[lld][WebAssembly] Add `--table-base` setting
[llvm-project.git] / clang / lib / CodeGen / CGCUDANV.cpp
blob08769c98dc298a0b710dc727ae640cad50023c18
1 //===----- CGCUDANV.cpp - Interface to NVIDIA CUDA Runtime ----------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This provides a class for CUDA code generation targeting the NVIDIA CUDA
10 // runtime library.
12 //===----------------------------------------------------------------------===//
14 #include "CGCUDARuntime.h"
15 #include "CGCXXABI.h"
16 #include "CodeGenFunction.h"
17 #include "CodeGenModule.h"
18 #include "clang/AST/Decl.h"
19 #include "clang/Basic/Cuda.h"
20 #include "clang/CodeGen/CodeGenABITypes.h"
21 #include "clang/CodeGen/ConstantInitBuilder.h"
22 #include "llvm/IR/BasicBlock.h"
23 #include "llvm/IR/Constants.h"
24 #include "llvm/IR/DerivedTypes.h"
25 #include "llvm/IR/ReplaceConstant.h"
26 #include "llvm/Support/Format.h"
27 #include "llvm/Support/VirtualFileSystem.h"
29 using namespace clang;
30 using namespace CodeGen;
32 namespace {
33 constexpr unsigned CudaFatMagic = 0x466243b1;
34 constexpr unsigned HIPFatMagic = 0x48495046; // "HIPF"
36 class CGNVCUDARuntime : public CGCUDARuntime {
38 private:
39 llvm::IntegerType *IntTy, *SizeTy;
40 llvm::Type *VoidTy;
41 llvm::PointerType *CharPtrTy, *VoidPtrTy, *VoidPtrPtrTy;
43 /// Convenience reference to LLVM Context
44 llvm::LLVMContext &Context;
45 /// Convenience reference to the current module
46 llvm::Module &TheModule;
47 /// Keeps track of kernel launch stubs and handles emitted in this module
48 struct KernelInfo {
49 llvm::Function *Kernel; // stub function to help launch kernel
50 const Decl *D;
52 llvm::SmallVector<KernelInfo, 16> EmittedKernels;
53 // Map a kernel mangled name to a symbol for identifying kernel in host code
54 // For CUDA, the symbol for identifying the kernel is the same as the device
55 // stub function. For HIP, they are different.
56 llvm::DenseMap<StringRef, llvm::GlobalValue *> KernelHandles;
57 // Map a kernel handle to the kernel stub.
58 llvm::DenseMap<llvm::GlobalValue *, llvm::Function *> KernelStubs;
59 struct VarInfo {
60 llvm::GlobalVariable *Var;
61 const VarDecl *D;
62 DeviceVarFlags Flags;
64 llvm::SmallVector<VarInfo, 16> DeviceVars;
65 /// Keeps track of variable containing handle of GPU binary. Populated by
66 /// ModuleCtorFunction() and used to create corresponding cleanup calls in
67 /// ModuleDtorFunction()
68 llvm::GlobalVariable *GpuBinaryHandle = nullptr;
69 /// Whether we generate relocatable device code.
70 bool RelocatableDeviceCode;
71 /// Mangle context for device.
72 std::unique_ptr<MangleContext> DeviceMC;
73 /// Some zeros used for GEPs.
74 llvm::Constant *Zeros[2];
76 llvm::FunctionCallee getSetupArgumentFn() const;
77 llvm::FunctionCallee getLaunchFn() const;
79 llvm::FunctionType *getRegisterGlobalsFnTy() const;
80 llvm::FunctionType *getCallbackFnTy() const;
81 llvm::FunctionType *getRegisterLinkedBinaryFnTy() const;
82 std::string addPrefixToName(StringRef FuncName) const;
83 std::string addUnderscoredPrefixToName(StringRef FuncName) const;
85 /// Creates a function to register all kernel stubs generated in this module.
86 llvm::Function *makeRegisterGlobalsFn();
88 /// Helper function that generates a constant string and returns a pointer to
89 /// the start of the string. The result of this function can be used anywhere
90 /// where the C code specifies const char*.
91 llvm::Constant *makeConstantString(const std::string &Str,
92 const std::string &Name = "") {
93 auto ConstStr = CGM.GetAddrOfConstantCString(Str, Name.c_str());
94 return llvm::ConstantExpr::getGetElementPtr(ConstStr.getElementType(),
95 ConstStr.getPointer(), Zeros);
98 /// Helper function which generates an initialized constant array from Str,
99 /// and optionally sets section name and alignment. AddNull specifies whether
100 /// the array should nave NUL termination.
101 llvm::Constant *makeConstantArray(StringRef Str,
102 StringRef Name = "",
103 StringRef SectionName = "",
104 unsigned Alignment = 0,
105 bool AddNull = false) {
106 llvm::Constant *Value =
107 llvm::ConstantDataArray::getString(Context, Str, AddNull);
108 auto *GV = new llvm::GlobalVariable(
109 TheModule, Value->getType(), /*isConstant=*/true,
110 llvm::GlobalValue::PrivateLinkage, Value, Name);
111 if (!SectionName.empty()) {
112 GV->setSection(SectionName);
113 // Mark the address as used which make sure that this section isn't
114 // merged and we will really have it in the object file.
115 GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::None);
117 if (Alignment)
118 GV->setAlignment(llvm::Align(Alignment));
119 return llvm::ConstantExpr::getGetElementPtr(GV->getValueType(), GV, Zeros);
122 /// Helper function that generates an empty dummy function returning void.
123 llvm::Function *makeDummyFunction(llvm::FunctionType *FnTy) {
124 assert(FnTy->getReturnType()->isVoidTy() &&
125 "Can only generate dummy functions returning void!");
126 llvm::Function *DummyFunc = llvm::Function::Create(
127 FnTy, llvm::GlobalValue::InternalLinkage, "dummy", &TheModule);
129 llvm::BasicBlock *DummyBlock =
130 llvm::BasicBlock::Create(Context, "", DummyFunc);
131 CGBuilderTy FuncBuilder(CGM, Context);
132 FuncBuilder.SetInsertPoint(DummyBlock);
133 FuncBuilder.CreateRetVoid();
135 return DummyFunc;
138 void emitDeviceStubBodyLegacy(CodeGenFunction &CGF, FunctionArgList &Args);
139 void emitDeviceStubBodyNew(CodeGenFunction &CGF, FunctionArgList &Args);
140 std::string getDeviceSideName(const NamedDecl *ND) override;
142 void registerDeviceVar(const VarDecl *VD, llvm::GlobalVariable &Var,
143 bool Extern, bool Constant) {
144 DeviceVars.push_back({&Var,
146 {DeviceVarFlags::Variable, Extern, Constant,
147 VD->hasAttr<HIPManagedAttr>(),
148 /*Normalized*/ false, 0}});
150 void registerDeviceSurf(const VarDecl *VD, llvm::GlobalVariable &Var,
151 bool Extern, int Type) {
152 DeviceVars.push_back({&Var,
154 {DeviceVarFlags::Surface, Extern, /*Constant*/ false,
155 /*Managed*/ false,
156 /*Normalized*/ false, Type}});
158 void registerDeviceTex(const VarDecl *VD, llvm::GlobalVariable &Var,
159 bool Extern, int Type, bool Normalized) {
160 DeviceVars.push_back({&Var,
162 {DeviceVarFlags::Texture, Extern, /*Constant*/ false,
163 /*Managed*/ false, Normalized, Type}});
166 /// Creates module constructor function
167 llvm::Function *makeModuleCtorFunction();
168 /// Creates module destructor function
169 llvm::Function *makeModuleDtorFunction();
170 /// Transform managed variables for device compilation.
171 void transformManagedVars();
172 /// Create offloading entries to register globals in RDC mode.
173 void createOffloadingEntries();
175 public:
176 CGNVCUDARuntime(CodeGenModule &CGM);
178 llvm::GlobalValue *getKernelHandle(llvm::Function *F, GlobalDecl GD) override;
179 llvm::Function *getKernelStub(llvm::GlobalValue *Handle) override {
180 auto Loc = KernelStubs.find(Handle);
181 assert(Loc != KernelStubs.end());
182 return Loc->second;
184 void emitDeviceStub(CodeGenFunction &CGF, FunctionArgList &Args) override;
185 void handleVarRegistration(const VarDecl *VD,
186 llvm::GlobalVariable &Var) override;
187 void
188 internalizeDeviceSideVar(const VarDecl *D,
189 llvm::GlobalValue::LinkageTypes &Linkage) override;
191 llvm::Function *finalizeModule() override;
194 } // end anonymous namespace
196 std::string CGNVCUDARuntime::addPrefixToName(StringRef FuncName) const {
197 if (CGM.getLangOpts().HIP)
198 return ((Twine("hip") + Twine(FuncName)).str());
199 return ((Twine("cuda") + Twine(FuncName)).str());
201 std::string
202 CGNVCUDARuntime::addUnderscoredPrefixToName(StringRef FuncName) const {
203 if (CGM.getLangOpts().HIP)
204 return ((Twine("__hip") + Twine(FuncName)).str());
205 return ((Twine("__cuda") + Twine(FuncName)).str());
208 static std::unique_ptr<MangleContext> InitDeviceMC(CodeGenModule &CGM) {
209 // If the host and device have different C++ ABIs, mark it as the device
210 // mangle context so that the mangling needs to retrieve the additional
211 // device lambda mangling number instead of the regular host one.
212 if (CGM.getContext().getAuxTargetInfo() &&
213 CGM.getContext().getTargetInfo().getCXXABI().isMicrosoft() &&
214 CGM.getContext().getAuxTargetInfo()->getCXXABI().isItaniumFamily()) {
215 return std::unique_ptr<MangleContext>(
216 CGM.getContext().createDeviceMangleContext(
217 *CGM.getContext().getAuxTargetInfo()));
220 return std::unique_ptr<MangleContext>(CGM.getContext().createMangleContext(
221 CGM.getContext().getAuxTargetInfo()));
224 CGNVCUDARuntime::CGNVCUDARuntime(CodeGenModule &CGM)
225 : CGCUDARuntime(CGM), Context(CGM.getLLVMContext()),
226 TheModule(CGM.getModule()),
227 RelocatableDeviceCode(CGM.getLangOpts().GPURelocatableDeviceCode),
228 DeviceMC(InitDeviceMC(CGM)) {
229 CodeGen::CodeGenTypes &Types = CGM.getTypes();
230 ASTContext &Ctx = CGM.getContext();
232 IntTy = CGM.IntTy;
233 SizeTy = CGM.SizeTy;
234 VoidTy = CGM.VoidTy;
235 Zeros[0] = llvm::ConstantInt::get(SizeTy, 0);
236 Zeros[1] = Zeros[0];
238 CharPtrTy = llvm::PointerType::getUnqual(Types.ConvertType(Ctx.CharTy));
239 VoidPtrTy = cast<llvm::PointerType>(Types.ConvertType(Ctx.VoidPtrTy));
240 VoidPtrPtrTy = llvm::PointerType::getUnqual(CGM.getLLVMContext());
243 llvm::FunctionCallee CGNVCUDARuntime::getSetupArgumentFn() const {
244 // cudaError_t cudaSetupArgument(void *, size_t, size_t)
245 llvm::Type *Params[] = {VoidPtrTy, SizeTy, SizeTy};
246 return CGM.CreateRuntimeFunction(
247 llvm::FunctionType::get(IntTy, Params, false),
248 addPrefixToName("SetupArgument"));
251 llvm::FunctionCallee CGNVCUDARuntime::getLaunchFn() const {
252 if (CGM.getLangOpts().HIP) {
253 // hipError_t hipLaunchByPtr(char *);
254 return CGM.CreateRuntimeFunction(
255 llvm::FunctionType::get(IntTy, CharPtrTy, false), "hipLaunchByPtr");
257 // cudaError_t cudaLaunch(char *);
258 return CGM.CreateRuntimeFunction(
259 llvm::FunctionType::get(IntTy, CharPtrTy, false), "cudaLaunch");
262 llvm::FunctionType *CGNVCUDARuntime::getRegisterGlobalsFnTy() const {
263 return llvm::FunctionType::get(VoidTy, VoidPtrPtrTy, false);
266 llvm::FunctionType *CGNVCUDARuntime::getCallbackFnTy() const {
267 return llvm::FunctionType::get(VoidTy, VoidPtrTy, false);
270 llvm::FunctionType *CGNVCUDARuntime::getRegisterLinkedBinaryFnTy() const {
271 llvm::Type *Params[] = {llvm::PointerType::getUnqual(Context), VoidPtrTy,
272 VoidPtrTy, llvm::PointerType::getUnqual(Context)};
273 return llvm::FunctionType::get(VoidTy, Params, false);
276 std::string CGNVCUDARuntime::getDeviceSideName(const NamedDecl *ND) {
277 GlobalDecl GD;
278 // D could be either a kernel or a variable.
279 if (auto *FD = dyn_cast<FunctionDecl>(ND))
280 GD = GlobalDecl(FD, KernelReferenceKind::Kernel);
281 else
282 GD = GlobalDecl(ND);
283 std::string DeviceSideName;
284 MangleContext *MC;
285 if (CGM.getLangOpts().CUDAIsDevice)
286 MC = &CGM.getCXXABI().getMangleContext();
287 else
288 MC = DeviceMC.get();
289 if (MC->shouldMangleDeclName(ND)) {
290 SmallString<256> Buffer;
291 llvm::raw_svector_ostream Out(Buffer);
292 MC->mangleName(GD, Out);
293 DeviceSideName = std::string(Out.str());
294 } else
295 DeviceSideName = std::string(ND->getIdentifier()->getName());
297 // Make unique name for device side static file-scope variable for HIP.
298 if (CGM.getContext().shouldExternalize(ND) &&
299 CGM.getLangOpts().GPURelocatableDeviceCode) {
300 SmallString<256> Buffer;
301 llvm::raw_svector_ostream Out(Buffer);
302 Out << DeviceSideName;
303 CGM.printPostfixForExternalizedDecl(Out, ND);
304 DeviceSideName = std::string(Out.str());
306 return DeviceSideName;
309 void CGNVCUDARuntime::emitDeviceStub(CodeGenFunction &CGF,
310 FunctionArgList &Args) {
311 EmittedKernels.push_back({CGF.CurFn, CGF.CurFuncDecl});
312 if (auto *GV =
313 dyn_cast<llvm::GlobalVariable>(KernelHandles[CGF.CurFn->getName()])) {
314 GV->setLinkage(CGF.CurFn->getLinkage());
315 GV->setInitializer(CGF.CurFn);
317 if (CudaFeatureEnabled(CGM.getTarget().getSDKVersion(),
318 CudaFeature::CUDA_USES_NEW_LAUNCH) ||
319 (CGF.getLangOpts().HIP && CGF.getLangOpts().HIPUseNewLaunchAPI))
320 emitDeviceStubBodyNew(CGF, Args);
321 else
322 emitDeviceStubBodyLegacy(CGF, Args);
325 // CUDA 9.0+ uses new way to launch kernels. Parameters are packed in a local
326 // array and kernels are launched using cudaLaunchKernel().
327 void CGNVCUDARuntime::emitDeviceStubBodyNew(CodeGenFunction &CGF,
328 FunctionArgList &Args) {
329 // Build the shadow stack entry at the very start of the function.
331 // Calculate amount of space we will need for all arguments. If we have no
332 // args, allocate a single pointer so we still have a valid pointer to the
333 // argument array that we can pass to runtime, even if it will be unused.
334 Address KernelArgs = CGF.CreateTempAlloca(
335 VoidPtrTy, CharUnits::fromQuantity(16), "kernel_args",
336 llvm::ConstantInt::get(SizeTy, std::max<size_t>(1, Args.size())));
337 // Store pointers to the arguments in a locally allocated launch_args.
338 for (unsigned i = 0; i < Args.size(); ++i) {
339 llvm::Value* VarPtr = CGF.GetAddrOfLocalVar(Args[i]).getPointer();
340 llvm::Value *VoidVarPtr = CGF.Builder.CreatePointerCast(VarPtr, VoidPtrTy);
341 CGF.Builder.CreateDefaultAlignedStore(
342 VoidVarPtr,
343 CGF.Builder.CreateConstGEP1_32(VoidPtrTy, KernelArgs.getPointer(), i));
346 llvm::BasicBlock *EndBlock = CGF.createBasicBlock("setup.end");
348 // Lookup cudaLaunchKernel/hipLaunchKernel function.
349 // HIP kernel launching API name depends on -fgpu-default-stream option. For
350 // the default value 'legacy', it is hipLaunchKernel. For 'per-thread',
351 // it is hipLaunchKernel_spt.
352 // cudaError_t cudaLaunchKernel(const void *func, dim3 gridDim, dim3 blockDim,
353 // void **args, size_t sharedMem,
354 // cudaStream_t stream);
355 // hipError_t hipLaunchKernel[_spt](const void *func, dim3 gridDim,
356 // dim3 blockDim, void **args,
357 // size_t sharedMem, hipStream_t stream);
358 TranslationUnitDecl *TUDecl = CGM.getContext().getTranslationUnitDecl();
359 DeclContext *DC = TranslationUnitDecl::castToDeclContext(TUDecl);
360 std::string KernelLaunchAPI = "LaunchKernel";
361 if (CGF.getLangOpts().GPUDefaultStream ==
362 LangOptions::GPUDefaultStreamKind::PerThread) {
363 if (CGF.getLangOpts().HIP)
364 KernelLaunchAPI = KernelLaunchAPI + "_spt";
365 else if (CGF.getLangOpts().CUDA)
366 KernelLaunchAPI = KernelLaunchAPI + "_ptsz";
368 auto LaunchKernelName = addPrefixToName(KernelLaunchAPI);
369 IdentifierInfo &cudaLaunchKernelII =
370 CGM.getContext().Idents.get(LaunchKernelName);
371 FunctionDecl *cudaLaunchKernelFD = nullptr;
372 for (auto *Result : DC->lookup(&cudaLaunchKernelII)) {
373 if (FunctionDecl *FD = dyn_cast<FunctionDecl>(Result))
374 cudaLaunchKernelFD = FD;
377 if (cudaLaunchKernelFD == nullptr) {
378 CGM.Error(CGF.CurFuncDecl->getLocation(),
379 "Can't find declaration for " + LaunchKernelName);
380 return;
382 // Create temporary dim3 grid_dim, block_dim.
383 ParmVarDecl *GridDimParam = cudaLaunchKernelFD->getParamDecl(1);
384 QualType Dim3Ty = GridDimParam->getType();
385 Address GridDim =
386 CGF.CreateMemTemp(Dim3Ty, CharUnits::fromQuantity(8), "grid_dim");
387 Address BlockDim =
388 CGF.CreateMemTemp(Dim3Ty, CharUnits::fromQuantity(8), "block_dim");
389 Address ShmemSize =
390 CGF.CreateTempAlloca(SizeTy, CGM.getSizeAlign(), "shmem_size");
391 Address Stream =
392 CGF.CreateTempAlloca(VoidPtrTy, CGM.getPointerAlign(), "stream");
393 llvm::FunctionCallee cudaPopConfigFn = CGM.CreateRuntimeFunction(
394 llvm::FunctionType::get(IntTy,
395 {/*gridDim=*/GridDim.getType(),
396 /*blockDim=*/BlockDim.getType(),
397 /*ShmemSize=*/ShmemSize.getType(),
398 /*Stream=*/Stream.getType()},
399 /*isVarArg=*/false),
400 addUnderscoredPrefixToName("PopCallConfiguration"));
402 CGF.EmitRuntimeCallOrInvoke(cudaPopConfigFn,
403 {GridDim.getPointer(), BlockDim.getPointer(),
404 ShmemSize.getPointer(), Stream.getPointer()});
406 // Emit the call to cudaLaunch
407 llvm::Value *Kernel = CGF.Builder.CreatePointerCast(
408 KernelHandles[CGF.CurFn->getName()], VoidPtrTy);
409 CallArgList LaunchKernelArgs;
410 LaunchKernelArgs.add(RValue::get(Kernel),
411 cudaLaunchKernelFD->getParamDecl(0)->getType());
412 LaunchKernelArgs.add(RValue::getAggregate(GridDim), Dim3Ty);
413 LaunchKernelArgs.add(RValue::getAggregate(BlockDim), Dim3Ty);
414 LaunchKernelArgs.add(RValue::get(KernelArgs.getPointer()),
415 cudaLaunchKernelFD->getParamDecl(3)->getType());
416 LaunchKernelArgs.add(RValue::get(CGF.Builder.CreateLoad(ShmemSize)),
417 cudaLaunchKernelFD->getParamDecl(4)->getType());
418 LaunchKernelArgs.add(RValue::get(CGF.Builder.CreateLoad(Stream)),
419 cudaLaunchKernelFD->getParamDecl(5)->getType());
421 QualType QT = cudaLaunchKernelFD->getType();
422 QualType CQT = QT.getCanonicalType();
423 llvm::Type *Ty = CGM.getTypes().ConvertType(CQT);
424 llvm::FunctionType *FTy = cast<llvm::FunctionType>(Ty);
426 const CGFunctionInfo &FI =
427 CGM.getTypes().arrangeFunctionDeclaration(cudaLaunchKernelFD);
428 llvm::FunctionCallee cudaLaunchKernelFn =
429 CGM.CreateRuntimeFunction(FTy, LaunchKernelName);
430 CGF.EmitCall(FI, CGCallee::forDirect(cudaLaunchKernelFn), ReturnValueSlot(),
431 LaunchKernelArgs);
432 CGF.EmitBranch(EndBlock);
434 CGF.EmitBlock(EndBlock);
437 void CGNVCUDARuntime::emitDeviceStubBodyLegacy(CodeGenFunction &CGF,
438 FunctionArgList &Args) {
439 // Emit a call to cudaSetupArgument for each arg in Args.
440 llvm::FunctionCallee cudaSetupArgFn = getSetupArgumentFn();
441 llvm::BasicBlock *EndBlock = CGF.createBasicBlock("setup.end");
442 CharUnits Offset = CharUnits::Zero();
443 for (const VarDecl *A : Args) {
444 auto TInfo = CGM.getContext().getTypeInfoInChars(A->getType());
445 Offset = Offset.alignTo(TInfo.Align);
446 llvm::Value *Args[] = {
447 CGF.Builder.CreatePointerCast(CGF.GetAddrOfLocalVar(A).getPointer(),
448 VoidPtrTy),
449 llvm::ConstantInt::get(SizeTy, TInfo.Width.getQuantity()),
450 llvm::ConstantInt::get(SizeTy, Offset.getQuantity()),
452 llvm::CallBase *CB = CGF.EmitRuntimeCallOrInvoke(cudaSetupArgFn, Args);
453 llvm::Constant *Zero = llvm::ConstantInt::get(IntTy, 0);
454 llvm::Value *CBZero = CGF.Builder.CreateICmpEQ(CB, Zero);
455 llvm::BasicBlock *NextBlock = CGF.createBasicBlock("setup.next");
456 CGF.Builder.CreateCondBr(CBZero, NextBlock, EndBlock);
457 CGF.EmitBlock(NextBlock);
458 Offset += TInfo.Width;
461 // Emit the call to cudaLaunch
462 llvm::FunctionCallee cudaLaunchFn = getLaunchFn();
463 llvm::Value *Arg = CGF.Builder.CreatePointerCast(
464 KernelHandles[CGF.CurFn->getName()], CharPtrTy);
465 CGF.EmitRuntimeCallOrInvoke(cudaLaunchFn, Arg);
466 CGF.EmitBranch(EndBlock);
468 CGF.EmitBlock(EndBlock);
471 // Replace the original variable Var with the address loaded from variable
472 // ManagedVar populated by HIP runtime.
473 static void replaceManagedVar(llvm::GlobalVariable *Var,
474 llvm::GlobalVariable *ManagedVar) {
475 SmallVector<SmallVector<llvm::User *, 8>, 8> WorkList;
476 for (auto &&VarUse : Var->uses()) {
477 WorkList.push_back({VarUse.getUser()});
479 while (!WorkList.empty()) {
480 auto &&WorkItem = WorkList.pop_back_val();
481 auto *U = WorkItem.back();
482 if (isa<llvm::ConstantExpr>(U)) {
483 for (auto &&UU : U->uses()) {
484 WorkItem.push_back(UU.getUser());
485 WorkList.push_back(WorkItem);
486 WorkItem.pop_back();
488 continue;
490 if (auto *I = dyn_cast<llvm::Instruction>(U)) {
491 llvm::Value *OldV = Var;
492 llvm::Instruction *NewV =
493 new llvm::LoadInst(Var->getType(), ManagedVar, "ld.managed", false,
494 llvm::Align(Var->getAlignment()), I);
495 WorkItem.pop_back();
496 // Replace constant expressions directly or indirectly using the managed
497 // variable with instructions.
498 for (auto &&Op : WorkItem) {
499 auto *CE = cast<llvm::ConstantExpr>(Op);
500 auto *NewInst = CE->getAsInstruction(I);
501 NewInst->replaceUsesOfWith(OldV, NewV);
502 OldV = CE;
503 NewV = NewInst;
505 I->replaceUsesOfWith(OldV, NewV);
506 } else {
507 llvm_unreachable("Invalid use of managed variable");
512 /// Creates a function that sets up state on the host side for CUDA objects that
513 /// have a presence on both the host and device sides. Specifically, registers
514 /// the host side of kernel functions and device global variables with the CUDA
515 /// runtime.
516 /// \code
517 /// void __cuda_register_globals(void** GpuBinaryHandle) {
518 /// __cudaRegisterFunction(GpuBinaryHandle,Kernel0,...);
519 /// ...
520 /// __cudaRegisterFunction(GpuBinaryHandle,KernelM,...);
521 /// __cudaRegisterVar(GpuBinaryHandle, GlobalVar0, ...);
522 /// ...
523 /// __cudaRegisterVar(GpuBinaryHandle, GlobalVarN, ...);
524 /// }
525 /// \endcode
526 llvm::Function *CGNVCUDARuntime::makeRegisterGlobalsFn() {
527 // No need to register anything
528 if (EmittedKernels.empty() && DeviceVars.empty())
529 return nullptr;
531 llvm::Function *RegisterKernelsFunc = llvm::Function::Create(
532 getRegisterGlobalsFnTy(), llvm::GlobalValue::InternalLinkage,
533 addUnderscoredPrefixToName("_register_globals"), &TheModule);
534 llvm::BasicBlock *EntryBB =
535 llvm::BasicBlock::Create(Context, "entry", RegisterKernelsFunc);
536 CGBuilderTy Builder(CGM, Context);
537 Builder.SetInsertPoint(EntryBB);
539 // void __cudaRegisterFunction(void **, const char *, char *, const char *,
540 // int, uint3*, uint3*, dim3*, dim3*, int*)
541 llvm::Type *RegisterFuncParams[] = {
542 VoidPtrPtrTy, CharPtrTy,
543 CharPtrTy, CharPtrTy,
544 IntTy, VoidPtrTy,
545 VoidPtrTy, VoidPtrTy,
546 VoidPtrTy, llvm::PointerType::getUnqual(Context)};
547 llvm::FunctionCallee RegisterFunc = CGM.CreateRuntimeFunction(
548 llvm::FunctionType::get(IntTy, RegisterFuncParams, false),
549 addUnderscoredPrefixToName("RegisterFunction"));
551 // Extract GpuBinaryHandle passed as the first argument passed to
552 // __cuda_register_globals() and generate __cudaRegisterFunction() call for
553 // each emitted kernel.
554 llvm::Argument &GpuBinaryHandlePtr = *RegisterKernelsFunc->arg_begin();
555 for (auto &&I : EmittedKernels) {
556 llvm::Constant *KernelName =
557 makeConstantString(getDeviceSideName(cast<NamedDecl>(I.D)));
558 llvm::Constant *NullPtr = llvm::ConstantPointerNull::get(VoidPtrTy);
559 llvm::Value *Args[] = {
560 &GpuBinaryHandlePtr,
561 Builder.CreateBitCast(KernelHandles[I.Kernel->getName()], VoidPtrTy),
562 KernelName,
563 KernelName,
564 llvm::ConstantInt::get(IntTy, -1),
565 NullPtr,
566 NullPtr,
567 NullPtr,
568 NullPtr,
569 llvm::ConstantPointerNull::get(llvm::PointerType::getUnqual(Context))};
570 Builder.CreateCall(RegisterFunc, Args);
573 llvm::Type *VarSizeTy = IntTy;
574 // For HIP or CUDA 9.0+, device variable size is type of `size_t`.
575 if (CGM.getLangOpts().HIP ||
576 ToCudaVersion(CGM.getTarget().getSDKVersion()) >= CudaVersion::CUDA_90)
577 VarSizeTy = SizeTy;
579 // void __cudaRegisterVar(void **, char *, char *, const char *,
580 // int, int, int, int)
581 llvm::Type *RegisterVarParams[] = {VoidPtrPtrTy, CharPtrTy, CharPtrTy,
582 CharPtrTy, IntTy, VarSizeTy,
583 IntTy, IntTy};
584 llvm::FunctionCallee RegisterVar = CGM.CreateRuntimeFunction(
585 llvm::FunctionType::get(VoidTy, RegisterVarParams, false),
586 addUnderscoredPrefixToName("RegisterVar"));
587 // void __hipRegisterManagedVar(void **, char *, char *, const char *,
588 // size_t, unsigned)
589 llvm::Type *RegisterManagedVarParams[] = {VoidPtrPtrTy, CharPtrTy, CharPtrTy,
590 CharPtrTy, VarSizeTy, IntTy};
591 llvm::FunctionCallee RegisterManagedVar = CGM.CreateRuntimeFunction(
592 llvm::FunctionType::get(VoidTy, RegisterManagedVarParams, false),
593 addUnderscoredPrefixToName("RegisterManagedVar"));
594 // void __cudaRegisterSurface(void **, const struct surfaceReference *,
595 // const void **, const char *, int, int);
596 llvm::FunctionCallee RegisterSurf = CGM.CreateRuntimeFunction(
597 llvm::FunctionType::get(
598 VoidTy, {VoidPtrPtrTy, VoidPtrTy, CharPtrTy, CharPtrTy, IntTy, IntTy},
599 false),
600 addUnderscoredPrefixToName("RegisterSurface"));
601 // void __cudaRegisterTexture(void **, const struct textureReference *,
602 // const void **, const char *, int, int, int)
603 llvm::FunctionCallee RegisterTex = CGM.CreateRuntimeFunction(
604 llvm::FunctionType::get(
605 VoidTy,
606 {VoidPtrPtrTy, VoidPtrTy, CharPtrTy, CharPtrTy, IntTy, IntTy, IntTy},
607 false),
608 addUnderscoredPrefixToName("RegisterTexture"));
609 for (auto &&Info : DeviceVars) {
610 llvm::GlobalVariable *Var = Info.Var;
611 assert((!Var->isDeclaration() || Info.Flags.isManaged()) &&
612 "External variables should not show up here, except HIP managed "
613 "variables");
614 llvm::Constant *VarName = makeConstantString(getDeviceSideName(Info.D));
615 switch (Info.Flags.getKind()) {
616 case DeviceVarFlags::Variable: {
617 uint64_t VarSize =
618 CGM.getDataLayout().getTypeAllocSize(Var->getValueType());
619 if (Info.Flags.isManaged()) {
620 auto *ManagedVar = new llvm::GlobalVariable(
621 CGM.getModule(), Var->getType(),
622 /*isConstant=*/false, Var->getLinkage(),
623 /*Init=*/Var->isDeclaration()
624 ? nullptr
625 : llvm::ConstantPointerNull::get(Var->getType()),
626 /*Name=*/"", /*InsertBefore=*/nullptr,
627 llvm::GlobalVariable::NotThreadLocal);
628 ManagedVar->setDSOLocal(Var->isDSOLocal());
629 ManagedVar->setVisibility(Var->getVisibility());
630 ManagedVar->setExternallyInitialized(true);
631 ManagedVar->takeName(Var);
632 Var->setName(Twine(ManagedVar->getName() + ".managed"));
633 replaceManagedVar(Var, ManagedVar);
634 llvm::Value *Args[] = {
635 &GpuBinaryHandlePtr,
636 Builder.CreateBitCast(ManagedVar, VoidPtrTy),
637 Builder.CreateBitCast(Var, VoidPtrTy),
638 VarName,
639 llvm::ConstantInt::get(VarSizeTy, VarSize),
640 llvm::ConstantInt::get(IntTy, Var->getAlignment())};
641 if (!Var->isDeclaration())
642 Builder.CreateCall(RegisterManagedVar, Args);
643 } else {
644 llvm::Value *Args[] = {
645 &GpuBinaryHandlePtr,
646 Builder.CreateBitCast(Var, VoidPtrTy),
647 VarName,
648 VarName,
649 llvm::ConstantInt::get(IntTy, Info.Flags.isExtern()),
650 llvm::ConstantInt::get(VarSizeTy, VarSize),
651 llvm::ConstantInt::get(IntTy, Info.Flags.isConstant()),
652 llvm::ConstantInt::get(IntTy, 0)};
653 Builder.CreateCall(RegisterVar, Args);
655 break;
657 case DeviceVarFlags::Surface:
658 Builder.CreateCall(
659 RegisterSurf,
660 {&GpuBinaryHandlePtr, Builder.CreateBitCast(Var, VoidPtrTy), VarName,
661 VarName, llvm::ConstantInt::get(IntTy, Info.Flags.getSurfTexType()),
662 llvm::ConstantInt::get(IntTy, Info.Flags.isExtern())});
663 break;
664 case DeviceVarFlags::Texture:
665 Builder.CreateCall(
666 RegisterTex,
667 {&GpuBinaryHandlePtr, Builder.CreateBitCast(Var, VoidPtrTy), VarName,
668 VarName, llvm::ConstantInt::get(IntTy, Info.Flags.getSurfTexType()),
669 llvm::ConstantInt::get(IntTy, Info.Flags.isNormalized()),
670 llvm::ConstantInt::get(IntTy, Info.Flags.isExtern())});
671 break;
675 Builder.CreateRetVoid();
676 return RegisterKernelsFunc;
679 /// Creates a global constructor function for the module:
681 /// For CUDA:
682 /// \code
683 /// void __cuda_module_ctor() {
684 /// Handle = __cudaRegisterFatBinary(GpuBinaryBlob);
685 /// __cuda_register_globals(Handle);
686 /// }
687 /// \endcode
689 /// For HIP:
690 /// \code
691 /// void __hip_module_ctor() {
692 /// if (__hip_gpubin_handle == 0) {
693 /// __hip_gpubin_handle = __hipRegisterFatBinary(GpuBinaryBlob);
694 /// __hip_register_globals(__hip_gpubin_handle);
695 /// }
696 /// }
697 /// \endcode
698 llvm::Function *CGNVCUDARuntime::makeModuleCtorFunction() {
699 bool IsHIP = CGM.getLangOpts().HIP;
700 bool IsCUDA = CGM.getLangOpts().CUDA;
701 // No need to generate ctors/dtors if there is no GPU binary.
702 StringRef CudaGpuBinaryFileName = CGM.getCodeGenOpts().CudaGpuBinaryFileName;
703 if (CudaGpuBinaryFileName.empty() && !IsHIP)
704 return nullptr;
705 if ((IsHIP || (IsCUDA && !RelocatableDeviceCode)) && EmittedKernels.empty() &&
706 DeviceVars.empty())
707 return nullptr;
709 // void __{cuda|hip}_register_globals(void* handle);
710 llvm::Function *RegisterGlobalsFunc = makeRegisterGlobalsFn();
711 // We always need a function to pass in as callback. Create a dummy
712 // implementation if we don't need to register anything.
713 if (RelocatableDeviceCode && !RegisterGlobalsFunc)
714 RegisterGlobalsFunc = makeDummyFunction(getRegisterGlobalsFnTy());
716 // void ** __{cuda|hip}RegisterFatBinary(void *);
717 llvm::FunctionCallee RegisterFatbinFunc = CGM.CreateRuntimeFunction(
718 llvm::FunctionType::get(VoidPtrPtrTy, VoidPtrTy, false),
719 addUnderscoredPrefixToName("RegisterFatBinary"));
720 // struct { int magic, int version, void * gpu_binary, void * dont_care };
721 llvm::StructType *FatbinWrapperTy =
722 llvm::StructType::get(IntTy, IntTy, VoidPtrTy, VoidPtrTy);
724 // Register GPU binary with the CUDA runtime, store returned handle in a
725 // global variable and save a reference in GpuBinaryHandle to be cleaned up
726 // in destructor on exit. Then associate all known kernels with the GPU binary
727 // handle so CUDA runtime can figure out what to call on the GPU side.
728 std::unique_ptr<llvm::MemoryBuffer> CudaGpuBinary = nullptr;
729 if (!CudaGpuBinaryFileName.empty()) {
730 auto VFS = CGM.getFileSystem();
731 auto CudaGpuBinaryOrErr =
732 VFS->getBufferForFile(CudaGpuBinaryFileName, -1, false);
733 if (std::error_code EC = CudaGpuBinaryOrErr.getError()) {
734 CGM.getDiags().Report(diag::err_cannot_open_file)
735 << CudaGpuBinaryFileName << EC.message();
736 return nullptr;
738 CudaGpuBinary = std::move(CudaGpuBinaryOrErr.get());
741 llvm::Function *ModuleCtorFunc = llvm::Function::Create(
742 llvm::FunctionType::get(VoidTy, false),
743 llvm::GlobalValue::InternalLinkage,
744 addUnderscoredPrefixToName("_module_ctor"), &TheModule);
745 llvm::BasicBlock *CtorEntryBB =
746 llvm::BasicBlock::Create(Context, "entry", ModuleCtorFunc);
747 CGBuilderTy CtorBuilder(CGM, Context);
749 CtorBuilder.SetInsertPoint(CtorEntryBB);
751 const char *FatbinConstantName;
752 const char *FatbinSectionName;
753 const char *ModuleIDSectionName;
754 StringRef ModuleIDPrefix;
755 llvm::Constant *FatBinStr;
756 unsigned FatMagic;
757 if (IsHIP) {
758 FatbinConstantName = ".hip_fatbin";
759 FatbinSectionName = ".hipFatBinSegment";
761 ModuleIDSectionName = "__hip_module_id";
762 ModuleIDPrefix = "__hip_";
764 if (CudaGpuBinary) {
765 // If fatbin is available from early finalization, create a string
766 // literal containing the fat binary loaded from the given file.
767 const unsigned HIPCodeObjectAlign = 4096;
768 FatBinStr = makeConstantArray(std::string(CudaGpuBinary->getBuffer()), "",
769 FatbinConstantName, HIPCodeObjectAlign);
770 } else {
771 // If fatbin is not available, create an external symbol
772 // __hip_fatbin in section .hip_fatbin. The external symbol is supposed
773 // to contain the fat binary but will be populated somewhere else,
774 // e.g. by lld through link script.
775 FatBinStr = new llvm::GlobalVariable(
776 CGM.getModule(), CGM.Int8Ty,
777 /*isConstant=*/true, llvm::GlobalValue::ExternalLinkage, nullptr,
778 "__hip_fatbin", nullptr,
779 llvm::GlobalVariable::NotThreadLocal);
780 cast<llvm::GlobalVariable>(FatBinStr)->setSection(FatbinConstantName);
783 FatMagic = HIPFatMagic;
784 } else {
785 if (RelocatableDeviceCode)
786 FatbinConstantName = CGM.getTriple().isMacOSX()
787 ? "__NV_CUDA,__nv_relfatbin"
788 : "__nv_relfatbin";
789 else
790 FatbinConstantName =
791 CGM.getTriple().isMacOSX() ? "__NV_CUDA,__nv_fatbin" : ".nv_fatbin";
792 // NVIDIA's cuobjdump looks for fatbins in this section.
793 FatbinSectionName =
794 CGM.getTriple().isMacOSX() ? "__NV_CUDA,__fatbin" : ".nvFatBinSegment";
796 ModuleIDSectionName = CGM.getTriple().isMacOSX()
797 ? "__NV_CUDA,__nv_module_id"
798 : "__nv_module_id";
799 ModuleIDPrefix = "__nv_";
801 // For CUDA, create a string literal containing the fat binary loaded from
802 // the given file.
803 FatBinStr = makeConstantArray(std::string(CudaGpuBinary->getBuffer()), "",
804 FatbinConstantName, 8);
805 FatMagic = CudaFatMagic;
808 // Create initialized wrapper structure that points to the loaded GPU binary
809 ConstantInitBuilder Builder(CGM);
810 auto Values = Builder.beginStruct(FatbinWrapperTy);
811 // Fatbin wrapper magic.
812 Values.addInt(IntTy, FatMagic);
813 // Fatbin version.
814 Values.addInt(IntTy, 1);
815 // Data.
816 Values.add(FatBinStr);
817 // Unused in fatbin v1.
818 Values.add(llvm::ConstantPointerNull::get(VoidPtrTy));
819 llvm::GlobalVariable *FatbinWrapper = Values.finishAndCreateGlobal(
820 addUnderscoredPrefixToName("_fatbin_wrapper"), CGM.getPointerAlign(),
821 /*constant*/ true);
822 FatbinWrapper->setSection(FatbinSectionName);
824 // There is only one HIP fat binary per linked module, however there are
825 // multiple constructor functions. Make sure the fat binary is registered
826 // only once. The constructor functions are executed by the dynamic loader
827 // before the program gains control. The dynamic loader cannot execute the
828 // constructor functions concurrently since doing that would not guarantee
829 // thread safety of the loaded program. Therefore we can assume sequential
830 // execution of constructor functions here.
831 if (IsHIP) {
832 auto Linkage = CudaGpuBinary ? llvm::GlobalValue::InternalLinkage :
833 llvm::GlobalValue::LinkOnceAnyLinkage;
834 llvm::BasicBlock *IfBlock =
835 llvm::BasicBlock::Create(Context, "if", ModuleCtorFunc);
836 llvm::BasicBlock *ExitBlock =
837 llvm::BasicBlock::Create(Context, "exit", ModuleCtorFunc);
838 // The name, size, and initialization pattern of this variable is part
839 // of HIP ABI.
840 GpuBinaryHandle = new llvm::GlobalVariable(
841 TheModule, VoidPtrPtrTy, /*isConstant=*/false,
842 Linkage,
843 /*Initializer=*/llvm::ConstantPointerNull::get(VoidPtrPtrTy),
844 "__hip_gpubin_handle");
845 if (Linkage == llvm::GlobalValue::LinkOnceAnyLinkage)
846 GpuBinaryHandle->setComdat(
847 CGM.getModule().getOrInsertComdat(GpuBinaryHandle->getName()));
848 GpuBinaryHandle->setAlignment(CGM.getPointerAlign().getAsAlign());
849 // Prevent the weak symbol in different shared libraries being merged.
850 if (Linkage != llvm::GlobalValue::InternalLinkage)
851 GpuBinaryHandle->setVisibility(llvm::GlobalValue::HiddenVisibility);
852 Address GpuBinaryAddr(
853 GpuBinaryHandle, VoidPtrPtrTy,
854 CharUnits::fromQuantity(GpuBinaryHandle->getAlignment()));
856 auto *HandleValue = CtorBuilder.CreateLoad(GpuBinaryAddr);
857 llvm::Constant *Zero =
858 llvm::Constant::getNullValue(HandleValue->getType());
859 llvm::Value *EQZero = CtorBuilder.CreateICmpEQ(HandleValue, Zero);
860 CtorBuilder.CreateCondBr(EQZero, IfBlock, ExitBlock);
863 CtorBuilder.SetInsertPoint(IfBlock);
864 // GpuBinaryHandle = __hipRegisterFatBinary(&FatbinWrapper);
865 llvm::CallInst *RegisterFatbinCall = CtorBuilder.CreateCall(
866 RegisterFatbinFunc,
867 CtorBuilder.CreateBitCast(FatbinWrapper, VoidPtrTy));
868 CtorBuilder.CreateStore(RegisterFatbinCall, GpuBinaryAddr);
869 CtorBuilder.CreateBr(ExitBlock);
872 CtorBuilder.SetInsertPoint(ExitBlock);
873 // Call __hip_register_globals(GpuBinaryHandle);
874 if (RegisterGlobalsFunc) {
875 auto *HandleValue = CtorBuilder.CreateLoad(GpuBinaryAddr);
876 CtorBuilder.CreateCall(RegisterGlobalsFunc, HandleValue);
879 } else if (!RelocatableDeviceCode) {
880 // Register binary with CUDA runtime. This is substantially different in
881 // default mode vs. separate compilation!
882 // GpuBinaryHandle = __cudaRegisterFatBinary(&FatbinWrapper);
883 llvm::CallInst *RegisterFatbinCall = CtorBuilder.CreateCall(
884 RegisterFatbinFunc,
885 CtorBuilder.CreateBitCast(FatbinWrapper, VoidPtrTy));
886 GpuBinaryHandle = new llvm::GlobalVariable(
887 TheModule, VoidPtrPtrTy, false, llvm::GlobalValue::InternalLinkage,
888 llvm::ConstantPointerNull::get(VoidPtrPtrTy), "__cuda_gpubin_handle");
889 GpuBinaryHandle->setAlignment(CGM.getPointerAlign().getAsAlign());
890 CtorBuilder.CreateAlignedStore(RegisterFatbinCall, GpuBinaryHandle,
891 CGM.getPointerAlign());
893 // Call __cuda_register_globals(GpuBinaryHandle);
894 if (RegisterGlobalsFunc)
895 CtorBuilder.CreateCall(RegisterGlobalsFunc, RegisterFatbinCall);
897 // Call __cudaRegisterFatBinaryEnd(Handle) if this CUDA version needs it.
898 if (CudaFeatureEnabled(CGM.getTarget().getSDKVersion(),
899 CudaFeature::CUDA_USES_FATBIN_REGISTER_END)) {
900 // void __cudaRegisterFatBinaryEnd(void **);
901 llvm::FunctionCallee RegisterFatbinEndFunc = CGM.CreateRuntimeFunction(
902 llvm::FunctionType::get(VoidTy, VoidPtrPtrTy, false),
903 "__cudaRegisterFatBinaryEnd");
904 CtorBuilder.CreateCall(RegisterFatbinEndFunc, RegisterFatbinCall);
906 } else {
907 // Generate a unique module ID.
908 SmallString<64> ModuleID;
909 llvm::raw_svector_ostream OS(ModuleID);
910 OS << ModuleIDPrefix << llvm::format("%" PRIx64, FatbinWrapper->getGUID());
911 llvm::Constant *ModuleIDConstant = makeConstantArray(
912 std::string(ModuleID.str()), "", ModuleIDSectionName, 32, /*AddNull=*/true);
914 // Create an alias for the FatbinWrapper that nvcc will look for.
915 llvm::GlobalAlias::create(llvm::GlobalValue::ExternalLinkage,
916 Twine("__fatbinwrap") + ModuleID, FatbinWrapper);
918 // void __cudaRegisterLinkedBinary%ModuleID%(void (*)(void *), void *,
919 // void *, void (*)(void **))
920 SmallString<128> RegisterLinkedBinaryName("__cudaRegisterLinkedBinary");
921 RegisterLinkedBinaryName += ModuleID;
922 llvm::FunctionCallee RegisterLinkedBinaryFunc = CGM.CreateRuntimeFunction(
923 getRegisterLinkedBinaryFnTy(), RegisterLinkedBinaryName);
925 assert(RegisterGlobalsFunc && "Expecting at least dummy function!");
926 llvm::Value *Args[] = {RegisterGlobalsFunc,
927 CtorBuilder.CreateBitCast(FatbinWrapper, VoidPtrTy),
928 ModuleIDConstant,
929 makeDummyFunction(getCallbackFnTy())};
930 CtorBuilder.CreateCall(RegisterLinkedBinaryFunc, Args);
933 // Create destructor and register it with atexit() the way NVCC does it. Doing
934 // it during regular destructor phase worked in CUDA before 9.2 but results in
935 // double-free in 9.2.
936 if (llvm::Function *CleanupFn = makeModuleDtorFunction()) {
937 // extern "C" int atexit(void (*f)(void));
938 llvm::FunctionType *AtExitTy =
939 llvm::FunctionType::get(IntTy, CleanupFn->getType(), false);
940 llvm::FunctionCallee AtExitFunc =
941 CGM.CreateRuntimeFunction(AtExitTy, "atexit", llvm::AttributeList(),
942 /*Local=*/true);
943 CtorBuilder.CreateCall(AtExitFunc, CleanupFn);
946 CtorBuilder.CreateRetVoid();
947 return ModuleCtorFunc;
950 /// Creates a global destructor function that unregisters the GPU code blob
951 /// registered by constructor.
953 /// For CUDA:
954 /// \code
955 /// void __cuda_module_dtor() {
956 /// __cudaUnregisterFatBinary(Handle);
957 /// }
958 /// \endcode
960 /// For HIP:
961 /// \code
962 /// void __hip_module_dtor() {
963 /// if (__hip_gpubin_handle) {
964 /// __hipUnregisterFatBinary(__hip_gpubin_handle);
965 /// __hip_gpubin_handle = 0;
966 /// }
967 /// }
968 /// \endcode
969 llvm::Function *CGNVCUDARuntime::makeModuleDtorFunction() {
970 // No need for destructor if we don't have a handle to unregister.
971 if (!GpuBinaryHandle)
972 return nullptr;
974 // void __cudaUnregisterFatBinary(void ** handle);
975 llvm::FunctionCallee UnregisterFatbinFunc = CGM.CreateRuntimeFunction(
976 llvm::FunctionType::get(VoidTy, VoidPtrPtrTy, false),
977 addUnderscoredPrefixToName("UnregisterFatBinary"));
979 llvm::Function *ModuleDtorFunc = llvm::Function::Create(
980 llvm::FunctionType::get(VoidTy, false),
981 llvm::GlobalValue::InternalLinkage,
982 addUnderscoredPrefixToName("_module_dtor"), &TheModule);
984 llvm::BasicBlock *DtorEntryBB =
985 llvm::BasicBlock::Create(Context, "entry", ModuleDtorFunc);
986 CGBuilderTy DtorBuilder(CGM, Context);
987 DtorBuilder.SetInsertPoint(DtorEntryBB);
989 Address GpuBinaryAddr(
990 GpuBinaryHandle, GpuBinaryHandle->getValueType(),
991 CharUnits::fromQuantity(GpuBinaryHandle->getAlignment()));
992 auto *HandleValue = DtorBuilder.CreateLoad(GpuBinaryAddr);
993 // There is only one HIP fat binary per linked module, however there are
994 // multiple destructor functions. Make sure the fat binary is unregistered
995 // only once.
996 if (CGM.getLangOpts().HIP) {
997 llvm::BasicBlock *IfBlock =
998 llvm::BasicBlock::Create(Context, "if", ModuleDtorFunc);
999 llvm::BasicBlock *ExitBlock =
1000 llvm::BasicBlock::Create(Context, "exit", ModuleDtorFunc);
1001 llvm::Constant *Zero = llvm::Constant::getNullValue(HandleValue->getType());
1002 llvm::Value *NEZero = DtorBuilder.CreateICmpNE(HandleValue, Zero);
1003 DtorBuilder.CreateCondBr(NEZero, IfBlock, ExitBlock);
1005 DtorBuilder.SetInsertPoint(IfBlock);
1006 DtorBuilder.CreateCall(UnregisterFatbinFunc, HandleValue);
1007 DtorBuilder.CreateStore(Zero, GpuBinaryAddr);
1008 DtorBuilder.CreateBr(ExitBlock);
1010 DtorBuilder.SetInsertPoint(ExitBlock);
1011 } else {
1012 DtorBuilder.CreateCall(UnregisterFatbinFunc, HandleValue);
1014 DtorBuilder.CreateRetVoid();
1015 return ModuleDtorFunc;
1018 CGCUDARuntime *CodeGen::CreateNVCUDARuntime(CodeGenModule &CGM) {
1019 return new CGNVCUDARuntime(CGM);
1022 void CGNVCUDARuntime::internalizeDeviceSideVar(
1023 const VarDecl *D, llvm::GlobalValue::LinkageTypes &Linkage) {
1024 // For -fno-gpu-rdc, host-side shadows of external declarations of device-side
1025 // global variables become internal definitions. These have to be internal in
1026 // order to prevent name conflicts with global host variables with the same
1027 // name in a different TUs.
1029 // For -fgpu-rdc, the shadow variables should not be internalized because
1030 // they may be accessed by different TU.
1031 if (CGM.getLangOpts().GPURelocatableDeviceCode)
1032 return;
1034 // __shared__ variables are odd. Shadows do get created, but
1035 // they are not registered with the CUDA runtime, so they
1036 // can't really be used to access their device-side
1037 // counterparts. It's not clear yet whether it's nvcc's bug or
1038 // a feature, but we've got to do the same for compatibility.
1039 if (D->hasAttr<CUDADeviceAttr>() || D->hasAttr<CUDAConstantAttr>() ||
1040 D->hasAttr<CUDASharedAttr>() ||
1041 D->getType()->isCUDADeviceBuiltinSurfaceType() ||
1042 D->getType()->isCUDADeviceBuiltinTextureType()) {
1043 Linkage = llvm::GlobalValue::InternalLinkage;
1047 void CGNVCUDARuntime::handleVarRegistration(const VarDecl *D,
1048 llvm::GlobalVariable &GV) {
1049 if (D->hasAttr<CUDADeviceAttr>() || D->hasAttr<CUDAConstantAttr>()) {
1050 // Shadow variables and their properties must be registered with CUDA
1051 // runtime. Skip Extern global variables, which will be registered in
1052 // the TU where they are defined.
1054 // Don't register a C++17 inline variable. The local symbol can be
1055 // discarded and referencing a discarded local symbol from outside the
1056 // comdat (__cuda_register_globals) is disallowed by the ELF spec.
1058 // HIP managed variables need to be always recorded in device and host
1059 // compilations for transformation.
1061 // HIP managed variables and variables in CUDADeviceVarODRUsedByHost are
1062 // added to llvm.compiler-used, therefore they are safe to be registered.
1063 if ((!D->hasExternalStorage() && !D->isInline()) ||
1064 CGM.getContext().CUDADeviceVarODRUsedByHost.contains(D) ||
1065 D->hasAttr<HIPManagedAttr>()) {
1066 registerDeviceVar(D, GV, !D->hasDefinition(),
1067 D->hasAttr<CUDAConstantAttr>());
1069 } else if (D->getType()->isCUDADeviceBuiltinSurfaceType() ||
1070 D->getType()->isCUDADeviceBuiltinTextureType()) {
1071 // Builtin surfaces and textures and their template arguments are
1072 // also registered with CUDA runtime.
1073 const auto *TD = cast<ClassTemplateSpecializationDecl>(
1074 D->getType()->castAs<RecordType>()->getDecl());
1075 const TemplateArgumentList &Args = TD->getTemplateArgs();
1076 if (TD->hasAttr<CUDADeviceBuiltinSurfaceTypeAttr>()) {
1077 assert(Args.size() == 2 &&
1078 "Unexpected number of template arguments of CUDA device "
1079 "builtin surface type.");
1080 auto SurfType = Args[1].getAsIntegral();
1081 if (!D->hasExternalStorage())
1082 registerDeviceSurf(D, GV, !D->hasDefinition(), SurfType.getSExtValue());
1083 } else {
1084 assert(Args.size() == 3 &&
1085 "Unexpected number of template arguments of CUDA device "
1086 "builtin texture type.");
1087 auto TexType = Args[1].getAsIntegral();
1088 auto Normalized = Args[2].getAsIntegral();
1089 if (!D->hasExternalStorage())
1090 registerDeviceTex(D, GV, !D->hasDefinition(), TexType.getSExtValue(),
1091 Normalized.getZExtValue());
1096 // Transform managed variables to pointers to managed variables in device code.
1097 // Each use of the original managed variable is replaced by a load from the
1098 // transformed managed variable. The transformed managed variable contains
1099 // the address of managed memory which will be allocated by the runtime.
1100 void CGNVCUDARuntime::transformManagedVars() {
1101 for (auto &&Info : DeviceVars) {
1102 llvm::GlobalVariable *Var = Info.Var;
1103 if (Info.Flags.getKind() == DeviceVarFlags::Variable &&
1104 Info.Flags.isManaged()) {
1105 auto *ManagedVar = new llvm::GlobalVariable(
1106 CGM.getModule(), Var->getType(),
1107 /*isConstant=*/false, Var->getLinkage(),
1108 /*Init=*/Var->isDeclaration()
1109 ? nullptr
1110 : llvm::ConstantPointerNull::get(Var->getType()),
1111 /*Name=*/"", /*InsertBefore=*/nullptr,
1112 llvm::GlobalVariable::NotThreadLocal,
1113 CGM.getContext().getTargetAddressSpace(LangAS::cuda_device));
1114 ManagedVar->setDSOLocal(Var->isDSOLocal());
1115 ManagedVar->setVisibility(Var->getVisibility());
1116 ManagedVar->setExternallyInitialized(true);
1117 replaceManagedVar(Var, ManagedVar);
1118 ManagedVar->takeName(Var);
1119 Var->setName(Twine(ManagedVar->getName()) + ".managed");
1120 // Keep managed variables even if they are not used in device code since
1121 // they need to be allocated by the runtime.
1122 if (!Var->isDeclaration()) {
1123 assert(!ManagedVar->isDeclaration());
1124 CGM.addCompilerUsedGlobal(Var);
1125 CGM.addCompilerUsedGlobal(ManagedVar);
1131 // Creates offloading entries for all the kernels and globals that must be
1132 // registered. The linker will provide a pointer to this section so we can
1133 // register the symbols with the linked device image.
1134 void CGNVCUDARuntime::createOffloadingEntries() {
1135 llvm::OpenMPIRBuilder OMPBuilder(CGM.getModule());
1136 OMPBuilder.initialize();
1138 StringRef Section = CGM.getLangOpts().HIP ? "hip_offloading_entries"
1139 : "cuda_offloading_entries";
1140 for (KernelInfo &I : EmittedKernels)
1141 OMPBuilder.emitOffloadingEntry(KernelHandles[I.Kernel->getName()],
1142 getDeviceSideName(cast<NamedDecl>(I.D)), 0,
1143 DeviceVarFlags::OffloadGlobalEntry, Section);
1145 for (VarInfo &I : DeviceVars) {
1146 uint64_t VarSize =
1147 CGM.getDataLayout().getTypeAllocSize(I.Var->getValueType());
1148 if (I.Flags.getKind() == DeviceVarFlags::Variable) {
1149 OMPBuilder.emitOffloadingEntry(
1150 I.Var, getDeviceSideName(I.D), VarSize,
1151 I.Flags.isManaged() ? DeviceVarFlags::OffloadGlobalManagedEntry
1152 : DeviceVarFlags::OffloadGlobalEntry,
1153 Section);
1154 } else if (I.Flags.getKind() == DeviceVarFlags::Surface) {
1155 OMPBuilder.emitOffloadingEntry(I.Var, getDeviceSideName(I.D), VarSize,
1156 DeviceVarFlags::OffloadGlobalSurfaceEntry,
1157 Section);
1158 } else if (I.Flags.getKind() == DeviceVarFlags::Texture) {
1159 OMPBuilder.emitOffloadingEntry(I.Var, getDeviceSideName(I.D), VarSize,
1160 DeviceVarFlags::OffloadGlobalTextureEntry,
1161 Section);
1166 // Returns module constructor to be added.
1167 llvm::Function *CGNVCUDARuntime::finalizeModule() {
1168 if (CGM.getLangOpts().CUDAIsDevice) {
1169 transformManagedVars();
1171 // Mark ODR-used device variables as compiler used to prevent it from being
1172 // eliminated by optimization. This is necessary for device variables
1173 // ODR-used by host functions. Sema correctly marks them as ODR-used no
1174 // matter whether they are ODR-used by device or host functions.
1176 // We do not need to do this if the variable has used attribute since it
1177 // has already been added.
1179 // Static device variables have been externalized at this point, therefore
1180 // variables with LLVM private or internal linkage need not be added.
1181 for (auto &&Info : DeviceVars) {
1182 auto Kind = Info.Flags.getKind();
1183 if (!Info.Var->isDeclaration() &&
1184 !llvm::GlobalValue::isLocalLinkage(Info.Var->getLinkage()) &&
1185 (Kind == DeviceVarFlags::Variable ||
1186 Kind == DeviceVarFlags::Surface ||
1187 Kind == DeviceVarFlags::Texture) &&
1188 Info.D->isUsed() && !Info.D->hasAttr<UsedAttr>()) {
1189 CGM.addCompilerUsedGlobal(Info.Var);
1192 return nullptr;
1194 if (CGM.getLangOpts().OffloadingNewDriver && RelocatableDeviceCode)
1195 createOffloadingEntries();
1196 else
1197 return makeModuleCtorFunction();
1199 return nullptr;
1202 llvm::GlobalValue *CGNVCUDARuntime::getKernelHandle(llvm::Function *F,
1203 GlobalDecl GD) {
1204 auto Loc = KernelHandles.find(F->getName());
1205 if (Loc != KernelHandles.end()) {
1206 auto OldHandle = Loc->second;
1207 if (KernelStubs[OldHandle] == F)
1208 return OldHandle;
1210 // We've found the function name, but F itself has changed, so we need to
1211 // update the references.
1212 if (CGM.getLangOpts().HIP) {
1213 // For HIP compilation the handle itself does not change, so we only need
1214 // to update the Stub value.
1215 KernelStubs[OldHandle] = F;
1216 return OldHandle;
1218 // For non-HIP compilation, erase the old Stub and fall-through to creating
1219 // new entries.
1220 KernelStubs.erase(OldHandle);
1223 if (!CGM.getLangOpts().HIP) {
1224 KernelHandles[F->getName()] = F;
1225 KernelStubs[F] = F;
1226 return F;
1229 auto *Var = new llvm::GlobalVariable(
1230 TheModule, F->getType(), /*isConstant=*/true, F->getLinkage(),
1231 /*Initializer=*/nullptr,
1232 CGM.getMangledName(
1233 GD.getWithKernelReferenceKind(KernelReferenceKind::Kernel)));
1234 Var->setAlignment(CGM.getPointerAlign().getAsAlign());
1235 Var->setDSOLocal(F->isDSOLocal());
1236 Var->setVisibility(F->getVisibility());
1237 CGM.maybeSetTrivialComdat(*GD.getDecl(), *Var);
1238 KernelHandles[F->getName()] = Var;
1239 KernelStubs[Var] = F;
1240 return Var;