[lld][WebAssembly] Add `--table-base` setting
[llvm-project.git] / clang / lib / CodeGen / CGExprComplex.cpp
blob2dd1a991ec971999cded3eeead7ba6961ed5f2de
1 //===--- CGExprComplex.cpp - Emit LLVM Code for Complex Exprs -------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This contains code to emit Expr nodes with complex types as LLVM code.
11 //===----------------------------------------------------------------------===//
13 #include "CGOpenMPRuntime.h"
14 #include "CodeGenFunction.h"
15 #include "CodeGenModule.h"
16 #include "ConstantEmitter.h"
17 #include "clang/AST/StmtVisitor.h"
18 #include "llvm/ADT/STLExtras.h"
19 #include "llvm/IR/Constants.h"
20 #include "llvm/IR/Instructions.h"
21 #include "llvm/IR/MDBuilder.h"
22 #include "llvm/IR/Metadata.h"
23 #include <algorithm>
24 using namespace clang;
25 using namespace CodeGen;
27 //===----------------------------------------------------------------------===//
28 // Complex Expression Emitter
29 //===----------------------------------------------------------------------===//
31 typedef CodeGenFunction::ComplexPairTy ComplexPairTy;
33 /// Return the complex type that we are meant to emit.
34 static const ComplexType *getComplexType(QualType type) {
35 type = type.getCanonicalType();
36 if (const ComplexType *comp = dyn_cast<ComplexType>(type)) {
37 return comp;
38 } else {
39 return cast<ComplexType>(cast<AtomicType>(type)->getValueType());
43 namespace {
44 class ComplexExprEmitter
45 : public StmtVisitor<ComplexExprEmitter, ComplexPairTy> {
46 CodeGenFunction &CGF;
47 CGBuilderTy &Builder;
48 bool IgnoreReal;
49 bool IgnoreImag;
50 public:
51 ComplexExprEmitter(CodeGenFunction &cgf, bool ir=false, bool ii=false)
52 : CGF(cgf), Builder(CGF.Builder), IgnoreReal(ir), IgnoreImag(ii) {
56 //===--------------------------------------------------------------------===//
57 // Utilities
58 //===--------------------------------------------------------------------===//
60 bool TestAndClearIgnoreReal() {
61 bool I = IgnoreReal;
62 IgnoreReal = false;
63 return I;
65 bool TestAndClearIgnoreImag() {
66 bool I = IgnoreImag;
67 IgnoreImag = false;
68 return I;
71 /// EmitLoadOfLValue - Given an expression with complex type that represents a
72 /// value l-value, this method emits the address of the l-value, then loads
73 /// and returns the result.
74 ComplexPairTy EmitLoadOfLValue(const Expr *E) {
75 return EmitLoadOfLValue(CGF.EmitLValue(E), E->getExprLoc());
78 ComplexPairTy EmitLoadOfLValue(LValue LV, SourceLocation Loc);
80 /// EmitStoreOfComplex - Store the specified real/imag parts into the
81 /// specified value pointer.
82 void EmitStoreOfComplex(ComplexPairTy Val, LValue LV, bool isInit);
84 /// Emit a cast from complex value Val to DestType.
85 ComplexPairTy EmitComplexToComplexCast(ComplexPairTy Val, QualType SrcType,
86 QualType DestType, SourceLocation Loc);
87 /// Emit a cast from scalar value Val to DestType.
88 ComplexPairTy EmitScalarToComplexCast(llvm::Value *Val, QualType SrcType,
89 QualType DestType, SourceLocation Loc);
91 //===--------------------------------------------------------------------===//
92 // Visitor Methods
93 //===--------------------------------------------------------------------===//
95 ComplexPairTy Visit(Expr *E) {
96 ApplyDebugLocation DL(CGF, E);
97 return StmtVisitor<ComplexExprEmitter, ComplexPairTy>::Visit(E);
100 ComplexPairTy VisitStmt(Stmt *S) {
101 S->dump(llvm::errs(), CGF.getContext());
102 llvm_unreachable("Stmt can't have complex result type!");
104 ComplexPairTy VisitExpr(Expr *S);
105 ComplexPairTy VisitConstantExpr(ConstantExpr *E) {
106 if (llvm::Constant *Result = ConstantEmitter(CGF).tryEmitConstantExpr(E))
107 return ComplexPairTy(Result->getAggregateElement(0U),
108 Result->getAggregateElement(1U));
109 return Visit(E->getSubExpr());
111 ComplexPairTy VisitParenExpr(ParenExpr *PE) { return Visit(PE->getSubExpr());}
112 ComplexPairTy VisitGenericSelectionExpr(GenericSelectionExpr *GE) {
113 return Visit(GE->getResultExpr());
115 ComplexPairTy VisitImaginaryLiteral(const ImaginaryLiteral *IL);
116 ComplexPairTy
117 VisitSubstNonTypeTemplateParmExpr(SubstNonTypeTemplateParmExpr *PE) {
118 return Visit(PE->getReplacement());
120 ComplexPairTy VisitCoawaitExpr(CoawaitExpr *S) {
121 return CGF.EmitCoawaitExpr(*S).getComplexVal();
123 ComplexPairTy VisitCoyieldExpr(CoyieldExpr *S) {
124 return CGF.EmitCoyieldExpr(*S).getComplexVal();
126 ComplexPairTy VisitUnaryCoawait(const UnaryOperator *E) {
127 return Visit(E->getSubExpr());
130 ComplexPairTy emitConstant(const CodeGenFunction::ConstantEmission &Constant,
131 Expr *E) {
132 assert(Constant && "not a constant");
133 if (Constant.isReference())
134 return EmitLoadOfLValue(Constant.getReferenceLValue(CGF, E),
135 E->getExprLoc());
137 llvm::Constant *pair = Constant.getValue();
138 return ComplexPairTy(pair->getAggregateElement(0U),
139 pair->getAggregateElement(1U));
142 // l-values.
143 ComplexPairTy VisitDeclRefExpr(DeclRefExpr *E) {
144 if (CodeGenFunction::ConstantEmission Constant = CGF.tryEmitAsConstant(E))
145 return emitConstant(Constant, E);
146 return EmitLoadOfLValue(E);
148 ComplexPairTy VisitObjCIvarRefExpr(ObjCIvarRefExpr *E) {
149 return EmitLoadOfLValue(E);
151 ComplexPairTy VisitObjCMessageExpr(ObjCMessageExpr *E) {
152 return CGF.EmitObjCMessageExpr(E).getComplexVal();
154 ComplexPairTy VisitArraySubscriptExpr(Expr *E) { return EmitLoadOfLValue(E); }
155 ComplexPairTy VisitMemberExpr(MemberExpr *ME) {
156 if (CodeGenFunction::ConstantEmission Constant =
157 CGF.tryEmitAsConstant(ME)) {
158 CGF.EmitIgnoredExpr(ME->getBase());
159 return emitConstant(Constant, ME);
161 return EmitLoadOfLValue(ME);
163 ComplexPairTy VisitOpaqueValueExpr(OpaqueValueExpr *E) {
164 if (E->isGLValue())
165 return EmitLoadOfLValue(CGF.getOrCreateOpaqueLValueMapping(E),
166 E->getExprLoc());
167 return CGF.getOrCreateOpaqueRValueMapping(E).getComplexVal();
170 ComplexPairTy VisitPseudoObjectExpr(PseudoObjectExpr *E) {
171 return CGF.EmitPseudoObjectRValue(E).getComplexVal();
174 // FIXME: CompoundLiteralExpr
176 ComplexPairTy EmitCast(CastKind CK, Expr *Op, QualType DestTy);
177 ComplexPairTy VisitImplicitCastExpr(ImplicitCastExpr *E) {
178 // Unlike for scalars, we don't have to worry about function->ptr demotion
179 // here.
180 return EmitCast(E->getCastKind(), E->getSubExpr(), E->getType());
182 ComplexPairTy VisitCastExpr(CastExpr *E) {
183 if (const auto *ECE = dyn_cast<ExplicitCastExpr>(E))
184 CGF.CGM.EmitExplicitCastExprType(ECE, &CGF);
185 return EmitCast(E->getCastKind(), E->getSubExpr(), E->getType());
187 ComplexPairTy VisitCallExpr(const CallExpr *E);
188 ComplexPairTy VisitStmtExpr(const StmtExpr *E);
190 // Operators.
191 ComplexPairTy VisitPrePostIncDec(const UnaryOperator *E,
192 bool isInc, bool isPre) {
193 LValue LV = CGF.EmitLValue(E->getSubExpr());
194 return CGF.EmitComplexPrePostIncDec(E, LV, isInc, isPre);
196 ComplexPairTy VisitUnaryPostDec(const UnaryOperator *E) {
197 return VisitPrePostIncDec(E, false, false);
199 ComplexPairTy VisitUnaryPostInc(const UnaryOperator *E) {
200 return VisitPrePostIncDec(E, true, false);
202 ComplexPairTy VisitUnaryPreDec(const UnaryOperator *E) {
203 return VisitPrePostIncDec(E, false, true);
205 ComplexPairTy VisitUnaryPreInc(const UnaryOperator *E) {
206 return VisitPrePostIncDec(E, true, true);
208 ComplexPairTy VisitUnaryDeref(const Expr *E) { return EmitLoadOfLValue(E); }
210 ComplexPairTy VisitUnaryPlus(const UnaryOperator *E,
211 QualType PromotionType = QualType());
212 ComplexPairTy VisitPlus(const UnaryOperator *E, QualType PromotionType);
213 ComplexPairTy VisitUnaryMinus(const UnaryOperator *E,
214 QualType PromotionType = QualType());
215 ComplexPairTy VisitMinus(const UnaryOperator *E, QualType PromotionType);
216 ComplexPairTy VisitUnaryNot (const UnaryOperator *E);
217 // LNot,Real,Imag never return complex.
218 ComplexPairTy VisitUnaryExtension(const UnaryOperator *E) {
219 return Visit(E->getSubExpr());
221 ComplexPairTy VisitCXXDefaultArgExpr(CXXDefaultArgExpr *DAE) {
222 CodeGenFunction::CXXDefaultArgExprScope Scope(CGF, DAE);
223 return Visit(DAE->getExpr());
225 ComplexPairTy VisitCXXDefaultInitExpr(CXXDefaultInitExpr *DIE) {
226 CodeGenFunction::CXXDefaultInitExprScope Scope(CGF, DIE);
227 return Visit(DIE->getExpr());
229 ComplexPairTy VisitExprWithCleanups(ExprWithCleanups *E) {
230 CodeGenFunction::RunCleanupsScope Scope(CGF);
231 ComplexPairTy Vals = Visit(E->getSubExpr());
232 // Defend against dominance problems caused by jumps out of expression
233 // evaluation through the shared cleanup block.
234 Scope.ForceCleanup({&Vals.first, &Vals.second});
235 return Vals;
237 ComplexPairTy VisitCXXScalarValueInitExpr(CXXScalarValueInitExpr *E) {
238 assert(E->getType()->isAnyComplexType() && "Expected complex type!");
239 QualType Elem = E->getType()->castAs<ComplexType>()->getElementType();
240 llvm::Constant *Null = llvm::Constant::getNullValue(CGF.ConvertType(Elem));
241 return ComplexPairTy(Null, Null);
243 ComplexPairTy VisitImplicitValueInitExpr(ImplicitValueInitExpr *E) {
244 assert(E->getType()->isAnyComplexType() && "Expected complex type!");
245 QualType Elem = E->getType()->castAs<ComplexType>()->getElementType();
246 llvm::Constant *Null =
247 llvm::Constant::getNullValue(CGF.ConvertType(Elem));
248 return ComplexPairTy(Null, Null);
251 struct BinOpInfo {
252 ComplexPairTy LHS;
253 ComplexPairTy RHS;
254 QualType Ty; // Computation Type.
255 FPOptions FPFeatures;
258 BinOpInfo EmitBinOps(const BinaryOperator *E,
259 QualType PromotionTy = QualType());
260 ComplexPairTy EmitPromoted(const Expr *E, QualType PromotionTy);
261 ComplexPairTy EmitPromotedComplexOperand(const Expr *E, QualType PromotionTy);
262 LValue EmitCompoundAssignLValue(const CompoundAssignOperator *E,
263 ComplexPairTy (ComplexExprEmitter::*Func)
264 (const BinOpInfo &),
265 RValue &Val);
266 ComplexPairTy EmitCompoundAssign(const CompoundAssignOperator *E,
267 ComplexPairTy (ComplexExprEmitter::*Func)
268 (const BinOpInfo &));
270 ComplexPairTy EmitBinAdd(const BinOpInfo &Op);
271 ComplexPairTy EmitBinSub(const BinOpInfo &Op);
272 ComplexPairTy EmitBinMul(const BinOpInfo &Op);
273 ComplexPairTy EmitBinDiv(const BinOpInfo &Op);
275 ComplexPairTy EmitComplexBinOpLibCall(StringRef LibCallName,
276 const BinOpInfo &Op);
278 QualType getPromotionType(QualType Ty) {
279 if (auto *CT = Ty->getAs<ComplexType>()) {
280 QualType ElementType = CT->getElementType();
281 if (ElementType.UseExcessPrecision(CGF.getContext()))
282 return CGF.getContext().getComplexType(CGF.getContext().FloatTy);
284 if (Ty.UseExcessPrecision(CGF.getContext()))
285 return CGF.getContext().FloatTy;
286 return QualType();
289 #define HANDLEBINOP(OP) \
290 ComplexPairTy VisitBin##OP(const BinaryOperator *E) { \
291 QualType promotionTy = getPromotionType(E->getType()); \
292 ComplexPairTy result = EmitBin##OP(EmitBinOps(E, promotionTy)); \
293 if (!promotionTy.isNull()) \
294 result = \
295 CGF.EmitUnPromotedValue(result, E->getType()); \
296 return result; \
299 HANDLEBINOP(Mul)
300 HANDLEBINOP(Div)
301 HANDLEBINOP(Add)
302 HANDLEBINOP(Sub)
303 #undef HANDLEBINOP
305 ComplexPairTy VisitCXXRewrittenBinaryOperator(CXXRewrittenBinaryOperator *E) {
306 return Visit(E->getSemanticForm());
309 // Compound assignments.
310 ComplexPairTy VisitBinAddAssign(const CompoundAssignOperator *E) {
311 return EmitCompoundAssign(E, &ComplexExprEmitter::EmitBinAdd);
313 ComplexPairTy VisitBinSubAssign(const CompoundAssignOperator *E) {
314 return EmitCompoundAssign(E, &ComplexExprEmitter::EmitBinSub);
316 ComplexPairTy VisitBinMulAssign(const CompoundAssignOperator *E) {
317 return EmitCompoundAssign(E, &ComplexExprEmitter::EmitBinMul);
319 ComplexPairTy VisitBinDivAssign(const CompoundAssignOperator *E) {
320 return EmitCompoundAssign(E, &ComplexExprEmitter::EmitBinDiv);
323 // GCC rejects rem/and/or/xor for integer complex.
324 // Logical and/or always return int, never complex.
326 // No comparisons produce a complex result.
328 LValue EmitBinAssignLValue(const BinaryOperator *E,
329 ComplexPairTy &Val);
330 ComplexPairTy VisitBinAssign (const BinaryOperator *E);
331 ComplexPairTy VisitBinComma (const BinaryOperator *E);
334 ComplexPairTy
335 VisitAbstractConditionalOperator(const AbstractConditionalOperator *CO);
336 ComplexPairTy VisitChooseExpr(ChooseExpr *CE);
338 ComplexPairTy VisitInitListExpr(InitListExpr *E);
340 ComplexPairTy VisitCompoundLiteralExpr(CompoundLiteralExpr *E) {
341 return EmitLoadOfLValue(E);
344 ComplexPairTy VisitVAArgExpr(VAArgExpr *E);
346 ComplexPairTy VisitAtomicExpr(AtomicExpr *E) {
347 return CGF.EmitAtomicExpr(E).getComplexVal();
350 } // end anonymous namespace.
352 //===----------------------------------------------------------------------===//
353 // Utilities
354 //===----------------------------------------------------------------------===//
356 Address CodeGenFunction::emitAddrOfRealComponent(Address addr,
357 QualType complexType) {
358 return Builder.CreateStructGEP(addr, 0, addr.getName() + ".realp");
361 Address CodeGenFunction::emitAddrOfImagComponent(Address addr,
362 QualType complexType) {
363 return Builder.CreateStructGEP(addr, 1, addr.getName() + ".imagp");
366 /// EmitLoadOfLValue - Given an RValue reference for a complex, emit code to
367 /// load the real and imaginary pieces, returning them as Real/Imag.
368 ComplexPairTy ComplexExprEmitter::EmitLoadOfLValue(LValue lvalue,
369 SourceLocation loc) {
370 assert(lvalue.isSimple() && "non-simple complex l-value?");
371 if (lvalue.getType()->isAtomicType())
372 return CGF.EmitAtomicLoad(lvalue, loc).getComplexVal();
374 Address SrcPtr = lvalue.getAddress(CGF);
375 bool isVolatile = lvalue.isVolatileQualified();
377 llvm::Value *Real = nullptr, *Imag = nullptr;
379 if (!IgnoreReal || isVolatile) {
380 Address RealP = CGF.emitAddrOfRealComponent(SrcPtr, lvalue.getType());
381 Real = Builder.CreateLoad(RealP, isVolatile, SrcPtr.getName() + ".real");
384 if (!IgnoreImag || isVolatile) {
385 Address ImagP = CGF.emitAddrOfImagComponent(SrcPtr, lvalue.getType());
386 Imag = Builder.CreateLoad(ImagP, isVolatile, SrcPtr.getName() + ".imag");
389 return ComplexPairTy(Real, Imag);
392 /// EmitStoreOfComplex - Store the specified real/imag parts into the
393 /// specified value pointer.
394 void ComplexExprEmitter::EmitStoreOfComplex(ComplexPairTy Val, LValue lvalue,
395 bool isInit) {
396 if (lvalue.getType()->isAtomicType() ||
397 (!isInit && CGF.LValueIsSuitableForInlineAtomic(lvalue)))
398 return CGF.EmitAtomicStore(RValue::getComplex(Val), lvalue, isInit);
400 Address Ptr = lvalue.getAddress(CGF);
401 Address RealPtr = CGF.emitAddrOfRealComponent(Ptr, lvalue.getType());
402 Address ImagPtr = CGF.emitAddrOfImagComponent(Ptr, lvalue.getType());
404 Builder.CreateStore(Val.first, RealPtr, lvalue.isVolatileQualified());
405 Builder.CreateStore(Val.second, ImagPtr, lvalue.isVolatileQualified());
410 //===----------------------------------------------------------------------===//
411 // Visitor Methods
412 //===----------------------------------------------------------------------===//
414 ComplexPairTy ComplexExprEmitter::VisitExpr(Expr *E) {
415 CGF.ErrorUnsupported(E, "complex expression");
416 llvm::Type *EltTy =
417 CGF.ConvertType(getComplexType(E->getType())->getElementType());
418 llvm::Value *U = llvm::UndefValue::get(EltTy);
419 return ComplexPairTy(U, U);
422 ComplexPairTy ComplexExprEmitter::
423 VisitImaginaryLiteral(const ImaginaryLiteral *IL) {
424 llvm::Value *Imag = CGF.EmitScalarExpr(IL->getSubExpr());
425 return ComplexPairTy(llvm::Constant::getNullValue(Imag->getType()), Imag);
429 ComplexPairTy ComplexExprEmitter::VisitCallExpr(const CallExpr *E) {
430 if (E->getCallReturnType(CGF.getContext())->isReferenceType())
431 return EmitLoadOfLValue(E);
433 return CGF.EmitCallExpr(E).getComplexVal();
436 ComplexPairTy ComplexExprEmitter::VisitStmtExpr(const StmtExpr *E) {
437 CodeGenFunction::StmtExprEvaluation eval(CGF);
438 Address RetAlloca = CGF.EmitCompoundStmt(*E->getSubStmt(), true);
439 assert(RetAlloca.isValid() && "Expected complex return value");
440 return EmitLoadOfLValue(CGF.MakeAddrLValue(RetAlloca, E->getType()),
441 E->getExprLoc());
444 /// Emit a cast from complex value Val to DestType.
445 ComplexPairTy ComplexExprEmitter::EmitComplexToComplexCast(ComplexPairTy Val,
446 QualType SrcType,
447 QualType DestType,
448 SourceLocation Loc) {
449 // Get the src/dest element type.
450 SrcType = SrcType->castAs<ComplexType>()->getElementType();
451 DestType = DestType->castAs<ComplexType>()->getElementType();
453 // C99 6.3.1.6: When a value of complex type is converted to another
454 // complex type, both the real and imaginary parts follow the conversion
455 // rules for the corresponding real types.
456 if (Val.first)
457 Val.first = CGF.EmitScalarConversion(Val.first, SrcType, DestType, Loc);
458 if (Val.second)
459 Val.second = CGF.EmitScalarConversion(Val.second, SrcType, DestType, Loc);
460 return Val;
463 ComplexPairTy ComplexExprEmitter::EmitScalarToComplexCast(llvm::Value *Val,
464 QualType SrcType,
465 QualType DestType,
466 SourceLocation Loc) {
467 // Convert the input element to the element type of the complex.
468 DestType = DestType->castAs<ComplexType>()->getElementType();
469 Val = CGF.EmitScalarConversion(Val, SrcType, DestType, Loc);
471 // Return (realval, 0).
472 return ComplexPairTy(Val, llvm::Constant::getNullValue(Val->getType()));
475 ComplexPairTy ComplexExprEmitter::EmitCast(CastKind CK, Expr *Op,
476 QualType DestTy) {
477 switch (CK) {
478 case CK_Dependent: llvm_unreachable("dependent cast kind in IR gen!");
480 // Atomic to non-atomic casts may be more than a no-op for some platforms and
481 // for some types.
482 case CK_AtomicToNonAtomic:
483 case CK_NonAtomicToAtomic:
484 case CK_NoOp:
485 case CK_LValueToRValue:
486 case CK_UserDefinedConversion:
487 return Visit(Op);
489 case CK_LValueBitCast: {
490 LValue origLV = CGF.EmitLValue(Op);
491 Address V = origLV.getAddress(CGF).withElementType(CGF.ConvertType(DestTy));
492 return EmitLoadOfLValue(CGF.MakeAddrLValue(V, DestTy), Op->getExprLoc());
495 case CK_LValueToRValueBitCast: {
496 LValue SourceLVal = CGF.EmitLValue(Op);
497 Address Addr = SourceLVal.getAddress(CGF).withElementType(
498 CGF.ConvertTypeForMem(DestTy));
499 LValue DestLV = CGF.MakeAddrLValue(Addr, DestTy);
500 DestLV.setTBAAInfo(TBAAAccessInfo::getMayAliasInfo());
501 return EmitLoadOfLValue(DestLV, Op->getExprLoc());
504 case CK_BitCast:
505 case CK_BaseToDerived:
506 case CK_DerivedToBase:
507 case CK_UncheckedDerivedToBase:
508 case CK_Dynamic:
509 case CK_ToUnion:
510 case CK_ArrayToPointerDecay:
511 case CK_FunctionToPointerDecay:
512 case CK_NullToPointer:
513 case CK_NullToMemberPointer:
514 case CK_BaseToDerivedMemberPointer:
515 case CK_DerivedToBaseMemberPointer:
516 case CK_MemberPointerToBoolean:
517 case CK_ReinterpretMemberPointer:
518 case CK_ConstructorConversion:
519 case CK_IntegralToPointer:
520 case CK_PointerToIntegral:
521 case CK_PointerToBoolean:
522 case CK_ToVoid:
523 case CK_VectorSplat:
524 case CK_IntegralCast:
525 case CK_BooleanToSignedIntegral:
526 case CK_IntegralToBoolean:
527 case CK_IntegralToFloating:
528 case CK_FloatingToIntegral:
529 case CK_FloatingToBoolean:
530 case CK_FloatingCast:
531 case CK_CPointerToObjCPointerCast:
532 case CK_BlockPointerToObjCPointerCast:
533 case CK_AnyPointerToBlockPointerCast:
534 case CK_ObjCObjectLValueCast:
535 case CK_FloatingComplexToReal:
536 case CK_FloatingComplexToBoolean:
537 case CK_IntegralComplexToReal:
538 case CK_IntegralComplexToBoolean:
539 case CK_ARCProduceObject:
540 case CK_ARCConsumeObject:
541 case CK_ARCReclaimReturnedObject:
542 case CK_ARCExtendBlockObject:
543 case CK_CopyAndAutoreleaseBlockObject:
544 case CK_BuiltinFnToFnPtr:
545 case CK_ZeroToOCLOpaqueType:
546 case CK_AddressSpaceConversion:
547 case CK_IntToOCLSampler:
548 case CK_FloatingToFixedPoint:
549 case CK_FixedPointToFloating:
550 case CK_FixedPointCast:
551 case CK_FixedPointToBoolean:
552 case CK_FixedPointToIntegral:
553 case CK_IntegralToFixedPoint:
554 case CK_MatrixCast:
555 llvm_unreachable("invalid cast kind for complex value");
557 case CK_FloatingRealToComplex:
558 case CK_IntegralRealToComplex: {
559 CodeGenFunction::CGFPOptionsRAII FPOptsRAII(CGF, Op);
560 return EmitScalarToComplexCast(CGF.EmitScalarExpr(Op), Op->getType(),
561 DestTy, Op->getExprLoc());
564 case CK_FloatingComplexCast:
565 case CK_FloatingComplexToIntegralComplex:
566 case CK_IntegralComplexCast:
567 case CK_IntegralComplexToFloatingComplex: {
568 CodeGenFunction::CGFPOptionsRAII FPOptsRAII(CGF, Op);
569 return EmitComplexToComplexCast(Visit(Op), Op->getType(), DestTy,
570 Op->getExprLoc());
574 llvm_unreachable("unknown cast resulting in complex value");
577 ComplexPairTy ComplexExprEmitter::VisitUnaryPlus(const UnaryOperator *E,
578 QualType PromotionType) {
579 QualType promotionTy = PromotionType.isNull()
580 ? getPromotionType(E->getSubExpr()->getType())
581 : PromotionType;
582 ComplexPairTy result = VisitPlus(E, promotionTy);
583 if (!promotionTy.isNull())
584 return CGF.EmitUnPromotedValue(result, E->getSubExpr()->getType());
585 return result;
588 ComplexPairTy ComplexExprEmitter::VisitPlus(const UnaryOperator *E,
589 QualType PromotionType) {
590 TestAndClearIgnoreReal();
591 TestAndClearIgnoreImag();
592 if (!PromotionType.isNull())
593 return CGF.EmitPromotedComplexExpr(E->getSubExpr(), PromotionType);
594 return Visit(E->getSubExpr());
597 ComplexPairTy ComplexExprEmitter::VisitUnaryMinus(const UnaryOperator *E,
598 QualType PromotionType) {
599 QualType promotionTy = PromotionType.isNull()
600 ? getPromotionType(E->getSubExpr()->getType())
601 : PromotionType;
602 ComplexPairTy result = VisitMinus(E, promotionTy);
603 if (!promotionTy.isNull())
604 return CGF.EmitUnPromotedValue(result, E->getSubExpr()->getType());
605 return result;
607 ComplexPairTy ComplexExprEmitter::VisitMinus(const UnaryOperator *E,
608 QualType PromotionType) {
609 TestAndClearIgnoreReal();
610 TestAndClearIgnoreImag();
611 ComplexPairTy Op;
612 if (!PromotionType.isNull())
613 Op = CGF.EmitPromotedComplexExpr(E->getSubExpr(), PromotionType);
614 else
615 Op = Visit(E->getSubExpr());
617 llvm::Value *ResR, *ResI;
618 if (Op.first->getType()->isFloatingPointTy()) {
619 ResR = Builder.CreateFNeg(Op.first, "neg.r");
620 ResI = Builder.CreateFNeg(Op.second, "neg.i");
621 } else {
622 ResR = Builder.CreateNeg(Op.first, "neg.r");
623 ResI = Builder.CreateNeg(Op.second, "neg.i");
625 return ComplexPairTy(ResR, ResI);
628 ComplexPairTy ComplexExprEmitter::VisitUnaryNot(const UnaryOperator *E) {
629 TestAndClearIgnoreReal();
630 TestAndClearIgnoreImag();
631 // ~(a+ib) = a + i*-b
632 ComplexPairTy Op = Visit(E->getSubExpr());
633 llvm::Value *ResI;
634 if (Op.second->getType()->isFloatingPointTy())
635 ResI = Builder.CreateFNeg(Op.second, "conj.i");
636 else
637 ResI = Builder.CreateNeg(Op.second, "conj.i");
639 return ComplexPairTy(Op.first, ResI);
642 ComplexPairTy ComplexExprEmitter::EmitBinAdd(const BinOpInfo &Op) {
643 llvm::Value *ResR, *ResI;
645 if (Op.LHS.first->getType()->isFloatingPointTy()) {
646 CodeGenFunction::CGFPOptionsRAII FPOptsRAII(CGF, Op.FPFeatures);
647 ResR = Builder.CreateFAdd(Op.LHS.first, Op.RHS.first, "add.r");
648 if (Op.LHS.second && Op.RHS.second)
649 ResI = Builder.CreateFAdd(Op.LHS.second, Op.RHS.second, "add.i");
650 else
651 ResI = Op.LHS.second ? Op.LHS.second : Op.RHS.second;
652 assert(ResI && "Only one operand may be real!");
653 } else {
654 ResR = Builder.CreateAdd(Op.LHS.first, Op.RHS.first, "add.r");
655 assert(Op.LHS.second && Op.RHS.second &&
656 "Both operands of integer complex operators must be complex!");
657 ResI = Builder.CreateAdd(Op.LHS.second, Op.RHS.second, "add.i");
659 return ComplexPairTy(ResR, ResI);
662 ComplexPairTy ComplexExprEmitter::EmitBinSub(const BinOpInfo &Op) {
663 llvm::Value *ResR, *ResI;
664 if (Op.LHS.first->getType()->isFloatingPointTy()) {
665 CodeGenFunction::CGFPOptionsRAII FPOptsRAII(CGF, Op.FPFeatures);
666 ResR = Builder.CreateFSub(Op.LHS.first, Op.RHS.first, "sub.r");
667 if (Op.LHS.second && Op.RHS.second)
668 ResI = Builder.CreateFSub(Op.LHS.second, Op.RHS.second, "sub.i");
669 else
670 ResI = Op.LHS.second ? Op.LHS.second
671 : Builder.CreateFNeg(Op.RHS.second, "sub.i");
672 assert(ResI && "Only one operand may be real!");
673 } else {
674 ResR = Builder.CreateSub(Op.LHS.first, Op.RHS.first, "sub.r");
675 assert(Op.LHS.second && Op.RHS.second &&
676 "Both operands of integer complex operators must be complex!");
677 ResI = Builder.CreateSub(Op.LHS.second, Op.RHS.second, "sub.i");
679 return ComplexPairTy(ResR, ResI);
682 /// Emit a libcall for a binary operation on complex types.
683 ComplexPairTy ComplexExprEmitter::EmitComplexBinOpLibCall(StringRef LibCallName,
684 const BinOpInfo &Op) {
685 CallArgList Args;
686 Args.add(RValue::get(Op.LHS.first),
687 Op.Ty->castAs<ComplexType>()->getElementType());
688 Args.add(RValue::get(Op.LHS.second),
689 Op.Ty->castAs<ComplexType>()->getElementType());
690 Args.add(RValue::get(Op.RHS.first),
691 Op.Ty->castAs<ComplexType>()->getElementType());
692 Args.add(RValue::get(Op.RHS.second),
693 Op.Ty->castAs<ComplexType>()->getElementType());
695 // We *must* use the full CG function call building logic here because the
696 // complex type has special ABI handling. We also should not forget about
697 // special calling convention which may be used for compiler builtins.
699 // We create a function qualified type to state that this call does not have
700 // any exceptions.
701 FunctionProtoType::ExtProtoInfo EPI;
702 EPI = EPI.withExceptionSpec(
703 FunctionProtoType::ExceptionSpecInfo(EST_BasicNoexcept));
704 SmallVector<QualType, 4> ArgsQTys(
705 4, Op.Ty->castAs<ComplexType>()->getElementType());
706 QualType FQTy = CGF.getContext().getFunctionType(Op.Ty, ArgsQTys, EPI);
707 const CGFunctionInfo &FuncInfo = CGF.CGM.getTypes().arrangeFreeFunctionCall(
708 Args, cast<FunctionType>(FQTy.getTypePtr()), false);
710 llvm::FunctionType *FTy = CGF.CGM.getTypes().GetFunctionType(FuncInfo);
711 llvm::FunctionCallee Func = CGF.CGM.CreateRuntimeFunction(
712 FTy, LibCallName, llvm::AttributeList(), true);
713 CGCallee Callee = CGCallee::forDirect(Func, FQTy->getAs<FunctionProtoType>());
715 llvm::CallBase *Call;
716 RValue Res = CGF.EmitCall(FuncInfo, Callee, ReturnValueSlot(), Args, &Call);
717 Call->setCallingConv(CGF.CGM.getRuntimeCC());
718 return Res.getComplexVal();
721 /// Lookup the libcall name for a given floating point type complex
722 /// multiply.
723 static StringRef getComplexMultiplyLibCallName(llvm::Type *Ty) {
724 switch (Ty->getTypeID()) {
725 default:
726 llvm_unreachable("Unsupported floating point type!");
727 case llvm::Type::HalfTyID:
728 return "__mulhc3";
729 case llvm::Type::FloatTyID:
730 return "__mulsc3";
731 case llvm::Type::DoubleTyID:
732 return "__muldc3";
733 case llvm::Type::PPC_FP128TyID:
734 return "__multc3";
735 case llvm::Type::X86_FP80TyID:
736 return "__mulxc3";
737 case llvm::Type::FP128TyID:
738 return "__multc3";
742 // See C11 Annex G.5.1 for the semantics of multiplicative operators on complex
743 // typed values.
744 ComplexPairTy ComplexExprEmitter::EmitBinMul(const BinOpInfo &Op) {
745 using llvm::Value;
746 Value *ResR, *ResI;
747 llvm::MDBuilder MDHelper(CGF.getLLVMContext());
749 if (Op.LHS.first->getType()->isFloatingPointTy()) {
750 // The general formulation is:
751 // (a + ib) * (c + id) = (a * c - b * d) + i(a * d + b * c)
753 // But we can fold away components which would be zero due to a real
754 // operand according to C11 Annex G.5.1p2.
755 // FIXME: C11 also provides for imaginary types which would allow folding
756 // still more of this within the type system.
758 CodeGenFunction::CGFPOptionsRAII FPOptsRAII(CGF, Op.FPFeatures);
759 if (Op.LHS.second && Op.RHS.second) {
760 // If both operands are complex, emit the core math directly, and then
761 // test for NaNs. If we find NaNs in the result, we delegate to a libcall
762 // to carefully re-compute the correct infinity representation if
763 // possible. The expectation is that the presence of NaNs here is
764 // *extremely* rare, and so the cost of the libcall is almost irrelevant.
765 // This is good, because the libcall re-computes the core multiplication
766 // exactly the same as we do here and re-tests for NaNs in order to be
767 // a generic complex*complex libcall.
769 // First compute the four products.
770 Value *AC = Builder.CreateFMul(Op.LHS.first, Op.RHS.first, "mul_ac");
771 Value *BD = Builder.CreateFMul(Op.LHS.second, Op.RHS.second, "mul_bd");
772 Value *AD = Builder.CreateFMul(Op.LHS.first, Op.RHS.second, "mul_ad");
773 Value *BC = Builder.CreateFMul(Op.LHS.second, Op.RHS.first, "mul_bc");
775 // The real part is the difference of the first two, the imaginary part is
776 // the sum of the second.
777 ResR = Builder.CreateFSub(AC, BD, "mul_r");
778 ResI = Builder.CreateFAdd(AD, BC, "mul_i");
780 // Emit the test for the real part becoming NaN and create a branch to
781 // handle it. We test for NaN by comparing the number to itself.
782 Value *IsRNaN = Builder.CreateFCmpUNO(ResR, ResR, "isnan_cmp");
783 llvm::BasicBlock *ContBB = CGF.createBasicBlock("complex_mul_cont");
784 llvm::BasicBlock *INaNBB = CGF.createBasicBlock("complex_mul_imag_nan");
785 llvm::Instruction *Branch = Builder.CreateCondBr(IsRNaN, INaNBB, ContBB);
786 llvm::BasicBlock *OrigBB = Branch->getParent();
788 // Give hint that we very much don't expect to see NaNs.
789 // Value chosen to match UR_NONTAKEN_WEIGHT, see BranchProbabilityInfo.cpp
790 llvm::MDNode *BrWeight = MDHelper.createBranchWeights(1, (1U << 20) - 1);
791 Branch->setMetadata(llvm::LLVMContext::MD_prof, BrWeight);
793 // Now test the imaginary part and create its branch.
794 CGF.EmitBlock(INaNBB);
795 Value *IsINaN = Builder.CreateFCmpUNO(ResI, ResI, "isnan_cmp");
796 llvm::BasicBlock *LibCallBB = CGF.createBasicBlock("complex_mul_libcall");
797 Branch = Builder.CreateCondBr(IsINaN, LibCallBB, ContBB);
798 Branch->setMetadata(llvm::LLVMContext::MD_prof, BrWeight);
800 // Now emit the libcall on this slowest of the slow paths.
801 CGF.EmitBlock(LibCallBB);
802 Value *LibCallR, *LibCallI;
803 std::tie(LibCallR, LibCallI) = EmitComplexBinOpLibCall(
804 getComplexMultiplyLibCallName(Op.LHS.first->getType()), Op);
805 Builder.CreateBr(ContBB);
807 // Finally continue execution by phi-ing together the different
808 // computation paths.
809 CGF.EmitBlock(ContBB);
810 llvm::PHINode *RealPHI = Builder.CreatePHI(ResR->getType(), 3, "real_mul_phi");
811 RealPHI->addIncoming(ResR, OrigBB);
812 RealPHI->addIncoming(ResR, INaNBB);
813 RealPHI->addIncoming(LibCallR, LibCallBB);
814 llvm::PHINode *ImagPHI = Builder.CreatePHI(ResI->getType(), 3, "imag_mul_phi");
815 ImagPHI->addIncoming(ResI, OrigBB);
816 ImagPHI->addIncoming(ResI, INaNBB);
817 ImagPHI->addIncoming(LibCallI, LibCallBB);
818 return ComplexPairTy(RealPHI, ImagPHI);
820 assert((Op.LHS.second || Op.RHS.second) &&
821 "At least one operand must be complex!");
823 // If either of the operands is a real rather than a complex, the
824 // imaginary component is ignored when computing the real component of the
825 // result.
826 ResR = Builder.CreateFMul(Op.LHS.first, Op.RHS.first, "mul.rl");
828 ResI = Op.LHS.second
829 ? Builder.CreateFMul(Op.LHS.second, Op.RHS.first, "mul.il")
830 : Builder.CreateFMul(Op.LHS.first, Op.RHS.second, "mul.ir");
831 } else {
832 assert(Op.LHS.second && Op.RHS.second &&
833 "Both operands of integer complex operators must be complex!");
834 Value *ResRl = Builder.CreateMul(Op.LHS.first, Op.RHS.first, "mul.rl");
835 Value *ResRr = Builder.CreateMul(Op.LHS.second, Op.RHS.second, "mul.rr");
836 ResR = Builder.CreateSub(ResRl, ResRr, "mul.r");
838 Value *ResIl = Builder.CreateMul(Op.LHS.second, Op.RHS.first, "mul.il");
839 Value *ResIr = Builder.CreateMul(Op.LHS.first, Op.RHS.second, "mul.ir");
840 ResI = Builder.CreateAdd(ResIl, ResIr, "mul.i");
842 return ComplexPairTy(ResR, ResI);
845 // See C11 Annex G.5.1 for the semantics of multiplicative operators on complex
846 // typed values.
847 ComplexPairTy ComplexExprEmitter::EmitBinDiv(const BinOpInfo &Op) {
848 llvm::Value *LHSr = Op.LHS.first, *LHSi = Op.LHS.second;
849 llvm::Value *RHSr = Op.RHS.first, *RHSi = Op.RHS.second;
851 llvm::Value *DSTr, *DSTi;
852 if (LHSr->getType()->isFloatingPointTy()) {
853 // If we have a complex operand on the RHS and FastMath is not allowed, we
854 // delegate to a libcall to handle all of the complexities and minimize
855 // underflow/overflow cases. When FastMath is allowed we construct the
856 // divide inline using the same algorithm as for integer operands.
858 // FIXME: We would be able to avoid the libcall in many places if we
859 // supported imaginary types in addition to complex types.
860 CodeGenFunction::CGFPOptionsRAII FPOptsRAII(CGF, Op.FPFeatures);
861 if (RHSi && !CGF.getLangOpts().FastMath) {
862 BinOpInfo LibCallOp = Op;
863 // If LHS was a real, supply a null imaginary part.
864 if (!LHSi)
865 LibCallOp.LHS.second = llvm::Constant::getNullValue(LHSr->getType());
867 switch (LHSr->getType()->getTypeID()) {
868 default:
869 llvm_unreachable("Unsupported floating point type!");
870 case llvm::Type::HalfTyID:
871 return EmitComplexBinOpLibCall("__divhc3", LibCallOp);
872 case llvm::Type::FloatTyID:
873 return EmitComplexBinOpLibCall("__divsc3", LibCallOp);
874 case llvm::Type::DoubleTyID:
875 return EmitComplexBinOpLibCall("__divdc3", LibCallOp);
876 case llvm::Type::PPC_FP128TyID:
877 return EmitComplexBinOpLibCall("__divtc3", LibCallOp);
878 case llvm::Type::X86_FP80TyID:
879 return EmitComplexBinOpLibCall("__divxc3", LibCallOp);
880 case llvm::Type::FP128TyID:
881 return EmitComplexBinOpLibCall("__divtc3", LibCallOp);
883 } else if (RHSi) {
884 if (!LHSi)
885 LHSi = llvm::Constant::getNullValue(RHSi->getType());
887 // (a+ib) / (c+id) = ((ac+bd)/(cc+dd)) + i((bc-ad)/(cc+dd))
888 llvm::Value *AC = Builder.CreateFMul(LHSr, RHSr); // a*c
889 llvm::Value *BD = Builder.CreateFMul(LHSi, RHSi); // b*d
890 llvm::Value *ACpBD = Builder.CreateFAdd(AC, BD); // ac+bd
892 llvm::Value *CC = Builder.CreateFMul(RHSr, RHSr); // c*c
893 llvm::Value *DD = Builder.CreateFMul(RHSi, RHSi); // d*d
894 llvm::Value *CCpDD = Builder.CreateFAdd(CC, DD); // cc+dd
896 llvm::Value *BC = Builder.CreateFMul(LHSi, RHSr); // b*c
897 llvm::Value *AD = Builder.CreateFMul(LHSr, RHSi); // a*d
898 llvm::Value *BCmAD = Builder.CreateFSub(BC, AD); // bc-ad
900 DSTr = Builder.CreateFDiv(ACpBD, CCpDD);
901 DSTi = Builder.CreateFDiv(BCmAD, CCpDD);
902 } else {
903 assert(LHSi && "Can have at most one non-complex operand!");
905 DSTr = Builder.CreateFDiv(LHSr, RHSr);
906 DSTi = Builder.CreateFDiv(LHSi, RHSr);
908 } else {
909 assert(Op.LHS.second && Op.RHS.second &&
910 "Both operands of integer complex operators must be complex!");
911 // (a+ib) / (c+id) = ((ac+bd)/(cc+dd)) + i((bc-ad)/(cc+dd))
912 llvm::Value *Tmp1 = Builder.CreateMul(LHSr, RHSr); // a*c
913 llvm::Value *Tmp2 = Builder.CreateMul(LHSi, RHSi); // b*d
914 llvm::Value *Tmp3 = Builder.CreateAdd(Tmp1, Tmp2); // ac+bd
916 llvm::Value *Tmp4 = Builder.CreateMul(RHSr, RHSr); // c*c
917 llvm::Value *Tmp5 = Builder.CreateMul(RHSi, RHSi); // d*d
918 llvm::Value *Tmp6 = Builder.CreateAdd(Tmp4, Tmp5); // cc+dd
920 llvm::Value *Tmp7 = Builder.CreateMul(LHSi, RHSr); // b*c
921 llvm::Value *Tmp8 = Builder.CreateMul(LHSr, RHSi); // a*d
922 llvm::Value *Tmp9 = Builder.CreateSub(Tmp7, Tmp8); // bc-ad
924 if (Op.Ty->castAs<ComplexType>()->getElementType()->isUnsignedIntegerType()) {
925 DSTr = Builder.CreateUDiv(Tmp3, Tmp6);
926 DSTi = Builder.CreateUDiv(Tmp9, Tmp6);
927 } else {
928 DSTr = Builder.CreateSDiv(Tmp3, Tmp6);
929 DSTi = Builder.CreateSDiv(Tmp9, Tmp6);
933 return ComplexPairTy(DSTr, DSTi);
936 ComplexPairTy CodeGenFunction::EmitUnPromotedValue(ComplexPairTy result,
937 QualType UnPromotionType) {
938 llvm::Type *ComplexElementTy =
939 ConvertType(UnPromotionType->castAs<ComplexType>()->getElementType());
940 if (result.first)
941 result.first =
942 Builder.CreateFPTrunc(result.first, ComplexElementTy, "unpromotion");
943 if (result.second)
944 result.second =
945 Builder.CreateFPTrunc(result.second, ComplexElementTy, "unpromotion");
946 return result;
949 ComplexPairTy CodeGenFunction::EmitPromotedValue(ComplexPairTy result,
950 QualType PromotionType) {
951 llvm::Type *ComplexElementTy =
952 ConvertType(PromotionType->castAs<ComplexType>()->getElementType());
953 if (result.first)
954 result.first = Builder.CreateFPExt(result.first, ComplexElementTy, "ext");
955 if (result.second)
956 result.second = Builder.CreateFPExt(result.second, ComplexElementTy, "ext");
958 return result;
961 ComplexPairTy ComplexExprEmitter::EmitPromoted(const Expr *E,
962 QualType PromotionType) {
963 E = E->IgnoreParens();
964 if (auto BO = dyn_cast<BinaryOperator>(E)) {
965 switch (BO->getOpcode()) {
966 #define HANDLE_BINOP(OP) \
967 case BO_##OP: \
968 return EmitBin##OP(EmitBinOps(BO, PromotionType));
969 HANDLE_BINOP(Add)
970 HANDLE_BINOP(Sub)
971 HANDLE_BINOP(Mul)
972 HANDLE_BINOP(Div)
973 #undef HANDLE_BINOP
974 default:
975 break;
977 } else if (auto UO = dyn_cast<UnaryOperator>(E)) {
978 switch (UO->getOpcode()) {
979 case UO_Minus:
980 return VisitMinus(UO, PromotionType);
981 case UO_Plus:
982 return VisitPlus(UO, PromotionType);
983 default:
984 break;
987 auto result = Visit(const_cast<Expr *>(E));
988 if (!PromotionType.isNull())
989 return CGF.EmitPromotedValue(result, PromotionType);
990 else
991 return result;
994 ComplexPairTy CodeGenFunction::EmitPromotedComplexExpr(const Expr *E,
995 QualType DstTy) {
996 return ComplexExprEmitter(*this).EmitPromoted(E, DstTy);
999 ComplexPairTy
1000 ComplexExprEmitter::EmitPromotedComplexOperand(const Expr *E,
1001 QualType OverallPromotionType) {
1002 if (E->getType()->isAnyComplexType()) {
1003 if (!OverallPromotionType.isNull())
1004 return CGF.EmitPromotedComplexExpr(E, OverallPromotionType);
1005 else
1006 return Visit(const_cast<Expr *>(E));
1007 } else {
1008 if (!OverallPromotionType.isNull()) {
1009 QualType ComplexElementTy =
1010 OverallPromotionType->castAs<ComplexType>()->getElementType();
1011 return ComplexPairTy(CGF.EmitPromotedScalarExpr(E, ComplexElementTy),
1012 nullptr);
1013 } else {
1014 return ComplexPairTy(CGF.EmitScalarExpr(E), nullptr);
1019 ComplexExprEmitter::BinOpInfo
1020 ComplexExprEmitter::EmitBinOps(const BinaryOperator *E,
1021 QualType PromotionType) {
1022 TestAndClearIgnoreReal();
1023 TestAndClearIgnoreImag();
1024 BinOpInfo Ops;
1026 Ops.LHS = EmitPromotedComplexOperand(E->getLHS(), PromotionType);
1027 Ops.RHS = EmitPromotedComplexOperand(E->getRHS(), PromotionType);
1028 if (!PromotionType.isNull())
1029 Ops.Ty = PromotionType;
1030 else
1031 Ops.Ty = E->getType();
1032 Ops.FPFeatures = E->getFPFeaturesInEffect(CGF.getLangOpts());
1033 return Ops;
1037 LValue ComplexExprEmitter::
1038 EmitCompoundAssignLValue(const CompoundAssignOperator *E,
1039 ComplexPairTy (ComplexExprEmitter::*Func)(const BinOpInfo&),
1040 RValue &Val) {
1041 TestAndClearIgnoreReal();
1042 TestAndClearIgnoreImag();
1043 QualType LHSTy = E->getLHS()->getType();
1044 if (const AtomicType *AT = LHSTy->getAs<AtomicType>())
1045 LHSTy = AT->getValueType();
1047 BinOpInfo OpInfo;
1048 OpInfo.FPFeatures = E->getFPFeaturesInEffect(CGF.getLangOpts());
1049 CodeGenFunction::CGFPOptionsRAII FPOptsRAII(CGF, OpInfo.FPFeatures);
1051 // Load the RHS and LHS operands.
1052 // __block variables need to have the rhs evaluated first, plus this should
1053 // improve codegen a little.
1054 QualType PromotionTypeCR;
1055 PromotionTypeCR = getPromotionType(E->getComputationResultType());
1056 if (PromotionTypeCR.isNull())
1057 PromotionTypeCR = E->getComputationResultType();
1058 OpInfo.Ty = PromotionTypeCR;
1059 QualType ComplexElementTy =
1060 OpInfo.Ty->castAs<ComplexType>()->getElementType();
1061 QualType PromotionTypeRHS = getPromotionType(E->getRHS()->getType());
1063 // The RHS should have been converted to the computation type.
1064 if (E->getRHS()->getType()->isRealFloatingType()) {
1065 if (!PromotionTypeRHS.isNull())
1066 OpInfo.RHS = ComplexPairTy(
1067 CGF.EmitPromotedScalarExpr(E->getRHS(), PromotionTypeRHS), nullptr);
1068 else {
1069 assert(CGF.getContext().hasSameUnqualifiedType(ComplexElementTy,
1070 E->getRHS()->getType()));
1072 OpInfo.RHS = ComplexPairTy(CGF.EmitScalarExpr(E->getRHS()), nullptr);
1074 } else {
1075 if (!PromotionTypeRHS.isNull()) {
1076 OpInfo.RHS = ComplexPairTy(
1077 CGF.EmitPromotedComplexExpr(E->getRHS(), PromotionTypeRHS));
1078 } else {
1079 assert(CGF.getContext().hasSameUnqualifiedType(OpInfo.Ty,
1080 E->getRHS()->getType()));
1081 OpInfo.RHS = Visit(E->getRHS());
1085 LValue LHS = CGF.EmitLValue(E->getLHS());
1087 // Load from the l-value and convert it.
1088 SourceLocation Loc = E->getExprLoc();
1089 QualType PromotionTypeLHS = getPromotionType(E->getComputationLHSType());
1090 if (LHSTy->isAnyComplexType()) {
1091 ComplexPairTy LHSVal = EmitLoadOfLValue(LHS, Loc);
1092 if (!PromotionTypeLHS.isNull())
1093 OpInfo.LHS =
1094 EmitComplexToComplexCast(LHSVal, LHSTy, PromotionTypeLHS, Loc);
1095 else
1096 OpInfo.LHS = EmitComplexToComplexCast(LHSVal, LHSTy, OpInfo.Ty, Loc);
1097 } else {
1098 llvm::Value *LHSVal = CGF.EmitLoadOfScalar(LHS, Loc);
1099 // For floating point real operands we can directly pass the scalar form
1100 // to the binary operator emission and potentially get more efficient code.
1101 if (LHSTy->isRealFloatingType()) {
1102 QualType PromotedComplexElementTy;
1103 if (!PromotionTypeLHS.isNull()) {
1104 PromotedComplexElementTy =
1105 cast<ComplexType>(PromotionTypeLHS)->getElementType();
1106 if (!CGF.getContext().hasSameUnqualifiedType(PromotedComplexElementTy,
1107 PromotionTypeLHS))
1108 LHSVal = CGF.EmitScalarConversion(LHSVal, LHSTy,
1109 PromotedComplexElementTy, Loc);
1110 } else {
1111 if (!CGF.getContext().hasSameUnqualifiedType(ComplexElementTy, LHSTy))
1112 LHSVal =
1113 CGF.EmitScalarConversion(LHSVal, LHSTy, ComplexElementTy, Loc);
1115 OpInfo.LHS = ComplexPairTy(LHSVal, nullptr);
1116 } else {
1117 OpInfo.LHS = EmitScalarToComplexCast(LHSVal, LHSTy, OpInfo.Ty, Loc);
1121 // Expand the binary operator.
1122 ComplexPairTy Result = (this->*Func)(OpInfo);
1124 // Truncate the result and store it into the LHS lvalue.
1125 if (LHSTy->isAnyComplexType()) {
1126 ComplexPairTy ResVal =
1127 EmitComplexToComplexCast(Result, OpInfo.Ty, LHSTy, Loc);
1128 EmitStoreOfComplex(ResVal, LHS, /*isInit*/ false);
1129 Val = RValue::getComplex(ResVal);
1130 } else {
1131 llvm::Value *ResVal =
1132 CGF.EmitComplexToScalarConversion(Result, OpInfo.Ty, LHSTy, Loc);
1133 CGF.EmitStoreOfScalar(ResVal, LHS, /*isInit*/ false);
1134 Val = RValue::get(ResVal);
1137 return LHS;
1140 // Compound assignments.
1141 ComplexPairTy ComplexExprEmitter::
1142 EmitCompoundAssign(const CompoundAssignOperator *E,
1143 ComplexPairTy (ComplexExprEmitter::*Func)(const BinOpInfo&)){
1144 RValue Val;
1145 LValue LV = EmitCompoundAssignLValue(E, Func, Val);
1147 // The result of an assignment in C is the assigned r-value.
1148 if (!CGF.getLangOpts().CPlusPlus)
1149 return Val.getComplexVal();
1151 // If the lvalue is non-volatile, return the computed value of the assignment.
1152 if (!LV.isVolatileQualified())
1153 return Val.getComplexVal();
1155 return EmitLoadOfLValue(LV, E->getExprLoc());
1158 LValue ComplexExprEmitter::EmitBinAssignLValue(const BinaryOperator *E,
1159 ComplexPairTy &Val) {
1160 assert(CGF.getContext().hasSameUnqualifiedType(E->getLHS()->getType(),
1161 E->getRHS()->getType()) &&
1162 "Invalid assignment");
1163 TestAndClearIgnoreReal();
1164 TestAndClearIgnoreImag();
1166 // Emit the RHS. __block variables need the RHS evaluated first.
1167 Val = Visit(E->getRHS());
1169 // Compute the address to store into.
1170 LValue LHS = CGF.EmitLValue(E->getLHS());
1172 // Store the result value into the LHS lvalue.
1173 EmitStoreOfComplex(Val, LHS, /*isInit*/ false);
1175 return LHS;
1178 ComplexPairTy ComplexExprEmitter::VisitBinAssign(const BinaryOperator *E) {
1179 ComplexPairTy Val;
1180 LValue LV = EmitBinAssignLValue(E, Val);
1182 // The result of an assignment in C is the assigned r-value.
1183 if (!CGF.getLangOpts().CPlusPlus)
1184 return Val;
1186 // If the lvalue is non-volatile, return the computed value of the assignment.
1187 if (!LV.isVolatileQualified())
1188 return Val;
1190 return EmitLoadOfLValue(LV, E->getExprLoc());
1193 ComplexPairTy ComplexExprEmitter::VisitBinComma(const BinaryOperator *E) {
1194 CGF.EmitIgnoredExpr(E->getLHS());
1195 return Visit(E->getRHS());
1198 ComplexPairTy ComplexExprEmitter::
1199 VisitAbstractConditionalOperator(const AbstractConditionalOperator *E) {
1200 TestAndClearIgnoreReal();
1201 TestAndClearIgnoreImag();
1202 llvm::BasicBlock *LHSBlock = CGF.createBasicBlock("cond.true");
1203 llvm::BasicBlock *RHSBlock = CGF.createBasicBlock("cond.false");
1204 llvm::BasicBlock *ContBlock = CGF.createBasicBlock("cond.end");
1206 // Bind the common expression if necessary.
1207 CodeGenFunction::OpaqueValueMapping binding(CGF, E);
1210 CodeGenFunction::ConditionalEvaluation eval(CGF);
1211 CGF.EmitBranchOnBoolExpr(E->getCond(), LHSBlock, RHSBlock,
1212 CGF.getProfileCount(E));
1214 eval.begin(CGF);
1215 CGF.EmitBlock(LHSBlock);
1216 CGF.incrementProfileCounter(E);
1217 ComplexPairTy LHS = Visit(E->getTrueExpr());
1218 LHSBlock = Builder.GetInsertBlock();
1219 CGF.EmitBranch(ContBlock);
1220 eval.end(CGF);
1222 eval.begin(CGF);
1223 CGF.EmitBlock(RHSBlock);
1224 ComplexPairTy RHS = Visit(E->getFalseExpr());
1225 RHSBlock = Builder.GetInsertBlock();
1226 CGF.EmitBlock(ContBlock);
1227 eval.end(CGF);
1229 // Create a PHI node for the real part.
1230 llvm::PHINode *RealPN = Builder.CreatePHI(LHS.first->getType(), 2, "cond.r");
1231 RealPN->addIncoming(LHS.first, LHSBlock);
1232 RealPN->addIncoming(RHS.first, RHSBlock);
1234 // Create a PHI node for the imaginary part.
1235 llvm::PHINode *ImagPN = Builder.CreatePHI(LHS.first->getType(), 2, "cond.i");
1236 ImagPN->addIncoming(LHS.second, LHSBlock);
1237 ImagPN->addIncoming(RHS.second, RHSBlock);
1239 return ComplexPairTy(RealPN, ImagPN);
1242 ComplexPairTy ComplexExprEmitter::VisitChooseExpr(ChooseExpr *E) {
1243 return Visit(E->getChosenSubExpr());
1246 ComplexPairTy ComplexExprEmitter::VisitInitListExpr(InitListExpr *E) {
1247 bool Ignore = TestAndClearIgnoreReal();
1248 (void)Ignore;
1249 assert (Ignore == false && "init list ignored");
1250 Ignore = TestAndClearIgnoreImag();
1251 (void)Ignore;
1252 assert (Ignore == false && "init list ignored");
1254 if (E->getNumInits() == 2) {
1255 llvm::Value *Real = CGF.EmitScalarExpr(E->getInit(0));
1256 llvm::Value *Imag = CGF.EmitScalarExpr(E->getInit(1));
1257 return ComplexPairTy(Real, Imag);
1258 } else if (E->getNumInits() == 1) {
1259 return Visit(E->getInit(0));
1262 // Empty init list initializes to null
1263 assert(E->getNumInits() == 0 && "Unexpected number of inits");
1264 QualType Ty = E->getType()->castAs<ComplexType>()->getElementType();
1265 llvm::Type* LTy = CGF.ConvertType(Ty);
1266 llvm::Value* zeroConstant = llvm::Constant::getNullValue(LTy);
1267 return ComplexPairTy(zeroConstant, zeroConstant);
1270 ComplexPairTy ComplexExprEmitter::VisitVAArgExpr(VAArgExpr *E) {
1271 Address ArgValue = Address::invalid();
1272 Address ArgPtr = CGF.EmitVAArg(E, ArgValue);
1274 if (!ArgPtr.isValid()) {
1275 CGF.ErrorUnsupported(E, "complex va_arg expression");
1276 llvm::Type *EltTy =
1277 CGF.ConvertType(E->getType()->castAs<ComplexType>()->getElementType());
1278 llvm::Value *U = llvm::UndefValue::get(EltTy);
1279 return ComplexPairTy(U, U);
1282 return EmitLoadOfLValue(CGF.MakeAddrLValue(ArgPtr, E->getType()),
1283 E->getExprLoc());
1286 //===----------------------------------------------------------------------===//
1287 // Entry Point into this File
1288 //===----------------------------------------------------------------------===//
1290 /// EmitComplexExpr - Emit the computation of the specified expression of
1291 /// complex type, ignoring the result.
1292 ComplexPairTy CodeGenFunction::EmitComplexExpr(const Expr *E, bool IgnoreReal,
1293 bool IgnoreImag) {
1294 assert(E && getComplexType(E->getType()) &&
1295 "Invalid complex expression to emit");
1297 return ComplexExprEmitter(*this, IgnoreReal, IgnoreImag)
1298 .Visit(const_cast<Expr *>(E));
1301 void CodeGenFunction::EmitComplexExprIntoLValue(const Expr *E, LValue dest,
1302 bool isInit) {
1303 assert(E && getComplexType(E->getType()) &&
1304 "Invalid complex expression to emit");
1305 ComplexExprEmitter Emitter(*this);
1306 ComplexPairTy Val = Emitter.Visit(const_cast<Expr*>(E));
1307 Emitter.EmitStoreOfComplex(Val, dest, isInit);
1310 /// EmitStoreOfComplex - Store a complex number into the specified l-value.
1311 void CodeGenFunction::EmitStoreOfComplex(ComplexPairTy V, LValue dest,
1312 bool isInit) {
1313 ComplexExprEmitter(*this).EmitStoreOfComplex(V, dest, isInit);
1316 /// EmitLoadOfComplex - Load a complex number from the specified address.
1317 ComplexPairTy CodeGenFunction::EmitLoadOfComplex(LValue src,
1318 SourceLocation loc) {
1319 return ComplexExprEmitter(*this).EmitLoadOfLValue(src, loc);
1322 LValue CodeGenFunction::EmitComplexAssignmentLValue(const BinaryOperator *E) {
1323 assert(E->getOpcode() == BO_Assign);
1324 ComplexPairTy Val; // ignored
1325 LValue LVal = ComplexExprEmitter(*this).EmitBinAssignLValue(E, Val);
1326 if (getLangOpts().OpenMP)
1327 CGM.getOpenMPRuntime().checkAndEmitLastprivateConditional(*this,
1328 E->getLHS());
1329 return LVal;
1332 typedef ComplexPairTy (ComplexExprEmitter::*CompoundFunc)(
1333 const ComplexExprEmitter::BinOpInfo &);
1335 static CompoundFunc getComplexOp(BinaryOperatorKind Op) {
1336 switch (Op) {
1337 case BO_MulAssign: return &ComplexExprEmitter::EmitBinMul;
1338 case BO_DivAssign: return &ComplexExprEmitter::EmitBinDiv;
1339 case BO_SubAssign: return &ComplexExprEmitter::EmitBinSub;
1340 case BO_AddAssign: return &ComplexExprEmitter::EmitBinAdd;
1341 default:
1342 llvm_unreachable("unexpected complex compound assignment");
1346 LValue CodeGenFunction::
1347 EmitComplexCompoundAssignmentLValue(const CompoundAssignOperator *E) {
1348 CompoundFunc Op = getComplexOp(E->getOpcode());
1349 RValue Val;
1350 return ComplexExprEmitter(*this).EmitCompoundAssignLValue(E, Op, Val);
1353 LValue CodeGenFunction::
1354 EmitScalarCompoundAssignWithComplex(const CompoundAssignOperator *E,
1355 llvm::Value *&Result) {
1356 CompoundFunc Op = getComplexOp(E->getOpcode());
1357 RValue Val;
1358 LValue Ret = ComplexExprEmitter(*this).EmitCompoundAssignLValue(E, Op, Val);
1359 Result = Val.getScalarVal();
1360 return Ret;