
->getOpcode() == Instruction::PtrToInt
)
6050 return U
->getOperand(0);
6051 // If we find an add of a constant, a multiplied value, or a phi, it's
6052 // likely that the other operand will lead us to the base
6053 // object. We don't have to worry about the case where the
6054 // object address is somehow being computed by the multiply,
6055 // because our callers only care when the result is an
6056 // identifiable object.
6057 if (U
->getOpcode() != Instruction::Add
||
6058 (!isa
<ConstantInt
>(U
->getOperand(1)) &&
6059 Operator::getOpcode(U
->getOperand(1)) != Instruction::Mul
&&
6060 !isa
<PHINode
>(U
->getOperand(1))))
6062 V
= U
->getOperand(0);
6066 assert(V
->getType()->isIntegerTy() && "Unexpected operand type!");
6070 /// This is a wrapper around getUnderlyingObjects and adds support for basic
6071 /// ptrtoint+arithmetic+inttoptr sequences.
6072 /// It returns false if unidentified object is found in getUnderlyingObjects.
6073 bool llvm::getUnderlyingObjectsForCodeGen(const Value
*V
,
6074 SmallVectorImpl
<Value
*> &Objects
) {
6075 SmallPtrSet
<const Value
*, 16> Visited
;
6076 SmallVector
<const Value
*, 4> Working(1, V
);
6078 V
= Working
.pop_back_val();
6080 SmallVector
<const Value
*, 4> Objs
;
6081 getUnderlyingObjects(V
, Objs
);
6083 for (const Value
*V
: Objs
) {
6084 if (!Visited
.insert(V
).second
)
6086 if (Operator::getOpcode(V
) == Instruction::IntToPtr
) {
6088 getUnderlyingObjectFromInt(cast
<User
>(V
)->getOperand(0));
6089 if (O
->getType()->isPointerTy()) {
6090 Working
.push_back(O
);
6094 // If getUnderlyingObjects fails to find an identifiable object,
6095 // getUnderlyingObjectsForCodeGen also fails for safety.
6096 if (!isIdentifiedObject(V
)) {
6100 Objects
.push_back(const_cast<Value
*>(V
));
6102 } while (!Working
.empty());
6106 AllocaInst
*llvm::findAllocaForValue(Value
*V
, bool OffsetZero
) {
6107 AllocaInst
*Result
= nullptr;
6108 SmallPtrSet
<Value
*, 4> Visited
;
6109 SmallVector
<Value
*, 4> Worklist
;
6111 auto AddWork
= [&](Value
*V
) {
6112 if (Visited
.insert(V
).second
)
6113 Worklist
.push_back(V
);
6118 V
= Worklist
.pop_back_val();
6119 assert(Visited
.count(V
));
6121 if (AllocaInst
*AI
= dyn_cast
<AllocaInst
>(V
)) {
6122 if (Result
&& Result
!= AI
)
6125 } else if (CastInst
*CI
= dyn_cast
<CastInst
>(V
)) {
6126 AddWork(CI
->getOperand(0));
6127 } else if (PHINode
*PN
= dyn_cast
<PHINode
>(V
)) {
6128 for (Value
*IncValue
: PN
->incoming_values())
6130 } else if (auto *SI
= dyn_cast
<SelectInst
>(V
)) {
6131 AddWork(SI
->getTrueValue());
6132 AddWork(SI
->getFalseValue());
6133 } else if (GetElementPtrInst
*GEP
= dyn_cast
<GetElementPtrInst
>(V
)) {
6134 if (OffsetZero
&& !GEP
->hasAllZeroIndices())
6136 AddWork(GEP
->getPointerOperand());
6137 } else if (CallBase
*CB
= dyn_cast
<CallBase
>(V
)) {
6138 Value
*Returned
= CB
->getReturnedArgOperand();
6146 } while (!Worklist
.empty());
6151 static bool onlyUsedByLifetimeMarkersOrDroppableInstsHelper(
6152 const Value
*V
, bool AllowLifetime
, bool AllowDroppable
) {
6153 for (const User
*U
: V
->users()) {
6154 const IntrinsicInst
*II
= dyn_cast
<IntrinsicInst
>(U
);
6158 if (AllowLifetime
&& II
->isLifetimeStartOrEnd())
6161 if (AllowDroppable
&& II
->isDroppable())
6169 bool llvm::onlyUsedByLifetimeMarkers(const Value
*V
) {
6170 return onlyUsedByLifetimeMarkersOrDroppableInstsHelper(
6171 V
, /* AllowLifetime */ true, /* AllowDroppable */ false);
6173 bool llvm::onlyUsedByLifetimeMarkersOrDroppableInsts(const Value
*V
) {
6174 return onlyUsedByLifetimeMarkersOrDroppableInstsHelper(
6175 V
, /* AllowLifetime */ true, /* AllowDroppable */ true);
6178 bool llvm::mustSuppressSpeculation(const LoadInst
&LI
) {
6179 if (!LI
.isUnordered())
6181 const Function
&F
= *LI
.getFunction();
6182 // Speculative load may create a race that did not exist in the source.
6183 return F
.hasFnAttribute(Attribute::SanitizeThread
) ||
6184 // Speculative load may load data from dirty regions.
6185 F
.hasFnAttribute(Attribute::SanitizeAddress
) ||
6186 F
.hasFnAttribute(Attribute::SanitizeHWAddress
);
6189 bool llvm::isSafeToSpeculativelyExecute(const Instruction
*Inst
,
6190 const Instruction
*CtxI
,
6191 AssumptionCache
*AC
,
6192 const DominatorTree
*DT
,
6193 const TargetLibraryInfo
*TLI
) {
6194 return isSafeToSpeculativelyExecuteWithOpcode(Inst
->getOpcode(), Inst
, CtxI
,
6198 bool llvm::isSafeToSpeculativelyExecuteWithOpcode(
6199 unsigned Opcode
, const Instruction
*Inst
, const Instruction
*CtxI
,
6200 AssumptionCache
*AC
, const DominatorTree
*DT
,
6201 const TargetLibraryInfo
*TLI
) {
6203 if (Inst
->getOpcode() != Opcode
) {
6204 // Check that the operands are actually compatible with the Opcode override.
6205 auto hasEqualReturnAndLeadingOperandTypes
=
6206 [](const Instruction
*Inst
, unsigned NumLeadingOperands
) {
6207 if (Inst
->getNumOperands() < NumLeadingOperands
)
6209 const Type
*ExpectedType
= Inst
->getType();
6210 for (unsigned ItOp
= 0; ItOp
< NumLeadingOperands
; ++ItOp
)
6211 if (Inst
->getOperand(ItOp
)->getType() != ExpectedType
)
6215 assert(!Instruction::isBinaryOp(Opcode
) ||
6216 hasEqualReturnAndLeadingOperandTypes(Inst
, 2));
6217 assert(!Instruction::isUnaryOp(Opcode
) ||
6218 hasEqualReturnAndLeadingOperandTypes(Inst
, 1));
6225 case Instruction::UDiv
:
6226 case Instruction::URem
: {
6227 // x / y is undefined if y == 0.
6229 if (match(Inst
->getOperand(1), m_APInt(V
)))
6233 case Instruction::SDiv
:
6234 case Instruction::SRem
: {
6235 // x / y is undefined if y == 0 or x == INT_MIN and y == -1
6236 const APInt
*Numerator
, *Denominator
;
6237 if (!match(Inst
->getOperand(1), m_APInt(Denominator
)))
6239 // We cannot hoist this division if the denominator is 0.
6240 if (*Denominator
== 0)
6242 // It's safe to hoist if the denominator is not 0 or -1.
6243 if (!Denominator
->isAllOnes())
6245 // At this point we know that the denominator is -1. It is safe to hoist as
6246 // long we know that the numerator is not INT_MIN.
6247 if (match(Inst
->getOperand(0), m_APInt(Numerator
)))
6248 return !Numerator
->isMinSignedValue();
6249 // The numerator *might* be MinSignedValue.
6252 case Instruction::Load
: {
6253 const LoadInst
*LI
= dyn_cast
<LoadInst
>(Inst
);
6256 if (mustSuppressSpeculation(*LI
))
6258 const DataLayout
&DL
= LI
->getModule()->getDataLayout();
6259 return isDereferenceableAndAlignedPointer(LI
->getPointerOperand(),
6260 LI
->getType(), LI
->getAlign(), DL
,
6263 case Instruction::Call
: {
6264 auto *CI
= dyn_cast
<const CallInst
>(Inst
);
6267 const Function
*Callee
= CI
->getCalledFunction();
6269 // The called function could have undefined behavior or side-effects, even
6270 // if marked readnone nounwind.
6271 return Callee
&& Callee
->isSpeculatable();
6273 case Instruction::VAArg
:
6274 case Instruction::Alloca
:
6275 case Instruction::Invoke
:
6276 case Instruction::CallBr
:
6277 case Instruction::PHI
:
6278 case Instruction::Store
:
6279 case Instruction::Ret
:
6280 case Instruction::Br
:
6281 case Instruction::IndirectBr
:
6282 case Instruction::Switch
:
6283 case Instruction::Unreachable
:
6284 case Instruction::Fence
:
6285 case Instruction::AtomicRMW
:
6286 case Instruction::AtomicCmpXchg
:
6287 case Instruction::LandingPad
:
6288 case Instruction::Resume
:
6289 case Instruction::CatchSwitch
:
6290 case Instruction::CatchPad
:
6291 case Instruction::CatchRet
:
6292 case Instruction::CleanupPad
:
6293 case Instruction::CleanupRet
:
6294 return false; // Misc instructions which have effects
6298 bool llvm::mayHaveNonDefUseDependency(const Instruction
&I
) {
6299 if (I
.mayReadOrWriteMemory())
6300 // Memory dependency possible
6302 if (!isSafeToSpeculativelyExecute(&I
))
6303 // Can't move above a maythrow call or infinite loop. Or if an
6304 // inalloca alloca, above a stacksave call.
6306 if (!isGuaranteedToTransferExecutionToSuccessor(&I
))
6307 // 1) Can't reorder two inf-loop calls, even if readonly
6308 // 2) Also can't reorder an inf-loop call below a instruction which isn't
6309 // safe to speculative execute. (Inverse of above)
6314 /// Convert ConstantRange OverflowResult into ValueTracking OverflowResult.
6315 static OverflowResult
mapOverflowResult(ConstantRange::OverflowResult OR
) {
6317 case ConstantRange::OverflowResult::MayOverflow
:
6318 return OverflowResult::MayOverflow
;
6319 case ConstantRange::OverflowResult::AlwaysOverflowsLow
:
6320 return OverflowResult::AlwaysOverflowsLow
;
6321 case ConstantRange::OverflowResult::AlwaysOverflowsHigh
:
6322 return OverflowResult::AlwaysOverflowsHigh
;
6323 case ConstantRange::OverflowResult::NeverOverflows
:
6324 return OverflowResult::NeverOverflows
;
6326 llvm_unreachable("Unknown OverflowResult");
6329 /// Combine constant ranges from computeConstantRange() and computeKnownBits().
6330 static ConstantRange
computeConstantRangeIncludingKnownBits(
6331 const Value
*V
, bool ForSigned
, const DataLayout
&DL
, unsigned Depth
,
6332 AssumptionCache
*AC
, const Instruction
*CxtI
, const DominatorTree
*DT
,
6333 OptimizationRemarkEmitter
*ORE
= nullptr, bool UseInstrInfo
= true) {
6334 KnownBits Known
= computeKnownBits(
6335 V
, DL
, Depth
, AC
, CxtI
, DT
, ORE
, UseInstrInfo
);
6336 ConstantRange CR1
= ConstantRange::fromKnownBits(Known
, ForSigned
);
6337 ConstantRange CR2
= computeConstantRange(V
, ForSigned
, UseInstrInfo
);
6338 ConstantRange::PreferredRangeType RangeType
=
6339 ForSigned
? ConstantRange::Signed
: ConstantRange::Unsigned
;
6340 return CR1
.intersectWith(CR2
, RangeType
);
6343 OverflowResult
llvm::computeOverflowForUnsignedMul(
6344 const Value
*LHS
, const Value
*RHS
, const DataLayout
&DL
,
6345 AssumptionCache
*AC
, const Instruction
*CxtI
, const DominatorTree
*DT
,
6346 bool UseInstrInfo
) {
6347 KnownBits LHSKnown
= computeKnownBits(LHS
, DL
, /*Depth=*/0, AC
, CxtI
, DT
,
6348 nullptr, UseInstrInfo
);
6349 KnownBits RHSKnown
= computeKnownBits(RHS
, DL
, /*Depth=*/0, AC
, CxtI
, DT
,
6350 nullptr, UseInstrInfo
);
6351 ConstantRange LHSRange
= ConstantRange::fromKnownBits(LHSKnown
, false);
6352 ConstantRange RHSRange
= ConstantRange::fromKnownBits(RHSKnown
, false);
6353 return mapOverflowResult(LHSRange
.unsignedMulMayOverflow(RHSRange
));
6357 llvm::computeOverflowForSignedMul(const Value
*LHS
, const Value
*RHS
,
6358 const DataLayout
&DL
, AssumptionCache
*AC
,
6359 const Instruction
*CxtI
,
6360 const DominatorTree
*DT
, bool UseInstrInfo
) {
6361 // Multiplying n * m significant bits yields a result of n + m significant
6362 // bits. If the total number of significant bits does not exceed the
6363 // result bit width (minus 1), there is no overflow.
6364 // This means if we have enough leading sign bits in the operands
6365 // we can guarantee that the result does not overflow.
6366 // Ref: "Hacker's Delight" by Henry Warren
6367 unsigned BitWidth
= LHS
->getType()->getScalarSizeInBits();
6369 // Note that underestimating the number of sign bits gives a more
6370 // conservative answer.
6371 unsigned SignBits
= ComputeNumSignBits(LHS
, DL
, 0, AC
, CxtI
, DT
) +
6372 ComputeNumSignBits(RHS
, DL
, 0, AC
, CxtI
, DT
);
6374 // First handle the easy case: if we have enough sign bits there's
6375 // definitely no overflow.
6376 if (SignBits
> BitWidth
+ 1)
6377 return OverflowResult::NeverOverflows
;
6379 // There are two ambiguous cases where there can be no overflow:
6380 // SignBits == BitWidth + 1 and
6381 // SignBits == BitWidth
6382 // The second case is difficult to check, therefore we only handle the
6384 if (SignBits
== BitWidth
+ 1) {
6385 // It overflows only when both arguments are negative and the true
6386 // product is exactly the minimum negative number.
6387 // E.g. mul i16 with 17 sign bits: 0xff00 * 0xff80 = 0x8000
6388 // For simplicity we just check if at least one side is not negative.
6389 KnownBits LHSKnown
= computeKnownBits(LHS
, DL
, /*Depth=*/0, AC
, CxtI
, DT
,
6390 nullptr, UseInstrInfo
);
6391 KnownBits RHSKnown
= computeKnownBits(RHS
, DL
, /*Depth=*/0, AC
, CxtI
, DT
,
6392 nullptr, UseInstrInfo
);
6393 if (LHSKnown
.isNonNegative() || RHSKnown
.isNonNegative())
6394 return OverflowResult::NeverOverflows
;
6396 return OverflowResult::MayOverflow
;
6399 OverflowResult
llvm::computeOverflowForUnsignedAdd(
6400 const Value
*LHS
, const Value
*RHS
, const DataLayout
&DL
,
6401 AssumptionCache
*AC
, const Instruction
*CxtI
, const DominatorTree
*DT
,
6402 bool UseInstrInfo
) {
6403 ConstantRange LHSRange
= computeConstantRangeIncludingKnownBits(
6404 LHS
, /*ForSigned=*/false, DL
, /*Depth=*/0, AC
, CxtI
, DT
,
6405 nullptr, UseInstrInfo
);
6406 ConstantRange RHSRange
= computeConstantRangeIncludingKnownBits(
6407 RHS
, /*ForSigned=*/false, DL
, /*Depth=*/0, AC
, CxtI
, DT
,
6408 nullptr, UseInstrInfo
);
6409 return mapOverflowResult(LHSRange
.unsignedAddMayOverflow(RHSRange
));
6412 static OverflowResult
computeOverflowForSignedAdd(const Value
*LHS
,
6414 const AddOperator
*Add
,
6415 const DataLayout
&DL
,
6416 AssumptionCache
*AC
,
6417 const Instruction
*CxtI
,
6418 const DominatorTree
*DT
) {
6419 if (Add
&& Add
->hasNoSignedWrap()) {
6420 return OverflowResult::NeverOverflows
;
6423 // If LHS and RHS each have at least two sign bits, the addition will look
6429 // If the carry into the most significant position is 0, X and Y can't both
6430 // be 1 and therefore the carry out of the addition is also 0.
6432 // If the carry into the most significant position is 1, X and Y can't both
6433 // be 0 and therefore the carry out of the addition is also 1.
6435 // Since the carry into the most significant position is always equal to
6436 // the carry out of the addition, there is no signed overflow.
6437 if (ComputeNumSignBits(LHS
, DL
, 0, AC
, CxtI
, DT
) > 1 &&
6438 ComputeNumSignBits(RHS
, DL
, 0, AC
, CxtI
, DT
) > 1)
6439 return OverflowResult::NeverOverflows
;
6441 ConstantRange LHSRange
= computeConstantRangeIncludingKnownBits(
6442 LHS
, /*ForSigned=*/true, DL
, /*Depth=*/0, AC
, CxtI
, DT
);
6443 ConstantRange RHSRange
= computeConstantRangeIncludingKnownBits(
6444 RHS
, /*ForSigned=*/true, DL
, /*Depth=*/0, AC
, CxtI
, DT
);
6446 mapOverflowResult(LHSRange
.signedAddMayOverflow(RHSRange
));
6447 if (OR
!= OverflowResult::MayOverflow
)
6450 // The remaining code needs Add to be available. Early returns if not so.
6452 return OverflowResult::MayOverflow
;
6454 // If the sign of Add is the same as at least one of the operands, this add
6455 // CANNOT overflow. If this can be determined from the known bits of the
6456 // operands the above signedAddMayOverflow() check will have already done so.
6457 // The only other way to improve on the known bits is from an assumption, so
6458 // call computeKnownBitsFromAssume() directly.
6459 bool LHSOrRHSKnownNonNegative
=
6460 (LHSRange
.isAllNonNegative() || RHSRange
.isAllNonNegative());
6461 bool LHSOrRHSKnownNegative
=
6462 (LHSRange
.isAllNegative() || RHSRange
.isAllNegative());
6463 if (LHSOrRHSKnownNonNegative
|| LHSOrRHSKnownNegative
) {
6464 KnownBits
AddKnown(LHSRange
.getBitWidth());
6465 computeKnownBitsFromAssume(
6466 Add
, AddKnown
, /*Depth=*/0, Query(DL
, AC
, CxtI
, DT
, true));
6467 if ((AddKnown
.isNonNegative() && LHSOrRHSKnownNonNegative
) ||
6468 (AddKnown
.isNegative() && LHSOrRHSKnownNegative
))
6469 return OverflowResult::NeverOverflows
;
6472 return OverflowResult::MayOverflow
;
6475 OverflowResult
llvm::computeOverflowForUnsignedSub(const Value
*LHS
,
6477 const DataLayout
&DL
,
6478 AssumptionCache
*AC
,
6479 const Instruction
*CxtI
,
6480 const DominatorTree
*DT
) {
6482 // The remainder of a value can't have greater magnitude than itself,
6483 // so the subtraction can't overflow.
6486 // In the minimal case, this would simplify to "?", so there's no subtract
6487 // at all. But if this analysis is used to peek through casts, for example,
6488 // then determining no-overflow may allow other transforms.
6490 // TODO: There are other patterns like this.
6491 // See simplifyICmpWithBinOpOnLHS() for candidates.
6492 if (match(RHS
, m_URem(m_Specific(LHS
), m_Value())) ||
6493 match(RHS
, m_NUWSub(m_Specific(LHS
), m_Value())))
6494 if (isGuaranteedNotToBeUndefOrPoison(LHS
, AC
, CxtI
, DT
))
6495 return OverflowResult::NeverOverflows
;
6497 // Checking for conditions implied by dominating conditions may be expensive.
6498 // Limit it to usub_with_overflow calls for now.
6500 m_Intrinsic
<Intrinsic::usub_with_overflow
>(m_Value(), m_Value())))
6502 isImpliedByDomCondition(CmpInst::ICMP_UGE
, LHS
, RHS
, CxtI
, DL
)) {
6504 return OverflowResult::NeverOverflows
;
6505 return OverflowResult::AlwaysOverflowsLow
;
6507 ConstantRange LHSRange
= computeConstantRangeIncludingKnownBits(
6508 LHS
, /*ForSigned=*/false, DL
, /*Depth=*/0, AC
, CxtI
, DT
);
6509 ConstantRange RHSRange
= computeConstantRangeIncludingKnownBits(
6510 RHS
, /*ForSigned=*/false, DL
, /*Depth=*/0, AC
, CxtI
, DT
);
6511 return mapOverflowResult(LHSRange
.unsignedSubMayOverflow(RHSRange
));
6514 OverflowResult
llvm::computeOverflowForSignedSub(const Value
*LHS
,
6516 const DataLayout
&DL
,
6517 AssumptionCache
*AC
,
6518 const Instruction
*CxtI
,
6519 const DominatorTree
*DT
) {
6521 // The remainder of a value can't have greater magnitude than itself,
6522 // so the subtraction can't overflow.
6525 // In the minimal case, this would simplify to "?", so there's no subtract
6526 // at all. But if this analysis is used to peek through casts, for example,
6527 // then determining no-overflow may allow other transforms.
6528 if (match(RHS
, m_SRem(m_Specific(LHS
), m_Value())) ||
6529 match(RHS
, m_NSWSub(m_Specific(LHS
), m_Value())))
6530 if (isGuaranteedNotToBeUndefOrPoison(LHS
, AC
, CxtI
, DT
))
6531 return OverflowResult::NeverOverflows
;
6533 // If LHS and RHS each have at least two sign bits, the subtraction
6535 if (ComputeNumSignBits(LHS
, DL
, 0, AC
, CxtI
, DT
) > 1 &&
6536 ComputeNumSignBits(RHS
, DL
, 0, AC
, CxtI
, DT
) > 1)
6537 return OverflowResult::NeverOverflows
;
6539 ConstantRange LHSRange
= computeConstantRangeIncludingKnownBits(
6540 LHS
, /*ForSigned=*/true, DL
, /*Depth=*/0, AC
, CxtI
, DT
);
6541 ConstantRange RHSRange
= computeConstantRangeIncludingKnownBits(
6542 RHS
, /*ForSigned=*/true, DL
, /*Depth=*/0, AC
, CxtI
, DT
);
6543 return mapOverflowResult(LHSRange
.signedSubMayOverflow(RHSRange
));
6546 bool llvm::isOverflowIntrinsicNoWrap(const WithOverflowInst
*WO
,
6547 const DominatorTree
&DT
) {
6548 SmallVector
<const BranchInst
*, 2> GuardingBranches
;
6549 SmallVector
<const ExtractValueInst
*, 2> Results
;
6551 for (const User
*U
: WO
->users()) {
6552 if (const auto *EVI
= dyn_cast
<ExtractValueInst
>(U
)) {
6553 assert(EVI
->getNumIndices() == 1 && "Obvious from CI's type");
6555 if (EVI
->getIndices()[0] == 0)
6556 Results
.push_back(EVI
);
6558 assert(EVI
->getIndices()[0] == 1 && "Obvious from CI's type");
6560 for (const auto *U
: EVI
->users())
6561 if (const auto *B
= dyn_cast
<BranchInst
>(U
)) {
6562 assert(B
->isConditional() && "How else is it using an i1?");
6563 GuardingBranches
.push_back(B
);
6567 // We are using the aggregate directly in a way we don't want to analyze
6568 // here (storing it to a global, say).
6573 auto AllUsesGuardedByBranch
= [&](const BranchInst
*BI
) {
6574 BasicBlockEdge
NoWrapEdge(BI
->getParent(), BI
->getSuccessor(1));
6575 if (!NoWrapEdge
.isSingleEdge())
6578 // Check if all users of the add are provably no-wrap.
6579 for (const auto *Result
: Results
) {
6580 // If the extractvalue itself is not executed on overflow, the we don't
6581 // need to check each use separately, since domination is transitive.
6582 if (DT
.dominates(NoWrapEdge
, Result
->getParent()))
6585 for (const auto &RU
: Result
->uses())
6586 if (!DT
.dominates(NoWrapEdge
, RU
))
6593 return llvm::any_of(GuardingBranches
, AllUsesGuardedByBranch
);
6596 /// Shifts return poison if shiftwidth is larger than the bitwidth.
6597 static bool shiftAmountKnownInRange(const Value
*ShiftAmount
) {
6598 auto *C
= dyn_cast
<Constant
>(ShiftAmount
);
6602 // Shifts return poison if shiftwidth is larger than the bitwidth.
6603 SmallVector
<const Constant
*, 4> ShiftAmounts
;
6604 if (auto *FVTy
= dyn_cast
<FixedVectorType
>(C
->getType())) {
6605 unsigned NumElts
= FVTy
->getNumElements();
6606 for (unsigned i
= 0; i
< NumElts
; ++i
)
6607 ShiftAmounts
.push_back(C
->getAggregateElement(i
));
6608 } else if (isa
<ScalableVectorType
>(C
->getType()))
6609 return false; // Can't tell, just return false to be safe
6611 ShiftAmounts
.push_back(C
);
6613 bool Safe
= llvm::all_of(ShiftAmounts
, [](const Constant
*C
) {
6614 auto *CI
= dyn_cast_or_null
<ConstantInt
>(C
);
6615 return CI
&& CI
->getValue().ult(C
->getType()->getIntegerBitWidth());
6621 static bool canCreateUndefOrPoison(const Operator
*Op
, bool PoisonOnly
,
6622 bool ConsiderFlagsAndMetadata
) {
6624 if (ConsiderFlagsAndMetadata
&& Op
->hasPoisonGeneratingFlagsOrMetadata())
6627 unsigned Opcode
= Op
->getOpcode();
6629 // Check whether opcode is a poison/undef-generating operation
6631 case Instruction::Shl
:
6632 case Instruction::AShr
:
6633 case Instruction::LShr
:
6634 return !shiftAmountKnownInRange(Op
->getOperand(1));
6635 case Instruction::FPToSI
:
6636 case Instruction::FPToUI
:
6637 // fptosi/ui yields poison if the resulting value does not fit in the
6638 // destination type.
6640 case Instruction::Call
:
6641 if (auto *II
= dyn_cast
<IntrinsicInst
>(Op
)) {
6642 switch (II
->getIntrinsicID()) {
6643 // TODO: Add more intrinsics.
6644 case Intrinsic::ctlz
:
6645 case Intrinsic::cttz
:
6646 case Intrinsic::abs
:
6647 if (cast
<ConstantInt
>(II
->getArgOperand(1))->isNullValue())
6650 case Intrinsic::ctpop
:
6651 case Intrinsic::bswap
:
6652 case Intrinsic::bitreverse
:
6653 case Intrinsic::fshl
:
6654 case Intrinsic::fshr
:
6655 case Intrinsic::smax
:
6656 case Intrinsic::smin
:
6657 case Intrinsic::umax
:
6658 case Intrinsic::umin
:
6659 case Intrinsic::ptrmask
:
6660 case Intrinsic::fptoui_sat
:
6661 case Intrinsic::fptosi_sat
:
6662 case Intrinsic::sadd_with_overflow
:
6663 case Intrinsic::ssub_with_overflow
:
6664 case Intrinsic::smul_with_overflow
:
6665 case Intrinsic::uadd_with_overflow
:
6666 case Intrinsic::usub_with_overflow
:
6667 case Intrinsic::umul_with_overflow
:
6668 case Intrinsic::sadd_sat
:
6669 case Intrinsic::uadd_sat
:
6670 case Intrinsic::ssub_sat
:
6671 case Intrinsic::usub_sat
:
6673 case Intrinsic::sshl_sat
:
6674 case Intrinsic::ushl_sat
:
6675 return !shiftAmountKnownInRange(II
->getArgOperand(1));
6676 case Intrinsic::fma
:
6677 case Intrinsic::fmuladd
:
6678 case Intrinsic::sqrt
:
6679 case Intrinsic::powi
:
6680 case Intrinsic::sin
:
6681 case Intrinsic::cos
:
6682 case Intrinsic::pow
:
6683 case Intrinsic::log
:
6684 case Intrinsic::log10
:
6685 case Intrinsic::log2
:
6686 case Intrinsic::exp
:
6687 case Intrinsic::exp2
:
6688 case Intrinsic::fabs
:
6689 case Intrinsic::copysign
:
6690 case Intrinsic::floor
:
6691 case Intrinsic::ceil
:
6692 case Intrinsic::trunc
:
6693 case Intrinsic::rint
:
6694 case Intrinsic::nearbyint
:
6695 case Intrinsic::round
:
6696 case Intrinsic::roundeven
:
6697 case Intrinsic::fptrunc_round
:
6698 case Intrinsic::canonicalize
:
6699 case Intrinsic::arithmetic_fence
:
6700 case Intrinsic::minnum
:
6701 case Intrinsic::maxnum
:
6702 case Intrinsic::minimum
:
6703 case Intrinsic::maximum
:
6704 case Intrinsic::is_fpclass
:
6706 case Intrinsic::lround
:
6707 case Intrinsic::llround
:
6708 case Intrinsic::lrint
:
6709 case Intrinsic::llrint
:
6710 // If the value doesn't fit an unspecified value is returned (but this
6716 case Instruction::CallBr
:
6717 case Instruction::Invoke
: {
6718 const auto *CB
= cast
<CallBase
>(Op
);
6719 return !CB
->hasRetAttr(Attribute::NoUndef
);
6721 case Instruction::InsertElement
:
6722 case Instruction::ExtractElement
: {
6723 // If index exceeds the length of the vector, it returns poison
6724 auto *VTy
= cast
<VectorType
>(Op
->getOperand(0)->getType());
6725 unsigned IdxOp
= Op
->getOpcode() == Instruction::InsertElement
? 2 : 1;
6726 auto *Idx
= dyn_cast
<ConstantInt
>(Op
->getOperand(IdxOp
));
6727 if (!Idx
|| Idx
->getValue().uge(VTy
->getElementCount().getKnownMinValue()))
6731 case Instruction::ShuffleVector
: {
6732 // shufflevector may return undef.
6735 ArrayRef
<int> Mask
= isa
<ConstantExpr
>(Op
)
6736 ? cast
<ConstantExpr
>(Op
)->getShuffleMask()
6737 : cast
<ShuffleVectorInst
>(Op
)->getShuffleMask();
6738 return is_contained(Mask
, PoisonMaskElem
);
6740 case Instruction::FNeg
:
6741 case Instruction::PHI
:
6742 case Instruction::Select
:
6743 case Instruction::URem
:
6744 case Instruction::SRem
:
6745 case Instruction::ExtractValue
:
6746 case Instruction::InsertValue
:
6747 case Instruction::Freeze
:
6748 case Instruction::ICmp
:
6749 case Instruction::FCmp
:
6750 case Instruction::FAdd
:
6751 case Instruction::FSub
:
6752 case Instruction::FMul
:
6753 case Instruction::FDiv
:
6754 case Instruction::FRem
:
6756 case Instruction::GetElementPtr
:
6757 // inbounds is handled above
6758 // TODO: what about inrange on constexpr?
6761 const auto *CE
= dyn_cast
<ConstantExpr
>(Op
);
6762 if (isa
<CastInst
>(Op
) || (CE
&& CE
->isCast()))
6764 else if (Instruction::isBinaryOp(Opcode
))
6766 // Be conservative and return true.
6772 bool llvm::canCreateUndefOrPoison(const Operator
*Op
,
6773 bool ConsiderFlagsAndMetadata
) {
6774 return ::canCreateUndefOrPoison(Op
, /*PoisonOnly=*/false,
6775 ConsiderFlagsAndMetadata
);
6778 bool llvm::canCreatePoison(const Operator
*Op
, bool ConsiderFlagsAndMetadata
) {
6779 return ::canCreateUndefOrPoison(Op
, /*PoisonOnly=*/true,
6780 ConsiderFlagsAndMetadata
);
6783 static bool directlyImpliesPoison(const Value
*ValAssumedPoison
,
6784 const Value
*V
, unsigned Depth
) {
6785 if (ValAssumedPoison
== V
)
6788 const unsigned MaxDepth
= 2;
6789 if (Depth
>= MaxDepth
)
6792 if (const auto *I
= dyn_cast
<Instruction
>(V
)) {
6793 if (any_of(I
->operands(), [=](const Use
&Op
) {
6794 return propagatesPoison(Op
) &&
6795 directlyImpliesPoison(ValAssumedPoison
, Op
, Depth
+ 1);
6799 // V = extractvalue V0, idx
6800 // V2 = extractvalue V0, idx2
6801 // V0's elements are all poison or not. (e.g., add_with_overflow)
6802 const WithOverflowInst
*II
;
6803 if (match(I
, m_ExtractValue(m_WithOverflowInst(II
))) &&
6804 (match(ValAssumedPoison
, m_ExtractValue(m_Specific(II
))) ||
6805 llvm::is_contained(II
->args(), ValAssumedPoison
)))
6811 static bool impliesPoison(const Value
*ValAssumedPoison
, const Value
*V
,
6813 if (isGuaranteedNotToBePoison(ValAssumedPoison
))
6816 if (directlyImpliesPoison(ValAssumedPoison
, V
, /* Depth */ 0))
6819 const unsigned MaxDepth
= 2;
6820 if (Depth
>= MaxDepth
)
6823 const auto *I
= dyn_cast
<Instruction
>(ValAssumedPoison
);
6824 if (I
&& !canCreatePoison(cast
<Operator
>(I
))) {
6825 return all_of(I
->operands(), [=](const Value
*Op
) {
6826 return impliesPoison(Op
, V
, Depth
+ 1);
6832 bool llvm::impliesPoison(const Value
*ValAssumedPoison
, const Value
*V
) {
6833 return ::impliesPoison(ValAssumedPoison
, V
, /* Depth */ 0);
6836 static bool programUndefinedIfUndefOrPoison(const Value
*V
,
6839 static bool isGuaranteedNotToBeUndefOrPoison(const Value
*V
,
6840 AssumptionCache
*AC
,
6841 const Instruction
*CtxI
,
6842 const DominatorTree
*DT
,
6843 unsigned Depth
, bool PoisonOnly
) {
6844 if (Depth
>= MaxAnalysisRecursionDepth
)
6847 if (isa
<MetadataAsValue
>(V
))
6850 if (const auto *A
= dyn_cast
<Argument
>(V
)) {
6851 if (A
->hasAttribute(Attribute::NoUndef
) ||
6852 A
->hasAttribute(Attribute::Dereferenceable
) ||
6853 A
->hasAttribute(Attribute::DereferenceableOrNull
))
6857 if (auto *C
= dyn_cast
<Constant
>(V
)) {
6858 if (isa
<UndefValue
>(C
))
6859 return PoisonOnly
&& !isa
<PoisonValue
>(C
);
6861 if (isa
<ConstantInt
>(C
) || isa
<GlobalVariable
>(C
) || isa
<ConstantFP
>(V
) ||
6862 isa
<ConstantPointerNull
>(C
) || isa
<Function
>(C
))
6865 if (C
->getType()->isVectorTy() && !isa
<ConstantExpr
>(C
))
6866 return (PoisonOnly
? !C
->containsPoisonElement()
6867 : !C
->containsUndefOrPoisonElement()) &&
6868 !C
->containsConstantExpression();
6871 // Strip cast operations from a pointer value.
6872 // Note that stripPointerCastsSameRepresentation can strip off getelementptr
6873 // inbounds with zero offset. To guarantee that the result isn't poison, the
6874 // stripped pointer is checked as it has to be pointing into an allocated
6875 // object or be null `null` to ensure `inbounds` getelement pointers with a
6876 // zero offset could not produce poison.
6877 // It can strip off addrspacecast that do not change bit representation as
6878 // well. We believe that such addrspacecast is equivalent to no-op.
6879 auto *StrippedV
= V
->stripPointerCastsSameRepresentation();
6880 if (isa
<AllocaInst
>(StrippedV
) || isa
<GlobalVariable
>(StrippedV
) ||
6881 isa
<Function
>(StrippedV
) || isa
<ConstantPointerNull
>(StrippedV
))
6884 auto OpCheck
= [&](const Value
*V
) {
6885 return isGuaranteedNotToBeUndefOrPoison(V
, AC
, CtxI
, DT
, Depth
+ 1,
6889 if (auto *Opr
= dyn_cast
<Operator
>(V
)) {
6890 // If the value is a freeze instruction, then it can never
6891 // be undef or poison.
6892 if (isa
<FreezeInst
>(V
))
6895 if (const auto *CB
= dyn_cast
<CallBase
>(V
)) {
6896 if (CB
->hasRetAttr(Attribute::NoUndef
))
6900 if (const auto *PN
= dyn_cast
<PHINode
>(V
)) {
6901 unsigned Num
= PN
->getNumIncomingValues();
6902 bool IsWellDefined
= true;
6903 for (unsigned i
= 0; i
< Num
; ++i
) {
6904 auto *TI
= PN
->getIncomingBlock(i
)->getTerminator();
6905 if (!isGuaranteedNotToBeUndefOrPoison(PN
->getIncomingValue(i
), AC
, TI
,
6906 DT
, Depth
+ 1, PoisonOnly
)) {
6907 IsWellDefined
= false;
6913 } else if (!canCreateUndefOrPoison(Opr
) && all_of(Opr
->operands(), OpCheck
))
6917 if (auto *I
= dyn_cast
<LoadInst
>(V
))
6918 if (I
->hasMetadata(LLVMContext::MD_noundef
) ||
6919 I
->hasMetadata(LLVMContext::MD_dereferenceable
) ||
6920 I
->hasMetadata(LLVMContext::MD_dereferenceable_or_null
))
6923 if (programUndefinedIfUndefOrPoison(V
, PoisonOnly
))
6926 // CxtI may be null or a cloned instruction.
6927 if (!CtxI
|| !CtxI
->getParent() || !DT
)
6930 auto *DNode
= DT
->getNode(CtxI
->getParent());
6932 // Unreachable block
6935 // If V is used as a branch condition before reaching CtxI, V cannot be
6939 // CtxI ; V cannot be undef or poison here
6940 auto *Dominator
= DNode
->getIDom();
6942 auto *TI
= Dominator
->getBlock()->getTerminator();
6944 Value
*Cond
= nullptr;
6945 if (auto BI
= dyn_cast_or_null
<BranchInst
>(TI
)) {
6946 if (BI
->isConditional())
6947 Cond
= BI
->getCondition();
6948 } else if (auto SI
= dyn_cast_or_null
<SwitchInst
>(TI
)) {
6949 Cond
= SI
->getCondition();
6955 else if (PoisonOnly
&& isa
<Operator
>(Cond
)) {
6956 // For poison, we can analyze further
6957 auto *Opr
= cast
<Operator
>(Cond
);
6958 if (any_of(Opr
->operands(),
6959 [V
](const Use
&U
) { return V
== U
&& propagatesPoison(U
); }))
6964 Dominator
= Dominator
->getIDom();
6967 if (getKnowledgeValidInContext(V
, {Attribute::NoUndef
}, CtxI
, DT
, AC
))
6973 bool llvm::isGuaranteedNotToBeUndefOrPoison(const Value
*V
, AssumptionCache
*AC
,
6974 const Instruction
*CtxI
,
6975 const DominatorTree
*DT
,
6977 return ::isGuaranteedNotToBeUndefOrPoison(V
, AC
, CtxI
, DT
, Depth
, false);
6980 bool llvm::isGuaranteedNotToBePoison(const Value
*V
, AssumptionCache
*AC
,
6981 const Instruction
*CtxI
,
6982 const DominatorTree
*DT
, unsigned Depth
) {
6983 return ::isGuaranteedNotToBeUndefOrPoison(V
, AC
, CtxI
, DT
, Depth
, true);
6986 /// Return true if undefined behavior would provably be executed on the path to
6987 /// OnPathTo if Root produced a posion result. Note that this doesn't say
6988 /// anything about whether OnPathTo is actually executed or whether Root is
6989 /// actually poison. This can be used to assess whether a new use of Root can
6990 /// be added at a location which is control equivalent with OnPathTo (such as
6991 /// immediately before it) without introducing UB which didn't previously
6992 /// exist. Note that a false result conveys no information.
6993 bool llvm::mustExecuteUBIfPoisonOnPathTo(Instruction
*Root
,
6994 Instruction
*OnPathTo
,
6995 DominatorTree
*DT
) {
6996 // Basic approach is to assume Root is poison, propagate poison forward
6997 // through all users we can easily track, and then check whether any of those
6998 // users are provable UB and must execute before out exiting block might
7001 // The set of all recursive users we've visited (which are assumed to all be
7002 // poison because of said visit)
7003 SmallSet
<const Value
*, 16> KnownPoison
;
7004 SmallVector
<const Instruction
*, 16> Worklist
;
7005 Worklist
.push_back(Root
);
7006 while (!Worklist
.empty()) {
7007 const Instruction
*I
= Worklist
.pop_back_val();
7009 // If we know this must trigger UB on a path leading our target.
7010 if (mustTriggerUB(I
, KnownPoison
) && DT
->dominates(I
, OnPathTo
))
7013 // If we can't analyze propagation through this instruction, just skip it
7014 // and transitive users. Safe as false is a conservative result.
7015 if (I
!= Root
&& !any_of(I
->operands(), [&KnownPoison
](const Use
&U
) {
7016 return KnownPoison
.contains(U
) && propagatesPoison(U
);
7020 if (KnownPoison
.insert(I
).second
)
7021 for (const User
*User
: I
->users())
7022 Worklist
.push_back(cast
<Instruction
>(User
));
7025 // Might be non-UB, or might have a path we couldn't prove must execute on
7026 // way to exiting bb.
7030 OverflowResult
llvm::computeOverflowForSignedAdd(const AddOperator
*Add
,
7031 const DataLayout
&DL
,
7032 AssumptionCache
*AC
,
7033 const Instruction
*CxtI
,
7034 const DominatorTree
*DT
) {
7035 return ::computeOverflowForSignedAdd(Add
->getOperand(0), Add
->getOperand(1),
7036 Add
, DL
, AC
, CxtI
, DT
);
7039 OverflowResult
llvm::computeOverflowForSignedAdd(const Value
*LHS
,
7041 const DataLayout
&DL
,
7042 AssumptionCache
*AC
,
7043 const Instruction
*CxtI
,
7044 const DominatorTree
*DT
) {
7045 return ::computeOverflowForSignedAdd(LHS
, RHS
, nullptr, DL
, AC
, CxtI
, DT
);
7048 bool llvm::isGuaranteedToTransferExecutionToSuccessor(const Instruction
*I
) {
7049 // Note: An atomic operation isn't guaranteed to return in a reasonable amount
7050 // of time because it's possible for another thread to interfere with it for an
7051 // arbitrary length of time, but programs aren't allowed to rely on that.
7053 // If there is no successor, then execution can't transfer to it.
7054 if (isa
<ReturnInst
>(I
))
7056 if (isa
<UnreachableInst
>(I
))
7059 // Note: Do not add new checks here; instead, change Instruction::mayThrow or
7060 // Instruction::willReturn.
7062 // FIXME: Move this check into Instruction::willReturn.
7063 if (isa
<CatchPadInst
>(I
)) {
7064 switch (classifyEHPersonality(I
->getFunction()->getPersonalityFn())) {
7066 // A catchpad may invoke exception object constructors and such, which
7067 // in some languages can be arbitrary code, so be conservative by default.
7069 case EHPersonality::CoreCLR
:
7070 // For CoreCLR, it just involves a type test.
7075 // An instruction that returns without throwing must transfer control flow
7077 return !I
->mayThrow() && I
->willReturn();
7080 bool llvm::isGuaranteedToTransferExecutionToSuccessor(const BasicBlock
*BB
) {
7081 // TODO: This is slightly conservative for invoke instruction since exiting
7082 // via an exception *is* normal control for them.
7083 for (const Instruction
&I
: *BB
)
7084 if (!isGuaranteedToTransferExecutionToSuccessor(&I
))
7089 bool llvm::isGuaranteedToTransferExecutionToSuccessor(
7090 BasicBlock::const_iterator Begin
, BasicBlock::const_iterator End
,
7091 unsigned ScanLimit
) {
7092 return isGuaranteedToTransferExecutionToSuccessor(make_range(Begin
, End
),
7096 bool llvm::isGuaranteedToTransferExecutionToSuccessor(
7097 iterator_range
<BasicBlock::const_iterator
> Range
, unsigned ScanLimit
) {
7098 assert(ScanLimit
&& "scan limit must be non-zero");
7099 for (const Instruction
&I
: Range
) {
7100 if (isa
<DbgInfoIntrinsic
>(I
))
7102 if (--ScanLimit
== 0)
7104 if (!isGuaranteedToTransferExecutionToSuccessor(&I
))
7110 bool llvm::isGuaranteedToExecuteForEveryIteration(const Instruction
*I
,
7112 // The loop header is guaranteed to be executed for every iteration.
7114 // FIXME: Relax this constraint to cover all basic blocks that are
7115 // guaranteed to be executed at every iteration.
7116 if (I
->getParent() != L
->getHeader()) return false;
7118 for (const Instruction
&LI
: *L
->getHeader()) {
7119 if (&LI
== I
) return true;
7120 if (!isGuaranteedToTransferExecutionToSuccessor(&LI
)) return false;
7122 llvm_unreachable("Instruction not contained in its own parent basic block.");
7125 bool llvm::propagatesPoison(const Use
&PoisonOp
) {
7126 const Operator
*I
= cast
<Operator
>(PoisonOp
.getUser());
7127 switch (I
->getOpcode()) {
7128 case Instruction::Freeze
:
7129 case Instruction::PHI
:
7130 case Instruction::Invoke
:
7132 case Instruction::Select
:
7133 return PoisonOp
.getOperandNo() == 0;
7134 case Instruction::Call
:
7135 if (auto *II
= dyn_cast
<IntrinsicInst
>(I
)) {
7136 switch (II
->getIntrinsicID()) {
7137 // TODO: Add more intrinsics.
7138 case Intrinsic::sadd_with_overflow
:
7139 case Intrinsic::ssub_with_overflow
:
7140 case Intrinsic::smul_with_overflow
:
7141 case Intrinsic::uadd_with_overflow
:
7142 case Intrinsic::usub_with_overflow
:
7143 case Intrinsic::umul_with_overflow
:
7144 // If an input is a vector containing a poison element, the
7145 // two output vectors (calculated results, overflow bits)'
7146 // corresponding lanes are poison.
7148 case Intrinsic::ctpop
:
7153 case Instruction::ICmp
:
7154 case Instruction::FCmp
:
7155 case Instruction::GetElementPtr
:
7158 if (isa
<BinaryOperator
>(I
) || isa
<UnaryOperator
>(I
) || isa
<CastInst
>(I
))
7161 // Be conservative and return false.
7166 void llvm::getGuaranteedWellDefinedOps(
7167 const Instruction
*I
, SmallVectorImpl
<const Value
*> &Operands
) {
7168 switch (I
->getOpcode()) {
7169 case Instruction::Store
:
7170 Operands
.push_back(cast
<StoreInst
>(I
)->getPointerOperand());
7173 case Instruction::Load
:
7174 Operands
.push_back(cast
<LoadInst
>(I
)->getPointerOperand());
7177 // Since dereferenceable attribute imply noundef, atomic operations
7178 // also implicitly have noundef pointers too
7179 case Instruction::AtomicCmpXchg
:
7180 Operands
.push_back(cast
<AtomicCmpXchgInst
>(I
)->getPointerOperand());
7183 case Instruction::AtomicRMW
:
7184 Operands
.push_back(cast
<AtomicRMWInst
>(I
)->getPointerOperand());
7187 case Instruction::Call
:
7188 case Instruction::Invoke
: {
7189 const CallBase
*CB
= cast
<CallBase
>(I
);
7190 if (CB
->isIndirectCall())
7191 Operands
.push_back(CB
->getCalledOperand());
7192 for (unsigned i
= 0; i
< CB
->arg_size(); ++i
) {
7193 if (CB
->paramHasAttr(i
, Attribute::NoUndef
) ||
7194 CB
->paramHasAttr(i
, Attribute::Dereferenceable
))
7195 Operands
.push_back(CB
->getArgOperand(i
));
7199 case Instruction::Ret
:
7200 if (I
->getFunction()->hasRetAttribute(Attribute::NoUndef
))
7201 Operands
.push_back(I
->getOperand(0));
7203 case Instruction::Switch
:
7204 Operands
.push_back(cast
<SwitchInst
>(I
)->getCondition());
7206 case Instruction::Br
: {
7207 auto *BR
= cast
<BranchInst
>(I
);
7208 if (BR
->isConditional())
7209 Operands
.push_back(BR
->getCondition());
7217 void llvm::getGuaranteedNonPoisonOps(const Instruction
*I
,
7218 SmallVectorImpl
<const Value
*> &Operands
) {
7219 getGuaranteedWellDefinedOps(I
, Operands
);
7220 switch (I
->getOpcode()) {
7221 // Divisors of these operations are allowed to be partially undef.
7222 case Instruction::UDiv
:
7223 case Instruction::SDiv
:
7224 case Instruction::URem
:
7225 case Instruction::SRem
:
7226 Operands
.push_back(I
->getOperand(1));
7233 bool llvm::mustTriggerUB(const Instruction
*I
,
7234 const SmallPtrSetImpl
<const Value
*> &KnownPoison
) {
7235 SmallVector
<const Value
*, 4> NonPoisonOps
;
7236 getGuaranteedNonPoisonOps(I
, NonPoisonOps
);
7238 for (const auto *V
: NonPoisonOps
)
7239 if (KnownPoison
.count(V
))
7245 static bool programUndefinedIfUndefOrPoison(const Value
*V
,
7247 // We currently only look for uses of values within the same basic
7248 // block, as that makes it easier to guarantee that the uses will be
7249 // executed given that Inst is executed.
7251 // FIXME: Expand this to consider uses beyond the same basic block. To do
7252 // this, look out for the distinction between post-dominance and strong
7254 const BasicBlock
*BB
= nullptr;
7255 BasicBlock::const_iterator Begin
;
7256 if (const auto *Inst
= dyn_cast
<Instruction
>(V
)) {
7257 BB
= Inst
->getParent();
7258 Begin
= Inst
->getIterator();
7260 } else if (const auto *Arg
= dyn_cast
<Argument
>(V
)) {
7261 BB
= &Arg
->getParent()->getEntryBlock();
7262 Begin
= BB
->begin();
7267 // Limit number of instructions we look at, to avoid scanning through large
7268 // blocks. The current limit is chosen arbitrarily.
7269 unsigned ScanLimit
= 32;
7270 BasicBlock::const_iterator End
= BB
->end();
7273 // Since undef does not propagate eagerly, be conservative & just check
7274 // whether a value is directly passed to an instruction that must take
7275 // well-defined operands.
7277 for (const auto &I
: make_range(Begin
, End
)) {
7278 if (isa
<DbgInfoIntrinsic
>(I
))
7280 if (--ScanLimit
== 0)
7283 SmallVector
<const Value
*, 4> WellDefinedOps
;
7284 getGuaranteedWellDefinedOps(&I
, WellDefinedOps
);
7285 if (is_contained(WellDefinedOps
, V
))
7288 if (!isGuaranteedToTransferExecutionToSuccessor(&I
))
7294 // Set of instructions that we have proved will yield poison if Inst
7296 SmallSet
<const Value
*, 16> YieldsPoison
;
7297 SmallSet
<const BasicBlock
*, 4> Visited
;
7299 YieldsPoison
.insert(V
);
7303 for (const auto &I
: make_range(Begin
, End
)) {
7304 if (isa
<DbgInfoIntrinsic
>(I
))
7306 if (--ScanLimit
== 0)
7308 if (mustTriggerUB(&I
, YieldsPoison
))
7310 if (!isGuaranteedToTransferExecutionToSuccessor(&I
))
7313 // If an operand is poison and propagates it, mark I as yielding poison.
7314 for (const Use
&Op
: I
.operands()) {
7315 if (YieldsPoison
.count(Op
) && propagatesPoison(Op
)) {
7316 YieldsPoison
.insert(&I
);
7321 // Special handling for select, which returns poison if its operand 0 is
7322 // poison (handled in the loop above) *or* if both its true/false operands
7323 // are poison (handled here).
7324 if (I
.getOpcode() == Instruction::Select
&&
7325 YieldsPoison
.count(I
.getOperand(1)) &&
7326 YieldsPoison
.count(I
.getOperand(2))) {
7327 YieldsPoison
.insert(&I
);
7331 BB
= BB
->getSingleSuccessor();
7332 if (!BB
|| !Visited
.insert(BB
).second
)
7335 Begin
= BB
->getFirstNonPHI()->getIterator();
7341 bool llvm::programUndefinedIfUndefOrPoison(const Instruction
*Inst
) {
7342 return ::programUndefinedIfUndefOrPoison(Inst
, false);
7345 bool llvm::programUndefinedIfPoison(const Instruction
*Inst
) {
7346 return ::programUndefinedIfUndefOrPoison(Inst
, true);
7349 static bool isKnownNonNaN(const Value
*V
, FastMathFlags FMF
) {
7353 if (auto *C
= dyn_cast
<ConstantFP
>(V
))
7356 if (auto *C
= dyn_cast
<ConstantDataVector
>(V
)) {
7357 if (!C
->getElementType()->isFloatingPointTy())
7359 for (unsigned I
= 0, E
= C
->getNumElements(); I
< E
; ++I
) {
7360 if (C
->getElementAsAPFloat(I
).isNaN())
7366 if (isa
<ConstantAggregateZero
>(V
))
7372 static bool isKnownNonZero(const Value
*V
) {
7373 if (auto *C
= dyn_cast
<ConstantFP
>(V
))
7374 return !C
->isZero();
7376 if (auto *C
= dyn_cast
<ConstantDataVector
>(V
)) {
7377 if (!C
->getElementType()->isFloatingPointTy())
7379 for (unsigned I
= 0, E
= C
->getNumElements(); I
< E
; ++I
) {
7380 if (C
->getElementAsAPFloat(I
).isZero())
7389 /// Match clamp pattern for float types without care about NaNs or signed zeros.
7390 /// Given non-min/max outer cmp/select from the clamp pattern this
7391 /// function recognizes if it can be substitued by a "canonical" min/max
7393 static SelectPatternResult
matchFastFloatClamp(CmpInst::Predicate Pred
,
7394 Value
*CmpLHS
, Value
*CmpRHS
,
7395 Value
*TrueVal
, Value
*FalseVal
,
7396 Value
*&LHS
, Value
*&RHS
) {
7398 // X < C1 ? C1 : Min(X, C2) --> Max(C1, Min(X, C2))
7399 // X > C1 ? C1 : Max(X, C2) --> Min(C1, Max(X, C2))
7400 // and return description of the outer Max/Min.
7402 // First, check if select has inverse order:
7403 if (CmpRHS
== FalseVal
) {
7404 std::swap(TrueVal
, FalseVal
);
7405 Pred
= CmpInst::getInversePredicate(Pred
);
7408 // Assume success now. If there's no match, callers should not use these anyway.
7413 if (CmpRHS
!= TrueVal
|| !match(CmpRHS
, m_APFloat(FC1
)) || !FC1
->isFinite())
7414 return {SPF_UNKNOWN
, SPNB_NA
, false};
7418 case CmpInst::FCMP_OLT
:
7419 case CmpInst::FCMP_OLE
:
7420 case CmpInst::FCMP_ULT
:
7421 case CmpInst::FCMP_ULE
:
7423 m_CombineOr(m_OrdFMin(m_Specific(CmpLHS
), m_APFloat(FC2
)),
7424 m_UnordFMin(m_Specific(CmpLHS
), m_APFloat(FC2
)))) &&
7426 return {SPF_FMAXNUM
, SPNB_RETURNS_ANY
, false};
7428 case CmpInst::FCMP_OGT
:
7429 case CmpInst::FCMP_OGE
:
7430 case CmpInst::FCMP_UGT
:
7431 case CmpInst::FCMP_UGE
:
7433 m_CombineOr(m_OrdFMax(m_Specific(CmpLHS
), m_APFloat(FC2
)),
7434 m_UnordFMax(m_Specific(CmpLHS
), m_APFloat(FC2
)))) &&
7436 return {SPF_FMINNUM
, SPNB_RETURNS_ANY
, false};
7442 return {SPF_UNKNOWN
, SPNB_NA
, false};
7445 /// Recognize variations of:
7446 /// CLAMP(v,l,h) ==> ((v) < (l) ? (l) : ((v) > (h) ? (h) : (v)))
7447 static SelectPatternResult
matchClamp(CmpInst::Predicate Pred
,
7448 Value
*CmpLHS
, Value
*CmpRHS
,
7449 Value
*TrueVal
, Value
*FalseVal
) {
7450 // Swap the select operands and predicate to match the patterns below.
7451 if (CmpRHS
!= TrueVal
) {
7452 Pred
= ICmpInst::getSwappedPredicate(Pred
);
7453 std::swap(TrueVal
, FalseVal
);
7456 if (CmpRHS
== TrueVal
&& match(CmpRHS
, m_APInt(C1
))) {
7458 // (X <s C1) ? C1 : SMIN(X, C2) ==> SMAX(SMIN(X, C2), C1)
7459 if (match(FalseVal
, m_SMin(m_Specific(CmpLHS
), m_APInt(C2
))) &&
7460 C1
->slt(*C2
) && Pred
== CmpInst::ICMP_SLT
)
7461 return {SPF_SMAX
, SPNB_NA
, false};
7463 // (X >s C1) ? C1 : SMAX(X, C2) ==> SMIN(SMAX(X, C2), C1)
7464 if (match(FalseVal
, m_SMax(m_Specific(CmpLHS
), m_APInt(C2
))) &&
7465 C1
->sgt(*C2
) && Pred
== CmpInst::ICMP_SGT
)
7466 return {SPF_SMIN
, SPNB_NA
, false};
7468 // (X <u C1) ? C1 : UMIN(X, C2) ==> UMAX(UMIN(X, C2), C1)
7469 if (match(FalseVal
, m_UMin(m_Specific(CmpLHS
), m_APInt(C2
))) &&
7470 C1
->ult(*C2
) && Pred
== CmpInst::ICMP_ULT
)
7471 return {SPF_UMAX
, SPNB_NA
, false};
7473 // (X >u C1) ? C1 : UMAX(X, C2) ==> UMIN(UMAX(X, C2), C1)
7474 if (match(FalseVal
, m_UMax(m_Specific(CmpLHS
), m_APInt(C2
))) &&
7475 C1
->ugt(*C2
) && Pred
== CmpInst::ICMP_UGT
)
7476 return {SPF_UMIN
, SPNB_NA
, false};
7478 return {SPF_UNKNOWN
, SPNB_NA
, false};
7481 /// Recognize variations of:
7482 /// a < c ? min(a,b) : min(b,c) ==> min(min(a,b),min(b,c))
7483 static SelectPatternResult
matchMinMaxOfMinMax(CmpInst::Predicate Pred
,
7484 Value
*CmpLHS
, Value
*CmpRHS
,
7485 Value
*TVal
, Value
*FVal
,
7487 // TODO: Allow FP min/max with nnan/nsz.
7488 assert(CmpInst::isIntPredicate(Pred
) && "Expected integer comparison");
7490 Value
*A
= nullptr, *B
= nullptr;
7491 SelectPatternResult L
= matchSelectPattern(TVal
, A
, B
, nullptr, Depth
+ 1);
7492 if (!SelectPatternResult::isMinOrMax(L
.Flavor
))
7493 return {SPF_UNKNOWN
, SPNB_NA
, false};
7495 Value
*C
= nullptr, *D
= nullptr;
7496 SelectPatternResult R
= matchSelectPattern(FVal
, C
, D
, nullptr, Depth
+ 1);
7497 if (L
.Flavor
!= R
.Flavor
)
7498 return {SPF_UNKNOWN
, SPNB_NA
, false};
7500 // We have something like: x Pred y ? min(a, b) : min(c, d).
7501 // Try to match the compare to the min/max operations of the select operands.
7502 // First, make sure we have the right compare predicate.
7505 if (Pred
== ICmpInst::ICMP_SGT
|| Pred
== ICmpInst::ICMP_SGE
) {
7506 Pred
= ICmpInst::getSwappedPredicate(Pred
);
7507 std::swap(CmpLHS
, CmpRHS
);
7509 if (Pred
== ICmpInst::ICMP_SLT
|| Pred
== ICmpInst::ICMP_SLE
)
7511 return {SPF_UNKNOWN
, SPNB_NA
, false};
7513 if (Pred
== ICmpInst::ICMP_SLT
|| Pred
== ICmpInst::ICMP_SLE
) {
7514 Pred
= ICmpInst::getSwappedPredicate(Pred
);
7515 std::swap(CmpLHS
, CmpRHS
);
7517 if (Pred
== ICmpInst::ICMP_SGT
|| Pred
== ICmpInst::ICMP_SGE
)
7519 return {SPF_UNKNOWN
, SPNB_NA
, false};
7521 if (Pred
== ICmpInst::ICMP_UGT
|| Pred
== ICmpInst::ICMP_UGE
) {
7522 Pred
= ICmpInst::getSwappedPredicate(Pred
);
7523 std::swap(CmpLHS
, CmpRHS
);
7525 if (Pred
== ICmpInst::ICMP_ULT
|| Pred
== ICmpInst::ICMP_ULE
)
7527 return {SPF_UNKNOWN
, SPNB_NA
, false};
7529 if (Pred
== ICmpInst::ICMP_ULT
|| Pred
== ICmpInst::ICMP_ULE
) {
7530 Pred
= ICmpInst::getSwappedPredicate(Pred
);
7531 std::swap(CmpLHS
, CmpRHS
);
7533 if (Pred
== ICmpInst::ICMP_UGT
|| Pred
== ICmpInst::ICMP_UGE
)
7535 return {SPF_UNKNOWN
, SPNB_NA
, false};
7537 return {SPF_UNKNOWN
, SPNB_NA
, false};
7540 // If there is a common operand in the already matched min/max and the other
7541 // min/max operands match the compare operands (either directly or inverted),
7542 // then this is min/max of the same flavor.
7544 // a pred c ? m(a, b) : m(c, b) --> m(m(a, b), m(c, b))
7545 // ~c pred ~a ? m(a, b) : m(c, b) --> m(m(a, b), m(c, b))
7547 if ((CmpLHS
== A
&& CmpRHS
== C
) || (match(C
, m_Not(m_Specific(CmpLHS
))) &&
7548 match(A
, m_Not(m_Specific(CmpRHS
)))))
7549 return {L
.Flavor
, SPNB_NA
, false};
7551 // a pred d ? m(a, b) : m(b, d) --> m(m(a, b), m(b, d))
7552 // ~d pred ~a ? m(a, b) : m(b, d) --> m(m(a, b), m(b, d))
7554 if ((CmpLHS
== A
&& CmpRHS
== D
) || (match(D
, m_Not(m_Specific(CmpLHS
))) &&
7555 match(A
, m_Not(m_Specific(CmpRHS
)))))
7556 return {L
.Flavor
, SPNB_NA
, false};
7558 // b pred c ? m(a, b) : m(c, a) --> m(m(a, b), m(c, a))
7559 // ~c pred ~b ? m(a, b) : m(c, a) --> m(m(a, b), m(c, a))
7561 if ((CmpLHS
== B
&& CmpRHS
== C
) || (match(C
, m_Not(m_Specific(CmpLHS
))) &&
7562 match(B
, m_Not(m_Specific(CmpRHS
)))))
7563 return {L
.Flavor
, SPNB_NA
, false};
7565 // b pred d ? m(a, b) : m(a, d) --> m(m(a, b), m(a, d))
7566 // ~d pred ~b ? m(a, b) : m(a, d) --> m(m(a, b), m(a, d))
7568 if ((CmpLHS
== B
&& CmpRHS
== D
) || (match(D
, m_Not(m_Specific(CmpLHS
))) &&
7569 match(B
, m_Not(m_Specific(CmpRHS
)))))
7570 return {L
.Flavor
, SPNB_NA
, false};
7573 return {SPF_UNKNOWN
, SPNB_NA
, false};
7576 /// If the input value is the result of a 'not' op, constant integer, or vector
7577 /// splat of a constant integer, return the bitwise-not source value.
7578 /// TODO: This could be extended to handle non-splat vector integer constants.
7579 static Value
*getNotValue(Value
*V
) {
7581 if (match(V
, m_Not(m_Value(NotV
))))
7585 if (match(V
, m_APInt(C
)))
7586 return ConstantInt::get(V
->getType(), ~(*C
));
7591 /// Match non-obvious integer minimum and maximum sequences.
7592 static SelectPatternResult
matchMinMax(CmpInst::Predicate Pred
,
7593 Value
*CmpLHS
, Value
*CmpRHS
,
7594 Value
*TrueVal
, Value
*FalseVal
,
7595 Value
*&LHS
, Value
*&RHS
,
7597 // Assume success. If there's no match, callers should not use these anyway.
7601 SelectPatternResult SPR
= matchClamp(Pred
, CmpLHS
, CmpRHS
, TrueVal
, FalseVal
);
7602 if (SPR
.Flavor
!= SelectPatternFlavor::SPF_UNKNOWN
)
7605 SPR
= matchMinMaxOfMinMax(Pred
, CmpLHS
, CmpRHS
, TrueVal
, FalseVal
, Depth
);
7606 if (SPR
.Flavor
!= SelectPatternFlavor::SPF_UNKNOWN
)
7609 // Look through 'not' ops to find disguised min/max.
7610 // (X > Y) ? ~X : ~Y ==> (~X < ~Y) ? ~X : ~Y ==> MIN(~X, ~Y)
7611 // (X < Y) ? ~X : ~Y ==> (~X > ~Y) ? ~X : ~Y ==> MAX(~X, ~Y)
7612 if (CmpLHS
== getNotValue(TrueVal
) && CmpRHS
== getNotValue(FalseVal
)) {
7614 case CmpInst::ICMP_SGT
: return {SPF_SMIN
, SPNB_NA
, false};
7615 case CmpInst::ICMP_SLT
: return {SPF_SMAX
, SPNB_NA
, false};
7616 case CmpInst::ICMP_UGT
: return {SPF_UMIN
, SPNB_NA
, false};
7617 case CmpInst::ICMP_ULT
: return {SPF_UMAX
, SPNB_NA
, false};
7622 // (X > Y) ? ~Y : ~X ==> (~X < ~Y) ? ~Y : ~X ==> MAX(~Y, ~X)
7623 // (X < Y) ? ~Y : ~X ==> (~X > ~Y) ? ~Y : ~X ==> MIN(~Y, ~X)
7624 if (CmpLHS
== getNotValue(FalseVal
) && CmpRHS
== getNotValue(TrueVal
)) {
7626 case CmpInst::ICMP_SGT
: return {SPF_SMAX
, SPNB_NA
, false};
7627 case CmpInst::ICMP_SLT
: return {SPF_SMIN
, SPNB_NA
, false};
7628 case CmpInst::ICMP_UGT
: return {SPF_UMAX
, SPNB_NA
, false};
7629 case CmpInst::ICMP_ULT
: return {SPF_UMIN
, SPNB_NA
, false};
7634 if (Pred
!= CmpInst::ICMP_SGT
&& Pred
!= CmpInst::ICMP_SLT
)
7635 return {SPF_UNKNOWN
, SPNB_NA
, false};
7638 if (!match(CmpRHS
, m_APInt(C1
)))
7639 return {SPF_UNKNOWN
, SPNB_NA
, false};
7641 // An unsigned min/max can be written with a signed compare.
7643 if ((CmpLHS
== TrueVal
&& match(FalseVal
, m_APInt(C2
))) ||
7644 (CmpLHS
== FalseVal
&& match(TrueVal
, m_APInt(C2
)))) {
7645 // Is the sign bit set?
7646 // (X <s 0) ? X : MAXVAL ==> (X >u MAXVAL) ? X : MAXVAL ==> UMAX
7647 // (X <s 0) ? MAXVAL : X ==> (X >u MAXVAL) ? MAXVAL : X ==> UMIN
7648 if (Pred
== CmpInst::ICMP_SLT
&& C1
->isZero() && C2
->isMaxSignedValue())
7649 return {CmpLHS
== TrueVal
? SPF_UMAX
: SPF_UMIN
, SPNB_NA
, false};
7651 // Is the sign bit clear?
7652 // (X >s -1) ? MINVAL : X ==> (X <u MINVAL) ? MINVAL : X ==> UMAX
7653 // (X >s -1) ? X : MINVAL ==> (X <u MINVAL) ? X : MINVAL ==> UMIN
7654 if (Pred
== CmpInst::ICMP_SGT
&& C1
->isAllOnes() && C2
->isMinSignedValue())
7655 return {CmpLHS
== FalseVal
? SPF_UMAX
: SPF_UMIN
, SPNB_NA
, false};
7658 return {SPF_UNKNOWN
, SPNB_NA
, false};
7661 bool llvm::isKnownNegation(const Value
*X
, const Value
*Y
, bool NeedNSW
) {
7662 assert(X
&& Y
&& "Invalid operand");
7664 // X = sub (0, Y) || X = sub nsw (0, Y)
7665 if ((!NeedNSW
&& match(X
, m_Sub(m_ZeroInt(), m_Specific(Y
)))) ||
7666 (NeedNSW
&& match(X
, m_NSWSub(m_ZeroInt(), m_Specific(Y
)))))
7669 // Y = sub (0, X) || Y = sub nsw (0, X)
7670 if ((!NeedNSW
&& match(Y
, m_Sub(m_ZeroInt(), m_Specific(X
)))) ||
7671 (NeedNSW
&& match(Y
, m_NSWSub(m_ZeroInt(), m_Specific(X
)))))
7674 // X = sub (A, B), Y = sub (B, A) || X = sub nsw (A, B), Y = sub nsw (B, A)
7676 return (!NeedNSW
&& (match(X
, m_Sub(m_Value(A
), m_Value(B
))) &&
7677 match(Y
, m_Sub(m_Specific(B
), m_Specific(A
))))) ||
7678 (NeedNSW
&& (match(X
, m_NSWSub(m_Value(A
), m_Value(B
))) &&
7679 match(Y
, m_NSWSub(m_Specific(B
), m_Specific(A
)))));
7682 static SelectPatternResult
matchSelectPattern(CmpInst::Predicate Pred
,
7684 Value
*CmpLHS
, Value
*CmpRHS
,
7685 Value
*TrueVal
, Value
*FalseVal
,
7686 Value
*&LHS
, Value
*&RHS
,
7688 bool HasMismatchedZeros
= false;
7689 if (CmpInst::isFPPredicate(Pred
)) {
7690 // IEEE-754 ignores the sign of 0.0 in comparisons. So if the select has one
7691 // 0.0 operand, set the compare's 0.0 operands to that same value for the
7692 // purpose of identifying min/max. Disregard vector constants with undefined
7693 // elements because those can not be back-propagated for analysis.
7694 Value
*OutputZeroVal
= nullptr;
7695 if (match(TrueVal
, m_AnyZeroFP()) && !match(FalseVal
, m_AnyZeroFP()) &&
7696 !cast
<Constant
>(TrueVal
)->containsUndefOrPoisonElement())
7697 OutputZeroVal
= TrueVal
;
7698 else if (match(FalseVal
, m_AnyZeroFP()) && !match(TrueVal
, m_AnyZeroFP()) &&
7699 !cast
<Constant
>(FalseVal
)->containsUndefOrPoisonElement())
7700 OutputZeroVal
= FalseVal
;
7702 if (OutputZeroVal
) {
7703 if (match(CmpLHS
, m_AnyZeroFP()) && CmpLHS
!= OutputZeroVal
) {
7704 HasMismatchedZeros
= true;
7705 CmpLHS
= OutputZeroVal
;
7707 if (match(CmpRHS
, m_AnyZeroFP()) && CmpRHS
!= OutputZeroVal
) {
7708 HasMismatchedZeros
= true;
7709 CmpRHS
= OutputZeroVal
;
7717 // Signed zero may return inconsistent results between implementations.
7718 // (0.0 <= -0.0) ? 0.0 : -0.0 // Returns 0.0
7719 // minNum(0.0, -0.0) // May return -0.0 or 0.0 (IEEE 754-2008 5.3.1)
7720 // Therefore, we behave conservatively and only proceed if at least one of the
7721 // operands is known to not be zero or if we don't care about signed zero.
7724 case CmpInst::FCMP_OGT
: case CmpInst::FCMP_OLT
:
7725 case CmpInst::FCMP_UGT
: case CmpInst::FCMP_ULT
:
7726 if (!HasMismatchedZeros
)
7729 case CmpInst::FCMP_OGE
: case CmpInst::FCMP_OLE
:
7730 case CmpInst::FCMP_UGE
: case CmpInst::FCMP_ULE
:
7731 if (!FMF
.noSignedZeros() && !isKnownNonZero(CmpLHS
) &&
7732 !isKnownNonZero(CmpRHS
))
7733 return {SPF_UNKNOWN
, SPNB_NA
, false};
7736 SelectPatternNaNBehavior NaNBehavior
= SPNB_NA
;
7737 bool Ordered
= false;
7739 // When given one NaN and one non-NaN input:
7740 // - maxnum/minnum (C99 fmaxf()/fminf()) return the non-NaN input.
7741 // - A simple C99 (a < b ? a : b) construction will return 'b' (as the
7742 // ordered comparison fails), which could be NaN or non-NaN.
7743 // so here we discover exactly what NaN behavior is required/accepted.
7744 if (CmpInst::isFPPredicate(Pred
)) {
7745 bool LHSSafe
= isKnownNonNaN(CmpLHS
, FMF
);
7746 bool RHSSafe
= isKnownNonNaN(CmpRHS
, FMF
);
7748 if (LHSSafe
&& RHSSafe
) {
7749 // Both operands are known non-NaN.
7750 NaNBehavior
= SPNB_RETURNS_ANY
;
7751 } else if (CmpInst::isOrdered(Pred
)) {
7752 // An ordered comparison will return false when given a NaN, so it
7756 // LHS is non-NaN, so if RHS is NaN then NaN will be returned.
7757 NaNBehavior
= SPNB_RETURNS_NAN
;
7759 NaNBehavior
= SPNB_RETURNS_OTHER
;
7761 // Completely unsafe.
7762 return {SPF_UNKNOWN
, SPNB_NA
, false};
7765 // An unordered comparison will return true when given a NaN, so it
7768 // LHS is non-NaN, so if RHS is NaN then non-NaN will be returned.
7769 NaNBehavior
= SPNB_RETURNS_OTHER
;
7771 NaNBehavior
= SPNB_RETURNS_NAN
;
7773 // Completely unsafe.
7774 return {SPF_UNKNOWN
, SPNB_NA
, false};
7778 if (TrueVal
== CmpRHS
&& FalseVal
== CmpLHS
) {
7779 std::swap(CmpLHS
, CmpRHS
);
7780 Pred
= CmpInst::getSwappedPredicate(Pred
);
7781 if (NaNBehavior
== SPNB_RETURNS_NAN
)
7782 NaNBehavior
= SPNB_RETURNS_OTHER
;
7783 else if (NaNBehavior
== SPNB_RETURNS_OTHER
)
7784 NaNBehavior
= SPNB_RETURNS_NAN
;
7788 // ([if]cmp X, Y) ? X : Y
7789 if (TrueVal
== CmpLHS
&& FalseVal
== CmpRHS
) {
7791 default: return {SPF_UNKNOWN
, SPNB_NA
, false}; // Equality.
7792 case ICmpInst::ICMP_UGT
:
7793 case ICmpInst::ICMP_UGE
: return {SPF_UMAX
, SPNB_NA
, false};
7794 case ICmpInst::ICMP_SGT
:
7795 case ICmpInst::ICMP_SGE
: return {SPF_SMAX
, SPNB_NA
, false};
7796 case ICmpInst::ICMP_ULT
:
7797 case ICmpInst::ICMP_ULE
: return {SPF_UMIN
, SPNB_NA
, false};
7798 case ICmpInst::ICMP_SLT
:
7799 case ICmpInst::ICMP_SLE
: return {SPF_SMIN
, SPNB_NA
, false};
7800 case FCmpInst::FCMP_UGT
:
7801 case FCmpInst::FCMP_UGE
:
7802 case FCmpInst::FCMP_OGT
:
7803 case FCmpInst::FCMP_OGE
: return {SPF_FMAXNUM
, NaNBehavior
, Ordered
};
7804 case FCmpInst::FCMP_ULT
:
7805 case FCmpInst::FCMP_ULE
:
7806 case FCmpInst::FCMP_OLT
:
7807 case FCmpInst::FCMP_OLE
: return {SPF_FMINNUM
, NaNBehavior
, Ordered
};
7811 if (isKnownNegation(TrueVal
, FalseVal
)) {
7812 // Sign-extending LHS does not change its sign, so TrueVal/FalseVal can
7813 // match against either LHS or sext(LHS).
7814 auto MaybeSExtCmpLHS
=
7815 m_CombineOr(m_Specific(CmpLHS
), m_SExt(m_Specific(CmpLHS
)));
7816 auto ZeroOrAllOnes
= m_CombineOr(m_ZeroInt(), m_AllOnes());
7817 auto ZeroOrOne
= m_CombineOr(m_ZeroInt(), m_One());
7818 if (match(TrueVal
, MaybeSExtCmpLHS
)) {
7819 // Set the return values. If the compare uses the negated value (-X >s 0),
7820 // swap the return values because the negated value is always 'RHS'.
7823 if (match(CmpLHS
, m_Neg(m_Specific(FalseVal
))))
7824 std::swap(LHS
, RHS
);
7826 // (X >s 0) ? X : -X or (X >s -1) ? X : -X --> ABS(X)
7827 // (-X >s 0) ? -X : X or (-X >s -1) ? -X : X --> ABS(X)
7828 if (Pred
== ICmpInst::ICMP_SGT
&& match(CmpRHS
, ZeroOrAllOnes
))
7829 return {SPF_ABS
, SPNB_NA
, false};
7831 // (X >=s 0) ? X : -X or (X >=s 1) ? X : -X --> ABS(X)
7832 if (Pred
== ICmpInst::ICMP_SGE
&& match(CmpRHS
, ZeroOrOne
))
7833 return {SPF_ABS
, SPNB_NA
, false};
7835 // (X <s 0) ? X : -X or (X <s 1) ? X : -X --> NABS(X)
7836 // (-X <s 0) ? -X : X or (-X <s 1) ? -X : X --> NABS(X)
7837 if (Pred
== ICmpInst::ICMP_SLT
&& match(CmpRHS
, ZeroOrOne
))
7838 return {SPF_NABS
, SPNB_NA
, false};
7840 else if (match(FalseVal
, MaybeSExtCmpLHS
)) {
7841 // Set the return values. If the compare uses the negated value (-X >s 0),
7842 // swap the return values because the negated value is always 'RHS'.
7845 if (match(CmpLHS
, m_Neg(m_Specific(TrueVal
))))
7846 std::swap(LHS
, RHS
);
7848 // (X >s 0) ? -X : X or (X >s -1) ? -X : X --> NABS(X)
7849 // (-X >s 0) ? X : -X or (-X >s -1) ? X : -X --> NABS(X)
7850 if (Pred
== ICmpInst::ICMP_SGT
&& match(CmpRHS
, ZeroOrAllOnes
))
7851 return {SPF_NABS
, SPNB_NA
, false};
7853 // (X <s 0) ? -X : X or (X <s 1) ? -X : X --> ABS(X)
7854 // (-X <s 0) ? X : -X or (-X <s 1) ? X : -X --> ABS(X)
7855 if (Pred
== ICmpInst::ICMP_SLT
&& match(CmpRHS
, ZeroOrOne
))
7856 return {SPF_ABS
, SPNB_NA
, false};
7860 if (CmpInst::isIntPredicate(Pred
))
7861 return matchMinMax(Pred
, CmpLHS
, CmpRHS
, TrueVal
, FalseVal
, LHS
, RHS
, Depth
);
7863 // According to (IEEE 754-2008 5.3.1), minNum(0.0, -0.0) and similar
7864 // may return either -0.0 or 0.0, so fcmp/select pair has stricter
7865 // semantics than minNum. Be conservative in such case.
7866 if (NaNBehavior
!= SPNB_RETURNS_ANY
||
7867 (!FMF
.noSignedZeros() && !isKnownNonZero(CmpLHS
) &&
7868 !isKnownNonZero(CmpRHS
)))
7869 return {SPF_UNKNOWN
, SPNB_NA
, false};
7871 return matchFastFloatClamp(Pred
, CmpLHS
, CmpRHS
, TrueVal
, FalseVal
, LHS
, RHS
);
7874 /// Helps to match a select pattern in case of a type mismatch.
7876 /// The function processes the case when type of true and false values of a
7877 /// select instruction differs from type of the cmp instruction operands because
7878 /// of a cast instruction. The function checks if it is legal to move the cast
7879 /// operation after "select". If yes, it returns the new second value of
7880 /// "select" (with the assumption that cast is moved):
7881 /// 1. As operand of cast instruction when both values of "select" are same cast
7883 /// 2. As restored constant (by applying reverse cast operation) when the first
7884 /// value of the "select" is a cast operation and the second value is a
7886 /// NOTE: We return only the new second value because the first value could be
7887 /// accessed as operand of cast instruction.
7888 static Value
*lookThroughCast(CmpInst
*CmpI
, Value
*V1
, Value
*V2
,
7889 Instruction::CastOps
*CastOp
) {
7890 auto *Cast1
= dyn_cast
<CastInst
>(V1
);
7894 *CastOp
= Cast1
->getOpcode();
7895 Type
*SrcTy
= Cast1
->getSrcTy();
7896 if (auto *Cast2
= dyn_cast
<CastInst
>(V2
)) {
7897 // If V1 and V2 are both the same cast from the same type, look through V1.
7898 if (*CastOp
== Cast2
->getOpcode() && SrcTy
== Cast2
->getSrcTy())
7899 return Cast2
->getOperand(0);
7903 auto *C
= dyn_cast
<Constant
>(V2
);
7907 Constant
*CastedTo
= nullptr;
7909 case Instruction::ZExt
:
7910 if (CmpI
->isUnsigned())
7911 CastedTo
= ConstantExpr::getTrunc(C
, SrcTy
);
7913 case Instruction::SExt
:
7914 if (CmpI
->isSigned())
7915 CastedTo
= ConstantExpr::getTrunc(C
, SrcTy
, true);
7917 case Instruction::Trunc
:
7919 if (match(CmpI
->getOperand(1), m_Constant(CmpConst
)) &&
7920 CmpConst
->getType() == SrcTy
) {
7921 // Here we have the following case:
7923 // %cond = cmp iN %x, CmpConst
7924 // %tr = trunc iN %x to iK
7925 // %narrowsel = select i1 %cond, iK %t, iK C
7927 // We can always move trunc after select operation:
7929 // %cond = cmp iN %x, CmpConst
7930 // %widesel = select i1 %cond, iN %x, iN CmpConst
7931 // %tr = trunc iN %widesel to iK
7933 // Note that C could be extended in any way because we don't care about
7934 // upper bits after truncation. It can't be abs pattern, because it would
7937 // select i1 %cond, x, -x.
7939 // So only min/max pattern could be matched. Such match requires widened C
7940 // == CmpConst. That is why set widened C = CmpConst, condition trunc
7941 // CmpConst == C is checked below.
7942 CastedTo
= CmpConst
;
7944 CastedTo
= ConstantExpr::getIntegerCast(C
, SrcTy
, CmpI
->isSigned());
7947 case Instruction::FPTrunc
:
7948 CastedTo
= ConstantExpr::getFPExtend(C
, SrcTy
, true);
7950 case Instruction::FPExt
:
7951 CastedTo
= ConstantExpr::getFPTrunc(C
, SrcTy
, true);
7953 case Instruction::FPToUI
:
7954 CastedTo
= ConstantExpr::getUIToFP(C
, SrcTy
, true);
7956 case Instruction::FPToSI
:
7957 CastedTo
= ConstantExpr::getSIToFP(C
, SrcTy
, true);
7959 case Instruction::UIToFP
:
7960 CastedTo
= ConstantExpr::getFPToUI(C
, SrcTy
, true);
7962 case Instruction::SIToFP
:
7963 CastedTo
= ConstantExpr::getFPToSI(C
, SrcTy
, true);
7972 // Make sure the cast doesn't lose any information.
7973 Constant
*CastedBack
=
7974 ConstantExpr::getCast(*CastOp
, CastedTo
, C
->getType(), true);
7975 if (CastedBack
!= C
)
7981 SelectPatternResult
llvm::matchSelectPattern(Value
*V
, Value
*&LHS
, Value
*&RHS
,
7982 Instruction::CastOps
*CastOp
,
7984 if (Depth
>= MaxAnalysisRecursionDepth
)
7985 return {SPF_UNKNOWN
, SPNB_NA
, false};
7987 SelectInst
*SI
= dyn_cast
<SelectInst
>(V
);
7988 if (!SI
) return {SPF_UNKNOWN
, SPNB_NA
, false};
7990 CmpInst
*CmpI
= dyn_cast
<CmpInst
>(SI
->getCondition());
7991 if (!CmpI
) return {SPF_UNKNOWN
, SPNB_NA
, false};
7993 Value
*TrueVal
= SI
->getTrueValue();
7994 Value
*FalseVal
= SI
->getFalseValue();
7996 return llvm::matchDecomposedSelectPattern(CmpI
, TrueVal
, FalseVal
, LHS
, RHS
,
8000 SelectPatternResult
llvm::matchDecomposedSelectPattern(
8001 CmpInst
*CmpI
, Value
*TrueVal
, Value
*FalseVal
, Value
*&LHS
, Value
*&RHS
,
8002 Instruction::CastOps
*CastOp
, unsigned Depth
) {
8003 CmpInst::Predicate Pred
= CmpI
->getPredicate();
8004 Value
*CmpLHS
= CmpI
->getOperand(0);
8005 Value
*CmpRHS
= CmpI
->getOperand(1);
8007 if (isa
<FPMathOperator
>(CmpI
))
8008 FMF
= CmpI
->getFastMathFlags();
8011 if (CmpI
->isEquality())
8012 return {SPF_UNKNOWN
, SPNB_NA
, false};
8014 // Deal with type mismatches.
8015 if (CastOp
&& CmpLHS
->getType() != TrueVal
->getType()) {
8016 if (Value
*C
= lookThroughCast(CmpI
, TrueVal
, FalseVal
, CastOp
)) {
8017 // If this is a potential fmin/fmax with a cast to integer, then ignore
8018 // -0.0 because there is no corresponding integer value.
8019 if (*CastOp
== Instruction::FPToSI
|| *CastOp
== Instruction::FPToUI
)
8020 FMF
.setNoSignedZeros();
8021 return ::matchSelectPattern(Pred
, FMF
, CmpLHS
, CmpRHS
,
8022 cast
<CastInst
>(TrueVal
)->getOperand(0), C
,
8025 if (Value
*C
= lookThroughCast(CmpI
, FalseVal
, TrueVal
, CastOp
)) {
8026 // If this is a potential fmin/fmax with a cast to integer, then ignore
8027 // -0.0 because there is no corresponding integer value.
8028 if (*CastOp
== Instruction::FPToSI
|| *CastOp
== Instruction::FPToUI
)
8029 FMF
.setNoSignedZeros();
8030 return ::matchSelectPattern(Pred
, FMF
, CmpLHS
, CmpRHS
,
8031 C
, cast
<CastInst
>(FalseVal
)->getOperand(0),
8035 return ::matchSelectPattern(Pred
, FMF
, CmpLHS
, CmpRHS
, TrueVal
, FalseVal
,
8039 CmpInst::Predicate
llvm::getMinMaxPred(SelectPatternFlavor SPF
, bool Ordered
) {
8040 if (SPF
== SPF_SMIN
) return ICmpInst::ICMP_SLT
;
8041 if (SPF
== SPF_UMIN
) return ICmpInst::ICMP_ULT
;
8042 if (SPF
== SPF_SMAX
) return ICmpInst::ICMP_SGT
;
8043 if (SPF
== SPF_UMAX
) return ICmpInst::ICMP_UGT
;
8044 if (SPF
== SPF_FMINNUM
)
8045 return Ordered
? FCmpInst::FCMP_OLT
: FCmpInst::FCMP_ULT
;
8046 if (SPF
== SPF_FMAXNUM
)
8047 return Ordered
? FCmpInst::FCMP_OGT
: FCmpInst::FCMP_UGT
;
8048 llvm_unreachable("unhandled!");
8051 SelectPatternFlavor
llvm::getInverseMinMaxFlavor(SelectPatternFlavor SPF
) {
8052 if (SPF
== SPF_SMIN
) return SPF_SMAX
;
8053 if (SPF
== SPF_UMIN
) return SPF_UMAX
;
8054 if (SPF
== SPF_SMAX
) return SPF_SMIN
;
8055 if (SPF
== SPF_UMAX
) return SPF_UMIN
;
8056 llvm_unreachable("unhandled!");
8059 Intrinsic::ID
llvm::getInverseMinMaxIntrinsic(Intrinsic::ID MinMaxID
) {
8061 case Intrinsic::smax
: return Intrinsic::smin
;
8062 case Intrinsic::smin
: return Intrinsic::smax
;
8063 case Intrinsic::umax
: return Intrinsic::umin
;
8064 case Intrinsic::umin
: return Intrinsic::umax
;
8065 // Please note that next four intrinsics may produce the same result for
8066 // original and inverted case even if X != Y due to NaN is handled specially.
8067 case Intrinsic::maximum
: return Intrinsic::minimum
;
8068 case Intrinsic::minimum
: return Intrinsic::maximum
;
8069 case Intrinsic::maxnum
: return Intrinsic::minnum
;
8070 case Intrinsic::minnum
: return Intrinsic::maxnum
;
8071 default: llvm_unreachable("Unexpected intrinsic");
8075 APInt
llvm::getMinMaxLimit(SelectPatternFlavor SPF
, unsigned BitWidth
) {
8077 case SPF_SMAX
: return APInt::getSignedMaxValue(BitWidth
);
8078 case SPF_SMIN
: return APInt::getSignedMinValue(BitWidth
);
8079 case SPF_UMAX
: return APInt::getMaxValue(BitWidth
);
8080 case SPF_UMIN
: return APInt::getMinValue(BitWidth
);
8081 default: llvm_unreachable("Unexpected flavor");
8085 std::pair
<Intrinsic::ID
, bool>
8086 llvm::canConvertToMinOrMaxIntrinsic(ArrayRef
<Value
*> VL
) {
8087 // Check if VL contains select instructions that can be folded into a min/max
8088 // vector intrinsic and return the intrinsic if it is possible.
8089 // TODO: Support floating point min/max.
8090 bool AllCmpSingleUse
= true;
8091 SelectPatternResult SelectPattern
;
8092 SelectPattern
.Flavor
= SPF_UNKNOWN
;
8093 if (all_of(VL
, [&SelectPattern
, &AllCmpSingleUse
](Value
*I
) {
8095 auto CurrentPattern
= matchSelectPattern(I
, LHS
, RHS
);
8096 if (!SelectPatternResult::isMinOrMax(CurrentPattern
.Flavor
) ||
8097 CurrentPattern
.Flavor
== SPF_FMINNUM
||
8098 CurrentPattern
.Flavor
== SPF_FMAXNUM
||
8099 !I
->getType()->isIntOrIntVectorTy())
8101 if (SelectPattern
.Flavor
!= SPF_UNKNOWN
&&
8102 SelectPattern
.Flavor
!= CurrentPattern
.Flavor
)
8104 SelectPattern
= CurrentPattern
;
8106 match(I
, m_Select(m_OneUse(m_Value()), m_Value(), m_Value()));
8109 switch (SelectPattern
.Flavor
) {
8111 return {Intrinsic::smin
, AllCmpSingleUse
};
8113 return {Intrinsic::umin
, AllCmpSingleUse
};
8115 return {Intrinsic::smax
, AllCmpSingleUse
};
8117 return {Intrinsic::umax
, AllCmpSingleUse
};
8119 llvm_unreachable("unexpected select pattern flavor");
8122 return {Intrinsic::not_intrinsic
, false};
8125 bool llvm::matchSimpleRecurrence(const PHINode
*P
, BinaryOperator
*&BO
,
8126 Value
*&Start
, Value
*&Step
) {
8127 // Handle the case of a simple two-predecessor recurrence PHI.
8128 // There's a lot more that could theoretically be done here, but
8129 // this is sufficient to catch some interesting cases.
8130 if (P
->getNumIncomingValues() != 2)
8133 for (unsigned i
= 0; i
!= 2; ++i
) {
8134 Value
*L
= P
->getIncomingValue(i
);
8135 Value
*R
= P
->getIncomingValue(!i
);
8136 Operator
*LU
= dyn_cast
<Operator
>(L
);
8139 unsigned Opcode
= LU
->getOpcode();
8144 // TODO: Expand list -- xor, div, gep, uaddo, etc..
8145 case Instruction::LShr
:
8146 case Instruction::AShr
:
8147 case Instruction::Shl
:
8148 case Instruction::Add
:
8149 case Instruction::Sub
:
8150 case Instruction::And
:
8151 case Instruction::Or
:
8152 case Instruction::Mul
:
8153 case Instruction::FMul
: {
8154 Value
*LL
= LU
->getOperand(0);
8155 Value
*LR
= LU
->getOperand(1);
8156 // Find a recurrence.
8162 continue; // Check for recurrence with L and R flipped.
8168 // We have matched a recurrence of the form:
8169 // %iv = [R, %entry], [%iv.next, %backedge]
8170 // %iv.next = binop %iv, L
8172 // %iv = [R, %entry], [%iv.next, %backedge]
8173 // %iv.next = binop L, %iv
8174 BO
= cast
<BinaryOperator
>(LU
);
8182 bool llvm::matchSimpleRecurrence(const BinaryOperator
*I
, PHINode
*&P
,
8183 Value
*&Start
, Value
*&Step
) {
8184 BinaryOperator
*BO
= nullptr;
8185 P
= dyn_cast
<PHINode
>(I
->getOperand(0));
8187 P
= dyn_cast
<PHINode
>(I
->getOperand(1));
8188 return P
&& matchSimpleRecurrence(P
, BO
, Start
, Step
) && BO
== I
;
8191 /// Return true if "icmp Pred LHS RHS" is always true.
8192 static bool isTruePredicate(CmpInst::Predicate Pred
, const Value
*LHS
,
8193 const Value
*RHS
, const DataLayout
&DL
,
8195 if (ICmpInst::isTrueWhenEqual(Pred
) && LHS
== RHS
)
8202 case CmpInst::ICMP_SLE
: {
8205 // LHS s<= LHS +_{nsw} C if C >= 0
8206 if (match(RHS
, m_NSWAdd(m_Specific(LHS
), m_APInt(C
))))
8207 return !C
->isNegative();
8211 case CmpInst::ICMP_ULE
: {
8214 // LHS u<= LHS +_{nuw} C for any C
8215 if (match(RHS
, m_NUWAdd(m_Specific(LHS
), m_APInt(C
))))
8218 // Match A to (X +_{nuw} CA) and B to (X +_{nuw} CB)
8219 auto MatchNUWAddsToSameValue
= [&](const Value
*A
, const Value
*B
,
8221 const APInt
*&CA
, const APInt
*&CB
) {
8222 if (match(A
, m_NUWAdd(m_Value(X
), m_APInt(CA
))) &&
8223 match(B
, m_NUWAdd(m_Specific(X
), m_APInt(CB
))))
8226 // If X & C == 0 then (X | C) == X +_{nuw} C
8227 if (match(A
, m_Or(m_Value(X
), m_APInt(CA
))) &&
8228 match(B
, m_Or(m_Specific(X
), m_APInt(CB
)))) {
8229 KnownBits
Known(CA
->getBitWidth());
8230 computeKnownBits(X
, Known
, DL
, Depth
+ 1, /*AC*/ nullptr,
8231 /*CxtI*/ nullptr, /*DT*/ nullptr);
8232 if (CA
->isSubsetOf(Known
.Zero
) && CB
->isSubsetOf(Known
.Zero
))
8240 const APInt
*CLHS
, *CRHS
;
8241 if (MatchNUWAddsToSameValue(LHS
, RHS
, X
, CLHS
, CRHS
))
8242 return CLHS
->ule(*CRHS
);
8249 /// Return true if "icmp Pred BLHS BRHS" is true whenever "icmp Pred
8250 /// ALHS ARHS" is true. Otherwise, return std::nullopt.
8251 static std::optional
<bool>
8252 isImpliedCondOperands(CmpInst::Predicate Pred
, const Value
*ALHS
,
8253 const Value
*ARHS
, const Value
*BLHS
, const Value
*BRHS
,
8254 const DataLayout
&DL
, unsigned Depth
) {
8257 return std::nullopt
;
8259 case CmpInst::ICMP_SLT
:
8260 case CmpInst::ICMP_SLE
:
8261 if (isTruePredicate(CmpInst::ICMP_SLE
, BLHS
, ALHS
, DL
, Depth
) &&
8262 isTruePredicate(CmpInst::ICMP_SLE
, ARHS
, BRHS
, DL
, Depth
))
8264 return std::nullopt
;
8266 case CmpInst::ICMP_SGT
:
8267 case CmpInst::ICMP_SGE
:
8268 if (isTruePredicate(CmpInst::ICMP_SLE
, ALHS
, BLHS
, DL
, Depth
) &&
8269 isTruePredicate(CmpInst::ICMP_SLE
, BRHS
, ARHS
, DL
, Depth
))
8271 return std::nullopt
;
8273 case CmpInst::ICMP_ULT
:
8274 case CmpInst::ICMP_ULE
:
8275 if (isTruePredicate(CmpInst::ICMP_ULE
, BLHS
, ALHS
, DL
, Depth
) &&
8276 isTruePredicate(CmpInst::ICMP_ULE
, ARHS
, BRHS
, DL
, Depth
))
8278 return std::nullopt
;
8280 case CmpInst::ICMP_UGT
:
8281 case CmpInst::ICMP_UGE
:
8282 if (isTruePredicate(CmpInst::ICMP_ULE
, ALHS
, BLHS
, DL
, Depth
) &&
8283 isTruePredicate(CmpInst::ICMP_ULE
, BRHS
, ARHS
, DL
, Depth
))
8285 return std::nullopt
;
8289 /// Return true if the operands of two compares (expanded as "L0 pred L1" and
8290 /// "R0 pred R1") match. IsSwappedOps is true when the operands match, but are
8292 static bool areMatchingOperands(const Value
*L0
, const Value
*L1
, const Value
*R0
,
8293 const Value
*R1
, bool &AreSwappedOps
) {
8294 bool AreMatchingOps
= (L0
== R0
&& L1
== R1
);
8295 AreSwappedOps
= (L0
== R1
&& L1
== R0
);
8296 return AreMatchingOps
|| AreSwappedOps
;
8299 /// Return true if "icmp1 LPred X, Y" implies "icmp2 RPred X, Y" is true.
8300 /// Return false if "icmp1 LPred X, Y" implies "icmp2 RPred X, Y" is false.
8301 /// Otherwise, return std::nullopt if we can't infer anything.
8302 static std::optional
<bool>
8303 isImpliedCondMatchingOperands(CmpInst::Predicate LPred
,
8304 CmpInst::Predicate RPred
, bool AreSwappedOps
) {
8305 // Canonicalize the predicate as if the operands were not commuted.
8307 RPred
= ICmpInst::getSwappedPredicate(RPred
);
8309 if (CmpInst::isImpliedTrueByMatchingCmp(LPred
, RPred
))
8311 if (CmpInst::isImpliedFalseByMatchingCmp(LPred
, RPred
))
8314 return std::nullopt
;
8317 /// Return true if "icmp LPred X, LC" implies "icmp RPred X, RC" is true.
8318 /// Return false if "icmp LPred X, LC" implies "icmp RPred X, RC" is false.
8319 /// Otherwise, return std::nullopt if we can't infer anything.
8320 static std::optional
<bool> isImpliedCondCommonOperandWithConstants(
8321 CmpInst::Predicate LPred
, const APInt
&LC
, CmpInst::Predicate RPred
,
8323 ConstantRange DomCR
= ConstantRange::makeExactICmpRegion(LPred
, LC
);
8324 ConstantRange CR
= ConstantRange::makeExactICmpRegion(RPred
, RC
);
8325 ConstantRange Intersection
= DomCR
.intersectWith(CR
);
8326 ConstantRange Difference
= DomCR
.difference(CR
);
8327 if (Intersection
.isEmptySet())
8329 if (Difference
.isEmptySet())
8331 return std::nullopt
;
8334 /// Return true if LHS implies RHS (expanded to its components as "R0 RPred R1")
8335 /// is true. Return false if LHS implies RHS is false. Otherwise, return
8336 /// std::nullopt if we can't infer anything.
8337 static std::optional
<bool> isImpliedCondICmps(const ICmpInst
*LHS
,
8338 CmpInst::Predicate RPred
,
8339 const Value
*R0
, const Value
*R1
,
8340 const DataLayout
&DL
,
8341 bool LHSIsTrue
, unsigned Depth
) {
8342 Value
*L0
= LHS
->getOperand(0);
8343 Value
*L1
= LHS
->getOperand(1);
8345 // The rest of the logic assumes the LHS condition is true. If that's not the
8346 // case, invert the predicate to make it so.
8347 CmpInst::Predicate LPred
=
8348 LHSIsTrue
? LHS
->getPredicate() : LHS
->getInversePredicate();
8350 // Can we infer anything when the two compares have matching operands?
8352 if (areMatchingOperands(L0
, L1
, R0
, R1
, AreSwappedOps
))
8353 return isImpliedCondMatchingOperands(LPred
, RPred
, AreSwappedOps
);
8355 // Can we infer anything when the 0-operands match and the 1-operands are
8356 // constants (not necessarily matching)?
8357 const APInt
*LC
, *RC
;
8358 if (L0
== R0
&& match(L1
, m_APInt(LC
)) && match(R1
, m_APInt(RC
)))
8359 return isImpliedCondCommonOperandWithConstants(LPred
, *LC
, RPred
, *RC
);
8362 return isImpliedCondOperands(LPred
, L0
, L1
, R0
, R1
, DL
, Depth
);
8364 return std::nullopt
;
8367 /// Return true if LHS implies RHS is true. Return false if LHS implies RHS is
8368 /// false. Otherwise, return std::nullopt if we can't infer anything. We
8369 /// expect the RHS to be an icmp and the LHS to be an 'and', 'or', or a 'select'
8371 static std::optional
<bool>
8372 isImpliedCondAndOr(const Instruction
*LHS
, CmpInst::Predicate RHSPred
,
8373 const Value
*RHSOp0
, const Value
*RHSOp1
,
8374 const DataLayout
&DL
, bool LHSIsTrue
, unsigned Depth
) {
8375 // The LHS must be an 'or', 'and', or a 'select' instruction.
8376 assert((LHS
->getOpcode() == Instruction::And
||
8377 LHS
->getOpcode() == Instruction::Or
||
8378 LHS
->getOpcode() == Instruction::Select
) &&
8379 "Expected LHS to be 'and', 'or', or 'select'.");
8381 assert(Depth
<= MaxAnalysisRecursionDepth
&& "Hit recursion limit");
8383 // If the result of an 'or' is false, then we know both legs of the 'or' are
8384 // false. Similarly, if the result of an 'and' is true, then we know both
8385 // legs of the 'and' are true.
8386 const Value
*ALHS
, *ARHS
;
8387 if ((!LHSIsTrue
&& match(LHS
, m_LogicalOr(m_Value(ALHS
), m_Value(ARHS
)))) ||
8388 (LHSIsTrue
&& match(LHS
, m_LogicalAnd(m_Value(ALHS
), m_Value(ARHS
))))) {
8389 // FIXME: Make this non-recursion.
8390 if (std::optional
<bool> Implication
= isImpliedCondition(
8391 ALHS
, RHSPred
, RHSOp0
, RHSOp1
, DL
, LHSIsTrue
, Depth
+ 1))
8393 if (std::optional
<bool> Implication
= isImpliedCondition(
8394 ARHS
, RHSPred
, RHSOp0
, RHSOp1
, DL
, LHSIsTrue
, Depth
+ 1))
8396 return std::nullopt
;
8398 return std::nullopt
;
8402 llvm::isImpliedCondition(const Value
*LHS
, CmpInst::Predicate RHSPred
,
8403 const Value
*RHSOp0
, const Value
*RHSOp1
,
8404 const DataLayout
&DL
, bool LHSIsTrue
, unsigned Depth
) {
8405 // Bail out when we hit the limit.
8406 if (Depth
== MaxAnalysisRecursionDepth
)
8407 return std::nullopt
;
8409 // A mismatch occurs when we compare a scalar cmp to a vector cmp, for
8411 if (RHSOp0
->getType()->isVectorTy() != LHS
->getType()->isVectorTy())
8412 return std::nullopt
;
8414 assert(LHS
->getType()->isIntOrIntVectorTy(1) &&
8415 "Expected integer type only!");
8417 // Both LHS and RHS are icmps.
8418 const ICmpInst
*LHSCmp
= dyn_cast
<ICmpInst
>(LHS
);
8420 return isImpliedCondICmps(LHSCmp
, RHSPred
, RHSOp0
, RHSOp1
, DL
, LHSIsTrue
,
8423 /// The LHS should be an 'or', 'and', or a 'select' instruction. We expect
8424 /// the RHS to be an icmp.
8425 /// FIXME: Add support for and/or/select on the RHS.
8426 if (const Instruction
*LHSI
= dyn_cast
<Instruction
>(LHS
)) {
8427 if ((LHSI
->getOpcode() == Instruction::And
||
8428 LHSI
->getOpcode() == Instruction::Or
||
8429 LHSI
->getOpcode() == Instruction::Select
))
8430 return isImpliedCondAndOr(LHSI
, RHSPred
, RHSOp0
, RHSOp1
, DL
, LHSIsTrue
,
8433 return std::nullopt
;
8436 std::optional
<bool> llvm::isImpliedCondition(const Value
*LHS
, const Value
*RHS
,
8437 const DataLayout
&DL
,
8438 bool LHSIsTrue
, unsigned Depth
) {
8439 // LHS ==> RHS by definition
8443 if (const ICmpInst
*RHSCmp
= dyn_cast
<ICmpInst
>(RHS
))
8444 return isImpliedCondition(LHS
, RHSCmp
->getPredicate(),
8445 RHSCmp
->getOperand(0), RHSCmp
->getOperand(1), DL
,
8448 if (Depth
== MaxAnalysisRecursionDepth
)
8449 return std::nullopt
;
8451 // LHS ==> (RHS1 || RHS2) if LHS ==> RHS1 or LHS ==> RHS2
8452 // LHS ==> !(RHS1 && RHS2) if LHS ==> !RHS1 or LHS ==> !RHS2
8453 const Value
*RHS1
, *RHS2
;
8454 if (match(RHS
, m_LogicalOr(m_Value(RHS1
), m_Value(RHS2
)))) {
8455 if (std::optional
<bool> Imp
=
8456 isImpliedCondition(LHS
, RHS1
, DL
, LHSIsTrue
, Depth
+ 1))
8459 if (std::optional
<bool> Imp
=
8460 isImpliedCondition(LHS
, RHS2
, DL
, LHSIsTrue
, Depth
+ 1))
8464 if (match(RHS
, m_LogicalAnd(m_Value(RHS1
), m_Value(RHS2
)))) {
8465 if (std::optional
<bool> Imp
=
8466 isImpliedCondition(LHS
, RHS1
, DL
, LHSIsTrue
, Depth
+ 1))
8469 if (std::optional
<bool> Imp
=
8470 isImpliedCondition(LHS
, RHS2
, DL
, LHSIsTrue
, Depth
+ 1))
8475 return std::nullopt
;
8478 // Returns a pair (Condition, ConditionIsTrue), where Condition is a branch
8479 // condition dominating ContextI or nullptr, if no condition is found.
8480 static std::pair
<Value
*, bool>
8481 getDomPredecessorCondition(const Instruction
*ContextI
) {
8482 if (!ContextI
|| !ContextI
->getParent())
8483 return {nullptr, false};
8485 // TODO: This is a poor/cheap way to determine dominance. Should we use a
8486 // dominator tree (eg, from a SimplifyQuery) instead?
8487 const BasicBlock
*ContextBB
= ContextI
->getParent();
8488 const BasicBlock
*PredBB
= ContextBB
->getSinglePredecessor();
8490 return {nullptr, false};
8492 // We need a conditional branch in the predecessor.
8494 BasicBlock
*TrueBB
, *FalseBB
;
8495 if (!match(PredBB
->getTerminator(), m_Br(m_Value(PredCond
), TrueBB
, FalseBB
)))
8496 return {nullptr, false};
8498 // The branch should get simplified. Don't bother simplifying this condition.
8499 if (TrueBB
== FalseBB
)
8500 return {nullptr, false};
8502 assert((TrueBB
== ContextBB
|| FalseBB
== ContextBB
) &&
8503 "Predecessor block does not point to successor?");
8505 // Is this condition implied by the predecessor condition?
8506 return {PredCond
, TrueBB
== ContextBB
};
8509 std::optional
<bool> llvm::isImpliedByDomCondition(const Value
*Cond
,
8510 const Instruction
*ContextI
,
8511 const DataLayout
&DL
) {
8512 assert(Cond
->getType()->isIntOrIntVectorTy(1) && "Condition must be bool");
8513 auto PredCond
= getDomPredecessorCondition(ContextI
);
8515 return isImpliedCondition(PredCond
.first
, Cond
, DL
, PredCond
.second
);
8516 return std::nullopt
;
8519 std::optional
<bool> llvm::isImpliedByDomCondition(CmpInst::Predicate Pred
,
8522 const Instruction
*ContextI
,
8523 const DataLayout
&DL
) {
8524 auto PredCond
= getDomPredecessorCondition(ContextI
);
8526 return isImpliedCondition(PredCond
.first
, Pred
, LHS
, RHS
, DL
,
8528 return std::nullopt
;
8531 static void setLimitsForBinOp(const BinaryOperator
&BO
, APInt
&Lower
,
8532 APInt
&Upper
, const InstrInfoQuery
&IIQ
,
8533 bool PreferSignedRange
) {
8534 unsigned Width
= Lower
.getBitWidth();
8536 switch (BO
.getOpcode()) {
8537 case Instruction::Add
:
8538 if (match(BO
.getOperand(1), m_APInt(C
)) && !C
->isZero()) {
8539 bool HasNSW
= IIQ
.hasNoSignedWrap(&BO
);
8540 bool HasNUW
= IIQ
.hasNoUnsignedWrap(&BO
);
8542 // If the caller expects a signed compare, then try to use a signed range.
8543 // Otherwise if both no-wraps are set, use the unsigned range because it
8544 // is never larger than the signed range. Example:
8545 // "add nuw nsw i8 X, -2" is unsigned [254,255] vs. signed [-128, 125].
8546 if (PreferSignedRange
&& HasNSW
&& HasNUW
)
8550 // 'add nuw x, C' produces [C, UINT_MAX].
8552 } else if (HasNSW
) {
8553 if (C
->isNegative()) {
8554 // 'add nsw x, -C' produces [SINT_MIN, SINT_MAX - C].
8555 Lower
= APInt::getSignedMinValue(Width
);
8556 Upper
= APInt::getSignedMaxValue(Width
) + *C
+ 1;
8558 // 'add nsw x, +C' produces [SINT_MIN + C, SINT_MAX].
8559 Lower
= APInt::getSignedMinValue(Width
) + *C
;
8560 Upper
= APInt::getSignedMaxValue(Width
) + 1;
8566 case Instruction::And
:
8567 if (match(BO
.getOperand(1), m_APInt(C
)))
8568 // 'and x, C' produces [0, C].
8572 case Instruction::Or
:
8573 if (match(BO
.getOperand(1), m_APInt(C
)))
8574 // 'or x, C' produces [C, UINT_MAX].
8578 case Instruction::AShr
:
8579 if (match(BO
.getOperand(1), m_APInt(C
)) && C
->ult(Width
)) {
8580 // 'ashr x, C' produces [INT_MIN >> C, INT_MAX >> C].
8581 Lower
= APInt::getSignedMinValue(Width
).ashr(*C
);
8582 Upper
= APInt::getSignedMaxValue(Width
).ashr(*C
) + 1;
8583 } else if (match(BO
.getOperand(0), m_APInt(C
))) {
8584 unsigned ShiftAmount
= Width
- 1;
8585 if (!C
->isZero() && IIQ
.isExact(&BO
))
8586 ShiftAmount
= C
->countr_zero();
8587 if (C
->isNegative()) {
8588 // 'ashr C, x' produces [C, C >> (Width-1)]
8590 Upper
= C
->ashr(ShiftAmount
) + 1;
8592 // 'ashr C, x' produces [C >> (Width-1), C]
8593 Lower
= C
->ashr(ShiftAmount
);
8599 case Instruction::LShr
:
8600 if (match(BO
.getOperand(1), m_APInt(C
)) && C
->ult(Width
)) {
8601 // 'lshr x, C' produces [0, UINT_MAX >> C].
8602 Upper
= APInt::getAllOnes(Width
).lshr(*C
) + 1;
8603 } else if (match(BO
.getOperand(0), m_APInt(C
))) {
8604 // 'lshr C, x' produces [C >> (Width-1), C].
8605 unsigned ShiftAmount
= Width
- 1;
8606 if (!C
->isZero() && IIQ
.isExact(&BO
))
8607 ShiftAmount
= C
->countr_zero();
8608 Lower
= C
->lshr(ShiftAmount
);
8613 case Instruction::Shl
:
8614 if (match(BO
.getOperand(0), m_APInt(C
))) {
8615 if (IIQ
.hasNoUnsignedWrap(&BO
)) {
8616 // 'shl nuw C, x' produces [C, C << CLZ(C)]
8618 Upper
= Lower
.shl(Lower
.countl_zero()) + 1;
8619 } else if (BO
.hasNoSignedWrap()) { // TODO: What if both nuw+nsw?
8620 if (C
->isNegative()) {
8621 // 'shl nsw C, x' produces [C << CLO(C)-1, C]
8622 unsigned ShiftAmount
= C
->countl_one() - 1;
8623 Lower
= C
->shl(ShiftAmount
);
8626 // 'shl nsw C, x' produces [C, C << CLZ(C)-1]
8627 unsigned ShiftAmount
= C
->countl_zero() - 1;
8629 Upper
= C
->shl(ShiftAmount
) + 1;
8635 case Instruction::SDiv
:
8636 if (match(BO
.getOperand(1), m_APInt(C
))) {
8637 APInt IntMin
= APInt::getSignedMinValue(Width
);
8638 APInt IntMax
= APInt::getSignedMaxValue(Width
);
8639 if (C
->isAllOnes()) {
8640 // 'sdiv x, -1' produces [INT_MIN + 1, INT_MAX]
8641 // where C != -1 and C != 0 and C != 1
8644 } else if (C
->countl_zero() < Width
- 1) {
8645 // 'sdiv x, C' produces [INT_MIN / C, INT_MAX / C]
8646 // where C != -1 and C != 0 and C != 1
8647 Lower
= IntMin
.sdiv(*C
);
8648 Upper
= IntMax
.sdiv(*C
);
8649 if (Lower
.sgt(Upper
))
8650 std::swap(Lower
, Upper
);
8652 assert(Upper
!= Lower
&& "Upper part of range has wrapped!");
8654 } else if (match(BO
.getOperand(0), m_APInt(C
))) {
8655 if (C
->isMinSignedValue()) {
8656 // 'sdiv INT_MIN, x' produces [INT_MIN, INT_MIN / -2].
8658 Upper
= Lower
.lshr(1) + 1;
8660 // 'sdiv C, x' produces [-|C|, |C|].
8661 Upper
= C
->abs() + 1;
8662 Lower
= (-Upper
) + 1;
8667 case Instruction::UDiv
:
8668 if (match(BO
.getOperand(1), m_APInt(C
)) && !C
->isZero()) {
8669 // 'udiv x, C' produces [0, UINT_MAX / C].
8670 Upper
= APInt::getMaxValue(Width
).udiv(*C
) + 1;
8671 } else if (match(BO
.getOperand(0), m_APInt(C
))) {
8672 // 'udiv C, x' produces [0, C].
8677 case Instruction::SRem
:
8678 if (match(BO
.getOperand(1), m_APInt(C
))) {
8679 // 'srem x, C' produces (-|C|, |C|).
8681 Lower
= (-Upper
) + 1;
8685 case Instruction::URem
:
8686 if (match(BO
.getOperand(1), m_APInt(C
)))
8687 // 'urem x, C' produces [0, C).
8696 static ConstantRange
getRangeForIntrinsic(const IntrinsicInst
&II
) {
8697 unsigned Width
= II
.getType()->getScalarSizeInBits();
8699 switch (II
.getIntrinsicID()) {
8700 case Intrinsic::ctpop
:
8701 case Intrinsic::ctlz
:
8702 case Intrinsic::cttz
:
8703 // Maximum of set/clear bits is the bit width.
8704 return ConstantRange(APInt::getZero(Width
), APInt(Width
, Width
+ 1));
8705 case Intrinsic::uadd_sat
:
8706 // uadd.sat(x, C) produces [C, UINT_MAX].
8707 if (match(II
.getOperand(0), m_APInt(C
)) ||
8708 match(II
.getOperand(1), m_APInt(C
)))
8709 return ConstantRange::getNonEmpty(*C
, APInt::getZero(Width
));
8711 case Intrinsic::sadd_sat
:
8712 if (match(II
.getOperand(0), m_APInt(C
)) ||
8713 match(II
.getOperand(1), m_APInt(C
))) {
8714 if (C
->isNegative())
8715 // sadd.sat(x, -C) produces [SINT_MIN, SINT_MAX + (-C)].
8716 return ConstantRange::getNonEmpty(APInt::getSignedMinValue(Width
),
8717 APInt::getSignedMaxValue(Width
) + *C
+
8720 // sadd.sat(x, +C) produces [SINT_MIN + C, SINT_MAX].
8721 return ConstantRange::getNonEmpty(APInt::getSignedMinValue(Width
) + *C
,
8722 APInt::getSignedMaxValue(Width
) + 1);
8725 case Intrinsic::usub_sat
:
8726 // usub.sat(C, x) produces [0, C].
8727 if (match(II
.getOperand(0), m_APInt(C
)))
8728 return ConstantRange::getNonEmpty(APInt::getZero(Width
), *C
+ 1);
8730 // usub.sat(x, C) produces [0, UINT_MAX - C].
8731 if (match(II
.getOperand(1), m_APInt(C
)))
8732 return ConstantRange::getNonEmpty(APInt::getZero(Width
),
8733 APInt::getMaxValue(Width
) - *C
+ 1);
8735 case Intrinsic::ssub_sat
:
8736 if (match(II
.getOperand(0), m_APInt(C
))) {
8737 if (C
->isNegative())
8738 // ssub.sat(-C, x) produces [SINT_MIN, -SINT_MIN + (-C)].
8739 return ConstantRange::getNonEmpty(APInt::getSignedMinValue(Width
),
8740 *C
- APInt::getSignedMinValue(Width
) +
8743 // ssub.sat(+C, x) produces [-SINT_MAX + C, SINT_MAX].
8744 return ConstantRange::getNonEmpty(*C
- APInt::getSignedMaxValue(Width
),
8745 APInt::getSignedMaxValue(Width
) + 1);
8746 } else if (match(II
.getOperand(1), m_APInt(C
))) {
8747 if (C
->isNegative())
8748 // ssub.sat(x, -C) produces [SINT_MIN - (-C), SINT_MAX]:
8749 return ConstantRange::getNonEmpty(APInt::getSignedMinValue(Width
) - *C
,
8750 APInt::getSignedMaxValue(Width
) + 1);
8752 // ssub.sat(x, +C) produces [SINT_MIN, SINT_MAX - C].
8753 return ConstantRange::getNonEmpty(APInt::getSignedMinValue(Width
),
8754 APInt::getSignedMaxValue(Width
) - *C
+
8758 case Intrinsic::umin
:
8759 case Intrinsic::umax
:
8760 case Intrinsic::smin
:
8761 case Intrinsic::smax
:
8762 if (!match(II
.getOperand(0), m_APInt(C
)) &&
8763 !match(II
.getOperand(1), m_APInt(C
)))
8766 switch (II
.getIntrinsicID()) {
8767 case Intrinsic::umin
:
8768 return ConstantRange::getNonEmpty(APInt::getZero(Width
), *C
+ 1);
8769 case Intrinsic::umax
:
8770 return ConstantRange::getNonEmpty(*C
, APInt::getZero(Width
));
8771 case Intrinsic::smin
:
8772 return ConstantRange::getNonEmpty(APInt::getSignedMinValue(Width
),
8774 case Intrinsic::smax
:
8775 return ConstantRange::getNonEmpty(*C
,
8776 APInt::getSignedMaxValue(Width
) + 1);
8778 llvm_unreachable("Must be min/max intrinsic");
8781 case Intrinsic::abs
:
8782 // If abs of SIGNED_MIN is poison, then the result is [0..SIGNED_MAX],
8783 // otherwise it is [0..SIGNED_MIN], as -SIGNED_MIN == SIGNED_MIN.
8784 if (match(II
.getOperand(1), m_One()))
8785 return ConstantRange(APInt::getZero(Width
),
8786 APInt::getSignedMaxValue(Width
) + 1);
8788 return ConstantRange(APInt::getZero(Width
),
8789 APInt::getSignedMinValue(Width
) + 1);
8790 case Intrinsic::vscale
:
8791 if (!II
.getParent() || !II
.getFunction())
8793 return getVScaleRange(II
.getFunction(), Width
);
8798 return ConstantRange::getFull(Width
);
8801 static void setLimitsForSelectPattern(const SelectInst
&SI
, APInt
&Lower
,
8802 APInt
&Upper
, const InstrInfoQuery
&IIQ
) {
8803 const Value
*LHS
= nullptr, *RHS
= nullptr;
8804 SelectPatternResult R
= matchSelectPattern(&SI
, LHS
, RHS
);
8805 if (R
.Flavor
== SPF_UNKNOWN
)
8808 unsigned BitWidth
= SI
.getType()->getScalarSizeInBits();
8810 if (R
.Flavor
== SelectPatternFlavor::SPF_ABS
) {
8811 // If the negation part of the abs (in RHS) has the NSW flag,
8812 // then the result of abs(X) is [0..SIGNED_MAX],
8813 // otherwise it is [0..SIGNED_MIN], as -SIGNED_MIN == SIGNED_MIN.
8814 Lower
= APInt::getZero(BitWidth
);
8815 if (match(RHS
, m_Neg(m_Specific(LHS
))) &&
8816 IIQ
.hasNoSignedWrap(cast
<Instruction
>(RHS
)))
8817 Upper
= APInt::getSignedMaxValue(BitWidth
) + 1;
8819 Upper
= APInt::getSignedMinValue(BitWidth
) + 1;
8823 if (R
.Flavor
== SelectPatternFlavor::SPF_NABS
) {
8824 // The result of -abs(X) is <= 0.
8825 Lower
= APInt::getSignedMinValue(BitWidth
);
8826 Upper
= APInt(BitWidth
, 1);
8831 if (!match(LHS
, m_APInt(C
)) && !match(RHS
, m_APInt(C
)))
8842 Lower
= APInt::getSignedMinValue(BitWidth
);
8847 Upper
= APInt::getSignedMaxValue(BitWidth
) + 1;
8854 static void setLimitForFPToI(const Instruction
*I
, APInt
&Lower
, APInt
&Upper
) {
8855 // The maximum representable value of a half is 65504. For floats the maximum
8856 // value is 3.4e38 which requires roughly 129 bits.
8857 unsigned BitWidth
= I
->getType()->getScalarSizeInBits();
8858 if (!I
->getOperand(0)->getType()->getScalarType()->isHalfTy())
8860 if (isa
<FPToSIInst
>(I
) && BitWidth
>= 17) {
8861 Lower
= APInt(BitWidth
, -65504);
8862 Upper
= APInt(BitWidth
, 65505);
8865 if (isa
<FPToUIInst
>(I
) && BitWidth
>= 16) {
8866 // For a fptoui the lower limit is left as 0.
8867 Upper
= APInt(BitWidth
, 65505);
8871 ConstantRange
llvm::computeConstantRange(const Value
*V
, bool ForSigned
,
8872 bool UseInstrInfo
, AssumptionCache
*AC
,
8873 const Instruction
*CtxI
,
8874 const DominatorTree
*DT
,
8876 assert(V
->getType()->isIntOrIntVectorTy() && "Expected integer instruction");
8878 if (Depth
== MaxAnalysisRecursionDepth
)
8879 return ConstantRange::getFull(V
->getType()->getScalarSizeInBits());
8882 if (match(V
, m_APInt(C
)))
8883 return ConstantRange(*C
);
8885 InstrInfoQuery
IIQ(UseInstrInfo
);
8886 unsigned BitWidth
= V
->getType()->getScalarSizeInBits();
8887 ConstantRange CR
= ConstantRange::getFull(BitWidth
);
8888 if (auto *BO
= dyn_cast
<BinaryOperator
>(V
)) {
8889 APInt Lower
= APInt(BitWidth
, 0);
8890 APInt Upper
= APInt(BitWidth
, 0);
8891 // TODO: Return ConstantRange.
8892 setLimitsForBinOp(*BO
, Lower
, Upper
, IIQ
, ForSigned
);
8893 CR
= ConstantRange::getNonEmpty(Lower
, Upper
);
8894 } else if (auto *II
= dyn_cast
<IntrinsicInst
>(V
))
8895 CR
= getRangeForIntrinsic(*II
);
8896 else if (auto *SI
= dyn_cast
<SelectInst
>(V
)) {
8897 APInt Lower
= APInt(BitWidth
, 0);
8898 APInt Upper
= APInt(BitWidth
, 0);
8899 // TODO: Return ConstantRange.
8900 setLimitsForSelectPattern(*SI
, Lower
, Upper
, IIQ
);
8901 CR
= ConstantRange::getNonEmpty(Lower
, Upper
);
8902 } else if (isa
<FPToUIInst
>(V
) || isa
<FPToSIInst
>(V
)) {
8903 APInt Lower
= APInt(BitWidth
, 0);
8904 APInt Upper
= APInt(BitWidth
, 0);
8905 // TODO: Return ConstantRange.
8906 setLimitForFPToI(cast
<Instruction
>(V
), Lower
, Upper
);
8907 CR
= ConstantRange::getNonEmpty(Lower
, Upper
);
8910 if (auto *I
= dyn_cast
<Instruction
>(V
))
8911 if (auto *Range
= IIQ
.getMetadata(I
, LLVMContext::MD_range
))
8912 CR
= CR
.intersectWith(getConstantRangeFromMetadata(*Range
));
8915 // Try to restrict the range based on information from assumptions.
8916 for (auto &AssumeVH
: AC
->assumptionsFor(V
)) {
8919 CallInst
*I
= cast
<CallInst
>(AssumeVH
);
8920 assert(I
->getParent()->getParent() == CtxI
->getParent()->getParent() &&
8921 "Got assumption for the wrong function!");
8922 assert(I
->getCalledFunction()->getIntrinsicID() == Intrinsic::assume
&&
8923 "must be an assume intrinsic");
8925 if (!isValidAssumeForContext(I
, CtxI
, DT
))
8927 Value
*Arg
= I
->getArgOperand(0);
8928 ICmpInst
*Cmp
= dyn_cast
<ICmpInst
>(Arg
);
8929 // Currently we just use information from comparisons.
8930 if (!Cmp
|| Cmp
->getOperand(0) != V
)
8932 // TODO: Set "ForSigned" parameter via Cmp->isSigned()?
8934 computeConstantRange(Cmp
->getOperand(1), /* ForSigned */ false,
8935 UseInstrInfo
, AC
, I
, DT
, Depth
+ 1);
8936 CR
= CR
.intersectWith(
8937 ConstantRange::makeAllowedICmpRegion(Cmp
->getPredicate(), RHS
));