[lld][WebAssembly] Add `--table-base` setting
[llvm-project.git] / clang / lib / Analysis / ThreadSafetyCommon.cpp
blobb8286cef396c06092833a6ae54fad3fe69763586
1 //===- ThreadSafetyCommon.cpp ---------------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // Implementation of the interfaces declared in ThreadSafetyCommon.h
11 //===----------------------------------------------------------------------===//
13 #include "clang/Analysis/Analyses/ThreadSafetyCommon.h"
14 #include "clang/AST/Attr.h"
15 #include "clang/AST/Decl.h"
16 #include "clang/AST/DeclCXX.h"
17 #include "clang/AST/DeclGroup.h"
18 #include "clang/AST/DeclObjC.h"
19 #include "clang/AST/Expr.h"
20 #include "clang/AST/ExprCXX.h"
21 #include "clang/AST/OperationKinds.h"
22 #include "clang/AST/Stmt.h"
23 #include "clang/AST/Type.h"
24 #include "clang/Analysis/Analyses/ThreadSafetyTIL.h"
25 #include "clang/Analysis/CFG.h"
26 #include "clang/Basic/LLVM.h"
27 #include "clang/Basic/OperatorKinds.h"
28 #include "clang/Basic/Specifiers.h"
29 #include "llvm/ADT/StringExtras.h"
30 #include "llvm/ADT/StringRef.h"
31 #include "llvm/Support/Casting.h"
32 #include <algorithm>
33 #include <cassert>
34 #include <string>
35 #include <utility>
37 using namespace clang;
38 using namespace threadSafety;
40 // From ThreadSafetyUtil.h
41 std::string threadSafety::getSourceLiteralString(const Expr *CE) {
42 switch (CE->getStmtClass()) {
43 case Stmt::IntegerLiteralClass:
44 return toString(cast<IntegerLiteral>(CE)->getValue(), 10, true);
45 case Stmt::StringLiteralClass: {
46 std::string ret("\"");
47 ret += cast<StringLiteral>(CE)->getString();
48 ret += "\"";
49 return ret;
51 case Stmt::CharacterLiteralClass:
52 case Stmt::CXXNullPtrLiteralExprClass:
53 case Stmt::GNUNullExprClass:
54 case Stmt::CXXBoolLiteralExprClass:
55 case Stmt::FloatingLiteralClass:
56 case Stmt::ImaginaryLiteralClass:
57 case Stmt::ObjCStringLiteralClass:
58 default:
59 return "#lit";
63 // Return true if E is a variable that points to an incomplete Phi node.
64 static bool isIncompletePhi(const til::SExpr *E) {
65 if (const auto *Ph = dyn_cast<til::Phi>(E))
66 return Ph->status() == til::Phi::PH_Incomplete;
67 return false;
70 using CallingContext = SExprBuilder::CallingContext;
72 til::SExpr *SExprBuilder::lookupStmt(const Stmt *S) { return SMap.lookup(S); }
74 til::SCFG *SExprBuilder::buildCFG(CFGWalker &Walker) {
75 Walker.walk(*this);
76 return Scfg;
79 static bool isCalleeArrow(const Expr *E) {
80 const auto *ME = dyn_cast<MemberExpr>(E->IgnoreParenCasts());
81 return ME ? ME->isArrow() : false;
84 static StringRef ClassifyDiagnostic(const CapabilityAttr *A) {
85 return A->getName();
88 static StringRef ClassifyDiagnostic(QualType VDT) {
89 // We need to look at the declaration of the type of the value to determine
90 // which it is. The type should either be a record or a typedef, or a pointer
91 // or reference thereof.
92 if (const auto *RT = VDT->getAs<RecordType>()) {
93 if (const auto *RD = RT->getDecl())
94 if (const auto *CA = RD->getAttr<CapabilityAttr>())
95 return ClassifyDiagnostic(CA);
96 } else if (const auto *TT = VDT->getAs<TypedefType>()) {
97 if (const auto *TD = TT->getDecl())
98 if (const auto *CA = TD->getAttr<CapabilityAttr>())
99 return ClassifyDiagnostic(CA);
100 } else if (VDT->isPointerType() || VDT->isReferenceType())
101 return ClassifyDiagnostic(VDT->getPointeeType());
103 return "mutex";
106 /// Translate a clang expression in an attribute to a til::SExpr.
107 /// Constructs the context from D, DeclExp, and SelfDecl.
109 /// \param AttrExp The expression to translate.
110 /// \param D The declaration to which the attribute is attached.
111 /// \param DeclExp An expression involving the Decl to which the attribute
112 /// is attached. E.g. the call to a function.
113 /// \param Self S-expression to substitute for a \ref CXXThisExpr.
114 CapabilityExpr SExprBuilder::translateAttrExpr(const Expr *AttrExp,
115 const NamedDecl *D,
116 const Expr *DeclExp,
117 til::SExpr *Self) {
118 // If we are processing a raw attribute expression, with no substitutions.
119 if (!DeclExp && !Self)
120 return translateAttrExpr(AttrExp, nullptr);
122 CallingContext Ctx(nullptr, D);
124 // Examine DeclExp to find SelfArg and FunArgs, which are used to substitute
125 // for formal parameters when we call buildMutexID later.
126 if (!DeclExp)
127 /* We'll use Self. */;
128 else if (const auto *ME = dyn_cast<MemberExpr>(DeclExp)) {
129 Ctx.SelfArg = ME->getBase();
130 Ctx.SelfArrow = ME->isArrow();
131 } else if (const auto *CE = dyn_cast<CXXMemberCallExpr>(DeclExp)) {
132 Ctx.SelfArg = CE->getImplicitObjectArgument();
133 Ctx.SelfArrow = isCalleeArrow(CE->getCallee());
134 Ctx.NumArgs = CE->getNumArgs();
135 Ctx.FunArgs = CE->getArgs();
136 } else if (const auto *CE = dyn_cast<CallExpr>(DeclExp)) {
137 Ctx.NumArgs = CE->getNumArgs();
138 Ctx.FunArgs = CE->getArgs();
139 } else if (const auto *CE = dyn_cast<CXXConstructExpr>(DeclExp)) {
140 Ctx.SelfArg = nullptr; // Will be set below
141 Ctx.NumArgs = CE->getNumArgs();
142 Ctx.FunArgs = CE->getArgs();
145 if (Self) {
146 assert(!Ctx.SelfArg && "Ambiguous self argument");
147 Ctx.SelfArg = Self;
149 // If the attribute has no arguments, then assume the argument is "this".
150 if (!AttrExp)
151 return CapabilityExpr(
152 Self, ClassifyDiagnostic(cast<CXXMethodDecl>(D)->getThisObjectType()),
153 false);
154 else // For most attributes.
155 return translateAttrExpr(AttrExp, &Ctx);
158 // If the attribute has no arguments, then assume the argument is "this".
159 if (!AttrExp)
160 return translateAttrExpr(cast<const Expr *>(Ctx.SelfArg), nullptr);
161 else // For most attributes.
162 return translateAttrExpr(AttrExp, &Ctx);
165 /// Translate a clang expression in an attribute to a til::SExpr.
166 // This assumes a CallingContext has already been created.
167 CapabilityExpr SExprBuilder::translateAttrExpr(const Expr *AttrExp,
168 CallingContext *Ctx) {
169 if (!AttrExp)
170 return CapabilityExpr();
172 if (const auto* SLit = dyn_cast<StringLiteral>(AttrExp)) {
173 if (SLit->getString() == StringRef("*"))
174 // The "*" expr is a universal lock, which essentially turns off
175 // checks until it is removed from the lockset.
176 return CapabilityExpr(new (Arena) til::Wildcard(), StringRef("wildcard"),
177 false);
178 else
179 // Ignore other string literals for now.
180 return CapabilityExpr();
183 bool Neg = false;
184 if (const auto *OE = dyn_cast<CXXOperatorCallExpr>(AttrExp)) {
185 if (OE->getOperator() == OO_Exclaim) {
186 Neg = true;
187 AttrExp = OE->getArg(0);
190 else if (const auto *UO = dyn_cast<UnaryOperator>(AttrExp)) {
191 if (UO->getOpcode() == UO_LNot) {
192 Neg = true;
193 AttrExp = UO->getSubExpr();
197 til::SExpr *E = translate(AttrExp, Ctx);
199 // Trap mutex expressions like nullptr, or 0.
200 // Any literal value is nonsense.
201 if (!E || isa<til::Literal>(E))
202 return CapabilityExpr();
204 StringRef Kind = ClassifyDiagnostic(AttrExp->getType());
206 // Hack to deal with smart pointers -- strip off top-level pointer casts.
207 if (const auto *CE = dyn_cast<til::Cast>(E)) {
208 if (CE->castOpcode() == til::CAST_objToPtr)
209 return CapabilityExpr(CE->expr(), Kind, Neg);
211 return CapabilityExpr(E, Kind, Neg);
214 til::LiteralPtr *SExprBuilder::createVariable(const VarDecl *VD) {
215 return new (Arena) til::LiteralPtr(VD);
218 std::pair<til::LiteralPtr *, StringRef>
219 SExprBuilder::createThisPlaceholder(const Expr *Exp) {
220 return {new (Arena) til::LiteralPtr(nullptr),
221 ClassifyDiagnostic(Exp->getType())};
224 // Translate a clang statement or expression to a TIL expression.
225 // Also performs substitution of variables; Ctx provides the context.
226 // Dispatches on the type of S.
227 til::SExpr *SExprBuilder::translate(const Stmt *S, CallingContext *Ctx) {
228 if (!S)
229 return nullptr;
231 // Check if S has already been translated and cached.
232 // This handles the lookup of SSA names for DeclRefExprs here.
233 if (til::SExpr *E = lookupStmt(S))
234 return E;
236 switch (S->getStmtClass()) {
237 case Stmt::DeclRefExprClass:
238 return translateDeclRefExpr(cast<DeclRefExpr>(S), Ctx);
239 case Stmt::CXXThisExprClass:
240 return translateCXXThisExpr(cast<CXXThisExpr>(S), Ctx);
241 case Stmt::MemberExprClass:
242 return translateMemberExpr(cast<MemberExpr>(S), Ctx);
243 case Stmt::ObjCIvarRefExprClass:
244 return translateObjCIVarRefExpr(cast<ObjCIvarRefExpr>(S), Ctx);
245 case Stmt::CallExprClass:
246 return translateCallExpr(cast<CallExpr>(S), Ctx);
247 case Stmt::CXXMemberCallExprClass:
248 return translateCXXMemberCallExpr(cast<CXXMemberCallExpr>(S), Ctx);
249 case Stmt::CXXOperatorCallExprClass:
250 return translateCXXOperatorCallExpr(cast<CXXOperatorCallExpr>(S), Ctx);
251 case Stmt::UnaryOperatorClass:
252 return translateUnaryOperator(cast<UnaryOperator>(S), Ctx);
253 case Stmt::BinaryOperatorClass:
254 case Stmt::CompoundAssignOperatorClass:
255 return translateBinaryOperator(cast<BinaryOperator>(S), Ctx);
257 case Stmt::ArraySubscriptExprClass:
258 return translateArraySubscriptExpr(cast<ArraySubscriptExpr>(S), Ctx);
259 case Stmt::ConditionalOperatorClass:
260 return translateAbstractConditionalOperator(
261 cast<ConditionalOperator>(S), Ctx);
262 case Stmt::BinaryConditionalOperatorClass:
263 return translateAbstractConditionalOperator(
264 cast<BinaryConditionalOperator>(S), Ctx);
266 // We treat these as no-ops
267 case Stmt::ConstantExprClass:
268 return translate(cast<ConstantExpr>(S)->getSubExpr(), Ctx);
269 case Stmt::ParenExprClass:
270 return translate(cast<ParenExpr>(S)->getSubExpr(), Ctx);
271 case Stmt::ExprWithCleanupsClass:
272 return translate(cast<ExprWithCleanups>(S)->getSubExpr(), Ctx);
273 case Stmt::CXXBindTemporaryExprClass:
274 return translate(cast<CXXBindTemporaryExpr>(S)->getSubExpr(), Ctx);
275 case Stmt::MaterializeTemporaryExprClass:
276 return translate(cast<MaterializeTemporaryExpr>(S)->getSubExpr(), Ctx);
278 // Collect all literals
279 case Stmt::CharacterLiteralClass:
280 case Stmt::CXXNullPtrLiteralExprClass:
281 case Stmt::GNUNullExprClass:
282 case Stmt::CXXBoolLiteralExprClass:
283 case Stmt::FloatingLiteralClass:
284 case Stmt::ImaginaryLiteralClass:
285 case Stmt::IntegerLiteralClass:
286 case Stmt::StringLiteralClass:
287 case Stmt::ObjCStringLiteralClass:
288 return new (Arena) til::Literal(cast<Expr>(S));
290 case Stmt::DeclStmtClass:
291 return translateDeclStmt(cast<DeclStmt>(S), Ctx);
292 default:
293 break;
295 if (const auto *CE = dyn_cast<CastExpr>(S))
296 return translateCastExpr(CE, Ctx);
298 return new (Arena) til::Undefined(S);
301 til::SExpr *SExprBuilder::translateDeclRefExpr(const DeclRefExpr *DRE,
302 CallingContext *Ctx) {
303 const auto *VD = cast<ValueDecl>(DRE->getDecl()->getCanonicalDecl());
305 // Function parameters require substitution and/or renaming.
306 if (const auto *PV = dyn_cast<ParmVarDecl>(VD)) {
307 unsigned I = PV->getFunctionScopeIndex();
308 const DeclContext *D = PV->getDeclContext();
309 if (Ctx && Ctx->FunArgs) {
310 const Decl *Canonical = Ctx->AttrDecl->getCanonicalDecl();
311 if (isa<FunctionDecl>(D)
312 ? (cast<FunctionDecl>(D)->getCanonicalDecl() == Canonical)
313 : (cast<ObjCMethodDecl>(D)->getCanonicalDecl() == Canonical)) {
314 // Substitute call arguments for references to function parameters
315 assert(I < Ctx->NumArgs);
316 return translate(Ctx->FunArgs[I], Ctx->Prev);
319 // Map the param back to the param of the original function declaration
320 // for consistent comparisons.
321 VD = isa<FunctionDecl>(D)
322 ? cast<FunctionDecl>(D)->getCanonicalDecl()->getParamDecl(I)
323 : cast<ObjCMethodDecl>(D)->getCanonicalDecl()->getParamDecl(I);
326 // For non-local variables, treat it as a reference to a named object.
327 return new (Arena) til::LiteralPtr(VD);
330 til::SExpr *SExprBuilder::translateCXXThisExpr(const CXXThisExpr *TE,
331 CallingContext *Ctx) {
332 // Substitute for 'this'
333 if (Ctx && Ctx->SelfArg) {
334 if (const auto *SelfArg = dyn_cast<const Expr *>(Ctx->SelfArg))
335 return translate(SelfArg, Ctx->Prev);
336 else
337 return cast<til::SExpr *>(Ctx->SelfArg);
339 assert(SelfVar && "We have no variable for 'this'!");
340 return SelfVar;
343 static const ValueDecl *getValueDeclFromSExpr(const til::SExpr *E) {
344 if (const auto *V = dyn_cast<til::Variable>(E))
345 return V->clangDecl();
346 if (const auto *Ph = dyn_cast<til::Phi>(E))
347 return Ph->clangDecl();
348 if (const auto *P = dyn_cast<til::Project>(E))
349 return P->clangDecl();
350 if (const auto *L = dyn_cast<til::LiteralPtr>(E))
351 return L->clangDecl();
352 return nullptr;
355 static bool hasAnyPointerType(const til::SExpr *E) {
356 auto *VD = getValueDeclFromSExpr(E);
357 if (VD && VD->getType()->isAnyPointerType())
358 return true;
359 if (const auto *C = dyn_cast<til::Cast>(E))
360 return C->castOpcode() == til::CAST_objToPtr;
362 return false;
365 // Grab the very first declaration of virtual method D
366 static const CXXMethodDecl *getFirstVirtualDecl(const CXXMethodDecl *D) {
367 while (true) {
368 D = D->getCanonicalDecl();
369 auto OverriddenMethods = D->overridden_methods();
370 if (OverriddenMethods.begin() == OverriddenMethods.end())
371 return D; // Method does not override anything
372 // FIXME: this does not work with multiple inheritance.
373 D = *OverriddenMethods.begin();
375 return nullptr;
378 til::SExpr *SExprBuilder::translateMemberExpr(const MemberExpr *ME,
379 CallingContext *Ctx) {
380 til::SExpr *BE = translate(ME->getBase(), Ctx);
381 til::SExpr *E = new (Arena) til::SApply(BE);
383 const auto *D = cast<ValueDecl>(ME->getMemberDecl()->getCanonicalDecl());
384 if (const auto *VD = dyn_cast<CXXMethodDecl>(D))
385 D = getFirstVirtualDecl(VD);
387 til::Project *P = new (Arena) til::Project(E, D);
388 if (hasAnyPointerType(BE))
389 P->setArrow(true);
390 return P;
393 til::SExpr *SExprBuilder::translateObjCIVarRefExpr(const ObjCIvarRefExpr *IVRE,
394 CallingContext *Ctx) {
395 til::SExpr *BE = translate(IVRE->getBase(), Ctx);
396 til::SExpr *E = new (Arena) til::SApply(BE);
398 const auto *D = cast<ObjCIvarDecl>(IVRE->getDecl()->getCanonicalDecl());
400 til::Project *P = new (Arena) til::Project(E, D);
401 if (hasAnyPointerType(BE))
402 P->setArrow(true);
403 return P;
406 til::SExpr *SExprBuilder::translateCallExpr(const CallExpr *CE,
407 CallingContext *Ctx,
408 const Expr *SelfE) {
409 if (CapabilityExprMode) {
410 // Handle LOCK_RETURNED
411 if (const FunctionDecl *FD = CE->getDirectCallee()) {
412 FD = FD->getMostRecentDecl();
413 if (LockReturnedAttr *At = FD->getAttr<LockReturnedAttr>()) {
414 CallingContext LRCallCtx(Ctx);
415 LRCallCtx.AttrDecl = CE->getDirectCallee();
416 LRCallCtx.SelfArg = SelfE;
417 LRCallCtx.NumArgs = CE->getNumArgs();
418 LRCallCtx.FunArgs = CE->getArgs();
419 return const_cast<til::SExpr *>(
420 translateAttrExpr(At->getArg(), &LRCallCtx).sexpr());
425 til::SExpr *E = translate(CE->getCallee(), Ctx);
426 for (const auto *Arg : CE->arguments()) {
427 til::SExpr *A = translate(Arg, Ctx);
428 E = new (Arena) til::Apply(E, A);
430 return new (Arena) til::Call(E, CE);
433 til::SExpr *SExprBuilder::translateCXXMemberCallExpr(
434 const CXXMemberCallExpr *ME, CallingContext *Ctx) {
435 if (CapabilityExprMode) {
436 // Ignore calls to get() on smart pointers.
437 if (ME->getMethodDecl()->getNameAsString() == "get" &&
438 ME->getNumArgs() == 0) {
439 auto *E = translate(ME->getImplicitObjectArgument(), Ctx);
440 return new (Arena) til::Cast(til::CAST_objToPtr, E);
441 // return E;
444 return translateCallExpr(cast<CallExpr>(ME), Ctx,
445 ME->getImplicitObjectArgument());
448 til::SExpr *SExprBuilder::translateCXXOperatorCallExpr(
449 const CXXOperatorCallExpr *OCE, CallingContext *Ctx) {
450 if (CapabilityExprMode) {
451 // Ignore operator * and operator -> on smart pointers.
452 OverloadedOperatorKind k = OCE->getOperator();
453 if (k == OO_Star || k == OO_Arrow) {
454 auto *E = translate(OCE->getArg(0), Ctx);
455 return new (Arena) til::Cast(til::CAST_objToPtr, E);
456 // return E;
459 return translateCallExpr(cast<CallExpr>(OCE), Ctx);
462 til::SExpr *SExprBuilder::translateUnaryOperator(const UnaryOperator *UO,
463 CallingContext *Ctx) {
464 switch (UO->getOpcode()) {
465 case UO_PostInc:
466 case UO_PostDec:
467 case UO_PreInc:
468 case UO_PreDec:
469 return new (Arena) til::Undefined(UO);
471 case UO_AddrOf:
472 if (CapabilityExprMode) {
473 // interpret &Graph::mu_ as an existential.
474 if (const auto *DRE = dyn_cast<DeclRefExpr>(UO->getSubExpr())) {
475 if (DRE->getDecl()->isCXXInstanceMember()) {
476 // This is a pointer-to-member expression, e.g. &MyClass::mu_.
477 // We interpret this syntax specially, as a wildcard.
478 auto *W = new (Arena) til::Wildcard();
479 return new (Arena) til::Project(W, DRE->getDecl());
483 // otherwise, & is a no-op
484 return translate(UO->getSubExpr(), Ctx);
486 // We treat these as no-ops
487 case UO_Deref:
488 case UO_Plus:
489 return translate(UO->getSubExpr(), Ctx);
491 case UO_Minus:
492 return new (Arena)
493 til::UnaryOp(til::UOP_Minus, translate(UO->getSubExpr(), Ctx));
494 case UO_Not:
495 return new (Arena)
496 til::UnaryOp(til::UOP_BitNot, translate(UO->getSubExpr(), Ctx));
497 case UO_LNot:
498 return new (Arena)
499 til::UnaryOp(til::UOP_LogicNot, translate(UO->getSubExpr(), Ctx));
501 // Currently unsupported
502 case UO_Real:
503 case UO_Imag:
504 case UO_Extension:
505 case UO_Coawait:
506 return new (Arena) til::Undefined(UO);
508 return new (Arena) til::Undefined(UO);
511 til::SExpr *SExprBuilder::translateBinOp(til::TIL_BinaryOpcode Op,
512 const BinaryOperator *BO,
513 CallingContext *Ctx, bool Reverse) {
514 til::SExpr *E0 = translate(BO->getLHS(), Ctx);
515 til::SExpr *E1 = translate(BO->getRHS(), Ctx);
516 if (Reverse)
517 return new (Arena) til::BinaryOp(Op, E1, E0);
518 else
519 return new (Arena) til::BinaryOp(Op, E0, E1);
522 til::SExpr *SExprBuilder::translateBinAssign(til::TIL_BinaryOpcode Op,
523 const BinaryOperator *BO,
524 CallingContext *Ctx,
525 bool Assign) {
526 const Expr *LHS = BO->getLHS();
527 const Expr *RHS = BO->getRHS();
528 til::SExpr *E0 = translate(LHS, Ctx);
529 til::SExpr *E1 = translate(RHS, Ctx);
531 const ValueDecl *VD = nullptr;
532 til::SExpr *CV = nullptr;
533 if (const auto *DRE = dyn_cast<DeclRefExpr>(LHS)) {
534 VD = DRE->getDecl();
535 CV = lookupVarDecl(VD);
538 if (!Assign) {
539 til::SExpr *Arg = CV ? CV : new (Arena) til::Load(E0);
540 E1 = new (Arena) til::BinaryOp(Op, Arg, E1);
541 E1 = addStatement(E1, nullptr, VD);
543 if (VD && CV)
544 return updateVarDecl(VD, E1);
545 return new (Arena) til::Store(E0, E1);
548 til::SExpr *SExprBuilder::translateBinaryOperator(const BinaryOperator *BO,
549 CallingContext *Ctx) {
550 switch (BO->getOpcode()) {
551 case BO_PtrMemD:
552 case BO_PtrMemI:
553 return new (Arena) til::Undefined(BO);
555 case BO_Mul: return translateBinOp(til::BOP_Mul, BO, Ctx);
556 case BO_Div: return translateBinOp(til::BOP_Div, BO, Ctx);
557 case BO_Rem: return translateBinOp(til::BOP_Rem, BO, Ctx);
558 case BO_Add: return translateBinOp(til::BOP_Add, BO, Ctx);
559 case BO_Sub: return translateBinOp(til::BOP_Sub, BO, Ctx);
560 case BO_Shl: return translateBinOp(til::BOP_Shl, BO, Ctx);
561 case BO_Shr: return translateBinOp(til::BOP_Shr, BO, Ctx);
562 case BO_LT: return translateBinOp(til::BOP_Lt, BO, Ctx);
563 case BO_GT: return translateBinOp(til::BOP_Lt, BO, Ctx, true);
564 case BO_LE: return translateBinOp(til::BOP_Leq, BO, Ctx);
565 case BO_GE: return translateBinOp(til::BOP_Leq, BO, Ctx, true);
566 case BO_EQ: return translateBinOp(til::BOP_Eq, BO, Ctx);
567 case BO_NE: return translateBinOp(til::BOP_Neq, BO, Ctx);
568 case BO_Cmp: return translateBinOp(til::BOP_Cmp, BO, Ctx);
569 case BO_And: return translateBinOp(til::BOP_BitAnd, BO, Ctx);
570 case BO_Xor: return translateBinOp(til::BOP_BitXor, BO, Ctx);
571 case BO_Or: return translateBinOp(til::BOP_BitOr, BO, Ctx);
572 case BO_LAnd: return translateBinOp(til::BOP_LogicAnd, BO, Ctx);
573 case BO_LOr: return translateBinOp(til::BOP_LogicOr, BO, Ctx);
575 case BO_Assign: return translateBinAssign(til::BOP_Eq, BO, Ctx, true);
576 case BO_MulAssign: return translateBinAssign(til::BOP_Mul, BO, Ctx);
577 case BO_DivAssign: return translateBinAssign(til::BOP_Div, BO, Ctx);
578 case BO_RemAssign: return translateBinAssign(til::BOP_Rem, BO, Ctx);
579 case BO_AddAssign: return translateBinAssign(til::BOP_Add, BO, Ctx);
580 case BO_SubAssign: return translateBinAssign(til::BOP_Sub, BO, Ctx);
581 case BO_ShlAssign: return translateBinAssign(til::BOP_Shl, BO, Ctx);
582 case BO_ShrAssign: return translateBinAssign(til::BOP_Shr, BO, Ctx);
583 case BO_AndAssign: return translateBinAssign(til::BOP_BitAnd, BO, Ctx);
584 case BO_XorAssign: return translateBinAssign(til::BOP_BitXor, BO, Ctx);
585 case BO_OrAssign: return translateBinAssign(til::BOP_BitOr, BO, Ctx);
587 case BO_Comma:
588 // The clang CFG should have already processed both sides.
589 return translate(BO->getRHS(), Ctx);
591 return new (Arena) til::Undefined(BO);
594 til::SExpr *SExprBuilder::translateCastExpr(const CastExpr *CE,
595 CallingContext *Ctx) {
596 CastKind K = CE->getCastKind();
597 switch (K) {
598 case CK_LValueToRValue: {
599 if (const auto *DRE = dyn_cast<DeclRefExpr>(CE->getSubExpr())) {
600 til::SExpr *E0 = lookupVarDecl(DRE->getDecl());
601 if (E0)
602 return E0;
604 til::SExpr *E0 = translate(CE->getSubExpr(), Ctx);
605 return E0;
606 // FIXME!! -- get Load working properly
607 // return new (Arena) til::Load(E0);
609 case CK_NoOp:
610 case CK_DerivedToBase:
611 case CK_UncheckedDerivedToBase:
612 case CK_ArrayToPointerDecay:
613 case CK_FunctionToPointerDecay: {
614 til::SExpr *E0 = translate(CE->getSubExpr(), Ctx);
615 return E0;
617 default: {
618 // FIXME: handle different kinds of casts.
619 til::SExpr *E0 = translate(CE->getSubExpr(), Ctx);
620 if (CapabilityExprMode)
621 return E0;
622 return new (Arena) til::Cast(til::CAST_none, E0);
627 til::SExpr *
628 SExprBuilder::translateArraySubscriptExpr(const ArraySubscriptExpr *E,
629 CallingContext *Ctx) {
630 til::SExpr *E0 = translate(E->getBase(), Ctx);
631 til::SExpr *E1 = translate(E->getIdx(), Ctx);
632 return new (Arena) til::ArrayIndex(E0, E1);
635 til::SExpr *
636 SExprBuilder::translateAbstractConditionalOperator(
637 const AbstractConditionalOperator *CO, CallingContext *Ctx) {
638 auto *C = translate(CO->getCond(), Ctx);
639 auto *T = translate(CO->getTrueExpr(), Ctx);
640 auto *E = translate(CO->getFalseExpr(), Ctx);
641 return new (Arena) til::IfThenElse(C, T, E);
644 til::SExpr *
645 SExprBuilder::translateDeclStmt(const DeclStmt *S, CallingContext *Ctx) {
646 DeclGroupRef DGrp = S->getDeclGroup();
647 for (auto *I : DGrp) {
648 if (auto *VD = dyn_cast_or_null<VarDecl>(I)) {
649 Expr *E = VD->getInit();
650 til::SExpr* SE = translate(E, Ctx);
652 // Add local variables with trivial type to the variable map
653 QualType T = VD->getType();
654 if (T.isTrivialType(VD->getASTContext()))
655 return addVarDecl(VD, SE);
656 else {
657 // TODO: add alloca
661 return nullptr;
664 // If (E) is non-trivial, then add it to the current basic block, and
665 // update the statement map so that S refers to E. Returns a new variable
666 // that refers to E.
667 // If E is trivial returns E.
668 til::SExpr *SExprBuilder::addStatement(til::SExpr* E, const Stmt *S,
669 const ValueDecl *VD) {
670 if (!E || !CurrentBB || E->block() || til::ThreadSafetyTIL::isTrivial(E))
671 return E;
672 if (VD)
673 E = new (Arena) til::Variable(E, VD);
674 CurrentInstructions.push_back(E);
675 if (S)
676 insertStmt(S, E);
677 return E;
680 // Returns the current value of VD, if known, and nullptr otherwise.
681 til::SExpr *SExprBuilder::lookupVarDecl(const ValueDecl *VD) {
682 auto It = LVarIdxMap.find(VD);
683 if (It != LVarIdxMap.end()) {
684 assert(CurrentLVarMap[It->second].first == VD);
685 return CurrentLVarMap[It->second].second;
687 return nullptr;
690 // if E is a til::Variable, update its clangDecl.
691 static void maybeUpdateVD(til::SExpr *E, const ValueDecl *VD) {
692 if (!E)
693 return;
694 if (auto *V = dyn_cast<til::Variable>(E)) {
695 if (!V->clangDecl())
696 V->setClangDecl(VD);
700 // Adds a new variable declaration.
701 til::SExpr *SExprBuilder::addVarDecl(const ValueDecl *VD, til::SExpr *E) {
702 maybeUpdateVD(E, VD);
703 LVarIdxMap.insert(std::make_pair(VD, CurrentLVarMap.size()));
704 CurrentLVarMap.makeWritable();
705 CurrentLVarMap.push_back(std::make_pair(VD, E));
706 return E;
709 // Updates a current variable declaration. (E.g. by assignment)
710 til::SExpr *SExprBuilder::updateVarDecl(const ValueDecl *VD, til::SExpr *E) {
711 maybeUpdateVD(E, VD);
712 auto It = LVarIdxMap.find(VD);
713 if (It == LVarIdxMap.end()) {
714 til::SExpr *Ptr = new (Arena) til::LiteralPtr(VD);
715 til::SExpr *St = new (Arena) til::Store(Ptr, E);
716 return St;
718 CurrentLVarMap.makeWritable();
719 CurrentLVarMap.elem(It->second).second = E;
720 return E;
723 // Make a Phi node in the current block for the i^th variable in CurrentVarMap.
724 // If E != null, sets Phi[CurrentBlockInfo->ArgIndex] = E.
725 // If E == null, this is a backedge and will be set later.
726 void SExprBuilder::makePhiNodeVar(unsigned i, unsigned NPreds, til::SExpr *E) {
727 unsigned ArgIndex = CurrentBlockInfo->ProcessedPredecessors;
728 assert(ArgIndex > 0 && ArgIndex < NPreds);
730 til::SExpr *CurrE = CurrentLVarMap[i].second;
731 if (CurrE->block() == CurrentBB) {
732 // We already have a Phi node in the current block,
733 // so just add the new variable to the Phi node.
734 auto *Ph = dyn_cast<til::Phi>(CurrE);
735 assert(Ph && "Expecting Phi node.");
736 if (E)
737 Ph->values()[ArgIndex] = E;
738 return;
741 // Make a new phi node: phi(..., E)
742 // All phi args up to the current index are set to the current value.
743 til::Phi *Ph = new (Arena) til::Phi(Arena, NPreds);
744 Ph->values().setValues(NPreds, nullptr);
745 for (unsigned PIdx = 0; PIdx < ArgIndex; ++PIdx)
746 Ph->values()[PIdx] = CurrE;
747 if (E)
748 Ph->values()[ArgIndex] = E;
749 Ph->setClangDecl(CurrentLVarMap[i].first);
750 // If E is from a back-edge, or either E or CurrE are incomplete, then
751 // mark this node as incomplete; we may need to remove it later.
752 if (!E || isIncompletePhi(E) || isIncompletePhi(CurrE))
753 Ph->setStatus(til::Phi::PH_Incomplete);
755 // Add Phi node to current block, and update CurrentLVarMap[i]
756 CurrentArguments.push_back(Ph);
757 if (Ph->status() == til::Phi::PH_Incomplete)
758 IncompleteArgs.push_back(Ph);
760 CurrentLVarMap.makeWritable();
761 CurrentLVarMap.elem(i).second = Ph;
764 // Merge values from Map into the current variable map.
765 // This will construct Phi nodes in the current basic block as necessary.
766 void SExprBuilder::mergeEntryMap(LVarDefinitionMap Map) {
767 assert(CurrentBlockInfo && "Not processing a block!");
769 if (!CurrentLVarMap.valid()) {
770 // Steal Map, using copy-on-write.
771 CurrentLVarMap = std::move(Map);
772 return;
774 if (CurrentLVarMap.sameAs(Map))
775 return; // Easy merge: maps from different predecessors are unchanged.
777 unsigned NPreds = CurrentBB->numPredecessors();
778 unsigned ESz = CurrentLVarMap.size();
779 unsigned MSz = Map.size();
780 unsigned Sz = std::min(ESz, MSz);
782 for (unsigned i = 0; i < Sz; ++i) {
783 if (CurrentLVarMap[i].first != Map[i].first) {
784 // We've reached the end of variables in common.
785 CurrentLVarMap.makeWritable();
786 CurrentLVarMap.downsize(i);
787 break;
789 if (CurrentLVarMap[i].second != Map[i].second)
790 makePhiNodeVar(i, NPreds, Map[i].second);
792 if (ESz > MSz) {
793 CurrentLVarMap.makeWritable();
794 CurrentLVarMap.downsize(Map.size());
798 // Merge a back edge into the current variable map.
799 // This will create phi nodes for all variables in the variable map.
800 void SExprBuilder::mergeEntryMapBackEdge() {
801 // We don't have definitions for variables on the backedge, because we
802 // haven't gotten that far in the CFG. Thus, when encountering a back edge,
803 // we conservatively create Phi nodes for all variables. Unnecessary Phi
804 // nodes will be marked as incomplete, and stripped out at the end.
806 // An Phi node is unnecessary if it only refers to itself and one other
807 // variable, e.g. x = Phi(y, y, x) can be reduced to x = y.
809 assert(CurrentBlockInfo && "Not processing a block!");
811 if (CurrentBlockInfo->HasBackEdges)
812 return;
813 CurrentBlockInfo->HasBackEdges = true;
815 CurrentLVarMap.makeWritable();
816 unsigned Sz = CurrentLVarMap.size();
817 unsigned NPreds = CurrentBB->numPredecessors();
819 for (unsigned i = 0; i < Sz; ++i)
820 makePhiNodeVar(i, NPreds, nullptr);
823 // Update the phi nodes that were initially created for a back edge
824 // once the variable definitions have been computed.
825 // I.e., merge the current variable map into the phi nodes for Blk.
826 void SExprBuilder::mergePhiNodesBackEdge(const CFGBlock *Blk) {
827 til::BasicBlock *BB = lookupBlock(Blk);
828 unsigned ArgIndex = BBInfo[Blk->getBlockID()].ProcessedPredecessors;
829 assert(ArgIndex > 0 && ArgIndex < BB->numPredecessors());
831 for (til::SExpr *PE : BB->arguments()) {
832 auto *Ph = dyn_cast_or_null<til::Phi>(PE);
833 assert(Ph && "Expecting Phi Node.");
834 assert(Ph->values()[ArgIndex] == nullptr && "Wrong index for back edge.");
836 til::SExpr *E = lookupVarDecl(Ph->clangDecl());
837 assert(E && "Couldn't find local variable for Phi node.");
838 Ph->values()[ArgIndex] = E;
842 void SExprBuilder::enterCFG(CFG *Cfg, const NamedDecl *D,
843 const CFGBlock *First) {
844 // Perform initial setup operations.
845 unsigned NBlocks = Cfg->getNumBlockIDs();
846 Scfg = new (Arena) til::SCFG(Arena, NBlocks);
848 // allocate all basic blocks immediately, to handle forward references.
849 BBInfo.resize(NBlocks);
850 BlockMap.resize(NBlocks, nullptr);
851 // create map from clang blockID to til::BasicBlocks
852 for (auto *B : *Cfg) {
853 auto *BB = new (Arena) til::BasicBlock(Arena);
854 BB->reserveInstructions(B->size());
855 BlockMap[B->getBlockID()] = BB;
858 CurrentBB = lookupBlock(&Cfg->getEntry());
859 auto Parms = isa<ObjCMethodDecl>(D) ? cast<ObjCMethodDecl>(D)->parameters()
860 : cast<FunctionDecl>(D)->parameters();
861 for (auto *Pm : Parms) {
862 QualType T = Pm->getType();
863 if (!T.isTrivialType(Pm->getASTContext()))
864 continue;
866 // Add parameters to local variable map.
867 // FIXME: right now we emulate params with loads; that should be fixed.
868 til::SExpr *Lp = new (Arena) til::LiteralPtr(Pm);
869 til::SExpr *Ld = new (Arena) til::Load(Lp);
870 til::SExpr *V = addStatement(Ld, nullptr, Pm);
871 addVarDecl(Pm, V);
875 void SExprBuilder::enterCFGBlock(const CFGBlock *B) {
876 // Initialize TIL basic block and add it to the CFG.
877 CurrentBB = lookupBlock(B);
878 CurrentBB->reservePredecessors(B->pred_size());
879 Scfg->add(CurrentBB);
881 CurrentBlockInfo = &BBInfo[B->getBlockID()];
883 // CurrentLVarMap is moved to ExitMap on block exit.
884 // FIXME: the entry block will hold function parameters.
885 // assert(!CurrentLVarMap.valid() && "CurrentLVarMap already initialized.");
888 void SExprBuilder::handlePredecessor(const CFGBlock *Pred) {
889 // Compute CurrentLVarMap on entry from ExitMaps of predecessors
891 CurrentBB->addPredecessor(BlockMap[Pred->getBlockID()]);
892 BlockInfo *PredInfo = &BBInfo[Pred->getBlockID()];
893 assert(PredInfo->UnprocessedSuccessors > 0);
895 if (--PredInfo->UnprocessedSuccessors == 0)
896 mergeEntryMap(std::move(PredInfo->ExitMap));
897 else
898 mergeEntryMap(PredInfo->ExitMap.clone());
900 ++CurrentBlockInfo->ProcessedPredecessors;
903 void SExprBuilder::handlePredecessorBackEdge(const CFGBlock *Pred) {
904 mergeEntryMapBackEdge();
907 void SExprBuilder::enterCFGBlockBody(const CFGBlock *B) {
908 // The merge*() methods have created arguments.
909 // Push those arguments onto the basic block.
910 CurrentBB->arguments().reserve(
911 static_cast<unsigned>(CurrentArguments.size()), Arena);
912 for (auto *A : CurrentArguments)
913 CurrentBB->addArgument(A);
916 void SExprBuilder::handleStatement(const Stmt *S) {
917 til::SExpr *E = translate(S, nullptr);
918 addStatement(E, S);
921 void SExprBuilder::handleDestructorCall(const VarDecl *VD,
922 const CXXDestructorDecl *DD) {
923 til::SExpr *Sf = new (Arena) til::LiteralPtr(VD);
924 til::SExpr *Dr = new (Arena) til::LiteralPtr(DD);
925 til::SExpr *Ap = new (Arena) til::Apply(Dr, Sf);
926 til::SExpr *E = new (Arena) til::Call(Ap);
927 addStatement(E, nullptr);
930 void SExprBuilder::exitCFGBlockBody(const CFGBlock *B) {
931 CurrentBB->instructions().reserve(
932 static_cast<unsigned>(CurrentInstructions.size()), Arena);
933 for (auto *V : CurrentInstructions)
934 CurrentBB->addInstruction(V);
936 // Create an appropriate terminator
937 unsigned N = B->succ_size();
938 auto It = B->succ_begin();
939 if (N == 1) {
940 til::BasicBlock *BB = *It ? lookupBlock(*It) : nullptr;
941 // TODO: set index
942 unsigned Idx = BB ? BB->findPredecessorIndex(CurrentBB) : 0;
943 auto *Tm = new (Arena) til::Goto(BB, Idx);
944 CurrentBB->setTerminator(Tm);
946 else if (N == 2) {
947 til::SExpr *C = translate(B->getTerminatorCondition(true), nullptr);
948 til::BasicBlock *BB1 = *It ? lookupBlock(*It) : nullptr;
949 ++It;
950 til::BasicBlock *BB2 = *It ? lookupBlock(*It) : nullptr;
951 // FIXME: make sure these aren't critical edges.
952 auto *Tm = new (Arena) til::Branch(C, BB1, BB2);
953 CurrentBB->setTerminator(Tm);
957 void SExprBuilder::handleSuccessor(const CFGBlock *Succ) {
958 ++CurrentBlockInfo->UnprocessedSuccessors;
961 void SExprBuilder::handleSuccessorBackEdge(const CFGBlock *Succ) {
962 mergePhiNodesBackEdge(Succ);
963 ++BBInfo[Succ->getBlockID()].ProcessedPredecessors;
966 void SExprBuilder::exitCFGBlock(const CFGBlock *B) {
967 CurrentArguments.clear();
968 CurrentInstructions.clear();
969 CurrentBlockInfo->ExitMap = std::move(CurrentLVarMap);
970 CurrentBB = nullptr;
971 CurrentBlockInfo = nullptr;
974 void SExprBuilder::exitCFG(const CFGBlock *Last) {
975 for (auto *Ph : IncompleteArgs) {
976 if (Ph->status() == til::Phi::PH_Incomplete)
977 simplifyIncompleteArg(Ph);
980 CurrentArguments.clear();
981 CurrentInstructions.clear();
982 IncompleteArgs.clear();
986 namespace {
988 class TILPrinter :
989 public til::PrettyPrinter<TILPrinter, llvm::raw_ostream> {};
991 } // namespace
993 namespace clang {
994 namespace threadSafety {
996 void printSCFG(CFGWalker &Walker) {
997 llvm::BumpPtrAllocator Bpa;
998 til::MemRegionRef Arena(&Bpa);
999 SExprBuilder SxBuilder(Arena);
1000 til::SCFG *Scfg = SxBuilder.buildCFG(Walker);
1001 TILPrinter::print(Scfg, llvm::errs());
1004 } // namespace threadSafety
1005 } // namespace clang