[lld][WebAssembly] Add `--table-base` setting
[llvm-project.git] / clang / lib / CodeGen / CGClass.cpp
bloba365365430efe3c79bd2317c7b46cb51ebf8b3d2
1 //===--- CGClass.cpp - Emit LLVM Code for C++ classes -----------*- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This contains code dealing with C++ code generation of classes
11 //===----------------------------------------------------------------------===//
13 #include "CGBlocks.h"
14 #include "CGCXXABI.h"
15 #include "CGDebugInfo.h"
16 #include "CGRecordLayout.h"
17 #include "CodeGenFunction.h"
18 #include "TargetInfo.h"
19 #include "clang/AST/Attr.h"
20 #include "clang/AST/CXXInheritance.h"
21 #include "clang/AST/CharUnits.h"
22 #include "clang/AST/DeclTemplate.h"
23 #include "clang/AST/EvaluatedExprVisitor.h"
24 #include "clang/AST/RecordLayout.h"
25 #include "clang/AST/StmtCXX.h"
26 #include "clang/Basic/CodeGenOptions.h"
27 #include "clang/Basic/TargetBuiltins.h"
28 #include "clang/CodeGen/CGFunctionInfo.h"
29 #include "llvm/IR/Intrinsics.h"
30 #include "llvm/IR/Metadata.h"
31 #include "llvm/Transforms/Utils/SanitizerStats.h"
32 #include <optional>
34 using namespace clang;
35 using namespace CodeGen;
37 /// Return the best known alignment for an unknown pointer to a
38 /// particular class.
39 CharUnits CodeGenModule::getClassPointerAlignment(const CXXRecordDecl *RD) {
40 if (!RD->hasDefinition())
41 return CharUnits::One(); // Hopefully won't be used anywhere.
43 auto &layout = getContext().getASTRecordLayout(RD);
45 // If the class is final, then we know that the pointer points to an
46 // object of that type and can use the full alignment.
47 if (RD->isEffectivelyFinal())
48 return layout.getAlignment();
50 // Otherwise, we have to assume it could be a subclass.
51 return layout.getNonVirtualAlignment();
54 /// Return the smallest possible amount of storage that might be allocated
55 /// starting from the beginning of an object of a particular class.
56 ///
57 /// This may be smaller than sizeof(RD) if RD has virtual base classes.
58 CharUnits CodeGenModule::getMinimumClassObjectSize(const CXXRecordDecl *RD) {
59 if (!RD->hasDefinition())
60 return CharUnits::One();
62 auto &layout = getContext().getASTRecordLayout(RD);
64 // If the class is final, then we know that the pointer points to an
65 // object of that type and can use the full alignment.
66 if (RD->isEffectivelyFinal())
67 return layout.getSize();
69 // Otherwise, we have to assume it could be a subclass.
70 return std::max(layout.getNonVirtualSize(), CharUnits::One());
73 /// Return the best known alignment for a pointer to a virtual base,
74 /// given the alignment of a pointer to the derived class.
75 CharUnits CodeGenModule::getVBaseAlignment(CharUnits actualDerivedAlign,
76 const CXXRecordDecl *derivedClass,
77 const CXXRecordDecl *vbaseClass) {
78 // The basic idea here is that an underaligned derived pointer might
79 // indicate an underaligned base pointer.
81 assert(vbaseClass->isCompleteDefinition());
82 auto &baseLayout = getContext().getASTRecordLayout(vbaseClass);
83 CharUnits expectedVBaseAlign = baseLayout.getNonVirtualAlignment();
85 return getDynamicOffsetAlignment(actualDerivedAlign, derivedClass,
86 expectedVBaseAlign);
89 CharUnits
90 CodeGenModule::getDynamicOffsetAlignment(CharUnits actualBaseAlign,
91 const CXXRecordDecl *baseDecl,
92 CharUnits expectedTargetAlign) {
93 // If the base is an incomplete type (which is, alas, possible with
94 // member pointers), be pessimistic.
95 if (!baseDecl->isCompleteDefinition())
96 return std::min(actualBaseAlign, expectedTargetAlign);
98 auto &baseLayout = getContext().getASTRecordLayout(baseDecl);
99 CharUnits expectedBaseAlign = baseLayout.getNonVirtualAlignment();
101 // If the class is properly aligned, assume the target offset is, too.
103 // This actually isn't necessarily the right thing to do --- if the
104 // class is a complete object, but it's only properly aligned for a
105 // base subobject, then the alignments of things relative to it are
106 // probably off as well. (Note that this requires the alignment of
107 // the target to be greater than the NV alignment of the derived
108 // class.)
110 // However, our approach to this kind of under-alignment can only
111 // ever be best effort; after all, we're never going to propagate
112 // alignments through variables or parameters. Note, in particular,
113 // that constructing a polymorphic type in an address that's less
114 // than pointer-aligned will generally trap in the constructor,
115 // unless we someday add some sort of attribute to change the
116 // assumed alignment of 'this'. So our goal here is pretty much
117 // just to allow the user to explicitly say that a pointer is
118 // under-aligned and then safely access its fields and vtables.
119 if (actualBaseAlign >= expectedBaseAlign) {
120 return expectedTargetAlign;
123 // Otherwise, we might be offset by an arbitrary multiple of the
124 // actual alignment. The correct adjustment is to take the min of
125 // the two alignments.
126 return std::min(actualBaseAlign, expectedTargetAlign);
129 Address CodeGenFunction::LoadCXXThisAddress() {
130 assert(CurFuncDecl && "loading 'this' without a func declaration?");
131 auto *MD = cast<CXXMethodDecl>(CurFuncDecl);
133 // Lazily compute CXXThisAlignment.
134 if (CXXThisAlignment.isZero()) {
135 // Just use the best known alignment for the parent.
136 // TODO: if we're currently emitting a complete-object ctor/dtor,
137 // we can always use the complete-object alignment.
138 CXXThisAlignment = CGM.getClassPointerAlignment(MD->getParent());
141 llvm::Type *Ty = ConvertType(MD->getThisType()->getPointeeType());
142 return Address(LoadCXXThis(), Ty, CXXThisAlignment, KnownNonNull);
145 /// Emit the address of a field using a member data pointer.
147 /// \param E Only used for emergency diagnostics
148 Address
149 CodeGenFunction::EmitCXXMemberDataPointerAddress(const Expr *E, Address base,
150 llvm::Value *memberPtr,
151 const MemberPointerType *memberPtrType,
152 LValueBaseInfo *BaseInfo,
153 TBAAAccessInfo *TBAAInfo) {
154 // Ask the ABI to compute the actual address.
155 llvm::Value *ptr =
156 CGM.getCXXABI().EmitMemberDataPointerAddress(*this, E, base,
157 memberPtr, memberPtrType);
159 QualType memberType = memberPtrType->getPointeeType();
160 CharUnits memberAlign =
161 CGM.getNaturalTypeAlignment(memberType, BaseInfo, TBAAInfo);
162 memberAlign =
163 CGM.getDynamicOffsetAlignment(base.getAlignment(),
164 memberPtrType->getClass()->getAsCXXRecordDecl(),
165 memberAlign);
166 return Address(ptr, ConvertTypeForMem(memberPtrType->getPointeeType()),
167 memberAlign);
170 CharUnits CodeGenModule::computeNonVirtualBaseClassOffset(
171 const CXXRecordDecl *DerivedClass, CastExpr::path_const_iterator Start,
172 CastExpr::path_const_iterator End) {
173 CharUnits Offset = CharUnits::Zero();
175 const ASTContext &Context = getContext();
176 const CXXRecordDecl *RD = DerivedClass;
178 for (CastExpr::path_const_iterator I = Start; I != End; ++I) {
179 const CXXBaseSpecifier *Base = *I;
180 assert(!Base->isVirtual() && "Should not see virtual bases here!");
182 // Get the layout.
183 const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD);
185 const auto *BaseDecl =
186 cast<CXXRecordDecl>(Base->getType()->castAs<RecordType>()->getDecl());
188 // Add the offset.
189 Offset += Layout.getBaseClassOffset(BaseDecl);
191 RD = BaseDecl;
194 return Offset;
197 llvm::Constant *
198 CodeGenModule::GetNonVirtualBaseClassOffset(const CXXRecordDecl *ClassDecl,
199 CastExpr::path_const_iterator PathBegin,
200 CastExpr::path_const_iterator PathEnd) {
201 assert(PathBegin != PathEnd && "Base path should not be empty!");
203 CharUnits Offset =
204 computeNonVirtualBaseClassOffset(ClassDecl, PathBegin, PathEnd);
205 if (Offset.isZero())
206 return nullptr;
208 llvm::Type *PtrDiffTy =
209 Types.ConvertType(getContext().getPointerDiffType());
211 return llvm::ConstantInt::get(PtrDiffTy, Offset.getQuantity());
214 /// Gets the address of a direct base class within a complete object.
215 /// This should only be used for (1) non-virtual bases or (2) virtual bases
216 /// when the type is known to be complete (e.g. in complete destructors).
218 /// The object pointed to by 'This' is assumed to be non-null.
219 Address
220 CodeGenFunction::GetAddressOfDirectBaseInCompleteClass(Address This,
221 const CXXRecordDecl *Derived,
222 const CXXRecordDecl *Base,
223 bool BaseIsVirtual) {
224 // 'this' must be a pointer (in some address space) to Derived.
225 assert(This.getElementType() == ConvertType(Derived));
227 // Compute the offset of the virtual base.
228 CharUnits Offset;
229 const ASTRecordLayout &Layout = getContext().getASTRecordLayout(Derived);
230 if (BaseIsVirtual)
231 Offset = Layout.getVBaseClassOffset(Base);
232 else
233 Offset = Layout.getBaseClassOffset(Base);
235 // Shift and cast down to the base type.
236 // TODO: for complete types, this should be possible with a GEP.
237 Address V = This;
238 if (!Offset.isZero()) {
239 V = V.withElementType(Int8Ty);
240 V = Builder.CreateConstInBoundsByteGEP(V, Offset);
242 return V.withElementType(ConvertType(Base));
245 static Address
246 ApplyNonVirtualAndVirtualOffset(CodeGenFunction &CGF, Address addr,
247 CharUnits nonVirtualOffset,
248 llvm::Value *virtualOffset,
249 const CXXRecordDecl *derivedClass,
250 const CXXRecordDecl *nearestVBase) {
251 // Assert that we have something to do.
252 assert(!nonVirtualOffset.isZero() || virtualOffset != nullptr);
254 // Compute the offset from the static and dynamic components.
255 llvm::Value *baseOffset;
256 if (!nonVirtualOffset.isZero()) {
257 llvm::Type *OffsetType =
258 (CGF.CGM.getTarget().getCXXABI().isItaniumFamily() &&
259 CGF.CGM.getItaniumVTableContext().isRelativeLayout())
260 ? CGF.Int32Ty
261 : CGF.PtrDiffTy;
262 baseOffset =
263 llvm::ConstantInt::get(OffsetType, nonVirtualOffset.getQuantity());
264 if (virtualOffset) {
265 baseOffset = CGF.Builder.CreateAdd(virtualOffset, baseOffset);
267 } else {
268 baseOffset = virtualOffset;
271 // Apply the base offset.
272 llvm::Value *ptr = addr.getPointer();
273 ptr = CGF.Builder.CreateInBoundsGEP(CGF.Int8Ty, ptr, baseOffset, "add.ptr");
275 // If we have a virtual component, the alignment of the result will
276 // be relative only to the known alignment of that vbase.
277 CharUnits alignment;
278 if (virtualOffset) {
279 assert(nearestVBase && "virtual offset without vbase?");
280 alignment = CGF.CGM.getVBaseAlignment(addr.getAlignment(),
281 derivedClass, nearestVBase);
282 } else {
283 alignment = addr.getAlignment();
285 alignment = alignment.alignmentAtOffset(nonVirtualOffset);
287 return Address(ptr, CGF.Int8Ty, alignment);
290 Address CodeGenFunction::GetAddressOfBaseClass(
291 Address Value, const CXXRecordDecl *Derived,
292 CastExpr::path_const_iterator PathBegin,
293 CastExpr::path_const_iterator PathEnd, bool NullCheckValue,
294 SourceLocation Loc) {
295 assert(PathBegin != PathEnd && "Base path should not be empty!");
297 CastExpr::path_const_iterator Start = PathBegin;
298 const CXXRecordDecl *VBase = nullptr;
300 // Sema has done some convenient canonicalization here: if the
301 // access path involved any virtual steps, the conversion path will
302 // *start* with a step down to the correct virtual base subobject,
303 // and hence will not require any further steps.
304 if ((*Start)->isVirtual()) {
305 VBase = cast<CXXRecordDecl>(
306 (*Start)->getType()->castAs<RecordType>()->getDecl());
307 ++Start;
310 // Compute the static offset of the ultimate destination within its
311 // allocating subobject (the virtual base, if there is one, or else
312 // the "complete" object that we see).
313 CharUnits NonVirtualOffset = CGM.computeNonVirtualBaseClassOffset(
314 VBase ? VBase : Derived, Start, PathEnd);
316 // If there's a virtual step, we can sometimes "devirtualize" it.
317 // For now, that's limited to when the derived type is final.
318 // TODO: "devirtualize" this for accesses to known-complete objects.
319 if (VBase && Derived->hasAttr<FinalAttr>()) {
320 const ASTRecordLayout &layout = getContext().getASTRecordLayout(Derived);
321 CharUnits vBaseOffset = layout.getVBaseClassOffset(VBase);
322 NonVirtualOffset += vBaseOffset;
323 VBase = nullptr; // we no longer have a virtual step
326 // Get the base pointer type.
327 llvm::Type *BaseValueTy = ConvertType((PathEnd[-1])->getType());
328 llvm::Type *PtrTy = llvm::PointerType::get(
329 CGM.getLLVMContext(), Value.getType()->getPointerAddressSpace());
331 QualType DerivedTy = getContext().getRecordType(Derived);
332 CharUnits DerivedAlign = CGM.getClassPointerAlignment(Derived);
334 // If the static offset is zero and we don't have a virtual step,
335 // just do a bitcast; null checks are unnecessary.
336 if (NonVirtualOffset.isZero() && !VBase) {
337 if (sanitizePerformTypeCheck()) {
338 SanitizerSet SkippedChecks;
339 SkippedChecks.set(SanitizerKind::Null, !NullCheckValue);
340 EmitTypeCheck(TCK_Upcast, Loc, Value.getPointer(),
341 DerivedTy, DerivedAlign, SkippedChecks);
343 return Value.withElementType(BaseValueTy);
346 llvm::BasicBlock *origBB = nullptr;
347 llvm::BasicBlock *endBB = nullptr;
349 // Skip over the offset (and the vtable load) if we're supposed to
350 // null-check the pointer.
351 if (NullCheckValue) {
352 origBB = Builder.GetInsertBlock();
353 llvm::BasicBlock *notNullBB = createBasicBlock("cast.notnull");
354 endBB = createBasicBlock("cast.end");
356 llvm::Value *isNull = Builder.CreateIsNull(Value.getPointer());
357 Builder.CreateCondBr(isNull, endBB, notNullBB);
358 EmitBlock(notNullBB);
361 if (sanitizePerformTypeCheck()) {
362 SanitizerSet SkippedChecks;
363 SkippedChecks.set(SanitizerKind::Null, true);
364 EmitTypeCheck(VBase ? TCK_UpcastToVirtualBase : TCK_Upcast, Loc,
365 Value.getPointer(), DerivedTy, DerivedAlign, SkippedChecks);
368 // Compute the virtual offset.
369 llvm::Value *VirtualOffset = nullptr;
370 if (VBase) {
371 VirtualOffset =
372 CGM.getCXXABI().GetVirtualBaseClassOffset(*this, Value, Derived, VBase);
375 // Apply both offsets.
376 Value = ApplyNonVirtualAndVirtualOffset(*this, Value, NonVirtualOffset,
377 VirtualOffset, Derived, VBase);
379 // Cast to the destination type.
380 Value = Value.withElementType(BaseValueTy);
382 // Build a phi if we needed a null check.
383 if (NullCheckValue) {
384 llvm::BasicBlock *notNullBB = Builder.GetInsertBlock();
385 Builder.CreateBr(endBB);
386 EmitBlock(endBB);
388 llvm::PHINode *PHI = Builder.CreatePHI(PtrTy, 2, "cast.result");
389 PHI->addIncoming(Value.getPointer(), notNullBB);
390 PHI->addIncoming(llvm::Constant::getNullValue(PtrTy), origBB);
391 Value = Value.withPointer(PHI, NotKnownNonNull);
394 return Value;
397 Address
398 CodeGenFunction::GetAddressOfDerivedClass(Address BaseAddr,
399 const CXXRecordDecl *Derived,
400 CastExpr::path_const_iterator PathBegin,
401 CastExpr::path_const_iterator PathEnd,
402 bool NullCheckValue) {
403 assert(PathBegin != PathEnd && "Base path should not be empty!");
405 QualType DerivedTy =
406 getContext().getCanonicalType(getContext().getTagDeclType(Derived));
407 llvm::Type *DerivedValueTy = ConvertType(DerivedTy);
409 llvm::Value *NonVirtualOffset =
410 CGM.GetNonVirtualBaseClassOffset(Derived, PathBegin, PathEnd);
412 if (!NonVirtualOffset) {
413 // No offset, we can just cast back.
414 return BaseAddr.withElementType(DerivedValueTy);
417 llvm::BasicBlock *CastNull = nullptr;
418 llvm::BasicBlock *CastNotNull = nullptr;
419 llvm::BasicBlock *CastEnd = nullptr;
421 if (NullCheckValue) {
422 CastNull = createBasicBlock("cast.null");
423 CastNotNull = createBasicBlock("cast.notnull");
424 CastEnd = createBasicBlock("cast.end");
426 llvm::Value *IsNull = Builder.CreateIsNull(BaseAddr.getPointer());
427 Builder.CreateCondBr(IsNull, CastNull, CastNotNull);
428 EmitBlock(CastNotNull);
431 // Apply the offset.
432 llvm::Value *Value = BaseAddr.getPointer();
433 Value = Builder.CreateInBoundsGEP(
434 Int8Ty, Value, Builder.CreateNeg(NonVirtualOffset), "sub.ptr");
436 // Produce a PHI if we had a null-check.
437 if (NullCheckValue) {
438 Builder.CreateBr(CastEnd);
439 EmitBlock(CastNull);
440 Builder.CreateBr(CastEnd);
441 EmitBlock(CastEnd);
443 llvm::PHINode *PHI = Builder.CreatePHI(Value->getType(), 2);
444 PHI->addIncoming(Value, CastNotNull);
445 PHI->addIncoming(llvm::Constant::getNullValue(Value->getType()), CastNull);
446 Value = PHI;
449 return Address(Value, DerivedValueTy, CGM.getClassPointerAlignment(Derived));
452 llvm::Value *CodeGenFunction::GetVTTParameter(GlobalDecl GD,
453 bool ForVirtualBase,
454 bool Delegating) {
455 if (!CGM.getCXXABI().NeedsVTTParameter(GD)) {
456 // This constructor/destructor does not need a VTT parameter.
457 return nullptr;
460 const CXXRecordDecl *RD = cast<CXXMethodDecl>(CurCodeDecl)->getParent();
461 const CXXRecordDecl *Base = cast<CXXMethodDecl>(GD.getDecl())->getParent();
463 uint64_t SubVTTIndex;
465 if (Delegating) {
466 // If this is a delegating constructor call, just load the VTT.
467 return LoadCXXVTT();
468 } else if (RD == Base) {
469 // If the record matches the base, this is the complete ctor/dtor
470 // variant calling the base variant in a class with virtual bases.
471 assert(!CGM.getCXXABI().NeedsVTTParameter(CurGD) &&
472 "doing no-op VTT offset in base dtor/ctor?");
473 assert(!ForVirtualBase && "Can't have same class as virtual base!");
474 SubVTTIndex = 0;
475 } else {
476 const ASTRecordLayout &Layout = getContext().getASTRecordLayout(RD);
477 CharUnits BaseOffset = ForVirtualBase ?
478 Layout.getVBaseClassOffset(Base) :
479 Layout.getBaseClassOffset(Base);
481 SubVTTIndex =
482 CGM.getVTables().getSubVTTIndex(RD, BaseSubobject(Base, BaseOffset));
483 assert(SubVTTIndex != 0 && "Sub-VTT index must be greater than zero!");
486 if (CGM.getCXXABI().NeedsVTTParameter(CurGD)) {
487 // A VTT parameter was passed to the constructor, use it.
488 llvm::Value *VTT = LoadCXXVTT();
489 return Builder.CreateConstInBoundsGEP1_64(VoidPtrTy, VTT, SubVTTIndex);
490 } else {
491 // We're the complete constructor, so get the VTT by name.
492 llvm::GlobalValue *VTT = CGM.getVTables().GetAddrOfVTT(RD);
493 return Builder.CreateConstInBoundsGEP2_64(
494 VTT->getValueType(), VTT, 0, SubVTTIndex);
498 namespace {
499 /// Call the destructor for a direct base class.
500 struct CallBaseDtor final : EHScopeStack::Cleanup {
501 const CXXRecordDecl *BaseClass;
502 bool BaseIsVirtual;
503 CallBaseDtor(const CXXRecordDecl *Base, bool BaseIsVirtual)
504 : BaseClass(Base), BaseIsVirtual(BaseIsVirtual) {}
506 void Emit(CodeGenFunction &CGF, Flags flags) override {
507 const CXXRecordDecl *DerivedClass =
508 cast<CXXMethodDecl>(CGF.CurCodeDecl)->getParent();
510 const CXXDestructorDecl *D = BaseClass->getDestructor();
511 // We are already inside a destructor, so presumably the object being
512 // destroyed should have the expected type.
513 QualType ThisTy = D->getThisObjectType();
514 Address Addr =
515 CGF.GetAddressOfDirectBaseInCompleteClass(CGF.LoadCXXThisAddress(),
516 DerivedClass, BaseClass,
517 BaseIsVirtual);
518 CGF.EmitCXXDestructorCall(D, Dtor_Base, BaseIsVirtual,
519 /*Delegating=*/false, Addr, ThisTy);
523 /// A visitor which checks whether an initializer uses 'this' in a
524 /// way which requires the vtable to be properly set.
525 struct DynamicThisUseChecker : ConstEvaluatedExprVisitor<DynamicThisUseChecker> {
526 typedef ConstEvaluatedExprVisitor<DynamicThisUseChecker> super;
528 bool UsesThis;
530 DynamicThisUseChecker(const ASTContext &C) : super(C), UsesThis(false) {}
532 // Black-list all explicit and implicit references to 'this'.
534 // Do we need to worry about external references to 'this' derived
535 // from arbitrary code? If so, then anything which runs arbitrary
536 // external code might potentially access the vtable.
537 void VisitCXXThisExpr(const CXXThisExpr *E) { UsesThis = true; }
539 } // end anonymous namespace
541 static bool BaseInitializerUsesThis(ASTContext &C, const Expr *Init) {
542 DynamicThisUseChecker Checker(C);
543 Checker.Visit(Init);
544 return Checker.UsesThis;
547 static void EmitBaseInitializer(CodeGenFunction &CGF,
548 const CXXRecordDecl *ClassDecl,
549 CXXCtorInitializer *BaseInit) {
550 assert(BaseInit->isBaseInitializer() &&
551 "Must have base initializer!");
553 Address ThisPtr = CGF.LoadCXXThisAddress();
555 const Type *BaseType = BaseInit->getBaseClass();
556 const auto *BaseClassDecl =
557 cast<CXXRecordDecl>(BaseType->castAs<RecordType>()->getDecl());
559 bool isBaseVirtual = BaseInit->isBaseVirtual();
561 // If the initializer for the base (other than the constructor
562 // itself) accesses 'this' in any way, we need to initialize the
563 // vtables.
564 if (BaseInitializerUsesThis(CGF.getContext(), BaseInit->getInit()))
565 CGF.InitializeVTablePointers(ClassDecl);
567 // We can pretend to be a complete class because it only matters for
568 // virtual bases, and we only do virtual bases for complete ctors.
569 Address V =
570 CGF.GetAddressOfDirectBaseInCompleteClass(ThisPtr, ClassDecl,
571 BaseClassDecl,
572 isBaseVirtual);
573 AggValueSlot AggSlot =
574 AggValueSlot::forAddr(
575 V, Qualifiers(),
576 AggValueSlot::IsDestructed,
577 AggValueSlot::DoesNotNeedGCBarriers,
578 AggValueSlot::IsNotAliased,
579 CGF.getOverlapForBaseInit(ClassDecl, BaseClassDecl, isBaseVirtual));
581 CGF.EmitAggExpr(BaseInit->getInit(), AggSlot);
583 if (CGF.CGM.getLangOpts().Exceptions &&
584 !BaseClassDecl->hasTrivialDestructor())
585 CGF.EHStack.pushCleanup<CallBaseDtor>(EHCleanup, BaseClassDecl,
586 isBaseVirtual);
589 static bool isMemcpyEquivalentSpecialMember(const CXXMethodDecl *D) {
590 auto *CD = dyn_cast<CXXConstructorDecl>(D);
591 if (!(CD && CD->isCopyOrMoveConstructor()) &&
592 !D->isCopyAssignmentOperator() && !D->isMoveAssignmentOperator())
593 return false;
595 // We can emit a memcpy for a trivial copy or move constructor/assignment.
596 if (D->isTrivial() && !D->getParent()->mayInsertExtraPadding())
597 return true;
599 // We *must* emit a memcpy for a defaulted union copy or move op.
600 if (D->getParent()->isUnion() && D->isDefaulted())
601 return true;
603 return false;
606 static void EmitLValueForAnyFieldInitialization(CodeGenFunction &CGF,
607 CXXCtorInitializer *MemberInit,
608 LValue &LHS) {
609 FieldDecl *Field = MemberInit->getAnyMember();
610 if (MemberInit->isIndirectMemberInitializer()) {
611 // If we are initializing an anonymous union field, drill down to the field.
612 IndirectFieldDecl *IndirectField = MemberInit->getIndirectMember();
613 for (const auto *I : IndirectField->chain())
614 LHS = CGF.EmitLValueForFieldInitialization(LHS, cast<FieldDecl>(I));
615 } else {
616 LHS = CGF.EmitLValueForFieldInitialization(LHS, Field);
620 static void EmitMemberInitializer(CodeGenFunction &CGF,
621 const CXXRecordDecl *ClassDecl,
622 CXXCtorInitializer *MemberInit,
623 const CXXConstructorDecl *Constructor,
624 FunctionArgList &Args) {
625 ApplyDebugLocation Loc(CGF, MemberInit->getSourceLocation());
626 assert(MemberInit->isAnyMemberInitializer() &&
627 "Must have member initializer!");
628 assert(MemberInit->getInit() && "Must have initializer!");
630 // non-static data member initializers.
631 FieldDecl *Field = MemberInit->getAnyMember();
632 QualType FieldType = Field->getType();
634 llvm::Value *ThisPtr = CGF.LoadCXXThis();
635 QualType RecordTy = CGF.getContext().getTypeDeclType(ClassDecl);
636 LValue LHS;
638 // If a base constructor is being emitted, create an LValue that has the
639 // non-virtual alignment.
640 if (CGF.CurGD.getCtorType() == Ctor_Base)
641 LHS = CGF.MakeNaturalAlignPointeeAddrLValue(ThisPtr, RecordTy);
642 else
643 LHS = CGF.MakeNaturalAlignAddrLValue(ThisPtr, RecordTy);
645 EmitLValueForAnyFieldInitialization(CGF, MemberInit, LHS);
647 // Special case: if we are in a copy or move constructor, and we are copying
648 // an array of PODs or classes with trivial copy constructors, ignore the
649 // AST and perform the copy we know is equivalent.
650 // FIXME: This is hacky at best... if we had a bit more explicit information
651 // in the AST, we could generalize it more easily.
652 const ConstantArrayType *Array
653 = CGF.getContext().getAsConstantArrayType(FieldType);
654 if (Array && Constructor->isDefaulted() &&
655 Constructor->isCopyOrMoveConstructor()) {
656 QualType BaseElementTy = CGF.getContext().getBaseElementType(Array);
657 CXXConstructExpr *CE = dyn_cast<CXXConstructExpr>(MemberInit->getInit());
658 if (BaseElementTy.isPODType(CGF.getContext()) ||
659 (CE && isMemcpyEquivalentSpecialMember(CE->getConstructor()))) {
660 unsigned SrcArgIndex =
661 CGF.CGM.getCXXABI().getSrcArgforCopyCtor(Constructor, Args);
662 llvm::Value *SrcPtr
663 = CGF.Builder.CreateLoad(CGF.GetAddrOfLocalVar(Args[SrcArgIndex]));
664 LValue ThisRHSLV = CGF.MakeNaturalAlignAddrLValue(SrcPtr, RecordTy);
665 LValue Src = CGF.EmitLValueForFieldInitialization(ThisRHSLV, Field);
667 // Copy the aggregate.
668 CGF.EmitAggregateCopy(LHS, Src, FieldType, CGF.getOverlapForFieldInit(Field),
669 LHS.isVolatileQualified());
670 // Ensure that we destroy the objects if an exception is thrown later in
671 // the constructor.
672 QualType::DestructionKind dtorKind = FieldType.isDestructedType();
673 if (CGF.needsEHCleanup(dtorKind))
674 CGF.pushEHDestroy(dtorKind, LHS.getAddress(CGF), FieldType);
675 return;
679 CGF.EmitInitializerForField(Field, LHS, MemberInit->getInit());
682 void CodeGenFunction::EmitInitializerForField(FieldDecl *Field, LValue LHS,
683 Expr *Init) {
684 QualType FieldType = Field->getType();
685 switch (getEvaluationKind(FieldType)) {
686 case TEK_Scalar:
687 if (LHS.isSimple()) {
688 EmitExprAsInit(Init, Field, LHS, false);
689 } else {
690 RValue RHS = RValue::get(EmitScalarExpr(Init));
691 EmitStoreThroughLValue(RHS, LHS);
693 break;
694 case TEK_Complex:
695 EmitComplexExprIntoLValue(Init, LHS, /*isInit*/ true);
696 break;
697 case TEK_Aggregate: {
698 AggValueSlot Slot = AggValueSlot::forLValue(
699 LHS, *this, AggValueSlot::IsDestructed,
700 AggValueSlot::DoesNotNeedGCBarriers, AggValueSlot::IsNotAliased,
701 getOverlapForFieldInit(Field), AggValueSlot::IsNotZeroed,
702 // Checks are made by the code that calls constructor.
703 AggValueSlot::IsSanitizerChecked);
704 EmitAggExpr(Init, Slot);
705 break;
709 // Ensure that we destroy this object if an exception is thrown
710 // later in the constructor.
711 QualType::DestructionKind dtorKind = FieldType.isDestructedType();
712 if (needsEHCleanup(dtorKind))
713 pushEHDestroy(dtorKind, LHS.getAddress(*this), FieldType);
716 /// Checks whether the given constructor is a valid subject for the
717 /// complete-to-base constructor delegation optimization, i.e.
718 /// emitting the complete constructor as a simple call to the base
719 /// constructor.
720 bool CodeGenFunction::IsConstructorDelegationValid(
721 const CXXConstructorDecl *Ctor) {
723 // Currently we disable the optimization for classes with virtual
724 // bases because (1) the addresses of parameter variables need to be
725 // consistent across all initializers but (2) the delegate function
726 // call necessarily creates a second copy of the parameter variable.
728 // The limiting example (purely theoretical AFAIK):
729 // struct A { A(int &c) { c++; } };
730 // struct B : virtual A {
731 // B(int count) : A(count) { printf("%d\n", count); }
732 // };
733 // ...although even this example could in principle be emitted as a
734 // delegation since the address of the parameter doesn't escape.
735 if (Ctor->getParent()->getNumVBases()) {
736 // TODO: white-list trivial vbase initializers. This case wouldn't
737 // be subject to the restrictions below.
739 // TODO: white-list cases where:
740 // - there are no non-reference parameters to the constructor
741 // - the initializers don't access any non-reference parameters
742 // - the initializers don't take the address of non-reference
743 // parameters
744 // - etc.
745 // If we ever add any of the above cases, remember that:
746 // - function-try-blocks will always exclude this optimization
747 // - we need to perform the constructor prologue and cleanup in
748 // EmitConstructorBody.
750 return false;
753 // We also disable the optimization for variadic functions because
754 // it's impossible to "re-pass" varargs.
755 if (Ctor->getType()->castAs<FunctionProtoType>()->isVariadic())
756 return false;
758 // FIXME: Decide if we can do a delegation of a delegating constructor.
759 if (Ctor->isDelegatingConstructor())
760 return false;
762 return true;
765 // Emit code in ctor (Prologue==true) or dtor (Prologue==false)
766 // to poison the extra field paddings inserted under
767 // -fsanitize-address-field-padding=1|2.
768 void CodeGenFunction::EmitAsanPrologueOrEpilogue(bool Prologue) {
769 ASTContext &Context = getContext();
770 const CXXRecordDecl *ClassDecl =
771 Prologue ? cast<CXXConstructorDecl>(CurGD.getDecl())->getParent()
772 : cast<CXXDestructorDecl>(CurGD.getDecl())->getParent();
773 if (!ClassDecl->mayInsertExtraPadding()) return;
775 struct SizeAndOffset {
776 uint64_t Size;
777 uint64_t Offset;
780 unsigned PtrSize = CGM.getDataLayout().getPointerSizeInBits();
781 const ASTRecordLayout &Info = Context.getASTRecordLayout(ClassDecl);
783 // Populate sizes and offsets of fields.
784 SmallVector<SizeAndOffset, 16> SSV(Info.getFieldCount());
785 for (unsigned i = 0, e = Info.getFieldCount(); i != e; ++i)
786 SSV[i].Offset =
787 Context.toCharUnitsFromBits(Info.getFieldOffset(i)).getQuantity();
789 size_t NumFields = 0;
790 for (const auto *Field : ClassDecl->fields()) {
791 const FieldDecl *D = Field;
792 auto FieldInfo = Context.getTypeInfoInChars(D->getType());
793 CharUnits FieldSize = FieldInfo.Width;
794 assert(NumFields < SSV.size());
795 SSV[NumFields].Size = D->isBitField() ? 0 : FieldSize.getQuantity();
796 NumFields++;
798 assert(NumFields == SSV.size());
799 if (SSV.size() <= 1) return;
801 // We will insert calls to __asan_* run-time functions.
802 // LLVM AddressSanitizer pass may decide to inline them later.
803 llvm::Type *Args[2] = {IntPtrTy, IntPtrTy};
804 llvm::FunctionType *FTy =
805 llvm::FunctionType::get(CGM.VoidTy, Args, false);
806 llvm::FunctionCallee F = CGM.CreateRuntimeFunction(
807 FTy, Prologue ? "__asan_poison_intra_object_redzone"
808 : "__asan_unpoison_intra_object_redzone");
810 llvm::Value *ThisPtr = LoadCXXThis();
811 ThisPtr = Builder.CreatePtrToInt(ThisPtr, IntPtrTy);
812 uint64_t TypeSize = Info.getNonVirtualSize().getQuantity();
813 // For each field check if it has sufficient padding,
814 // if so (un)poison it with a call.
815 for (size_t i = 0; i < SSV.size(); i++) {
816 uint64_t AsanAlignment = 8;
817 uint64_t NextField = i == SSV.size() - 1 ? TypeSize : SSV[i + 1].Offset;
818 uint64_t PoisonSize = NextField - SSV[i].Offset - SSV[i].Size;
819 uint64_t EndOffset = SSV[i].Offset + SSV[i].Size;
820 if (PoisonSize < AsanAlignment || !SSV[i].Size ||
821 (NextField % AsanAlignment) != 0)
822 continue;
823 Builder.CreateCall(
824 F, {Builder.CreateAdd(ThisPtr, Builder.getIntN(PtrSize, EndOffset)),
825 Builder.getIntN(PtrSize, PoisonSize)});
829 /// EmitConstructorBody - Emits the body of the current constructor.
830 void CodeGenFunction::EmitConstructorBody(FunctionArgList &Args) {
831 EmitAsanPrologueOrEpilogue(true);
832 const CXXConstructorDecl *Ctor = cast<CXXConstructorDecl>(CurGD.getDecl());
833 CXXCtorType CtorType = CurGD.getCtorType();
835 assert((CGM.getTarget().getCXXABI().hasConstructorVariants() ||
836 CtorType == Ctor_Complete) &&
837 "can only generate complete ctor for this ABI");
839 // Before we go any further, try the complete->base constructor
840 // delegation optimization.
841 if (CtorType == Ctor_Complete && IsConstructorDelegationValid(Ctor) &&
842 CGM.getTarget().getCXXABI().hasConstructorVariants()) {
843 EmitDelegateCXXConstructorCall(Ctor, Ctor_Base, Args, Ctor->getEndLoc());
844 return;
847 const FunctionDecl *Definition = nullptr;
848 Stmt *Body = Ctor->getBody(Definition);
849 assert(Definition == Ctor && "emitting wrong constructor body");
851 // Enter the function-try-block before the constructor prologue if
852 // applicable.
853 bool IsTryBody = (Body && isa<CXXTryStmt>(Body));
854 if (IsTryBody)
855 EnterCXXTryStmt(*cast<CXXTryStmt>(Body), true);
857 incrementProfileCounter(Body);
859 RunCleanupsScope RunCleanups(*this);
861 // TODO: in restricted cases, we can emit the vbase initializers of
862 // a complete ctor and then delegate to the base ctor.
864 // Emit the constructor prologue, i.e. the base and member
865 // initializers.
866 EmitCtorPrologue(Ctor, CtorType, Args);
868 // Emit the body of the statement.
869 if (IsTryBody)
870 EmitStmt(cast<CXXTryStmt>(Body)->getTryBlock());
871 else if (Body)
872 EmitStmt(Body);
874 // Emit any cleanup blocks associated with the member or base
875 // initializers, which includes (along the exceptional path) the
876 // destructors for those members and bases that were fully
877 // constructed.
878 RunCleanups.ForceCleanup();
880 if (IsTryBody)
881 ExitCXXTryStmt(*cast<CXXTryStmt>(Body), true);
884 namespace {
885 /// RAII object to indicate that codegen is copying the value representation
886 /// instead of the object representation. Useful when copying a struct or
887 /// class which has uninitialized members and we're only performing
888 /// lvalue-to-rvalue conversion on the object but not its members.
889 class CopyingValueRepresentation {
890 public:
891 explicit CopyingValueRepresentation(CodeGenFunction &CGF)
892 : CGF(CGF), OldSanOpts(CGF.SanOpts) {
893 CGF.SanOpts.set(SanitizerKind::Bool, false);
894 CGF.SanOpts.set(SanitizerKind::Enum, false);
896 ~CopyingValueRepresentation() {
897 CGF.SanOpts = OldSanOpts;
899 private:
900 CodeGenFunction &CGF;
901 SanitizerSet OldSanOpts;
903 } // end anonymous namespace
905 namespace {
906 class FieldMemcpyizer {
907 public:
908 FieldMemcpyizer(CodeGenFunction &CGF, const CXXRecordDecl *ClassDecl,
909 const VarDecl *SrcRec)
910 : CGF(CGF), ClassDecl(ClassDecl), SrcRec(SrcRec),
911 RecLayout(CGF.getContext().getASTRecordLayout(ClassDecl)),
912 FirstField(nullptr), LastField(nullptr), FirstFieldOffset(0),
913 LastFieldOffset(0), LastAddedFieldIndex(0) {}
915 bool isMemcpyableField(FieldDecl *F) const {
916 // Never memcpy fields when we are adding poisoned paddings.
917 if (CGF.getContext().getLangOpts().SanitizeAddressFieldPadding)
918 return false;
919 Qualifiers Qual = F->getType().getQualifiers();
920 if (Qual.hasVolatile() || Qual.hasObjCLifetime())
921 return false;
922 return true;
925 void addMemcpyableField(FieldDecl *F) {
926 if (F->isZeroSize(CGF.getContext()))
927 return;
928 if (!FirstField)
929 addInitialField(F);
930 else
931 addNextField(F);
934 CharUnits getMemcpySize(uint64_t FirstByteOffset) const {
935 ASTContext &Ctx = CGF.getContext();
936 unsigned LastFieldSize =
937 LastField->isBitField()
938 ? LastField->getBitWidthValue(Ctx)
939 : Ctx.toBits(
940 Ctx.getTypeInfoDataSizeInChars(LastField->getType()).Width);
941 uint64_t MemcpySizeBits = LastFieldOffset + LastFieldSize -
942 FirstByteOffset + Ctx.getCharWidth() - 1;
943 CharUnits MemcpySize = Ctx.toCharUnitsFromBits(MemcpySizeBits);
944 return MemcpySize;
947 void emitMemcpy() {
948 // Give the subclass a chance to bail out if it feels the memcpy isn't
949 // worth it (e.g. Hasn't aggregated enough data).
950 if (!FirstField) {
951 return;
954 uint64_t FirstByteOffset;
955 if (FirstField->isBitField()) {
956 const CGRecordLayout &RL =
957 CGF.getTypes().getCGRecordLayout(FirstField->getParent());
958 const CGBitFieldInfo &BFInfo = RL.getBitFieldInfo(FirstField);
959 // FirstFieldOffset is not appropriate for bitfields,
960 // we need to use the storage offset instead.
961 FirstByteOffset = CGF.getContext().toBits(BFInfo.StorageOffset);
962 } else {
963 FirstByteOffset = FirstFieldOffset;
966 CharUnits MemcpySize = getMemcpySize(FirstByteOffset);
967 QualType RecordTy = CGF.getContext().getTypeDeclType(ClassDecl);
968 Address ThisPtr = CGF.LoadCXXThisAddress();
969 LValue DestLV = CGF.MakeAddrLValue(ThisPtr, RecordTy);
970 LValue Dest = CGF.EmitLValueForFieldInitialization(DestLV, FirstField);
971 llvm::Value *SrcPtr = CGF.Builder.CreateLoad(CGF.GetAddrOfLocalVar(SrcRec));
972 LValue SrcLV = CGF.MakeNaturalAlignAddrLValue(SrcPtr, RecordTy);
973 LValue Src = CGF.EmitLValueForFieldInitialization(SrcLV, FirstField);
975 emitMemcpyIR(
976 Dest.isBitField() ? Dest.getBitFieldAddress() : Dest.getAddress(CGF),
977 Src.isBitField() ? Src.getBitFieldAddress() : Src.getAddress(CGF),
978 MemcpySize);
979 reset();
982 void reset() {
983 FirstField = nullptr;
986 protected:
987 CodeGenFunction &CGF;
988 const CXXRecordDecl *ClassDecl;
990 private:
991 void emitMemcpyIR(Address DestPtr, Address SrcPtr, CharUnits Size) {
992 DestPtr = DestPtr.withElementType(CGF.Int8Ty);
993 SrcPtr = SrcPtr.withElementType(CGF.Int8Ty);
994 CGF.Builder.CreateMemCpy(DestPtr, SrcPtr, Size.getQuantity());
997 void addInitialField(FieldDecl *F) {
998 FirstField = F;
999 LastField = F;
1000 FirstFieldOffset = RecLayout.getFieldOffset(F->getFieldIndex());
1001 LastFieldOffset = FirstFieldOffset;
1002 LastAddedFieldIndex = F->getFieldIndex();
1005 void addNextField(FieldDecl *F) {
1006 // For the most part, the following invariant will hold:
1007 // F->getFieldIndex() == LastAddedFieldIndex + 1
1008 // The one exception is that Sema won't add a copy-initializer for an
1009 // unnamed bitfield, which will show up here as a gap in the sequence.
1010 assert(F->getFieldIndex() >= LastAddedFieldIndex + 1 &&
1011 "Cannot aggregate fields out of order.");
1012 LastAddedFieldIndex = F->getFieldIndex();
1014 // The 'first' and 'last' fields are chosen by offset, rather than field
1015 // index. This allows the code to support bitfields, as well as regular
1016 // fields.
1017 uint64_t FOffset = RecLayout.getFieldOffset(F->getFieldIndex());
1018 if (FOffset < FirstFieldOffset) {
1019 FirstField = F;
1020 FirstFieldOffset = FOffset;
1021 } else if (FOffset >= LastFieldOffset) {
1022 LastField = F;
1023 LastFieldOffset = FOffset;
1027 const VarDecl *SrcRec;
1028 const ASTRecordLayout &RecLayout;
1029 FieldDecl *FirstField;
1030 FieldDecl *LastField;
1031 uint64_t FirstFieldOffset, LastFieldOffset;
1032 unsigned LastAddedFieldIndex;
1035 class ConstructorMemcpyizer : public FieldMemcpyizer {
1036 private:
1037 /// Get source argument for copy constructor. Returns null if not a copy
1038 /// constructor.
1039 static const VarDecl *getTrivialCopySource(CodeGenFunction &CGF,
1040 const CXXConstructorDecl *CD,
1041 FunctionArgList &Args) {
1042 if (CD->isCopyOrMoveConstructor() && CD->isDefaulted())
1043 return Args[CGF.CGM.getCXXABI().getSrcArgforCopyCtor(CD, Args)];
1044 return nullptr;
1047 // Returns true if a CXXCtorInitializer represents a member initialization
1048 // that can be rolled into a memcpy.
1049 bool isMemberInitMemcpyable(CXXCtorInitializer *MemberInit) const {
1050 if (!MemcpyableCtor)
1051 return false;
1052 FieldDecl *Field = MemberInit->getMember();
1053 assert(Field && "No field for member init.");
1054 QualType FieldType = Field->getType();
1055 CXXConstructExpr *CE = dyn_cast<CXXConstructExpr>(MemberInit->getInit());
1057 // Bail out on non-memcpyable, not-trivially-copyable members.
1058 if (!(CE && isMemcpyEquivalentSpecialMember(CE->getConstructor())) &&
1059 !(FieldType.isTriviallyCopyableType(CGF.getContext()) ||
1060 FieldType->isReferenceType()))
1061 return false;
1063 // Bail out on volatile fields.
1064 if (!isMemcpyableField(Field))
1065 return false;
1067 // Otherwise we're good.
1068 return true;
1071 public:
1072 ConstructorMemcpyizer(CodeGenFunction &CGF, const CXXConstructorDecl *CD,
1073 FunctionArgList &Args)
1074 : FieldMemcpyizer(CGF, CD->getParent(), getTrivialCopySource(CGF, CD, Args)),
1075 ConstructorDecl(CD),
1076 MemcpyableCtor(CD->isDefaulted() &&
1077 CD->isCopyOrMoveConstructor() &&
1078 CGF.getLangOpts().getGC() == LangOptions::NonGC),
1079 Args(Args) { }
1081 void addMemberInitializer(CXXCtorInitializer *MemberInit) {
1082 if (isMemberInitMemcpyable(MemberInit)) {
1083 AggregatedInits.push_back(MemberInit);
1084 addMemcpyableField(MemberInit->getMember());
1085 } else {
1086 emitAggregatedInits();
1087 EmitMemberInitializer(CGF, ConstructorDecl->getParent(), MemberInit,
1088 ConstructorDecl, Args);
1092 void emitAggregatedInits() {
1093 if (AggregatedInits.size() <= 1) {
1094 // This memcpy is too small to be worthwhile. Fall back on default
1095 // codegen.
1096 if (!AggregatedInits.empty()) {
1097 CopyingValueRepresentation CVR(CGF);
1098 EmitMemberInitializer(CGF, ConstructorDecl->getParent(),
1099 AggregatedInits[0], ConstructorDecl, Args);
1100 AggregatedInits.clear();
1102 reset();
1103 return;
1106 pushEHDestructors();
1107 emitMemcpy();
1108 AggregatedInits.clear();
1111 void pushEHDestructors() {
1112 Address ThisPtr = CGF.LoadCXXThisAddress();
1113 QualType RecordTy = CGF.getContext().getTypeDeclType(ClassDecl);
1114 LValue LHS = CGF.MakeAddrLValue(ThisPtr, RecordTy);
1116 for (unsigned i = 0; i < AggregatedInits.size(); ++i) {
1117 CXXCtorInitializer *MemberInit = AggregatedInits[i];
1118 QualType FieldType = MemberInit->getAnyMember()->getType();
1119 QualType::DestructionKind dtorKind = FieldType.isDestructedType();
1120 if (!CGF.needsEHCleanup(dtorKind))
1121 continue;
1122 LValue FieldLHS = LHS;
1123 EmitLValueForAnyFieldInitialization(CGF, MemberInit, FieldLHS);
1124 CGF.pushEHDestroy(dtorKind, FieldLHS.getAddress(CGF), FieldType);
1128 void finish() {
1129 emitAggregatedInits();
1132 private:
1133 const CXXConstructorDecl *ConstructorDecl;
1134 bool MemcpyableCtor;
1135 FunctionArgList &Args;
1136 SmallVector<CXXCtorInitializer*, 16> AggregatedInits;
1139 class AssignmentMemcpyizer : public FieldMemcpyizer {
1140 private:
1141 // Returns the memcpyable field copied by the given statement, if one
1142 // exists. Otherwise returns null.
1143 FieldDecl *getMemcpyableField(Stmt *S) {
1144 if (!AssignmentsMemcpyable)
1145 return nullptr;
1146 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(S)) {
1147 // Recognise trivial assignments.
1148 if (BO->getOpcode() != BO_Assign)
1149 return nullptr;
1150 MemberExpr *ME = dyn_cast<MemberExpr>(BO->getLHS());
1151 if (!ME)
1152 return nullptr;
1153 FieldDecl *Field = dyn_cast<FieldDecl>(ME->getMemberDecl());
1154 if (!Field || !isMemcpyableField(Field))
1155 return nullptr;
1156 Stmt *RHS = BO->getRHS();
1157 if (ImplicitCastExpr *EC = dyn_cast<ImplicitCastExpr>(RHS))
1158 RHS = EC->getSubExpr();
1159 if (!RHS)
1160 return nullptr;
1161 if (MemberExpr *ME2 = dyn_cast<MemberExpr>(RHS)) {
1162 if (ME2->getMemberDecl() == Field)
1163 return Field;
1165 return nullptr;
1166 } else if (CXXMemberCallExpr *MCE = dyn_cast<CXXMemberCallExpr>(S)) {
1167 CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(MCE->getCalleeDecl());
1168 if (!(MD && isMemcpyEquivalentSpecialMember(MD)))
1169 return nullptr;
1170 MemberExpr *IOA = dyn_cast<MemberExpr>(MCE->getImplicitObjectArgument());
1171 if (!IOA)
1172 return nullptr;
1173 FieldDecl *Field = dyn_cast<FieldDecl>(IOA->getMemberDecl());
1174 if (!Field || !isMemcpyableField(Field))
1175 return nullptr;
1176 MemberExpr *Arg0 = dyn_cast<MemberExpr>(MCE->getArg(0));
1177 if (!Arg0 || Field != dyn_cast<FieldDecl>(Arg0->getMemberDecl()))
1178 return nullptr;
1179 return Field;
1180 } else if (CallExpr *CE = dyn_cast<CallExpr>(S)) {
1181 FunctionDecl *FD = dyn_cast<FunctionDecl>(CE->getCalleeDecl());
1182 if (!FD || FD->getBuiltinID() != Builtin::BI__builtin_memcpy)
1183 return nullptr;
1184 Expr *DstPtr = CE->getArg(0);
1185 if (ImplicitCastExpr *DC = dyn_cast<ImplicitCastExpr>(DstPtr))
1186 DstPtr = DC->getSubExpr();
1187 UnaryOperator *DUO = dyn_cast<UnaryOperator>(DstPtr);
1188 if (!DUO || DUO->getOpcode() != UO_AddrOf)
1189 return nullptr;
1190 MemberExpr *ME = dyn_cast<MemberExpr>(DUO->getSubExpr());
1191 if (!ME)
1192 return nullptr;
1193 FieldDecl *Field = dyn_cast<FieldDecl>(ME->getMemberDecl());
1194 if (!Field || !isMemcpyableField(Field))
1195 return nullptr;
1196 Expr *SrcPtr = CE->getArg(1);
1197 if (ImplicitCastExpr *SC = dyn_cast<ImplicitCastExpr>(SrcPtr))
1198 SrcPtr = SC->getSubExpr();
1199 UnaryOperator *SUO = dyn_cast<UnaryOperator>(SrcPtr);
1200 if (!SUO || SUO->getOpcode() != UO_AddrOf)
1201 return nullptr;
1202 MemberExpr *ME2 = dyn_cast<MemberExpr>(SUO->getSubExpr());
1203 if (!ME2 || Field != dyn_cast<FieldDecl>(ME2->getMemberDecl()))
1204 return nullptr;
1205 return Field;
1208 return nullptr;
1211 bool AssignmentsMemcpyable;
1212 SmallVector<Stmt*, 16> AggregatedStmts;
1214 public:
1215 AssignmentMemcpyizer(CodeGenFunction &CGF, const CXXMethodDecl *AD,
1216 FunctionArgList &Args)
1217 : FieldMemcpyizer(CGF, AD->getParent(), Args[Args.size() - 1]),
1218 AssignmentsMemcpyable(CGF.getLangOpts().getGC() == LangOptions::NonGC) {
1219 assert(Args.size() == 2);
1222 void emitAssignment(Stmt *S) {
1223 FieldDecl *F = getMemcpyableField(S);
1224 if (F) {
1225 addMemcpyableField(F);
1226 AggregatedStmts.push_back(S);
1227 } else {
1228 emitAggregatedStmts();
1229 CGF.EmitStmt(S);
1233 void emitAggregatedStmts() {
1234 if (AggregatedStmts.size() <= 1) {
1235 if (!AggregatedStmts.empty()) {
1236 CopyingValueRepresentation CVR(CGF);
1237 CGF.EmitStmt(AggregatedStmts[0]);
1239 reset();
1242 emitMemcpy();
1243 AggregatedStmts.clear();
1246 void finish() {
1247 emitAggregatedStmts();
1250 } // end anonymous namespace
1252 static bool isInitializerOfDynamicClass(const CXXCtorInitializer *BaseInit) {
1253 const Type *BaseType = BaseInit->getBaseClass();
1254 const auto *BaseClassDecl =
1255 cast<CXXRecordDecl>(BaseType->castAs<RecordType>()->getDecl());
1256 return BaseClassDecl->isDynamicClass();
1259 /// EmitCtorPrologue - This routine generates necessary code to initialize
1260 /// base classes and non-static data members belonging to this constructor.
1261 void CodeGenFunction::EmitCtorPrologue(const CXXConstructorDecl *CD,
1262 CXXCtorType CtorType,
1263 FunctionArgList &Args) {
1264 if (CD->isDelegatingConstructor())
1265 return EmitDelegatingCXXConstructorCall(CD, Args);
1267 const CXXRecordDecl *ClassDecl = CD->getParent();
1269 CXXConstructorDecl::init_const_iterator B = CD->init_begin(),
1270 E = CD->init_end();
1272 // Virtual base initializers first, if any. They aren't needed if:
1273 // - This is a base ctor variant
1274 // - There are no vbases
1275 // - The class is abstract, so a complete object of it cannot be constructed
1277 // The check for an abstract class is necessary because sema may not have
1278 // marked virtual base destructors referenced.
1279 bool ConstructVBases = CtorType != Ctor_Base &&
1280 ClassDecl->getNumVBases() != 0 &&
1281 !ClassDecl->isAbstract();
1283 // In the Microsoft C++ ABI, there are no constructor variants. Instead, the
1284 // constructor of a class with virtual bases takes an additional parameter to
1285 // conditionally construct the virtual bases. Emit that check here.
1286 llvm::BasicBlock *BaseCtorContinueBB = nullptr;
1287 if (ConstructVBases &&
1288 !CGM.getTarget().getCXXABI().hasConstructorVariants()) {
1289 BaseCtorContinueBB =
1290 CGM.getCXXABI().EmitCtorCompleteObjectHandler(*this, ClassDecl);
1291 assert(BaseCtorContinueBB);
1294 llvm::Value *const OldThis = CXXThisValue;
1295 for (; B != E && (*B)->isBaseInitializer() && (*B)->isBaseVirtual(); B++) {
1296 if (!ConstructVBases)
1297 continue;
1298 if (CGM.getCodeGenOpts().StrictVTablePointers &&
1299 CGM.getCodeGenOpts().OptimizationLevel > 0 &&
1300 isInitializerOfDynamicClass(*B))
1301 CXXThisValue = Builder.CreateLaunderInvariantGroup(LoadCXXThis());
1302 EmitBaseInitializer(*this, ClassDecl, *B);
1305 if (BaseCtorContinueBB) {
1306 // Complete object handler should continue to the remaining initializers.
1307 Builder.CreateBr(BaseCtorContinueBB);
1308 EmitBlock(BaseCtorContinueBB);
1311 // Then, non-virtual base initializers.
1312 for (; B != E && (*B)->isBaseInitializer(); B++) {
1313 assert(!(*B)->isBaseVirtual());
1315 if (CGM.getCodeGenOpts().StrictVTablePointers &&
1316 CGM.getCodeGenOpts().OptimizationLevel > 0 &&
1317 isInitializerOfDynamicClass(*B))
1318 CXXThisValue = Builder.CreateLaunderInvariantGroup(LoadCXXThis());
1319 EmitBaseInitializer(*this, ClassDecl, *B);
1322 CXXThisValue = OldThis;
1324 InitializeVTablePointers(ClassDecl);
1326 // And finally, initialize class members.
1327 FieldConstructionScope FCS(*this, LoadCXXThisAddress());
1328 ConstructorMemcpyizer CM(*this, CD, Args);
1329 for (; B != E; B++) {
1330 CXXCtorInitializer *Member = (*B);
1331 assert(!Member->isBaseInitializer());
1332 assert(Member->isAnyMemberInitializer() &&
1333 "Delegating initializer on non-delegating constructor");
1334 CM.addMemberInitializer(Member);
1336 CM.finish();
1339 static bool
1340 FieldHasTrivialDestructorBody(ASTContext &Context, const FieldDecl *Field);
1342 static bool
1343 HasTrivialDestructorBody(ASTContext &Context,
1344 const CXXRecordDecl *BaseClassDecl,
1345 const CXXRecordDecl *MostDerivedClassDecl)
1347 // If the destructor is trivial we don't have to check anything else.
1348 if (BaseClassDecl->hasTrivialDestructor())
1349 return true;
1351 if (!BaseClassDecl->getDestructor()->hasTrivialBody())
1352 return false;
1354 // Check fields.
1355 for (const auto *Field : BaseClassDecl->fields())
1356 if (!FieldHasTrivialDestructorBody(Context, Field))
1357 return false;
1359 // Check non-virtual bases.
1360 for (const auto &I : BaseClassDecl->bases()) {
1361 if (I.isVirtual())
1362 continue;
1364 const CXXRecordDecl *NonVirtualBase =
1365 cast<CXXRecordDecl>(I.getType()->castAs<RecordType>()->getDecl());
1366 if (!HasTrivialDestructorBody(Context, NonVirtualBase,
1367 MostDerivedClassDecl))
1368 return false;
1371 if (BaseClassDecl == MostDerivedClassDecl) {
1372 // Check virtual bases.
1373 for (const auto &I : BaseClassDecl->vbases()) {
1374 const CXXRecordDecl *VirtualBase =
1375 cast<CXXRecordDecl>(I.getType()->castAs<RecordType>()->getDecl());
1376 if (!HasTrivialDestructorBody(Context, VirtualBase,
1377 MostDerivedClassDecl))
1378 return false;
1382 return true;
1385 static bool
1386 FieldHasTrivialDestructorBody(ASTContext &Context,
1387 const FieldDecl *Field)
1389 QualType FieldBaseElementType = Context.getBaseElementType(Field->getType());
1391 const RecordType *RT = FieldBaseElementType->getAs<RecordType>();
1392 if (!RT)
1393 return true;
1395 CXXRecordDecl *FieldClassDecl = cast<CXXRecordDecl>(RT->getDecl());
1397 // The destructor for an implicit anonymous union member is never invoked.
1398 if (FieldClassDecl->isUnion() && FieldClassDecl->isAnonymousStructOrUnion())
1399 return false;
1401 return HasTrivialDestructorBody(Context, FieldClassDecl, FieldClassDecl);
1404 /// CanSkipVTablePointerInitialization - Check whether we need to initialize
1405 /// any vtable pointers before calling this destructor.
1406 static bool CanSkipVTablePointerInitialization(CodeGenFunction &CGF,
1407 const CXXDestructorDecl *Dtor) {
1408 const CXXRecordDecl *ClassDecl = Dtor->getParent();
1409 if (!ClassDecl->isDynamicClass())
1410 return true;
1412 // For a final class, the vtable pointer is known to already point to the
1413 // class's vtable.
1414 if (ClassDecl->isEffectivelyFinal())
1415 return true;
1417 if (!Dtor->hasTrivialBody())
1418 return false;
1420 // Check the fields.
1421 for (const auto *Field : ClassDecl->fields())
1422 if (!FieldHasTrivialDestructorBody(CGF.getContext(), Field))
1423 return false;
1425 return true;
1428 /// EmitDestructorBody - Emits the body of the current destructor.
1429 void CodeGenFunction::EmitDestructorBody(FunctionArgList &Args) {
1430 const CXXDestructorDecl *Dtor = cast<CXXDestructorDecl>(CurGD.getDecl());
1431 CXXDtorType DtorType = CurGD.getDtorType();
1433 // For an abstract class, non-base destructors are never used (and can't
1434 // be emitted in general, because vbase dtors may not have been validated
1435 // by Sema), but the Itanium ABI doesn't make them optional and Clang may
1436 // in fact emit references to them from other compilations, so emit them
1437 // as functions containing a trap instruction.
1438 if (DtorType != Dtor_Base && Dtor->getParent()->isAbstract()) {
1439 llvm::CallInst *TrapCall = EmitTrapCall(llvm::Intrinsic::trap);
1440 TrapCall->setDoesNotReturn();
1441 TrapCall->setDoesNotThrow();
1442 Builder.CreateUnreachable();
1443 Builder.ClearInsertionPoint();
1444 return;
1447 Stmt *Body = Dtor->getBody();
1448 if (Body)
1449 incrementProfileCounter(Body);
1451 // The call to operator delete in a deleting destructor happens
1452 // outside of the function-try-block, which means it's always
1453 // possible to delegate the destructor body to the complete
1454 // destructor. Do so.
1455 if (DtorType == Dtor_Deleting) {
1456 RunCleanupsScope DtorEpilogue(*this);
1457 EnterDtorCleanups(Dtor, Dtor_Deleting);
1458 if (HaveInsertPoint()) {
1459 QualType ThisTy = Dtor->getThisObjectType();
1460 EmitCXXDestructorCall(Dtor, Dtor_Complete, /*ForVirtualBase=*/false,
1461 /*Delegating=*/false, LoadCXXThisAddress(), ThisTy);
1463 return;
1466 // If the body is a function-try-block, enter the try before
1467 // anything else.
1468 bool isTryBody = (Body && isa<CXXTryStmt>(Body));
1469 if (isTryBody)
1470 EnterCXXTryStmt(*cast<CXXTryStmt>(Body), true);
1471 EmitAsanPrologueOrEpilogue(false);
1473 // Enter the epilogue cleanups.
1474 RunCleanupsScope DtorEpilogue(*this);
1476 // If this is the complete variant, just invoke the base variant;
1477 // the epilogue will destruct the virtual bases. But we can't do
1478 // this optimization if the body is a function-try-block, because
1479 // we'd introduce *two* handler blocks. In the Microsoft ABI, we
1480 // always delegate because we might not have a definition in this TU.
1481 switch (DtorType) {
1482 case Dtor_Comdat: llvm_unreachable("not expecting a COMDAT");
1483 case Dtor_Deleting: llvm_unreachable("already handled deleting case");
1485 case Dtor_Complete:
1486 assert((Body || getTarget().getCXXABI().isMicrosoft()) &&
1487 "can't emit a dtor without a body for non-Microsoft ABIs");
1489 // Enter the cleanup scopes for virtual bases.
1490 EnterDtorCleanups(Dtor, Dtor_Complete);
1492 if (!isTryBody) {
1493 QualType ThisTy = Dtor->getThisObjectType();
1494 EmitCXXDestructorCall(Dtor, Dtor_Base, /*ForVirtualBase=*/false,
1495 /*Delegating=*/false, LoadCXXThisAddress(), ThisTy);
1496 break;
1499 // Fallthrough: act like we're in the base variant.
1500 [[fallthrough]];
1502 case Dtor_Base:
1503 assert(Body);
1505 // Enter the cleanup scopes for fields and non-virtual bases.
1506 EnterDtorCleanups(Dtor, Dtor_Base);
1508 // Initialize the vtable pointers before entering the body.
1509 if (!CanSkipVTablePointerInitialization(*this, Dtor)) {
1510 // Insert the llvm.launder.invariant.group intrinsic before initializing
1511 // the vptrs to cancel any previous assumptions we might have made.
1512 if (CGM.getCodeGenOpts().StrictVTablePointers &&
1513 CGM.getCodeGenOpts().OptimizationLevel > 0)
1514 CXXThisValue = Builder.CreateLaunderInvariantGroup(LoadCXXThis());
1515 InitializeVTablePointers(Dtor->getParent());
1518 if (isTryBody)
1519 EmitStmt(cast<CXXTryStmt>(Body)->getTryBlock());
1520 else if (Body)
1521 EmitStmt(Body);
1522 else {
1523 assert(Dtor->isImplicit() && "bodyless dtor not implicit");
1524 // nothing to do besides what's in the epilogue
1526 // -fapple-kext must inline any call to this dtor into
1527 // the caller's body.
1528 if (getLangOpts().AppleKext)
1529 CurFn->addFnAttr(llvm::Attribute::AlwaysInline);
1531 break;
1534 // Jump out through the epilogue cleanups.
1535 DtorEpilogue.ForceCleanup();
1537 // Exit the try if applicable.
1538 if (isTryBody)
1539 ExitCXXTryStmt(*cast<CXXTryStmt>(Body), true);
1542 void CodeGenFunction::emitImplicitAssignmentOperatorBody(FunctionArgList &Args) {
1543 const CXXMethodDecl *AssignOp = cast<CXXMethodDecl>(CurGD.getDecl());
1544 const Stmt *RootS = AssignOp->getBody();
1545 assert(isa<CompoundStmt>(RootS) &&
1546 "Body of an implicit assignment operator should be compound stmt.");
1547 const CompoundStmt *RootCS = cast<CompoundStmt>(RootS);
1549 LexicalScope Scope(*this, RootCS->getSourceRange());
1551 incrementProfileCounter(RootCS);
1552 AssignmentMemcpyizer AM(*this, AssignOp, Args);
1553 for (auto *I : RootCS->body())
1554 AM.emitAssignment(I);
1555 AM.finish();
1558 namespace {
1559 llvm::Value *LoadThisForDtorDelete(CodeGenFunction &CGF,
1560 const CXXDestructorDecl *DD) {
1561 if (Expr *ThisArg = DD->getOperatorDeleteThisArg())
1562 return CGF.EmitScalarExpr(ThisArg);
1563 return CGF.LoadCXXThis();
1566 /// Call the operator delete associated with the current destructor.
1567 struct CallDtorDelete final : EHScopeStack::Cleanup {
1568 CallDtorDelete() {}
1570 void Emit(CodeGenFunction &CGF, Flags flags) override {
1571 const CXXDestructorDecl *Dtor = cast<CXXDestructorDecl>(CGF.CurCodeDecl);
1572 const CXXRecordDecl *ClassDecl = Dtor->getParent();
1573 CGF.EmitDeleteCall(Dtor->getOperatorDelete(),
1574 LoadThisForDtorDelete(CGF, Dtor),
1575 CGF.getContext().getTagDeclType(ClassDecl));
1579 void EmitConditionalDtorDeleteCall(CodeGenFunction &CGF,
1580 llvm::Value *ShouldDeleteCondition,
1581 bool ReturnAfterDelete) {
1582 llvm::BasicBlock *callDeleteBB = CGF.createBasicBlock("dtor.call_delete");
1583 llvm::BasicBlock *continueBB = CGF.createBasicBlock("dtor.continue");
1584 llvm::Value *ShouldCallDelete
1585 = CGF.Builder.CreateIsNull(ShouldDeleteCondition);
1586 CGF.Builder.CreateCondBr(ShouldCallDelete, continueBB, callDeleteBB);
1588 CGF.EmitBlock(callDeleteBB);
1589 const CXXDestructorDecl *Dtor = cast<CXXDestructorDecl>(CGF.CurCodeDecl);
1590 const CXXRecordDecl *ClassDecl = Dtor->getParent();
1591 CGF.EmitDeleteCall(Dtor->getOperatorDelete(),
1592 LoadThisForDtorDelete(CGF, Dtor),
1593 CGF.getContext().getTagDeclType(ClassDecl));
1594 assert(Dtor->getOperatorDelete()->isDestroyingOperatorDelete() ==
1595 ReturnAfterDelete &&
1596 "unexpected value for ReturnAfterDelete");
1597 if (ReturnAfterDelete)
1598 CGF.EmitBranchThroughCleanup(CGF.ReturnBlock);
1599 else
1600 CGF.Builder.CreateBr(continueBB);
1602 CGF.EmitBlock(continueBB);
1605 struct CallDtorDeleteConditional final : EHScopeStack::Cleanup {
1606 llvm::Value *ShouldDeleteCondition;
1608 public:
1609 CallDtorDeleteConditional(llvm::Value *ShouldDeleteCondition)
1610 : ShouldDeleteCondition(ShouldDeleteCondition) {
1611 assert(ShouldDeleteCondition != nullptr);
1614 void Emit(CodeGenFunction &CGF, Flags flags) override {
1615 EmitConditionalDtorDeleteCall(CGF, ShouldDeleteCondition,
1616 /*ReturnAfterDelete*/false);
1620 class DestroyField final : public EHScopeStack::Cleanup {
1621 const FieldDecl *field;
1622 CodeGenFunction::Destroyer *destroyer;
1623 bool useEHCleanupForArray;
1625 public:
1626 DestroyField(const FieldDecl *field, CodeGenFunction::Destroyer *destroyer,
1627 bool useEHCleanupForArray)
1628 : field(field), destroyer(destroyer),
1629 useEHCleanupForArray(useEHCleanupForArray) {}
1631 void Emit(CodeGenFunction &CGF, Flags flags) override {
1632 // Find the address of the field.
1633 Address thisValue = CGF.LoadCXXThisAddress();
1634 QualType RecordTy = CGF.getContext().getTagDeclType(field->getParent());
1635 LValue ThisLV = CGF.MakeAddrLValue(thisValue, RecordTy);
1636 LValue LV = CGF.EmitLValueForField(ThisLV, field);
1637 assert(LV.isSimple());
1639 CGF.emitDestroy(LV.getAddress(CGF), field->getType(), destroyer,
1640 flags.isForNormalCleanup() && useEHCleanupForArray);
1644 class DeclAsInlineDebugLocation {
1645 CGDebugInfo *DI;
1646 llvm::MDNode *InlinedAt;
1647 std::optional<ApplyDebugLocation> Location;
1649 public:
1650 DeclAsInlineDebugLocation(CodeGenFunction &CGF, const NamedDecl &Decl)
1651 : DI(CGF.getDebugInfo()) {
1652 if (!DI)
1653 return;
1654 InlinedAt = DI->getInlinedAt();
1655 DI->setInlinedAt(CGF.Builder.getCurrentDebugLocation());
1656 Location.emplace(CGF, Decl.getLocation());
1659 ~DeclAsInlineDebugLocation() {
1660 if (!DI)
1661 return;
1662 Location.reset();
1663 DI->setInlinedAt(InlinedAt);
1667 static void EmitSanitizerDtorCallback(
1668 CodeGenFunction &CGF, StringRef Name, llvm::Value *Ptr,
1669 std::optional<CharUnits::QuantityType> PoisonSize = {}) {
1670 CodeGenFunction::SanitizerScope SanScope(&CGF);
1671 // Pass in void pointer and size of region as arguments to runtime
1672 // function
1673 SmallVector<llvm::Value *, 2> Args = {Ptr};
1674 SmallVector<llvm::Type *, 2> ArgTypes = {CGF.VoidPtrTy};
1676 if (PoisonSize.has_value()) {
1677 Args.emplace_back(llvm::ConstantInt::get(CGF.SizeTy, *PoisonSize));
1678 ArgTypes.emplace_back(CGF.SizeTy);
1681 llvm::FunctionType *FnType =
1682 llvm::FunctionType::get(CGF.VoidTy, ArgTypes, false);
1683 llvm::FunctionCallee Fn = CGF.CGM.CreateRuntimeFunction(FnType, Name);
1685 CGF.EmitNounwindRuntimeCall(Fn, Args);
1688 static void
1689 EmitSanitizerDtorFieldsCallback(CodeGenFunction &CGF, llvm::Value *Ptr,
1690 CharUnits::QuantityType PoisonSize) {
1691 EmitSanitizerDtorCallback(CGF, "__sanitizer_dtor_callback_fields", Ptr,
1692 PoisonSize);
1695 /// Poison base class with a trivial destructor.
1696 struct SanitizeDtorTrivialBase final : EHScopeStack::Cleanup {
1697 const CXXRecordDecl *BaseClass;
1698 bool BaseIsVirtual;
1699 SanitizeDtorTrivialBase(const CXXRecordDecl *Base, bool BaseIsVirtual)
1700 : BaseClass(Base), BaseIsVirtual(BaseIsVirtual) {}
1702 void Emit(CodeGenFunction &CGF, Flags flags) override {
1703 const CXXRecordDecl *DerivedClass =
1704 cast<CXXMethodDecl>(CGF.CurCodeDecl)->getParent();
1706 Address Addr = CGF.GetAddressOfDirectBaseInCompleteClass(
1707 CGF.LoadCXXThisAddress(), DerivedClass, BaseClass, BaseIsVirtual);
1709 const ASTRecordLayout &BaseLayout =
1710 CGF.getContext().getASTRecordLayout(BaseClass);
1711 CharUnits BaseSize = BaseLayout.getSize();
1713 if (!BaseSize.isPositive())
1714 return;
1716 // Use the base class declaration location as inline DebugLocation. All
1717 // fields of the class are destroyed.
1718 DeclAsInlineDebugLocation InlineHere(CGF, *BaseClass);
1719 EmitSanitizerDtorFieldsCallback(CGF, Addr.getPointer(),
1720 BaseSize.getQuantity());
1722 // Prevent the current stack frame from disappearing from the stack trace.
1723 CGF.CurFn->addFnAttr("disable-tail-calls", "true");
1727 class SanitizeDtorFieldRange final : public EHScopeStack::Cleanup {
1728 const CXXDestructorDecl *Dtor;
1729 unsigned StartIndex;
1730 unsigned EndIndex;
1732 public:
1733 SanitizeDtorFieldRange(const CXXDestructorDecl *Dtor, unsigned StartIndex,
1734 unsigned EndIndex)
1735 : Dtor(Dtor), StartIndex(StartIndex), EndIndex(EndIndex) {}
1737 // Generate function call for handling object poisoning.
1738 // Disables tail call elimination, to prevent the current stack frame
1739 // from disappearing from the stack trace.
1740 void Emit(CodeGenFunction &CGF, Flags flags) override {
1741 const ASTContext &Context = CGF.getContext();
1742 const ASTRecordLayout &Layout =
1743 Context.getASTRecordLayout(Dtor->getParent());
1745 // It's a first trivial field so it should be at the begining of a char,
1746 // still round up start offset just in case.
1747 CharUnits PoisonStart = Context.toCharUnitsFromBits(
1748 Layout.getFieldOffset(StartIndex) + Context.getCharWidth() - 1);
1749 llvm::ConstantInt *OffsetSizePtr =
1750 llvm::ConstantInt::get(CGF.SizeTy, PoisonStart.getQuantity());
1752 llvm::Value *OffsetPtr =
1753 CGF.Builder.CreateGEP(CGF.Int8Ty, CGF.LoadCXXThis(), OffsetSizePtr);
1755 CharUnits PoisonEnd;
1756 if (EndIndex >= Layout.getFieldCount()) {
1757 PoisonEnd = Layout.getNonVirtualSize();
1758 } else {
1759 PoisonEnd =
1760 Context.toCharUnitsFromBits(Layout.getFieldOffset(EndIndex));
1762 CharUnits PoisonSize = PoisonEnd - PoisonStart;
1763 if (!PoisonSize.isPositive())
1764 return;
1766 // Use the top field declaration location as inline DebugLocation.
1767 DeclAsInlineDebugLocation InlineHere(
1768 CGF, **std::next(Dtor->getParent()->field_begin(), StartIndex));
1769 EmitSanitizerDtorFieldsCallback(CGF, OffsetPtr, PoisonSize.getQuantity());
1771 // Prevent the current stack frame from disappearing from the stack trace.
1772 CGF.CurFn->addFnAttr("disable-tail-calls", "true");
1776 class SanitizeDtorVTable final : public EHScopeStack::Cleanup {
1777 const CXXDestructorDecl *Dtor;
1779 public:
1780 SanitizeDtorVTable(const CXXDestructorDecl *Dtor) : Dtor(Dtor) {}
1782 // Generate function call for handling vtable pointer poisoning.
1783 void Emit(CodeGenFunction &CGF, Flags flags) override {
1784 assert(Dtor->getParent()->isDynamicClass());
1785 (void)Dtor;
1786 // Poison vtable and vtable ptr if they exist for this class.
1787 llvm::Value *VTablePtr = CGF.LoadCXXThis();
1789 // Pass in void pointer and size of region as arguments to runtime
1790 // function
1791 EmitSanitizerDtorCallback(CGF, "__sanitizer_dtor_callback_vptr",
1792 VTablePtr);
1796 class SanitizeDtorCleanupBuilder {
1797 ASTContext &Context;
1798 EHScopeStack &EHStack;
1799 const CXXDestructorDecl *DD;
1800 std::optional<unsigned> StartIndex;
1802 public:
1803 SanitizeDtorCleanupBuilder(ASTContext &Context, EHScopeStack &EHStack,
1804 const CXXDestructorDecl *DD)
1805 : Context(Context), EHStack(EHStack), DD(DD), StartIndex(std::nullopt) {}
1806 void PushCleanupForField(const FieldDecl *Field) {
1807 if (Field->isZeroSize(Context))
1808 return;
1809 unsigned FieldIndex = Field->getFieldIndex();
1810 if (FieldHasTrivialDestructorBody(Context, Field)) {
1811 if (!StartIndex)
1812 StartIndex = FieldIndex;
1813 } else if (StartIndex) {
1814 EHStack.pushCleanup<SanitizeDtorFieldRange>(NormalAndEHCleanup, DD,
1815 *StartIndex, FieldIndex);
1816 StartIndex = std::nullopt;
1819 void End() {
1820 if (StartIndex)
1821 EHStack.pushCleanup<SanitizeDtorFieldRange>(NormalAndEHCleanup, DD,
1822 *StartIndex, -1);
1825 } // end anonymous namespace
1827 /// Emit all code that comes at the end of class's
1828 /// destructor. This is to call destructors on members and base classes
1829 /// in reverse order of their construction.
1831 /// For a deleting destructor, this also handles the case where a destroying
1832 /// operator delete completely overrides the definition.
1833 void CodeGenFunction::EnterDtorCleanups(const CXXDestructorDecl *DD,
1834 CXXDtorType DtorType) {
1835 assert((!DD->isTrivial() || DD->hasAttr<DLLExportAttr>()) &&
1836 "Should not emit dtor epilogue for non-exported trivial dtor!");
1838 // The deleting-destructor phase just needs to call the appropriate
1839 // operator delete that Sema picked up.
1840 if (DtorType == Dtor_Deleting) {
1841 assert(DD->getOperatorDelete() &&
1842 "operator delete missing - EnterDtorCleanups");
1843 if (CXXStructorImplicitParamValue) {
1844 // If there is an implicit param to the deleting dtor, it's a boolean
1845 // telling whether this is a deleting destructor.
1846 if (DD->getOperatorDelete()->isDestroyingOperatorDelete())
1847 EmitConditionalDtorDeleteCall(*this, CXXStructorImplicitParamValue,
1848 /*ReturnAfterDelete*/true);
1849 else
1850 EHStack.pushCleanup<CallDtorDeleteConditional>(
1851 NormalAndEHCleanup, CXXStructorImplicitParamValue);
1852 } else {
1853 if (DD->getOperatorDelete()->isDestroyingOperatorDelete()) {
1854 const CXXRecordDecl *ClassDecl = DD->getParent();
1855 EmitDeleteCall(DD->getOperatorDelete(),
1856 LoadThisForDtorDelete(*this, DD),
1857 getContext().getTagDeclType(ClassDecl));
1858 EmitBranchThroughCleanup(ReturnBlock);
1859 } else {
1860 EHStack.pushCleanup<CallDtorDelete>(NormalAndEHCleanup);
1863 return;
1866 const CXXRecordDecl *ClassDecl = DD->getParent();
1868 // Unions have no bases and do not call field destructors.
1869 if (ClassDecl->isUnion())
1870 return;
1872 // The complete-destructor phase just destructs all the virtual bases.
1873 if (DtorType == Dtor_Complete) {
1874 // Poison the vtable pointer such that access after the base
1875 // and member destructors are invoked is invalid.
1876 if (CGM.getCodeGenOpts().SanitizeMemoryUseAfterDtor &&
1877 SanOpts.has(SanitizerKind::Memory) && ClassDecl->getNumVBases() &&
1878 ClassDecl->isPolymorphic())
1879 EHStack.pushCleanup<SanitizeDtorVTable>(NormalAndEHCleanup, DD);
1881 // We push them in the forward order so that they'll be popped in
1882 // the reverse order.
1883 for (const auto &Base : ClassDecl->vbases()) {
1884 auto *BaseClassDecl =
1885 cast<CXXRecordDecl>(Base.getType()->castAs<RecordType>()->getDecl());
1887 if (BaseClassDecl->hasTrivialDestructor()) {
1888 // Under SanitizeMemoryUseAfterDtor, poison the trivial base class
1889 // memory. For non-trival base classes the same is done in the class
1890 // destructor.
1891 if (CGM.getCodeGenOpts().SanitizeMemoryUseAfterDtor &&
1892 SanOpts.has(SanitizerKind::Memory) && !BaseClassDecl->isEmpty())
1893 EHStack.pushCleanup<SanitizeDtorTrivialBase>(NormalAndEHCleanup,
1894 BaseClassDecl,
1895 /*BaseIsVirtual*/ true);
1896 } else {
1897 EHStack.pushCleanup<CallBaseDtor>(NormalAndEHCleanup, BaseClassDecl,
1898 /*BaseIsVirtual*/ true);
1902 return;
1905 assert(DtorType == Dtor_Base);
1906 // Poison the vtable pointer if it has no virtual bases, but inherits
1907 // virtual functions.
1908 if (CGM.getCodeGenOpts().SanitizeMemoryUseAfterDtor &&
1909 SanOpts.has(SanitizerKind::Memory) && !ClassDecl->getNumVBases() &&
1910 ClassDecl->isPolymorphic())
1911 EHStack.pushCleanup<SanitizeDtorVTable>(NormalAndEHCleanup, DD);
1913 // Destroy non-virtual bases.
1914 for (const auto &Base : ClassDecl->bases()) {
1915 // Ignore virtual bases.
1916 if (Base.isVirtual())
1917 continue;
1919 CXXRecordDecl *BaseClassDecl = Base.getType()->getAsCXXRecordDecl();
1921 if (BaseClassDecl->hasTrivialDestructor()) {
1922 if (CGM.getCodeGenOpts().SanitizeMemoryUseAfterDtor &&
1923 SanOpts.has(SanitizerKind::Memory) && !BaseClassDecl->isEmpty())
1924 EHStack.pushCleanup<SanitizeDtorTrivialBase>(NormalAndEHCleanup,
1925 BaseClassDecl,
1926 /*BaseIsVirtual*/ false);
1927 } else {
1928 EHStack.pushCleanup<CallBaseDtor>(NormalAndEHCleanup, BaseClassDecl,
1929 /*BaseIsVirtual*/ false);
1933 // Poison fields such that access after their destructors are
1934 // invoked, and before the base class destructor runs, is invalid.
1935 bool SanitizeFields = CGM.getCodeGenOpts().SanitizeMemoryUseAfterDtor &&
1936 SanOpts.has(SanitizerKind::Memory);
1937 SanitizeDtorCleanupBuilder SanitizeBuilder(getContext(), EHStack, DD);
1939 // Destroy direct fields.
1940 for (const auto *Field : ClassDecl->fields()) {
1941 if (SanitizeFields)
1942 SanitizeBuilder.PushCleanupForField(Field);
1944 QualType type = Field->getType();
1945 QualType::DestructionKind dtorKind = type.isDestructedType();
1946 if (!dtorKind)
1947 continue;
1949 // Anonymous union members do not have their destructors called.
1950 const RecordType *RT = type->getAsUnionType();
1951 if (RT && RT->getDecl()->isAnonymousStructOrUnion())
1952 continue;
1954 CleanupKind cleanupKind = getCleanupKind(dtorKind);
1955 EHStack.pushCleanup<DestroyField>(
1956 cleanupKind, Field, getDestroyer(dtorKind), cleanupKind & EHCleanup);
1959 if (SanitizeFields)
1960 SanitizeBuilder.End();
1963 /// EmitCXXAggrConstructorCall - Emit a loop to call a particular
1964 /// constructor for each of several members of an array.
1966 /// \param ctor the constructor to call for each element
1967 /// \param arrayType the type of the array to initialize
1968 /// \param arrayBegin an arrayType*
1969 /// \param zeroInitialize true if each element should be
1970 /// zero-initialized before it is constructed
1971 void CodeGenFunction::EmitCXXAggrConstructorCall(
1972 const CXXConstructorDecl *ctor, const ArrayType *arrayType,
1973 Address arrayBegin, const CXXConstructExpr *E, bool NewPointerIsChecked,
1974 bool zeroInitialize) {
1975 QualType elementType;
1976 llvm::Value *numElements =
1977 emitArrayLength(arrayType, elementType, arrayBegin);
1979 EmitCXXAggrConstructorCall(ctor, numElements, arrayBegin, E,
1980 NewPointerIsChecked, zeroInitialize);
1983 /// EmitCXXAggrConstructorCall - Emit a loop to call a particular
1984 /// constructor for each of several members of an array.
1986 /// \param ctor the constructor to call for each element
1987 /// \param numElements the number of elements in the array;
1988 /// may be zero
1989 /// \param arrayBase a T*, where T is the type constructed by ctor
1990 /// \param zeroInitialize true if each element should be
1991 /// zero-initialized before it is constructed
1992 void CodeGenFunction::EmitCXXAggrConstructorCall(const CXXConstructorDecl *ctor,
1993 llvm::Value *numElements,
1994 Address arrayBase,
1995 const CXXConstructExpr *E,
1996 bool NewPointerIsChecked,
1997 bool zeroInitialize) {
1998 // It's legal for numElements to be zero. This can happen both
1999 // dynamically, because x can be zero in 'new A[x]', and statically,
2000 // because of GCC extensions that permit zero-length arrays. There
2001 // are probably legitimate places where we could assume that this
2002 // doesn't happen, but it's not clear that it's worth it.
2003 llvm::BranchInst *zeroCheckBranch = nullptr;
2005 // Optimize for a constant count.
2006 llvm::ConstantInt *constantCount
2007 = dyn_cast<llvm::ConstantInt>(numElements);
2008 if (constantCount) {
2009 // Just skip out if the constant count is zero.
2010 if (constantCount->isZero()) return;
2012 // Otherwise, emit the check.
2013 } else {
2014 llvm::BasicBlock *loopBB = createBasicBlock("new.ctorloop");
2015 llvm::Value *iszero = Builder.CreateIsNull(numElements, "isempty");
2016 zeroCheckBranch = Builder.CreateCondBr(iszero, loopBB, loopBB);
2017 EmitBlock(loopBB);
2020 // Find the end of the array.
2021 llvm::Type *elementType = arrayBase.getElementType();
2022 llvm::Value *arrayBegin = arrayBase.getPointer();
2023 llvm::Value *arrayEnd = Builder.CreateInBoundsGEP(
2024 elementType, arrayBegin, numElements, "arrayctor.end");
2026 // Enter the loop, setting up a phi for the current location to initialize.
2027 llvm::BasicBlock *entryBB = Builder.GetInsertBlock();
2028 llvm::BasicBlock *loopBB = createBasicBlock("arrayctor.loop");
2029 EmitBlock(loopBB);
2030 llvm::PHINode *cur = Builder.CreatePHI(arrayBegin->getType(), 2,
2031 "arrayctor.cur");
2032 cur->addIncoming(arrayBegin, entryBB);
2034 // Inside the loop body, emit the constructor call on the array element.
2036 // The alignment of the base, adjusted by the size of a single element,
2037 // provides a conservative estimate of the alignment of every element.
2038 // (This assumes we never start tracking offsetted alignments.)
2040 // Note that these are complete objects and so we don't need to
2041 // use the non-virtual size or alignment.
2042 QualType type = getContext().getTypeDeclType(ctor->getParent());
2043 CharUnits eltAlignment =
2044 arrayBase.getAlignment()
2045 .alignmentOfArrayElement(getContext().getTypeSizeInChars(type));
2046 Address curAddr = Address(cur, elementType, eltAlignment);
2048 // Zero initialize the storage, if requested.
2049 if (zeroInitialize)
2050 EmitNullInitialization(curAddr, type);
2052 // C++ [class.temporary]p4:
2053 // There are two contexts in which temporaries are destroyed at a different
2054 // point than the end of the full-expression. The first context is when a
2055 // default constructor is called to initialize an element of an array.
2056 // If the constructor has one or more default arguments, the destruction of
2057 // every temporary created in a default argument expression is sequenced
2058 // before the construction of the next array element, if any.
2061 RunCleanupsScope Scope(*this);
2063 // Evaluate the constructor and its arguments in a regular
2064 // partial-destroy cleanup.
2065 if (getLangOpts().Exceptions &&
2066 !ctor->getParent()->hasTrivialDestructor()) {
2067 Destroyer *destroyer = destroyCXXObject;
2068 pushRegularPartialArrayCleanup(arrayBegin, cur, type, eltAlignment,
2069 *destroyer);
2071 auto currAVS = AggValueSlot::forAddr(
2072 curAddr, type.getQualifiers(), AggValueSlot::IsDestructed,
2073 AggValueSlot::DoesNotNeedGCBarriers, AggValueSlot::IsNotAliased,
2074 AggValueSlot::DoesNotOverlap, AggValueSlot::IsNotZeroed,
2075 NewPointerIsChecked ? AggValueSlot::IsSanitizerChecked
2076 : AggValueSlot::IsNotSanitizerChecked);
2077 EmitCXXConstructorCall(ctor, Ctor_Complete, /*ForVirtualBase=*/false,
2078 /*Delegating=*/false, currAVS, E);
2081 // Go to the next element.
2082 llvm::Value *next = Builder.CreateInBoundsGEP(
2083 elementType, cur, llvm::ConstantInt::get(SizeTy, 1), "arrayctor.next");
2084 cur->addIncoming(next, Builder.GetInsertBlock());
2086 // Check whether that's the end of the loop.
2087 llvm::Value *done = Builder.CreateICmpEQ(next, arrayEnd, "arrayctor.done");
2088 llvm::BasicBlock *contBB = createBasicBlock("arrayctor.cont");
2089 Builder.CreateCondBr(done, contBB, loopBB);
2091 // Patch the earlier check to skip over the loop.
2092 if (zeroCheckBranch) zeroCheckBranch->setSuccessor(0, contBB);
2094 EmitBlock(contBB);
2097 void CodeGenFunction::destroyCXXObject(CodeGenFunction &CGF,
2098 Address addr,
2099 QualType type) {
2100 const RecordType *rtype = type->castAs<RecordType>();
2101 const CXXRecordDecl *record = cast<CXXRecordDecl>(rtype->getDecl());
2102 const CXXDestructorDecl *dtor = record->getDestructor();
2103 assert(!dtor->isTrivial());
2104 CGF.EmitCXXDestructorCall(dtor, Dtor_Complete, /*for vbase*/ false,
2105 /*Delegating=*/false, addr, type);
2108 void CodeGenFunction::EmitCXXConstructorCall(const CXXConstructorDecl *D,
2109 CXXCtorType Type,
2110 bool ForVirtualBase,
2111 bool Delegating,
2112 AggValueSlot ThisAVS,
2113 const CXXConstructExpr *E) {
2114 CallArgList Args;
2115 Address This = ThisAVS.getAddress();
2116 LangAS SlotAS = ThisAVS.getQualifiers().getAddressSpace();
2117 QualType ThisType = D->getThisType();
2118 LangAS ThisAS = ThisType.getTypePtr()->getPointeeType().getAddressSpace();
2119 llvm::Value *ThisPtr = This.getPointer();
2121 if (SlotAS != ThisAS) {
2122 unsigned TargetThisAS = getContext().getTargetAddressSpace(ThisAS);
2123 llvm::Type *NewType =
2124 llvm::PointerType::get(getLLVMContext(), TargetThisAS);
2125 ThisPtr = getTargetHooks().performAddrSpaceCast(*this, This.getPointer(),
2126 ThisAS, SlotAS, NewType);
2129 // Push the this ptr.
2130 Args.add(RValue::get(ThisPtr), D->getThisType());
2132 // If this is a trivial constructor, emit a memcpy now before we lose
2133 // the alignment information on the argument.
2134 // FIXME: It would be better to preserve alignment information into CallArg.
2135 if (isMemcpyEquivalentSpecialMember(D)) {
2136 assert(E->getNumArgs() == 1 && "unexpected argcount for trivial ctor");
2138 const Expr *Arg = E->getArg(0);
2139 LValue Src = EmitLValue(Arg);
2140 QualType DestTy = getContext().getTypeDeclType(D->getParent());
2141 LValue Dest = MakeAddrLValue(This, DestTy);
2142 EmitAggregateCopyCtor(Dest, Src, ThisAVS.mayOverlap());
2143 return;
2146 // Add the rest of the user-supplied arguments.
2147 const FunctionProtoType *FPT = D->getType()->castAs<FunctionProtoType>();
2148 EvaluationOrder Order = E->isListInitialization()
2149 ? EvaluationOrder::ForceLeftToRight
2150 : EvaluationOrder::Default;
2151 EmitCallArgs(Args, FPT, E->arguments(), E->getConstructor(),
2152 /*ParamsToSkip*/ 0, Order);
2154 EmitCXXConstructorCall(D, Type, ForVirtualBase, Delegating, This, Args,
2155 ThisAVS.mayOverlap(), E->getExprLoc(),
2156 ThisAVS.isSanitizerChecked());
2159 static bool canEmitDelegateCallArgs(CodeGenFunction &CGF,
2160 const CXXConstructorDecl *Ctor,
2161 CXXCtorType Type, CallArgList &Args) {
2162 // We can't forward a variadic call.
2163 if (Ctor->isVariadic())
2164 return false;
2166 if (CGF.getTarget().getCXXABI().areArgsDestroyedLeftToRightInCallee()) {
2167 // If the parameters are callee-cleanup, it's not safe to forward.
2168 for (auto *P : Ctor->parameters())
2169 if (P->needsDestruction(CGF.getContext()))
2170 return false;
2172 // Likewise if they're inalloca.
2173 const CGFunctionInfo &Info =
2174 CGF.CGM.getTypes().arrangeCXXConstructorCall(Args, Ctor, Type, 0, 0);
2175 if (Info.usesInAlloca())
2176 return false;
2179 // Anything else should be OK.
2180 return true;
2183 void CodeGenFunction::EmitCXXConstructorCall(const CXXConstructorDecl *D,
2184 CXXCtorType Type,
2185 bool ForVirtualBase,
2186 bool Delegating,
2187 Address This,
2188 CallArgList &Args,
2189 AggValueSlot::Overlap_t Overlap,
2190 SourceLocation Loc,
2191 bool NewPointerIsChecked) {
2192 const CXXRecordDecl *ClassDecl = D->getParent();
2194 if (!NewPointerIsChecked)
2195 EmitTypeCheck(CodeGenFunction::TCK_ConstructorCall, Loc, This.getPointer(),
2196 getContext().getRecordType(ClassDecl), CharUnits::Zero());
2198 if (D->isTrivial() && D->isDefaultConstructor()) {
2199 assert(Args.size() == 1 && "trivial default ctor with args");
2200 return;
2203 // If this is a trivial constructor, just emit what's needed. If this is a
2204 // union copy constructor, we must emit a memcpy, because the AST does not
2205 // model that copy.
2206 if (isMemcpyEquivalentSpecialMember(D)) {
2207 assert(Args.size() == 2 && "unexpected argcount for trivial ctor");
2209 QualType SrcTy = D->getParamDecl(0)->getType().getNonReferenceType();
2210 Address Src = Address(Args[1].getRValue(*this).getScalarVal(), ConvertTypeForMem(SrcTy),
2211 CGM.getNaturalTypeAlignment(SrcTy));
2212 LValue SrcLVal = MakeAddrLValue(Src, SrcTy);
2213 QualType DestTy = getContext().getTypeDeclType(ClassDecl);
2214 LValue DestLVal = MakeAddrLValue(This, DestTy);
2215 EmitAggregateCopyCtor(DestLVal, SrcLVal, Overlap);
2216 return;
2219 bool PassPrototypeArgs = true;
2220 // Check whether we can actually emit the constructor before trying to do so.
2221 if (auto Inherited = D->getInheritedConstructor()) {
2222 PassPrototypeArgs = getTypes().inheritingCtorHasParams(Inherited, Type);
2223 if (PassPrototypeArgs && !canEmitDelegateCallArgs(*this, D, Type, Args)) {
2224 EmitInlinedInheritingCXXConstructorCall(D, Type, ForVirtualBase,
2225 Delegating, Args);
2226 return;
2230 // Insert any ABI-specific implicit constructor arguments.
2231 CGCXXABI::AddedStructorArgCounts ExtraArgs =
2232 CGM.getCXXABI().addImplicitConstructorArgs(*this, D, Type, ForVirtualBase,
2233 Delegating, Args);
2235 // Emit the call.
2236 llvm::Constant *CalleePtr = CGM.getAddrOfCXXStructor(GlobalDecl(D, Type));
2237 const CGFunctionInfo &Info = CGM.getTypes().arrangeCXXConstructorCall(
2238 Args, D, Type, ExtraArgs.Prefix, ExtraArgs.Suffix, PassPrototypeArgs);
2239 CGCallee Callee = CGCallee::forDirect(CalleePtr, GlobalDecl(D, Type));
2240 EmitCall(Info, Callee, ReturnValueSlot(), Args, nullptr, false, Loc);
2242 // Generate vtable assumptions if we're constructing a complete object
2243 // with a vtable. We don't do this for base subobjects for two reasons:
2244 // first, it's incorrect for classes with virtual bases, and second, we're
2245 // about to overwrite the vptrs anyway.
2246 // We also have to make sure if we can refer to vtable:
2247 // - Otherwise we can refer to vtable if it's safe to speculatively emit.
2248 // FIXME: If vtable is used by ctor/dtor, or if vtable is external and we are
2249 // sure that definition of vtable is not hidden,
2250 // then we are always safe to refer to it.
2251 // FIXME: It looks like InstCombine is very inefficient on dealing with
2252 // assumes. Make assumption loads require -fstrict-vtable-pointers temporarily.
2253 if (CGM.getCodeGenOpts().OptimizationLevel > 0 &&
2254 ClassDecl->isDynamicClass() && Type != Ctor_Base &&
2255 CGM.getCXXABI().canSpeculativelyEmitVTable(ClassDecl) &&
2256 CGM.getCodeGenOpts().StrictVTablePointers)
2257 EmitVTableAssumptionLoads(ClassDecl, This);
2260 void CodeGenFunction::EmitInheritedCXXConstructorCall(
2261 const CXXConstructorDecl *D, bool ForVirtualBase, Address This,
2262 bool InheritedFromVBase, const CXXInheritedCtorInitExpr *E) {
2263 CallArgList Args;
2264 CallArg ThisArg(RValue::get(This.getPointer()), D->getThisType());
2266 // Forward the parameters.
2267 if (InheritedFromVBase &&
2268 CGM.getTarget().getCXXABI().hasConstructorVariants()) {
2269 // Nothing to do; this construction is not responsible for constructing
2270 // the base class containing the inherited constructor.
2271 // FIXME: Can we just pass undef's for the remaining arguments if we don't
2272 // have constructor variants?
2273 Args.push_back(ThisArg);
2274 } else if (!CXXInheritedCtorInitExprArgs.empty()) {
2275 // The inheriting constructor was inlined; just inject its arguments.
2276 assert(CXXInheritedCtorInitExprArgs.size() >= D->getNumParams() &&
2277 "wrong number of parameters for inherited constructor call");
2278 Args = CXXInheritedCtorInitExprArgs;
2279 Args[0] = ThisArg;
2280 } else {
2281 // The inheriting constructor was not inlined. Emit delegating arguments.
2282 Args.push_back(ThisArg);
2283 const auto *OuterCtor = cast<CXXConstructorDecl>(CurCodeDecl);
2284 assert(OuterCtor->getNumParams() == D->getNumParams());
2285 assert(!OuterCtor->isVariadic() && "should have been inlined");
2287 for (const auto *Param : OuterCtor->parameters()) {
2288 assert(getContext().hasSameUnqualifiedType(
2289 OuterCtor->getParamDecl(Param->getFunctionScopeIndex())->getType(),
2290 Param->getType()));
2291 EmitDelegateCallArg(Args, Param, E->getLocation());
2293 // Forward __attribute__(pass_object_size).
2294 if (Param->hasAttr<PassObjectSizeAttr>()) {
2295 auto *POSParam = SizeArguments[Param];
2296 assert(POSParam && "missing pass_object_size value for forwarding");
2297 EmitDelegateCallArg(Args, POSParam, E->getLocation());
2302 EmitCXXConstructorCall(D, Ctor_Base, ForVirtualBase, /*Delegating*/false,
2303 This, Args, AggValueSlot::MayOverlap,
2304 E->getLocation(), /*NewPointerIsChecked*/true);
2307 void CodeGenFunction::EmitInlinedInheritingCXXConstructorCall(
2308 const CXXConstructorDecl *Ctor, CXXCtorType CtorType, bool ForVirtualBase,
2309 bool Delegating, CallArgList &Args) {
2310 GlobalDecl GD(Ctor, CtorType);
2311 InlinedInheritingConstructorScope Scope(*this, GD);
2312 ApplyInlineDebugLocation DebugScope(*this, GD);
2313 RunCleanupsScope RunCleanups(*this);
2315 // Save the arguments to be passed to the inherited constructor.
2316 CXXInheritedCtorInitExprArgs = Args;
2318 FunctionArgList Params;
2319 QualType RetType = BuildFunctionArgList(CurGD, Params);
2320 FnRetTy = RetType;
2322 // Insert any ABI-specific implicit constructor arguments.
2323 CGM.getCXXABI().addImplicitConstructorArgs(*this, Ctor, CtorType,
2324 ForVirtualBase, Delegating, Args);
2326 // Emit a simplified prolog. We only need to emit the implicit params.
2327 assert(Args.size() >= Params.size() && "too few arguments for call");
2328 for (unsigned I = 0, N = Args.size(); I != N; ++I) {
2329 if (I < Params.size() && isa<ImplicitParamDecl>(Params[I])) {
2330 const RValue &RV = Args[I].getRValue(*this);
2331 assert(!RV.isComplex() && "complex indirect params not supported");
2332 ParamValue Val = RV.isScalar()
2333 ? ParamValue::forDirect(RV.getScalarVal())
2334 : ParamValue::forIndirect(RV.getAggregateAddress());
2335 EmitParmDecl(*Params[I], Val, I + 1);
2339 // Create a return value slot if the ABI implementation wants one.
2340 // FIXME: This is dumb, we should ask the ABI not to try to set the return
2341 // value instead.
2342 if (!RetType->isVoidType())
2343 ReturnValue = CreateIRTemp(RetType, "retval.inhctor");
2345 CGM.getCXXABI().EmitInstanceFunctionProlog(*this);
2346 CXXThisValue = CXXABIThisValue;
2348 // Directly emit the constructor initializers.
2349 EmitCtorPrologue(Ctor, CtorType, Params);
2352 void CodeGenFunction::EmitVTableAssumptionLoad(const VPtr &Vptr, Address This) {
2353 llvm::Value *VTableGlobal =
2354 CGM.getCXXABI().getVTableAddressPoint(Vptr.Base, Vptr.VTableClass);
2355 if (!VTableGlobal)
2356 return;
2358 // We can just use the base offset in the complete class.
2359 CharUnits NonVirtualOffset = Vptr.Base.getBaseOffset();
2361 if (!NonVirtualOffset.isZero())
2362 This =
2363 ApplyNonVirtualAndVirtualOffset(*this, This, NonVirtualOffset, nullptr,
2364 Vptr.VTableClass, Vptr.NearestVBase);
2366 llvm::Value *VPtrValue =
2367 GetVTablePtr(This, VTableGlobal->getType(), Vptr.VTableClass);
2368 llvm::Value *Cmp =
2369 Builder.CreateICmpEQ(VPtrValue, VTableGlobal, "cmp.vtables");
2370 Builder.CreateAssumption(Cmp);
2373 void CodeGenFunction::EmitVTableAssumptionLoads(const CXXRecordDecl *ClassDecl,
2374 Address This) {
2375 if (CGM.getCXXABI().doStructorsInitializeVPtrs(ClassDecl))
2376 for (const VPtr &Vptr : getVTablePointers(ClassDecl))
2377 EmitVTableAssumptionLoad(Vptr, This);
2380 void
2381 CodeGenFunction::EmitSynthesizedCXXCopyCtorCall(const CXXConstructorDecl *D,
2382 Address This, Address Src,
2383 const CXXConstructExpr *E) {
2384 const FunctionProtoType *FPT = D->getType()->castAs<FunctionProtoType>();
2386 CallArgList Args;
2388 // Push the this ptr.
2389 Args.add(RValue::get(This.getPointer()), D->getThisType());
2391 // Push the src ptr.
2392 QualType QT = *(FPT->param_type_begin());
2393 llvm::Type *t = CGM.getTypes().ConvertType(QT);
2394 llvm::Value *SrcVal = Builder.CreateBitCast(Src.getPointer(), t);
2395 Args.add(RValue::get(SrcVal), QT);
2397 // Skip over first argument (Src).
2398 EmitCallArgs(Args, FPT, drop_begin(E->arguments(), 1), E->getConstructor(),
2399 /*ParamsToSkip*/ 1);
2401 EmitCXXConstructorCall(D, Ctor_Complete, /*ForVirtualBase*/false,
2402 /*Delegating*/false, This, Args,
2403 AggValueSlot::MayOverlap, E->getExprLoc(),
2404 /*NewPointerIsChecked*/false);
2407 void
2408 CodeGenFunction::EmitDelegateCXXConstructorCall(const CXXConstructorDecl *Ctor,
2409 CXXCtorType CtorType,
2410 const FunctionArgList &Args,
2411 SourceLocation Loc) {
2412 CallArgList DelegateArgs;
2414 FunctionArgList::const_iterator I = Args.begin(), E = Args.end();
2415 assert(I != E && "no parameters to constructor");
2417 // this
2418 Address This = LoadCXXThisAddress();
2419 DelegateArgs.add(RValue::get(This.getPointer()), (*I)->getType());
2420 ++I;
2422 // FIXME: The location of the VTT parameter in the parameter list is
2423 // specific to the Itanium ABI and shouldn't be hardcoded here.
2424 if (CGM.getCXXABI().NeedsVTTParameter(CurGD)) {
2425 assert(I != E && "cannot skip vtt parameter, already done with args");
2426 assert((*I)->getType()->isPointerType() &&
2427 "skipping parameter not of vtt type");
2428 ++I;
2431 // Explicit arguments.
2432 for (; I != E; ++I) {
2433 const VarDecl *param = *I;
2434 // FIXME: per-argument source location
2435 EmitDelegateCallArg(DelegateArgs, param, Loc);
2438 EmitCXXConstructorCall(Ctor, CtorType, /*ForVirtualBase=*/false,
2439 /*Delegating=*/true, This, DelegateArgs,
2440 AggValueSlot::MayOverlap, Loc,
2441 /*NewPointerIsChecked=*/true);
2444 namespace {
2445 struct CallDelegatingCtorDtor final : EHScopeStack::Cleanup {
2446 const CXXDestructorDecl *Dtor;
2447 Address Addr;
2448 CXXDtorType Type;
2450 CallDelegatingCtorDtor(const CXXDestructorDecl *D, Address Addr,
2451 CXXDtorType Type)
2452 : Dtor(D), Addr(Addr), Type(Type) {}
2454 void Emit(CodeGenFunction &CGF, Flags flags) override {
2455 // We are calling the destructor from within the constructor.
2456 // Therefore, "this" should have the expected type.
2457 QualType ThisTy = Dtor->getThisObjectType();
2458 CGF.EmitCXXDestructorCall(Dtor, Type, /*ForVirtualBase=*/false,
2459 /*Delegating=*/true, Addr, ThisTy);
2462 } // end anonymous namespace
2464 void
2465 CodeGenFunction::EmitDelegatingCXXConstructorCall(const CXXConstructorDecl *Ctor,
2466 const FunctionArgList &Args) {
2467 assert(Ctor->isDelegatingConstructor());
2469 Address ThisPtr = LoadCXXThisAddress();
2471 AggValueSlot AggSlot =
2472 AggValueSlot::forAddr(ThisPtr, Qualifiers(),
2473 AggValueSlot::IsDestructed,
2474 AggValueSlot::DoesNotNeedGCBarriers,
2475 AggValueSlot::IsNotAliased,
2476 AggValueSlot::MayOverlap,
2477 AggValueSlot::IsNotZeroed,
2478 // Checks are made by the code that calls constructor.
2479 AggValueSlot::IsSanitizerChecked);
2481 EmitAggExpr(Ctor->init_begin()[0]->getInit(), AggSlot);
2483 const CXXRecordDecl *ClassDecl = Ctor->getParent();
2484 if (CGM.getLangOpts().Exceptions && !ClassDecl->hasTrivialDestructor()) {
2485 CXXDtorType Type =
2486 CurGD.getCtorType() == Ctor_Complete ? Dtor_Complete : Dtor_Base;
2488 EHStack.pushCleanup<CallDelegatingCtorDtor>(EHCleanup,
2489 ClassDecl->getDestructor(),
2490 ThisPtr, Type);
2494 void CodeGenFunction::EmitCXXDestructorCall(const CXXDestructorDecl *DD,
2495 CXXDtorType Type,
2496 bool ForVirtualBase,
2497 bool Delegating, Address This,
2498 QualType ThisTy) {
2499 CGM.getCXXABI().EmitDestructorCall(*this, DD, Type, ForVirtualBase,
2500 Delegating, This, ThisTy);
2503 namespace {
2504 struct CallLocalDtor final : EHScopeStack::Cleanup {
2505 const CXXDestructorDecl *Dtor;
2506 Address Addr;
2507 QualType Ty;
2509 CallLocalDtor(const CXXDestructorDecl *D, Address Addr, QualType Ty)
2510 : Dtor(D), Addr(Addr), Ty(Ty) {}
2512 void Emit(CodeGenFunction &CGF, Flags flags) override {
2513 CGF.EmitCXXDestructorCall(Dtor, Dtor_Complete,
2514 /*ForVirtualBase=*/false,
2515 /*Delegating=*/false, Addr, Ty);
2518 } // end anonymous namespace
2520 void CodeGenFunction::PushDestructorCleanup(const CXXDestructorDecl *D,
2521 QualType T, Address Addr) {
2522 EHStack.pushCleanup<CallLocalDtor>(NormalAndEHCleanup, D, Addr, T);
2525 void CodeGenFunction::PushDestructorCleanup(QualType T, Address Addr) {
2526 CXXRecordDecl *ClassDecl = T->getAsCXXRecordDecl();
2527 if (!ClassDecl) return;
2528 if (ClassDecl->hasTrivialDestructor()) return;
2530 const CXXDestructorDecl *D = ClassDecl->getDestructor();
2531 assert(D && D->isUsed() && "destructor not marked as used!");
2532 PushDestructorCleanup(D, T, Addr);
2535 void CodeGenFunction::InitializeVTablePointer(const VPtr &Vptr) {
2536 // Compute the address point.
2537 llvm::Value *VTableAddressPoint =
2538 CGM.getCXXABI().getVTableAddressPointInStructor(
2539 *this, Vptr.VTableClass, Vptr.Base, Vptr.NearestVBase);
2541 if (!VTableAddressPoint)
2542 return;
2544 // Compute where to store the address point.
2545 llvm::Value *VirtualOffset = nullptr;
2546 CharUnits NonVirtualOffset = CharUnits::Zero();
2548 if (CGM.getCXXABI().isVirtualOffsetNeededForVTableField(*this, Vptr)) {
2549 // We need to use the virtual base offset offset because the virtual base
2550 // might have a different offset in the most derived class.
2552 VirtualOffset = CGM.getCXXABI().GetVirtualBaseClassOffset(
2553 *this, LoadCXXThisAddress(), Vptr.VTableClass, Vptr.NearestVBase);
2554 NonVirtualOffset = Vptr.OffsetFromNearestVBase;
2555 } else {
2556 // We can just use the base offset in the complete class.
2557 NonVirtualOffset = Vptr.Base.getBaseOffset();
2560 // Apply the offsets.
2561 Address VTableField = LoadCXXThisAddress();
2562 if (!NonVirtualOffset.isZero() || VirtualOffset)
2563 VTableField = ApplyNonVirtualAndVirtualOffset(
2564 *this, VTableField, NonVirtualOffset, VirtualOffset, Vptr.VTableClass,
2565 Vptr.NearestVBase);
2567 // Finally, store the address point. Use the same LLVM types as the field to
2568 // support optimization.
2569 unsigned GlobalsAS = CGM.getDataLayout().getDefaultGlobalsAddressSpace();
2570 llvm::Type *PtrTy = llvm::PointerType::get(CGM.getLLVMContext(), GlobalsAS);
2571 // vtable field is derived from `this` pointer, therefore they should be in
2572 // the same addr space. Note that this might not be LLVM address space 0.
2573 VTableField = VTableField.withElementType(PtrTy);
2575 llvm::StoreInst *Store = Builder.CreateStore(VTableAddressPoint, VTableField);
2576 TBAAAccessInfo TBAAInfo = CGM.getTBAAVTablePtrAccessInfo(PtrTy);
2577 CGM.DecorateInstructionWithTBAA(Store, TBAAInfo);
2578 if (CGM.getCodeGenOpts().OptimizationLevel > 0 &&
2579 CGM.getCodeGenOpts().StrictVTablePointers)
2580 CGM.DecorateInstructionWithInvariantGroup(Store, Vptr.VTableClass);
2583 CodeGenFunction::VPtrsVector
2584 CodeGenFunction::getVTablePointers(const CXXRecordDecl *VTableClass) {
2585 CodeGenFunction::VPtrsVector VPtrsResult;
2586 VisitedVirtualBasesSetTy VBases;
2587 getVTablePointers(BaseSubobject(VTableClass, CharUnits::Zero()),
2588 /*NearestVBase=*/nullptr,
2589 /*OffsetFromNearestVBase=*/CharUnits::Zero(),
2590 /*BaseIsNonVirtualPrimaryBase=*/false, VTableClass, VBases,
2591 VPtrsResult);
2592 return VPtrsResult;
2595 void CodeGenFunction::getVTablePointers(BaseSubobject Base,
2596 const CXXRecordDecl *NearestVBase,
2597 CharUnits OffsetFromNearestVBase,
2598 bool BaseIsNonVirtualPrimaryBase,
2599 const CXXRecordDecl *VTableClass,
2600 VisitedVirtualBasesSetTy &VBases,
2601 VPtrsVector &Vptrs) {
2602 // If this base is a non-virtual primary base the address point has already
2603 // been set.
2604 if (!BaseIsNonVirtualPrimaryBase) {
2605 // Initialize the vtable pointer for this base.
2606 VPtr Vptr = {Base, NearestVBase, OffsetFromNearestVBase, VTableClass};
2607 Vptrs.push_back(Vptr);
2610 const CXXRecordDecl *RD = Base.getBase();
2612 // Traverse bases.
2613 for (const auto &I : RD->bases()) {
2614 auto *BaseDecl =
2615 cast<CXXRecordDecl>(I.getType()->castAs<RecordType>()->getDecl());
2617 // Ignore classes without a vtable.
2618 if (!BaseDecl->isDynamicClass())
2619 continue;
2621 CharUnits BaseOffset;
2622 CharUnits BaseOffsetFromNearestVBase;
2623 bool BaseDeclIsNonVirtualPrimaryBase;
2625 if (I.isVirtual()) {
2626 // Check if we've visited this virtual base before.
2627 if (!VBases.insert(BaseDecl).second)
2628 continue;
2630 const ASTRecordLayout &Layout =
2631 getContext().getASTRecordLayout(VTableClass);
2633 BaseOffset = Layout.getVBaseClassOffset(BaseDecl);
2634 BaseOffsetFromNearestVBase = CharUnits::Zero();
2635 BaseDeclIsNonVirtualPrimaryBase = false;
2636 } else {
2637 const ASTRecordLayout &Layout = getContext().getASTRecordLayout(RD);
2639 BaseOffset = Base.getBaseOffset() + Layout.getBaseClassOffset(BaseDecl);
2640 BaseOffsetFromNearestVBase =
2641 OffsetFromNearestVBase + Layout.getBaseClassOffset(BaseDecl);
2642 BaseDeclIsNonVirtualPrimaryBase = Layout.getPrimaryBase() == BaseDecl;
2645 getVTablePointers(
2646 BaseSubobject(BaseDecl, BaseOffset),
2647 I.isVirtual() ? BaseDecl : NearestVBase, BaseOffsetFromNearestVBase,
2648 BaseDeclIsNonVirtualPrimaryBase, VTableClass, VBases, Vptrs);
2652 void CodeGenFunction::InitializeVTablePointers(const CXXRecordDecl *RD) {
2653 // Ignore classes without a vtable.
2654 if (!RD->isDynamicClass())
2655 return;
2657 // Initialize the vtable pointers for this class and all of its bases.
2658 if (CGM.getCXXABI().doStructorsInitializeVPtrs(RD))
2659 for (const VPtr &Vptr : getVTablePointers(RD))
2660 InitializeVTablePointer(Vptr);
2662 if (RD->getNumVBases())
2663 CGM.getCXXABI().initializeHiddenVirtualInheritanceMembers(*this, RD);
2666 llvm::Value *CodeGenFunction::GetVTablePtr(Address This,
2667 llvm::Type *VTableTy,
2668 const CXXRecordDecl *RD) {
2669 Address VTablePtrSrc = This.withElementType(VTableTy);
2670 llvm::Instruction *VTable = Builder.CreateLoad(VTablePtrSrc, "vtable");
2671 TBAAAccessInfo TBAAInfo = CGM.getTBAAVTablePtrAccessInfo(VTableTy);
2672 CGM.DecorateInstructionWithTBAA(VTable, TBAAInfo);
2674 if (CGM.getCodeGenOpts().OptimizationLevel > 0 &&
2675 CGM.getCodeGenOpts().StrictVTablePointers)
2676 CGM.DecorateInstructionWithInvariantGroup(VTable, RD);
2678 return VTable;
2681 // If a class has a single non-virtual base and does not introduce or override
2682 // virtual member functions or fields, it will have the same layout as its base.
2683 // This function returns the least derived such class.
2685 // Casting an instance of a base class to such a derived class is technically
2686 // undefined behavior, but it is a relatively common hack for introducing member
2687 // functions on class instances with specific properties (e.g. llvm::Operator)
2688 // that works under most compilers and should not have security implications, so
2689 // we allow it by default. It can be disabled with -fsanitize=cfi-cast-strict.
2690 static const CXXRecordDecl *
2691 LeastDerivedClassWithSameLayout(const CXXRecordDecl *RD) {
2692 if (!RD->field_empty())
2693 return RD;
2695 if (RD->getNumVBases() != 0)
2696 return RD;
2698 if (RD->getNumBases() != 1)
2699 return RD;
2701 for (const CXXMethodDecl *MD : RD->methods()) {
2702 if (MD->isVirtual()) {
2703 // Virtual member functions are only ok if they are implicit destructors
2704 // because the implicit destructor will have the same semantics as the
2705 // base class's destructor if no fields are added.
2706 if (isa<CXXDestructorDecl>(MD) && MD->isImplicit())
2707 continue;
2708 return RD;
2712 return LeastDerivedClassWithSameLayout(
2713 RD->bases_begin()->getType()->getAsCXXRecordDecl());
2716 void CodeGenFunction::EmitTypeMetadataCodeForVCall(const CXXRecordDecl *RD,
2717 llvm::Value *VTable,
2718 SourceLocation Loc) {
2719 if (SanOpts.has(SanitizerKind::CFIVCall))
2720 EmitVTablePtrCheckForCall(RD, VTable, CodeGenFunction::CFITCK_VCall, Loc);
2721 else if (CGM.getCodeGenOpts().WholeProgramVTables &&
2722 // Don't insert type test assumes if we are forcing public
2723 // visibility.
2724 !CGM.AlwaysHasLTOVisibilityPublic(RD)) {
2725 QualType Ty = QualType(RD->getTypeForDecl(), 0);
2726 llvm::Metadata *MD = CGM.CreateMetadataIdentifierForType(Ty);
2727 llvm::Value *TypeId =
2728 llvm::MetadataAsValue::get(CGM.getLLVMContext(), MD);
2730 // If we already know that the call has hidden LTO visibility, emit
2731 // @llvm.type.test(). Otherwise emit @llvm.public.type.test(), which WPD
2732 // will convert to @llvm.type.test() if we assert at link time that we have
2733 // whole program visibility.
2734 llvm::Intrinsic::ID IID = CGM.HasHiddenLTOVisibility(RD)
2735 ? llvm::Intrinsic::type_test
2736 : llvm::Intrinsic::public_type_test;
2737 llvm::Value *TypeTest =
2738 Builder.CreateCall(CGM.getIntrinsic(IID), {VTable, TypeId});
2739 Builder.CreateCall(CGM.getIntrinsic(llvm::Intrinsic::assume), TypeTest);
2743 void CodeGenFunction::EmitVTablePtrCheckForCall(const CXXRecordDecl *RD,
2744 llvm::Value *VTable,
2745 CFITypeCheckKind TCK,
2746 SourceLocation Loc) {
2747 if (!SanOpts.has(SanitizerKind::CFICastStrict))
2748 RD = LeastDerivedClassWithSameLayout(RD);
2750 EmitVTablePtrCheck(RD, VTable, TCK, Loc);
2753 void CodeGenFunction::EmitVTablePtrCheckForCast(QualType T, Address Derived,
2754 bool MayBeNull,
2755 CFITypeCheckKind TCK,
2756 SourceLocation Loc) {
2757 if (!getLangOpts().CPlusPlus)
2758 return;
2760 auto *ClassTy = T->getAs<RecordType>();
2761 if (!ClassTy)
2762 return;
2764 const CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(ClassTy->getDecl());
2766 if (!ClassDecl->isCompleteDefinition() || !ClassDecl->isDynamicClass())
2767 return;
2769 if (!SanOpts.has(SanitizerKind::CFICastStrict))
2770 ClassDecl = LeastDerivedClassWithSameLayout(ClassDecl);
2772 llvm::BasicBlock *ContBlock = nullptr;
2774 if (MayBeNull) {
2775 llvm::Value *DerivedNotNull =
2776 Builder.CreateIsNotNull(Derived.getPointer(), "cast.nonnull");
2778 llvm::BasicBlock *CheckBlock = createBasicBlock("cast.check");
2779 ContBlock = createBasicBlock("cast.cont");
2781 Builder.CreateCondBr(DerivedNotNull, CheckBlock, ContBlock);
2783 EmitBlock(CheckBlock);
2786 llvm::Value *VTable;
2787 std::tie(VTable, ClassDecl) =
2788 CGM.getCXXABI().LoadVTablePtr(*this, Derived, ClassDecl);
2790 EmitVTablePtrCheck(ClassDecl, VTable, TCK, Loc);
2792 if (MayBeNull) {
2793 Builder.CreateBr(ContBlock);
2794 EmitBlock(ContBlock);
2798 void CodeGenFunction::EmitVTablePtrCheck(const CXXRecordDecl *RD,
2799 llvm::Value *VTable,
2800 CFITypeCheckKind TCK,
2801 SourceLocation Loc) {
2802 if (!CGM.getCodeGenOpts().SanitizeCfiCrossDso &&
2803 !CGM.HasHiddenLTOVisibility(RD))
2804 return;
2806 SanitizerMask M;
2807 llvm::SanitizerStatKind SSK;
2808 switch (TCK) {
2809 case CFITCK_VCall:
2810 M = SanitizerKind::CFIVCall;
2811 SSK = llvm::SanStat_CFI_VCall;
2812 break;
2813 case CFITCK_NVCall:
2814 M = SanitizerKind::CFINVCall;
2815 SSK = llvm::SanStat_CFI_NVCall;
2816 break;
2817 case CFITCK_DerivedCast:
2818 M = SanitizerKind::CFIDerivedCast;
2819 SSK = llvm::SanStat_CFI_DerivedCast;
2820 break;
2821 case CFITCK_UnrelatedCast:
2822 M = SanitizerKind::CFIUnrelatedCast;
2823 SSK = llvm::SanStat_CFI_UnrelatedCast;
2824 break;
2825 case CFITCK_ICall:
2826 case CFITCK_NVMFCall:
2827 case CFITCK_VMFCall:
2828 llvm_unreachable("unexpected sanitizer kind");
2831 std::string TypeName = RD->getQualifiedNameAsString();
2832 if (getContext().getNoSanitizeList().containsType(M, TypeName))
2833 return;
2835 SanitizerScope SanScope(this);
2836 EmitSanitizerStatReport(SSK);
2838 llvm::Metadata *MD =
2839 CGM.CreateMetadataIdentifierForType(QualType(RD->getTypeForDecl(), 0));
2840 llvm::Value *TypeId = llvm::MetadataAsValue::get(getLLVMContext(), MD);
2842 llvm::Value *TypeTest = Builder.CreateCall(
2843 CGM.getIntrinsic(llvm::Intrinsic::type_test), {VTable, TypeId});
2845 llvm::Constant *StaticData[] = {
2846 llvm::ConstantInt::get(Int8Ty, TCK),
2847 EmitCheckSourceLocation(Loc),
2848 EmitCheckTypeDescriptor(QualType(RD->getTypeForDecl(), 0)),
2851 auto CrossDsoTypeId = CGM.CreateCrossDsoCfiTypeId(MD);
2852 if (CGM.getCodeGenOpts().SanitizeCfiCrossDso && CrossDsoTypeId) {
2853 EmitCfiSlowPathCheck(M, TypeTest, CrossDsoTypeId, VTable, StaticData);
2854 return;
2857 if (CGM.getCodeGenOpts().SanitizeTrap.has(M)) {
2858 EmitTrapCheck(TypeTest, SanitizerHandler::CFICheckFail);
2859 return;
2862 llvm::Value *AllVtables = llvm::MetadataAsValue::get(
2863 CGM.getLLVMContext(),
2864 llvm::MDString::get(CGM.getLLVMContext(), "all-vtables"));
2865 llvm::Value *ValidVtable = Builder.CreateCall(
2866 CGM.getIntrinsic(llvm::Intrinsic::type_test), {VTable, AllVtables});
2867 EmitCheck(std::make_pair(TypeTest, M), SanitizerHandler::CFICheckFail,
2868 StaticData, {VTable, ValidVtable});
2871 bool CodeGenFunction::ShouldEmitVTableTypeCheckedLoad(const CXXRecordDecl *RD) {
2872 if (!CGM.getCodeGenOpts().WholeProgramVTables ||
2873 !CGM.HasHiddenLTOVisibility(RD))
2874 return false;
2876 if (CGM.getCodeGenOpts().VirtualFunctionElimination)
2877 return true;
2879 if (!SanOpts.has(SanitizerKind::CFIVCall) ||
2880 !CGM.getCodeGenOpts().SanitizeTrap.has(SanitizerKind::CFIVCall))
2881 return false;
2883 std::string TypeName = RD->getQualifiedNameAsString();
2884 return !getContext().getNoSanitizeList().containsType(SanitizerKind::CFIVCall,
2885 TypeName);
2888 llvm::Value *CodeGenFunction::EmitVTableTypeCheckedLoad(
2889 const CXXRecordDecl *RD, llvm::Value *VTable, llvm::Type *VTableTy,
2890 uint64_t VTableByteOffset) {
2891 SanitizerScope SanScope(this);
2893 EmitSanitizerStatReport(llvm::SanStat_CFI_VCall);
2895 llvm::Metadata *MD =
2896 CGM.CreateMetadataIdentifierForType(QualType(RD->getTypeForDecl(), 0));
2897 llvm::Value *TypeId = llvm::MetadataAsValue::get(CGM.getLLVMContext(), MD);
2899 llvm::Value *CheckedLoad = Builder.CreateCall(
2900 CGM.getIntrinsic(llvm::Intrinsic::type_checked_load),
2901 {VTable, llvm::ConstantInt::get(Int32Ty, VTableByteOffset), TypeId});
2902 llvm::Value *CheckResult = Builder.CreateExtractValue(CheckedLoad, 1);
2904 std::string TypeName = RD->getQualifiedNameAsString();
2905 if (SanOpts.has(SanitizerKind::CFIVCall) &&
2906 !getContext().getNoSanitizeList().containsType(SanitizerKind::CFIVCall,
2907 TypeName)) {
2908 EmitCheck(std::make_pair(CheckResult, SanitizerKind::CFIVCall),
2909 SanitizerHandler::CFICheckFail, {}, {});
2912 return Builder.CreateBitCast(Builder.CreateExtractValue(CheckedLoad, 0),
2913 VTableTy);
2916 void CodeGenFunction::EmitForwardingCallToLambda(
2917 const CXXMethodDecl *callOperator, CallArgList &callArgs,
2918 const CGFunctionInfo *calleeFnInfo, llvm::Constant *calleePtr) {
2919 // Get the address of the call operator.
2920 if (!calleeFnInfo)
2921 calleeFnInfo = &CGM.getTypes().arrangeCXXMethodDeclaration(callOperator);
2923 if (!calleePtr)
2924 calleePtr =
2925 CGM.GetAddrOfFunction(GlobalDecl(callOperator),
2926 CGM.getTypes().GetFunctionType(*calleeFnInfo));
2928 // Prepare the return slot.
2929 const FunctionProtoType *FPT =
2930 callOperator->getType()->castAs<FunctionProtoType>();
2931 QualType resultType = FPT->getReturnType();
2932 ReturnValueSlot returnSlot;
2933 if (!resultType->isVoidType() &&
2934 calleeFnInfo->getReturnInfo().getKind() == ABIArgInfo::Indirect &&
2935 !hasScalarEvaluationKind(calleeFnInfo->getReturnType()))
2936 returnSlot =
2937 ReturnValueSlot(ReturnValue, resultType.isVolatileQualified(),
2938 /*IsUnused=*/false, /*IsExternallyDestructed=*/true);
2940 // We don't need to separately arrange the call arguments because
2941 // the call can't be variadic anyway --- it's impossible to forward
2942 // variadic arguments.
2944 // Now emit our call.
2945 auto callee = CGCallee::forDirect(calleePtr, GlobalDecl(callOperator));
2946 RValue RV = EmitCall(*calleeFnInfo, callee, returnSlot, callArgs);
2948 // If necessary, copy the returned value into the slot.
2949 if (!resultType->isVoidType() && returnSlot.isNull()) {
2950 if (getLangOpts().ObjCAutoRefCount && resultType->isObjCRetainableType()) {
2951 RV = RValue::get(EmitARCRetainAutoreleasedReturnValue(RV.getScalarVal()));
2953 EmitReturnOfRValue(RV, resultType);
2954 } else
2955 EmitBranchThroughCleanup(ReturnBlock);
2958 void CodeGenFunction::EmitLambdaBlockInvokeBody() {
2959 const BlockDecl *BD = BlockInfo->getBlockDecl();
2960 const VarDecl *variable = BD->capture_begin()->getVariable();
2961 const CXXRecordDecl *Lambda = variable->getType()->getAsCXXRecordDecl();
2962 const CXXMethodDecl *CallOp = Lambda->getLambdaCallOperator();
2964 if (CallOp->isVariadic()) {
2965 // FIXME: Making this work correctly is nasty because it requires either
2966 // cloning the body of the call operator or making the call operator
2967 // forward.
2968 CGM.ErrorUnsupported(CurCodeDecl, "lambda conversion to variadic function");
2969 return;
2972 // Start building arguments for forwarding call
2973 CallArgList CallArgs;
2975 QualType ThisType = getContext().getPointerType(getContext().getRecordType(Lambda));
2976 Address ThisPtr = GetAddrOfBlockDecl(variable);
2977 CallArgs.add(RValue::get(ThisPtr.getPointer()), ThisType);
2979 // Add the rest of the parameters.
2980 for (auto *param : BD->parameters())
2981 EmitDelegateCallArg(CallArgs, param, param->getBeginLoc());
2983 assert(!Lambda->isGenericLambda() &&
2984 "generic lambda interconversion to block not implemented");
2985 EmitForwardingCallToLambda(CallOp, CallArgs);
2988 void CodeGenFunction::EmitLambdaStaticInvokeBody(const CXXMethodDecl *MD) {
2989 if (MD->isVariadic()) {
2990 // FIXME: Making this work correctly is nasty because it requires either
2991 // cloning the body of the call operator or making the call operator
2992 // forward.
2993 CGM.ErrorUnsupported(MD, "lambda conversion to variadic function");
2994 return;
2997 const CXXRecordDecl *Lambda = MD->getParent();
2999 // Start building arguments for forwarding call
3000 CallArgList CallArgs;
3002 QualType LambdaType = getContext().getRecordType(Lambda);
3003 QualType ThisType = getContext().getPointerType(LambdaType);
3004 Address ThisPtr = CreateMemTemp(LambdaType, "unused.capture");
3005 CallArgs.add(RValue::get(ThisPtr.getPointer()), ThisType);
3007 EmitLambdaDelegatingInvokeBody(MD, CallArgs);
3010 void CodeGenFunction::EmitLambdaDelegatingInvokeBody(const CXXMethodDecl *MD,
3011 CallArgList &CallArgs) {
3012 // Add the rest of the forwarded parameters.
3013 for (auto *Param : MD->parameters())
3014 EmitDelegateCallArg(CallArgs, Param, Param->getBeginLoc());
3016 const CXXRecordDecl *Lambda = MD->getParent();
3017 const CXXMethodDecl *CallOp = Lambda->getLambdaCallOperator();
3018 // For a generic lambda, find the corresponding call operator specialization
3019 // to which the call to the static-invoker shall be forwarded.
3020 if (Lambda->isGenericLambda()) {
3021 assert(MD->isFunctionTemplateSpecialization());
3022 const TemplateArgumentList *TAL = MD->getTemplateSpecializationArgs();
3023 FunctionTemplateDecl *CallOpTemplate = CallOp->getDescribedFunctionTemplate();
3024 void *InsertPos = nullptr;
3025 FunctionDecl *CorrespondingCallOpSpecialization =
3026 CallOpTemplate->findSpecialization(TAL->asArray(), InsertPos);
3027 assert(CorrespondingCallOpSpecialization);
3028 CallOp = cast<CXXMethodDecl>(CorrespondingCallOpSpecialization);
3031 // Special lambda forwarding when there are inalloca parameters.
3032 if (hasInAllocaArg(MD)) {
3033 const CGFunctionInfo *ImplFnInfo = nullptr;
3034 llvm::Function *ImplFn = nullptr;
3035 EmitLambdaInAllocaImplFn(CallOp, &ImplFnInfo, &ImplFn);
3037 EmitForwardingCallToLambda(CallOp, CallArgs, ImplFnInfo, ImplFn);
3038 return;
3041 EmitForwardingCallToLambda(CallOp, CallArgs);
3044 void CodeGenFunction::EmitLambdaInAllocaCallOpBody(const CXXMethodDecl *MD) {
3045 if (MD->isVariadic()) {
3046 // FIXME: Making this work correctly is nasty because it requires either
3047 // cloning the body of the call operator or making the call operator forward.
3048 CGM.ErrorUnsupported(MD, "lambda conversion to variadic function");
3049 return;
3052 // Forward %this argument.
3053 CallArgList CallArgs;
3054 QualType LambdaType = getContext().getRecordType(MD->getParent());
3055 QualType ThisType = getContext().getPointerType(LambdaType);
3056 llvm::Value *ThisArg = CurFn->getArg(0);
3057 CallArgs.add(RValue::get(ThisArg), ThisType);
3059 EmitLambdaDelegatingInvokeBody(MD, CallArgs);
3062 void CodeGenFunction::EmitLambdaInAllocaImplFn(
3063 const CXXMethodDecl *CallOp, const CGFunctionInfo **ImplFnInfo,
3064 llvm::Function **ImplFn) {
3065 const CGFunctionInfo &FnInfo =
3066 CGM.getTypes().arrangeCXXMethodDeclaration(CallOp);
3067 llvm::Function *CallOpFn =
3068 cast<llvm::Function>(CGM.GetAddrOfFunction(GlobalDecl(CallOp)));
3070 // Emit function containing the original call op body. __invoke will delegate
3071 // to this function.
3072 SmallVector<CanQualType, 4> ArgTypes;
3073 for (auto I = FnInfo.arg_begin(); I != FnInfo.arg_end(); ++I)
3074 ArgTypes.push_back(I->type);
3075 *ImplFnInfo = &CGM.getTypes().arrangeLLVMFunctionInfo(
3076 FnInfo.getReturnType(), FnInfoOpts::IsDelegateCall, ArgTypes,
3077 FnInfo.getExtInfo(), {}, FnInfo.getRequiredArgs());
3079 // Create mangled name as if this was a method named __impl. If for some
3080 // reason the name doesn't look as expected then just tack __impl to the
3081 // front.
3082 // TODO: Use the name mangler to produce the right name instead of using
3083 // string replacement.
3084 StringRef CallOpName = CallOpFn->getName();
3085 std::string ImplName;
3086 if (size_t Pos = CallOpName.find_first_of("<lambda"))
3087 ImplName = ("?__impl@" + CallOpName.drop_front(Pos)).str();
3088 else
3089 ImplName = ("__impl" + CallOpName).str();
3091 llvm::Function *Fn = CallOpFn->getParent()->getFunction(ImplName);
3092 if (!Fn) {
3093 Fn = llvm::Function::Create(CGM.getTypes().GetFunctionType(**ImplFnInfo),
3094 llvm::GlobalValue::InternalLinkage, ImplName,
3095 CGM.getModule());
3096 CGM.SetInternalFunctionAttributes(CallOp, Fn, **ImplFnInfo);
3098 const GlobalDecl &GD = GlobalDecl(CallOp);
3099 const auto *D = cast<FunctionDecl>(GD.getDecl());
3100 CodeGenFunction(CGM).GenerateCode(GD, Fn, **ImplFnInfo);
3101 CGM.SetLLVMFunctionAttributesForDefinition(D, Fn);
3103 *ImplFn = Fn;