1 //===----- CGCUDANV.cpp - Interface to NVIDIA CUDA Runtime ----------------===//
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
7 //===----------------------------------------------------------------------===//
9 // This provides a class for CUDA code generation targeting the NVIDIA CUDA
12 //===----------------------------------------------------------------------===//
14 #include "CGCUDARuntime.h"
16 #include "CodeGenFunction.h"
17 #include "CodeGenModule.h"
18 #include "clang/AST/Decl.h"
19 #include "clang/Basic/Cuda.h"
20 #include "clang/CodeGen/CodeGenABITypes.h"
21 #include "clang/CodeGen/ConstantInitBuilder.h"
22 #include "llvm/IR/BasicBlock.h"
23 #include "llvm/IR/Constants.h"
24 #include "llvm/IR/DerivedTypes.h"
25 #include "llvm/IR/ReplaceConstant.h"
26 #include "llvm/Support/Format.h"
27 #include "llvm/Support/VirtualFileSystem.h"
29 using namespace clang
;
30 using namespace CodeGen
;
33 constexpr unsigned CudaFatMagic
= 0x466243b1;
34 constexpr unsigned HIPFatMagic
= 0x48495046; // "HIPF"
36 class CGNVCUDARuntime
: public CGCUDARuntime
{
39 llvm::IntegerType
*IntTy
, *SizeTy
;
41 llvm::PointerType
*CharPtrTy
, *VoidPtrTy
, *VoidPtrPtrTy
;
43 /// Convenience reference to LLVM Context
44 llvm::LLVMContext
&Context
;
45 /// Convenience reference to the current module
46 llvm::Module
&TheModule
;
47 /// Keeps track of kernel launch stubs and handles emitted in this module
49 llvm::Function
*Kernel
; // stub function to help launch kernel
52 llvm::SmallVector
<KernelInfo
, 16> EmittedKernels
;
53 // Map a kernel mangled name to a symbol for identifying kernel in host code
54 // For CUDA, the symbol for identifying the kernel is the same as the device
55 // stub function. For HIP, they are different.
56 llvm::DenseMap
<StringRef
, llvm::GlobalValue
*> KernelHandles
;
57 // Map a kernel handle to the kernel stub.
58 llvm::DenseMap
<llvm::GlobalValue
*, llvm::Function
*> KernelStubs
;
60 llvm::GlobalVariable
*Var
;
64 llvm::SmallVector
<VarInfo
, 16> DeviceVars
;
65 /// Keeps track of variable containing handle of GPU binary. Populated by
66 /// ModuleCtorFunction() and used to create corresponding cleanup calls in
67 /// ModuleDtorFunction()
68 llvm::GlobalVariable
*GpuBinaryHandle
= nullptr;
69 /// Whether we generate relocatable device code.
70 bool RelocatableDeviceCode
;
71 /// Mangle context for device.
72 std::unique_ptr
<MangleContext
> DeviceMC
;
73 /// Some zeros used for GEPs.
74 llvm::Constant
*Zeros
[2];
76 llvm::FunctionCallee
getSetupArgumentFn() const;
77 llvm::FunctionCallee
getLaunchFn() const;
79 llvm::FunctionType
*getRegisterGlobalsFnTy() const;
80 llvm::FunctionType
*getCallbackFnTy() const;
81 llvm::FunctionType
*getRegisterLinkedBinaryFnTy() const;
82 std::string
addPrefixToName(StringRef FuncName
) const;
83 std::string
addUnderscoredPrefixToName(StringRef FuncName
) const;
85 /// Creates a function to register all kernel stubs generated in this module.
86 llvm::Function
*makeRegisterGlobalsFn();
88 /// Helper function that generates a constant string and returns a pointer to
89 /// the start of the string. The result of this function can be used anywhere
90 /// where the C code specifies const char*.
91 llvm::Constant
*makeConstantString(const std::string
&Str
,
92 const std::string
&Name
= "") {
93 auto ConstStr
= CGM
.GetAddrOfConstantCString(Str
, Name
.c_str());
94 return llvm::ConstantExpr::getGetElementPtr(ConstStr
.getElementType(),
95 ConstStr
.getPointer(), Zeros
);
98 /// Helper function which generates an initialized constant array from Str,
99 /// and optionally sets section name and alignment. AddNull specifies whether
100 /// the array should nave NUL termination.
101 llvm::Constant
*makeConstantArray(StringRef Str
,
103 StringRef SectionName
= "",
104 unsigned Alignment
= 0,
105 bool AddNull
= false) {
106 llvm::Constant
*Value
=
107 llvm::ConstantDataArray::getString(Context
, Str
, AddNull
);
108 auto *GV
= new llvm::GlobalVariable(
109 TheModule
, Value
->getType(), /*isConstant=*/true,
110 llvm::GlobalValue::PrivateLinkage
, Value
, Name
);
111 if (!SectionName
.empty()) {
112 GV
->setSection(SectionName
);
113 // Mark the address as used which make sure that this section isn't
114 // merged and we will really have it in the object file.
115 GV
->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::None
);
118 GV
->setAlignment(llvm::Align(Alignment
));
119 return llvm::ConstantExpr::getGetElementPtr(GV
->getValueType(), GV
, Zeros
);
122 /// Helper function that generates an empty dummy function returning void.
123 llvm::Function
*makeDummyFunction(llvm::FunctionType
*FnTy
) {
124 assert(FnTy
->getReturnType()->isVoidTy() &&
125 "Can only generate dummy functions returning void!");
126 llvm::Function
*DummyFunc
= llvm::Function::Create(
127 FnTy
, llvm::GlobalValue::InternalLinkage
, "dummy", &TheModule
);
129 llvm::BasicBlock
*DummyBlock
=
130 llvm::BasicBlock::Create(Context
, "", DummyFunc
);
131 CGBuilderTy
FuncBuilder(CGM
, Context
);
132 FuncBuilder
.SetInsertPoint(DummyBlock
);
133 FuncBuilder
.CreateRetVoid();
138 void emitDeviceStubBodyLegacy(CodeGenFunction
&CGF
, FunctionArgList
&Args
);
139 void emitDeviceStubBodyNew(CodeGenFunction
&CGF
, FunctionArgList
&Args
);
140 std::string
getDeviceSideName(const NamedDecl
*ND
) override
;
142 void registerDeviceVar(const VarDecl
*VD
, llvm::GlobalVariable
&Var
,
143 bool Extern
, bool Constant
) {
144 DeviceVars
.push_back({&Var
,
146 {DeviceVarFlags::Variable
, Extern
, Constant
,
147 VD
->hasAttr
<HIPManagedAttr
>(),
148 /*Normalized*/ false, 0}});
150 void registerDeviceSurf(const VarDecl
*VD
, llvm::GlobalVariable
&Var
,
151 bool Extern
, int Type
) {
152 DeviceVars
.push_back({&Var
,
154 {DeviceVarFlags::Surface
, Extern
, /*Constant*/ false,
156 /*Normalized*/ false, Type
}});
158 void registerDeviceTex(const VarDecl
*VD
, llvm::GlobalVariable
&Var
,
159 bool Extern
, int Type
, bool Normalized
) {
160 DeviceVars
.push_back({&Var
,
162 {DeviceVarFlags::Texture
, Extern
, /*Constant*/ false,
163 /*Managed*/ false, Normalized
, Type
}});
166 /// Creates module constructor function
167 llvm::Function
*makeModuleCtorFunction();
168 /// Creates module destructor function
169 llvm::Function
*makeModuleDtorFunction();
170 /// Transform managed variables for device compilation.
171 void transformManagedVars();
172 /// Create offloading entries to register globals in RDC mode.
173 void createOffloadingEntries();
176 CGNVCUDARuntime(CodeGenModule
&CGM
);
178 llvm::GlobalValue
*getKernelHandle(llvm::Function
*F
, GlobalDecl GD
) override
;
179 llvm::Function
*getKernelStub(llvm::GlobalValue
*Handle
) override
{
180 auto Loc
= KernelStubs
.find(Handle
);
181 assert(Loc
!= KernelStubs
.end());
184 void emitDeviceStub(CodeGenFunction
&CGF
, FunctionArgList
&Args
) override
;
185 void handleVarRegistration(const VarDecl
*VD
,
186 llvm::GlobalVariable
&Var
) override
;
188 internalizeDeviceSideVar(const VarDecl
*D
,
189 llvm::GlobalValue::LinkageTypes
&Linkage
) override
;
191 llvm::Function
*finalizeModule() override
;
194 } // end anonymous namespace
196 std::string
CGNVCUDARuntime::addPrefixToName(StringRef FuncName
) const {
197 if (CGM
.getLangOpts().HIP
)
198 return ((Twine("hip") + Twine(FuncName
)).str());
199 return ((Twine("cuda") + Twine(FuncName
)).str());
202 CGNVCUDARuntime::addUnderscoredPrefixToName(StringRef FuncName
) const {
203 if (CGM
.getLangOpts().HIP
)
204 return ((Twine("__hip") + Twine(FuncName
)).str());
205 return ((Twine("__cuda") + Twine(FuncName
)).str());
208 static std::unique_ptr
<MangleContext
> InitDeviceMC(CodeGenModule
&CGM
) {
209 // If the host and device have different C++ ABIs, mark it as the device
210 // mangle context so that the mangling needs to retrieve the additional
211 // device lambda mangling number instead of the regular host one.
212 if (CGM
.getContext().getAuxTargetInfo() &&
213 CGM
.getContext().getTargetInfo().getCXXABI().isMicrosoft() &&
214 CGM
.getContext().getAuxTargetInfo()->getCXXABI().isItaniumFamily()) {
215 return std::unique_ptr
<MangleContext
>(
216 CGM
.getContext().createDeviceMangleContext(
217 *CGM
.getContext().getAuxTargetInfo()));
220 return std::unique_ptr
<MangleContext
>(CGM
.getContext().createMangleContext(
221 CGM
.getContext().getAuxTargetInfo()));
224 CGNVCUDARuntime::CGNVCUDARuntime(CodeGenModule
&CGM
)
225 : CGCUDARuntime(CGM
), Context(CGM
.getLLVMContext()),
226 TheModule(CGM
.getModule()),
227 RelocatableDeviceCode(CGM
.getLangOpts().GPURelocatableDeviceCode
),
228 DeviceMC(InitDeviceMC(CGM
)) {
229 CodeGen::CodeGenTypes
&Types
= CGM
.getTypes();
230 ASTContext
&Ctx
= CGM
.getContext();
235 Zeros
[0] = llvm::ConstantInt::get(SizeTy
, 0);
238 CharPtrTy
= llvm::PointerType::getUnqual(Types
.ConvertType(Ctx
.CharTy
));
239 VoidPtrTy
= cast
<llvm::PointerType
>(Types
.ConvertType(Ctx
.VoidPtrTy
));
240 VoidPtrPtrTy
= llvm::PointerType::getUnqual(CGM
.getLLVMContext());
243 llvm::FunctionCallee
CGNVCUDARuntime::getSetupArgumentFn() const {
244 // cudaError_t cudaSetupArgument(void *, size_t, size_t)
245 llvm::Type
*Params
[] = {VoidPtrTy
, SizeTy
, SizeTy
};
246 return CGM
.CreateRuntimeFunction(
247 llvm::FunctionType::get(IntTy
, Params
, false),
248 addPrefixToName("SetupArgument"));
251 llvm::FunctionCallee
CGNVCUDARuntime::getLaunchFn() const {
252 if (CGM
.getLangOpts().HIP
) {
253 // hipError_t hipLaunchByPtr(char *);
254 return CGM
.CreateRuntimeFunction(
255 llvm::FunctionType::get(IntTy
, CharPtrTy
, false), "hipLaunchByPtr");
257 // cudaError_t cudaLaunch(char *);
258 return CGM
.CreateRuntimeFunction(
259 llvm::FunctionType::get(IntTy
, CharPtrTy
, false), "cudaLaunch");
262 llvm::FunctionType
*CGNVCUDARuntime::getRegisterGlobalsFnTy() const {
263 return llvm::FunctionType::get(VoidTy
, VoidPtrPtrTy
, false);
266 llvm::FunctionType
*CGNVCUDARuntime::getCallbackFnTy() const {
267 return llvm::FunctionType::get(VoidTy
, VoidPtrTy
, false);
270 llvm::FunctionType
*CGNVCUDARuntime::getRegisterLinkedBinaryFnTy() const {
271 llvm::Type
*Params
[] = {llvm::PointerType::getUnqual(Context
), VoidPtrTy
,
272 VoidPtrTy
, llvm::PointerType::getUnqual(Context
)};
273 return llvm::FunctionType::get(VoidTy
, Params
, false);
276 std::string
CGNVCUDARuntime::getDeviceSideName(const NamedDecl
*ND
) {
278 // D could be either a kernel or a variable.
279 if (auto *FD
= dyn_cast
<FunctionDecl
>(ND
))
280 GD
= GlobalDecl(FD
, KernelReferenceKind::Kernel
);
283 std::string DeviceSideName
;
285 if (CGM
.getLangOpts().CUDAIsDevice
)
286 MC
= &CGM
.getCXXABI().getMangleContext();
289 if (MC
->shouldMangleDeclName(ND
)) {
290 SmallString
<256> Buffer
;
291 llvm::raw_svector_ostream
Out(Buffer
);
292 MC
->mangleName(GD
, Out
);
293 DeviceSideName
= std::string(Out
.str());
295 DeviceSideName
= std::string(ND
->getIdentifier()->getName());
297 // Make unique name for device side static file-scope variable for HIP.
298 if (CGM
.getContext().shouldExternalize(ND
) &&
299 CGM
.getLangOpts().GPURelocatableDeviceCode
) {
300 SmallString
<256> Buffer
;
301 llvm::raw_svector_ostream
Out(Buffer
);
302 Out
<< DeviceSideName
;
303 CGM
.printPostfixForExternalizedDecl(Out
, ND
);
304 DeviceSideName
= std::string(Out
.str());
306 return DeviceSideName
;
309 void CGNVCUDARuntime::emitDeviceStub(CodeGenFunction
&CGF
,
310 FunctionArgList
&Args
) {
311 EmittedKernels
.push_back({CGF
.CurFn
, CGF
.CurFuncDecl
});
313 dyn_cast
<llvm::GlobalVariable
>(KernelHandles
[CGF
.CurFn
->getName()])) {
314 GV
->setLinkage(CGF
.CurFn
->getLinkage());
315 GV
->setInitializer(CGF
.CurFn
);
317 if (CudaFeatureEnabled(CGM
.getTarget().getSDKVersion(),
318 CudaFeature::CUDA_USES_NEW_LAUNCH
) ||
319 (CGF
.getLangOpts().HIP
&& CGF
.getLangOpts().HIPUseNewLaunchAPI
))
320 emitDeviceStubBodyNew(CGF
, Args
);
322 emitDeviceStubBodyLegacy(CGF
, Args
);
325 // CUDA 9.0+ uses new way to launch kernels. Parameters are packed in a local
326 // array and kernels are launched using cudaLaunchKernel().
327 void CGNVCUDARuntime::emitDeviceStubBodyNew(CodeGenFunction
&CGF
,
328 FunctionArgList
&Args
) {
329 // Build the shadow stack entry at the very start of the function.
331 // Calculate amount of space we will need for all arguments. If we have no
332 // args, allocate a single pointer so we still have a valid pointer to the
333 // argument array that we can pass to runtime, even if it will be unused.
334 Address KernelArgs
= CGF
.CreateTempAlloca(
335 VoidPtrTy
, CharUnits::fromQuantity(16), "kernel_args",
336 llvm::ConstantInt::get(SizeTy
, std::max
<size_t>(1, Args
.size())));
337 // Store pointers to the arguments in a locally allocated launch_args.
338 for (unsigned i
= 0; i
< Args
.size(); ++i
) {
339 llvm::Value
* VarPtr
= CGF
.GetAddrOfLocalVar(Args
[i
]).getPointer();
340 llvm::Value
*VoidVarPtr
= CGF
.Builder
.CreatePointerCast(VarPtr
, VoidPtrTy
);
341 CGF
.Builder
.CreateDefaultAlignedStore(
343 CGF
.Builder
.CreateConstGEP1_32(VoidPtrTy
, KernelArgs
.getPointer(), i
));
346 llvm::BasicBlock
*EndBlock
= CGF
.createBasicBlock("setup.end");
348 // Lookup cudaLaunchKernel/hipLaunchKernel function.
349 // HIP kernel launching API name depends on -fgpu-default-stream option. For
350 // the default value 'legacy', it is hipLaunchKernel. For 'per-thread',
351 // it is hipLaunchKernel_spt.
352 // cudaError_t cudaLaunchKernel(const void *func, dim3 gridDim, dim3 blockDim,
353 // void **args, size_t sharedMem,
354 // cudaStream_t stream);
355 // hipError_t hipLaunchKernel[_spt](const void *func, dim3 gridDim,
356 // dim3 blockDim, void **args,
357 // size_t sharedMem, hipStream_t stream);
358 TranslationUnitDecl
*TUDecl
= CGM
.getContext().getTranslationUnitDecl();
359 DeclContext
*DC
= TranslationUnitDecl::castToDeclContext(TUDecl
);
360 std::string KernelLaunchAPI
= "LaunchKernel";
361 if (CGF
.getLangOpts().GPUDefaultStream
==
362 LangOptions::GPUDefaultStreamKind::PerThread
) {
363 if (CGF
.getLangOpts().HIP
)
364 KernelLaunchAPI
= KernelLaunchAPI
+ "_spt";
365 else if (CGF
.getLangOpts().CUDA
)
366 KernelLaunchAPI
= KernelLaunchAPI
+ "_ptsz";
368 auto LaunchKernelName
= addPrefixToName(KernelLaunchAPI
);
369 IdentifierInfo
&cudaLaunchKernelII
=
370 CGM
.getContext().Idents
.get(LaunchKernelName
);
371 FunctionDecl
*cudaLaunchKernelFD
= nullptr;
372 for (auto *Result
: DC
->lookup(&cudaLaunchKernelII
)) {
373 if (FunctionDecl
*FD
= dyn_cast
<FunctionDecl
>(Result
))
374 cudaLaunchKernelFD
= FD
;
377 if (cudaLaunchKernelFD
== nullptr) {
378 CGM
.Error(CGF
.CurFuncDecl
->getLocation(),
379 "Can't find declaration for " + LaunchKernelName
);
382 // Create temporary dim3 grid_dim, block_dim.
383 ParmVarDecl
*GridDimParam
= cudaLaunchKernelFD
->getParamDecl(1);
384 QualType Dim3Ty
= GridDimParam
->getType();
386 CGF
.CreateMemTemp(Dim3Ty
, CharUnits::fromQuantity(8), "grid_dim");
388 CGF
.CreateMemTemp(Dim3Ty
, CharUnits::fromQuantity(8), "block_dim");
390 CGF
.CreateTempAlloca(SizeTy
, CGM
.getSizeAlign(), "shmem_size");
392 CGF
.CreateTempAlloca(VoidPtrTy
, CGM
.getPointerAlign(), "stream");
393 llvm::FunctionCallee cudaPopConfigFn
= CGM
.CreateRuntimeFunction(
394 llvm::FunctionType::get(IntTy
,
395 {/*gridDim=*/GridDim
.getType(),
396 /*blockDim=*/BlockDim
.getType(),
397 /*ShmemSize=*/ShmemSize
.getType(),
398 /*Stream=*/Stream
.getType()},
400 addUnderscoredPrefixToName("PopCallConfiguration"));
402 CGF
.EmitRuntimeCallOrInvoke(cudaPopConfigFn
,
403 {GridDim
.getPointer(), BlockDim
.getPointer(),
404 ShmemSize
.getPointer(), Stream
.getPointer()});
406 // Emit the call to cudaLaunch
407 llvm::Value
*Kernel
= CGF
.Builder
.CreatePointerCast(
408 KernelHandles
[CGF
.CurFn
->getName()], VoidPtrTy
);
409 CallArgList LaunchKernelArgs
;
410 LaunchKernelArgs
.add(RValue::get(Kernel
),
411 cudaLaunchKernelFD
->getParamDecl(0)->getType());
412 LaunchKernelArgs
.add(RValue::getAggregate(GridDim
), Dim3Ty
);
413 LaunchKernelArgs
.add(RValue::getAggregate(BlockDim
), Dim3Ty
);
414 LaunchKernelArgs
.add(RValue::get(KernelArgs
.getPointer()),
415 cudaLaunchKernelFD
->getParamDecl(3)->getType());
416 LaunchKernelArgs
.add(RValue::get(CGF
.Builder
.CreateLoad(ShmemSize
)),
417 cudaLaunchKernelFD
->getParamDecl(4)->getType());
418 LaunchKernelArgs
.add(RValue::get(CGF
.Builder
.CreateLoad(Stream
)),
419 cudaLaunchKernelFD
->getParamDecl(5)->getType());
421 QualType QT
= cudaLaunchKernelFD
->getType();
422 QualType CQT
= QT
.getCanonicalType();
423 llvm::Type
*Ty
= CGM
.getTypes().ConvertType(CQT
);
424 llvm::FunctionType
*FTy
= cast
<llvm::FunctionType
>(Ty
);
426 const CGFunctionInfo
&FI
=
427 CGM
.getTypes().arrangeFunctionDeclaration(cudaLaunchKernelFD
);
428 llvm::FunctionCallee cudaLaunchKernelFn
=
429 CGM
.CreateRuntimeFunction(FTy
, LaunchKernelName
);
430 CGF
.EmitCall(FI
, CGCallee::forDirect(cudaLaunchKernelFn
), ReturnValueSlot(),
432 CGF
.EmitBranch(EndBlock
);
434 CGF
.EmitBlock(EndBlock
);
437 void CGNVCUDARuntime::emitDeviceStubBodyLegacy(CodeGenFunction
&CGF
,
438 FunctionArgList
&Args
) {
439 // Emit a call to cudaSetupArgument for each arg in Args.
440 llvm::FunctionCallee cudaSetupArgFn
= getSetupArgumentFn();
441 llvm::BasicBlock
*EndBlock
= CGF
.createBasicBlock("setup.end");
442 CharUnits Offset
= CharUnits::Zero();
443 for (const VarDecl
*A
: Args
) {
444 auto TInfo
= CGM
.getContext().getTypeInfoInChars(A
->getType());
445 Offset
= Offset
.alignTo(TInfo
.Align
);
446 llvm::Value
*Args
[] = {
447 CGF
.Builder
.CreatePointerCast(CGF
.GetAddrOfLocalVar(A
).getPointer(),
449 llvm::ConstantInt::get(SizeTy
, TInfo
.Width
.getQuantity()),
450 llvm::ConstantInt::get(SizeTy
, Offset
.getQuantity()),
452 llvm::CallBase
*CB
= CGF
.EmitRuntimeCallOrInvoke(cudaSetupArgFn
, Args
);
453 llvm::Constant
*Zero
= llvm::ConstantInt::get(IntTy
, 0);
454 llvm::Value
*CBZero
= CGF
.Builder
.CreateICmpEQ(CB
, Zero
);
455 llvm::BasicBlock
*NextBlock
= CGF
.createBasicBlock("setup.next");
456 CGF
.Builder
.CreateCondBr(CBZero
, NextBlock
, EndBlock
);
457 CGF
.EmitBlock(NextBlock
);
458 Offset
+= TInfo
.Width
;
461 // Emit the call to cudaLaunch
462 llvm::FunctionCallee cudaLaunchFn
= getLaunchFn();
463 llvm::Value
*Arg
= CGF
.Builder
.CreatePointerCast(
464 KernelHandles
[CGF
.CurFn
->getName()], CharPtrTy
);
465 CGF
.EmitRuntimeCallOrInvoke(cudaLaunchFn
, Arg
);
466 CGF
.EmitBranch(EndBlock
);
468 CGF
.EmitBlock(EndBlock
);
471 // Replace the original variable Var with the address loaded from variable
472 // ManagedVar populated by HIP runtime.
473 static void replaceManagedVar(llvm::GlobalVariable
*Var
,
474 llvm::GlobalVariable
*ManagedVar
) {
475 SmallVector
<SmallVector
<llvm::User
*, 8>, 8> WorkList
;
476 for (auto &&VarUse
: Var
->uses()) {
477 WorkList
.push_back({VarUse
.getUser()});
479 while (!WorkList
.empty()) {
480 auto &&WorkItem
= WorkList
.pop_back_val();
481 auto *U
= WorkItem
.back();
482 if (isa
<llvm::ConstantExpr
>(U
)) {
483 for (auto &&UU
: U
->uses()) {
484 WorkItem
.push_back(UU
.getUser());
485 WorkList
.push_back(WorkItem
);
490 if (auto *I
= dyn_cast
<llvm::Instruction
>(U
)) {
491 llvm::Value
*OldV
= Var
;
492 llvm::Instruction
*NewV
=
493 new llvm::LoadInst(Var
->getType(), ManagedVar
, "ld.managed", false,
494 llvm::Align(Var
->getAlignment()), I
);
496 // Replace constant expressions directly or indirectly using the managed
497 // variable with instructions.
498 for (auto &&Op
: WorkItem
) {
499 auto *CE
= cast
<llvm::ConstantExpr
>(Op
);
500 auto *NewInst
= CE
->getAsInstruction(I
);
501 NewInst
->replaceUsesOfWith(OldV
, NewV
);
505 I
->replaceUsesOfWith(OldV
, NewV
);
507 llvm_unreachable("Invalid use of managed variable");
512 /// Creates a function that sets up state on the host side for CUDA objects that
513 /// have a presence on both the host and device sides. Specifically, registers
514 /// the host side of kernel functions and device global variables with the CUDA
517 /// void __cuda_register_globals(void** GpuBinaryHandle) {
518 /// __cudaRegisterFunction(GpuBinaryHandle,Kernel0,...);
520 /// __cudaRegisterFunction(GpuBinaryHandle,KernelM,...);
521 /// __cudaRegisterVar(GpuBinaryHandle, GlobalVar0, ...);
523 /// __cudaRegisterVar(GpuBinaryHandle, GlobalVarN, ...);
526 llvm::Function
*CGNVCUDARuntime::makeRegisterGlobalsFn() {
527 // No need to register anything
528 if (EmittedKernels
.empty() && DeviceVars
.empty())
531 llvm::Function
*RegisterKernelsFunc
= llvm::Function::Create(
532 getRegisterGlobalsFnTy(), llvm::GlobalValue::InternalLinkage
,
533 addUnderscoredPrefixToName("_register_globals"), &TheModule
);
534 llvm::BasicBlock
*EntryBB
=
535 llvm::BasicBlock::Create(Context
, "entry", RegisterKernelsFunc
);
536 CGBuilderTy
Builder(CGM
, Context
);
537 Builder
.SetInsertPoint(EntryBB
);
539 // void __cudaRegisterFunction(void **, const char *, char *, const char *,
540 // int, uint3*, uint3*, dim3*, dim3*, int*)
541 llvm::Type
*RegisterFuncParams
[] = {
542 VoidPtrPtrTy
, CharPtrTy
,
543 CharPtrTy
, CharPtrTy
,
545 VoidPtrTy
, VoidPtrTy
,
546 VoidPtrTy
, llvm::PointerType::getUnqual(Context
)};
547 llvm::FunctionCallee RegisterFunc
= CGM
.CreateRuntimeFunction(
548 llvm::FunctionType::get(IntTy
, RegisterFuncParams
, false),
549 addUnderscoredPrefixToName("RegisterFunction"));
551 // Extract GpuBinaryHandle passed as the first argument passed to
552 // __cuda_register_globals() and generate __cudaRegisterFunction() call for
553 // each emitted kernel.
554 llvm::Argument
&GpuBinaryHandlePtr
= *RegisterKernelsFunc
->arg_begin();
555 for (auto &&I
: EmittedKernels
) {
556 llvm::Constant
*KernelName
=
557 makeConstantString(getDeviceSideName(cast
<NamedDecl
>(I
.D
)));
558 llvm::Constant
*NullPtr
= llvm::ConstantPointerNull::get(VoidPtrTy
);
559 llvm::Value
*Args
[] = {
561 Builder
.CreateBitCast(KernelHandles
[I
.Kernel
->getName()], VoidPtrTy
),
564 llvm::ConstantInt::get(IntTy
, -1),
569 llvm::ConstantPointerNull::get(llvm::PointerType::getUnqual(Context
))};
570 Builder
.CreateCall(RegisterFunc
, Args
);
573 llvm::Type
*VarSizeTy
= IntTy
;
574 // For HIP or CUDA 9.0+, device variable size is type of `size_t`.
575 if (CGM
.getLangOpts().HIP
||
576 ToCudaVersion(CGM
.getTarget().getSDKVersion()) >= CudaVersion::CUDA_90
)
579 // void __cudaRegisterVar(void **, char *, char *, const char *,
580 // int, int, int, int)
581 llvm::Type
*RegisterVarParams
[] = {VoidPtrPtrTy
, CharPtrTy
, CharPtrTy
,
582 CharPtrTy
, IntTy
, VarSizeTy
,
584 llvm::FunctionCallee RegisterVar
= CGM
.CreateRuntimeFunction(
585 llvm::FunctionType::get(VoidTy
, RegisterVarParams
, false),
586 addUnderscoredPrefixToName("RegisterVar"));
587 // void __hipRegisterManagedVar(void **, char *, char *, const char *,
589 llvm::Type
*RegisterManagedVarParams
[] = {VoidPtrPtrTy
, CharPtrTy
, CharPtrTy
,
590 CharPtrTy
, VarSizeTy
, IntTy
};
591 llvm::FunctionCallee RegisterManagedVar
= CGM
.CreateRuntimeFunction(
592 llvm::FunctionType::get(VoidTy
, RegisterManagedVarParams
, false),
593 addUnderscoredPrefixToName("RegisterManagedVar"));
594 // void __cudaRegisterSurface(void **, const struct surfaceReference *,
595 // const void **, const char *, int, int);
596 llvm::FunctionCallee RegisterSurf
= CGM
.CreateRuntimeFunction(
597 llvm::FunctionType::get(
598 VoidTy
, {VoidPtrPtrTy
, VoidPtrTy
, CharPtrTy
, CharPtrTy
, IntTy
, IntTy
},
600 addUnderscoredPrefixToName("RegisterSurface"));
601 // void __cudaRegisterTexture(void **, const struct textureReference *,
602 // const void **, const char *, int, int, int)
603 llvm::FunctionCallee RegisterTex
= CGM
.CreateRuntimeFunction(
604 llvm::FunctionType::get(
606 {VoidPtrPtrTy
, VoidPtrTy
, CharPtrTy
, CharPtrTy
, IntTy
, IntTy
, IntTy
},
608 addUnderscoredPrefixToName("RegisterTexture"));
609 for (auto &&Info
: DeviceVars
) {
610 llvm::GlobalVariable
*Var
= Info
.Var
;
611 assert((!Var
->isDeclaration() || Info
.Flags
.isManaged()) &&
612 "External variables should not show up here, except HIP managed "
614 llvm::Constant
*VarName
= makeConstantString(getDeviceSideName(Info
.D
));
615 switch (Info
.Flags
.getKind()) {
616 case DeviceVarFlags::Variable
: {
618 CGM
.getDataLayout().getTypeAllocSize(Var
->getValueType());
619 if (Info
.Flags
.isManaged()) {
620 auto *ManagedVar
= new llvm::GlobalVariable(
621 CGM
.getModule(), Var
->getType(),
622 /*isConstant=*/false, Var
->getLinkage(),
623 /*Init=*/Var
->isDeclaration()
625 : llvm::ConstantPointerNull::get(Var
->getType()),
626 /*Name=*/"", /*InsertBefore=*/nullptr,
627 llvm::GlobalVariable::NotThreadLocal
);
628 ManagedVar
->setDSOLocal(Var
->isDSOLocal());
629 ManagedVar
->setVisibility(Var
->getVisibility());
630 ManagedVar
->setExternallyInitialized(true);
631 ManagedVar
->takeName(Var
);
632 Var
->setName(Twine(ManagedVar
->getName() + ".managed"));
633 replaceManagedVar(Var
, ManagedVar
);
634 llvm::Value
*Args
[] = {
636 Builder
.CreateBitCast(ManagedVar
, VoidPtrTy
),
637 Builder
.CreateBitCast(Var
, VoidPtrTy
),
639 llvm::ConstantInt::get(VarSizeTy
, VarSize
),
640 llvm::ConstantInt::get(IntTy
, Var
->getAlignment())};
641 if (!Var
->isDeclaration())
642 Builder
.CreateCall(RegisterManagedVar
, Args
);
644 llvm::Value
*Args
[] = {
646 Builder
.CreateBitCast(Var
, VoidPtrTy
),
649 llvm::ConstantInt::get(IntTy
, Info
.Flags
.isExtern()),
650 llvm::ConstantInt::get(VarSizeTy
, VarSize
),
651 llvm::ConstantInt::get(IntTy
, Info
.Flags
.isConstant()),
652 llvm::ConstantInt::get(IntTy
, 0)};
653 Builder
.CreateCall(RegisterVar
, Args
);
657 case DeviceVarFlags::Surface
:
660 {&GpuBinaryHandlePtr
, Builder
.CreateBitCast(Var
, VoidPtrTy
), VarName
,
661 VarName
, llvm::ConstantInt::get(IntTy
, Info
.Flags
.getSurfTexType()),
662 llvm::ConstantInt::get(IntTy
, Info
.Flags
.isExtern())});
664 case DeviceVarFlags::Texture
:
667 {&GpuBinaryHandlePtr
, Builder
.CreateBitCast(Var
, VoidPtrTy
), VarName
,
668 VarName
, llvm::ConstantInt::get(IntTy
, Info
.Flags
.getSurfTexType()),
669 llvm::ConstantInt::get(IntTy
, Info
.Flags
.isNormalized()),
670 llvm::ConstantInt::get(IntTy
, Info
.Flags
.isExtern())});
675 Builder
.CreateRetVoid();
676 return RegisterKernelsFunc
;
679 /// Creates a global constructor function for the module:
683 /// void __cuda_module_ctor() {
684 /// Handle = __cudaRegisterFatBinary(GpuBinaryBlob);
685 /// __cuda_register_globals(Handle);
691 /// void __hip_module_ctor() {
692 /// if (__hip_gpubin_handle == 0) {
693 /// __hip_gpubin_handle = __hipRegisterFatBinary(GpuBinaryBlob);
694 /// __hip_register_globals(__hip_gpubin_handle);
698 llvm::Function
*CGNVCUDARuntime::makeModuleCtorFunction() {
699 bool IsHIP
= CGM
.getLangOpts().HIP
;
700 bool IsCUDA
= CGM
.getLangOpts().CUDA
;
701 // No need to generate ctors/dtors if there is no GPU binary.
702 StringRef CudaGpuBinaryFileName
= CGM
.getCodeGenOpts().CudaGpuBinaryFileName
;
703 if (CudaGpuBinaryFileName
.empty() && !IsHIP
)
705 if ((IsHIP
|| (IsCUDA
&& !RelocatableDeviceCode
)) && EmittedKernels
.empty() &&
709 // void __{cuda|hip}_register_globals(void* handle);
710 llvm::Function
*RegisterGlobalsFunc
= makeRegisterGlobalsFn();
711 // We always need a function to pass in as callback. Create a dummy
712 // implementation if we don't need to register anything.
713 if (RelocatableDeviceCode
&& !RegisterGlobalsFunc
)
714 RegisterGlobalsFunc
= makeDummyFunction(getRegisterGlobalsFnTy());
716 // void ** __{cuda|hip}RegisterFatBinary(void *);
717 llvm::FunctionCallee RegisterFatbinFunc
= CGM
.CreateRuntimeFunction(
718 llvm::FunctionType::get(VoidPtrPtrTy
, VoidPtrTy
, false),
719 addUnderscoredPrefixToName("RegisterFatBinary"));
720 // struct { int magic, int version, void * gpu_binary, void * dont_care };
721 llvm::StructType
*FatbinWrapperTy
=
722 llvm::StructType::get(IntTy
, IntTy
, VoidPtrTy
, VoidPtrTy
);
724 // Register GPU binary with the CUDA runtime, store returned handle in a
725 // global variable and save a reference in GpuBinaryHandle to be cleaned up
726 // in destructor on exit. Then associate all known kernels with the GPU binary
727 // handle so CUDA runtime can figure out what to call on the GPU side.
728 std::unique_ptr
<llvm::MemoryBuffer
> CudaGpuBinary
= nullptr;
729 if (!CudaGpuBinaryFileName
.empty()) {
730 auto VFS
= CGM
.getFileSystem();
731 auto CudaGpuBinaryOrErr
=
732 VFS
->getBufferForFile(CudaGpuBinaryFileName
, -1, false);
733 if (std::error_code EC
= CudaGpuBinaryOrErr
.getError()) {
734 CGM
.getDiags().Report(diag::err_cannot_open_file
)
735 << CudaGpuBinaryFileName
<< EC
.message();
738 CudaGpuBinary
= std::move(CudaGpuBinaryOrErr
.get());
741 llvm::Function
*ModuleCtorFunc
= llvm::Function::Create(
742 llvm::FunctionType::get(VoidTy
, false),
743 llvm::GlobalValue::InternalLinkage
,
744 addUnderscoredPrefixToName("_module_ctor"), &TheModule
);
745 llvm::BasicBlock
*CtorEntryBB
=
746 llvm::BasicBlock::Create(Context
, "entry", ModuleCtorFunc
);
747 CGBuilderTy
CtorBuilder(CGM
, Context
);
749 CtorBuilder
.SetInsertPoint(CtorEntryBB
);
751 const char *FatbinConstantName
;
752 const char *FatbinSectionName
;
753 const char *ModuleIDSectionName
;
754 StringRef ModuleIDPrefix
;
755 llvm::Constant
*FatBinStr
;
758 FatbinConstantName
= ".hip_fatbin";
759 FatbinSectionName
= ".hipFatBinSegment";
761 ModuleIDSectionName
= "__hip_module_id";
762 ModuleIDPrefix
= "__hip_";
765 // If fatbin is available from early finalization, create a string
766 // literal containing the fat binary loaded from the given file.
767 const unsigned HIPCodeObjectAlign
= 4096;
768 FatBinStr
= makeConstantArray(std::string(CudaGpuBinary
->getBuffer()), "",
769 FatbinConstantName
, HIPCodeObjectAlign
);
771 // If fatbin is not available, create an external symbol
772 // __hip_fatbin in section .hip_fatbin. The external symbol is supposed
773 // to contain the fat binary but will be populated somewhere else,
774 // e.g. by lld through link script.
775 FatBinStr
= new llvm::GlobalVariable(
776 CGM
.getModule(), CGM
.Int8Ty
,
777 /*isConstant=*/true, llvm::GlobalValue::ExternalLinkage
, nullptr,
778 "__hip_fatbin", nullptr,
779 llvm::GlobalVariable::NotThreadLocal
);
780 cast
<llvm::GlobalVariable
>(FatBinStr
)->setSection(FatbinConstantName
);
783 FatMagic
= HIPFatMagic
;
785 if (RelocatableDeviceCode
)
786 FatbinConstantName
= CGM
.getTriple().isMacOSX()
787 ? "__NV_CUDA,__nv_relfatbin"
791 CGM
.getTriple().isMacOSX() ? "__NV_CUDA,__nv_fatbin" : ".nv_fatbin";
792 // NVIDIA's cuobjdump looks for fatbins in this section.
794 CGM
.getTriple().isMacOSX() ? "__NV_CUDA,__fatbin" : ".nvFatBinSegment";
796 ModuleIDSectionName
= CGM
.getTriple().isMacOSX()
797 ? "__NV_CUDA,__nv_module_id"
799 ModuleIDPrefix
= "__nv_";
801 // For CUDA, create a string literal containing the fat binary loaded from
803 FatBinStr
= makeConstantArray(std::string(CudaGpuBinary
->getBuffer()), "",
804 FatbinConstantName
, 8);
805 FatMagic
= CudaFatMagic
;
808 // Create initialized wrapper structure that points to the loaded GPU binary
809 ConstantInitBuilder
Builder(CGM
);
810 auto Values
= Builder
.beginStruct(FatbinWrapperTy
);
811 // Fatbin wrapper magic.
812 Values
.addInt(IntTy
, FatMagic
);
814 Values
.addInt(IntTy
, 1);
816 Values
.add(FatBinStr
);
817 // Unused in fatbin v1.
818 Values
.add(llvm::ConstantPointerNull::get(VoidPtrTy
));
819 llvm::GlobalVariable
*FatbinWrapper
= Values
.finishAndCreateGlobal(
820 addUnderscoredPrefixToName("_fatbin_wrapper"), CGM
.getPointerAlign(),
822 FatbinWrapper
->setSection(FatbinSectionName
);
824 // There is only one HIP fat binary per linked module, however there are
825 // multiple constructor functions. Make sure the fat binary is registered
826 // only once. The constructor functions are executed by the dynamic loader
827 // before the program gains control. The dynamic loader cannot execute the
828 // constructor functions concurrently since doing that would not guarantee
829 // thread safety of the loaded program. Therefore we can assume sequential
830 // execution of constructor functions here.
832 auto Linkage
= CudaGpuBinary
? llvm::GlobalValue::InternalLinkage
:
833 llvm::GlobalValue::LinkOnceAnyLinkage
;
834 llvm::BasicBlock
*IfBlock
=
835 llvm::BasicBlock::Create(Context
, "if", ModuleCtorFunc
);
836 llvm::BasicBlock
*ExitBlock
=
837 llvm::BasicBlock::Create(Context
, "exit", ModuleCtorFunc
);
838 // The name, size, and initialization pattern of this variable is part
840 GpuBinaryHandle
= new llvm::GlobalVariable(
841 TheModule
, VoidPtrPtrTy
, /*isConstant=*/false,
843 /*Initializer=*/llvm::ConstantPointerNull::get(VoidPtrPtrTy
),
844 "__hip_gpubin_handle");
845 if (Linkage
== llvm::GlobalValue::LinkOnceAnyLinkage
)
846 GpuBinaryHandle
->setComdat(
847 CGM
.getModule().getOrInsertComdat(GpuBinaryHandle
->getName()));
848 GpuBinaryHandle
->setAlignment(CGM
.getPointerAlign().getAsAlign());
849 // Prevent the weak symbol in different shared libraries being merged.
850 if (Linkage
!= llvm::GlobalValue::InternalLinkage
)
851 GpuBinaryHandle
->setVisibility(llvm::GlobalValue::HiddenVisibility
);
852 Address
GpuBinaryAddr(
853 GpuBinaryHandle
, VoidPtrPtrTy
,
854 CharUnits::fromQuantity(GpuBinaryHandle
->getAlignment()));
856 auto *HandleValue
= CtorBuilder
.CreateLoad(GpuBinaryAddr
);
857 llvm::Constant
*Zero
=
858 llvm::Constant::getNullValue(HandleValue
->getType());
859 llvm::Value
*EQZero
= CtorBuilder
.CreateICmpEQ(HandleValue
, Zero
);
860 CtorBuilder
.CreateCondBr(EQZero
, IfBlock
, ExitBlock
);
863 CtorBuilder
.SetInsertPoint(IfBlock
);
864 // GpuBinaryHandle = __hipRegisterFatBinary(&FatbinWrapper);
865 llvm::CallInst
*RegisterFatbinCall
= CtorBuilder
.CreateCall(
867 CtorBuilder
.CreateBitCast(FatbinWrapper
, VoidPtrTy
));
868 CtorBuilder
.CreateStore(RegisterFatbinCall
, GpuBinaryAddr
);
869 CtorBuilder
.CreateBr(ExitBlock
);
872 CtorBuilder
.SetInsertPoint(ExitBlock
);
873 // Call __hip_register_globals(GpuBinaryHandle);
874 if (RegisterGlobalsFunc
) {
875 auto *HandleValue
= CtorBuilder
.CreateLoad(GpuBinaryAddr
);
876 CtorBuilder
.CreateCall(RegisterGlobalsFunc
, HandleValue
);
879 } else if (!RelocatableDeviceCode
) {
880 // Register binary with CUDA runtime. This is substantially different in
881 // default mode vs. separate compilation!
882 // GpuBinaryHandle = __cudaRegisterFatBinary(&FatbinWrapper);
883 llvm::CallInst
*RegisterFatbinCall
= CtorBuilder
.CreateCall(
885 CtorBuilder
.CreateBitCast(FatbinWrapper
, VoidPtrTy
));
886 GpuBinaryHandle
= new llvm::GlobalVariable(
887 TheModule
, VoidPtrPtrTy
, false, llvm::GlobalValue::InternalLinkage
,
888 llvm::ConstantPointerNull::get(VoidPtrPtrTy
), "__cuda_gpubin_handle");
889 GpuBinaryHandle
->setAlignment(CGM
.getPointerAlign().getAsAlign());
890 CtorBuilder
.CreateAlignedStore(RegisterFatbinCall
, GpuBinaryHandle
,
891 CGM
.getPointerAlign());
893 // Call __cuda_register_globals(GpuBinaryHandle);
894 if (RegisterGlobalsFunc
)
895 CtorBuilder
.CreateCall(RegisterGlobalsFunc
, RegisterFatbinCall
);
897 // Call __cudaRegisterFatBinaryEnd(Handle) if this CUDA version needs it.
898 if (CudaFeatureEnabled(CGM
.getTarget().getSDKVersion(),
899 CudaFeature::CUDA_USES_FATBIN_REGISTER_END
)) {
900 // void __cudaRegisterFatBinaryEnd(void **);
901 llvm::FunctionCallee RegisterFatbinEndFunc
= CGM
.CreateRuntimeFunction(
902 llvm::FunctionType::get(VoidTy
, VoidPtrPtrTy
, false),
903 "__cudaRegisterFatBinaryEnd");
904 CtorBuilder
.CreateCall(RegisterFatbinEndFunc
, RegisterFatbinCall
);
907 // Generate a unique module ID.
908 SmallString
<64> ModuleID
;
909 llvm::raw_svector_ostream
OS(ModuleID
);
910 OS
<< ModuleIDPrefix
<< llvm::format("%" PRIx64
, FatbinWrapper
->getGUID());
911 llvm::Constant
*ModuleIDConstant
= makeConstantArray(
912 std::string(ModuleID
.str()), "", ModuleIDSectionName
, 32, /*AddNull=*/true);
914 // Create an alias for the FatbinWrapper that nvcc will look for.
915 llvm::GlobalAlias::create(llvm::GlobalValue::ExternalLinkage
,
916 Twine("__fatbinwrap") + ModuleID
, FatbinWrapper
);
918 // void __cudaRegisterLinkedBinary%ModuleID%(void (*)(void *), void *,
919 // void *, void (*)(void **))
920 SmallString
<128> RegisterLinkedBinaryName("__cudaRegisterLinkedBinary");
921 RegisterLinkedBinaryName
+= ModuleID
;
922 llvm::FunctionCallee RegisterLinkedBinaryFunc
= CGM
.CreateRuntimeFunction(
923 getRegisterLinkedBinaryFnTy(), RegisterLinkedBinaryName
);
925 assert(RegisterGlobalsFunc
&& "Expecting at least dummy function!");
926 llvm::Value
*Args
[] = {RegisterGlobalsFunc
,
927 CtorBuilder
.CreateBitCast(FatbinWrapper
, VoidPtrTy
),
929 makeDummyFunction(getCallbackFnTy())};
930 CtorBuilder
.CreateCall(RegisterLinkedBinaryFunc
, Args
);
933 // Create destructor and register it with atexit() the way NVCC does it. Doing
934 // it during regular destructor phase worked in CUDA before 9.2 but results in
935 // double-free in 9.2.
936 if (llvm::Function
*CleanupFn
= makeModuleDtorFunction()) {
937 // extern "C" int atexit(void (*f)(void));
938 llvm::FunctionType
*AtExitTy
=
939 llvm::FunctionType::get(IntTy
, CleanupFn
->getType(), false);
940 llvm::FunctionCallee AtExitFunc
=
941 CGM
.CreateRuntimeFunction(AtExitTy
, "atexit", llvm::AttributeList(),
943 CtorBuilder
.CreateCall(AtExitFunc
, CleanupFn
);
946 CtorBuilder
.CreateRetVoid();
947 return ModuleCtorFunc
;
950 /// Creates a global destructor function that unregisters the GPU code blob
951 /// registered by constructor.
955 /// void __cuda_module_dtor() {
956 /// __cudaUnregisterFatBinary(Handle);
962 /// void __hip_module_dtor() {
963 /// if (__hip_gpubin_handle) {
964 /// __hipUnregisterFatBinary(__hip_gpubin_handle);
965 /// __hip_gpubin_handle = 0;
969 llvm::Function
*CGNVCUDARuntime::makeModuleDtorFunction() {
970 // No need for destructor if we don't have a handle to unregister.
971 if (!GpuBinaryHandle
)
974 // void __cudaUnregisterFatBinary(void ** handle);
975 llvm::FunctionCallee UnregisterFatbinFunc
= CGM
.CreateRuntimeFunction(
976 llvm::FunctionType::get(VoidTy
, VoidPtrPtrTy
, false),
977 addUnderscoredPrefixToName("UnregisterFatBinary"));
979 llvm::Function
*ModuleDtorFunc
= llvm::Function::Create(
980 llvm::FunctionType::get(VoidTy
, false),
981 llvm::GlobalValue::InternalLinkage
,
982 addUnderscoredPrefixToName("_module_dtor"), &TheModule
);
984 llvm::BasicBlock
*DtorEntryBB
=
985 llvm::BasicBlock::Create(Context
, "entry", ModuleDtorFunc
);
986 CGBuilderTy
DtorBuilder(CGM
, Context
);
987 DtorBuilder
.SetInsertPoint(DtorEntryBB
);
989 Address
GpuBinaryAddr(
990 GpuBinaryHandle
, GpuBinaryHandle
->getValueType(),
991 CharUnits::fromQuantity(GpuBinaryHandle
->getAlignment()));
992 auto *HandleValue
= DtorBuilder
.CreateLoad(GpuBinaryAddr
);
993 // There is only one HIP fat binary per linked module, however there are
994 // multiple destructor functions. Make sure the fat binary is unregistered
996 if (CGM
.getLangOpts().HIP
) {
997 llvm::BasicBlock
*IfBlock
=
998 llvm::BasicBlock::Create(Context
, "if", ModuleDtorFunc
);
999 llvm::BasicBlock
*ExitBlock
=
1000 llvm::BasicBlock::Create(Context
, "exit", ModuleDtorFunc
);
1001 llvm::Constant
*Zero
= llvm::Constant::getNullValue(HandleValue
->getType());
1002 llvm::Value
*NEZero
= DtorBuilder
.CreateICmpNE(HandleValue
, Zero
);
1003 DtorBuilder
.CreateCondBr(NEZero
, IfBlock
, ExitBlock
);
1005 DtorBuilder
.SetInsertPoint(IfBlock
);
1006 DtorBuilder
.CreateCall(UnregisterFatbinFunc
, HandleValue
);
1007 DtorBuilder
.CreateStore(Zero
, GpuBinaryAddr
);
1008 DtorBuilder
.CreateBr(ExitBlock
);
1010 DtorBuilder
.SetInsertPoint(ExitBlock
);
1012 DtorBuilder
.CreateCall(UnregisterFatbinFunc
, HandleValue
);
1014 DtorBuilder
.CreateRetVoid();
1015 return ModuleDtorFunc
;
1018 CGCUDARuntime
*CodeGen::CreateNVCUDARuntime(CodeGenModule
&CGM
) {
1019 return new CGNVCUDARuntime(CGM
);
1022 void CGNVCUDARuntime::internalizeDeviceSideVar(
1023 const VarDecl
*D
, llvm::GlobalValue::LinkageTypes
&Linkage
) {
1024 // For -fno-gpu-rdc, host-side shadows of external declarations of device-side
1025 // global variables become internal definitions. These have to be internal in
1026 // order to prevent name conflicts with global host variables with the same
1027 // name in a different TUs.
1029 // For -fgpu-rdc, the shadow variables should not be internalized because
1030 // they may be accessed by different TU.
1031 if (CGM
.getLangOpts().GPURelocatableDeviceCode
)
1034 // __shared__ variables are odd. Shadows do get created, but
1035 // they are not registered with the CUDA runtime, so they
1036 // can't really be used to access their device-side
1037 // counterparts. It's not clear yet whether it's nvcc's bug or
1038 // a feature, but we've got to do the same for compatibility.
1039 if (D
->hasAttr
<CUDADeviceAttr
>() || D
->hasAttr
<CUDAConstantAttr
>() ||
1040 D
->hasAttr
<CUDASharedAttr
>() ||
1041 D
->getType()->isCUDADeviceBuiltinSurfaceType() ||
1042 D
->getType()->isCUDADeviceBuiltinTextureType()) {
1043 Linkage
= llvm::GlobalValue::InternalLinkage
;
1047 void CGNVCUDARuntime::handleVarRegistration(const VarDecl
*D
,
1048 llvm::GlobalVariable
&GV
) {
1049 if (D
->hasAttr
<CUDADeviceAttr
>() || D
->hasAttr
<CUDAConstantAttr
>()) {
1050 // Shadow variables and their properties must be registered with CUDA
1051 // runtime. Skip Extern global variables, which will be registered in
1052 // the TU where they are defined.
1054 // Don't register a C++17 inline variable. The local symbol can be
1055 // discarded and referencing a discarded local symbol from outside the
1056 // comdat (__cuda_register_globals) is disallowed by the ELF spec.
1058 // HIP managed variables need to be always recorded in device and host
1059 // compilations for transformation.
1061 // HIP managed variables and variables in CUDADeviceVarODRUsedByHost are
1062 // added to llvm.compiler-used, therefore they are safe to be registered.
1063 if ((!D
->hasExternalStorage() && !D
->isInline()) ||
1064 CGM
.getContext().CUDADeviceVarODRUsedByHost
.contains(D
) ||
1065 D
->hasAttr
<HIPManagedAttr
>()) {
1066 registerDeviceVar(D
, GV
, !D
->hasDefinition(),
1067 D
->hasAttr
<CUDAConstantAttr
>());
1069 } else if (D
->getType()->isCUDADeviceBuiltinSurfaceType() ||
1070 D
->getType()->isCUDADeviceBuiltinTextureType()) {
1071 // Builtin surfaces and textures and their template arguments are
1072 // also registered with CUDA runtime.
1073 const auto *TD
= cast
<ClassTemplateSpecializationDecl
>(
1074 D
->getType()->castAs
<RecordType
>()->getDecl());
1075 const TemplateArgumentList
&Args
= TD
->getTemplateArgs();
1076 if (TD
->hasAttr
<CUDADeviceBuiltinSurfaceTypeAttr
>()) {
1077 assert(Args
.size() == 2 &&
1078 "Unexpected number of template arguments of CUDA device "
1079 "builtin surface type.");
1080 auto SurfType
= Args
[1].getAsIntegral();
1081 if (!D
->hasExternalStorage())
1082 registerDeviceSurf(D
, GV
, !D
->hasDefinition(), SurfType
.getSExtValue());
1084 assert(Args
.size() == 3 &&
1085 "Unexpected number of template arguments of CUDA device "
1086 "builtin texture type.");
1087 auto TexType
= Args
[1].getAsIntegral();
1088 auto Normalized
= Args
[2].getAsIntegral();
1089 if (!D
->hasExternalStorage())
1090 registerDeviceTex(D
, GV
, !D
->hasDefinition(), TexType
.getSExtValue(),
1091 Normalized
.getZExtValue());
1096 // Transform managed variables to pointers to managed variables in device code.
1097 // Each use of the original managed variable is replaced by a load from the
1098 // transformed managed variable. The transformed managed variable contains
1099 // the address of managed memory which will be allocated by the runtime.
1100 void CGNVCUDARuntime::transformManagedVars() {
1101 for (auto &&Info
: DeviceVars
) {
1102 llvm::GlobalVariable
*Var
= Info
.Var
;
1103 if (Info
.Flags
.getKind() == DeviceVarFlags::Variable
&&
1104 Info
.Flags
.isManaged()) {
1105 auto *ManagedVar
= new llvm::GlobalVariable(
1106 CGM
.getModule(), Var
->getType(),
1107 /*isConstant=*/false, Var
->getLinkage(),
1108 /*Init=*/Var
->isDeclaration()
1110 : llvm::ConstantPointerNull::get(Var
->getType()),
1111 /*Name=*/"", /*InsertBefore=*/nullptr,
1112 llvm::GlobalVariable::NotThreadLocal
,
1113 CGM
.getContext().getTargetAddressSpace(LangAS::cuda_device
));
1114 ManagedVar
->setDSOLocal(Var
->isDSOLocal());
1115 ManagedVar
->setVisibility(Var
->getVisibility());
1116 ManagedVar
->setExternallyInitialized(true);
1117 replaceManagedVar(Var
, ManagedVar
);
1118 ManagedVar
->takeName(Var
);
1119 Var
->setName(Twine(ManagedVar
->getName()) + ".managed");
1120 // Keep managed variables even if they are not used in device code since
1121 // they need to be allocated by the runtime.
1122 if (!Var
->isDeclaration()) {
1123 assert(!ManagedVar
->isDeclaration());
1124 CGM
.addCompilerUsedGlobal(Var
);
1125 CGM
.addCompilerUsedGlobal(ManagedVar
);
1131 // Creates offloading entries for all the kernels and globals that must be
1132 // registered. The linker will provide a pointer to this section so we can
1133 // register the symbols with the linked device image.
1134 void CGNVCUDARuntime::createOffloadingEntries() {
1135 llvm::OpenMPIRBuilder
OMPBuilder(CGM
.getModule());
1136 OMPBuilder
.initialize();
1138 StringRef Section
= CGM
.getLangOpts().HIP
? "hip_offloading_entries"
1139 : "cuda_offloading_entries";
1140 for (KernelInfo
&I
: EmittedKernels
)
1141 OMPBuilder
.emitOffloadingEntry(KernelHandles
[I
.Kernel
->getName()],
1142 getDeviceSideName(cast
<NamedDecl
>(I
.D
)), 0,
1143 DeviceVarFlags::OffloadGlobalEntry
, Section
);
1145 for (VarInfo
&I
: DeviceVars
) {
1147 CGM
.getDataLayout().getTypeAllocSize(I
.Var
->getValueType());
1148 if (I
.Flags
.getKind() == DeviceVarFlags::Variable
) {
1149 OMPBuilder
.emitOffloadingEntry(
1150 I
.Var
, getDeviceSideName(I
.D
), VarSize
,
1151 I
.Flags
.isManaged() ? DeviceVarFlags::OffloadGlobalManagedEntry
1152 : DeviceVarFlags::OffloadGlobalEntry
,
1154 } else if (I
.Flags
.getKind() == DeviceVarFlags::Surface
) {
1155 OMPBuilder
.emitOffloadingEntry(I
.Var
, getDeviceSideName(I
.D
), VarSize
,
1156 DeviceVarFlags::OffloadGlobalSurfaceEntry
,
1158 } else if (I
.Flags
.getKind() == DeviceVarFlags::Texture
) {
1159 OMPBuilder
.emitOffloadingEntry(I
.Var
, getDeviceSideName(I
.D
), VarSize
,
1160 DeviceVarFlags::OffloadGlobalTextureEntry
,
1166 // Returns module constructor to be added.
1167 llvm::Function
*CGNVCUDARuntime::finalizeModule() {
1168 if (CGM
.getLangOpts().CUDAIsDevice
) {
1169 transformManagedVars();
1171 // Mark ODR-used device variables as compiler used to prevent it from being
1172 // eliminated by optimization. This is necessary for device variables
1173 // ODR-used by host functions. Sema correctly marks them as ODR-used no
1174 // matter whether they are ODR-used by device or host functions.
1176 // We do not need to do this if the variable has used attribute since it
1177 // has already been added.
1179 // Static device variables have been externalized at this point, therefore
1180 // variables with LLVM private or internal linkage need not be added.
1181 for (auto &&Info
: DeviceVars
) {
1182 auto Kind
= Info
.Flags
.getKind();
1183 if (!Info
.Var
->isDeclaration() &&
1184 !llvm::GlobalValue::isLocalLinkage(Info
.Var
->getLinkage()) &&
1185 (Kind
== DeviceVarFlags::Variable
||
1186 Kind
== DeviceVarFlags::Surface
||
1187 Kind
== DeviceVarFlags::Texture
) &&
1188 Info
.D
->isUsed() && !Info
.D
->hasAttr
<UsedAttr
>()) {
1189 CGM
.addCompilerUsedGlobal(Info
.Var
);
1194 if (CGM
.getLangOpts().OffloadingNewDriver
&& RelocatableDeviceCode
)
1195 createOffloadingEntries();
1197 return makeModuleCtorFunction();
1202 llvm::GlobalValue
*CGNVCUDARuntime::getKernelHandle(llvm::Function
*F
,
1204 auto Loc
= KernelHandles
.find(F
->getName());
1205 if (Loc
!= KernelHandles
.end()) {
1206 auto OldHandle
= Loc
->second
;
1207 if (KernelStubs
[OldHandle
] == F
)
1210 // We've found the function name, but F itself has changed, so we need to
1211 // update the references.
1212 if (CGM
.getLangOpts().HIP
) {
1213 // For HIP compilation the handle itself does not change, so we only need
1214 // to update the Stub value.
1215 KernelStubs
[OldHandle
] = F
;
1218 // For non-HIP compilation, erase the old Stub and fall-through to creating
1220 KernelStubs
.erase(OldHandle
);
1223 if (!CGM
.getLangOpts().HIP
) {
1224 KernelHandles
[F
->getName()] = F
;
1229 auto *Var
= new llvm::GlobalVariable(
1230 TheModule
, F
->getType(), /*isConstant=*/true, F
->getLinkage(),
1231 /*Initializer=*/nullptr,
1233 GD
.getWithKernelReferenceKind(KernelReferenceKind::Kernel
)));
1234 Var
->setAlignment(CGM
.getPointerAlign().getAsAlign());
1235 Var
->setDSOLocal(F
->isDSOLocal());
1236 Var
->setVisibility(F
->getVisibility());
1237 CGM
.maybeSetTrivialComdat(*GD
.getDecl(), *Var
);
1238 KernelHandles
[F
->getName()] = Var
;
1239 KernelStubs
[Var
] = F
;