[lld][WebAssembly] Add `--table-base` setting
[llvm-project.git] / clang / lib / Analysis / ReachableCode.cpp
blob1bf0d9aec8620e184af91dc090b272d4c7c26f9c
1 //===-- ReachableCode.cpp - Code Reachability Analysis --------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements a flow-sensitive, path-insensitive analysis of
10 // determining reachable blocks within a CFG.
12 //===----------------------------------------------------------------------===//
14 #include "clang/Analysis/Analyses/ReachableCode.h"
15 #include "clang/AST/Attr.h"
16 #include "clang/AST/Expr.h"
17 #include "clang/AST/ExprCXX.h"
18 #include "clang/AST/ExprObjC.h"
19 #include "clang/AST/ParentMap.h"
20 #include "clang/AST/StmtCXX.h"
21 #include "clang/Analysis/AnalysisDeclContext.h"
22 #include "clang/Analysis/CFG.h"
23 #include "clang/Basic/Builtins.h"
24 #include "clang/Basic/SourceManager.h"
25 #include "clang/Lex/Preprocessor.h"
26 #include "llvm/ADT/BitVector.h"
27 #include "llvm/ADT/SmallVector.h"
28 #include <optional>
30 using namespace clang;
32 //===----------------------------------------------------------------------===//
33 // Core Reachability Analysis routines.
34 //===----------------------------------------------------------------------===//
36 static bool isEnumConstant(const Expr *Ex) {
37 const DeclRefExpr *DR = dyn_cast<DeclRefExpr>(Ex);
38 if (!DR)
39 return false;
40 return isa<EnumConstantDecl>(DR->getDecl());
43 static bool isTrivialExpression(const Expr *Ex) {
44 Ex = Ex->IgnoreParenCasts();
45 return isa<IntegerLiteral>(Ex) || isa<StringLiteral>(Ex) ||
46 isa<CXXBoolLiteralExpr>(Ex) || isa<ObjCBoolLiteralExpr>(Ex) ||
47 isa<CharacterLiteral>(Ex) ||
48 isEnumConstant(Ex);
51 static bool isTrivialDoWhile(const CFGBlock *B, const Stmt *S) {
52 // Check if the block ends with a do...while() and see if 'S' is the
53 // condition.
54 if (const Stmt *Term = B->getTerminatorStmt()) {
55 if (const DoStmt *DS = dyn_cast<DoStmt>(Term)) {
56 const Expr *Cond = DS->getCond()->IgnoreParenCasts();
57 return Cond == S && isTrivialExpression(Cond);
60 return false;
63 static bool isBuiltinUnreachable(const Stmt *S) {
64 if (const auto *DRE = dyn_cast<DeclRefExpr>(S))
65 if (const auto *FDecl = dyn_cast<FunctionDecl>(DRE->getDecl()))
66 return FDecl->getIdentifier() &&
67 FDecl->getBuiltinID() == Builtin::BI__builtin_unreachable;
68 return false;
71 static bool isBuiltinAssumeFalse(const CFGBlock *B, const Stmt *S,
72 ASTContext &C) {
73 if (B->empty()) {
74 // Happens if S is B's terminator and B contains nothing else
75 // (e.g. a CFGBlock containing only a goto).
76 return false;
78 if (std::optional<CFGStmt> CS = B->back().getAs<CFGStmt>()) {
79 if (const auto *CE = dyn_cast<CallExpr>(CS->getStmt())) {
80 return CE->getCallee()->IgnoreCasts() == S && CE->isBuiltinAssumeFalse(C);
83 return false;
86 static bool isDeadReturn(const CFGBlock *B, const Stmt *S) {
87 // Look to see if the current control flow ends with a 'return', and see if
88 // 'S' is a substatement. The 'return' may not be the last element in the
89 // block, or may be in a subsequent block because of destructors.
90 const CFGBlock *Current = B;
91 while (true) {
92 for (const CFGElement &CE : llvm::reverse(*Current)) {
93 if (std::optional<CFGStmt> CS = CE.getAs<CFGStmt>()) {
94 if (const ReturnStmt *RS = dyn_cast<ReturnStmt>(CS->getStmt())) {
95 if (RS == S)
96 return true;
97 if (const Expr *RE = RS->getRetValue()) {
98 RE = RE->IgnoreParenCasts();
99 if (RE == S)
100 return true;
101 ParentMap PM(const_cast<Expr *>(RE));
102 // If 'S' is in the ParentMap, it is a subexpression of
103 // the return statement.
104 return PM.getParent(S);
107 break;
110 // Note also that we are restricting the search for the return statement
111 // to stop at control-flow; only part of a return statement may be dead,
112 // without the whole return statement being dead.
113 if (Current->getTerminator().isTemporaryDtorsBranch()) {
114 // Temporary destructors have a predictable control flow, thus we want to
115 // look into the next block for the return statement.
116 // We look into the false branch, as we know the true branch only contains
117 // the call to the destructor.
118 assert(Current->succ_size() == 2);
119 Current = *(Current->succ_begin() + 1);
120 } else if (!Current->getTerminatorStmt() && Current->succ_size() == 1) {
121 // If there is only one successor, we're not dealing with outgoing control
122 // flow. Thus, look into the next block.
123 Current = *Current->succ_begin();
124 if (Current->pred_size() > 1) {
125 // If there is more than one predecessor, we're dealing with incoming
126 // control flow - if the return statement is in that block, it might
127 // well be reachable via a different control flow, thus it's not dead.
128 return false;
130 } else {
131 // We hit control flow or a dead end. Stop searching.
132 return false;
135 llvm_unreachable("Broke out of infinite loop.");
138 static SourceLocation getTopMostMacro(SourceLocation Loc, SourceManager &SM) {
139 assert(Loc.isMacroID());
140 SourceLocation Last;
141 do {
142 Last = Loc;
143 Loc = SM.getImmediateMacroCallerLoc(Loc);
144 } while (Loc.isMacroID());
145 return Last;
148 /// Returns true if the statement is expanded from a configuration macro.
149 static bool isExpandedFromConfigurationMacro(const Stmt *S,
150 Preprocessor &PP,
151 bool IgnoreYES_NO = false) {
152 // FIXME: This is not very precise. Here we just check to see if the
153 // value comes from a macro, but we can do much better. This is likely
154 // to be over conservative. This logic is factored into a separate function
155 // so that we can refine it later.
156 SourceLocation L = S->getBeginLoc();
157 if (L.isMacroID()) {
158 SourceManager &SM = PP.getSourceManager();
159 if (IgnoreYES_NO) {
160 // The Objective-C constant 'YES' and 'NO'
161 // are defined as macros. Do not treat them
162 // as configuration values.
163 SourceLocation TopL = getTopMostMacro(L, SM);
164 StringRef MacroName = PP.getImmediateMacroName(TopL);
165 if (MacroName == "YES" || MacroName == "NO")
166 return false;
167 } else if (!PP.getLangOpts().CPlusPlus) {
168 // Do not treat C 'false' and 'true' macros as configuration values.
169 SourceLocation TopL = getTopMostMacro(L, SM);
170 StringRef MacroName = PP.getImmediateMacroName(TopL);
171 if (MacroName == "false" || MacroName == "true")
172 return false;
174 return true;
176 return false;
179 static bool isConfigurationValue(const ValueDecl *D, Preprocessor &PP);
181 /// Returns true if the statement represents a configuration value.
183 /// A configuration value is something usually determined at compile-time
184 /// to conditionally always execute some branch. Such guards are for
185 /// "sometimes unreachable" code. Such code is usually not interesting
186 /// to report as unreachable, and may mask truly unreachable code within
187 /// those blocks.
188 static bool isConfigurationValue(const Stmt *S,
189 Preprocessor &PP,
190 SourceRange *SilenceableCondVal = nullptr,
191 bool IncludeIntegers = true,
192 bool WrappedInParens = false) {
193 if (!S)
194 return false;
196 if (const auto *Ex = dyn_cast<Expr>(S))
197 S = Ex->IgnoreImplicit();
199 if (const auto *Ex = dyn_cast<Expr>(S))
200 S = Ex->IgnoreCasts();
202 // Special case looking for the sigil '()' around an integer literal.
203 if (const ParenExpr *PE = dyn_cast<ParenExpr>(S))
204 if (!PE->getBeginLoc().isMacroID())
205 return isConfigurationValue(PE->getSubExpr(), PP, SilenceableCondVal,
206 IncludeIntegers, true);
208 if (const Expr *Ex = dyn_cast<Expr>(S))
209 S = Ex->IgnoreCasts();
211 bool IgnoreYES_NO = false;
213 switch (S->getStmtClass()) {
214 case Stmt::CallExprClass: {
215 const FunctionDecl *Callee =
216 dyn_cast_or_null<FunctionDecl>(cast<CallExpr>(S)->getCalleeDecl());
217 return Callee ? Callee->isConstexpr() : false;
219 case Stmt::DeclRefExprClass:
220 return isConfigurationValue(cast<DeclRefExpr>(S)->getDecl(), PP);
221 case Stmt::ObjCBoolLiteralExprClass:
222 IgnoreYES_NO = true;
223 [[fallthrough]];
224 case Stmt::CXXBoolLiteralExprClass:
225 case Stmt::IntegerLiteralClass: {
226 const Expr *E = cast<Expr>(S);
227 if (IncludeIntegers) {
228 if (SilenceableCondVal && !SilenceableCondVal->getBegin().isValid())
229 *SilenceableCondVal = E->getSourceRange();
230 return WrappedInParens ||
231 isExpandedFromConfigurationMacro(E, PP, IgnoreYES_NO);
233 return false;
235 case Stmt::MemberExprClass:
236 return isConfigurationValue(cast<MemberExpr>(S)->getMemberDecl(), PP);
237 case Stmt::UnaryExprOrTypeTraitExprClass:
238 return true;
239 case Stmt::BinaryOperatorClass: {
240 const BinaryOperator *B = cast<BinaryOperator>(S);
241 // Only include raw integers (not enums) as configuration
242 // values if they are used in a logical or comparison operator
243 // (not arithmetic).
244 IncludeIntegers &= (B->isLogicalOp() || B->isComparisonOp());
245 return isConfigurationValue(B->getLHS(), PP, SilenceableCondVal,
246 IncludeIntegers) ||
247 isConfigurationValue(B->getRHS(), PP, SilenceableCondVal,
248 IncludeIntegers);
250 case Stmt::UnaryOperatorClass: {
251 const UnaryOperator *UO = cast<UnaryOperator>(S);
252 if (UO->getOpcode() != UO_LNot && UO->getOpcode() != UO_Minus)
253 return false;
254 bool SilenceableCondValNotSet =
255 SilenceableCondVal && SilenceableCondVal->getBegin().isInvalid();
256 bool IsSubExprConfigValue =
257 isConfigurationValue(UO->getSubExpr(), PP, SilenceableCondVal,
258 IncludeIntegers, WrappedInParens);
259 // Update the silenceable condition value source range only if the range
260 // was set directly by the child expression.
261 if (SilenceableCondValNotSet &&
262 SilenceableCondVal->getBegin().isValid() &&
263 *SilenceableCondVal ==
264 UO->getSubExpr()->IgnoreCasts()->getSourceRange())
265 *SilenceableCondVal = UO->getSourceRange();
266 return IsSubExprConfigValue;
268 default:
269 return false;
273 static bool isConfigurationValue(const ValueDecl *D, Preprocessor &PP) {
274 if (const EnumConstantDecl *ED = dyn_cast<EnumConstantDecl>(D))
275 return isConfigurationValue(ED->getInitExpr(), PP);
276 if (const VarDecl *VD = dyn_cast<VarDecl>(D)) {
277 // As a heuristic, treat globals as configuration values. Note
278 // that we only will get here if Sema evaluated this
279 // condition to a constant expression, which means the global
280 // had to be declared in a way to be a truly constant value.
281 // We could generalize this to local variables, but it isn't
282 // clear if those truly represent configuration values that
283 // gate unreachable code.
284 if (!VD->hasLocalStorage())
285 return true;
287 // As a heuristic, locals that have been marked 'const' explicitly
288 // can be treated as configuration values as well.
289 return VD->getType().isLocalConstQualified();
291 return false;
294 /// Returns true if we should always explore all successors of a block.
295 static bool shouldTreatSuccessorsAsReachable(const CFGBlock *B,
296 Preprocessor &PP) {
297 if (const Stmt *Term = B->getTerminatorStmt()) {
298 if (isa<SwitchStmt>(Term))
299 return true;
300 // Specially handle '||' and '&&'.
301 if (isa<BinaryOperator>(Term)) {
302 return isConfigurationValue(Term, PP);
304 // Do not treat constexpr if statement successors as unreachable in warnings
305 // since the point of these statements is to determine branches at compile
306 // time.
307 if (const auto *IS = dyn_cast<IfStmt>(Term);
308 IS != nullptr && IS->isConstexpr())
309 return true;
312 const Stmt *Cond = B->getTerminatorCondition(/* stripParens */ false);
313 return isConfigurationValue(Cond, PP);
316 static unsigned scanFromBlock(const CFGBlock *Start,
317 llvm::BitVector &Reachable,
318 Preprocessor *PP,
319 bool IncludeSometimesUnreachableEdges) {
320 unsigned count = 0;
322 // Prep work queue
323 SmallVector<const CFGBlock*, 32> WL;
325 // The entry block may have already been marked reachable
326 // by the caller.
327 if (!Reachable[Start->getBlockID()]) {
328 ++count;
329 Reachable[Start->getBlockID()] = true;
332 WL.push_back(Start);
334 // Find the reachable blocks from 'Start'.
335 while (!WL.empty()) {
336 const CFGBlock *item = WL.pop_back_val();
338 // There are cases where we want to treat all successors as reachable.
339 // The idea is that some "sometimes unreachable" code is not interesting,
340 // and that we should forge ahead and explore those branches anyway.
341 // This allows us to potentially uncover some "always unreachable" code
342 // within the "sometimes unreachable" code.
343 // Look at the successors and mark then reachable.
344 std::optional<bool> TreatAllSuccessorsAsReachable;
345 if (!IncludeSometimesUnreachableEdges)
346 TreatAllSuccessorsAsReachable = false;
348 for (CFGBlock::const_succ_iterator I = item->succ_begin(),
349 E = item->succ_end(); I != E; ++I) {
350 const CFGBlock *B = *I;
351 if (!B) do {
352 const CFGBlock *UB = I->getPossiblyUnreachableBlock();
353 if (!UB)
354 break;
356 if (!TreatAllSuccessorsAsReachable) {
357 assert(PP);
358 TreatAllSuccessorsAsReachable =
359 shouldTreatSuccessorsAsReachable(item, *PP);
362 if (*TreatAllSuccessorsAsReachable) {
363 B = UB;
364 break;
367 while (false);
369 if (B) {
370 unsigned blockID = B->getBlockID();
371 if (!Reachable[blockID]) {
372 Reachable.set(blockID);
373 WL.push_back(B);
374 ++count;
379 return count;
382 static unsigned scanMaybeReachableFromBlock(const CFGBlock *Start,
383 Preprocessor &PP,
384 llvm::BitVector &Reachable) {
385 return scanFromBlock(Start, Reachable, &PP, true);
388 //===----------------------------------------------------------------------===//
389 // Dead Code Scanner.
390 //===----------------------------------------------------------------------===//
392 namespace {
393 class DeadCodeScan {
394 llvm::BitVector Visited;
395 llvm::BitVector &Reachable;
396 SmallVector<const CFGBlock *, 10> WorkList;
397 Preprocessor &PP;
398 ASTContext &C;
400 typedef SmallVector<std::pair<const CFGBlock *, const Stmt *>, 12>
401 DeferredLocsTy;
403 DeferredLocsTy DeferredLocs;
405 public:
406 DeadCodeScan(llvm::BitVector &reachable, Preprocessor &PP, ASTContext &C)
407 : Visited(reachable.size()),
408 Reachable(reachable),
409 PP(PP), C(C) {}
411 void enqueue(const CFGBlock *block);
412 unsigned scanBackwards(const CFGBlock *Start,
413 clang::reachable_code::Callback &CB);
415 bool isDeadCodeRoot(const CFGBlock *Block);
417 const Stmt *findDeadCode(const CFGBlock *Block);
419 void reportDeadCode(const CFGBlock *B,
420 const Stmt *S,
421 clang::reachable_code::Callback &CB);
425 void DeadCodeScan::enqueue(const CFGBlock *block) {
426 unsigned blockID = block->getBlockID();
427 if (Reachable[blockID] || Visited[blockID])
428 return;
429 Visited[blockID] = true;
430 WorkList.push_back(block);
433 bool DeadCodeScan::isDeadCodeRoot(const clang::CFGBlock *Block) {
434 bool isDeadRoot = true;
436 for (CFGBlock::const_pred_iterator I = Block->pred_begin(),
437 E = Block->pred_end(); I != E; ++I) {
438 if (const CFGBlock *PredBlock = *I) {
439 unsigned blockID = PredBlock->getBlockID();
440 if (Visited[blockID]) {
441 isDeadRoot = false;
442 continue;
444 if (!Reachable[blockID]) {
445 isDeadRoot = false;
446 Visited[blockID] = true;
447 WorkList.push_back(PredBlock);
448 continue;
453 return isDeadRoot;
456 static bool isValidDeadStmt(const Stmt *S) {
457 if (S->getBeginLoc().isInvalid())
458 return false;
459 if (const BinaryOperator *BO = dyn_cast<BinaryOperator>(S))
460 return BO->getOpcode() != BO_Comma;
461 return true;
464 const Stmt *DeadCodeScan::findDeadCode(const clang::CFGBlock *Block) {
465 for (CFGBlock::const_iterator I = Block->begin(), E = Block->end(); I!=E; ++I)
466 if (std::optional<CFGStmt> CS = I->getAs<CFGStmt>()) {
467 const Stmt *S = CS->getStmt();
468 if (isValidDeadStmt(S))
469 return S;
472 CFGTerminator T = Block->getTerminator();
473 if (T.isStmtBranch()) {
474 const Stmt *S = T.getStmt();
475 if (S && isValidDeadStmt(S))
476 return S;
479 return nullptr;
482 static int SrcCmp(const std::pair<const CFGBlock *, const Stmt *> *p1,
483 const std::pair<const CFGBlock *, const Stmt *> *p2) {
484 if (p1->second->getBeginLoc() < p2->second->getBeginLoc())
485 return -1;
486 if (p2->second->getBeginLoc() < p1->second->getBeginLoc())
487 return 1;
488 return 0;
491 unsigned DeadCodeScan::scanBackwards(const clang::CFGBlock *Start,
492 clang::reachable_code::Callback &CB) {
494 unsigned count = 0;
495 enqueue(Start);
497 while (!WorkList.empty()) {
498 const CFGBlock *Block = WorkList.pop_back_val();
500 // It is possible that this block has been marked reachable after
501 // it was enqueued.
502 if (Reachable[Block->getBlockID()])
503 continue;
505 // Look for any dead code within the block.
506 const Stmt *S = findDeadCode(Block);
508 if (!S) {
509 // No dead code. Possibly an empty block. Look at dead predecessors.
510 for (CFGBlock::const_pred_iterator I = Block->pred_begin(),
511 E = Block->pred_end(); I != E; ++I) {
512 if (const CFGBlock *predBlock = *I)
513 enqueue(predBlock);
515 continue;
518 // Specially handle macro-expanded code.
519 if (S->getBeginLoc().isMacroID()) {
520 count += scanMaybeReachableFromBlock(Block, PP, Reachable);
521 continue;
524 if (isDeadCodeRoot(Block)) {
525 reportDeadCode(Block, S, CB);
526 count += scanMaybeReachableFromBlock(Block, PP, Reachable);
528 else {
529 // Record this statement as the possibly best location in a
530 // strongly-connected component of dead code for emitting a
531 // warning.
532 DeferredLocs.push_back(std::make_pair(Block, S));
536 // If we didn't find a dead root, then report the dead code with the
537 // earliest location.
538 if (!DeferredLocs.empty()) {
539 llvm::array_pod_sort(DeferredLocs.begin(), DeferredLocs.end(), SrcCmp);
540 for (const auto &I : DeferredLocs) {
541 const CFGBlock *Block = I.first;
542 if (Reachable[Block->getBlockID()])
543 continue;
544 reportDeadCode(Block, I.second, CB);
545 count += scanMaybeReachableFromBlock(Block, PP, Reachable);
549 return count;
552 static SourceLocation GetUnreachableLoc(const Stmt *S,
553 SourceRange &R1,
554 SourceRange &R2) {
555 R1 = R2 = SourceRange();
557 if (const Expr *Ex = dyn_cast<Expr>(S))
558 S = Ex->IgnoreParenImpCasts();
560 switch (S->getStmtClass()) {
561 case Expr::BinaryOperatorClass: {
562 const BinaryOperator *BO = cast<BinaryOperator>(S);
563 return BO->getOperatorLoc();
565 case Expr::UnaryOperatorClass: {
566 const UnaryOperator *UO = cast<UnaryOperator>(S);
567 R1 = UO->getSubExpr()->getSourceRange();
568 return UO->getOperatorLoc();
570 case Expr::CompoundAssignOperatorClass: {
571 const CompoundAssignOperator *CAO = cast<CompoundAssignOperator>(S);
572 R1 = CAO->getLHS()->getSourceRange();
573 R2 = CAO->getRHS()->getSourceRange();
574 return CAO->getOperatorLoc();
576 case Expr::BinaryConditionalOperatorClass:
577 case Expr::ConditionalOperatorClass: {
578 const AbstractConditionalOperator *CO =
579 cast<AbstractConditionalOperator>(S);
580 return CO->getQuestionLoc();
582 case Expr::MemberExprClass: {
583 const MemberExpr *ME = cast<MemberExpr>(S);
584 R1 = ME->getSourceRange();
585 return ME->getMemberLoc();
587 case Expr::ArraySubscriptExprClass: {
588 const ArraySubscriptExpr *ASE = cast<ArraySubscriptExpr>(S);
589 R1 = ASE->getLHS()->getSourceRange();
590 R2 = ASE->getRHS()->getSourceRange();
591 return ASE->getRBracketLoc();
593 case Expr::CStyleCastExprClass: {
594 const CStyleCastExpr *CSC = cast<CStyleCastExpr>(S);
595 R1 = CSC->getSubExpr()->getSourceRange();
596 return CSC->getLParenLoc();
598 case Expr::CXXFunctionalCastExprClass: {
599 const CXXFunctionalCastExpr *CE = cast <CXXFunctionalCastExpr>(S);
600 R1 = CE->getSubExpr()->getSourceRange();
601 return CE->getBeginLoc();
603 case Stmt::CXXTryStmtClass: {
604 return cast<CXXTryStmt>(S)->getHandler(0)->getCatchLoc();
606 case Expr::ObjCBridgedCastExprClass: {
607 const ObjCBridgedCastExpr *CSC = cast<ObjCBridgedCastExpr>(S);
608 R1 = CSC->getSubExpr()->getSourceRange();
609 return CSC->getLParenLoc();
611 default: ;
613 R1 = S->getSourceRange();
614 return S->getBeginLoc();
617 void DeadCodeScan::reportDeadCode(const CFGBlock *B,
618 const Stmt *S,
619 clang::reachable_code::Callback &CB) {
620 // Classify the unreachable code found, or suppress it in some cases.
621 reachable_code::UnreachableKind UK = reachable_code::UK_Other;
623 if (isa<BreakStmt>(S)) {
624 UK = reachable_code::UK_Break;
625 } else if (isTrivialDoWhile(B, S) || isBuiltinUnreachable(S) ||
626 isBuiltinAssumeFalse(B, S, C)) {
627 return;
629 else if (isDeadReturn(B, S)) {
630 UK = reachable_code::UK_Return;
633 const auto *AS = dyn_cast<AttributedStmt>(S);
634 bool HasFallThroughAttr =
635 AS && hasSpecificAttr<FallThroughAttr>(AS->getAttrs());
637 SourceRange SilenceableCondVal;
639 if (UK == reachable_code::UK_Other) {
640 // Check if the dead code is part of the "loop target" of
641 // a for/for-range loop. This is the block that contains
642 // the increment code.
643 if (const Stmt *LoopTarget = B->getLoopTarget()) {
644 SourceLocation Loc = LoopTarget->getBeginLoc();
645 SourceRange R1(Loc, Loc), R2;
647 if (const ForStmt *FS = dyn_cast<ForStmt>(LoopTarget)) {
648 const Expr *Inc = FS->getInc();
649 Loc = Inc->getBeginLoc();
650 R2 = Inc->getSourceRange();
653 CB.HandleUnreachable(reachable_code::UK_Loop_Increment, Loc,
654 SourceRange(), SourceRange(Loc, Loc), R2,
655 HasFallThroughAttr);
656 return;
659 // Check if the dead block has a predecessor whose branch has
660 // a configuration value that *could* be modified to
661 // silence the warning.
662 CFGBlock::const_pred_iterator PI = B->pred_begin();
663 if (PI != B->pred_end()) {
664 if (const CFGBlock *PredBlock = PI->getPossiblyUnreachableBlock()) {
665 const Stmt *TermCond =
666 PredBlock->getTerminatorCondition(/* strip parens */ false);
667 isConfigurationValue(TermCond, PP, &SilenceableCondVal);
672 SourceRange R1, R2;
673 SourceLocation Loc = GetUnreachableLoc(S, R1, R2);
674 CB.HandleUnreachable(UK, Loc, SilenceableCondVal, R1, R2, HasFallThroughAttr);
677 //===----------------------------------------------------------------------===//
678 // Reachability APIs.
679 //===----------------------------------------------------------------------===//
681 namespace clang { namespace reachable_code {
683 void Callback::anchor() { }
685 unsigned ScanReachableFromBlock(const CFGBlock *Start,
686 llvm::BitVector &Reachable) {
687 return scanFromBlock(Start, Reachable, /* SourceManager* */ nullptr, false);
690 void FindUnreachableCode(AnalysisDeclContext &AC, Preprocessor &PP,
691 Callback &CB) {
693 CFG *cfg = AC.getCFG();
694 if (!cfg)
695 return;
697 // Scan for reachable blocks from the entrance of the CFG.
698 // If there are no unreachable blocks, we're done.
699 llvm::BitVector reachable(cfg->getNumBlockIDs());
700 unsigned numReachable =
701 scanMaybeReachableFromBlock(&cfg->getEntry(), PP, reachable);
702 if (numReachable == cfg->getNumBlockIDs())
703 return;
705 // If there aren't explicit EH edges, we should include the 'try' dispatch
706 // blocks as roots.
707 if (!AC.getCFGBuildOptions().AddEHEdges) {
708 for (const CFGBlock *B : cfg->try_blocks())
709 numReachable += scanMaybeReachableFromBlock(B, PP, reachable);
710 if (numReachable == cfg->getNumBlockIDs())
711 return;
714 // There are some unreachable blocks. We need to find the root blocks that
715 // contain code that should be considered unreachable.
716 for (const CFGBlock *block : *cfg) {
717 // A block may have been marked reachable during this loop.
718 if (reachable[block->getBlockID()])
719 continue;
721 DeadCodeScan DS(reachable, PP, AC.getASTContext());
722 numReachable += DS.scanBackwards(block, CB);
724 if (numReachable == cfg->getNumBlockIDs())
725 return;
729 }} // end namespace clang::reachable_code