1 //===--- SemaDecl.cpp - Semantic Analysis for Declarations ----------------===//
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
7 //===----------------------------------------------------------------------===//
9 // This file implements semantic analysis for declarations.
11 //===----------------------------------------------------------------------===//
13 #include "TypeLocBuilder.h"
14 #include "clang/AST/ASTConsumer.h"
15 #include "clang/AST/ASTContext.h"
16 #include "clang/AST/ASTLambda.h"
17 #include "clang/AST/CXXInheritance.h"
18 #include "clang/AST/CharUnits.h"
19 #include "clang/AST/CommentDiagnostic.h"
20 #include "clang/AST/DeclCXX.h"
21 #include "clang/AST/DeclObjC.h"
22 #include "clang/AST/DeclTemplate.h"
23 #include "clang/AST/EvaluatedExprVisitor.h"
24 #include "clang/AST/Expr.h"
25 #include "clang/AST/ExprCXX.h"
26 #include "clang/AST/NonTrivialTypeVisitor.h"
27 #include "clang/AST/Randstruct.h"
28 #include "clang/AST/StmtCXX.h"
29 #include "clang/Basic/Builtins.h"
30 #include "clang/Basic/HLSLRuntime.h"
31 #include "clang/Basic/PartialDiagnostic.h"
32 #include "clang/Basic/SourceManager.h"
33 #include "clang/Basic/TargetInfo.h"
34 #include "clang/Lex/HeaderSearch.h" // TODO: Sema shouldn't depend on Lex
35 #include "clang/Lex/Lexer.h" // TODO: Extract static functions to fix layering.
36 #include "clang/Lex/ModuleLoader.h" // TODO: Sema shouldn't depend on Lex
37 #include "clang/Lex/Preprocessor.h" // Included for isCodeCompletionEnabled()
38 #include "clang/Sema/CXXFieldCollector.h"
39 #include "clang/Sema/DeclSpec.h"
40 #include "clang/Sema/DelayedDiagnostic.h"
41 #include "clang/Sema/Initialization.h"
42 #include "clang/Sema/Lookup.h"
43 #include "clang/Sema/ParsedTemplate.h"
44 #include "clang/Sema/Scope.h"
45 #include "clang/Sema/ScopeInfo.h"
46 #include "clang/Sema/SemaInternal.h"
47 #include "clang/Sema/Template.h"
48 #include "llvm/ADT/SmallString.h"
49 #include "llvm/ADT/StringExtras.h"
50 #include "llvm/TargetParser/Triple.h"
55 #include <unordered_map>
57 using namespace clang
;
60 Sema::DeclGroupPtrTy
Sema::ConvertDeclToDeclGroup(Decl
*Ptr
, Decl
*OwnedType
) {
62 Decl
*Group
[2] = { OwnedType
, Ptr
};
63 return DeclGroupPtrTy::make(DeclGroupRef::Create(Context
, Group
, 2));
66 return DeclGroupPtrTy::make(DeclGroupRef(Ptr
));
71 class TypeNameValidatorCCC final
: public CorrectionCandidateCallback
{
73 TypeNameValidatorCCC(bool AllowInvalid
, bool WantClass
= false,
74 bool AllowTemplates
= false,
75 bool AllowNonTemplates
= true)
76 : AllowInvalidDecl(AllowInvalid
), WantClassName(WantClass
),
77 AllowTemplates(AllowTemplates
), AllowNonTemplates(AllowNonTemplates
) {
78 WantExpressionKeywords
= false;
79 WantCXXNamedCasts
= false;
80 WantRemainingKeywords
= false;
83 bool ValidateCandidate(const TypoCorrection
&candidate
) override
{
84 if (NamedDecl
*ND
= candidate
.getCorrectionDecl()) {
85 if (!AllowInvalidDecl
&& ND
->isInvalidDecl())
88 if (getAsTypeTemplateDecl(ND
))
89 return AllowTemplates
;
91 bool IsType
= isa
<TypeDecl
>(ND
) || isa
<ObjCInterfaceDecl
>(ND
);
95 if (AllowNonTemplates
)
98 // An injected-class-name of a class template (specialization) is valid
99 // as a template or as a non-template.
100 if (AllowTemplates
) {
101 auto *RD
= dyn_cast
<CXXRecordDecl
>(ND
);
102 if (!RD
|| !RD
->isInjectedClassName())
104 RD
= cast
<CXXRecordDecl
>(RD
->getDeclContext());
105 return RD
->getDescribedClassTemplate() ||
106 isa
<ClassTemplateSpecializationDecl
>(RD
);
112 return !WantClassName
&& candidate
.isKeyword();
115 std::unique_ptr
<CorrectionCandidateCallback
> clone() override
{
116 return std::make_unique
<TypeNameValidatorCCC
>(*this);
120 bool AllowInvalidDecl
;
123 bool AllowNonTemplates
;
126 } // end anonymous namespace
128 /// Determine whether the token kind starts a simple-type-specifier.
129 bool Sema::isSimpleTypeSpecifier(tok::TokenKind Kind
) const {
131 // FIXME: Take into account the current language when deciding whether a
132 // token kind is a valid type specifier
135 case tok::kw___int64
:
136 case tok::kw___int128
:
138 case tok::kw_unsigned
:
146 case tok::kw__Float16
:
147 case tok::kw___float128
:
148 case tok::kw___ibm128
:
149 case tok::kw_wchar_t
:
151 #define TRANSFORM_TYPE_TRAIT_DEF(_, Trait) case tok::kw___##Trait:
152 #include "clang/Basic/TransformTypeTraits.def"
153 case tok::kw___auto_type
:
156 case tok::annot_typename
:
157 case tok::kw_char16_t
:
158 case tok::kw_char32_t
:
160 case tok::annot_decltype
:
161 case tok::kw_decltype
:
162 return getLangOpts().CPlusPlus
;
164 case tok::kw_char8_t
:
165 return getLangOpts().Char8
;
175 enum class UnqualifiedTypeNameLookupResult
{
180 } // end anonymous namespace
182 /// Tries to perform unqualified lookup of the type decls in bases for
184 /// \return \a NotFound if no any decls is found, \a FoundNotType if found not a
185 /// type decl, \a FoundType if only type decls are found.
186 static UnqualifiedTypeNameLookupResult
187 lookupUnqualifiedTypeNameInBase(Sema
&S
, const IdentifierInfo
&II
,
188 SourceLocation NameLoc
,
189 const CXXRecordDecl
*RD
) {
190 if (!RD
->hasDefinition())
191 return UnqualifiedTypeNameLookupResult::NotFound
;
192 // Look for type decls in base classes.
193 UnqualifiedTypeNameLookupResult FoundTypeDecl
=
194 UnqualifiedTypeNameLookupResult::NotFound
;
195 for (const auto &Base
: RD
->bases()) {
196 const CXXRecordDecl
*BaseRD
= nullptr;
197 if (auto *BaseTT
= Base
.getType()->getAs
<TagType
>())
198 BaseRD
= BaseTT
->getAsCXXRecordDecl();
199 else if (auto *TST
= Base
.getType()->getAs
<TemplateSpecializationType
>()) {
200 // Look for type decls in dependent base classes that have known primary
202 if (!TST
|| !TST
->isDependentType())
204 auto *TD
= TST
->getTemplateName().getAsTemplateDecl();
207 if (auto *BasePrimaryTemplate
=
208 dyn_cast_or_null
<CXXRecordDecl
>(TD
->getTemplatedDecl())) {
209 if (BasePrimaryTemplate
->getCanonicalDecl() != RD
->getCanonicalDecl())
210 BaseRD
= BasePrimaryTemplate
;
211 else if (auto *CTD
= dyn_cast
<ClassTemplateDecl
>(TD
)) {
212 if (const ClassTemplatePartialSpecializationDecl
*PS
=
213 CTD
->findPartialSpecialization(Base
.getType()))
214 if (PS
->getCanonicalDecl() != RD
->getCanonicalDecl())
220 for (NamedDecl
*ND
: BaseRD
->lookup(&II
)) {
221 if (!isa
<TypeDecl
>(ND
))
222 return UnqualifiedTypeNameLookupResult::FoundNonType
;
223 FoundTypeDecl
= UnqualifiedTypeNameLookupResult::FoundType
;
225 if (FoundTypeDecl
== UnqualifiedTypeNameLookupResult::NotFound
) {
226 switch (lookupUnqualifiedTypeNameInBase(S
, II
, NameLoc
, BaseRD
)) {
227 case UnqualifiedTypeNameLookupResult::FoundNonType
:
228 return UnqualifiedTypeNameLookupResult::FoundNonType
;
229 case UnqualifiedTypeNameLookupResult::FoundType
:
230 FoundTypeDecl
= UnqualifiedTypeNameLookupResult::FoundType
;
232 case UnqualifiedTypeNameLookupResult::NotFound
:
239 return FoundTypeDecl
;
242 static ParsedType
recoverFromTypeInKnownDependentBase(Sema
&S
,
243 const IdentifierInfo
&II
,
244 SourceLocation NameLoc
) {
245 // Lookup in the parent class template context, if any.
246 const CXXRecordDecl
*RD
= nullptr;
247 UnqualifiedTypeNameLookupResult FoundTypeDecl
=
248 UnqualifiedTypeNameLookupResult::NotFound
;
249 for (DeclContext
*DC
= S
.CurContext
;
250 DC
&& FoundTypeDecl
== UnqualifiedTypeNameLookupResult::NotFound
;
251 DC
= DC
->getParent()) {
252 // Look for type decls in dependent base classes that have known primary
254 RD
= dyn_cast
<CXXRecordDecl
>(DC
);
255 if (RD
&& RD
->getDescribedClassTemplate())
256 FoundTypeDecl
= lookupUnqualifiedTypeNameInBase(S
, II
, NameLoc
, RD
);
258 if (FoundTypeDecl
!= UnqualifiedTypeNameLookupResult::FoundType
)
261 // We found some types in dependent base classes. Recover as if the user
262 // wrote 'typename MyClass::II' instead of 'II'. We'll fully resolve the
263 // lookup during template instantiation.
264 S
.Diag(NameLoc
, diag::ext_found_in_dependent_base
) << &II
;
266 ASTContext
&Context
= S
.Context
;
267 auto *NNS
= NestedNameSpecifier::Create(Context
, nullptr, false,
268 cast
<Type
>(Context
.getRecordType(RD
)));
269 QualType T
= Context
.getDependentNameType(ETK_Typename
, NNS
, &II
);
272 SS
.MakeTrivial(Context
, NNS
, SourceRange(NameLoc
));
274 TypeLocBuilder Builder
;
275 DependentNameTypeLoc DepTL
= Builder
.push
<DependentNameTypeLoc
>(T
);
276 DepTL
.setNameLoc(NameLoc
);
277 DepTL
.setElaboratedKeywordLoc(SourceLocation());
278 DepTL
.setQualifierLoc(SS
.getWithLocInContext(Context
));
279 return S
.CreateParsedType(T
, Builder
.getTypeSourceInfo(Context
, T
));
282 /// Build a ParsedType for a simple-type-specifier with a nested-name-specifier.
283 static ParsedType
buildNamedType(Sema
&S
, const CXXScopeSpec
*SS
, QualType T
,
284 SourceLocation NameLoc
,
285 bool WantNontrivialTypeSourceInfo
= true) {
286 switch (T
->getTypeClass()) {
287 case Type::DeducedTemplateSpecialization
:
289 case Type::InjectedClassName
:
292 case Type::UnresolvedUsing
:
295 // These can never be qualified so an ElaboratedType node
296 // would carry no additional meaning.
297 case Type::ObjCInterface
:
298 case Type::ObjCTypeParam
:
299 case Type::TemplateTypeParm
:
300 return ParsedType::make(T
);
302 llvm_unreachable("Unexpected Type Class");
305 if (!SS
|| SS
->isEmpty())
306 return ParsedType::make(
307 S
.Context
.getElaboratedType(ETK_None
, nullptr, T
, nullptr));
309 QualType ElTy
= S
.getElaboratedType(ETK_None
, *SS
, T
);
310 if (!WantNontrivialTypeSourceInfo
)
311 return ParsedType::make(ElTy
);
313 TypeLocBuilder Builder
;
314 Builder
.pushTypeSpec(T
).setNameLoc(NameLoc
);
315 ElaboratedTypeLoc ElabTL
= Builder
.push
<ElaboratedTypeLoc
>(ElTy
);
316 ElabTL
.setElaboratedKeywordLoc(SourceLocation());
317 ElabTL
.setQualifierLoc(SS
->getWithLocInContext(S
.Context
));
318 return S
.CreateParsedType(ElTy
, Builder
.getTypeSourceInfo(S
.Context
, ElTy
));
321 /// If the identifier refers to a type name within this scope,
322 /// return the declaration of that type.
324 /// This routine performs ordinary name lookup of the identifier II
325 /// within the given scope, with optional C++ scope specifier SS, to
326 /// determine whether the name refers to a type. If so, returns an
327 /// opaque pointer (actually a QualType) corresponding to that
328 /// type. Otherwise, returns NULL.
329 ParsedType
Sema::getTypeName(const IdentifierInfo
&II
, SourceLocation NameLoc
,
330 Scope
*S
, CXXScopeSpec
*SS
, bool isClassName
,
331 bool HasTrailingDot
, ParsedType ObjectTypePtr
,
332 bool IsCtorOrDtorName
,
333 bool WantNontrivialTypeSourceInfo
,
334 bool IsClassTemplateDeductionContext
,
335 ImplicitTypenameContext AllowImplicitTypename
,
336 IdentifierInfo
**CorrectedII
) {
337 // FIXME: Consider allowing this outside C++1z mode as an extension.
338 bool AllowDeducedTemplate
= IsClassTemplateDeductionContext
&&
339 getLangOpts().CPlusPlus17
&& !IsCtorOrDtorName
&&
340 !isClassName
&& !HasTrailingDot
;
342 // Determine where we will perform name lookup.
343 DeclContext
*LookupCtx
= nullptr;
345 QualType ObjectType
= ObjectTypePtr
.get();
346 if (ObjectType
->isRecordType())
347 LookupCtx
= computeDeclContext(ObjectType
);
348 } else if (SS
&& SS
->isNotEmpty()) {
349 LookupCtx
= computeDeclContext(*SS
, false);
352 if (isDependentScopeSpecifier(*SS
)) {
354 // A qualified-id that refers to a type and in which the
355 // nested-name-specifier depends on a template-parameter (14.6.2)
356 // shall be prefixed by the keyword typename to indicate that the
357 // qualified-id denotes a type, forming an
358 // elaborated-type-specifier (7.1.5.3).
360 // We therefore do not perform any name lookup if the result would
361 // refer to a member of an unknown specialization.
362 // In C++2a, in several contexts a 'typename' is not required. Also
363 // allow this as an extension.
364 if (AllowImplicitTypename
== ImplicitTypenameContext::No
&&
365 !isClassName
&& !IsCtorOrDtorName
)
367 bool IsImplicitTypename
= !isClassName
&& !IsCtorOrDtorName
;
368 if (IsImplicitTypename
) {
369 SourceLocation QualifiedLoc
= SS
->getRange().getBegin();
370 if (getLangOpts().CPlusPlus20
)
371 Diag(QualifiedLoc
, diag::warn_cxx17_compat_implicit_typename
);
373 Diag(QualifiedLoc
, diag::ext_implicit_typename
)
374 << SS
->getScopeRep() << II
.getName()
375 << FixItHint::CreateInsertion(QualifiedLoc
, "typename ");
378 // We know from the grammar that this name refers to a type,
379 // so build a dependent node to describe the type.
380 if (WantNontrivialTypeSourceInfo
)
381 return ActOnTypenameType(S
, SourceLocation(), *SS
, II
, NameLoc
,
382 (ImplicitTypenameContext
)IsImplicitTypename
)
385 NestedNameSpecifierLoc QualifierLoc
= SS
->getWithLocInContext(Context
);
387 CheckTypenameType(IsImplicitTypename
? ETK_Typename
: ETK_None
,
388 SourceLocation(), QualifierLoc
, II
, NameLoc
);
389 return ParsedType::make(T
);
395 if (!LookupCtx
->isDependentContext() &&
396 RequireCompleteDeclContext(*SS
, LookupCtx
))
400 // FIXME: LookupNestedNameSpecifierName isn't the right kind of
401 // lookup for class-names.
402 LookupNameKind Kind
= isClassName
? LookupNestedNameSpecifierName
:
404 LookupResult
Result(*this, &II
, NameLoc
, Kind
);
406 // Perform "qualified" name lookup into the declaration context we
407 // computed, which is either the type of the base of a member access
408 // expression or the declaration context associated with a prior
409 // nested-name-specifier.
410 LookupQualifiedName(Result
, LookupCtx
);
412 if (ObjectTypePtr
&& Result
.empty()) {
413 // C++ [basic.lookup.classref]p3:
414 // If the unqualified-id is ~type-name, the type-name is looked up
415 // in the context of the entire postfix-expression. If the type T of
416 // the object expression is of a class type C, the type-name is also
417 // looked up in the scope of class C. At least one of the lookups shall
418 // find a name that refers to (possibly cv-qualified) T.
419 LookupName(Result
, S
);
422 // Perform unqualified name lookup.
423 LookupName(Result
, S
);
425 // For unqualified lookup in a class template in MSVC mode, look into
426 // dependent base classes where the primary class template is known.
427 if (Result
.empty() && getLangOpts().MSVCCompat
&& (!SS
|| SS
->isEmpty())) {
428 if (ParsedType TypeInBase
=
429 recoverFromTypeInKnownDependentBase(*this, II
, NameLoc
))
434 NamedDecl
*IIDecl
= nullptr;
435 UsingShadowDecl
*FoundUsingShadow
= nullptr;
436 switch (Result
.getResultKind()) {
437 case LookupResult::NotFound
:
438 case LookupResult::NotFoundInCurrentInstantiation
:
440 TypeNameValidatorCCC
CCC(/*AllowInvalid=*/true, isClassName
,
441 AllowDeducedTemplate
);
442 TypoCorrection Correction
= CorrectTypo(Result
.getLookupNameInfo(), Kind
,
443 S
, SS
, CCC
, CTK_ErrorRecovery
);
444 IdentifierInfo
*NewII
= Correction
.getCorrectionAsIdentifierInfo();
446 bool MemberOfUnknownSpecialization
;
447 UnqualifiedId TemplateName
;
448 TemplateName
.setIdentifier(NewII
, NameLoc
);
449 NestedNameSpecifier
*NNS
= Correction
.getCorrectionSpecifier();
450 CXXScopeSpec NewSS
, *NewSSPtr
= SS
;
452 NewSS
.MakeTrivial(Context
, NNS
, SourceRange(NameLoc
));
455 if (Correction
&& (NNS
|| NewII
!= &II
) &&
456 // Ignore a correction to a template type as the to-be-corrected
457 // identifier is not a template (typo correction for template names
458 // is handled elsewhere).
459 !(getLangOpts().CPlusPlus
&& NewSSPtr
&&
460 isTemplateName(S
, *NewSSPtr
, false, TemplateName
, nullptr, false,
461 Template
, MemberOfUnknownSpecialization
))) {
462 ParsedType Ty
= getTypeName(*NewII
, NameLoc
, S
, NewSSPtr
,
463 isClassName
, HasTrailingDot
, ObjectTypePtr
,
465 WantNontrivialTypeSourceInfo
,
466 IsClassTemplateDeductionContext
);
468 diagnoseTypo(Correction
,
469 PDiag(diag::err_unknown_type_or_class_name_suggest
)
470 << Result
.getLookupName() << isClassName
);
472 SS
->MakeTrivial(Context
, NNS
, SourceRange(NameLoc
));
473 *CorrectedII
= NewII
;
478 // If typo correction failed or was not performed, fall through
480 case LookupResult::FoundOverloaded
:
481 case LookupResult::FoundUnresolvedValue
:
482 Result
.suppressDiagnostics();
485 case LookupResult::Ambiguous
:
486 // Recover from type-hiding ambiguities by hiding the type. We'll
487 // do the lookup again when looking for an object, and we can
488 // diagnose the error then. If we don't do this, then the error
489 // about hiding the type will be immediately followed by an error
490 // that only makes sense if the identifier was treated like a type.
491 if (Result
.getAmbiguityKind() == LookupResult::AmbiguousTagHiding
) {
492 Result
.suppressDiagnostics();
496 // Look to see if we have a type anywhere in the list of results.
497 for (LookupResult::iterator Res
= Result
.begin(), ResEnd
= Result
.end();
498 Res
!= ResEnd
; ++Res
) {
499 NamedDecl
*RealRes
= (*Res
)->getUnderlyingDecl();
500 if (isa
<TypeDecl
, ObjCInterfaceDecl
, UnresolvedUsingIfExistsDecl
>(
502 (AllowDeducedTemplate
&& getAsTypeTemplateDecl(RealRes
))) {
504 // Make the selection of the recovery decl deterministic.
505 RealRes
->getLocation() < IIDecl
->getLocation()) {
507 FoundUsingShadow
= dyn_cast
<UsingShadowDecl
>(*Res
);
513 // None of the entities we found is a type, so there is no way
514 // to even assume that the result is a type. In this case, don't
515 // complain about the ambiguity. The parser will either try to
516 // perform this lookup again (e.g., as an object name), which
517 // will produce the ambiguity, or will complain that it expected
519 Result
.suppressDiagnostics();
523 // We found a type within the ambiguous lookup; diagnose the
524 // ambiguity and then return that type. This might be the right
525 // answer, or it might not be, but it suppresses any attempt to
526 // perform the name lookup again.
529 case LookupResult::Found
:
530 IIDecl
= Result
.getFoundDecl();
531 FoundUsingShadow
= dyn_cast
<UsingShadowDecl
>(*Result
.begin());
535 assert(IIDecl
&& "Didn't find decl");
538 if (TypeDecl
*TD
= dyn_cast
<TypeDecl
>(IIDecl
)) {
539 // C++ [class.qual]p2: A lookup that would find the injected-class-name
540 // instead names the constructors of the class, except when naming a class.
541 // This is ill-formed when we're not actually forming a ctor or dtor name.
542 auto *LookupRD
= dyn_cast_or_null
<CXXRecordDecl
>(LookupCtx
);
543 auto *FoundRD
= dyn_cast
<CXXRecordDecl
>(TD
);
544 if (!isClassName
&& !IsCtorOrDtorName
&& LookupRD
&& FoundRD
&&
545 FoundRD
->isInjectedClassName() &&
546 declaresSameEntity(LookupRD
, cast
<Decl
>(FoundRD
->getParent())))
547 Diag(NameLoc
, diag::err_out_of_line_qualified_id_type_names_constructor
)
550 DiagnoseUseOfDecl(IIDecl
, NameLoc
);
552 T
= Context
.getTypeDeclType(TD
);
553 MarkAnyDeclReferenced(TD
->getLocation(), TD
, /*OdrUse=*/false);
554 } else if (ObjCInterfaceDecl
*IDecl
= dyn_cast
<ObjCInterfaceDecl
>(IIDecl
)) {
555 (void)DiagnoseUseOfDecl(IDecl
, NameLoc
);
557 T
= Context
.getObjCInterfaceType(IDecl
);
558 FoundUsingShadow
= nullptr; // FIXME: Target must be a TypeDecl.
559 } else if (auto *UD
= dyn_cast
<UnresolvedUsingIfExistsDecl
>(IIDecl
)) {
560 (void)DiagnoseUseOfDecl(UD
, NameLoc
);
561 // Recover with 'int'
562 return ParsedType::make(Context
.IntTy
);
563 } else if (AllowDeducedTemplate
) {
564 if (auto *TD
= getAsTypeTemplateDecl(IIDecl
)) {
565 assert(!FoundUsingShadow
|| FoundUsingShadow
->getTargetDecl() == TD
);
566 TemplateName Template
=
567 FoundUsingShadow
? TemplateName(FoundUsingShadow
) : TemplateName(TD
);
568 T
= Context
.getDeducedTemplateSpecializationType(Template
, QualType(),
570 // Don't wrap in a further UsingType.
571 FoundUsingShadow
= nullptr;
576 // If it's not plausibly a type, suppress diagnostics.
577 Result
.suppressDiagnostics();
581 if (FoundUsingShadow
)
582 T
= Context
.getUsingType(FoundUsingShadow
, T
);
584 return buildNamedType(*this, SS
, T
, NameLoc
, WantNontrivialTypeSourceInfo
);
587 // Builds a fake NNS for the given decl context.
588 static NestedNameSpecifier
*
589 synthesizeCurrentNestedNameSpecifier(ASTContext
&Context
, DeclContext
*DC
) {
590 for (;; DC
= DC
->getLookupParent()) {
591 DC
= DC
->getPrimaryContext();
592 auto *ND
= dyn_cast
<NamespaceDecl
>(DC
);
593 if (ND
&& !ND
->isInline() && !ND
->isAnonymousNamespace())
594 return NestedNameSpecifier::Create(Context
, nullptr, ND
);
595 else if (auto *RD
= dyn_cast
<CXXRecordDecl
>(DC
))
596 return NestedNameSpecifier::Create(Context
, nullptr, RD
->isTemplateDecl(),
597 RD
->getTypeForDecl());
598 else if (isa
<TranslationUnitDecl
>(DC
))
599 return NestedNameSpecifier::GlobalSpecifier(Context
);
601 llvm_unreachable("something isn't in TU scope?");
604 /// Find the parent class with dependent bases of the innermost enclosing method
605 /// context. Do not look for enclosing CXXRecordDecls directly, or we will end
606 /// up allowing unqualified dependent type names at class-level, which MSVC
607 /// correctly rejects.
608 static const CXXRecordDecl
*
609 findRecordWithDependentBasesOfEnclosingMethod(const DeclContext
*DC
) {
610 for (; DC
&& DC
->isDependentContext(); DC
= DC
->getLookupParent()) {
611 DC
= DC
->getPrimaryContext();
612 if (const auto *MD
= dyn_cast
<CXXMethodDecl
>(DC
))
613 if (MD
->getParent()->hasAnyDependentBases())
614 return MD
->getParent();
619 ParsedType
Sema::ActOnMSVCUnknownTypeName(const IdentifierInfo
&II
,
620 SourceLocation NameLoc
,
621 bool IsTemplateTypeArg
) {
622 assert(getLangOpts().MSVCCompat
&& "shouldn't be called in non-MSVC mode");
624 NestedNameSpecifier
*NNS
= nullptr;
625 if (IsTemplateTypeArg
&& getCurScope()->isTemplateParamScope()) {
626 // If we weren't able to parse a default template argument, delay lookup
627 // until instantiation time by making a non-dependent DependentTypeName. We
628 // pretend we saw a NestedNameSpecifier referring to the current scope, and
629 // lookup is retried.
630 // FIXME: This hurts our diagnostic quality, since we get errors like "no
631 // type named 'Foo' in 'current_namespace'" when the user didn't write any
633 NNS
= synthesizeCurrentNestedNameSpecifier(Context
, CurContext
);
634 Diag(NameLoc
, diag::ext_ms_delayed_template_argument
) << &II
;
635 } else if (const CXXRecordDecl
*RD
=
636 findRecordWithDependentBasesOfEnclosingMethod(CurContext
)) {
637 // Build a DependentNameType that will perform lookup into RD at
638 // instantiation time.
639 NNS
= NestedNameSpecifier::Create(Context
, nullptr, RD
->isTemplateDecl(),
640 RD
->getTypeForDecl());
642 // Diagnose that this identifier was undeclared, and retry the lookup during
643 // template instantiation.
644 Diag(NameLoc
, diag::ext_undeclared_unqual_id_with_dependent_base
) << &II
647 // This is not a situation that we should recover from.
651 QualType T
= Context
.getDependentNameType(ETK_None
, NNS
, &II
);
653 // Build type location information. We synthesized the qualifier, so we have
654 // to build a fake NestedNameSpecifierLoc.
655 NestedNameSpecifierLocBuilder NNSLocBuilder
;
656 NNSLocBuilder
.MakeTrivial(Context
, NNS
, SourceRange(NameLoc
));
657 NestedNameSpecifierLoc QualifierLoc
= NNSLocBuilder
.getWithLocInContext(Context
);
659 TypeLocBuilder Builder
;
660 DependentNameTypeLoc DepTL
= Builder
.push
<DependentNameTypeLoc
>(T
);
661 DepTL
.setNameLoc(NameLoc
);
662 DepTL
.setElaboratedKeywordLoc(SourceLocation());
663 DepTL
.setQualifierLoc(QualifierLoc
);
664 return CreateParsedType(T
, Builder
.getTypeSourceInfo(Context
, T
));
667 /// isTagName() - This method is called *for error recovery purposes only*
668 /// to determine if the specified name is a valid tag name ("struct foo"). If
669 /// so, this returns the TST for the tag corresponding to it (TST_enum,
670 /// TST_union, TST_struct, TST_interface, TST_class). This is used to diagnose
671 /// cases in C where the user forgot to specify the tag.
672 DeclSpec::TST
Sema::isTagName(IdentifierInfo
&II
, Scope
*S
) {
673 // Do a tag name lookup in this scope.
674 LookupResult
R(*this, &II
, SourceLocation(), LookupTagName
);
675 LookupName(R
, S
, false);
676 R
.suppressDiagnostics();
677 if (R
.getResultKind() == LookupResult::Found
)
678 if (const TagDecl
*TD
= R
.getAsSingle
<TagDecl
>()) {
679 switch (TD
->getTagKind()) {
680 case TTK_Struct
: return DeclSpec::TST_struct
;
681 case TTK_Interface
: return DeclSpec::TST_interface
;
682 case TTK_Union
: return DeclSpec::TST_union
;
683 case TTK_Class
: return DeclSpec::TST_class
;
684 case TTK_Enum
: return DeclSpec::TST_enum
;
688 return DeclSpec::TST_unspecified
;
691 /// isMicrosoftMissingTypename - In Microsoft mode, within class scope,
692 /// if a CXXScopeSpec's type is equal to the type of one of the base classes
693 /// then downgrade the missing typename error to a warning.
694 /// This is needed for MSVC compatibility; Example:
696 /// template<class T> class A {
698 /// typedef int TYPE;
700 /// template<class T> class B : public A<T> {
702 /// A<T>::TYPE a; // no typename required because A<T> is a base class.
705 bool Sema::isMicrosoftMissingTypename(const CXXScopeSpec
*SS
, Scope
*S
) {
706 if (CurContext
->isRecord()) {
707 if (SS
->getScopeRep()->getKind() == NestedNameSpecifier::Super
)
710 const Type
*Ty
= SS
->getScopeRep()->getAsType();
712 CXXRecordDecl
*RD
= cast
<CXXRecordDecl
>(CurContext
);
713 for (const auto &Base
: RD
->bases())
714 if (Ty
&& Context
.hasSameUnqualifiedType(QualType(Ty
, 1), Base
.getType()))
716 return S
->isFunctionPrototypeScope();
718 return CurContext
->isFunctionOrMethod() || S
->isFunctionPrototypeScope();
721 void Sema::DiagnoseUnknownTypeName(IdentifierInfo
*&II
,
722 SourceLocation IILoc
,
725 ParsedType
&SuggestedType
,
726 bool IsTemplateName
) {
727 // Don't report typename errors for editor placeholders.
728 if (II
->isEditorPlaceholder())
730 // We don't have anything to suggest (yet).
731 SuggestedType
= nullptr;
733 // There may have been a typo in the name of the type. Look up typo
734 // results, in case we have something that we can suggest.
735 TypeNameValidatorCCC
CCC(/*AllowInvalid=*/false, /*WantClass=*/false,
736 /*AllowTemplates=*/IsTemplateName
,
737 /*AllowNonTemplates=*/!IsTemplateName
);
738 if (TypoCorrection Corrected
=
739 CorrectTypo(DeclarationNameInfo(II
, IILoc
), LookupOrdinaryName
, S
, SS
,
740 CCC
, CTK_ErrorRecovery
)) {
741 // FIXME: Support error recovery for the template-name case.
742 bool CanRecover
= !IsTemplateName
;
743 if (Corrected
.isKeyword()) {
744 // We corrected to a keyword.
745 diagnoseTypo(Corrected
,
746 PDiag(IsTemplateName
? diag::err_no_template_suggest
747 : diag::err_unknown_typename_suggest
)
749 II
= Corrected
.getCorrectionAsIdentifierInfo();
751 // We found a similarly-named type or interface; suggest that.
752 if (!SS
|| !SS
->isSet()) {
753 diagnoseTypo(Corrected
,
754 PDiag(IsTemplateName
? diag::err_no_template_suggest
755 : diag::err_unknown_typename_suggest
)
757 } else if (DeclContext
*DC
= computeDeclContext(*SS
, false)) {
758 std::string
CorrectedStr(Corrected
.getAsString(getLangOpts()));
759 bool DroppedSpecifier
= Corrected
.WillReplaceSpecifier() &&
760 II
->getName().equals(CorrectedStr
);
761 diagnoseTypo(Corrected
,
763 ? diag::err_no_member_template_suggest
764 : diag::err_unknown_nested_typename_suggest
)
765 << II
<< DC
<< DroppedSpecifier
<< SS
->getRange(),
768 llvm_unreachable("could not have corrected a typo here");
775 if (Corrected
.getCorrectionSpecifier())
776 tmpSS
.MakeTrivial(Context
, Corrected
.getCorrectionSpecifier(),
778 // FIXME: Support class template argument deduction here.
780 getTypeName(*Corrected
.getCorrectionAsIdentifierInfo(), IILoc
, S
,
781 tmpSS
.isSet() ? &tmpSS
: SS
, false, false, nullptr,
782 /*IsCtorOrDtorName=*/false,
783 /*WantNontrivialTypeSourceInfo=*/true);
788 if (getLangOpts().CPlusPlus
&& !IsTemplateName
) {
789 // See if II is a class template that the user forgot to pass arguments to.
791 Name
.setIdentifier(II
, IILoc
);
792 CXXScopeSpec EmptySS
;
793 TemplateTy TemplateResult
;
794 bool MemberOfUnknownSpecialization
;
795 if (isTemplateName(S
, SS
? *SS
: EmptySS
, /*hasTemplateKeyword=*/false,
796 Name
, nullptr, true, TemplateResult
,
797 MemberOfUnknownSpecialization
) == TNK_Type_template
) {
798 diagnoseMissingTemplateArguments(TemplateResult
.get(), IILoc
);
803 // FIXME: Should we move the logic that tries to recover from a missing tag
804 // (struct, union, enum) from Parser::ParseImplicitInt here, instead?
806 if (!SS
|| (!SS
->isSet() && !SS
->isInvalid()))
807 Diag(IILoc
, IsTemplateName
? diag::err_no_template
808 : diag::err_unknown_typename
)
810 else if (DeclContext
*DC
= computeDeclContext(*SS
, false))
811 Diag(IILoc
, IsTemplateName
? diag::err_no_member_template
812 : diag::err_typename_nested_not_found
)
813 << II
<< DC
<< SS
->getRange();
814 else if (SS
->isValid() && SS
->getScopeRep()->containsErrors()) {
816 ActOnTypenameType(S
, SourceLocation(), *SS
, *II
, IILoc
).get();
817 } else if (isDependentScopeSpecifier(*SS
)) {
818 unsigned DiagID
= diag::err_typename_missing
;
819 if (getLangOpts().MSVCCompat
&& isMicrosoftMissingTypename(SS
, S
))
820 DiagID
= diag::ext_typename_missing
;
822 Diag(SS
->getRange().getBegin(), DiagID
)
823 << SS
->getScopeRep() << II
->getName()
824 << SourceRange(SS
->getRange().getBegin(), IILoc
)
825 << FixItHint::CreateInsertion(SS
->getRange().getBegin(), "typename ");
826 SuggestedType
= ActOnTypenameType(S
, SourceLocation(),
827 *SS
, *II
, IILoc
).get();
829 assert(SS
&& SS
->isInvalid() &&
830 "Invalid scope specifier has already been diagnosed");
834 /// Determine whether the given result set contains either a type name
836 static bool isResultTypeOrTemplate(LookupResult
&R
, const Token
&NextToken
) {
837 bool CheckTemplate
= R
.getSema().getLangOpts().CPlusPlus
&&
838 NextToken
.is(tok::less
);
840 for (LookupResult::iterator I
= R
.begin(), IEnd
= R
.end(); I
!= IEnd
; ++I
) {
841 if (isa
<TypeDecl
>(*I
) || isa
<ObjCInterfaceDecl
>(*I
))
844 if (CheckTemplate
&& isa
<TemplateDecl
>(*I
))
851 static bool isTagTypeWithMissingTag(Sema
&SemaRef
, LookupResult
&Result
,
852 Scope
*S
, CXXScopeSpec
&SS
,
853 IdentifierInfo
*&Name
,
854 SourceLocation NameLoc
) {
855 LookupResult
R(SemaRef
, Name
, NameLoc
, Sema::LookupTagName
);
856 SemaRef
.LookupParsedName(R
, S
, &SS
);
857 if (TagDecl
*Tag
= R
.getAsSingle
<TagDecl
>()) {
858 StringRef FixItTagName
;
859 switch (Tag
->getTagKind()) {
861 FixItTagName
= "class ";
865 FixItTagName
= "enum ";
869 FixItTagName
= "struct ";
873 FixItTagName
= "__interface ";
877 FixItTagName
= "union ";
881 StringRef TagName
= FixItTagName
.drop_back();
882 SemaRef
.Diag(NameLoc
, diag::err_use_of_tag_name_without_tag
)
883 << Name
<< TagName
<< SemaRef
.getLangOpts().CPlusPlus
884 << FixItHint::CreateInsertion(NameLoc
, FixItTagName
);
886 for (LookupResult::iterator I
= Result
.begin(), IEnd
= Result
.end();
888 SemaRef
.Diag((*I
)->getLocation(), diag::note_decl_hiding_tag_type
)
891 // Replace lookup results with just the tag decl.
892 Result
.clear(Sema::LookupTagName
);
893 SemaRef
.LookupParsedName(Result
, S
, &SS
);
900 Sema::NameClassification
Sema::ClassifyName(Scope
*S
, CXXScopeSpec
&SS
,
901 IdentifierInfo
*&Name
,
902 SourceLocation NameLoc
,
903 const Token
&NextToken
,
904 CorrectionCandidateCallback
*CCC
) {
905 DeclarationNameInfo
NameInfo(Name
, NameLoc
);
906 ObjCMethodDecl
*CurMethod
= getCurMethodDecl();
908 assert(NextToken
.isNot(tok::coloncolon
) &&
909 "parse nested name specifiers before calling ClassifyName");
910 if (getLangOpts().CPlusPlus
&& SS
.isSet() &&
911 isCurrentClassName(*Name
, S
, &SS
)) {
912 // Per [class.qual]p2, this names the constructors of SS, not the
913 // injected-class-name. We don't have a classification for that.
914 // There's not much point caching this result, since the parser
915 // will reject it later.
916 return NameClassification::Unknown();
919 LookupResult
Result(*this, Name
, NameLoc
, LookupOrdinaryName
);
920 LookupParsedName(Result
, S
, &SS
, !CurMethod
);
923 return NameClassification::Error();
925 // For unqualified lookup in a class template in MSVC mode, look into
926 // dependent base classes where the primary class template is known.
927 if (Result
.empty() && SS
.isEmpty() && getLangOpts().MSVCCompat
) {
928 if (ParsedType TypeInBase
=
929 recoverFromTypeInKnownDependentBase(*this, *Name
, NameLoc
))
933 // Perform lookup for Objective-C instance variables (including automatically
934 // synthesized instance variables), if we're in an Objective-C method.
935 // FIXME: This lookup really, really needs to be folded in to the normal
936 // unqualified lookup mechanism.
937 if (SS
.isEmpty() && CurMethod
&& !isResultTypeOrTemplate(Result
, NextToken
)) {
938 DeclResult Ivar
= LookupIvarInObjCMethod(Result
, S
, Name
);
939 if (Ivar
.isInvalid())
940 return NameClassification::Error();
942 return NameClassification::NonType(cast
<NamedDecl
>(Ivar
.get()));
944 // We defer builtin creation until after ivar lookup inside ObjC methods.
946 LookupBuiltin(Result
);
949 bool SecondTry
= false;
950 bool IsFilteredTemplateName
= false;
953 switch (Result
.getResultKind()) {
954 case LookupResult::NotFound
:
955 // If an unqualified-id is followed by a '(', then we have a function
957 if (SS
.isEmpty() && NextToken
.is(tok::l_paren
)) {
958 // In C++, this is an ADL-only call.
960 if (getLangOpts().CPlusPlus
)
961 return NameClassification::UndeclaredNonType();
964 // If the expression that precedes the parenthesized argument list in a
965 // function call consists solely of an identifier, and if no
966 // declaration is visible for this identifier, the identifier is
967 // implicitly declared exactly as if, in the innermost block containing
968 // the function call, the declaration
970 // extern int identifier ();
974 // We also allow this in C99 as an extension. However, this is not
975 // allowed in all language modes as functions without prototypes may not
977 if (getLangOpts().implicitFunctionsAllowed()) {
978 if (NamedDecl
*D
= ImplicitlyDefineFunction(NameLoc
, *Name
, S
))
979 return NameClassification::NonType(D
);
983 if (getLangOpts().CPlusPlus20
&& SS
.isEmpty() && NextToken
.is(tok::less
)) {
984 // In C++20 onwards, this could be an ADL-only call to a function
985 // template, and we're required to assume that this is a template name.
987 // FIXME: Find a way to still do typo correction in this case.
988 TemplateName Template
=
989 Context
.getAssumedTemplateName(NameInfo
.getName());
990 return NameClassification::UndeclaredTemplate(Template
);
993 // In C, we first see whether there is a tag type by the same name, in
994 // which case it's likely that the user just forgot to write "enum",
995 // "struct", or "union".
996 if (!getLangOpts().CPlusPlus
&& !SecondTry
&&
997 isTagTypeWithMissingTag(*this, Result
, S
, SS
, Name
, NameLoc
)) {
1001 // Perform typo correction to determine if there is another name that is
1002 // close to this name.
1003 if (!SecondTry
&& CCC
) {
1005 if (TypoCorrection Corrected
=
1006 CorrectTypo(Result
.getLookupNameInfo(), Result
.getLookupKind(), S
,
1007 &SS
, *CCC
, CTK_ErrorRecovery
)) {
1008 unsigned UnqualifiedDiag
= diag::err_undeclared_var_use_suggest
;
1009 unsigned QualifiedDiag
= diag::err_no_member_suggest
;
1011 NamedDecl
*FirstDecl
= Corrected
.getFoundDecl();
1012 NamedDecl
*UnderlyingFirstDecl
= Corrected
.getCorrectionDecl();
1013 if (getLangOpts().CPlusPlus
&& NextToken
.is(tok::less
) &&
1014 UnderlyingFirstDecl
&& isa
<TemplateDecl
>(UnderlyingFirstDecl
)) {
1015 UnqualifiedDiag
= diag::err_no_template_suggest
;
1016 QualifiedDiag
= diag::err_no_member_template_suggest
;
1017 } else if (UnderlyingFirstDecl
&&
1018 (isa
<TypeDecl
>(UnderlyingFirstDecl
) ||
1019 isa
<ObjCInterfaceDecl
>(UnderlyingFirstDecl
) ||
1020 isa
<ObjCCompatibleAliasDecl
>(UnderlyingFirstDecl
))) {
1021 UnqualifiedDiag
= diag::err_unknown_typename_suggest
;
1022 QualifiedDiag
= diag::err_unknown_nested_typename_suggest
;
1026 diagnoseTypo(Corrected
, PDiag(UnqualifiedDiag
) << Name
);
1027 } else {// FIXME: is this even reachable? Test it.
1028 std::string
CorrectedStr(Corrected
.getAsString(getLangOpts()));
1029 bool DroppedSpecifier
= Corrected
.WillReplaceSpecifier() &&
1030 Name
->getName().equals(CorrectedStr
);
1031 diagnoseTypo(Corrected
, PDiag(QualifiedDiag
)
1032 << Name
<< computeDeclContext(SS
, false)
1033 << DroppedSpecifier
<< SS
.getRange());
1036 // Update the name, so that the caller has the new name.
1037 Name
= Corrected
.getCorrectionAsIdentifierInfo();
1039 // Typo correction corrected to a keyword.
1040 if (Corrected
.isKeyword())
1043 // Also update the LookupResult...
1044 // FIXME: This should probably go away at some point
1046 Result
.setLookupName(Corrected
.getCorrection());
1048 Result
.addDecl(FirstDecl
);
1050 // If we found an Objective-C instance variable, let
1051 // LookupInObjCMethod build the appropriate expression to
1052 // reference the ivar.
1053 // FIXME: This is a gross hack.
1054 if (ObjCIvarDecl
*Ivar
= Result
.getAsSingle
<ObjCIvarDecl
>()) {
1056 LookupIvarInObjCMethod(Result
, S
, Ivar
->getIdentifier());
1058 return NameClassification::Error();
1060 return NameClassification::NonType(Ivar
);
1067 // We failed to correct; just fall through and let the parser deal with it.
1068 Result
.suppressDiagnostics();
1069 return NameClassification::Unknown();
1071 case LookupResult::NotFoundInCurrentInstantiation
: {
1072 // We performed name lookup into the current instantiation, and there were
1073 // dependent bases, so we treat this result the same way as any other
1074 // dependent nested-name-specifier.
1076 // C++ [temp.res]p2:
1077 // A name used in a template declaration or definition and that is
1078 // dependent on a template-parameter is assumed not to name a type
1079 // unless the applicable name lookup finds a type name or the name is
1080 // qualified by the keyword typename.
1082 // FIXME: If the next token is '<', we might want to ask the parser to
1083 // perform some heroics to see if we actually have a
1084 // template-argument-list, which would indicate a missing 'template'
1086 return NameClassification::DependentNonType();
1089 case LookupResult::Found
:
1090 case LookupResult::FoundOverloaded
:
1091 case LookupResult::FoundUnresolvedValue
:
1094 case LookupResult::Ambiguous
:
1095 if (getLangOpts().CPlusPlus
&& NextToken
.is(tok::less
) &&
1096 hasAnyAcceptableTemplateNames(Result
, /*AllowFunctionTemplates=*/true,
1097 /*AllowDependent=*/false)) {
1098 // C++ [temp.local]p3:
1099 // A lookup that finds an injected-class-name (10.2) can result in an
1100 // ambiguity in certain cases (for example, if it is found in more than
1101 // one base class). If all of the injected-class-names that are found
1102 // refer to specializations of the same class template, and if the name
1103 // is followed by a template-argument-list, the reference refers to the
1104 // class template itself and not a specialization thereof, and is not
1107 // This filtering can make an ambiguous result into an unambiguous one,
1108 // so try again after filtering out template names.
1109 FilterAcceptableTemplateNames(Result
);
1110 if (!Result
.isAmbiguous()) {
1111 IsFilteredTemplateName
= true;
1116 // Diagnose the ambiguity and return an error.
1117 return NameClassification::Error();
1120 if (getLangOpts().CPlusPlus
&& NextToken
.is(tok::less
) &&
1121 (IsFilteredTemplateName
||
1122 hasAnyAcceptableTemplateNames(
1123 Result
, /*AllowFunctionTemplates=*/true,
1124 /*AllowDependent=*/false,
1125 /*AllowNonTemplateFunctions*/ SS
.isEmpty() &&
1126 getLangOpts().CPlusPlus20
))) {
1127 // C++ [temp.names]p3:
1128 // After name lookup (3.4) finds that a name is a template-name or that
1129 // an operator-function-id or a literal- operator-id refers to a set of
1130 // overloaded functions any member of which is a function template if
1131 // this is followed by a <, the < is always taken as the delimiter of a
1132 // template-argument-list and never as the less-than operator.
1133 // C++2a [temp.names]p2:
1134 // A name is also considered to refer to a template if it is an
1135 // unqualified-id followed by a < and name lookup finds either one
1136 // or more functions or finds nothing.
1137 if (!IsFilteredTemplateName
)
1138 FilterAcceptableTemplateNames(Result
);
1140 bool IsFunctionTemplate
;
1142 TemplateName Template
;
1143 if (Result
.end() - Result
.begin() > 1) {
1144 IsFunctionTemplate
= true;
1145 Template
= Context
.getOverloadedTemplateName(Result
.begin(),
1147 } else if (!Result
.empty()) {
1148 auto *TD
= cast
<TemplateDecl
>(getAsTemplateNameDecl(
1149 *Result
.begin(), /*AllowFunctionTemplates=*/true,
1150 /*AllowDependent=*/false));
1151 IsFunctionTemplate
= isa
<FunctionTemplateDecl
>(TD
);
1152 IsVarTemplate
= isa
<VarTemplateDecl
>(TD
);
1154 UsingShadowDecl
*FoundUsingShadow
=
1155 dyn_cast
<UsingShadowDecl
>(*Result
.begin());
1156 assert(!FoundUsingShadow
||
1157 TD
== cast
<TemplateDecl
>(FoundUsingShadow
->getTargetDecl()));
1159 FoundUsingShadow
? TemplateName(FoundUsingShadow
) : TemplateName(TD
);
1160 if (SS
.isNotEmpty())
1161 Template
= Context
.getQualifiedTemplateName(SS
.getScopeRep(),
1162 /*TemplateKeyword=*/false,
1165 // All results were non-template functions. This is a function template
1167 IsFunctionTemplate
= true;
1168 Template
= Context
.getAssumedTemplateName(NameInfo
.getName());
1171 if (IsFunctionTemplate
) {
1172 // Function templates always go through overload resolution, at which
1173 // point we'll perform the various checks (e.g., accessibility) we need
1174 // to based on which function we selected.
1175 Result
.suppressDiagnostics();
1177 return NameClassification::FunctionTemplate(Template
);
1180 return IsVarTemplate
? NameClassification::VarTemplate(Template
)
1181 : NameClassification::TypeTemplate(Template
);
1184 auto BuildTypeFor
= [&](TypeDecl
*Type
, NamedDecl
*Found
) {
1185 QualType T
= Context
.getTypeDeclType(Type
);
1186 if (const auto *USD
= dyn_cast
<UsingShadowDecl
>(Found
))
1187 T
= Context
.getUsingType(USD
, T
);
1188 return buildNamedType(*this, &SS
, T
, NameLoc
);
1191 NamedDecl
*FirstDecl
= (*Result
.begin())->getUnderlyingDecl();
1192 if (TypeDecl
*Type
= dyn_cast
<TypeDecl
>(FirstDecl
)) {
1193 DiagnoseUseOfDecl(Type
, NameLoc
);
1194 MarkAnyDeclReferenced(Type
->getLocation(), Type
, /*OdrUse=*/false);
1195 return BuildTypeFor(Type
, *Result
.begin());
1198 ObjCInterfaceDecl
*Class
= dyn_cast
<ObjCInterfaceDecl
>(FirstDecl
);
1200 // FIXME: It's unfortunate that we don't have a Type node for handling this.
1201 if (ObjCCompatibleAliasDecl
*Alias
=
1202 dyn_cast
<ObjCCompatibleAliasDecl
>(FirstDecl
))
1203 Class
= Alias
->getClassInterface();
1207 DiagnoseUseOfDecl(Class
, NameLoc
);
1209 if (NextToken
.is(tok::period
)) {
1210 // Interface. <something> is parsed as a property reference expression.
1211 // Just return "unknown" as a fall-through for now.
1212 Result
.suppressDiagnostics();
1213 return NameClassification::Unknown();
1216 QualType T
= Context
.getObjCInterfaceType(Class
);
1217 return ParsedType::make(T
);
1220 if (isa
<ConceptDecl
>(FirstDecl
))
1221 return NameClassification::Concept(
1222 TemplateName(cast
<TemplateDecl
>(FirstDecl
)));
1224 if (auto *EmptyD
= dyn_cast
<UnresolvedUsingIfExistsDecl
>(FirstDecl
)) {
1225 (void)DiagnoseUseOfDecl(EmptyD
, NameLoc
);
1226 return NameClassification::Error();
1229 // We can have a type template here if we're classifying a template argument.
1230 if (isa
<TemplateDecl
>(FirstDecl
) && !isa
<FunctionTemplateDecl
>(FirstDecl
) &&
1231 !isa
<VarTemplateDecl
>(FirstDecl
))
1232 return NameClassification::TypeTemplate(
1233 TemplateName(cast
<TemplateDecl
>(FirstDecl
)));
1235 // Check for a tag type hidden by a non-type decl in a few cases where it
1236 // seems likely a type is wanted instead of the non-type that was found.
1237 bool NextIsOp
= NextToken
.isOneOf(tok::amp
, tok::star
);
1238 if ((NextToken
.is(tok::identifier
) ||
1240 FirstDecl
->getUnderlyingDecl()->isFunctionOrFunctionTemplate())) &&
1241 isTagTypeWithMissingTag(*this, Result
, S
, SS
, Name
, NameLoc
)) {
1242 TypeDecl
*Type
= Result
.getAsSingle
<TypeDecl
>();
1243 DiagnoseUseOfDecl(Type
, NameLoc
);
1244 return BuildTypeFor(Type
, *Result
.begin());
1247 // If we already know which single declaration is referenced, just annotate
1248 // that declaration directly. Defer resolving even non-overloaded class
1249 // member accesses, as we need to defer certain access checks until we know
1251 bool ADL
= UseArgumentDependentLookup(SS
, Result
, NextToken
.is(tok::l_paren
));
1252 if (Result
.isSingleResult() && !ADL
&&
1253 (!FirstDecl
->isCXXClassMember() || isa
<EnumConstantDecl
>(FirstDecl
)))
1254 return NameClassification::NonType(Result
.getRepresentativeDecl());
1256 // Otherwise, this is an overload set that we will need to resolve later.
1257 Result
.suppressDiagnostics();
1258 return NameClassification::OverloadSet(UnresolvedLookupExpr::Create(
1259 Context
, Result
.getNamingClass(), SS
.getWithLocInContext(Context
),
1260 Result
.getLookupNameInfo(), ADL
, Result
.isOverloadedResult(),
1261 Result
.begin(), Result
.end()));
1265 Sema::ActOnNameClassifiedAsUndeclaredNonType(IdentifierInfo
*Name
,
1266 SourceLocation NameLoc
) {
1267 assert(getLangOpts().CPlusPlus
&& "ADL-only call in C?");
1269 LookupResult
Result(*this, Name
, NameLoc
, LookupOrdinaryName
);
1270 return BuildDeclarationNameExpr(SS
, Result
, /*ADL=*/true);
1274 Sema::ActOnNameClassifiedAsDependentNonType(const CXXScopeSpec
&SS
,
1275 IdentifierInfo
*Name
,
1276 SourceLocation NameLoc
,
1277 bool IsAddressOfOperand
) {
1278 DeclarationNameInfo
NameInfo(Name
, NameLoc
);
1279 return ActOnDependentIdExpression(SS
, /*TemplateKWLoc=*/SourceLocation(),
1280 NameInfo
, IsAddressOfOperand
,
1281 /*TemplateArgs=*/nullptr);
1284 ExprResult
Sema::ActOnNameClassifiedAsNonType(Scope
*S
, const CXXScopeSpec
&SS
,
1286 SourceLocation NameLoc
,
1287 const Token
&NextToken
) {
1288 if (getCurMethodDecl() && SS
.isEmpty())
1289 if (auto *Ivar
= dyn_cast
<ObjCIvarDecl
>(Found
->getUnderlyingDecl()))
1290 return BuildIvarRefExpr(S
, NameLoc
, Ivar
);
1292 // Reconstruct the lookup result.
1293 LookupResult
Result(*this, Found
->getDeclName(), NameLoc
, LookupOrdinaryName
);
1294 Result
.addDecl(Found
);
1295 Result
.resolveKind();
1297 bool ADL
= UseArgumentDependentLookup(SS
, Result
, NextToken
.is(tok::l_paren
));
1298 return BuildDeclarationNameExpr(SS
, Result
, ADL
, /*AcceptInvalidDecl=*/true);
1301 ExprResult
Sema::ActOnNameClassifiedAsOverloadSet(Scope
*S
, Expr
*E
) {
1302 // For an implicit class member access, transform the result into a member
1303 // access expression if necessary.
1304 auto *ULE
= cast
<UnresolvedLookupExpr
>(E
);
1305 if ((*ULE
->decls_begin())->isCXXClassMember()) {
1307 SS
.Adopt(ULE
->getQualifierLoc());
1309 // Reconstruct the lookup result.
1310 LookupResult
Result(*this, ULE
->getName(), ULE
->getNameLoc(),
1311 LookupOrdinaryName
);
1312 Result
.setNamingClass(ULE
->getNamingClass());
1313 for (auto I
= ULE
->decls_begin(), E
= ULE
->decls_end(); I
!= E
; ++I
)
1314 Result
.addDecl(*I
, I
.getAccess());
1315 Result
.resolveKind();
1316 return BuildPossibleImplicitMemberExpr(SS
, SourceLocation(), Result
,
1320 // Otherwise, this is already in the form we needed, and no further checks
1325 Sema::TemplateNameKindForDiagnostics
1326 Sema::getTemplateNameKindForDiagnostics(TemplateName Name
) {
1327 auto *TD
= Name
.getAsTemplateDecl();
1329 return TemplateNameKindForDiagnostics::DependentTemplate
;
1330 if (isa
<ClassTemplateDecl
>(TD
))
1331 return TemplateNameKindForDiagnostics::ClassTemplate
;
1332 if (isa
<FunctionTemplateDecl
>(TD
))
1333 return TemplateNameKindForDiagnostics::FunctionTemplate
;
1334 if (isa
<VarTemplateDecl
>(TD
))
1335 return TemplateNameKindForDiagnostics::VarTemplate
;
1336 if (isa
<TypeAliasTemplateDecl
>(TD
))
1337 return TemplateNameKindForDiagnostics::AliasTemplate
;
1338 if (isa
<TemplateTemplateParmDecl
>(TD
))
1339 return TemplateNameKindForDiagnostics::TemplateTemplateParam
;
1340 if (isa
<ConceptDecl
>(TD
))
1341 return TemplateNameKindForDiagnostics::Concept
;
1342 return TemplateNameKindForDiagnostics::DependentTemplate
;
1345 void Sema::PushDeclContext(Scope
*S
, DeclContext
*DC
) {
1346 assert(DC
->getLexicalParent() == CurContext
&&
1347 "The next DeclContext should be lexically contained in the current one.");
1352 void Sema::PopDeclContext() {
1353 assert(CurContext
&& "DeclContext imbalance!");
1355 CurContext
= CurContext
->getLexicalParent();
1356 assert(CurContext
&& "Popped translation unit!");
1359 Sema::SkippedDefinitionContext
Sema::ActOnTagStartSkippedDefinition(Scope
*S
,
1361 // Unlike PushDeclContext, the context to which we return is not necessarily
1362 // the containing DC of TD, because the new context will be some pre-existing
1363 // TagDecl definition instead of a fresh one.
1364 auto Result
= static_cast<SkippedDefinitionContext
>(CurContext
);
1365 CurContext
= cast
<TagDecl
>(D
)->getDefinition();
1366 assert(CurContext
&& "skipping definition of undefined tag");
1367 // Start lookups from the parent of the current context; we don't want to look
1368 // into the pre-existing complete definition.
1369 S
->setEntity(CurContext
->getLookupParent());
1373 void Sema::ActOnTagFinishSkippedDefinition(SkippedDefinitionContext Context
) {
1374 CurContext
= static_cast<decltype(CurContext
)>(Context
);
1377 /// EnterDeclaratorContext - Used when we must lookup names in the context
1378 /// of a declarator's nested name specifier.
1380 void Sema::EnterDeclaratorContext(Scope
*S
, DeclContext
*DC
) {
1381 // C++0x [basic.lookup.unqual]p13:
1382 // A name used in the definition of a static data member of class
1383 // X (after the qualified-id of the static member) is looked up as
1384 // if the name was used in a member function of X.
1385 // C++0x [basic.lookup.unqual]p14:
1386 // If a variable member of a namespace is defined outside of the
1387 // scope of its namespace then any name used in the definition of
1388 // the variable member (after the declarator-id) is looked up as
1389 // if the definition of the variable member occurred in its
1391 // Both of these imply that we should push a scope whose context
1392 // is the semantic context of the declaration. We can't use
1393 // PushDeclContext here because that context is not necessarily
1394 // lexically contained in the current context. Fortunately,
1395 // the containing scope should have the appropriate information.
1397 assert(!S
->getEntity() && "scope already has entity");
1400 Scope
*Ancestor
= S
->getParent();
1401 while (!Ancestor
->getEntity()) Ancestor
= Ancestor
->getParent();
1402 assert(Ancestor
->getEntity() == CurContext
&& "ancestor context mismatch");
1408 if (S
->getParent()->isTemplateParamScope()) {
1409 // Also set the corresponding entities for all immediately-enclosing
1410 // template parameter scopes.
1411 EnterTemplatedContext(S
->getParent(), DC
);
1415 void Sema::ExitDeclaratorContext(Scope
*S
) {
1416 assert(S
->getEntity() == CurContext
&& "Context imbalance!");
1418 // Switch back to the lexical context. The safety of this is
1419 // enforced by an assert in EnterDeclaratorContext.
1420 Scope
*Ancestor
= S
->getParent();
1421 while (!Ancestor
->getEntity()) Ancestor
= Ancestor
->getParent();
1422 CurContext
= Ancestor
->getEntity();
1424 // We don't need to do anything with the scope, which is going to
1428 void Sema::EnterTemplatedContext(Scope
*S
, DeclContext
*DC
) {
1429 assert(S
->isTemplateParamScope() &&
1430 "expected to be initializing a template parameter scope");
1432 // C++20 [temp.local]p7:
1433 // In the definition of a member of a class template that appears outside
1434 // of the class template definition, the name of a member of the class
1435 // template hides the name of a template-parameter of any enclosing class
1436 // templates (but not a template-parameter of the member if the member is a
1437 // class or function template).
1438 // C++20 [temp.local]p9:
1439 // In the definition of a class template or in the definition of a member
1440 // of such a template that appears outside of the template definition, for
1441 // each non-dependent base class (13.8.2.1), if the name of the base class
1442 // or the name of a member of the base class is the same as the name of a
1443 // template-parameter, the base class name or member name hides the
1444 // template-parameter name (6.4.10).
1446 // This means that a template parameter scope should be searched immediately
1447 // after searching the DeclContext for which it is a template parameter
1448 // scope. For example, for
1449 // template<typename T> template<typename U> template<typename V>
1450 // void N::A<T>::B<U>::f(...)
1451 // we search V then B<U> (and base classes) then U then A<T> (and base
1452 // classes) then T then N then ::.
1453 unsigned ScopeDepth
= getTemplateDepth(S
);
1454 for (; S
&& S
->isTemplateParamScope(); S
= S
->getParent(), --ScopeDepth
) {
1455 DeclContext
*SearchDCAfterScope
= DC
;
1456 for (; DC
; DC
= DC
->getLookupParent()) {
1457 if (const TemplateParameterList
*TPL
=
1458 cast
<Decl
>(DC
)->getDescribedTemplateParams()) {
1459 unsigned DCDepth
= TPL
->getDepth() + 1;
1460 if (DCDepth
> ScopeDepth
)
1462 if (ScopeDepth
== DCDepth
)
1463 SearchDCAfterScope
= DC
= DC
->getLookupParent();
1467 S
->setLookupEntity(SearchDCAfterScope
);
1471 void Sema::ActOnReenterFunctionContext(Scope
* S
, Decl
*D
) {
1472 // We assume that the caller has already called
1473 // ActOnReenterTemplateScope so getTemplatedDecl() works.
1474 FunctionDecl
*FD
= D
->getAsFunction();
1478 // Same implementation as PushDeclContext, but enters the context
1479 // from the lexical parent, rather than the top-level class.
1480 assert(CurContext
== FD
->getLexicalParent() &&
1481 "The next DeclContext should be lexically contained in the current one.");
1483 S
->setEntity(CurContext
);
1485 for (unsigned P
= 0, NumParams
= FD
->getNumParams(); P
< NumParams
; ++P
) {
1486 ParmVarDecl
*Param
= FD
->getParamDecl(P
);
1487 // If the parameter has an identifier, then add it to the scope
1488 if (Param
->getIdentifier()) {
1490 IdResolver
.AddDecl(Param
);
1495 void Sema::ActOnExitFunctionContext() {
1496 // Same implementation as PopDeclContext, but returns to the lexical parent,
1497 // rather than the top-level class.
1498 assert(CurContext
&& "DeclContext imbalance!");
1499 CurContext
= CurContext
->getLexicalParent();
1500 assert(CurContext
&& "Popped translation unit!");
1503 /// Determine whether overloading is allowed for a new function
1504 /// declaration considering prior declarations of the same name.
1506 /// This routine determines whether overloading is possible, not
1507 /// whether a new declaration actually overloads a previous one.
1508 /// It will return true in C++ (where overloads are alway permitted)
1509 /// or, as a C extension, when either the new declaration or a
1510 /// previous one is declared with the 'overloadable' attribute.
1511 static bool AllowOverloadingOfFunction(const LookupResult
&Previous
,
1512 ASTContext
&Context
,
1513 const FunctionDecl
*New
) {
1514 if (Context
.getLangOpts().CPlusPlus
|| New
->hasAttr
<OverloadableAttr
>())
1517 // Multiversion function declarations are not overloads in the
1518 // usual sense of that term, but lookup will report that an
1519 // overload set was found if more than one multiversion function
1520 // declaration is present for the same name. It is therefore
1521 // inadequate to assume that some prior declaration(s) had
1522 // the overloadable attribute; checking is required. Since one
1523 // declaration is permitted to omit the attribute, it is necessary
1524 // to check at least two; hence the 'any_of' check below. Note that
1525 // the overloadable attribute is implicitly added to declarations
1526 // that were required to have it but did not.
1527 if (Previous
.getResultKind() == LookupResult::FoundOverloaded
) {
1528 return llvm::any_of(Previous
, [](const NamedDecl
*ND
) {
1529 return ND
->hasAttr
<OverloadableAttr
>();
1531 } else if (Previous
.getResultKind() == LookupResult::Found
)
1532 return Previous
.getFoundDecl()->hasAttr
<OverloadableAttr
>();
1537 /// Add this decl to the scope shadowed decl chains.
1538 void Sema::PushOnScopeChains(NamedDecl
*D
, Scope
*S
, bool AddToContext
) {
1539 // Move up the scope chain until we find the nearest enclosing
1540 // non-transparent context. The declaration will be introduced into this
1542 while (S
->getEntity() && S
->getEntity()->isTransparentContext())
1545 // Add scoped declarations into their context, so that they can be
1546 // found later. Declarations without a context won't be inserted
1547 // into any context.
1549 CurContext
->addDecl(D
);
1551 // Out-of-line definitions shouldn't be pushed into scope in C++, unless they
1552 // are function-local declarations.
1553 if (getLangOpts().CPlusPlus
&& D
->isOutOfLine() && !S
->getFnParent())
1556 // Template instantiations should also not be pushed into scope.
1557 if (isa
<FunctionDecl
>(D
) &&
1558 cast
<FunctionDecl
>(D
)->isFunctionTemplateSpecialization())
1561 // If this replaces anything in the current scope,
1562 IdentifierResolver::iterator I
= IdResolver
.begin(D
->getDeclName()),
1563 IEnd
= IdResolver
.end();
1564 for (; I
!= IEnd
; ++I
) {
1565 if (S
->isDeclScope(*I
) && D
->declarationReplaces(*I
)) {
1567 IdResolver
.RemoveDecl(*I
);
1569 // Should only need to replace one decl.
1576 if (isa
<LabelDecl
>(D
) && !cast
<LabelDecl
>(D
)->isGnuLocal()) {
1577 // Implicitly-generated labels may end up getting generated in an order that
1578 // isn't strictly lexical, which breaks name lookup. Be careful to insert
1579 // the label at the appropriate place in the identifier chain.
1580 for (I
= IdResolver
.begin(D
->getDeclName()); I
!= IEnd
; ++I
) {
1581 DeclContext
*IDC
= (*I
)->getLexicalDeclContext()->getRedeclContext();
1582 if (IDC
== CurContext
) {
1583 if (!S
->isDeclScope(*I
))
1585 } else if (IDC
->Encloses(CurContext
))
1589 IdResolver
.InsertDeclAfter(I
, D
);
1591 IdResolver
.AddDecl(D
);
1593 warnOnReservedIdentifier(D
);
1596 bool Sema::isDeclInScope(NamedDecl
*D
, DeclContext
*Ctx
, Scope
*S
,
1597 bool AllowInlineNamespace
) const {
1598 return IdResolver
.isDeclInScope(D
, Ctx
, S
, AllowInlineNamespace
);
1601 Scope
*Sema::getScopeForDeclContext(Scope
*S
, DeclContext
*DC
) {
1602 DeclContext
*TargetDC
= DC
->getPrimaryContext();
1604 if (DeclContext
*ScopeDC
= S
->getEntity())
1605 if (ScopeDC
->getPrimaryContext() == TargetDC
)
1607 } while ((S
= S
->getParent()));
1612 static bool isOutOfScopePreviousDeclaration(NamedDecl
*,
1616 /// Filters out lookup results that don't fall within the given scope
1617 /// as determined by isDeclInScope.
1618 void Sema::FilterLookupForScope(LookupResult
&R
, DeclContext
*Ctx
, Scope
*S
,
1619 bool ConsiderLinkage
,
1620 bool AllowInlineNamespace
) {
1621 LookupResult::Filter F
= R
.makeFilter();
1622 while (F
.hasNext()) {
1623 NamedDecl
*D
= F
.next();
1625 if (isDeclInScope(D
, Ctx
, S
, AllowInlineNamespace
))
1628 if (ConsiderLinkage
&& isOutOfScopePreviousDeclaration(D
, Ctx
, Context
))
1637 /// We've determined that \p New is a redeclaration of \p Old. Check that they
1638 /// have compatible owning modules.
1639 bool Sema::CheckRedeclarationModuleOwnership(NamedDecl
*New
, NamedDecl
*Old
) {
1640 // [module.interface]p7:
1641 // A declaration is attached to a module as follows:
1642 // - If the declaration is a non-dependent friend declaration that nominates a
1643 // function with a declarator-id that is a qualified-id or template-id or that
1644 // nominates a class other than with an elaborated-type-specifier with neither
1645 // a nested-name-specifier nor a simple-template-id, it is attached to the
1646 // module to which the friend is attached ([basic.link]).
1647 if (New
->getFriendObjectKind() &&
1648 Old
->getOwningModuleForLinkage() != New
->getOwningModuleForLinkage()) {
1649 New
->setLocalOwningModule(Old
->getOwningModule());
1650 makeMergedDefinitionVisible(New
);
1654 Module
*NewM
= New
->getOwningModule();
1655 Module
*OldM
= Old
->getOwningModule();
1657 if (NewM
&& NewM
->isPrivateModule())
1658 NewM
= NewM
->Parent
;
1659 if (OldM
&& OldM
->isPrivateModule())
1660 OldM
= OldM
->Parent
;
1666 // A module implementation unit has visibility of the decls in its
1667 // implicitly imported interface.
1668 if (NewM
->isModuleImplementation() && OldM
== ThePrimaryInterface
)
1671 // Partitions are part of the module, but a partition could import another
1672 // module, so verify that the PMIs agree.
1673 if ((NewM
->isModulePartition() || OldM
->isModulePartition()) &&
1674 NewM
->getPrimaryModuleInterfaceName() ==
1675 OldM
->getPrimaryModuleInterfaceName())
1679 bool NewIsModuleInterface
= NewM
&& NewM
->isModulePurview();
1680 bool OldIsModuleInterface
= OldM
&& OldM
->isModulePurview();
1681 if (NewIsModuleInterface
|| OldIsModuleInterface
) {
1682 // C++ Modules TS [basic.def.odr] 6.2/6.7 [sic]:
1683 // if a declaration of D [...] appears in the purview of a module, all
1684 // other such declarations shall appear in the purview of the same module
1685 Diag(New
->getLocation(), diag::err_mismatched_owning_module
)
1687 << NewIsModuleInterface
1688 << (NewIsModuleInterface
? NewM
->getFullModuleName() : "")
1689 << OldIsModuleInterface
1690 << (OldIsModuleInterface
? OldM
->getFullModuleName() : "");
1691 Diag(Old
->getLocation(), diag::note_previous_declaration
);
1692 New
->setInvalidDecl();
1699 // [module.interface]p6:
1700 // A redeclaration of an entity X is implicitly exported if X was introduced by
1701 // an exported declaration; otherwise it shall not be exported.
1702 bool Sema::CheckRedeclarationExported(NamedDecl
*New
, NamedDecl
*Old
) {
1703 // [module.interface]p1:
1704 // An export-declaration shall inhabit a namespace scope.
1706 // So it is meaningless to talk about redeclaration which is not at namespace
1708 if (!New
->getLexicalDeclContext()
1709 ->getNonTransparentContext()
1710 ->isFileContext() ||
1711 !Old
->getLexicalDeclContext()
1712 ->getNonTransparentContext()
1716 bool IsNewExported
= New
->isInExportDeclContext();
1717 bool IsOldExported
= Old
->isInExportDeclContext();
1719 // It should be irrevelant if both of them are not exported.
1720 if (!IsNewExported
&& !IsOldExported
)
1726 assert(IsNewExported
);
1728 auto Lk
= Old
->getFormalLinkage();
1730 if (Lk
== Linkage::InternalLinkage
)
1732 else if (Lk
== Linkage::ModuleLinkage
)
1734 Diag(New
->getLocation(), diag::err_redeclaration_non_exported
) << New
<< S
;
1735 Diag(Old
->getLocation(), diag::note_previous_declaration
);
1739 // A wrapper function for checking the semantic restrictions of
1740 // a redeclaration within a module.
1741 bool Sema::CheckRedeclarationInModule(NamedDecl
*New
, NamedDecl
*Old
) {
1742 if (CheckRedeclarationModuleOwnership(New
, Old
))
1745 if (CheckRedeclarationExported(New
, Old
))
1751 // Check the redefinition in C++20 Modules.
1753 // [basic.def.odr]p14:
1754 // For any definable item D with definitions in multiple translation units,
1755 // - if D is a non-inline non-templated function or variable, or
1756 // - if the definitions in different translation units do not satisfy the
1757 // following requirements,
1758 // the program is ill-formed; a diagnostic is required only if the definable
1759 // item is attached to a named module and a prior definition is reachable at
1760 // the point where a later definition occurs.
1761 // - Each such definition shall not be attached to a named module
1763 // - Each such definition shall consist of the same sequence of tokens, ...
1766 // Return true if the redefinition is not allowed. Return false otherwise.
1767 bool Sema::IsRedefinitionInModule(const NamedDecl
*New
,
1768 const NamedDecl
*Old
) const {
1769 assert(getASTContext().isSameEntity(New
, Old
) &&
1770 "New and Old are not the same definition, we should diagnostic it "
1771 "immediately instead of checking it.");
1772 assert(const_cast<Sema
*>(this)->isReachable(New
) &&
1773 const_cast<Sema
*>(this)->isReachable(Old
) &&
1774 "We shouldn't see unreachable definitions here.");
1776 Module
*NewM
= New
->getOwningModule();
1777 Module
*OldM
= Old
->getOwningModule();
1779 // We only checks for named modules here. The header like modules is skipped.
1780 // FIXME: This is not right if we import the header like modules in the module
1783 // For example, assuming "header.h" provides definition for `D`.
1787 // import "header.h"; // or #include "header.h" but import it by clang modules
1792 // import "header.h"; // or uses clang modules.
1795 // In this case, `D` has multiple definitions in multiple TU (M.cppm and
1796 // Use.cpp) and `D` is attached to a named module `M`. The compiler should
1797 // reject it. But the current implementation couldn't detect the case since we
1798 // don't record the information about the importee modules.
1800 // But this might not be painful in practice. Since the design of C++20 Named
1801 // Modules suggests us to use headers in global module fragment instead of
1803 if (NewM
&& NewM
->isHeaderLikeModule())
1805 if (OldM
&& OldM
->isHeaderLikeModule())
1811 // [basic.def.odr]p14.3
1812 // Each such definition shall not be attached to a named module
1814 if ((NewM
&& NewM
->isModulePurview()) || (OldM
&& OldM
->isModulePurview()))
1817 // Then New and Old lives in the same TU if their share one same module unit.
1819 NewM
= NewM
->getTopLevelModule();
1821 OldM
= OldM
->getTopLevelModule();
1822 return OldM
== NewM
;
1825 static bool isUsingDeclNotAtClassScope(NamedDecl
*D
) {
1826 if (D
->getDeclContext()->isFileContext())
1829 return isa
<UsingShadowDecl
>(D
) ||
1830 isa
<UnresolvedUsingTypenameDecl
>(D
) ||
1831 isa
<UnresolvedUsingValueDecl
>(D
);
1834 /// Removes using shadow declarations not at class scope from the lookup
1836 static void RemoveUsingDecls(LookupResult
&R
) {
1837 LookupResult::Filter F
= R
.makeFilter();
1839 if (isUsingDeclNotAtClassScope(F
.next()))
1845 /// Check for this common pattern:
1848 /// S(const S&); // DO NOT IMPLEMENT
1849 /// void operator=(const S&); // DO NOT IMPLEMENT
1852 static bool IsDisallowedCopyOrAssign(const CXXMethodDecl
*D
) {
1853 // FIXME: Should check for private access too but access is set after we get
1855 if (D
->doesThisDeclarationHaveABody())
1858 if (const CXXConstructorDecl
*CD
= dyn_cast
<CXXConstructorDecl
>(D
))
1859 return CD
->isCopyConstructor();
1860 return D
->isCopyAssignmentOperator();
1863 // We need this to handle
1866 // void *foo() { return 0; }
1869 // When we see foo we don't know if after the typedef we will get 'A' or '*A'
1870 // for example. If 'A', foo will have external linkage. If we have '*A',
1871 // foo will have no linkage. Since we can't know until we get to the end
1872 // of the typedef, this function finds out if D might have non-external linkage.
1873 // Callers should verify at the end of the TU if it D has external linkage or
1875 bool Sema::mightHaveNonExternalLinkage(const DeclaratorDecl
*D
) {
1876 const DeclContext
*DC
= D
->getDeclContext();
1877 while (!DC
->isTranslationUnit()) {
1878 if (const RecordDecl
*RD
= dyn_cast
<RecordDecl
>(DC
)){
1879 if (!RD
->hasNameForLinkage())
1882 DC
= DC
->getParent();
1885 return !D
->isExternallyVisible();
1888 // FIXME: This needs to be refactored; some other isInMainFile users want
1890 static bool isMainFileLoc(const Sema
&S
, SourceLocation Loc
) {
1891 if (S
.TUKind
!= TU_Complete
|| S
.getLangOpts().IsHeaderFile
)
1893 return S
.SourceMgr
.isInMainFile(Loc
);
1896 bool Sema::ShouldWarnIfUnusedFileScopedDecl(const DeclaratorDecl
*D
) const {
1899 if (D
->isInvalidDecl() || D
->isUsed() || D
->hasAttr
<UnusedAttr
>())
1902 // Ignore all entities declared within templates, and out-of-line definitions
1903 // of members of class templates.
1904 if (D
->getDeclContext()->isDependentContext() ||
1905 D
->getLexicalDeclContext()->isDependentContext())
1908 if (const FunctionDecl
*FD
= dyn_cast
<FunctionDecl
>(D
)) {
1909 if (FD
->getTemplateSpecializationKind() == TSK_ImplicitInstantiation
)
1911 // A non-out-of-line declaration of a member specialization was implicitly
1912 // instantiated; it's the out-of-line declaration that we're interested in.
1913 if (FD
->getTemplateSpecializationKind() == TSK_ExplicitSpecialization
&&
1914 FD
->getMemberSpecializationInfo() && !FD
->isOutOfLine())
1917 if (const CXXMethodDecl
*MD
= dyn_cast
<CXXMethodDecl
>(FD
)) {
1918 if (MD
->isVirtual() || IsDisallowedCopyOrAssign(MD
))
1921 // 'static inline' functions are defined in headers; don't warn.
1922 if (FD
->isInlined() && !isMainFileLoc(*this, FD
->getLocation()))
1926 if (FD
->doesThisDeclarationHaveABody() &&
1927 Context
.DeclMustBeEmitted(FD
))
1929 } else if (const VarDecl
*VD
= dyn_cast
<VarDecl
>(D
)) {
1930 // Constants and utility variables are defined in headers with internal
1931 // linkage; don't warn. (Unlike functions, there isn't a convenient marker
1933 if (!isMainFileLoc(*this, VD
->getLocation()))
1936 if (Context
.DeclMustBeEmitted(VD
))
1939 if (VD
->isStaticDataMember() &&
1940 VD
->getTemplateSpecializationKind() == TSK_ImplicitInstantiation
)
1942 if (VD
->isStaticDataMember() &&
1943 VD
->getTemplateSpecializationKind() == TSK_ExplicitSpecialization
&&
1944 VD
->getMemberSpecializationInfo() && !VD
->isOutOfLine())
1947 if (VD
->isInline() && !isMainFileLoc(*this, VD
->getLocation()))
1953 // Only warn for unused decls internal to the translation unit.
1954 // FIXME: This seems like a bogus check; it suppresses -Wunused-function
1955 // for inline functions defined in the main source file, for instance.
1956 return mightHaveNonExternalLinkage(D
);
1959 void Sema::MarkUnusedFileScopedDecl(const DeclaratorDecl
*D
) {
1963 if (const FunctionDecl
*FD
= dyn_cast
<FunctionDecl
>(D
)) {
1964 const FunctionDecl
*First
= FD
->getFirstDecl();
1965 if (FD
!= First
&& ShouldWarnIfUnusedFileScopedDecl(First
))
1966 return; // First should already be in the vector.
1969 if (const VarDecl
*VD
= dyn_cast
<VarDecl
>(D
)) {
1970 const VarDecl
*First
= VD
->getFirstDecl();
1971 if (VD
!= First
&& ShouldWarnIfUnusedFileScopedDecl(First
))
1972 return; // First should already be in the vector.
1975 if (ShouldWarnIfUnusedFileScopedDecl(D
))
1976 UnusedFileScopedDecls
.push_back(D
);
1979 static bool ShouldDiagnoseUnusedDecl(const LangOptions
&LangOpts
,
1980 const NamedDecl
*D
) {
1981 if (D
->isInvalidDecl())
1984 if (auto *DD
= dyn_cast
<DecompositionDecl
>(D
)) {
1985 // For a decomposition declaration, warn if none of the bindings are
1986 // referenced, instead of if the variable itself is referenced (which
1987 // it is, by the bindings' expressions).
1988 bool IsAllPlaceholders
= true;
1989 for (auto *BD
: DD
->bindings()) {
1990 if (BD
->isReferenced())
1992 IsAllPlaceholders
= IsAllPlaceholders
&& BD
->isPlaceholderVar(LangOpts
);
1994 if (IsAllPlaceholders
)
1996 } else if (!D
->getDeclName()) {
1998 } else if (D
->isReferenced() || D
->isUsed()) {
2002 if (D
->isPlaceholderVar(LangOpts
))
2005 if (D
->hasAttr
<UnusedAttr
>() || D
->hasAttr
<ObjCPreciseLifetimeAttr
>() ||
2006 D
->hasAttr
<CleanupAttr
>())
2009 if (isa
<LabelDecl
>(D
))
2012 // Except for labels, we only care about unused decls that are local to
2014 bool WithinFunction
= D
->getDeclContext()->isFunctionOrMethod();
2015 if (const auto *R
= dyn_cast
<CXXRecordDecl
>(D
->getDeclContext()))
2016 // For dependent types, the diagnostic is deferred.
2018 WithinFunction
|| (R
->isLocalClass() && !R
->isDependentType());
2019 if (!WithinFunction
)
2022 if (isa
<TypedefNameDecl
>(D
))
2025 // White-list anything that isn't a local variable.
2026 if (!isa
<VarDecl
>(D
) || isa
<ParmVarDecl
>(D
) || isa
<ImplicitParamDecl
>(D
))
2029 // Types of valid local variables should be complete, so this should succeed.
2030 if (const VarDecl
*VD
= dyn_cast
<VarDecl
>(D
)) {
2032 const Expr
*Init
= VD
->getInit();
2033 if (const auto *Cleanups
= dyn_cast_or_null
<ExprWithCleanups
>(Init
))
2034 Init
= Cleanups
->getSubExpr();
2036 const auto *Ty
= VD
->getType().getTypePtr();
2038 // Only look at the outermost level of typedef.
2039 if (const TypedefType
*TT
= Ty
->getAs
<TypedefType
>()) {
2040 // Allow anything marked with __attribute__((unused)).
2041 if (TT
->getDecl()->hasAttr
<UnusedAttr
>())
2045 // Warn for reference variables whose initializtion performs lifetime
2047 if (const auto *MTE
= dyn_cast_or_null
<MaterializeTemporaryExpr
>(Init
)) {
2048 if (MTE
->getExtendingDecl()) {
2049 Ty
= VD
->getType().getNonReferenceType().getTypePtr();
2050 Init
= MTE
->getSubExpr()->IgnoreImplicitAsWritten();
2054 // If we failed to complete the type for some reason, or if the type is
2055 // dependent, don't diagnose the variable.
2056 if (Ty
->isIncompleteType() || Ty
->isDependentType())
2059 // Look at the element type to ensure that the warning behaviour is
2060 // consistent for both scalars and arrays.
2061 Ty
= Ty
->getBaseElementTypeUnsafe();
2063 if (const TagType
*TT
= Ty
->getAs
<TagType
>()) {
2064 const TagDecl
*Tag
= TT
->getDecl();
2065 if (Tag
->hasAttr
<UnusedAttr
>())
2068 if (const CXXRecordDecl
*RD
= dyn_cast
<CXXRecordDecl
>(Tag
)) {
2069 if (!RD
->hasTrivialDestructor() && !RD
->hasAttr
<WarnUnusedAttr
>())
2073 const CXXConstructExpr
*Construct
=
2074 dyn_cast
<CXXConstructExpr
>(Init
);
2075 if (Construct
&& !Construct
->isElidable()) {
2076 CXXConstructorDecl
*CD
= Construct
->getConstructor();
2077 if (!CD
->isTrivial() && !RD
->hasAttr
<WarnUnusedAttr
>() &&
2078 (VD
->getInit()->isValueDependent() || !VD
->evaluateValue()))
2082 // Suppress the warning if we don't know how this is constructed, and
2083 // it could possibly be non-trivial constructor.
2084 if (Init
->isTypeDependent()) {
2085 for (const CXXConstructorDecl
*Ctor
: RD
->ctors())
2086 if (!Ctor
->isTrivial())
2090 // Suppress the warning if the constructor is unresolved because
2091 // its arguments are dependent.
2092 if (isa
<CXXUnresolvedConstructExpr
>(Init
))
2098 // TODO: __attribute__((unused)) templates?
2104 static void GenerateFixForUnusedDecl(const NamedDecl
*D
, ASTContext
&Ctx
,
2106 if (isa
<LabelDecl
>(D
)) {
2107 SourceLocation AfterColon
= Lexer::findLocationAfterToken(
2108 D
->getEndLoc(), tok::colon
, Ctx
.getSourceManager(), Ctx
.getLangOpts(),
2109 /*SkipTrailingWhitespaceAndNewline=*/false);
2110 if (AfterColon
.isInvalid())
2112 Hint
= FixItHint::CreateRemoval(
2113 CharSourceRange::getCharRange(D
->getBeginLoc(), AfterColon
));
2117 void Sema::DiagnoseUnusedNestedTypedefs(const RecordDecl
*D
) {
2118 DiagnoseUnusedNestedTypedefs(
2119 D
, [this](SourceLocation Loc
, PartialDiagnostic PD
) { Diag(Loc
, PD
); });
2122 void Sema::DiagnoseUnusedNestedTypedefs(const RecordDecl
*D
,
2123 DiagReceiverTy DiagReceiver
) {
2124 if (D
->getTypeForDecl()->isDependentType())
2127 for (auto *TmpD
: D
->decls()) {
2128 if (const auto *T
= dyn_cast
<TypedefNameDecl
>(TmpD
))
2129 DiagnoseUnusedDecl(T
, DiagReceiver
);
2130 else if(const auto *R
= dyn_cast
<RecordDecl
>(TmpD
))
2131 DiagnoseUnusedNestedTypedefs(R
, DiagReceiver
);
2135 void Sema::DiagnoseUnusedDecl(const NamedDecl
*D
) {
2137 D
, [this](SourceLocation Loc
, PartialDiagnostic PD
) { Diag(Loc
, PD
); });
2140 /// DiagnoseUnusedDecl - Emit warnings about declarations that are not used
2141 /// unless they are marked attr(unused).
2142 void Sema::DiagnoseUnusedDecl(const NamedDecl
*D
, DiagReceiverTy DiagReceiver
) {
2143 if (!ShouldDiagnoseUnusedDecl(getLangOpts(), D
))
2146 if (auto *TD
= dyn_cast
<TypedefNameDecl
>(D
)) {
2147 // typedefs can be referenced later on, so the diagnostics are emitted
2148 // at end-of-translation-unit.
2149 UnusedLocalTypedefNameCandidates
.insert(TD
);
2154 GenerateFixForUnusedDecl(D
, Context
, Hint
);
2157 if (isa
<VarDecl
>(D
) && cast
<VarDecl
>(D
)->isExceptionVariable())
2158 DiagID
= diag::warn_unused_exception_param
;
2159 else if (isa
<LabelDecl
>(D
))
2160 DiagID
= diag::warn_unused_label
;
2162 DiagID
= diag::warn_unused_variable
;
2164 SourceLocation DiagLoc
= D
->getLocation();
2165 DiagReceiver(DiagLoc
, PDiag(DiagID
) << D
<< Hint
<< SourceRange(DiagLoc
));
2168 void Sema::DiagnoseUnusedButSetDecl(const VarDecl
*VD
,
2169 DiagReceiverTy DiagReceiver
) {
2170 // If it's not referenced, it can't be set. If it has the Cleanup attribute,
2171 // it's not really unused.
2172 if (!VD
->isReferenced() || !VD
->getDeclName() || VD
->hasAttr
<CleanupAttr
>())
2175 // In C++, `_` variables behave as if they were maybe_unused
2176 if (VD
->hasAttr
<UnusedAttr
>() || VD
->isPlaceholderVar(getLangOpts()))
2179 const auto *Ty
= VD
->getType().getTypePtr()->getBaseElementTypeUnsafe();
2181 if (Ty
->isReferenceType() || Ty
->isDependentType())
2184 if (const TagType
*TT
= Ty
->getAs
<TagType
>()) {
2185 const TagDecl
*Tag
= TT
->getDecl();
2186 if (Tag
->hasAttr
<UnusedAttr
>())
2188 // In C++, don't warn for record types that don't have WarnUnusedAttr, to
2189 // mimic gcc's behavior.
2190 if (const CXXRecordDecl
*RD
= dyn_cast
<CXXRecordDecl
>(Tag
)) {
2191 if (!RD
->hasAttr
<WarnUnusedAttr
>())
2196 // Don't warn about __block Objective-C pointer variables, as they might
2197 // be assigned in the block but not used elsewhere for the purpose of lifetime
2199 if (VD
->hasAttr
<BlocksAttr
>() && Ty
->isObjCObjectPointerType())
2202 // Don't warn about Objective-C pointer variables with precise lifetime
2203 // semantics; they can be used to ensure ARC releases the object at a known
2204 // time, which may mean assignment but no other references.
2205 if (VD
->hasAttr
<ObjCPreciseLifetimeAttr
>() && Ty
->isObjCObjectPointerType())
2208 auto iter
= RefsMinusAssignments
.find(VD
);
2209 if (iter
== RefsMinusAssignments
.end())
2212 assert(iter
->getSecond() >= 0 &&
2213 "Found a negative number of references to a VarDecl");
2214 if (iter
->getSecond() != 0)
2216 unsigned DiagID
= isa
<ParmVarDecl
>(VD
) ? diag::warn_unused_but_set_parameter
2217 : diag::warn_unused_but_set_variable
;
2218 DiagReceiver(VD
->getLocation(), PDiag(DiagID
) << VD
);
2221 static void CheckPoppedLabel(LabelDecl
*L
, Sema
&S
,
2222 Sema::DiagReceiverTy DiagReceiver
) {
2223 // Verify that we have no forward references left. If so, there was a goto
2224 // or address of a label taken, but no definition of it. Label fwd
2225 // definitions are indicated with a null substmt which is also not a resolved
2226 // MS inline assembly label name.
2227 bool Diagnose
= false;
2228 if (L
->isMSAsmLabel())
2229 Diagnose
= !L
->isResolvedMSAsmLabel();
2231 Diagnose
= L
->getStmt() == nullptr;
2233 DiagReceiver(L
->getLocation(), S
.PDiag(diag::err_undeclared_label_use
)
2237 void Sema::ActOnPopScope(SourceLocation Loc
, Scope
*S
) {
2240 if (S
->decl_empty()) return;
2241 assert((S
->getFlags() & (Scope::DeclScope
| Scope::TemplateParamScope
)) &&
2242 "Scope shouldn't contain decls!");
2244 /// We visit the decls in non-deterministic order, but we want diagnostics
2245 /// emitted in deterministic order. Collect any diagnostic that may be emitted
2246 /// and sort the diagnostics before emitting them, after we visited all decls.
2249 std::optional
<SourceLocation
> PreviousDeclLoc
;
2250 PartialDiagnostic PD
;
2252 SmallVector
<LocAndDiag
, 16> DeclDiags
;
2253 auto addDiag
= [&DeclDiags
](SourceLocation Loc
, PartialDiagnostic PD
) {
2254 DeclDiags
.push_back(LocAndDiag
{Loc
, std::nullopt
, std::move(PD
)});
2256 auto addDiagWithPrev
= [&DeclDiags
](SourceLocation Loc
,
2257 SourceLocation PreviousDeclLoc
,
2258 PartialDiagnostic PD
) {
2259 DeclDiags
.push_back(LocAndDiag
{Loc
, PreviousDeclLoc
, std::move(PD
)});
2262 for (auto *TmpD
: S
->decls()) {
2263 assert(TmpD
&& "This decl didn't get pushed??");
2265 assert(isa
<NamedDecl
>(TmpD
) && "Decl isn't NamedDecl?");
2266 NamedDecl
*D
= cast
<NamedDecl
>(TmpD
);
2268 // Diagnose unused variables in this scope.
2269 if (!S
->hasUnrecoverableErrorOccurred()) {
2270 DiagnoseUnusedDecl(D
, addDiag
);
2271 if (const auto *RD
= dyn_cast
<RecordDecl
>(D
))
2272 DiagnoseUnusedNestedTypedefs(RD
, addDiag
);
2273 if (VarDecl
*VD
= dyn_cast
<VarDecl
>(D
)) {
2274 DiagnoseUnusedButSetDecl(VD
, addDiag
);
2275 RefsMinusAssignments
.erase(VD
);
2279 if (!D
->getDeclName()) continue;
2281 // If this was a forward reference to a label, verify it was defined.
2282 if (LabelDecl
*LD
= dyn_cast
<LabelDecl
>(D
))
2283 CheckPoppedLabel(LD
, *this, addDiag
);
2285 // Remove this name from our lexical scope, and warn on it if we haven't
2287 IdResolver
.RemoveDecl(D
);
2288 auto ShadowI
= ShadowingDecls
.find(D
);
2289 if (ShadowI
!= ShadowingDecls
.end()) {
2290 if (const auto *FD
= dyn_cast
<FieldDecl
>(ShadowI
->second
)) {
2291 addDiagWithPrev(D
->getLocation(), FD
->getLocation(),
2292 PDiag(diag::warn_ctor_parm_shadows_field
)
2293 << D
<< FD
<< FD
->getParent());
2295 ShadowingDecls
.erase(ShadowI
);
2299 llvm::sort(DeclDiags
,
2300 [](const LocAndDiag
&LHS
, const LocAndDiag
&RHS
) -> bool {
2301 // The particular order for diagnostics is not important, as long
2302 // as the order is deterministic. Using the raw location is going
2303 // to generally be in source order unless there are macro
2304 // expansions involved.
2305 return LHS
.Loc
.getRawEncoding() < RHS
.Loc
.getRawEncoding();
2307 for (const LocAndDiag
&D
: DeclDiags
) {
2309 if (D
.PreviousDeclLoc
)
2310 Diag(*D
.PreviousDeclLoc
, diag::note_previous_declaration
);
2314 /// Look for an Objective-C class in the translation unit.
2316 /// \param Id The name of the Objective-C class we're looking for. If
2317 /// typo-correction fixes this name, the Id will be updated
2318 /// to the fixed name.
2320 /// \param IdLoc The location of the name in the translation unit.
2322 /// \param DoTypoCorrection If true, this routine will attempt typo correction
2323 /// if there is no class with the given name.
2325 /// \returns The declaration of the named Objective-C class, or NULL if the
2326 /// class could not be found.
2327 ObjCInterfaceDecl
*Sema::getObjCInterfaceDecl(IdentifierInfo
*&Id
,
2328 SourceLocation IdLoc
,
2329 bool DoTypoCorrection
) {
2330 // The third "scope" argument is 0 since we aren't enabling lazy built-in
2331 // creation from this context.
2332 NamedDecl
*IDecl
= LookupSingleName(TUScope
, Id
, IdLoc
, LookupOrdinaryName
);
2334 if (!IDecl
&& DoTypoCorrection
) {
2335 // Perform typo correction at the given location, but only if we
2336 // find an Objective-C class name.
2337 DeclFilterCCC
<ObjCInterfaceDecl
> CCC
{};
2338 if (TypoCorrection C
=
2339 CorrectTypo(DeclarationNameInfo(Id
, IdLoc
), LookupOrdinaryName
,
2340 TUScope
, nullptr, CCC
, CTK_ErrorRecovery
)) {
2341 diagnoseTypo(C
, PDiag(diag::err_undef_interface_suggest
) << Id
);
2342 IDecl
= C
.getCorrectionDeclAs
<ObjCInterfaceDecl
>();
2343 Id
= IDecl
->getIdentifier();
2346 ObjCInterfaceDecl
*Def
= dyn_cast_or_null
<ObjCInterfaceDecl
>(IDecl
);
2347 // This routine must always return a class definition, if any.
2348 if (Def
&& Def
->getDefinition())
2349 Def
= Def
->getDefinition();
2353 /// getNonFieldDeclScope - Retrieves the innermost scope, starting
2354 /// from S, where a non-field would be declared. This routine copes
2355 /// with the difference between C and C++ scoping rules in structs and
2356 /// unions. For example, the following code is well-formed in C but
2357 /// ill-formed in C++:
2363 /// void test_S6() {
2368 /// For the declaration of BAR, this routine will return a different
2369 /// scope. The scope S will be the scope of the unnamed enumeration
2370 /// within S6. In C++, this routine will return the scope associated
2371 /// with S6, because the enumeration's scope is a transparent
2372 /// context but structures can contain non-field names. In C, this
2373 /// routine will return the translation unit scope, since the
2374 /// enumeration's scope is a transparent context and structures cannot
2375 /// contain non-field names.
2376 Scope
*Sema::getNonFieldDeclScope(Scope
*S
) {
2377 while (((S
->getFlags() & Scope::DeclScope
) == 0) ||
2378 (S
->getEntity() && S
->getEntity()->isTransparentContext()) ||
2379 (S
->isClassScope() && !getLangOpts().CPlusPlus
))
2384 static StringRef
getHeaderName(Builtin::Context
&BuiltinInfo
, unsigned ID
,
2385 ASTContext::GetBuiltinTypeError Error
) {
2387 case ASTContext::GE_None
:
2389 case ASTContext::GE_Missing_type
:
2390 return BuiltinInfo
.getHeaderName(ID
);
2391 case ASTContext::GE_Missing_stdio
:
2393 case ASTContext::GE_Missing_setjmp
:
2395 case ASTContext::GE_Missing_ucontext
:
2396 return "ucontext.h";
2398 llvm_unreachable("unhandled error kind");
2401 FunctionDecl
*Sema::CreateBuiltin(IdentifierInfo
*II
, QualType Type
,
2402 unsigned ID
, SourceLocation Loc
) {
2403 DeclContext
*Parent
= Context
.getTranslationUnitDecl();
2405 if (getLangOpts().CPlusPlus
) {
2406 LinkageSpecDecl
*CLinkageDecl
= LinkageSpecDecl::Create(
2407 Context
, Parent
, Loc
, Loc
, LinkageSpecDecl::lang_c
, false);
2408 CLinkageDecl
->setImplicit();
2409 Parent
->addDecl(CLinkageDecl
);
2410 Parent
= CLinkageDecl
;
2413 FunctionDecl
*New
= FunctionDecl::Create(Context
, Parent
, Loc
, Loc
, II
, Type
,
2414 /*TInfo=*/nullptr, SC_Extern
,
2415 getCurFPFeatures().isFPConstrained(),
2416 false, Type
->isFunctionProtoType());
2418 New
->addAttr(BuiltinAttr::CreateImplicit(Context
, ID
));
2420 // Create Decl objects for each parameter, adding them to the
2422 if (const FunctionProtoType
*FT
= dyn_cast
<FunctionProtoType
>(Type
)) {
2423 SmallVector
<ParmVarDecl
*, 16> Params
;
2424 for (unsigned i
= 0, e
= FT
->getNumParams(); i
!= e
; ++i
) {
2425 ParmVarDecl
*parm
= ParmVarDecl::Create(
2426 Context
, New
, SourceLocation(), SourceLocation(), nullptr,
2427 FT
->getParamType(i
), /*TInfo=*/nullptr, SC_None
, nullptr);
2428 parm
->setScopeInfo(0, i
);
2429 Params
.push_back(parm
);
2431 New
->setParams(Params
);
2434 AddKnownFunctionAttributes(New
);
2438 /// LazilyCreateBuiltin - The specified Builtin-ID was first used at
2439 /// file scope. lazily create a decl for it. ForRedeclaration is true
2440 /// if we're creating this built-in in anticipation of redeclaring the
2442 NamedDecl
*Sema::LazilyCreateBuiltin(IdentifierInfo
*II
, unsigned ID
,
2443 Scope
*S
, bool ForRedeclaration
,
2444 SourceLocation Loc
) {
2445 LookupNecessaryTypesForBuiltin(S
, ID
);
2447 ASTContext::GetBuiltinTypeError Error
;
2448 QualType R
= Context
.GetBuiltinType(ID
, Error
);
2450 if (!ForRedeclaration
)
2453 // If we have a builtin without an associated type we should not emit a
2454 // warning when we were not able to find a type for it.
2455 if (Error
== ASTContext::GE_Missing_type
||
2456 Context
.BuiltinInfo
.allowTypeMismatch(ID
))
2459 // If we could not find a type for setjmp it is because the jmp_buf type was
2460 // not defined prior to the setjmp declaration.
2461 if (Error
== ASTContext::GE_Missing_setjmp
) {
2462 Diag(Loc
, diag::warn_implicit_decl_no_jmp_buf
)
2463 << Context
.BuiltinInfo
.getName(ID
);
2467 // Generally, we emit a warning that the declaration requires the
2468 // appropriate header.
2469 Diag(Loc
, diag::warn_implicit_decl_requires_sysheader
)
2470 << getHeaderName(Context
.BuiltinInfo
, ID
, Error
)
2471 << Context
.BuiltinInfo
.getName(ID
);
2475 if (!ForRedeclaration
&&
2476 (Context
.BuiltinInfo
.isPredefinedLibFunction(ID
) ||
2477 Context
.BuiltinInfo
.isHeaderDependentFunction(ID
))) {
2478 Diag(Loc
, LangOpts
.C99
? diag::ext_implicit_lib_function_decl_c99
2479 : diag::ext_implicit_lib_function_decl
)
2480 << Context
.BuiltinInfo
.getName(ID
) << R
;
2481 if (const char *Header
= Context
.BuiltinInfo
.getHeaderName(ID
))
2482 Diag(Loc
, diag::note_include_header_or_declare
)
2483 << Header
<< Context
.BuiltinInfo
.getName(ID
);
2489 FunctionDecl
*New
= CreateBuiltin(II
, R
, ID
, Loc
);
2490 RegisterLocallyScopedExternCDecl(New
, S
);
2492 // TUScope is the translation-unit scope to insert this function into.
2493 // FIXME: This is hideous. We need to teach PushOnScopeChains to
2494 // relate Scopes to DeclContexts, and probably eliminate CurContext
2495 // entirely, but we're not there yet.
2496 DeclContext
*SavedContext
= CurContext
;
2497 CurContext
= New
->getDeclContext();
2498 PushOnScopeChains(New
, TUScope
);
2499 CurContext
= SavedContext
;
2503 /// Typedef declarations don't have linkage, but they still denote the same
2504 /// entity if their types are the same.
2505 /// FIXME: This is notionally doing the same thing as ASTReaderDecl's
2507 static void filterNonConflictingPreviousTypedefDecls(Sema
&S
,
2508 TypedefNameDecl
*Decl
,
2509 LookupResult
&Previous
) {
2510 // This is only interesting when modules are enabled.
2511 if (!S
.getLangOpts().Modules
&& !S
.getLangOpts().ModulesLocalVisibility
)
2514 // Empty sets are uninteresting.
2515 if (Previous
.empty())
2518 LookupResult::Filter Filter
= Previous
.makeFilter();
2519 while (Filter
.hasNext()) {
2520 NamedDecl
*Old
= Filter
.next();
2522 // Non-hidden declarations are never ignored.
2523 if (S
.isVisible(Old
))
2526 // Declarations of the same entity are not ignored, even if they have
2527 // different linkages.
2528 if (auto *OldTD
= dyn_cast
<TypedefNameDecl
>(Old
)) {
2529 if (S
.Context
.hasSameType(OldTD
->getUnderlyingType(),
2530 Decl
->getUnderlyingType()))
2533 // If both declarations give a tag declaration a typedef name for linkage
2534 // purposes, then they declare the same entity.
2535 if (OldTD
->getAnonDeclWithTypedefName(/*AnyRedecl*/true) &&
2536 Decl
->getAnonDeclWithTypedefName())
2546 bool Sema::isIncompatibleTypedef(TypeDecl
*Old
, TypedefNameDecl
*New
) {
2548 if (TypedefNameDecl
*OldTypedef
= dyn_cast
<TypedefNameDecl
>(Old
))
2549 OldType
= OldTypedef
->getUnderlyingType();
2551 OldType
= Context
.getTypeDeclType(Old
);
2552 QualType NewType
= New
->getUnderlyingType();
2554 if (NewType
->isVariablyModifiedType()) {
2555 // Must not redefine a typedef with a variably-modified type.
2556 int Kind
= isa
<TypeAliasDecl
>(Old
) ? 1 : 0;
2557 Diag(New
->getLocation(), diag::err_redefinition_variably_modified_typedef
)
2559 if (Old
->getLocation().isValid())
2560 notePreviousDefinition(Old
, New
->getLocation());
2561 New
->setInvalidDecl();
2565 if (OldType
!= NewType
&&
2566 !OldType
->isDependentType() &&
2567 !NewType
->isDependentType() &&
2568 !Context
.hasSameType(OldType
, NewType
)) {
2569 int Kind
= isa
<TypeAliasDecl
>(Old
) ? 1 : 0;
2570 Diag(New
->getLocation(), diag::err_redefinition_different_typedef
)
2571 << Kind
<< NewType
<< OldType
;
2572 if (Old
->getLocation().isValid())
2573 notePreviousDefinition(Old
, New
->getLocation());
2574 New
->setInvalidDecl();
2580 /// MergeTypedefNameDecl - We just parsed a typedef 'New' which has the
2581 /// same name and scope as a previous declaration 'Old'. Figure out
2582 /// how to resolve this situation, merging decls or emitting
2583 /// diagnostics as appropriate. If there was an error, set New to be invalid.
2585 void Sema::MergeTypedefNameDecl(Scope
*S
, TypedefNameDecl
*New
,
2586 LookupResult
&OldDecls
) {
2587 // If the new decl is known invalid already, don't bother doing any
2589 if (New
->isInvalidDecl()) return;
2591 // Allow multiple definitions for ObjC built-in typedefs.
2592 // FIXME: Verify the underlying types are equivalent!
2593 if (getLangOpts().ObjC
) {
2594 const IdentifierInfo
*TypeID
= New
->getIdentifier();
2595 switch (TypeID
->getLength()) {
2599 if (!TypeID
->isStr("id"))
2601 QualType T
= New
->getUnderlyingType();
2602 if (!T
->isPointerType())
2604 if (!T
->isVoidPointerType()) {
2605 QualType PT
= T
->castAs
<PointerType
>()->getPointeeType();
2606 if (!PT
->isStructureType())
2609 Context
.setObjCIdRedefinitionType(T
);
2610 // Install the built-in type for 'id', ignoring the current definition.
2611 New
->setTypeForDecl(Context
.getObjCIdType().getTypePtr());
2615 if (!TypeID
->isStr("Class"))
2617 Context
.setObjCClassRedefinitionType(New
->getUnderlyingType());
2618 // Install the built-in type for 'Class', ignoring the current definition.
2619 New
->setTypeForDecl(Context
.getObjCClassType().getTypePtr());
2622 if (!TypeID
->isStr("SEL"))
2624 Context
.setObjCSelRedefinitionType(New
->getUnderlyingType());
2625 // Install the built-in type for 'SEL', ignoring the current definition.
2626 New
->setTypeForDecl(Context
.getObjCSelType().getTypePtr());
2629 // Fall through - the typedef name was not a builtin type.
2632 // Verify the old decl was also a type.
2633 TypeDecl
*Old
= OldDecls
.getAsSingle
<TypeDecl
>();
2635 Diag(New
->getLocation(), diag::err_redefinition_different_kind
)
2636 << New
->getDeclName();
2638 NamedDecl
*OldD
= OldDecls
.getRepresentativeDecl();
2639 if (OldD
->getLocation().isValid())
2640 notePreviousDefinition(OldD
, New
->getLocation());
2642 return New
->setInvalidDecl();
2645 // If the old declaration is invalid, just give up here.
2646 if (Old
->isInvalidDecl())
2647 return New
->setInvalidDecl();
2649 if (auto *OldTD
= dyn_cast
<TypedefNameDecl
>(Old
)) {
2650 auto *OldTag
= OldTD
->getAnonDeclWithTypedefName(/*AnyRedecl*/true);
2651 auto *NewTag
= New
->getAnonDeclWithTypedefName();
2652 NamedDecl
*Hidden
= nullptr;
2653 if (OldTag
&& NewTag
&&
2654 OldTag
->getCanonicalDecl() != NewTag
->getCanonicalDecl() &&
2655 !hasVisibleDefinition(OldTag
, &Hidden
)) {
2656 // There is a definition of this tag, but it is not visible. Use it
2657 // instead of our tag.
2658 New
->setTypeForDecl(OldTD
->getTypeForDecl());
2659 if (OldTD
->isModed())
2660 New
->setModedTypeSourceInfo(OldTD
->getTypeSourceInfo(),
2661 OldTD
->getUnderlyingType());
2663 New
->setTypeSourceInfo(OldTD
->getTypeSourceInfo());
2665 // Make the old tag definition visible.
2666 makeMergedDefinitionVisible(Hidden
);
2668 // If this was an unscoped enumeration, yank all of its enumerators
2669 // out of the scope.
2670 if (isa
<EnumDecl
>(NewTag
)) {
2671 Scope
*EnumScope
= getNonFieldDeclScope(S
);
2672 for (auto *D
: NewTag
->decls()) {
2673 auto *ED
= cast
<EnumConstantDecl
>(D
);
2674 assert(EnumScope
->isDeclScope(ED
));
2675 EnumScope
->RemoveDecl(ED
);
2676 IdResolver
.RemoveDecl(ED
);
2677 ED
->getLexicalDeclContext()->removeDecl(ED
);
2683 // If the typedef types are not identical, reject them in all languages and
2684 // with any extensions enabled.
2685 if (isIncompatibleTypedef(Old
, New
))
2688 // The types match. Link up the redeclaration chain and merge attributes if
2689 // the old declaration was a typedef.
2690 if (TypedefNameDecl
*Typedef
= dyn_cast
<TypedefNameDecl
>(Old
)) {
2691 New
->setPreviousDecl(Typedef
);
2692 mergeDeclAttributes(New
, Old
);
2695 if (getLangOpts().MicrosoftExt
)
2698 if (getLangOpts().CPlusPlus
) {
2699 // C++ [dcl.typedef]p2:
2700 // In a given non-class scope, a typedef specifier can be used to
2701 // redefine the name of any type declared in that scope to refer
2702 // to the type to which it already refers.
2703 if (!isa
<CXXRecordDecl
>(CurContext
))
2706 // C++0x [dcl.typedef]p4:
2707 // In a given class scope, a typedef specifier can be used to redefine
2708 // any class-name declared in that scope that is not also a typedef-name
2709 // to refer to the type to which it already refers.
2711 // This wording came in via DR424, which was a correction to the
2712 // wording in DR56, which accidentally banned code like:
2715 // typedef struct A { } A;
2718 // in the C++03 standard. We implement the C++0x semantics, which
2719 // allow the above but disallow
2726 // since that was the intent of DR56.
2727 if (!isa
<TypedefNameDecl
>(Old
))
2730 Diag(New
->getLocation(), diag::err_redefinition
)
2731 << New
->getDeclName();
2732 notePreviousDefinition(Old
, New
->getLocation());
2733 return New
->setInvalidDecl();
2736 // Modules always permit redefinition of typedefs, as does C11.
2737 if (getLangOpts().Modules
|| getLangOpts().C11
)
2740 // If we have a redefinition of a typedef in C, emit a warning. This warning
2741 // is normally mapped to an error, but can be controlled with
2742 // -Wtypedef-redefinition. If either the original or the redefinition is
2743 // in a system header, don't emit this for compatibility with GCC.
2744 if (getDiagnostics().getSuppressSystemWarnings() &&
2745 // Some standard types are defined implicitly in Clang (e.g. OpenCL).
2746 (Old
->isImplicit() ||
2747 Context
.getSourceManager().isInSystemHeader(Old
->getLocation()) ||
2748 Context
.getSourceManager().isInSystemHeader(New
->getLocation())))
2751 Diag(New
->getLocation(), diag::ext_redefinition_of_typedef
)
2752 << New
->getDeclName();
2753 notePreviousDefinition(Old
, New
->getLocation());
2756 /// DeclhasAttr - returns true if decl Declaration already has the target
2758 static bool DeclHasAttr(const Decl
*D
, const Attr
*A
) {
2759 const OwnershipAttr
*OA
= dyn_cast
<OwnershipAttr
>(A
);
2760 const AnnotateAttr
*Ann
= dyn_cast
<AnnotateAttr
>(A
);
2761 for (const auto *i
: D
->attrs())
2762 if (i
->getKind() == A
->getKind()) {
2764 if (Ann
->getAnnotation() == cast
<AnnotateAttr
>(i
)->getAnnotation())
2768 // FIXME: Don't hardcode this check
2769 if (OA
&& isa
<OwnershipAttr
>(i
))
2770 return OA
->getOwnKind() == cast
<OwnershipAttr
>(i
)->getOwnKind();
2777 static bool isAttributeTargetADefinition(Decl
*D
) {
2778 if (VarDecl
*VD
= dyn_cast
<VarDecl
>(D
))
2779 return VD
->isThisDeclarationADefinition();
2780 if (TagDecl
*TD
= dyn_cast
<TagDecl
>(D
))
2781 return TD
->isCompleteDefinition() || TD
->isBeingDefined();
2785 /// Merge alignment attributes from \p Old to \p New, taking into account the
2786 /// special semantics of C11's _Alignas specifier and C++11's alignas attribute.
2788 /// \return \c true if any attributes were added to \p New.
2789 static bool mergeAlignedAttrs(Sema
&S
, NamedDecl
*New
, Decl
*Old
) {
2790 // Look for alignas attributes on Old, and pick out whichever attribute
2791 // specifies the strictest alignment requirement.
2792 AlignedAttr
*OldAlignasAttr
= nullptr;
2793 AlignedAttr
*OldStrictestAlignAttr
= nullptr;
2794 unsigned OldAlign
= 0;
2795 for (auto *I
: Old
->specific_attrs
<AlignedAttr
>()) {
2796 // FIXME: We have no way of representing inherited dependent alignments
2798 // template<int A, int B> struct alignas(A) X;
2799 // template<int A, int B> struct alignas(B) X {};
2800 // For now, we just ignore any alignas attributes which are not on the
2801 // definition in such a case.
2802 if (I
->isAlignmentDependent())
2808 unsigned Align
= I
->getAlignment(S
.Context
);
2809 if (Align
> OldAlign
) {
2811 OldStrictestAlignAttr
= I
;
2815 // Look for alignas attributes on New.
2816 AlignedAttr
*NewAlignasAttr
= nullptr;
2817 unsigned NewAlign
= 0;
2818 for (auto *I
: New
->specific_attrs
<AlignedAttr
>()) {
2819 if (I
->isAlignmentDependent())
2825 unsigned Align
= I
->getAlignment(S
.Context
);
2826 if (Align
> NewAlign
)
2830 if (OldAlignasAttr
&& NewAlignasAttr
&& OldAlign
!= NewAlign
) {
2831 // Both declarations have 'alignas' attributes. We require them to match.
2832 // C++11 [dcl.align]p6 and C11 6.7.5/7 both come close to saying this, but
2833 // fall short. (If two declarations both have alignas, they must both match
2834 // every definition, and so must match each other if there is a definition.)
2836 // If either declaration only contains 'alignas(0)' specifiers, then it
2837 // specifies the natural alignment for the type.
2838 if (OldAlign
== 0 || NewAlign
== 0) {
2840 if (ValueDecl
*VD
= dyn_cast
<ValueDecl
>(New
))
2843 Ty
= S
.Context
.getTagDeclType(cast
<TagDecl
>(New
));
2846 OldAlign
= S
.Context
.getTypeAlign(Ty
);
2848 NewAlign
= S
.Context
.getTypeAlign(Ty
);
2851 if (OldAlign
!= NewAlign
) {
2852 S
.Diag(NewAlignasAttr
->getLocation(), diag::err_alignas_mismatch
)
2853 << (unsigned)S
.Context
.toCharUnitsFromBits(OldAlign
).getQuantity()
2854 << (unsigned)S
.Context
.toCharUnitsFromBits(NewAlign
).getQuantity();
2855 S
.Diag(OldAlignasAttr
->getLocation(), diag::note_previous_declaration
);
2859 if (OldAlignasAttr
&& !NewAlignasAttr
&& isAttributeTargetADefinition(New
)) {
2860 // C++11 [dcl.align]p6:
2861 // if any declaration of an entity has an alignment-specifier,
2862 // every defining declaration of that entity shall specify an
2863 // equivalent alignment.
2865 // If the definition of an object does not have an alignment
2866 // specifier, any other declaration of that object shall also
2867 // have no alignment specifier.
2868 S
.Diag(New
->getLocation(), diag::err_alignas_missing_on_definition
)
2870 S
.Diag(OldAlignasAttr
->getLocation(), diag::note_alignas_on_declaration
)
2874 bool AnyAdded
= false;
2876 // Ensure we have an attribute representing the strictest alignment.
2877 if (OldAlign
> NewAlign
) {
2878 AlignedAttr
*Clone
= OldStrictestAlignAttr
->clone(S
.Context
);
2879 Clone
->setInherited(true);
2880 New
->addAttr(Clone
);
2884 // Ensure we have an alignas attribute if the old declaration had one.
2885 if (OldAlignasAttr
&& !NewAlignasAttr
&&
2886 !(AnyAdded
&& OldStrictestAlignAttr
->isAlignas())) {
2887 AlignedAttr
*Clone
= OldAlignasAttr
->clone(S
.Context
);
2888 Clone
->setInherited(true);
2889 New
->addAttr(Clone
);
2896 #define WANT_DECL_MERGE_LOGIC
2897 #include "clang/Sema/AttrParsedAttrImpl.inc"
2898 #undef WANT_DECL_MERGE_LOGIC
2900 static bool mergeDeclAttribute(Sema
&S
, NamedDecl
*D
,
2901 const InheritableAttr
*Attr
,
2902 Sema::AvailabilityMergeKind AMK
) {
2903 // Diagnose any mutual exclusions between the attribute that we want to add
2904 // and attributes that already exist on the declaration.
2905 if (!DiagnoseMutualExclusions(S
, D
, Attr
))
2908 // This function copies an attribute Attr from a previous declaration to the
2909 // new declaration D if the new declaration doesn't itself have that attribute
2910 // yet or if that attribute allows duplicates.
2911 // If you're adding a new attribute that requires logic different from
2912 // "use explicit attribute on decl if present, else use attribute from
2913 // previous decl", for example if the attribute needs to be consistent
2914 // between redeclarations, you need to call a custom merge function here.
2915 InheritableAttr
*NewAttr
= nullptr;
2916 if (const auto *AA
= dyn_cast
<AvailabilityAttr
>(Attr
))
2917 NewAttr
= S
.mergeAvailabilityAttr(
2918 D
, *AA
, AA
->getPlatform(), AA
->isImplicit(), AA
->getIntroduced(),
2919 AA
->getDeprecated(), AA
->getObsoleted(), AA
->getUnavailable(),
2920 AA
->getMessage(), AA
->getStrict(), AA
->getReplacement(), AMK
,
2922 else if (const auto *VA
= dyn_cast
<VisibilityAttr
>(Attr
))
2923 NewAttr
= S
.mergeVisibilityAttr(D
, *VA
, VA
->getVisibility());
2924 else if (const auto *VA
= dyn_cast
<TypeVisibilityAttr
>(Attr
))
2925 NewAttr
= S
.mergeTypeVisibilityAttr(D
, *VA
, VA
->getVisibility());
2926 else if (const auto *ImportA
= dyn_cast
<DLLImportAttr
>(Attr
))
2927 NewAttr
= S
.mergeDLLImportAttr(D
, *ImportA
);
2928 else if (const auto *ExportA
= dyn_cast
<DLLExportAttr
>(Attr
))
2929 NewAttr
= S
.mergeDLLExportAttr(D
, *ExportA
);
2930 else if (const auto *EA
= dyn_cast
<ErrorAttr
>(Attr
))
2931 NewAttr
= S
.mergeErrorAttr(D
, *EA
, EA
->getUserDiagnostic());
2932 else if (const auto *FA
= dyn_cast
<FormatAttr
>(Attr
))
2933 NewAttr
= S
.mergeFormatAttr(D
, *FA
, FA
->getType(), FA
->getFormatIdx(),
2935 else if (const auto *SA
= dyn_cast
<SectionAttr
>(Attr
))
2936 NewAttr
= S
.mergeSectionAttr(D
, *SA
, SA
->getName());
2937 else if (const auto *CSA
= dyn_cast
<CodeSegAttr
>(Attr
))
2938 NewAttr
= S
.mergeCodeSegAttr(D
, *CSA
, CSA
->getName());
2939 else if (const auto *IA
= dyn_cast
<MSInheritanceAttr
>(Attr
))
2940 NewAttr
= S
.mergeMSInheritanceAttr(D
, *IA
, IA
->getBestCase(),
2941 IA
->getInheritanceModel());
2942 else if (const auto *AA
= dyn_cast
<AlwaysInlineAttr
>(Attr
))
2943 NewAttr
= S
.mergeAlwaysInlineAttr(D
, *AA
,
2944 &S
.Context
.Idents
.get(AA
->getSpelling()));
2945 else if (S
.getLangOpts().CUDA
&& isa
<FunctionDecl
>(D
) &&
2946 (isa
<CUDAHostAttr
>(Attr
) || isa
<CUDADeviceAttr
>(Attr
) ||
2947 isa
<CUDAGlobalAttr
>(Attr
))) {
2948 // CUDA target attributes are part of function signature for
2949 // overloading purposes and must not be merged.
2951 } else if (const auto *MA
= dyn_cast
<MinSizeAttr
>(Attr
))
2952 NewAttr
= S
.mergeMinSizeAttr(D
, *MA
);
2953 else if (const auto *SNA
= dyn_cast
<SwiftNameAttr
>(Attr
))
2954 NewAttr
= S
.mergeSwiftNameAttr(D
, *SNA
, SNA
->getName());
2955 else if (const auto *OA
= dyn_cast
<OptimizeNoneAttr
>(Attr
))
2956 NewAttr
= S
.mergeOptimizeNoneAttr(D
, *OA
);
2957 else if (const auto *InternalLinkageA
= dyn_cast
<InternalLinkageAttr
>(Attr
))
2958 NewAttr
= S
.mergeInternalLinkageAttr(D
, *InternalLinkageA
);
2959 else if (isa
<AlignedAttr
>(Attr
))
2960 // AlignedAttrs are handled separately, because we need to handle all
2961 // such attributes on a declaration at the same time.
2963 else if ((isa
<DeprecatedAttr
>(Attr
) || isa
<UnavailableAttr
>(Attr
)) &&
2964 (AMK
== Sema::AMK_Override
||
2965 AMK
== Sema::AMK_ProtocolImplementation
||
2966 AMK
== Sema::AMK_OptionalProtocolImplementation
))
2968 else if (const auto *UA
= dyn_cast
<UuidAttr
>(Attr
))
2969 NewAttr
= S
.mergeUuidAttr(D
, *UA
, UA
->getGuid(), UA
->getGuidDecl());
2970 else if (const auto *IMA
= dyn_cast
<WebAssemblyImportModuleAttr
>(Attr
))
2971 NewAttr
= S
.mergeImportModuleAttr(D
, *IMA
);
2972 else if (const auto *INA
= dyn_cast
<WebAssemblyImportNameAttr
>(Attr
))
2973 NewAttr
= S
.mergeImportNameAttr(D
, *INA
);
2974 else if (const auto *TCBA
= dyn_cast
<EnforceTCBAttr
>(Attr
))
2975 NewAttr
= S
.mergeEnforceTCBAttr(D
, *TCBA
);
2976 else if (const auto *TCBLA
= dyn_cast
<EnforceTCBLeafAttr
>(Attr
))
2977 NewAttr
= S
.mergeEnforceTCBLeafAttr(D
, *TCBLA
);
2978 else if (const auto *BTFA
= dyn_cast
<BTFDeclTagAttr
>(Attr
))
2979 NewAttr
= S
.mergeBTFDeclTagAttr(D
, *BTFA
);
2980 else if (const auto *NT
= dyn_cast
<HLSLNumThreadsAttr
>(Attr
))
2982 S
.mergeHLSLNumThreadsAttr(D
, *NT
, NT
->getX(), NT
->getY(), NT
->getZ());
2983 else if (const auto *SA
= dyn_cast
<HLSLShaderAttr
>(Attr
))
2984 NewAttr
= S
.mergeHLSLShaderAttr(D
, *SA
, SA
->getType());
2985 else if (Attr
->shouldInheritEvenIfAlreadyPresent() || !DeclHasAttr(D
, Attr
))
2986 NewAttr
= cast
<InheritableAttr
>(Attr
->clone(S
.Context
));
2989 NewAttr
->setInherited(true);
2990 D
->addAttr(NewAttr
);
2991 if (isa
<MSInheritanceAttr
>(NewAttr
))
2992 S
.Consumer
.AssignInheritanceModel(cast
<CXXRecordDecl
>(D
));
2999 static const NamedDecl
*getDefinition(const Decl
*D
) {
3000 if (const TagDecl
*TD
= dyn_cast
<TagDecl
>(D
))
3001 return TD
->getDefinition();
3002 if (const VarDecl
*VD
= dyn_cast
<VarDecl
>(D
)) {
3003 const VarDecl
*Def
= VD
->getDefinition();
3006 return VD
->getActingDefinition();
3008 if (const FunctionDecl
*FD
= dyn_cast
<FunctionDecl
>(D
)) {
3009 const FunctionDecl
*Def
= nullptr;
3010 if (FD
->isDefined(Def
, true))
3016 static bool hasAttribute(const Decl
*D
, attr::Kind Kind
) {
3017 for (const auto *Attribute
: D
->attrs())
3018 if (Attribute
->getKind() == Kind
)
3023 /// checkNewAttributesAfterDef - If we already have a definition, check that
3024 /// there are no new attributes in this declaration.
3025 static void checkNewAttributesAfterDef(Sema
&S
, Decl
*New
, const Decl
*Old
) {
3026 if (!New
->hasAttrs())
3029 const NamedDecl
*Def
= getDefinition(Old
);
3030 if (!Def
|| Def
== New
)
3033 AttrVec
&NewAttributes
= New
->getAttrs();
3034 for (unsigned I
= 0, E
= NewAttributes
.size(); I
!= E
;) {
3035 const Attr
*NewAttribute
= NewAttributes
[I
];
3037 if (isa
<AliasAttr
>(NewAttribute
) || isa
<IFuncAttr
>(NewAttribute
)) {
3038 if (FunctionDecl
*FD
= dyn_cast
<FunctionDecl
>(New
)) {
3039 Sema::SkipBodyInfo SkipBody
;
3040 S
.CheckForFunctionRedefinition(FD
, cast
<FunctionDecl
>(Def
), &SkipBody
);
3042 // If we're skipping this definition, drop the "alias" attribute.
3043 if (SkipBody
.ShouldSkip
) {
3044 NewAttributes
.erase(NewAttributes
.begin() + I
);
3049 VarDecl
*VD
= cast
<VarDecl
>(New
);
3050 unsigned Diag
= cast
<VarDecl
>(Def
)->isThisDeclarationADefinition() ==
3051 VarDecl::TentativeDefinition
3052 ? diag::err_alias_after_tentative
3053 : diag::err_redefinition
;
3054 S
.Diag(VD
->getLocation(), Diag
) << VD
->getDeclName();
3055 if (Diag
== diag::err_redefinition
)
3056 S
.notePreviousDefinition(Def
, VD
->getLocation());
3058 S
.Diag(Def
->getLocation(), diag::note_previous_definition
);
3059 VD
->setInvalidDecl();
3065 if (const VarDecl
*VD
= dyn_cast
<VarDecl
>(Def
)) {
3066 // Tentative definitions are only interesting for the alias check above.
3067 if (VD
->isThisDeclarationADefinition() != VarDecl::Definition
) {
3073 if (hasAttribute(Def
, NewAttribute
->getKind())) {
3075 continue; // regular attr merging will take care of validating this.
3078 if (isa
<C11NoReturnAttr
>(NewAttribute
)) {
3079 // C's _Noreturn is allowed to be added to a function after it is defined.
3082 } else if (isa
<UuidAttr
>(NewAttribute
)) {
3083 // msvc will allow a subsequent definition to add an uuid to a class
3086 } else if (const AlignedAttr
*AA
= dyn_cast
<AlignedAttr
>(NewAttribute
)) {
3087 if (AA
->isAlignas()) {
3088 // C++11 [dcl.align]p6:
3089 // if any declaration of an entity has an alignment-specifier,
3090 // every defining declaration of that entity shall specify an
3091 // equivalent alignment.
3093 // If the definition of an object does not have an alignment
3094 // specifier, any other declaration of that object shall also
3095 // have no alignment specifier.
3096 S
.Diag(Def
->getLocation(), diag::err_alignas_missing_on_definition
)
3098 S
.Diag(NewAttribute
->getLocation(), diag::note_alignas_on_declaration
)
3100 NewAttributes
.erase(NewAttributes
.begin() + I
);
3104 } else if (isa
<LoaderUninitializedAttr
>(NewAttribute
)) {
3105 // If there is a C definition followed by a redeclaration with this
3106 // attribute then there are two different definitions. In C++, prefer the
3107 // standard diagnostics.
3108 if (!S
.getLangOpts().CPlusPlus
) {
3109 S
.Diag(NewAttribute
->getLocation(),
3110 diag::err_loader_uninitialized_redeclaration
);
3111 S
.Diag(Def
->getLocation(), diag::note_previous_definition
);
3112 NewAttributes
.erase(NewAttributes
.begin() + I
);
3116 } else if (isa
<SelectAnyAttr
>(NewAttribute
) &&
3117 cast
<VarDecl
>(New
)->isInline() &&
3118 !cast
<VarDecl
>(New
)->isInlineSpecified()) {
3119 // Don't warn about applying selectany to implicitly inline variables.
3120 // Older compilers and language modes would require the use of selectany
3121 // to make such variables inline, and it would have no effect if we
3125 } else if (isa
<OMPDeclareVariantAttr
>(NewAttribute
)) {
3126 // We allow to add OMP[Begin]DeclareVariantAttr to be added to
3127 // declarations after definitions.
3132 S
.Diag(NewAttribute
->getLocation(),
3133 diag::warn_attribute_precede_definition
);
3134 S
.Diag(Def
->getLocation(), diag::note_previous_definition
);
3135 NewAttributes
.erase(NewAttributes
.begin() + I
);
3140 static void diagnoseMissingConstinit(Sema
&S
, const VarDecl
*InitDecl
,
3141 const ConstInitAttr
*CIAttr
,
3142 bool AttrBeforeInit
) {
3143 SourceLocation InsertLoc
= InitDecl
->getInnerLocStart();
3145 // Figure out a good way to write this specifier on the old declaration.
3146 // FIXME: We should just use the spelling of CIAttr, but we don't preserve
3147 // enough of the attribute list spelling information to extract that without
3149 std::string SuitableSpelling
;
3150 if (S
.getLangOpts().CPlusPlus20
)
3151 SuitableSpelling
= std::string(
3152 S
.PP
.getLastMacroWithSpelling(InsertLoc
, {tok::kw_constinit
}));
3153 if (SuitableSpelling
.empty() && S
.getLangOpts().CPlusPlus11
)
3154 SuitableSpelling
= std::string(S
.PP
.getLastMacroWithSpelling(
3155 InsertLoc
, {tok::l_square
, tok::l_square
,
3156 S
.PP
.getIdentifierInfo("clang"), tok::coloncolon
,
3157 S
.PP
.getIdentifierInfo("require_constant_initialization"),
3158 tok::r_square
, tok::r_square
}));
3159 if (SuitableSpelling
.empty())
3160 SuitableSpelling
= std::string(S
.PP
.getLastMacroWithSpelling(
3161 InsertLoc
, {tok::kw___attribute
, tok::l_paren
, tok::r_paren
,
3162 S
.PP
.getIdentifierInfo("require_constant_initialization"),
3163 tok::r_paren
, tok::r_paren
}));
3164 if (SuitableSpelling
.empty() && S
.getLangOpts().CPlusPlus20
)
3165 SuitableSpelling
= "constinit";
3166 if (SuitableSpelling
.empty() && S
.getLangOpts().CPlusPlus11
)
3167 SuitableSpelling
= "[[clang::require_constant_initialization]]";
3168 if (SuitableSpelling
.empty())
3169 SuitableSpelling
= "__attribute__((require_constant_initialization))";
3170 SuitableSpelling
+= " ";
3172 if (AttrBeforeInit
) {
3173 // extern constinit int a;
3174 // int a = 0; // error (missing 'constinit'), accepted as extension
3175 assert(CIAttr
->isConstinit() && "should not diagnose this for attribute");
3176 S
.Diag(InitDecl
->getLocation(), diag::ext_constinit_missing
)
3177 << InitDecl
<< FixItHint::CreateInsertion(InsertLoc
, SuitableSpelling
);
3178 S
.Diag(CIAttr
->getLocation(), diag::note_constinit_specified_here
);
3181 // constinit extern int a; // error (missing 'constinit')
3182 S
.Diag(CIAttr
->getLocation(),
3183 CIAttr
->isConstinit() ? diag::err_constinit_added_too_late
3184 : diag::warn_require_const_init_added_too_late
)
3185 << FixItHint::CreateRemoval(SourceRange(CIAttr
->getLocation()));
3186 S
.Diag(InitDecl
->getLocation(), diag::note_constinit_missing_here
)
3187 << CIAttr
->isConstinit()
3188 << FixItHint::CreateInsertion(InsertLoc
, SuitableSpelling
);
3192 /// mergeDeclAttributes - Copy attributes from the Old decl to the New one.
3193 void Sema::mergeDeclAttributes(NamedDecl
*New
, Decl
*Old
,
3194 AvailabilityMergeKind AMK
) {
3195 if (UsedAttr
*OldAttr
= Old
->getMostRecentDecl()->getAttr
<UsedAttr
>()) {
3196 UsedAttr
*NewAttr
= OldAttr
->clone(Context
);
3197 NewAttr
->setInherited(true);
3198 New
->addAttr(NewAttr
);
3200 if (RetainAttr
*OldAttr
= Old
->getMostRecentDecl()->getAttr
<RetainAttr
>()) {
3201 RetainAttr
*NewAttr
= OldAttr
->clone(Context
);
3202 NewAttr
->setInherited(true);
3203 New
->addAttr(NewAttr
);
3206 if (!Old
->hasAttrs() && !New
->hasAttrs())
3209 // [dcl.constinit]p1:
3210 // If the [constinit] specifier is applied to any declaration of a
3211 // variable, it shall be applied to the initializing declaration.
3212 const auto *OldConstInit
= Old
->getAttr
<ConstInitAttr
>();
3213 const auto *NewConstInit
= New
->getAttr
<ConstInitAttr
>();
3214 if (bool(OldConstInit
) != bool(NewConstInit
)) {
3215 const auto *OldVD
= cast
<VarDecl
>(Old
);
3216 auto *NewVD
= cast
<VarDecl
>(New
);
3218 // Find the initializing declaration. Note that we might not have linked
3219 // the new declaration into the redeclaration chain yet.
3220 const VarDecl
*InitDecl
= OldVD
->getInitializingDeclaration();
3222 (NewVD
->hasInit() || NewVD
->isThisDeclarationADefinition()))
3225 if (InitDecl
== NewVD
) {
3226 // This is the initializing declaration. If it would inherit 'constinit',
3227 // that's ill-formed. (Note that we do not apply this to the attribute
3229 if (OldConstInit
&& OldConstInit
->isConstinit())
3230 diagnoseMissingConstinit(*this, NewVD
, OldConstInit
,
3231 /*AttrBeforeInit=*/true);
3232 } else if (NewConstInit
) {
3233 // This is the first time we've been told that this declaration should
3234 // have a constant initializer. If we already saw the initializing
3235 // declaration, this is too late.
3236 if (InitDecl
&& InitDecl
!= NewVD
) {
3237 diagnoseMissingConstinit(*this, InitDecl
, NewConstInit
,
3238 /*AttrBeforeInit=*/false);
3239 NewVD
->dropAttr
<ConstInitAttr
>();
3244 // Attributes declared post-definition are currently ignored.
3245 checkNewAttributesAfterDef(*this, New
, Old
);
3247 if (AsmLabelAttr
*NewA
= New
->getAttr
<AsmLabelAttr
>()) {
3248 if (AsmLabelAttr
*OldA
= Old
->getAttr
<AsmLabelAttr
>()) {
3249 if (!OldA
->isEquivalent(NewA
)) {
3250 // This redeclaration changes __asm__ label.
3251 Diag(New
->getLocation(), diag::err_different_asm_label
);
3252 Diag(OldA
->getLocation(), diag::note_previous_declaration
);
3254 } else if (Old
->isUsed()) {
3255 // This redeclaration adds an __asm__ label to a declaration that has
3256 // already been ODR-used.
3257 Diag(New
->getLocation(), diag::err_late_asm_label_name
)
3258 << isa
<FunctionDecl
>(Old
) << New
->getAttr
<AsmLabelAttr
>()->getRange();
3262 // Re-declaration cannot add abi_tag's.
3263 if (const auto *NewAbiTagAttr
= New
->getAttr
<AbiTagAttr
>()) {
3264 if (const auto *OldAbiTagAttr
= Old
->getAttr
<AbiTagAttr
>()) {
3265 for (const auto &NewTag
: NewAbiTagAttr
->tags()) {
3266 if (!llvm::is_contained(OldAbiTagAttr
->tags(), NewTag
)) {
3267 Diag(NewAbiTagAttr
->getLocation(),
3268 diag::err_new_abi_tag_on_redeclaration
)
3270 Diag(OldAbiTagAttr
->getLocation(), diag::note_previous_declaration
);
3274 Diag(NewAbiTagAttr
->getLocation(), diag::err_abi_tag_on_redeclaration
);
3275 Diag(Old
->getLocation(), diag::note_previous_declaration
);
3279 // This redeclaration adds a section attribute.
3280 if (New
->hasAttr
<SectionAttr
>() && !Old
->hasAttr
<SectionAttr
>()) {
3281 if (auto *VD
= dyn_cast
<VarDecl
>(New
)) {
3282 if (VD
->isThisDeclarationADefinition() == VarDecl::DeclarationOnly
) {
3283 Diag(New
->getLocation(), diag::warn_attribute_section_on_redeclaration
);
3284 Diag(Old
->getLocation(), diag::note_previous_declaration
);
3289 // Redeclaration adds code-seg attribute.
3290 const auto *NewCSA
= New
->getAttr
<CodeSegAttr
>();
3291 if (NewCSA
&& !Old
->hasAttr
<CodeSegAttr
>() &&
3292 !NewCSA
->isImplicit() && isa
<CXXMethodDecl
>(New
)) {
3293 Diag(New
->getLocation(), diag::warn_mismatched_section
)
3295 Diag(Old
->getLocation(), diag::note_previous_declaration
);
3298 if (!Old
->hasAttrs())
3301 bool foundAny
= New
->hasAttrs();
3303 // Ensure that any moving of objects within the allocated map is done before
3305 if (!foundAny
) New
->setAttrs(AttrVec());
3307 for (auto *I
: Old
->specific_attrs
<InheritableAttr
>()) {
3308 // Ignore deprecated/unavailable/availability attributes if requested.
3309 AvailabilityMergeKind LocalAMK
= AMK_None
;
3310 if (isa
<DeprecatedAttr
>(I
) ||
3311 isa
<UnavailableAttr
>(I
) ||
3312 isa
<AvailabilityAttr
>(I
)) {
3317 case AMK_Redeclaration
:
3319 case AMK_ProtocolImplementation
:
3320 case AMK_OptionalProtocolImplementation
:
3327 if (isa
<UsedAttr
>(I
) || isa
<RetainAttr
>(I
))
3330 if (mergeDeclAttribute(*this, New
, I
, LocalAMK
))
3334 if (mergeAlignedAttrs(*this, New
, Old
))
3337 if (!foundAny
) New
->dropAttrs();
3340 /// mergeParamDeclAttributes - Copy attributes from the old parameter
3342 static void mergeParamDeclAttributes(ParmVarDecl
*newDecl
,
3343 const ParmVarDecl
*oldDecl
,
3345 // C++11 [dcl.attr.depend]p2:
3346 // The first declaration of a function shall specify the
3347 // carries_dependency attribute for its declarator-id if any declaration
3348 // of the function specifies the carries_dependency attribute.
3349 const CarriesDependencyAttr
*CDA
= newDecl
->getAttr
<CarriesDependencyAttr
>();
3350 if (CDA
&& !oldDecl
->hasAttr
<CarriesDependencyAttr
>()) {
3351 S
.Diag(CDA
->getLocation(),
3352 diag::err_carries_dependency_missing_on_first_decl
) << 1/*Param*/;
3353 // Find the first declaration of the parameter.
3354 // FIXME: Should we build redeclaration chains for function parameters?
3355 const FunctionDecl
*FirstFD
=
3356 cast
<FunctionDecl
>(oldDecl
->getDeclContext())->getFirstDecl();
3357 const ParmVarDecl
*FirstVD
=
3358 FirstFD
->getParamDecl(oldDecl
->getFunctionScopeIndex());
3359 S
.Diag(FirstVD
->getLocation(),
3360 diag::note_carries_dependency_missing_first_decl
) << 1/*Param*/;
3363 if (!oldDecl
->hasAttrs())
3366 bool foundAny
= newDecl
->hasAttrs();
3368 // Ensure that any moving of objects within the allocated map is
3369 // done before we process them.
3370 if (!foundAny
) newDecl
->setAttrs(AttrVec());
3372 for (const auto *I
: oldDecl
->specific_attrs
<InheritableParamAttr
>()) {
3373 if (!DeclHasAttr(newDecl
, I
)) {
3374 InheritableAttr
*newAttr
=
3375 cast
<InheritableParamAttr
>(I
->clone(S
.Context
));
3376 newAttr
->setInherited(true);
3377 newDecl
->addAttr(newAttr
);
3382 if (!foundAny
) newDecl
->dropAttrs();
3385 static bool EquivalentArrayTypes(QualType Old
, QualType New
,
3386 const ASTContext
&Ctx
) {
3388 auto NoSizeInfo
= [&Ctx
](QualType Ty
) {
3389 if (Ty
->isIncompleteArrayType() || Ty
->isPointerType())
3391 if (const auto *VAT
= Ctx
.getAsVariableArrayType(Ty
))
3392 return VAT
->getSizeModifier() == ArrayType::ArraySizeModifier::Star
;
3396 // `type[]` is equivalent to `type *` and `type[*]`.
3397 if (NoSizeInfo(Old
) && NoSizeInfo(New
))
3400 // Don't try to compare VLA sizes, unless one of them has the star modifier.
3401 if (Old
->isVariableArrayType() && New
->isVariableArrayType()) {
3402 const auto *OldVAT
= Ctx
.getAsVariableArrayType(Old
);
3403 const auto *NewVAT
= Ctx
.getAsVariableArrayType(New
);
3404 if ((OldVAT
->getSizeModifier() == ArrayType::ArraySizeModifier::Star
) ^
3405 (NewVAT
->getSizeModifier() == ArrayType::ArraySizeModifier::Star
))
3410 // Only compare size, ignore Size modifiers and CVR.
3411 if (Old
->isConstantArrayType() && New
->isConstantArrayType()) {
3412 return Ctx
.getAsConstantArrayType(Old
)->getSize() ==
3413 Ctx
.getAsConstantArrayType(New
)->getSize();
3416 // Don't try to compare dependent sized array
3417 if (Old
->isDependentSizedArrayType() && New
->isDependentSizedArrayType()) {
3424 static void mergeParamDeclTypes(ParmVarDecl
*NewParam
,
3425 const ParmVarDecl
*OldParam
,
3427 if (auto Oldnullability
= OldParam
->getType()->getNullability()) {
3428 if (auto Newnullability
= NewParam
->getType()->getNullability()) {
3429 if (*Oldnullability
!= *Newnullability
) {
3430 S
.Diag(NewParam
->getLocation(), diag::warn_mismatched_nullability_attr
)
3431 << DiagNullabilityKind(
3433 ((NewParam
->getObjCDeclQualifier() & Decl::OBJC_TQ_CSNullability
)
3435 << DiagNullabilityKind(
3437 ((OldParam
->getObjCDeclQualifier() & Decl::OBJC_TQ_CSNullability
)
3439 S
.Diag(OldParam
->getLocation(), diag::note_previous_declaration
);
3442 QualType NewT
= NewParam
->getType();
3443 NewT
= S
.Context
.getAttributedType(
3444 AttributedType::getNullabilityAttrKind(*Oldnullability
),
3446 NewParam
->setType(NewT
);
3449 const auto *OldParamDT
= dyn_cast
<DecayedType
>(OldParam
->getType());
3450 const auto *NewParamDT
= dyn_cast
<DecayedType
>(NewParam
->getType());
3451 if (OldParamDT
&& NewParamDT
&&
3452 OldParamDT
->getPointeeType() == NewParamDT
->getPointeeType()) {
3453 QualType OldParamOT
= OldParamDT
->getOriginalType();
3454 QualType NewParamOT
= NewParamDT
->getOriginalType();
3455 if (!EquivalentArrayTypes(OldParamOT
, NewParamOT
, S
.getASTContext())) {
3456 S
.Diag(NewParam
->getLocation(), diag::warn_inconsistent_array_form
)
3457 << NewParam
<< NewParamOT
;
3458 S
.Diag(OldParam
->getLocation(), diag::note_previous_declaration_as
)
3466 /// Used in MergeFunctionDecl to keep track of function parameters in
3468 struct GNUCompatibleParamWarning
{
3469 ParmVarDecl
*OldParm
;
3470 ParmVarDecl
*NewParm
;
3471 QualType PromotedType
;
3474 } // end anonymous namespace
3476 // Determine whether the previous declaration was a definition, implicit
3477 // declaration, or a declaration.
3478 template <typename T
>
3479 static std::pair
<diag::kind
, SourceLocation
>
3480 getNoteDiagForInvalidRedeclaration(const T
*Old
, const T
*New
) {
3481 diag::kind PrevDiag
;
3482 SourceLocation OldLocation
= Old
->getLocation();
3483 if (Old
->isThisDeclarationADefinition())
3484 PrevDiag
= diag::note_previous_definition
;
3485 else if (Old
->isImplicit()) {
3486 PrevDiag
= diag::note_previous_implicit_declaration
;
3487 if (const auto *FD
= dyn_cast
<FunctionDecl
>(Old
)) {
3488 if (FD
->getBuiltinID())
3489 PrevDiag
= diag::note_previous_builtin_declaration
;
3491 if (OldLocation
.isInvalid())
3492 OldLocation
= New
->getLocation();
3494 PrevDiag
= diag::note_previous_declaration
;
3495 return std::make_pair(PrevDiag
, OldLocation
);
3498 /// canRedefineFunction - checks if a function can be redefined. Currently,
3499 /// only extern inline functions can be redefined, and even then only in
3501 static bool canRedefineFunction(const FunctionDecl
*FD
,
3502 const LangOptions
& LangOpts
) {
3503 return ((FD
->hasAttr
<GNUInlineAttr
>() || LangOpts
.GNUInline
) &&
3504 !LangOpts
.CPlusPlus
&&
3505 FD
->isInlineSpecified() &&
3506 FD
->getStorageClass() == SC_Extern
);
3509 const AttributedType
*Sema::getCallingConvAttributedType(QualType T
) const {
3510 const AttributedType
*AT
= T
->getAs
<AttributedType
>();
3511 while (AT
&& !AT
->isCallingConv())
3512 AT
= AT
->getModifiedType()->getAs
<AttributedType
>();
3516 template <typename T
>
3517 static bool haveIncompatibleLanguageLinkages(const T
*Old
, const T
*New
) {
3518 const DeclContext
*DC
= Old
->getDeclContext();
3522 LanguageLinkage OldLinkage
= Old
->getLanguageLinkage();
3523 if (OldLinkage
== CXXLanguageLinkage
&& New
->isInExternCContext())
3525 if (OldLinkage
== CLanguageLinkage
&& New
->isInExternCXXContext())
3530 template<typename T
> static bool isExternC(T
*D
) { return D
->isExternC(); }
3531 static bool isExternC(VarTemplateDecl
*) { return false; }
3532 static bool isExternC(FunctionTemplateDecl
*) { return false; }
3534 /// Check whether a redeclaration of an entity introduced by a
3535 /// using-declaration is valid, given that we know it's not an overload
3536 /// (nor a hidden tag declaration).
3537 template<typename ExpectedDecl
>
3538 static bool checkUsingShadowRedecl(Sema
&S
, UsingShadowDecl
*OldS
,
3539 ExpectedDecl
*New
) {
3540 // C++11 [basic.scope.declarative]p4:
3541 // Given a set of declarations in a single declarative region, each of
3542 // which specifies the same unqualified name,
3543 // -- they shall all refer to the same entity, or all refer to functions
3544 // and function templates; or
3545 // -- exactly one declaration shall declare a class name or enumeration
3546 // name that is not a typedef name and the other declarations shall all
3547 // refer to the same variable or enumerator, or all refer to functions
3548 // and function templates; in this case the class name or enumeration
3549 // name is hidden (3.3.10).
3551 // C++11 [namespace.udecl]p14:
3552 // If a function declaration in namespace scope or block scope has the
3553 // same name and the same parameter-type-list as a function introduced
3554 // by a using-declaration, and the declarations do not declare the same
3555 // function, the program is ill-formed.
3557 auto *Old
= dyn_cast
<ExpectedDecl
>(OldS
->getTargetDecl());
3559 !Old
->getDeclContext()->getRedeclContext()->Equals(
3560 New
->getDeclContext()->getRedeclContext()) &&
3561 !(isExternC(Old
) && isExternC(New
)))
3565 S
.Diag(New
->getLocation(), diag::err_using_decl_conflict_reverse
);
3566 S
.Diag(OldS
->getTargetDecl()->getLocation(), diag::note_using_decl_target
);
3567 S
.Diag(OldS
->getIntroducer()->getLocation(), diag::note_using_decl
) << 0;
3573 static bool hasIdenticalPassObjectSizeAttrs(const FunctionDecl
*A
,
3574 const FunctionDecl
*B
) {
3575 assert(A
->getNumParams() == B
->getNumParams());
3577 auto AttrEq
= [](const ParmVarDecl
*A
, const ParmVarDecl
*B
) {
3578 const auto *AttrA
= A
->getAttr
<PassObjectSizeAttr
>();
3579 const auto *AttrB
= B
->getAttr
<PassObjectSizeAttr
>();
3582 return AttrA
&& AttrB
&& AttrA
->getType() == AttrB
->getType() &&
3583 AttrA
->isDynamic() == AttrB
->isDynamic();
3586 return std::equal(A
->param_begin(), A
->param_end(), B
->param_begin(), AttrEq
);
3589 /// If necessary, adjust the semantic declaration context for a qualified
3590 /// declaration to name the correct inline namespace within the qualifier.
3591 static void adjustDeclContextForDeclaratorDecl(DeclaratorDecl
*NewD
,
3592 DeclaratorDecl
*OldD
) {
3593 // The only case where we need to update the DeclContext is when
3594 // redeclaration lookup for a qualified name finds a declaration
3595 // in an inline namespace within the context named by the qualifier:
3597 // inline namespace N { int f(); }
3598 // int ::f(); // Sema DC needs adjusting from :: to N::.
3600 // For unqualified declarations, the semantic context *can* change
3601 // along the redeclaration chain (for local extern declarations,
3602 // extern "C" declarations, and friend declarations in particular).
3603 if (!NewD
->getQualifier())
3606 // NewD is probably already in the right context.
3607 auto *NamedDC
= NewD
->getDeclContext()->getRedeclContext();
3608 auto *SemaDC
= OldD
->getDeclContext()->getRedeclContext();
3609 if (NamedDC
->Equals(SemaDC
))
3612 assert((NamedDC
->InEnclosingNamespaceSetOf(SemaDC
) ||
3613 NewD
->isInvalidDecl() || OldD
->isInvalidDecl()) &&
3614 "unexpected context for redeclaration");
3616 auto *LexDC
= NewD
->getLexicalDeclContext();
3617 auto FixSemaDC
= [=](NamedDecl
*D
) {
3620 D
->setDeclContext(SemaDC
);
3621 D
->setLexicalDeclContext(LexDC
);
3625 if (auto *FD
= dyn_cast
<FunctionDecl
>(NewD
))
3626 FixSemaDC(FD
->getDescribedFunctionTemplate());
3627 else if (auto *VD
= dyn_cast
<VarDecl
>(NewD
))
3628 FixSemaDC(VD
->getDescribedVarTemplate());
3631 /// MergeFunctionDecl - We just parsed a function 'New' from
3632 /// declarator D which has the same name and scope as a previous
3633 /// declaration 'Old'. Figure out how to resolve this situation,
3634 /// merging decls or emitting diagnostics as appropriate.
3636 /// In C++, New and Old must be declarations that are not
3637 /// overloaded. Use IsOverload to determine whether New and Old are
3638 /// overloaded, and to select the Old declaration that New should be
3641 /// Returns true if there was an error, false otherwise.
3642 bool Sema::MergeFunctionDecl(FunctionDecl
*New
, NamedDecl
*&OldD
, Scope
*S
,
3643 bool MergeTypeWithOld
, bool NewDeclIsDefn
) {
3644 // Verify the old decl was also a function.
3645 FunctionDecl
*Old
= OldD
->getAsFunction();
3647 if (UsingShadowDecl
*Shadow
= dyn_cast
<UsingShadowDecl
>(OldD
)) {
3648 if (New
->getFriendObjectKind()) {
3649 Diag(New
->getLocation(), diag::err_using_decl_friend
);
3650 Diag(Shadow
->getTargetDecl()->getLocation(),
3651 diag::note_using_decl_target
);
3652 Diag(Shadow
->getIntroducer()->getLocation(), diag::note_using_decl
)
3657 // Check whether the two declarations might declare the same function or
3658 // function template.
3659 if (FunctionTemplateDecl
*NewTemplate
=
3660 New
->getDescribedFunctionTemplate()) {
3661 if (checkUsingShadowRedecl
<FunctionTemplateDecl
>(*this, Shadow
,
3664 OldD
= Old
= cast
<FunctionTemplateDecl
>(Shadow
->getTargetDecl())
3667 if (checkUsingShadowRedecl
<FunctionDecl
>(*this, Shadow
, New
))
3669 OldD
= Old
= cast
<FunctionDecl
>(Shadow
->getTargetDecl());
3672 Diag(New
->getLocation(), diag::err_redefinition_different_kind
)
3673 << New
->getDeclName();
3674 notePreviousDefinition(OldD
, New
->getLocation());
3679 // If the old declaration was found in an inline namespace and the new
3680 // declaration was qualified, update the DeclContext to match.
3681 adjustDeclContextForDeclaratorDecl(New
, Old
);
3683 // If the old declaration is invalid, just give up here.
3684 if (Old
->isInvalidDecl())
3687 // Disallow redeclaration of some builtins.
3688 if (!getASTContext().canBuiltinBeRedeclared(Old
)) {
3689 Diag(New
->getLocation(), diag::err_builtin_redeclare
) << Old
->getDeclName();
3690 Diag(Old
->getLocation(), diag::note_previous_builtin_declaration
)
3691 << Old
<< Old
->getType();
3695 diag::kind PrevDiag
;
3696 SourceLocation OldLocation
;
3697 std::tie(PrevDiag
, OldLocation
) =
3698 getNoteDiagForInvalidRedeclaration(Old
, New
);
3700 // Don't complain about this if we're in GNU89 mode and the old function
3701 // is an extern inline function.
3702 // Don't complain about specializations. They are not supposed to have
3704 if (!isa
<CXXMethodDecl
>(New
) && !isa
<CXXMethodDecl
>(Old
) &&
3705 New
->getStorageClass() == SC_Static
&&
3706 Old
->hasExternalFormalLinkage() &&
3707 !New
->getTemplateSpecializationInfo() &&
3708 !canRedefineFunction(Old
, getLangOpts())) {
3709 if (getLangOpts().MicrosoftExt
) {
3710 Diag(New
->getLocation(), diag::ext_static_non_static
) << New
;
3711 Diag(OldLocation
, PrevDiag
) << Old
<< Old
->getType();
3713 Diag(New
->getLocation(), diag::err_static_non_static
) << New
;
3714 Diag(OldLocation
, PrevDiag
) << Old
<< Old
->getType();
3719 if (const auto *ILA
= New
->getAttr
<InternalLinkageAttr
>())
3720 if (!Old
->hasAttr
<InternalLinkageAttr
>()) {
3721 Diag(New
->getLocation(), diag::err_attribute_missing_on_first_decl
)
3723 Diag(Old
->getLocation(), diag::note_previous_declaration
);
3724 New
->dropAttr
<InternalLinkageAttr
>();
3727 if (auto *EA
= New
->getAttr
<ErrorAttr
>()) {
3728 if (!Old
->hasAttr
<ErrorAttr
>()) {
3729 Diag(EA
->getLocation(), diag::err_attribute_missing_on_first_decl
) << EA
;
3730 Diag(Old
->getLocation(), diag::note_previous_declaration
);
3731 New
->dropAttr
<ErrorAttr
>();
3735 if (CheckRedeclarationInModule(New
, Old
))
3738 if (!getLangOpts().CPlusPlus
) {
3739 bool OldOvl
= Old
->hasAttr
<OverloadableAttr
>();
3740 if (OldOvl
!= New
->hasAttr
<OverloadableAttr
>() && !Old
->isImplicit()) {
3741 Diag(New
->getLocation(), diag::err_attribute_overloadable_mismatch
)
3744 // Try our best to find a decl that actually has the overloadable
3745 // attribute for the note. In most cases (e.g. programs with only one
3746 // broken declaration/definition), this won't matter.
3748 // FIXME: We could do this if we juggled some extra state in
3749 // OverloadableAttr, rather than just removing it.
3750 const Decl
*DiagOld
= Old
;
3752 auto OldIter
= llvm::find_if(Old
->redecls(), [](const Decl
*D
) {
3753 const auto *A
= D
->getAttr
<OverloadableAttr
>();
3754 return A
&& !A
->isImplicit();
3756 // If we've implicitly added *all* of the overloadable attrs to this
3757 // chain, emitting a "previous redecl" note is pointless.
3758 DiagOld
= OldIter
== Old
->redecls_end() ? nullptr : *OldIter
;
3762 Diag(DiagOld
->getLocation(),
3763 diag::note_attribute_overloadable_prev_overload
)
3767 New
->addAttr(OverloadableAttr::CreateImplicit(Context
));
3769 New
->dropAttr
<OverloadableAttr
>();
3773 // It is not permitted to redeclare an SME function with different SME
3775 if (IsInvalidSMECallConversion(Old
->getType(), New
->getType(),
3776 AArch64SMECallConversionKind::MatchExactly
)) {
3777 Diag(New
->getLocation(), diag::err_sme_attr_mismatch
)
3778 << New
->getType() << Old
->getType();
3779 Diag(OldLocation
, diag::note_previous_declaration
);
3783 // If a function is first declared with a calling convention, but is later
3784 // declared or defined without one, all following decls assume the calling
3785 // convention of the first.
3787 // It's OK if a function is first declared without a calling convention,
3788 // but is later declared or defined with the default calling convention.
3790 // To test if either decl has an explicit calling convention, we look for
3791 // AttributedType sugar nodes on the type as written. If they are missing or
3792 // were canonicalized away, we assume the calling convention was implicit.
3794 // Note also that we DO NOT return at this point, because we still have
3795 // other tests to run.
3796 QualType OldQType
= Context
.getCanonicalType(Old
->getType());
3797 QualType NewQType
= Context
.getCanonicalType(New
->getType());
3798 const FunctionType
*OldType
= cast
<FunctionType
>(OldQType
);
3799 const FunctionType
*NewType
= cast
<FunctionType
>(NewQType
);
3800 FunctionType::ExtInfo OldTypeInfo
= OldType
->getExtInfo();
3801 FunctionType::ExtInfo NewTypeInfo
= NewType
->getExtInfo();
3802 bool RequiresAdjustment
= false;
3804 if (OldTypeInfo
.getCC() != NewTypeInfo
.getCC()) {
3805 FunctionDecl
*First
= Old
->getFirstDecl();
3806 const FunctionType
*FT
=
3807 First
->getType().getCanonicalType()->castAs
<FunctionType
>();
3808 FunctionType::ExtInfo FI
= FT
->getExtInfo();
3809 bool NewCCExplicit
= getCallingConvAttributedType(New
->getType());
3810 if (!NewCCExplicit
) {
3811 // Inherit the CC from the previous declaration if it was specified
3812 // there but not here.
3813 NewTypeInfo
= NewTypeInfo
.withCallingConv(OldTypeInfo
.getCC());
3814 RequiresAdjustment
= true;
3815 } else if (Old
->getBuiltinID()) {
3816 // Builtin attribute isn't propagated to the new one yet at this point,
3817 // so we check if the old one is a builtin.
3819 // Calling Conventions on a Builtin aren't really useful and setting a
3820 // default calling convention and cdecl'ing some builtin redeclarations is
3821 // common, so warn and ignore the calling convention on the redeclaration.
3822 Diag(New
->getLocation(), diag::warn_cconv_unsupported
)
3823 << FunctionType::getNameForCallConv(NewTypeInfo
.getCC())
3824 << (int)CallingConventionIgnoredReason::BuiltinFunction
;
3825 NewTypeInfo
= NewTypeInfo
.withCallingConv(OldTypeInfo
.getCC());
3826 RequiresAdjustment
= true;
3828 // Calling conventions aren't compatible, so complain.
3829 bool FirstCCExplicit
= getCallingConvAttributedType(First
->getType());
3830 Diag(New
->getLocation(), diag::err_cconv_change
)
3831 << FunctionType::getNameForCallConv(NewTypeInfo
.getCC())
3833 << (!FirstCCExplicit
? "" :
3834 FunctionType::getNameForCallConv(FI
.getCC()));
3836 // Put the note on the first decl, since it is the one that matters.
3837 Diag(First
->getLocation(), diag::note_previous_declaration
);
3842 // FIXME: diagnose the other way around?
3843 if (OldTypeInfo
.getNoReturn() && !NewTypeInfo
.getNoReturn()) {
3844 NewTypeInfo
= NewTypeInfo
.withNoReturn(true);
3845 RequiresAdjustment
= true;
3848 // Merge regparm attribute.
3849 if (OldTypeInfo
.getHasRegParm() != NewTypeInfo
.getHasRegParm() ||
3850 OldTypeInfo
.getRegParm() != NewTypeInfo
.getRegParm()) {
3851 if (NewTypeInfo
.getHasRegParm()) {
3852 Diag(New
->getLocation(), diag::err_regparm_mismatch
)
3853 << NewType
->getRegParmType()
3854 << OldType
->getRegParmType();
3855 Diag(OldLocation
, diag::note_previous_declaration
);
3859 NewTypeInfo
= NewTypeInfo
.withRegParm(OldTypeInfo
.getRegParm());
3860 RequiresAdjustment
= true;
3863 // Merge ns_returns_retained attribute.
3864 if (OldTypeInfo
.getProducesResult() != NewTypeInfo
.getProducesResult()) {
3865 if (NewTypeInfo
.getProducesResult()) {
3866 Diag(New
->getLocation(), diag::err_function_attribute_mismatch
)
3867 << "'ns_returns_retained'";
3868 Diag(OldLocation
, diag::note_previous_declaration
);
3872 NewTypeInfo
= NewTypeInfo
.withProducesResult(true);
3873 RequiresAdjustment
= true;
3876 if (OldTypeInfo
.getNoCallerSavedRegs() !=
3877 NewTypeInfo
.getNoCallerSavedRegs()) {
3878 if (NewTypeInfo
.getNoCallerSavedRegs()) {
3879 AnyX86NoCallerSavedRegistersAttr
*Attr
=
3880 New
->getAttr
<AnyX86NoCallerSavedRegistersAttr
>();
3881 Diag(New
->getLocation(), diag::err_function_attribute_mismatch
) << Attr
;
3882 Diag(OldLocation
, diag::note_previous_declaration
);
3886 NewTypeInfo
= NewTypeInfo
.withNoCallerSavedRegs(true);
3887 RequiresAdjustment
= true;
3890 if (RequiresAdjustment
) {
3891 const FunctionType
*AdjustedType
= New
->getType()->getAs
<FunctionType
>();
3892 AdjustedType
= Context
.adjustFunctionType(AdjustedType
, NewTypeInfo
);
3893 New
->setType(QualType(AdjustedType
, 0));
3894 NewQType
= Context
.getCanonicalType(New
->getType());
3897 // If this redeclaration makes the function inline, we may need to add it to
3898 // UndefinedButUsed.
3899 if (!Old
->isInlined() && New
->isInlined() &&
3900 !New
->hasAttr
<GNUInlineAttr
>() &&
3901 !getLangOpts().GNUInline
&&
3902 Old
->isUsed(false) &&
3903 !Old
->isDefined() && !New
->isThisDeclarationADefinition())
3904 UndefinedButUsed
.insert(std::make_pair(Old
->getCanonicalDecl(),
3907 // If this redeclaration makes it newly gnu_inline, we don't want to warn
3909 if (New
->hasAttr
<GNUInlineAttr
>() &&
3910 Old
->isInlined() && !Old
->hasAttr
<GNUInlineAttr
>()) {
3911 UndefinedButUsed
.erase(Old
->getCanonicalDecl());
3914 // If pass_object_size params don't match up perfectly, this isn't a valid
3916 if (Old
->getNumParams() > 0 && Old
->getNumParams() == New
->getNumParams() &&
3917 !hasIdenticalPassObjectSizeAttrs(Old
, New
)) {
3918 Diag(New
->getLocation(), diag::err_different_pass_object_size_params
)
3919 << New
->getDeclName();
3920 Diag(OldLocation
, PrevDiag
) << Old
<< Old
->getType();
3924 if (getLangOpts().CPlusPlus
) {
3925 // C++1z [over.load]p2
3926 // Certain function declarations cannot be overloaded:
3927 // -- Function declarations that differ only in the return type,
3928 // the exception specification, or both cannot be overloaded.
3930 // Check the exception specifications match. This may recompute the type of
3931 // both Old and New if it resolved exception specifications, so grab the
3932 // types again after this. Because this updates the type, we do this before
3933 // any of the other checks below, which may update the "de facto" NewQType
3934 // but do not necessarily update the type of New.
3935 if (CheckEquivalentExceptionSpec(Old
, New
))
3937 OldQType
= Context
.getCanonicalType(Old
->getType());
3938 NewQType
= Context
.getCanonicalType(New
->getType());
3940 // Go back to the type source info to compare the declared return types,
3941 // per C++1y [dcl.type.auto]p13:
3942 // Redeclarations or specializations of a function or function template
3943 // with a declared return type that uses a placeholder type shall also
3944 // use that placeholder, not a deduced type.
3945 QualType OldDeclaredReturnType
= Old
->getDeclaredReturnType();
3946 QualType NewDeclaredReturnType
= New
->getDeclaredReturnType();
3947 if (!Context
.hasSameType(OldDeclaredReturnType
, NewDeclaredReturnType
) &&
3948 canFullyTypeCheckRedeclaration(New
, Old
, NewDeclaredReturnType
,
3949 OldDeclaredReturnType
)) {
3951 if (NewDeclaredReturnType
->isObjCObjectPointerType() &&
3952 OldDeclaredReturnType
->isObjCObjectPointerType())
3953 // FIXME: This does the wrong thing for a deduced return type.
3954 ResQT
= Context
.mergeObjCGCQualifiers(NewQType
, OldQType
);
3955 if (ResQT
.isNull()) {
3956 if (New
->isCXXClassMember() && New
->isOutOfLine())
3957 Diag(New
->getLocation(), diag::err_member_def_does_not_match_ret_type
)
3958 << New
<< New
->getReturnTypeSourceRange();
3960 Diag(New
->getLocation(), diag::err_ovl_diff_return_type
)
3961 << New
->getReturnTypeSourceRange();
3962 Diag(OldLocation
, PrevDiag
) << Old
<< Old
->getType()
3963 << Old
->getReturnTypeSourceRange();
3970 QualType OldReturnType
= OldType
->getReturnType();
3971 QualType NewReturnType
= cast
<FunctionType
>(NewQType
)->getReturnType();
3972 if (OldReturnType
!= NewReturnType
) {
3973 // If this function has a deduced return type and has already been
3974 // defined, copy the deduced value from the old declaration.
3975 AutoType
*OldAT
= Old
->getReturnType()->getContainedAutoType();
3976 if (OldAT
&& OldAT
->isDeduced()) {
3977 QualType DT
= OldAT
->getDeducedType();
3979 New
->setType(SubstAutoTypeDependent(New
->getType()));
3980 NewQType
= Context
.getCanonicalType(SubstAutoTypeDependent(NewQType
));
3982 New
->setType(SubstAutoType(New
->getType(), DT
));
3983 NewQType
= Context
.getCanonicalType(SubstAutoType(NewQType
, DT
));
3988 const CXXMethodDecl
*OldMethod
= dyn_cast
<CXXMethodDecl
>(Old
);
3989 CXXMethodDecl
*NewMethod
= dyn_cast
<CXXMethodDecl
>(New
);
3990 if (OldMethod
&& NewMethod
) {
3991 // Preserve triviality.
3992 NewMethod
->setTrivial(OldMethod
->isTrivial());
3994 // MSVC allows explicit template specialization at class scope:
3995 // 2 CXXMethodDecls referring to the same function will be injected.
3996 // We don't want a redeclaration error.
3997 bool IsClassScopeExplicitSpecialization
=
3998 OldMethod
->isFunctionTemplateSpecialization() &&
3999 NewMethod
->isFunctionTemplateSpecialization();
4000 bool isFriend
= NewMethod
->getFriendObjectKind();
4002 if (!isFriend
&& NewMethod
->getLexicalDeclContext()->isRecord() &&
4003 !IsClassScopeExplicitSpecialization
) {
4004 // -- Member function declarations with the same name and the
4005 // same parameter types cannot be overloaded if any of them
4006 // is a static member function declaration.
4007 if (OldMethod
->isStatic() != NewMethod
->isStatic()) {
4008 Diag(New
->getLocation(), diag::err_ovl_static_nonstatic_member
);
4009 Diag(OldLocation
, PrevDiag
) << Old
<< Old
->getType();
4013 // C++ [class.mem]p1:
4014 // [...] A member shall not be declared twice in the
4015 // member-specification, except that a nested class or member
4016 // class template can be declared and then later defined.
4017 if (!inTemplateInstantiation()) {
4019 if (isa
<CXXConstructorDecl
>(OldMethod
))
4020 NewDiag
= diag::err_constructor_redeclared
;
4021 else if (isa
<CXXDestructorDecl
>(NewMethod
))
4022 NewDiag
= diag::err_destructor_redeclared
;
4023 else if (isa
<CXXConversionDecl
>(NewMethod
))
4024 NewDiag
= diag::err_conv_function_redeclared
;
4026 NewDiag
= diag::err_member_redeclared
;
4028 Diag(New
->getLocation(), NewDiag
);
4030 Diag(New
->getLocation(), diag::err_member_redeclared_in_instantiation
)
4031 << New
<< New
->getType();
4033 Diag(OldLocation
, PrevDiag
) << Old
<< Old
->getType();
4036 // Complain if this is an explicit declaration of a special
4037 // member that was initially declared implicitly.
4039 // As an exception, it's okay to befriend such methods in order
4040 // to permit the implicit constructor/destructor/operator calls.
4041 } else if (OldMethod
->isImplicit()) {
4043 NewMethod
->setImplicit();
4045 Diag(NewMethod
->getLocation(),
4046 diag::err_definition_of_implicitly_declared_member
)
4047 << New
<< getSpecialMember(OldMethod
);
4050 } else if (OldMethod
->getFirstDecl()->isExplicitlyDefaulted() && !isFriend
) {
4051 Diag(NewMethod
->getLocation(),
4052 diag::err_definition_of_explicitly_defaulted_member
)
4053 << getSpecialMember(OldMethod
);
4058 // C++11 [dcl.attr.noreturn]p1:
4059 // The first declaration of a function shall specify the noreturn
4060 // attribute if any declaration of that function specifies the noreturn
4062 if (const auto *NRA
= New
->getAttr
<CXX11NoReturnAttr
>())
4063 if (!Old
->hasAttr
<CXX11NoReturnAttr
>()) {
4064 Diag(NRA
->getLocation(), diag::err_attribute_missing_on_first_decl
)
4066 Diag(Old
->getLocation(), diag::note_previous_declaration
);
4069 // C++11 [dcl.attr.depend]p2:
4070 // The first declaration of a function shall specify the
4071 // carries_dependency attribute for its declarator-id if any declaration
4072 // of the function specifies the carries_dependency attribute.
4073 const CarriesDependencyAttr
*CDA
= New
->getAttr
<CarriesDependencyAttr
>();
4074 if (CDA
&& !Old
->hasAttr
<CarriesDependencyAttr
>()) {
4075 Diag(CDA
->getLocation(),
4076 diag::err_carries_dependency_missing_on_first_decl
) << 0/*Function*/;
4077 Diag(Old
->getFirstDecl()->getLocation(),
4078 diag::note_carries_dependency_missing_first_decl
) << 0/*Function*/;
4082 // All declarations for a function shall agree exactly in both the
4083 // return type and the parameter-type-list.
4084 // We also want to respect all the extended bits except noreturn.
4086 // noreturn should now match unless the old type info didn't have it.
4087 QualType OldQTypeForComparison
= OldQType
;
4088 if (!OldTypeInfo
.getNoReturn() && NewTypeInfo
.getNoReturn()) {
4089 auto *OldType
= OldQType
->castAs
<FunctionProtoType
>();
4090 const FunctionType
*OldTypeForComparison
4091 = Context
.adjustFunctionType(OldType
, OldTypeInfo
.withNoReturn(true));
4092 OldQTypeForComparison
= QualType(OldTypeForComparison
, 0);
4093 assert(OldQTypeForComparison
.isCanonical());
4096 if (haveIncompatibleLanguageLinkages(Old
, New
)) {
4097 // As a special case, retain the language linkage from previous
4098 // declarations of a friend function as an extension.
4100 // This liberal interpretation of C++ [class.friend]p3 matches GCC/MSVC
4101 // and is useful because there's otherwise no way to specify language
4102 // linkage within class scope.
4104 // Check cautiously as the friend object kind isn't yet complete.
4105 if (New
->getFriendObjectKind() != Decl::FOK_None
) {
4106 Diag(New
->getLocation(), diag::ext_retained_language_linkage
) << New
;
4107 Diag(OldLocation
, PrevDiag
);
4109 Diag(New
->getLocation(), diag::err_different_language_linkage
) << New
;
4110 Diag(OldLocation
, PrevDiag
);
4115 // If the function types are compatible, merge the declarations. Ignore the
4116 // exception specifier because it was already checked above in
4117 // CheckEquivalentExceptionSpec, and we don't want follow-on diagnostics
4118 // about incompatible types under -fms-compatibility.
4119 if (Context
.hasSameFunctionTypeIgnoringExceptionSpec(OldQTypeForComparison
,
4121 return MergeCompatibleFunctionDecls(New
, Old
, S
, MergeTypeWithOld
);
4123 // If the types are imprecise (due to dependent constructs in friends or
4124 // local extern declarations), it's OK if they differ. We'll check again
4125 // during instantiation.
4126 if (!canFullyTypeCheckRedeclaration(New
, Old
, NewQType
, OldQType
))
4129 // Fall through for conflicting redeclarations and redefinitions.
4132 // C: Function types need to be compatible, not identical. This handles
4133 // duplicate function decls like "void f(int); void f(enum X);" properly.
4134 if (!getLangOpts().CPlusPlus
) {
4135 // C99 6.7.5.3p15: ...If one type has a parameter type list and the other
4136 // type is specified by a function definition that contains a (possibly
4137 // empty) identifier list, both shall agree in the number of parameters
4138 // and the type of each parameter shall be compatible with the type that
4139 // results from the application of default argument promotions to the
4140 // type of the corresponding identifier. ...
4141 // This cannot be handled by ASTContext::typesAreCompatible() because that
4142 // doesn't know whether the function type is for a definition or not when
4143 // eventually calling ASTContext::mergeFunctionTypes(). The only situation
4144 // we need to cover here is that the number of arguments agree as the
4145 // default argument promotion rules were already checked by
4146 // ASTContext::typesAreCompatible().
4147 if (Old
->hasPrototype() && !New
->hasWrittenPrototype() && NewDeclIsDefn
&&
4148 Old
->getNumParams() != New
->getNumParams() && !Old
->isImplicit()) {
4149 if (Old
->hasInheritedPrototype())
4150 Old
= Old
->getCanonicalDecl();
4151 Diag(New
->getLocation(), diag::err_conflicting_types
) << New
;
4152 Diag(Old
->getLocation(), PrevDiag
) << Old
<< Old
->getType();
4156 // If we are merging two functions where only one of them has a prototype,
4157 // we may have enough information to decide to issue a diagnostic that the
4158 // function without a protoype will change behavior in C23. This handles
4160 // void i(); void i(int j);
4161 // void i(int j); void i();
4162 // void i(); void i(int j) {}
4163 // See ActOnFinishFunctionBody() for other cases of the behavior change
4164 // diagnostic. See GetFullTypeForDeclarator() for handling of a function
4165 // type without a prototype.
4166 if (New
->hasWrittenPrototype() != Old
->hasWrittenPrototype() &&
4167 !New
->isImplicit() && !Old
->isImplicit()) {
4168 const FunctionDecl
*WithProto
, *WithoutProto
;
4169 if (New
->hasWrittenPrototype()) {
4177 if (WithProto
->getNumParams() != 0) {
4178 if (WithoutProto
->getBuiltinID() == 0 && !WithoutProto
->isImplicit()) {
4179 // The one without the prototype will be changing behavior in C23, so
4180 // warn about that one so long as it's a user-visible declaration.
4181 bool IsWithoutProtoADef
= false, IsWithProtoADef
= false;
4182 if (WithoutProto
== New
)
4183 IsWithoutProtoADef
= NewDeclIsDefn
;
4185 IsWithProtoADef
= NewDeclIsDefn
;
4186 Diag(WithoutProto
->getLocation(),
4187 diag::warn_non_prototype_changes_behavior
)
4188 << IsWithoutProtoADef
<< (WithoutProto
->getNumParams() ? 0 : 1)
4189 << (WithoutProto
== Old
) << IsWithProtoADef
;
4191 // The reason the one without the prototype will be changing behavior
4192 // is because of the one with the prototype, so note that so long as
4193 // it's a user-visible declaration. There is one exception to this:
4194 // when the new declaration is a definition without a prototype, the
4195 // old declaration with a prototype is not the cause of the issue,
4196 // and that does not need to be noted because the one with a
4197 // prototype will not change behavior in C23.
4198 if (WithProto
->getBuiltinID() == 0 && !WithProto
->isImplicit() &&
4199 !IsWithoutProtoADef
)
4200 Diag(WithProto
->getLocation(), diag::note_conflicting_prototype
);
4205 if (Context
.typesAreCompatible(OldQType
, NewQType
)) {
4206 const FunctionType
*OldFuncType
= OldQType
->getAs
<FunctionType
>();
4207 const FunctionType
*NewFuncType
= NewQType
->getAs
<FunctionType
>();
4208 const FunctionProtoType
*OldProto
= nullptr;
4209 if (MergeTypeWithOld
&& isa
<FunctionNoProtoType
>(NewFuncType
) &&
4210 (OldProto
= dyn_cast
<FunctionProtoType
>(OldFuncType
))) {
4211 // The old declaration provided a function prototype, but the
4212 // new declaration does not. Merge in the prototype.
4213 assert(!OldProto
->hasExceptionSpec() && "Exception spec in C");
4214 NewQType
= Context
.getFunctionType(NewFuncType
->getReturnType(),
4215 OldProto
->getParamTypes(),
4216 OldProto
->getExtProtoInfo());
4217 New
->setType(NewQType
);
4218 New
->setHasInheritedPrototype();
4220 // Synthesize parameters with the same types.
4221 SmallVector
<ParmVarDecl
*, 16> Params
;
4222 for (const auto &ParamType
: OldProto
->param_types()) {
4223 ParmVarDecl
*Param
= ParmVarDecl::Create(
4224 Context
, New
, SourceLocation(), SourceLocation(), nullptr,
4225 ParamType
, /*TInfo=*/nullptr, SC_None
, nullptr);
4226 Param
->setScopeInfo(0, Params
.size());
4227 Param
->setImplicit();
4228 Params
.push_back(Param
);
4231 New
->setParams(Params
);
4234 return MergeCompatibleFunctionDecls(New
, Old
, S
, MergeTypeWithOld
);
4238 // Check if the function types are compatible when pointer size address
4239 // spaces are ignored.
4240 if (Context
.hasSameFunctionTypeIgnoringPtrSizes(OldQType
, NewQType
))
4243 // GNU C permits a K&R definition to follow a prototype declaration
4244 // if the declared types of the parameters in the K&R definition
4245 // match the types in the prototype declaration, even when the
4246 // promoted types of the parameters from the K&R definition differ
4247 // from the types in the prototype. GCC then keeps the types from
4250 // If a variadic prototype is followed by a non-variadic K&R definition,
4251 // the K&R definition becomes variadic. This is sort of an edge case, but
4252 // it's legal per the standard depending on how you read C99 6.7.5.3p15 and
4254 if (!getLangOpts().CPlusPlus
&&
4255 Old
->hasPrototype() && !New
->hasPrototype() &&
4256 New
->getType()->getAs
<FunctionProtoType
>() &&
4257 Old
->getNumParams() == New
->getNumParams()) {
4258 SmallVector
<QualType
, 16> ArgTypes
;
4259 SmallVector
<GNUCompatibleParamWarning
, 16> Warnings
;
4260 const FunctionProtoType
*OldProto
4261 = Old
->getType()->getAs
<FunctionProtoType
>();
4262 const FunctionProtoType
*NewProto
4263 = New
->getType()->getAs
<FunctionProtoType
>();
4265 // Determine whether this is the GNU C extension.
4266 QualType MergedReturn
= Context
.mergeTypes(OldProto
->getReturnType(),
4267 NewProto
->getReturnType());
4268 bool LooseCompatible
= !MergedReturn
.isNull();
4269 for (unsigned Idx
= 0, End
= Old
->getNumParams();
4270 LooseCompatible
&& Idx
!= End
; ++Idx
) {
4271 ParmVarDecl
*OldParm
= Old
->getParamDecl(Idx
);
4272 ParmVarDecl
*NewParm
= New
->getParamDecl(Idx
);
4273 if (Context
.typesAreCompatible(OldParm
->getType(),
4274 NewProto
->getParamType(Idx
))) {
4275 ArgTypes
.push_back(NewParm
->getType());
4276 } else if (Context
.typesAreCompatible(OldParm
->getType(),
4278 /*CompareUnqualified=*/true)) {
4279 GNUCompatibleParamWarning Warn
= { OldParm
, NewParm
,
4280 NewProto
->getParamType(Idx
) };
4281 Warnings
.push_back(Warn
);
4282 ArgTypes
.push_back(NewParm
->getType());
4284 LooseCompatible
= false;
4287 if (LooseCompatible
) {
4288 for (unsigned Warn
= 0; Warn
< Warnings
.size(); ++Warn
) {
4289 Diag(Warnings
[Warn
].NewParm
->getLocation(),
4290 diag::ext_param_promoted_not_compatible_with_prototype
)
4291 << Warnings
[Warn
].PromotedType
4292 << Warnings
[Warn
].OldParm
->getType();
4293 if (Warnings
[Warn
].OldParm
->getLocation().isValid())
4294 Diag(Warnings
[Warn
].OldParm
->getLocation(),
4295 diag::note_previous_declaration
);
4298 if (MergeTypeWithOld
)
4299 New
->setType(Context
.getFunctionType(MergedReturn
, ArgTypes
,
4300 OldProto
->getExtProtoInfo()));
4301 return MergeCompatibleFunctionDecls(New
, Old
, S
, MergeTypeWithOld
);
4304 // Fall through to diagnose conflicting types.
4307 // A function that has already been declared has been redeclared or
4308 // defined with a different type; show an appropriate diagnostic.
4310 // If the previous declaration was an implicitly-generated builtin
4311 // declaration, then at the very least we should use a specialized note.
4313 if (Old
->isImplicit() && (BuiltinID
= Old
->getBuiltinID())) {
4314 // If it's actually a library-defined builtin function like 'malloc'
4315 // or 'printf', just warn about the incompatible redeclaration.
4316 if (Context
.BuiltinInfo
.isPredefinedLibFunction(BuiltinID
)) {
4317 Diag(New
->getLocation(), diag::warn_redecl_library_builtin
) << New
;
4318 Diag(OldLocation
, diag::note_previous_builtin_declaration
)
4319 << Old
<< Old
->getType();
4323 PrevDiag
= diag::note_previous_builtin_declaration
;
4326 Diag(New
->getLocation(), diag::err_conflicting_types
) << New
->getDeclName();
4327 Diag(OldLocation
, PrevDiag
) << Old
<< Old
->getType();
4331 /// Completes the merge of two function declarations that are
4332 /// known to be compatible.
4334 /// This routine handles the merging of attributes and other
4335 /// properties of function declarations from the old declaration to
4336 /// the new declaration, once we know that New is in fact a
4337 /// redeclaration of Old.
4340 bool Sema::MergeCompatibleFunctionDecls(FunctionDecl
*New
, FunctionDecl
*Old
,
4341 Scope
*S
, bool MergeTypeWithOld
) {
4342 // Merge the attributes
4343 mergeDeclAttributes(New
, Old
);
4345 // Merge "pure" flag.
4349 // Merge "used" flag.
4350 if (Old
->getMostRecentDecl()->isUsed(false))
4353 // Merge attributes from the parameters. These can mismatch with K&R
4355 if (New
->getNumParams() == Old
->getNumParams())
4356 for (unsigned i
= 0, e
= New
->getNumParams(); i
!= e
; ++i
) {
4357 ParmVarDecl
*NewParam
= New
->getParamDecl(i
);
4358 ParmVarDecl
*OldParam
= Old
->getParamDecl(i
);
4359 mergeParamDeclAttributes(NewParam
, OldParam
, *this);
4360 mergeParamDeclTypes(NewParam
, OldParam
, *this);
4363 if (getLangOpts().CPlusPlus
)
4364 return MergeCXXFunctionDecl(New
, Old
, S
);
4366 // Merge the function types so the we get the composite types for the return
4367 // and argument types. Per C11 6.2.7/4, only update the type if the old decl
4369 QualType Merged
= Context
.mergeTypes(Old
->getType(), New
->getType());
4370 if (!Merged
.isNull() && MergeTypeWithOld
)
4371 New
->setType(Merged
);
4376 void Sema::mergeObjCMethodDecls(ObjCMethodDecl
*newMethod
,
4377 ObjCMethodDecl
*oldMethod
) {
4378 // Merge the attributes, including deprecated/unavailable
4379 AvailabilityMergeKind MergeKind
=
4380 isa
<ObjCProtocolDecl
>(oldMethod
->getDeclContext())
4381 ? (oldMethod
->isOptional() ? AMK_OptionalProtocolImplementation
4382 : AMK_ProtocolImplementation
)
4383 : isa
<ObjCImplDecl
>(newMethod
->getDeclContext()) ? AMK_Redeclaration
4386 mergeDeclAttributes(newMethod
, oldMethod
, MergeKind
);
4388 // Merge attributes from the parameters.
4389 ObjCMethodDecl::param_const_iterator oi
= oldMethod
->param_begin(),
4390 oe
= oldMethod
->param_end();
4391 for (ObjCMethodDecl::param_iterator
4392 ni
= newMethod
->param_begin(), ne
= newMethod
->param_end();
4393 ni
!= ne
&& oi
!= oe
; ++ni
, ++oi
)
4394 mergeParamDeclAttributes(*ni
, *oi
, *this);
4396 CheckObjCMethodOverride(newMethod
, oldMethod
);
4399 static void diagnoseVarDeclTypeMismatch(Sema
&S
, VarDecl
*New
, VarDecl
* Old
) {
4400 assert(!S
.Context
.hasSameType(New
->getType(), Old
->getType()));
4402 S
.Diag(New
->getLocation(), New
->isThisDeclarationADefinition()
4403 ? diag::err_redefinition_different_type
4404 : diag::err_redeclaration_different_type
)
4405 << New
->getDeclName() << New
->getType() << Old
->getType();
4407 diag::kind PrevDiag
;
4408 SourceLocation OldLocation
;
4409 std::tie(PrevDiag
, OldLocation
)
4410 = getNoteDiagForInvalidRedeclaration(Old
, New
);
4411 S
.Diag(OldLocation
, PrevDiag
) << Old
<< Old
->getType();
4412 New
->setInvalidDecl();
4415 /// MergeVarDeclTypes - We parsed a variable 'New' which has the same name and
4416 /// scope as a previous declaration 'Old'. Figure out how to merge their types,
4417 /// emitting diagnostics as appropriate.
4419 /// Declarations using the auto type specifier (C++ [decl.spec.auto]) call back
4420 /// to here in AddInitializerToDecl. We can't check them before the initializer
4422 void Sema::MergeVarDeclTypes(VarDecl
*New
, VarDecl
*Old
,
4423 bool MergeTypeWithOld
) {
4424 if (New
->isInvalidDecl() || Old
->isInvalidDecl() || New
->getType()->containsErrors() || Old
->getType()->containsErrors())
4428 if (getLangOpts().CPlusPlus
) {
4429 if (New
->getType()->isUndeducedType()) {
4430 // We don't know what the new type is until the initializer is attached.
4432 } else if (Context
.hasSameType(New
->getType(), Old
->getType())) {
4433 // These could still be something that needs exception specs checked.
4434 return MergeVarDeclExceptionSpecs(New
, Old
);
4436 // C++ [basic.link]p10:
4437 // [...] the types specified by all declarations referring to a given
4438 // object or function shall be identical, except that declarations for an
4439 // array object can specify array types that differ by the presence or
4440 // absence of a major array bound (8.3.4).
4441 else if (Old
->getType()->isArrayType() && New
->getType()->isArrayType()) {
4442 const ArrayType
*OldArray
= Context
.getAsArrayType(Old
->getType());
4443 const ArrayType
*NewArray
= Context
.getAsArrayType(New
->getType());
4445 // We are merging a variable declaration New into Old. If it has an array
4446 // bound, and that bound differs from Old's bound, we should diagnose the
4448 if (!NewArray
->isIncompleteArrayType() && !NewArray
->isDependentType()) {
4449 for (VarDecl
*PrevVD
= Old
->getMostRecentDecl(); PrevVD
;
4450 PrevVD
= PrevVD
->getPreviousDecl()) {
4451 QualType PrevVDTy
= PrevVD
->getType();
4452 if (PrevVDTy
->isIncompleteArrayType() || PrevVDTy
->isDependentType())
4455 if (!Context
.hasSameType(New
->getType(), PrevVDTy
))
4456 return diagnoseVarDeclTypeMismatch(*this, New
, PrevVD
);
4460 if (OldArray
->isIncompleteArrayType() && NewArray
->isArrayType()) {
4461 if (Context
.hasSameType(OldArray
->getElementType(),
4462 NewArray
->getElementType()))
4463 MergedT
= New
->getType();
4465 // FIXME: Check visibility. New is hidden but has a complete type. If New
4466 // has no array bound, it should not inherit one from Old, if Old is not
4468 else if (OldArray
->isArrayType() && NewArray
->isIncompleteArrayType()) {
4469 if (Context
.hasSameType(OldArray
->getElementType(),
4470 NewArray
->getElementType()))
4471 MergedT
= Old
->getType();
4474 else if (New
->getType()->isObjCObjectPointerType() &&
4475 Old
->getType()->isObjCObjectPointerType()) {
4476 MergedT
= Context
.mergeObjCGCQualifiers(New
->getType(),
4481 // All declarations that refer to the same object or function shall have
4483 MergedT
= Context
.mergeTypes(New
->getType(), Old
->getType());
4485 if (MergedT
.isNull()) {
4486 // It's OK if we couldn't merge types if either type is dependent, for a
4487 // block-scope variable. In other cases (static data members of class
4488 // templates, variable templates, ...), we require the types to be
4490 // FIXME: The C++ standard doesn't say anything about this.
4491 if ((New
->getType()->isDependentType() ||
4492 Old
->getType()->isDependentType()) && New
->isLocalVarDecl()) {
4493 // If the old type was dependent, we can't merge with it, so the new type
4494 // becomes dependent for now. We'll reproduce the original type when we
4495 // instantiate the TypeSourceInfo for the variable.
4496 if (!New
->getType()->isDependentType() && MergeTypeWithOld
)
4497 New
->setType(Context
.DependentTy
);
4500 return diagnoseVarDeclTypeMismatch(*this, New
, Old
);
4503 // Don't actually update the type on the new declaration if the old
4504 // declaration was an extern declaration in a different scope.
4505 if (MergeTypeWithOld
)
4506 New
->setType(MergedT
);
4509 static bool mergeTypeWithPrevious(Sema
&S
, VarDecl
*NewVD
, VarDecl
*OldVD
,
4510 LookupResult
&Previous
) {
4512 // For an identifier with internal or external linkage declared
4513 // in a scope in which a prior declaration of that identifier is
4514 // visible, if the prior declaration specifies internal or
4515 // external linkage, the type of the identifier at the later
4516 // declaration becomes the composite type.
4518 // If the variable isn't visible, we do not merge with its type.
4519 if (Previous
.isShadowed())
4522 if (S
.getLangOpts().CPlusPlus
) {
4523 // C++11 [dcl.array]p3:
4524 // If there is a preceding declaration of the entity in the same
4525 // scope in which the bound was specified, an omitted array bound
4526 // is taken to be the same as in that earlier declaration.
4527 return NewVD
->isPreviousDeclInSameBlockScope() ||
4528 (!OldVD
->getLexicalDeclContext()->isFunctionOrMethod() &&
4529 !NewVD
->getLexicalDeclContext()->isFunctionOrMethod());
4531 // If the old declaration was function-local, don't merge with its
4532 // type unless we're in the same function.
4533 return !OldVD
->getLexicalDeclContext()->isFunctionOrMethod() ||
4534 OldVD
->getLexicalDeclContext() == NewVD
->getLexicalDeclContext();
4538 /// MergeVarDecl - We just parsed a variable 'New' which has the same name
4539 /// and scope as a previous declaration 'Old'. Figure out how to resolve this
4540 /// situation, merging decls or emitting diagnostics as appropriate.
4542 /// Tentative definition rules (C99 6.9.2p2) are checked by
4543 /// FinalizeDeclaratorGroup. Unfortunately, we can't analyze tentative
4544 /// definitions here, since the initializer hasn't been attached.
4546 void Sema::MergeVarDecl(VarDecl
*New
, LookupResult
&Previous
) {
4547 // If the new decl is already invalid, don't do any other checking.
4548 if (New
->isInvalidDecl())
4551 if (!shouldLinkPossiblyHiddenDecl(Previous
, New
))
4554 VarTemplateDecl
*NewTemplate
= New
->getDescribedVarTemplate();
4556 // Verify the old decl was also a variable or variable template.
4557 VarDecl
*Old
= nullptr;
4558 VarTemplateDecl
*OldTemplate
= nullptr;
4559 if (Previous
.isSingleResult()) {
4561 OldTemplate
= dyn_cast
<VarTemplateDecl
>(Previous
.getFoundDecl());
4562 Old
= OldTemplate
? OldTemplate
->getTemplatedDecl() : nullptr;
4565 dyn_cast
<UsingShadowDecl
>(Previous
.getRepresentativeDecl()))
4566 if (checkUsingShadowRedecl
<VarTemplateDecl
>(*this, Shadow
, NewTemplate
))
4567 return New
->setInvalidDecl();
4569 Old
= dyn_cast
<VarDecl
>(Previous
.getFoundDecl());
4572 dyn_cast
<UsingShadowDecl
>(Previous
.getRepresentativeDecl()))
4573 if (checkUsingShadowRedecl
<VarDecl
>(*this, Shadow
, New
))
4574 return New
->setInvalidDecl();
4578 Diag(New
->getLocation(), diag::err_redefinition_different_kind
)
4579 << New
->getDeclName();
4580 notePreviousDefinition(Previous
.getRepresentativeDecl(),
4581 New
->getLocation());
4582 return New
->setInvalidDecl();
4585 // If the old declaration was found in an inline namespace and the new
4586 // declaration was qualified, update the DeclContext to match.
4587 adjustDeclContextForDeclaratorDecl(New
, Old
);
4589 // Ensure the template parameters are compatible.
4591 !TemplateParameterListsAreEqual(NewTemplate
->getTemplateParameters(),
4592 OldTemplate
->getTemplateParameters(),
4593 /*Complain=*/true, TPL_TemplateMatch
))
4594 return New
->setInvalidDecl();
4596 // C++ [class.mem]p1:
4597 // A member shall not be declared twice in the member-specification [...]
4599 // Here, we need only consider static data members.
4600 if (Old
->isStaticDataMember() && !New
->isOutOfLine()) {
4601 Diag(New
->getLocation(), diag::err_duplicate_member
)
4602 << New
->getIdentifier();
4603 Diag(Old
->getLocation(), diag::note_previous_declaration
);
4604 New
->setInvalidDecl();
4607 mergeDeclAttributes(New
, Old
);
4608 // Warn if an already-declared variable is made a weak_import in a subsequent
4610 if (New
->hasAttr
<WeakImportAttr
>() &&
4611 Old
->getStorageClass() == SC_None
&&
4612 !Old
->hasAttr
<WeakImportAttr
>()) {
4613 Diag(New
->getLocation(), diag::warn_weak_import
) << New
->getDeclName();
4614 Diag(Old
->getLocation(), diag::note_previous_declaration
);
4615 // Remove weak_import attribute on new declaration.
4616 New
->dropAttr
<WeakImportAttr
>();
4619 if (const auto *ILA
= New
->getAttr
<InternalLinkageAttr
>())
4620 if (!Old
->hasAttr
<InternalLinkageAttr
>()) {
4621 Diag(New
->getLocation(), diag::err_attribute_missing_on_first_decl
)
4623 Diag(Old
->getLocation(), diag::note_previous_declaration
);
4624 New
->dropAttr
<InternalLinkageAttr
>();
4628 VarDecl
*MostRecent
= Old
->getMostRecentDecl();
4629 if (MostRecent
!= Old
) {
4630 MergeVarDeclTypes(New
, MostRecent
,
4631 mergeTypeWithPrevious(*this, New
, MostRecent
, Previous
));
4632 if (New
->isInvalidDecl())
4636 MergeVarDeclTypes(New
, Old
, mergeTypeWithPrevious(*this, New
, Old
, Previous
));
4637 if (New
->isInvalidDecl())
4640 diag::kind PrevDiag
;
4641 SourceLocation OldLocation
;
4642 std::tie(PrevDiag
, OldLocation
) =
4643 getNoteDiagForInvalidRedeclaration(Old
, New
);
4645 // [dcl.stc]p8: Check if we have a non-static decl followed by a static.
4646 if (New
->getStorageClass() == SC_Static
&&
4647 !New
->isStaticDataMember() &&
4648 Old
->hasExternalFormalLinkage()) {
4649 if (getLangOpts().MicrosoftExt
) {
4650 Diag(New
->getLocation(), diag::ext_static_non_static
)
4651 << New
->getDeclName();
4652 Diag(OldLocation
, PrevDiag
);
4654 Diag(New
->getLocation(), diag::err_static_non_static
)
4655 << New
->getDeclName();
4656 Diag(OldLocation
, PrevDiag
);
4657 return New
->setInvalidDecl();
4661 // For an identifier declared with the storage-class specifier
4662 // extern in a scope in which a prior declaration of that
4663 // identifier is visible,23) if the prior declaration specifies
4664 // internal or external linkage, the linkage of the identifier at
4665 // the later declaration is the same as the linkage specified at
4666 // the prior declaration. If no prior declaration is visible, or
4667 // if the prior declaration specifies no linkage, then the
4668 // identifier has external linkage.
4669 if (New
->hasExternalStorage() && Old
->hasLinkage())
4671 else if (New
->getCanonicalDecl()->getStorageClass() != SC_Static
&&
4672 !New
->isStaticDataMember() &&
4673 Old
->getCanonicalDecl()->getStorageClass() == SC_Static
) {
4674 Diag(New
->getLocation(), diag::err_non_static_static
) << New
->getDeclName();
4675 Diag(OldLocation
, PrevDiag
);
4676 return New
->setInvalidDecl();
4679 // Check if extern is followed by non-extern and vice-versa.
4680 if (New
->hasExternalStorage() &&
4681 !Old
->hasLinkage() && Old
->isLocalVarDeclOrParm()) {
4682 Diag(New
->getLocation(), diag::err_extern_non_extern
) << New
->getDeclName();
4683 Diag(OldLocation
, PrevDiag
);
4684 return New
->setInvalidDecl();
4686 if (Old
->hasLinkage() && New
->isLocalVarDeclOrParm() &&
4687 !New
->hasExternalStorage()) {
4688 Diag(New
->getLocation(), diag::err_non_extern_extern
) << New
->getDeclName();
4689 Diag(OldLocation
, PrevDiag
);
4690 return New
->setInvalidDecl();
4693 if (CheckRedeclarationInModule(New
, Old
))
4696 // Variables with external linkage are analyzed in FinalizeDeclaratorGroup.
4698 // FIXME: The test for external storage here seems wrong? We still
4699 // need to check for mismatches.
4700 if (!New
->hasExternalStorage() && !New
->isFileVarDecl() &&
4701 // Don't complain about out-of-line definitions of static members.
4702 !(Old
->getLexicalDeclContext()->isRecord() &&
4703 !New
->getLexicalDeclContext()->isRecord())) {
4704 Diag(New
->getLocation(), diag::err_redefinition
) << New
->getDeclName();
4705 Diag(OldLocation
, PrevDiag
);
4706 return New
->setInvalidDecl();
4709 if (New
->isInline() && !Old
->getMostRecentDecl()->isInline()) {
4710 if (VarDecl
*Def
= Old
->getDefinition()) {
4711 // C++1z [dcl.fcn.spec]p4:
4712 // If the definition of a variable appears in a translation unit before
4713 // its first declaration as inline, the program is ill-formed.
4714 Diag(New
->getLocation(), diag::err_inline_decl_follows_def
) << New
;
4715 Diag(Def
->getLocation(), diag::note_previous_definition
);
4719 // If this redeclaration makes the variable inline, we may need to add it to
4720 // UndefinedButUsed.
4721 if (!Old
->isInline() && New
->isInline() && Old
->isUsed(false) &&
4722 !Old
->getDefinition() && !New
->isThisDeclarationADefinition())
4723 UndefinedButUsed
.insert(std::make_pair(Old
->getCanonicalDecl(),
4726 if (New
->getTLSKind() != Old
->getTLSKind()) {
4727 if (!Old
->getTLSKind()) {
4728 Diag(New
->getLocation(), diag::err_thread_non_thread
) << New
->getDeclName();
4729 Diag(OldLocation
, PrevDiag
);
4730 } else if (!New
->getTLSKind()) {
4731 Diag(New
->getLocation(), diag::err_non_thread_thread
) << New
->getDeclName();
4732 Diag(OldLocation
, PrevDiag
);
4734 // Do not allow redeclaration to change the variable between requiring
4735 // static and dynamic initialization.
4736 // FIXME: GCC allows this, but uses the TLS keyword on the first
4737 // declaration to determine the kind. Do we need to be compatible here?
4738 Diag(New
->getLocation(), diag::err_thread_thread_different_kind
)
4739 << New
->getDeclName() << (New
->getTLSKind() == VarDecl::TLS_Dynamic
);
4740 Diag(OldLocation
, PrevDiag
);
4744 // C++ doesn't have tentative definitions, so go right ahead and check here.
4745 if (getLangOpts().CPlusPlus
) {
4746 if (Old
->isStaticDataMember() && Old
->getCanonicalDecl()->isInline() &&
4747 Old
->getCanonicalDecl()->isConstexpr()) {
4748 // This definition won't be a definition any more once it's been merged.
4749 Diag(New
->getLocation(),
4750 diag::warn_deprecated_redundant_constexpr_static_def
);
4751 } else if (New
->isThisDeclarationADefinition() == VarDecl::Definition
) {
4752 VarDecl
*Def
= Old
->getDefinition();
4753 if (Def
&& checkVarDeclRedefinition(Def
, New
))
4758 if (haveIncompatibleLanguageLinkages(Old
, New
)) {
4759 Diag(New
->getLocation(), diag::err_different_language_linkage
) << New
;
4760 Diag(OldLocation
, PrevDiag
);
4761 New
->setInvalidDecl();
4765 // Merge "used" flag.
4766 if (Old
->getMostRecentDecl()->isUsed(false))
4769 // Keep a chain of previous declarations.
4770 New
->setPreviousDecl(Old
);
4772 NewTemplate
->setPreviousDecl(OldTemplate
);
4774 // Inherit access appropriately.
4775 New
->setAccess(Old
->getAccess());
4777 NewTemplate
->setAccess(New
->getAccess());
4779 if (Old
->isInline())
4780 New
->setImplicitlyInline();
4783 void Sema::notePreviousDefinition(const NamedDecl
*Old
, SourceLocation New
) {
4784 SourceManager
&SrcMgr
= getSourceManager();
4785 auto FNewDecLoc
= SrcMgr
.getDecomposedLoc(New
);
4786 auto FOldDecLoc
= SrcMgr
.getDecomposedLoc(Old
->getLocation());
4787 auto *FNew
= SrcMgr
.getFileEntryForID(FNewDecLoc
.first
);
4788 auto *FOld
= SrcMgr
.getFileEntryForID(FOldDecLoc
.first
);
4789 auto &HSI
= PP
.getHeaderSearchInfo();
4790 StringRef HdrFilename
=
4791 SrcMgr
.getFilename(SrcMgr
.getSpellingLoc(Old
->getLocation()));
4793 auto noteFromModuleOrInclude
= [&](Module
*Mod
,
4794 SourceLocation IncLoc
) -> bool {
4795 // Redefinition errors with modules are common with non modular mapped
4796 // headers, example: a non-modular header H in module A that also gets
4797 // included directly in a TU. Pointing twice to the same header/definition
4798 // is confusing, try to get better diagnostics when modules is on.
4799 if (IncLoc
.isValid()) {
4801 Diag(IncLoc
, diag::note_redefinition_modules_same_file
)
4802 << HdrFilename
.str() << Mod
->getFullModuleName();
4803 if (!Mod
->DefinitionLoc
.isInvalid())
4804 Diag(Mod
->DefinitionLoc
, diag::note_defined_here
)
4805 << Mod
->getFullModuleName();
4807 Diag(IncLoc
, diag::note_redefinition_include_same_file
)
4808 << HdrFilename
.str();
4816 // Is it the same file and same offset? Provide more information on why
4817 // this leads to a redefinition error.
4818 if (FNew
== FOld
&& FNewDecLoc
.second
== FOldDecLoc
.second
) {
4819 SourceLocation OldIncLoc
= SrcMgr
.getIncludeLoc(FOldDecLoc
.first
);
4820 SourceLocation NewIncLoc
= SrcMgr
.getIncludeLoc(FNewDecLoc
.first
);
4822 noteFromModuleOrInclude(Old
->getOwningModule(), OldIncLoc
);
4823 EmittedDiag
|= noteFromModuleOrInclude(getCurrentModule(), NewIncLoc
);
4825 // If the header has no guards, emit a note suggesting one.
4826 if (FOld
&& !HSI
.isFileMultipleIncludeGuarded(FOld
))
4827 Diag(Old
->getLocation(), diag::note_use_ifdef_guards
);
4833 // Redefinition coming from different files or couldn't do better above.
4834 if (Old
->getLocation().isValid())
4835 Diag(Old
->getLocation(), diag::note_previous_definition
);
4838 /// We've just determined that \p Old and \p New both appear to be definitions
4839 /// of the same variable. Either diagnose or fix the problem.
4840 bool Sema::checkVarDeclRedefinition(VarDecl
*Old
, VarDecl
*New
) {
4841 if (!hasVisibleDefinition(Old
) &&
4842 (New
->getFormalLinkage() == InternalLinkage
||
4844 isa
<VarTemplateSpecializationDecl
>(New
) ||
4845 New
->getDescribedVarTemplate() ||
4846 New
->getNumTemplateParameterLists() ||
4847 New
->getDeclContext()->isDependentContext())) {
4848 // The previous definition is hidden, and multiple definitions are
4849 // permitted (in separate TUs). Demote this to a declaration.
4850 New
->demoteThisDefinitionToDeclaration();
4852 // Make the canonical definition visible.
4853 if (auto *OldTD
= Old
->getDescribedVarTemplate())
4854 makeMergedDefinitionVisible(OldTD
);
4855 makeMergedDefinitionVisible(Old
);
4858 Diag(New
->getLocation(), diag::err_redefinition
) << New
;
4859 notePreviousDefinition(Old
, New
->getLocation());
4860 New
->setInvalidDecl();
4865 /// ParsedFreeStandingDeclSpec - This method is invoked when a declspec with
4866 /// no declarator (e.g. "struct foo;") is parsed.
4867 Decl
*Sema::ParsedFreeStandingDeclSpec(Scope
*S
, AccessSpecifier AS
,
4869 const ParsedAttributesView
&DeclAttrs
,
4870 RecordDecl
*&AnonRecord
) {
4871 return ParsedFreeStandingDeclSpec(
4872 S
, AS
, DS
, DeclAttrs
, MultiTemplateParamsArg(), false, AnonRecord
);
4875 // The MS ABI changed between VS2013 and VS2015 with regard to numbers used to
4876 // disambiguate entities defined in different scopes.
4877 // While the VS2015 ABI fixes potential miscompiles, it is also breaks
4879 // We will pick our mangling number depending on which version of MSVC is being
4881 static unsigned getMSManglingNumber(const LangOptions
&LO
, Scope
*S
) {
4882 return LO
.isCompatibleWithMSVC(LangOptions::MSVC2015
)
4883 ? S
->getMSCurManglingNumber()
4884 : S
->getMSLastManglingNumber();
4887 void Sema::handleTagNumbering(const TagDecl
*Tag
, Scope
*TagScope
) {
4888 if (!Context
.getLangOpts().CPlusPlus
)
4891 if (isa
<CXXRecordDecl
>(Tag
->getParent())) {
4892 // If this tag is the direct child of a class, number it if
4894 if (!Tag
->getName().empty() || Tag
->getTypedefNameForAnonDecl())
4896 MangleNumberingContext
&MCtx
=
4897 Context
.getManglingNumberContext(Tag
->getParent());
4898 Context
.setManglingNumber(
4899 Tag
, MCtx
.getManglingNumber(
4900 Tag
, getMSManglingNumber(getLangOpts(), TagScope
)));
4904 // If this tag isn't a direct child of a class, number it if it is local.
4905 MangleNumberingContext
*MCtx
;
4906 Decl
*ManglingContextDecl
;
4907 std::tie(MCtx
, ManglingContextDecl
) =
4908 getCurrentMangleNumberContext(Tag
->getDeclContext());
4910 Context
.setManglingNumber(
4911 Tag
, MCtx
->getManglingNumber(
4912 Tag
, getMSManglingNumber(getLangOpts(), TagScope
)));
4917 struct NonCLikeKind
{
4929 explicit operator bool() { return Kind
!= None
; }
4933 /// Determine whether a class is C-like, according to the rules of C++
4934 /// [dcl.typedef] for anonymous classes with typedef names for linkage.
4935 static NonCLikeKind
getNonCLikeKindForAnonymousStruct(const CXXRecordDecl
*RD
) {
4936 if (RD
->isInvalidDecl())
4937 return {NonCLikeKind::Invalid
, {}};
4939 // C++ [dcl.typedef]p9: [P1766R1]
4940 // An unnamed class with a typedef name for linkage purposes shall not
4942 // -- have any base classes
4943 if (RD
->getNumBases())
4944 return {NonCLikeKind::BaseClass
,
4945 SourceRange(RD
->bases_begin()->getBeginLoc(),
4946 RD
->bases_end()[-1].getEndLoc())};
4947 bool Invalid
= false;
4948 for (Decl
*D
: RD
->decls()) {
4949 // Don't complain about things we already diagnosed.
4950 if (D
->isInvalidDecl()) {
4955 // -- have any [...] default member initializers
4956 if (auto *FD
= dyn_cast
<FieldDecl
>(D
)) {
4957 if (FD
->hasInClassInitializer()) {
4958 auto *Init
= FD
->getInClassInitializer();
4959 return {NonCLikeKind::DefaultMemberInit
,
4960 Init
? Init
->getSourceRange() : D
->getSourceRange()};
4965 // FIXME: We don't allow friend declarations. This violates the wording of
4966 // P1766, but not the intent.
4967 if (isa
<FriendDecl
>(D
))
4968 return {NonCLikeKind::Friend
, D
->getSourceRange()};
4970 // -- declare any members other than non-static data members, member
4971 // enumerations, or member classes,
4972 if (isa
<StaticAssertDecl
>(D
) || isa
<IndirectFieldDecl
>(D
) ||
4975 auto *MemberRD
= dyn_cast
<CXXRecordDecl
>(D
);
4977 if (D
->isImplicit())
4979 return {NonCLikeKind::OtherMember
, D
->getSourceRange()};
4982 // -- contain a lambda-expression,
4983 if (MemberRD
->isLambda())
4984 return {NonCLikeKind::Lambda
, MemberRD
->getSourceRange()};
4986 // and all member classes shall also satisfy these requirements
4988 if (MemberRD
->isThisDeclarationADefinition()) {
4989 if (auto Kind
= getNonCLikeKindForAnonymousStruct(MemberRD
))
4994 return {Invalid
? NonCLikeKind::Invalid
: NonCLikeKind::None
, {}};
4997 void Sema::setTagNameForLinkagePurposes(TagDecl
*TagFromDeclSpec
,
4998 TypedefNameDecl
*NewTD
) {
4999 if (TagFromDeclSpec
->isInvalidDecl())
5002 // Do nothing if the tag already has a name for linkage purposes.
5003 if (TagFromDeclSpec
->hasNameForLinkage())
5006 // A well-formed anonymous tag must always be a TUK_Definition.
5007 assert(TagFromDeclSpec
->isThisDeclarationADefinition());
5009 // The type must match the tag exactly; no qualifiers allowed.
5010 if (!Context
.hasSameType(NewTD
->getUnderlyingType(),
5011 Context
.getTagDeclType(TagFromDeclSpec
))) {
5012 if (getLangOpts().CPlusPlus
)
5013 Context
.addTypedefNameForUnnamedTagDecl(TagFromDeclSpec
, NewTD
);
5017 // C++ [dcl.typedef]p9: [P1766R1, applied as DR]
5018 // An unnamed class with a typedef name for linkage purposes shall [be
5021 // FIXME: Also diagnose if we've already computed the linkage. That ideally
5022 // shouldn't happen, but there are constructs that the language rule doesn't
5023 // disallow for which we can't reasonably avoid computing linkage early.
5024 const CXXRecordDecl
*RD
= dyn_cast
<CXXRecordDecl
>(TagFromDeclSpec
);
5025 NonCLikeKind NonCLike
= RD
? getNonCLikeKindForAnonymousStruct(RD
)
5027 bool ChangesLinkage
= TagFromDeclSpec
->hasLinkageBeenComputed();
5028 if (NonCLike
|| ChangesLinkage
) {
5029 if (NonCLike
.Kind
== NonCLikeKind::Invalid
)
5032 unsigned DiagID
= diag::ext_non_c_like_anon_struct_in_typedef
;
5033 if (ChangesLinkage
) {
5034 // If the linkage changes, we can't accept this as an extension.
5035 if (NonCLike
.Kind
== NonCLikeKind::None
)
5036 DiagID
= diag::err_typedef_changes_linkage
;
5038 DiagID
= diag::err_non_c_like_anon_struct_in_typedef
;
5041 SourceLocation FixitLoc
=
5042 getLocForEndOfToken(TagFromDeclSpec
->getInnerLocStart());
5043 llvm::SmallString
<40> TextToInsert
;
5044 TextToInsert
+= ' ';
5045 TextToInsert
+= NewTD
->getIdentifier()->getName();
5047 Diag(FixitLoc
, DiagID
)
5048 << isa
<TypeAliasDecl
>(NewTD
)
5049 << FixItHint::CreateInsertion(FixitLoc
, TextToInsert
);
5050 if (NonCLike
.Kind
!= NonCLikeKind::None
) {
5051 Diag(NonCLike
.Range
.getBegin(), diag::note_non_c_like_anon_struct
)
5052 << NonCLike
.Kind
- 1 << NonCLike
.Range
;
5054 Diag(NewTD
->getLocation(), diag::note_typedef_for_linkage_here
)
5055 << NewTD
<< isa
<TypeAliasDecl
>(NewTD
);
5061 // Otherwise, set this as the anon-decl typedef for the tag.
5062 TagFromDeclSpec
->setTypedefNameForAnonDecl(NewTD
);
5065 static unsigned GetDiagnosticTypeSpecifierID(const DeclSpec
&DS
) {
5066 DeclSpec::TST T
= DS
.getTypeSpecType();
5068 case DeclSpec::TST_class
:
5070 case DeclSpec::TST_struct
:
5072 case DeclSpec::TST_interface
:
5074 case DeclSpec::TST_union
:
5076 case DeclSpec::TST_enum
:
5077 if (const auto *ED
= dyn_cast
<EnumDecl
>(DS
.getRepAsDecl())) {
5078 if (ED
->isScopedUsingClassTag())
5085 llvm_unreachable("unexpected type specifier");
5088 /// ParsedFreeStandingDeclSpec - This method is invoked when a declspec with
5089 /// no declarator (e.g. "struct foo;") is parsed. It also accepts template
5090 /// parameters to cope with template friend declarations.
5091 Decl
*Sema::ParsedFreeStandingDeclSpec(Scope
*S
, AccessSpecifier AS
,
5093 const ParsedAttributesView
&DeclAttrs
,
5094 MultiTemplateParamsArg TemplateParams
,
5095 bool IsExplicitInstantiation
,
5096 RecordDecl
*&AnonRecord
) {
5097 Decl
*TagD
= nullptr;
5098 TagDecl
*Tag
= nullptr;
5099 if (DS
.getTypeSpecType() == DeclSpec::TST_class
||
5100 DS
.getTypeSpecType() == DeclSpec::TST_struct
||
5101 DS
.getTypeSpecType() == DeclSpec::TST_interface
||
5102 DS
.getTypeSpecType() == DeclSpec::TST_union
||
5103 DS
.getTypeSpecType() == DeclSpec::TST_enum
) {
5104 TagD
= DS
.getRepAsDecl();
5106 if (!TagD
) // We probably had an error
5109 // Note that the above type specs guarantee that the
5110 // type rep is a Decl, whereas in many of the others
5112 if (isa
<TagDecl
>(TagD
))
5113 Tag
= cast
<TagDecl
>(TagD
);
5114 else if (ClassTemplateDecl
*CTD
= dyn_cast
<ClassTemplateDecl
>(TagD
))
5115 Tag
= CTD
->getTemplatedDecl();
5119 handleTagNumbering(Tag
, S
);
5120 Tag
->setFreeStanding();
5121 if (Tag
->isInvalidDecl())
5125 if (unsigned TypeQuals
= DS
.getTypeQualifiers()) {
5126 // Enforce C99 6.7.3p2: "Types other than pointer types derived from object
5127 // or incomplete types shall not be restrict-qualified."
5128 if (TypeQuals
& DeclSpec::TQ_restrict
)
5129 Diag(DS
.getRestrictSpecLoc(),
5130 diag::err_typecheck_invalid_restrict_not_pointer_noarg
)
5131 << DS
.getSourceRange();
5134 if (DS
.isInlineSpecified())
5135 Diag(DS
.getInlineSpecLoc(), diag::err_inline_non_function
)
5136 << getLangOpts().CPlusPlus17
;
5138 if (DS
.hasConstexprSpecifier()) {
5139 // C++0x [dcl.constexpr]p1: constexpr can only be applied to declarations
5140 // and definitions of functions and variables.
5141 // C++2a [dcl.constexpr]p1: The consteval specifier shall be applied only to
5142 // the declaration of a function or function template
5144 Diag(DS
.getConstexprSpecLoc(), diag::err_constexpr_tag
)
5145 << GetDiagnosticTypeSpecifierID(DS
)
5146 << static_cast<int>(DS
.getConstexprSpecifier());
5148 Diag(DS
.getConstexprSpecLoc(), diag::err_constexpr_wrong_decl_kind
)
5149 << static_cast<int>(DS
.getConstexprSpecifier());
5150 // Don't emit warnings after this error.
5154 DiagnoseFunctionSpecifiers(DS
);
5156 if (DS
.isFriendSpecified()) {
5157 // If we're dealing with a decl but not a TagDecl, assume that
5158 // whatever routines created it handled the friendship aspect.
5161 return ActOnFriendTypeDecl(S
, DS
, TemplateParams
);
5164 const CXXScopeSpec
&SS
= DS
.getTypeSpecScope();
5165 bool IsExplicitSpecialization
=
5166 !TemplateParams
.empty() && TemplateParams
.back()->size() == 0;
5167 if (Tag
&& SS
.isNotEmpty() && !Tag
->isCompleteDefinition() &&
5168 !IsExplicitInstantiation
&& !IsExplicitSpecialization
&&
5169 !isa
<ClassTemplatePartialSpecializationDecl
>(Tag
)) {
5170 // Per C++ [dcl.type.elab]p1, a class declaration cannot have a
5171 // nested-name-specifier unless it is an explicit instantiation
5172 // or an explicit specialization.
5174 // FIXME: We allow class template partial specializations here too, per the
5175 // obvious intent of DR1819.
5177 // Per C++ [dcl.enum]p1, an opaque-enum-declaration can't either.
5178 Diag(SS
.getBeginLoc(), diag::err_standalone_class_nested_name_specifier
)
5179 << GetDiagnosticTypeSpecifierID(DS
) << SS
.getRange();
5183 // Track whether this decl-specifier declares anything.
5184 bool DeclaresAnything
= true;
5186 // Handle anonymous struct definitions.
5187 if (RecordDecl
*Record
= dyn_cast_or_null
<RecordDecl
>(Tag
)) {
5188 if (!Record
->getDeclName() && Record
->isCompleteDefinition() &&
5189 DS
.getStorageClassSpec() != DeclSpec::SCS_typedef
) {
5190 if (getLangOpts().CPlusPlus
||
5191 Record
->getDeclContext()->isRecord()) {
5192 // If CurContext is a DeclContext that can contain statements,
5193 // RecursiveASTVisitor won't visit the decls that
5194 // BuildAnonymousStructOrUnion() will put into CurContext.
5195 // Also store them here so that they can be part of the
5196 // DeclStmt that gets created in this case.
5197 // FIXME: Also return the IndirectFieldDecls created by
5198 // BuildAnonymousStructOr union, for the same reason?
5199 if (CurContext
->isFunctionOrMethod())
5200 AnonRecord
= Record
;
5201 return BuildAnonymousStructOrUnion(S
, DS
, AS
, Record
,
5202 Context
.getPrintingPolicy());
5205 DeclaresAnything
= false;
5210 // A struct-declaration that does not declare an anonymous structure or
5211 // anonymous union shall contain a struct-declarator-list.
5213 // This rule also existed in C89 and C99; the grammar for struct-declaration
5214 // did not permit a struct-declaration without a struct-declarator-list.
5215 if (!getLangOpts().CPlusPlus
&& CurContext
->isRecord() &&
5216 DS
.getStorageClassSpec() == DeclSpec::SCS_unspecified
) {
5217 // Check for Microsoft C extension: anonymous struct/union member.
5218 // Handle 2 kinds of anonymous struct/union:
5222 // STRUCT_TYPE; <- where STRUCT_TYPE is a typedef struct.
5223 // UNION_TYPE; <- where UNION_TYPE is a typedef union.
5224 if ((Tag
&& Tag
->getDeclName()) ||
5225 DS
.getTypeSpecType() == DeclSpec::TST_typename
) {
5226 RecordDecl
*Record
= nullptr;
5228 Record
= dyn_cast
<RecordDecl
>(Tag
);
5229 else if (const RecordType
*RT
=
5230 DS
.getRepAsType().get()->getAsStructureType())
5231 Record
= RT
->getDecl();
5232 else if (const RecordType
*UT
= DS
.getRepAsType().get()->getAsUnionType())
5233 Record
= UT
->getDecl();
5235 if (Record
&& getLangOpts().MicrosoftExt
) {
5236 Diag(DS
.getBeginLoc(), diag::ext_ms_anonymous_record
)
5237 << Record
->isUnion() << DS
.getSourceRange();
5238 return BuildMicrosoftCAnonymousStruct(S
, DS
, Record
);
5241 DeclaresAnything
= false;
5245 // Skip all the checks below if we have a type error.
5246 if (DS
.getTypeSpecType() == DeclSpec::TST_error
||
5247 (TagD
&& TagD
->isInvalidDecl()))
5250 if (getLangOpts().CPlusPlus
&&
5251 DS
.getStorageClassSpec() != DeclSpec::SCS_typedef
)
5252 if (EnumDecl
*Enum
= dyn_cast_or_null
<EnumDecl
>(Tag
))
5253 if (Enum
->enumerator_begin() == Enum
->enumerator_end() &&
5254 !Enum
->getIdentifier() && !Enum
->isInvalidDecl())
5255 DeclaresAnything
= false;
5257 if (!DS
.isMissingDeclaratorOk()) {
5258 // Customize diagnostic for a typedef missing a name.
5259 if (DS
.getStorageClassSpec() == DeclSpec::SCS_typedef
)
5260 Diag(DS
.getBeginLoc(), diag::ext_typedef_without_a_name
)
5261 << DS
.getSourceRange();
5263 DeclaresAnything
= false;
5266 if (DS
.isModulePrivateSpecified() &&
5267 Tag
&& Tag
->getDeclContext()->isFunctionOrMethod())
5268 Diag(DS
.getModulePrivateSpecLoc(), diag::err_module_private_local_class
)
5269 << Tag
->getTagKind()
5270 << FixItHint::CreateRemoval(DS
.getModulePrivateSpecLoc());
5272 ActOnDocumentableDecl(TagD
);
5275 // A declaration [...] shall declare at least a declarator [...], a tag,
5276 // or the members of an enumeration.
5278 // [If there are no declarators], and except for the declaration of an
5279 // unnamed bit-field, the decl-specifier-seq shall introduce one or more
5280 // names into the program, or shall redeclare a name introduced by a
5281 // previous declaration.
5282 if (!DeclaresAnything
) {
5283 // In C, we allow this as a (popular) extension / bug. Don't bother
5284 // producing further diagnostics for redundant qualifiers after this.
5285 Diag(DS
.getBeginLoc(), (IsExplicitInstantiation
|| !TemplateParams
.empty())
5286 ? diag::err_no_declarators
5287 : diag::ext_no_declarators
)
5288 << DS
.getSourceRange();
5293 // If a storage-class-specifier appears in a decl-specifier-seq, [...] the
5294 // init-declarator-list of the declaration shall not be empty.
5295 // C++ [dcl.fct.spec]p1:
5296 // If a cv-qualifier appears in a decl-specifier-seq, the
5297 // init-declarator-list of the declaration shall not be empty.
5299 // Spurious qualifiers here appear to be valid in C.
5300 unsigned DiagID
= diag::warn_standalone_specifier
;
5301 if (getLangOpts().CPlusPlus
)
5302 DiagID
= diag::ext_standalone_specifier
;
5304 // Note that a linkage-specification sets a storage class, but
5305 // 'extern "C" struct foo;' is actually valid and not theoretically
5307 if (DeclSpec::SCS SCS
= DS
.getStorageClassSpec()) {
5308 if (SCS
== DeclSpec::SCS_mutable
)
5309 // Since mutable is not a viable storage class specifier in C, there is
5310 // no reason to treat it as an extension. Instead, diagnose as an error.
5311 Diag(DS
.getStorageClassSpecLoc(), diag::err_mutable_nonmember
);
5312 else if (!DS
.isExternInLinkageSpec() && SCS
!= DeclSpec::SCS_typedef
)
5313 Diag(DS
.getStorageClassSpecLoc(), DiagID
)
5314 << DeclSpec::getSpecifierName(SCS
);
5317 if (DeclSpec::TSCS TSCS
= DS
.getThreadStorageClassSpec())
5318 Diag(DS
.getThreadStorageClassSpecLoc(), DiagID
)
5319 << DeclSpec::getSpecifierName(TSCS
);
5320 if (DS
.getTypeQualifiers()) {
5321 if (DS
.getTypeQualifiers() & DeclSpec::TQ_const
)
5322 Diag(DS
.getConstSpecLoc(), DiagID
) << "const";
5323 if (DS
.getTypeQualifiers() & DeclSpec::TQ_volatile
)
5324 Diag(DS
.getConstSpecLoc(), DiagID
) << "volatile";
5325 // Restrict is covered above.
5326 if (DS
.getTypeQualifiers() & DeclSpec::TQ_atomic
)
5327 Diag(DS
.getAtomicSpecLoc(), DiagID
) << "_Atomic";
5328 if (DS
.getTypeQualifiers() & DeclSpec::TQ_unaligned
)
5329 Diag(DS
.getUnalignedSpecLoc(), DiagID
) << "__unaligned";
5332 // Warn about ignored type attributes, for example:
5333 // __attribute__((aligned)) struct A;
5334 // Attributes should be placed after tag to apply to type declaration.
5335 if (!DS
.getAttributes().empty() || !DeclAttrs
.empty()) {
5336 DeclSpec::TST TypeSpecType
= DS
.getTypeSpecType();
5337 if (TypeSpecType
== DeclSpec::TST_class
||
5338 TypeSpecType
== DeclSpec::TST_struct
||
5339 TypeSpecType
== DeclSpec::TST_interface
||
5340 TypeSpecType
== DeclSpec::TST_union
||
5341 TypeSpecType
== DeclSpec::TST_enum
) {
5342 for (const ParsedAttr
&AL
: DS
.getAttributes())
5343 Diag(AL
.getLoc(), AL
.isRegularKeywordAttribute()
5344 ? diag::err_declspec_keyword_has_no_effect
5345 : diag::warn_declspec_attribute_ignored
)
5346 << AL
<< GetDiagnosticTypeSpecifierID(DS
);
5347 for (const ParsedAttr
&AL
: DeclAttrs
)
5348 Diag(AL
.getLoc(), AL
.isRegularKeywordAttribute()
5349 ? diag::err_declspec_keyword_has_no_effect
5350 : diag::warn_declspec_attribute_ignored
)
5351 << AL
<< GetDiagnosticTypeSpecifierID(DS
);
5358 /// We are trying to inject an anonymous member into the given scope;
5359 /// check if there's an existing declaration that can't be overloaded.
5361 /// \return true if this is a forbidden redeclaration
5362 static bool CheckAnonMemberRedeclaration(Sema
&SemaRef
, Scope
*S
,
5364 DeclarationName Name
,
5365 SourceLocation NameLoc
, bool IsUnion
,
5367 LookupResult
R(SemaRef
, Name
, NameLoc
,
5368 Owner
->isRecord() ? Sema::LookupMemberName
5369 : Sema::LookupOrdinaryName
,
5370 Sema::ForVisibleRedeclaration
);
5371 if (!SemaRef
.LookupName(R
, S
)) return false;
5373 // Pick a representative declaration.
5374 NamedDecl
*PrevDecl
= R
.getRepresentativeDecl()->getUnderlyingDecl();
5375 assert(PrevDecl
&& "Expected a non-null Decl");
5377 if (!SemaRef
.isDeclInScope(PrevDecl
, Owner
, S
))
5380 if (SC
== StorageClass::SC_None
&&
5381 PrevDecl
->isPlaceholderVar(SemaRef
.getLangOpts()) &&
5382 (Owner
->isFunctionOrMethod() || Owner
->isRecord())) {
5383 if (!Owner
->isRecord())
5384 SemaRef
.DiagPlaceholderVariableDefinition(NameLoc
);
5388 SemaRef
.Diag(NameLoc
, diag::err_anonymous_record_member_redecl
)
5390 SemaRef
.Diag(PrevDecl
->getLocation(), diag::note_previous_declaration
);
5395 void Sema::ActOnDefinedDeclarationSpecifier(Decl
*D
) {
5396 if (auto *RD
= dyn_cast_if_present
<RecordDecl
>(D
))
5397 DiagPlaceholderFieldDeclDefinitions(RD
);
5400 /// Emit diagnostic warnings for placeholder members.
5401 /// We can only do that after the class is fully constructed,
5402 /// as anonymous union/structs can insert placeholders
5403 /// in their parent scope (which might be a Record).
5404 void Sema::DiagPlaceholderFieldDeclDefinitions(RecordDecl
*Record
) {
5405 if (!getLangOpts().CPlusPlus
)
5408 // This function can be parsed before we have validated the
5409 // structure as an anonymous struct
5410 if (Record
->isAnonymousStructOrUnion())
5413 const NamedDecl
*First
= 0;
5414 for (const Decl
*D
: Record
->decls()) {
5415 const NamedDecl
*ND
= dyn_cast
<NamedDecl
>(D
);
5416 if (!ND
|| !ND
->isPlaceholderVar(getLangOpts()))
5421 DiagPlaceholderVariableDefinition(ND
->getLocation());
5425 /// InjectAnonymousStructOrUnionMembers - Inject the members of the
5426 /// anonymous struct or union AnonRecord into the owning context Owner
5427 /// and scope S. This routine will be invoked just after we realize
5428 /// that an unnamed union or struct is actually an anonymous union or
5435 /// }; // InjectAnonymousStructOrUnionMembers called here to inject i and
5436 /// // f into the surrounding scope.x
5439 /// This routine is recursive, injecting the names of nested anonymous
5440 /// structs/unions into the owning context and scope as well.
5442 InjectAnonymousStructOrUnionMembers(Sema
&SemaRef
, Scope
*S
, DeclContext
*Owner
,
5443 RecordDecl
*AnonRecord
, AccessSpecifier AS
,
5445 SmallVectorImpl
<NamedDecl
*> &Chaining
) {
5446 bool Invalid
= false;
5448 // Look every FieldDecl and IndirectFieldDecl with a name.
5449 for (auto *D
: AnonRecord
->decls()) {
5450 if ((isa
<FieldDecl
>(D
) || isa
<IndirectFieldDecl
>(D
)) &&
5451 cast
<NamedDecl
>(D
)->getDeclName()) {
5452 ValueDecl
*VD
= cast
<ValueDecl
>(D
);
5453 if (CheckAnonMemberRedeclaration(SemaRef
, S
, Owner
, VD
->getDeclName(),
5454 VD
->getLocation(), AnonRecord
->isUnion(),
5456 // C++ [class.union]p2:
5457 // The names of the members of an anonymous union shall be
5458 // distinct from the names of any other entity in the
5459 // scope in which the anonymous union is declared.
5462 // C++ [class.union]p2:
5463 // For the purpose of name lookup, after the anonymous union
5464 // definition, the members of the anonymous union are
5465 // considered to have been defined in the scope in which the
5466 // anonymous union is declared.
5467 unsigned OldChainingSize
= Chaining
.size();
5468 if (IndirectFieldDecl
*IF
= dyn_cast
<IndirectFieldDecl
>(VD
))
5469 Chaining
.append(IF
->chain_begin(), IF
->chain_end());
5471 Chaining
.push_back(VD
);
5473 assert(Chaining
.size() >= 2);
5474 NamedDecl
**NamedChain
=
5475 new (SemaRef
.Context
)NamedDecl
*[Chaining
.size()];
5476 for (unsigned i
= 0; i
< Chaining
.size(); i
++)
5477 NamedChain
[i
] = Chaining
[i
];
5479 IndirectFieldDecl
*IndirectField
= IndirectFieldDecl::Create(
5480 SemaRef
.Context
, Owner
, VD
->getLocation(), VD
->getIdentifier(),
5481 VD
->getType(), {NamedChain
, Chaining
.size()});
5483 for (const auto *Attr
: VD
->attrs())
5484 IndirectField
->addAttr(Attr
->clone(SemaRef
.Context
));
5486 IndirectField
->setAccess(AS
);
5487 IndirectField
->setImplicit();
5488 SemaRef
.PushOnScopeChains(IndirectField
, S
);
5490 // That includes picking up the appropriate access specifier.
5491 if (AS
!= AS_none
) IndirectField
->setAccess(AS
);
5493 Chaining
.resize(OldChainingSize
);
5501 /// StorageClassSpecToVarDeclStorageClass - Maps a DeclSpec::SCS to
5502 /// a VarDecl::StorageClass. Any error reporting is up to the caller:
5503 /// illegal input values are mapped to SC_None.
5505 StorageClassSpecToVarDeclStorageClass(const DeclSpec
&DS
) {
5506 DeclSpec::SCS StorageClassSpec
= DS
.getStorageClassSpec();
5507 assert(StorageClassSpec
!= DeclSpec::SCS_typedef
&&
5508 "Parser allowed 'typedef' as storage class VarDecl.");
5509 switch (StorageClassSpec
) {
5510 case DeclSpec::SCS_unspecified
: return SC_None
;
5511 case DeclSpec::SCS_extern
:
5512 if (DS
.isExternInLinkageSpec())
5515 case DeclSpec::SCS_static
: return SC_Static
;
5516 case DeclSpec::SCS_auto
: return SC_Auto
;
5517 case DeclSpec::SCS_register
: return SC_Register
;
5518 case DeclSpec::SCS_private_extern
: return SC_PrivateExtern
;
5519 // Illegal SCSs map to None: error reporting is up to the caller.
5520 case DeclSpec::SCS_mutable
: // Fall through.
5521 case DeclSpec::SCS_typedef
: return SC_None
;
5523 llvm_unreachable("unknown storage class specifier");
5526 static SourceLocation
findDefaultInitializer(const CXXRecordDecl
*Record
) {
5527 assert(Record
->hasInClassInitializer());
5529 for (const auto *I
: Record
->decls()) {
5530 const auto *FD
= dyn_cast
<FieldDecl
>(I
);
5531 if (const auto *IFD
= dyn_cast
<IndirectFieldDecl
>(I
))
5532 FD
= IFD
->getAnonField();
5533 if (FD
&& FD
->hasInClassInitializer())
5534 return FD
->getLocation();
5537 llvm_unreachable("couldn't find in-class initializer");
5540 static void checkDuplicateDefaultInit(Sema
&S
, CXXRecordDecl
*Parent
,
5541 SourceLocation DefaultInitLoc
) {
5542 if (!Parent
->isUnion() || !Parent
->hasInClassInitializer())
5545 S
.Diag(DefaultInitLoc
, diag::err_multiple_mem_union_initialization
);
5546 S
.Diag(findDefaultInitializer(Parent
), diag::note_previous_initializer
) << 0;
5549 static void checkDuplicateDefaultInit(Sema
&S
, CXXRecordDecl
*Parent
,
5550 CXXRecordDecl
*AnonUnion
) {
5551 if (!Parent
->isUnion() || !Parent
->hasInClassInitializer())
5554 checkDuplicateDefaultInit(S
, Parent
, findDefaultInitializer(AnonUnion
));
5557 /// BuildAnonymousStructOrUnion - Handle the declaration of an
5558 /// anonymous structure or union. Anonymous unions are a C++ feature
5559 /// (C++ [class.union]) and a C11 feature; anonymous structures
5560 /// are a C11 feature and GNU C++ extension.
5561 Decl
*Sema::BuildAnonymousStructOrUnion(Scope
*S
, DeclSpec
&DS
,
5564 const PrintingPolicy
&Policy
) {
5565 DeclContext
*Owner
= Record
->getDeclContext();
5567 // Diagnose whether this anonymous struct/union is an extension.
5568 if (Record
->isUnion() && !getLangOpts().CPlusPlus
&& !getLangOpts().C11
)
5569 Diag(Record
->getLocation(), diag::ext_anonymous_union
);
5570 else if (!Record
->isUnion() && getLangOpts().CPlusPlus
)
5571 Diag(Record
->getLocation(), diag::ext_gnu_anonymous_struct
);
5572 else if (!Record
->isUnion() && !getLangOpts().C11
)
5573 Diag(Record
->getLocation(), diag::ext_c11_anonymous_struct
);
5575 // C and C++ require different kinds of checks for anonymous
5577 bool Invalid
= false;
5578 if (getLangOpts().CPlusPlus
) {
5579 const char *PrevSpec
= nullptr;
5580 if (Record
->isUnion()) {
5581 // C++ [class.union]p6:
5582 // C++17 [class.union.anon]p2:
5583 // Anonymous unions declared in a named namespace or in the
5584 // global namespace shall be declared static.
5586 DeclContext
*OwnerScope
= Owner
->getRedeclContext();
5587 if (DS
.getStorageClassSpec() != DeclSpec::SCS_static
&&
5588 (OwnerScope
->isTranslationUnit() ||
5589 (OwnerScope
->isNamespace() &&
5590 !cast
<NamespaceDecl
>(OwnerScope
)->isAnonymousNamespace()))) {
5591 Diag(Record
->getLocation(), diag::err_anonymous_union_not_static
)
5592 << FixItHint::CreateInsertion(Record
->getLocation(), "static ");
5594 // Recover by adding 'static'.
5595 DS
.SetStorageClassSpec(*this, DeclSpec::SCS_static
, SourceLocation(),
5596 PrevSpec
, DiagID
, Policy
);
5598 // C++ [class.union]p6:
5599 // A storage class is not allowed in a declaration of an
5600 // anonymous union in a class scope.
5601 else if (DS
.getStorageClassSpec() != DeclSpec::SCS_unspecified
&&
5602 isa
<RecordDecl
>(Owner
)) {
5603 Diag(DS
.getStorageClassSpecLoc(),
5604 diag::err_anonymous_union_with_storage_spec
)
5605 << FixItHint::CreateRemoval(DS
.getStorageClassSpecLoc());
5607 // Recover by removing the storage specifier.
5608 DS
.SetStorageClassSpec(*this, DeclSpec::SCS_unspecified
,
5610 PrevSpec
, DiagID
, Context
.getPrintingPolicy());
5614 // Ignore const/volatile/restrict qualifiers.
5615 if (DS
.getTypeQualifiers()) {
5616 if (DS
.getTypeQualifiers() & DeclSpec::TQ_const
)
5617 Diag(DS
.getConstSpecLoc(), diag::ext_anonymous_struct_union_qualified
)
5618 << Record
->isUnion() << "const"
5619 << FixItHint::CreateRemoval(DS
.getConstSpecLoc());
5620 if (DS
.getTypeQualifiers() & DeclSpec::TQ_volatile
)
5621 Diag(DS
.getVolatileSpecLoc(),
5622 diag::ext_anonymous_struct_union_qualified
)
5623 << Record
->isUnion() << "volatile"
5624 << FixItHint::CreateRemoval(DS
.getVolatileSpecLoc());
5625 if (DS
.getTypeQualifiers() & DeclSpec::TQ_restrict
)
5626 Diag(DS
.getRestrictSpecLoc(),
5627 diag::ext_anonymous_struct_union_qualified
)
5628 << Record
->isUnion() << "restrict"
5629 << FixItHint::CreateRemoval(DS
.getRestrictSpecLoc());
5630 if (DS
.getTypeQualifiers() & DeclSpec::TQ_atomic
)
5631 Diag(DS
.getAtomicSpecLoc(),
5632 diag::ext_anonymous_struct_union_qualified
)
5633 << Record
->isUnion() << "_Atomic"
5634 << FixItHint::CreateRemoval(DS
.getAtomicSpecLoc());
5635 if (DS
.getTypeQualifiers() & DeclSpec::TQ_unaligned
)
5636 Diag(DS
.getUnalignedSpecLoc(),
5637 diag::ext_anonymous_struct_union_qualified
)
5638 << Record
->isUnion() << "__unaligned"
5639 << FixItHint::CreateRemoval(DS
.getUnalignedSpecLoc());
5641 DS
.ClearTypeQualifiers();
5644 // C++ [class.union]p2:
5645 // The member-specification of an anonymous union shall only
5646 // define non-static data members. [Note: nested types and
5647 // functions cannot be declared within an anonymous union. ]
5648 for (auto *Mem
: Record
->decls()) {
5649 // Ignore invalid declarations; we already diagnosed them.
5650 if (Mem
->isInvalidDecl())
5653 if (auto *FD
= dyn_cast
<FieldDecl
>(Mem
)) {
5654 // C++ [class.union]p3:
5655 // An anonymous union shall not have private or protected
5656 // members (clause 11).
5657 assert(FD
->getAccess() != AS_none
);
5658 if (FD
->getAccess() != AS_public
) {
5659 Diag(FD
->getLocation(), diag::err_anonymous_record_nonpublic_member
)
5660 << Record
->isUnion() << (FD
->getAccess() == AS_protected
);
5664 // C++ [class.union]p1
5665 // An object of a class with a non-trivial constructor, a non-trivial
5666 // copy constructor, a non-trivial destructor, or a non-trivial copy
5667 // assignment operator cannot be a member of a union, nor can an
5668 // array of such objects.
5669 if (CheckNontrivialField(FD
))
5671 } else if (Mem
->isImplicit()) {
5672 // Any implicit members are fine.
5673 } else if (isa
<TagDecl
>(Mem
) && Mem
->getDeclContext() != Record
) {
5674 // This is a type that showed up in an
5675 // elaborated-type-specifier inside the anonymous struct or
5676 // union, but which actually declares a type outside of the
5677 // anonymous struct or union. It's okay.
5678 } else if (auto *MemRecord
= dyn_cast
<RecordDecl
>(Mem
)) {
5679 if (!MemRecord
->isAnonymousStructOrUnion() &&
5680 MemRecord
->getDeclName()) {
5681 // Visual C++ allows type definition in anonymous struct or union.
5682 if (getLangOpts().MicrosoftExt
)
5683 Diag(MemRecord
->getLocation(), diag::ext_anonymous_record_with_type
)
5684 << Record
->isUnion();
5686 // This is a nested type declaration.
5687 Diag(MemRecord
->getLocation(), diag::err_anonymous_record_with_type
)
5688 << Record
->isUnion();
5692 // This is an anonymous type definition within another anonymous type.
5693 // This is a popular extension, provided by Plan9, MSVC and GCC, but
5694 // not part of standard C++.
5695 Diag(MemRecord
->getLocation(),
5696 diag::ext_anonymous_record_with_anonymous_type
)
5697 << Record
->isUnion();
5699 } else if (isa
<AccessSpecDecl
>(Mem
)) {
5700 // Any access specifier is fine.
5701 } else if (isa
<StaticAssertDecl
>(Mem
)) {
5702 // In C++1z, static_assert declarations are also fine.
5704 // We have something that isn't a non-static data
5705 // member. Complain about it.
5706 unsigned DK
= diag::err_anonymous_record_bad_member
;
5707 if (isa
<TypeDecl
>(Mem
))
5708 DK
= diag::err_anonymous_record_with_type
;
5709 else if (isa
<FunctionDecl
>(Mem
))
5710 DK
= diag::err_anonymous_record_with_function
;
5711 else if (isa
<VarDecl
>(Mem
))
5712 DK
= diag::err_anonymous_record_with_static
;
5714 // Visual C++ allows type definition in anonymous struct or union.
5715 if (getLangOpts().MicrosoftExt
&&
5716 DK
== diag::err_anonymous_record_with_type
)
5717 Diag(Mem
->getLocation(), diag::ext_anonymous_record_with_type
)
5718 << Record
->isUnion();
5720 Diag(Mem
->getLocation(), DK
) << Record
->isUnion();
5726 // C++11 [class.union]p8 (DR1460):
5727 // At most one variant member of a union may have a
5728 // brace-or-equal-initializer.
5729 if (cast
<CXXRecordDecl
>(Record
)->hasInClassInitializer() &&
5731 checkDuplicateDefaultInit(*this, cast
<CXXRecordDecl
>(Owner
),
5732 cast
<CXXRecordDecl
>(Record
));
5735 if (!Record
->isUnion() && !Owner
->isRecord()) {
5736 Diag(Record
->getLocation(), diag::err_anonymous_struct_not_member
)
5737 << getLangOpts().CPlusPlus
;
5742 // [If there are no declarators], and except for the declaration of an
5743 // unnamed bit-field, the decl-specifier-seq shall introduce one or more
5744 // names into the program
5745 // C++ [class.mem]p2:
5746 // each such member-declaration shall either declare at least one member
5747 // name of the class or declare at least one unnamed bit-field
5749 // For C this is an error even for a named struct, and is diagnosed elsewhere.
5750 if (getLangOpts().CPlusPlus
&& Record
->field_empty())
5751 Diag(DS
.getBeginLoc(), diag::ext_no_declarators
) << DS
.getSourceRange();
5753 // Mock up a declarator.
5754 Declarator
Dc(DS
, ParsedAttributesView::none(), DeclaratorContext::Member
);
5755 StorageClass SC
= StorageClassSpecToVarDeclStorageClass(DS
);
5756 TypeSourceInfo
*TInfo
= GetTypeForDeclarator(Dc
, S
);
5757 assert(TInfo
&& "couldn't build declarator info for anonymous struct/union");
5759 // Create a declaration for this anonymous struct/union.
5760 NamedDecl
*Anon
= nullptr;
5761 if (RecordDecl
*OwningClass
= dyn_cast
<RecordDecl
>(Owner
)) {
5762 Anon
= FieldDecl::Create(
5763 Context
, OwningClass
, DS
.getBeginLoc(), Record
->getLocation(),
5764 /*IdentifierInfo=*/nullptr, Context
.getTypeDeclType(Record
), TInfo
,
5765 /*BitWidth=*/nullptr, /*Mutable=*/false,
5766 /*InitStyle=*/ICIS_NoInit
);
5767 Anon
->setAccess(AS
);
5768 ProcessDeclAttributes(S
, Anon
, Dc
);
5770 if (getLangOpts().CPlusPlus
)
5771 FieldCollector
->Add(cast
<FieldDecl
>(Anon
));
5773 DeclSpec::SCS SCSpec
= DS
.getStorageClassSpec();
5774 if (SCSpec
== DeclSpec::SCS_mutable
) {
5775 // mutable can only appear on non-static class members, so it's always
5777 Diag(Record
->getLocation(), diag::err_mutable_nonmember
);
5782 Anon
= VarDecl::Create(Context
, Owner
, DS
.getBeginLoc(),
5783 Record
->getLocation(), /*IdentifierInfo=*/nullptr,
5784 Context
.getTypeDeclType(Record
), TInfo
, SC
);
5785 ProcessDeclAttributes(S
, Anon
, Dc
);
5787 // Default-initialize the implicit variable. This initialization will be
5788 // trivial in almost all cases, except if a union member has an in-class
5790 // union { int n = 0; };
5791 ActOnUninitializedDecl(Anon
);
5793 Anon
->setImplicit();
5795 // Mark this as an anonymous struct/union type.
5796 Record
->setAnonymousStructOrUnion(true);
5798 // Add the anonymous struct/union object to the current
5799 // context. We'll be referencing this object when we refer to one of
5801 Owner
->addDecl(Anon
);
5803 // Inject the members of the anonymous struct/union into the owning
5804 // context and into the identifier resolver chain for name lookup
5806 SmallVector
<NamedDecl
*, 2> Chain
;
5807 Chain
.push_back(Anon
);
5809 if (InjectAnonymousStructOrUnionMembers(*this, S
, Owner
, Record
, AS
, SC
,
5813 if (VarDecl
*NewVD
= dyn_cast
<VarDecl
>(Anon
)) {
5814 if (getLangOpts().CPlusPlus
&& NewVD
->isStaticLocal()) {
5815 MangleNumberingContext
*MCtx
;
5816 Decl
*ManglingContextDecl
;
5817 std::tie(MCtx
, ManglingContextDecl
) =
5818 getCurrentMangleNumberContext(NewVD
->getDeclContext());
5820 Context
.setManglingNumber(
5821 NewVD
, MCtx
->getManglingNumber(
5822 NewVD
, getMSManglingNumber(getLangOpts(), S
)));
5823 Context
.setStaticLocalNumber(NewVD
, MCtx
->getStaticLocalNumber(NewVD
));
5829 Anon
->setInvalidDecl();
5834 /// BuildMicrosoftCAnonymousStruct - Handle the declaration of an
5835 /// Microsoft C anonymous structure.
5836 /// Ref: http://msdn.microsoft.com/en-us/library/z2cx9y4f.aspx
5839 /// struct A { int a; };
5840 /// struct B { struct A; int b; };
5847 Decl
*Sema::BuildMicrosoftCAnonymousStruct(Scope
*S
, DeclSpec
&DS
,
5848 RecordDecl
*Record
) {
5849 assert(Record
&& "expected a record!");
5851 // Mock up a declarator.
5852 Declarator
Dc(DS
, ParsedAttributesView::none(), DeclaratorContext::TypeName
);
5853 TypeSourceInfo
*TInfo
= GetTypeForDeclarator(Dc
, S
);
5854 assert(TInfo
&& "couldn't build declarator info for anonymous struct");
5856 auto *ParentDecl
= cast
<RecordDecl
>(CurContext
);
5857 QualType RecTy
= Context
.getTypeDeclType(Record
);
5859 // Create a declaration for this anonymous struct.
5861 FieldDecl::Create(Context
, ParentDecl
, DS
.getBeginLoc(), DS
.getBeginLoc(),
5862 /*IdentifierInfo=*/nullptr, RecTy
, TInfo
,
5863 /*BitWidth=*/nullptr, /*Mutable=*/false,
5864 /*InitStyle=*/ICIS_NoInit
);
5865 Anon
->setImplicit();
5867 // Add the anonymous struct object to the current context.
5868 CurContext
->addDecl(Anon
);
5870 // Inject the members of the anonymous struct into the current
5871 // context and into the identifier resolver chain for name lookup
5873 SmallVector
<NamedDecl
*, 2> Chain
;
5874 Chain
.push_back(Anon
);
5876 RecordDecl
*RecordDef
= Record
->getDefinition();
5877 if (RequireCompleteSizedType(Anon
->getLocation(), RecTy
,
5878 diag::err_field_incomplete_or_sizeless
) ||
5879 InjectAnonymousStructOrUnionMembers(
5880 *this, S
, CurContext
, RecordDef
, AS_none
,
5881 StorageClassSpecToVarDeclStorageClass(DS
), Chain
)) {
5882 Anon
->setInvalidDecl();
5883 ParentDecl
->setInvalidDecl();
5889 /// GetNameForDeclarator - Determine the full declaration name for the
5890 /// given Declarator.
5891 DeclarationNameInfo
Sema::GetNameForDeclarator(Declarator
&D
) {
5892 return GetNameFromUnqualifiedId(D
.getName());
5895 /// Retrieves the declaration name from a parsed unqualified-id.
5897 Sema::GetNameFromUnqualifiedId(const UnqualifiedId
&Name
) {
5898 DeclarationNameInfo NameInfo
;
5899 NameInfo
.setLoc(Name
.StartLocation
);
5901 switch (Name
.getKind()) {
5903 case UnqualifiedIdKind::IK_ImplicitSelfParam
:
5904 case UnqualifiedIdKind::IK_Identifier
:
5905 NameInfo
.setName(Name
.Identifier
);
5908 case UnqualifiedIdKind::IK_DeductionGuideName
: {
5909 // C++ [temp.deduct.guide]p3:
5910 // The simple-template-id shall name a class template specialization.
5911 // The template-name shall be the same identifier as the template-name
5912 // of the simple-template-id.
5913 // These together intend to imply that the template-name shall name a
5915 // FIXME: template<typename T> struct X {};
5916 // template<typename T> using Y = X<T>;
5917 // Y(int) -> Y<int>;
5918 // satisfies these rules but does not name a class template.
5919 TemplateName TN
= Name
.TemplateName
.get().get();
5920 auto *Template
= TN
.getAsTemplateDecl();
5921 if (!Template
|| !isa
<ClassTemplateDecl
>(Template
)) {
5922 Diag(Name
.StartLocation
,
5923 diag::err_deduction_guide_name_not_class_template
)
5924 << (int)getTemplateNameKindForDiagnostics(TN
) << TN
;
5926 Diag(Template
->getLocation(), diag::note_template_decl_here
);
5927 return DeclarationNameInfo();
5931 Context
.DeclarationNames
.getCXXDeductionGuideName(Template
));
5935 case UnqualifiedIdKind::IK_OperatorFunctionId
:
5936 NameInfo
.setName(Context
.DeclarationNames
.getCXXOperatorName(
5937 Name
.OperatorFunctionId
.Operator
));
5938 NameInfo
.setCXXOperatorNameRange(SourceRange(
5939 Name
.OperatorFunctionId
.SymbolLocations
[0], Name
.EndLocation
));
5942 case UnqualifiedIdKind::IK_LiteralOperatorId
:
5943 NameInfo
.setName(Context
.DeclarationNames
.getCXXLiteralOperatorName(
5945 NameInfo
.setCXXLiteralOperatorNameLoc(Name
.EndLocation
);
5948 case UnqualifiedIdKind::IK_ConversionFunctionId
: {
5949 TypeSourceInfo
*TInfo
;
5950 QualType Ty
= GetTypeFromParser(Name
.ConversionFunctionId
, &TInfo
);
5952 return DeclarationNameInfo();
5953 NameInfo
.setName(Context
.DeclarationNames
.getCXXConversionFunctionName(
5954 Context
.getCanonicalType(Ty
)));
5955 NameInfo
.setNamedTypeInfo(TInfo
);
5959 case UnqualifiedIdKind::IK_ConstructorName
: {
5960 TypeSourceInfo
*TInfo
;
5961 QualType Ty
= GetTypeFromParser(Name
.ConstructorName
, &TInfo
);
5963 return DeclarationNameInfo();
5964 NameInfo
.setName(Context
.DeclarationNames
.getCXXConstructorName(
5965 Context
.getCanonicalType(Ty
)));
5966 NameInfo
.setNamedTypeInfo(TInfo
);
5970 case UnqualifiedIdKind::IK_ConstructorTemplateId
: {
5971 // In well-formed code, we can only have a constructor
5972 // template-id that refers to the current context, so go there
5973 // to find the actual type being constructed.
5974 CXXRecordDecl
*CurClass
= dyn_cast
<CXXRecordDecl
>(CurContext
);
5975 if (!CurClass
|| CurClass
->getIdentifier() != Name
.TemplateId
->Name
)
5976 return DeclarationNameInfo();
5978 // Determine the type of the class being constructed.
5979 QualType CurClassType
= Context
.getTypeDeclType(CurClass
);
5981 // FIXME: Check two things: that the template-id names the same type as
5982 // CurClassType, and that the template-id does not occur when the name
5985 NameInfo
.setName(Context
.DeclarationNames
.getCXXConstructorName(
5986 Context
.getCanonicalType(CurClassType
)));
5987 // FIXME: should we retrieve TypeSourceInfo?
5988 NameInfo
.setNamedTypeInfo(nullptr);
5992 case UnqualifiedIdKind::IK_DestructorName
: {
5993 TypeSourceInfo
*TInfo
;
5994 QualType Ty
= GetTypeFromParser(Name
.DestructorName
, &TInfo
);
5996 return DeclarationNameInfo();
5997 NameInfo
.setName(Context
.DeclarationNames
.getCXXDestructorName(
5998 Context
.getCanonicalType(Ty
)));
5999 NameInfo
.setNamedTypeInfo(TInfo
);
6003 case UnqualifiedIdKind::IK_TemplateId
: {
6004 TemplateName TName
= Name
.TemplateId
->Template
.get();
6005 SourceLocation TNameLoc
= Name
.TemplateId
->TemplateNameLoc
;
6006 return Context
.getNameForTemplate(TName
, TNameLoc
);
6009 } // switch (Name.getKind())
6011 llvm_unreachable("Unknown name kind");
6014 static QualType
getCoreType(QualType Ty
) {
6016 if (Ty
->isPointerType() || Ty
->isReferenceType())
6017 Ty
= Ty
->getPointeeType();
6018 else if (Ty
->isArrayType())
6019 Ty
= Ty
->castAsArrayTypeUnsafe()->getElementType();
6021 return Ty
.withoutLocalFastQualifiers();
6025 /// hasSimilarParameters - Determine whether the C++ functions Declaration
6026 /// and Definition have "nearly" matching parameters. This heuristic is
6027 /// used to improve diagnostics in the case where an out-of-line function
6028 /// definition doesn't match any declaration within the class or namespace.
6029 /// Also sets Params to the list of indices to the parameters that differ
6030 /// between the declaration and the definition. If hasSimilarParameters
6031 /// returns true and Params is empty, then all of the parameters match.
6032 static bool hasSimilarParameters(ASTContext
&Context
,
6033 FunctionDecl
*Declaration
,
6034 FunctionDecl
*Definition
,
6035 SmallVectorImpl
<unsigned> &Params
) {
6037 if (Declaration
->param_size() != Definition
->param_size())
6039 for (unsigned Idx
= 0; Idx
< Declaration
->param_size(); ++Idx
) {
6040 QualType DeclParamTy
= Declaration
->getParamDecl(Idx
)->getType();
6041 QualType DefParamTy
= Definition
->getParamDecl(Idx
)->getType();
6043 // The parameter types are identical
6044 if (Context
.hasSameUnqualifiedType(DefParamTy
, DeclParamTy
))
6047 QualType DeclParamBaseTy
= getCoreType(DeclParamTy
);
6048 QualType DefParamBaseTy
= getCoreType(DefParamTy
);
6049 const IdentifierInfo
*DeclTyName
= DeclParamBaseTy
.getBaseTypeIdentifier();
6050 const IdentifierInfo
*DefTyName
= DefParamBaseTy
.getBaseTypeIdentifier();
6052 if (Context
.hasSameUnqualifiedType(DeclParamBaseTy
, DefParamBaseTy
) ||
6053 (DeclTyName
&& DeclTyName
== DefTyName
))
6054 Params
.push_back(Idx
);
6055 else // The two parameters aren't even close
6062 /// RebuildDeclaratorInCurrentInstantiation - Checks whether the given
6063 /// declarator needs to be rebuilt in the current instantiation.
6064 /// Any bits of declarator which appear before the name are valid for
6065 /// consideration here. That's specifically the type in the decl spec
6066 /// and the base type in any member-pointer chunks.
6067 static bool RebuildDeclaratorInCurrentInstantiation(Sema
&S
, Declarator
&D
,
6068 DeclarationName Name
) {
6069 // The types we specifically need to rebuild are:
6070 // - typenames, typeofs, and decltypes
6071 // - types which will become injected class names
6072 // Of course, we also need to rebuild any type referencing such a
6073 // type. It's safest to just say "dependent", but we call out a
6076 DeclSpec
&DS
= D
.getMutableDeclSpec();
6077 switch (DS
.getTypeSpecType()) {
6078 case DeclSpec::TST_typename
:
6079 case DeclSpec::TST_typeofType
:
6080 case DeclSpec::TST_typeof_unqualType
:
6081 #define TRANSFORM_TYPE_TRAIT_DEF(_, Trait) case DeclSpec::TST_##Trait:
6082 #include "clang/Basic/TransformTypeTraits.def"
6083 case DeclSpec::TST_atomic
: {
6084 // Grab the type from the parser.
6085 TypeSourceInfo
*TSI
= nullptr;
6086 QualType T
= S
.GetTypeFromParser(DS
.getRepAsType(), &TSI
);
6087 if (T
.isNull() || !T
->isInstantiationDependentType()) break;
6089 // Make sure there's a type source info. This isn't really much
6090 // of a waste; most dependent types should have type source info
6091 // attached already.
6093 TSI
= S
.Context
.getTrivialTypeSourceInfo(T
, DS
.getTypeSpecTypeLoc());
6095 // Rebuild the type in the current instantiation.
6096 TSI
= S
.RebuildTypeInCurrentInstantiation(TSI
, D
.getIdentifierLoc(), Name
);
6097 if (!TSI
) return true;
6099 // Store the new type back in the decl spec.
6100 ParsedType LocType
= S
.CreateParsedType(TSI
->getType(), TSI
);
6101 DS
.UpdateTypeRep(LocType
);
6105 case DeclSpec::TST_decltype
:
6106 case DeclSpec::TST_typeof_unqualExpr
:
6107 case DeclSpec::TST_typeofExpr
: {
6108 Expr
*E
= DS
.getRepAsExpr();
6109 ExprResult Result
= S
.RebuildExprInCurrentInstantiation(E
);
6110 if (Result
.isInvalid()) return true;
6111 DS
.UpdateExprRep(Result
.get());
6116 // Nothing to do for these decl specs.
6120 // It doesn't matter what order we do this in.
6121 for (unsigned I
= 0, E
= D
.getNumTypeObjects(); I
!= E
; ++I
) {
6122 DeclaratorChunk
&Chunk
= D
.getTypeObject(I
);
6124 // The only type information in the declarator which can come
6125 // before the declaration name is the base type of a member
6127 if (Chunk
.Kind
!= DeclaratorChunk::MemberPointer
)
6130 // Rebuild the scope specifier in-place.
6131 CXXScopeSpec
&SS
= Chunk
.Mem
.Scope();
6132 if (S
.RebuildNestedNameSpecifierInCurrentInstantiation(SS
))
6139 /// Returns true if the declaration is declared in a system header or from a
6141 static bool isFromSystemHeader(SourceManager
&SM
, const Decl
*D
) {
6142 return SM
.isInSystemHeader(D
->getLocation()) ||
6143 SM
.isInSystemMacro(D
->getLocation());
6146 void Sema::warnOnReservedIdentifier(const NamedDecl
*D
) {
6147 // Avoid warning twice on the same identifier, and don't warn on redeclaration
6149 if (D
->getPreviousDecl() || D
->isImplicit())
6151 ReservedIdentifierStatus Status
= D
->isReserved(getLangOpts());
6152 if (Status
!= ReservedIdentifierStatus::NotReserved
&&
6153 !isFromSystemHeader(Context
.getSourceManager(), D
)) {
6154 Diag(D
->getLocation(), diag::warn_reserved_extern_symbol
)
6155 << D
<< static_cast<int>(Status
);
6159 Decl
*Sema::ActOnDeclarator(Scope
*S
, Declarator
&D
) {
6160 D
.setFunctionDefinitionKind(FunctionDefinitionKind::Declaration
);
6162 // Check if we are in an `omp begin/end declare variant` scope. Handle this
6163 // declaration only if the `bind_to_declaration` extension is set.
6164 SmallVector
<FunctionDecl
*, 4> Bases
;
6165 if (LangOpts
.OpenMP
&& isInOpenMPDeclareVariantScope())
6166 if (getOMPTraitInfoForSurroundingScope()->isExtensionActive(llvm::omp::TraitProperty::
6167 implementation_extension_bind_to_declaration
))
6168 ActOnStartOfFunctionDefinitionInOpenMPDeclareVariantScope(
6169 S
, D
, MultiTemplateParamsArg(), Bases
);
6171 Decl
*Dcl
= HandleDeclarator(S
, D
, MultiTemplateParamsArg());
6173 if (OriginalLexicalContext
&& OriginalLexicalContext
->isObjCContainer() &&
6174 Dcl
&& Dcl
->getDeclContext()->isFileContext())
6175 Dcl
->setTopLevelDeclInObjCContainer();
6178 ActOnFinishedFunctionDefinitionInOpenMPDeclareVariantScope(Dcl
, Bases
);
6183 /// DiagnoseClassNameShadow - Implement C++ [class.mem]p13:
6184 /// If T is the name of a class, then each of the following shall have a
6185 /// name different from T:
6186 /// - every static data member of class T;
6187 /// - every member function of class T
6188 /// - every member of class T that is itself a type;
6189 /// \returns true if the declaration name violates these rules.
6190 bool Sema::DiagnoseClassNameShadow(DeclContext
*DC
,
6191 DeclarationNameInfo NameInfo
) {
6192 DeclarationName Name
= NameInfo
.getName();
6194 CXXRecordDecl
*Record
= dyn_cast
<CXXRecordDecl
>(DC
);
6195 while (Record
&& Record
->isAnonymousStructOrUnion())
6196 Record
= dyn_cast
<CXXRecordDecl
>(Record
->getParent());
6197 if (Record
&& Record
->getIdentifier() && Record
->getDeclName() == Name
) {
6198 Diag(NameInfo
.getLoc(), diag::err_member_name_of_class
) << Name
;
6205 /// Diagnose a declaration whose declarator-id has the given
6206 /// nested-name-specifier.
6208 /// \param SS The nested-name-specifier of the declarator-id.
6210 /// \param DC The declaration context to which the nested-name-specifier
6213 /// \param Name The name of the entity being declared.
6215 /// \param Loc The location of the name of the entity being declared.
6217 /// \param IsTemplateId Whether the name is a (simple-)template-id, and thus
6218 /// we're declaring an explicit / partial specialization / instantiation.
6220 /// \returns true if we cannot safely recover from this error, false otherwise.
6221 bool Sema::diagnoseQualifiedDeclaration(CXXScopeSpec
&SS
, DeclContext
*DC
,
6222 DeclarationName Name
,
6223 SourceLocation Loc
, bool IsTemplateId
) {
6224 DeclContext
*Cur
= CurContext
;
6225 while (isa
<LinkageSpecDecl
>(Cur
) || isa
<CapturedDecl
>(Cur
))
6226 Cur
= Cur
->getParent();
6228 // If the user provided a superfluous scope specifier that refers back to the
6229 // class in which the entity is already declared, diagnose and ignore it.
6235 // Note, it was once ill-formed to give redundant qualification in all
6236 // contexts, but that rule was removed by DR482.
6237 if (Cur
->Equals(DC
)) {
6238 if (Cur
->isRecord()) {
6239 Diag(Loc
, LangOpts
.MicrosoftExt
? diag::warn_member_extra_qualification
6240 : diag::err_member_extra_qualification
)
6241 << Name
<< FixItHint::CreateRemoval(SS
.getRange());
6244 Diag(Loc
, diag::warn_namespace_member_extra_qualification
) << Name
;
6249 // Check whether the qualifying scope encloses the scope of the original
6250 // declaration. For a template-id, we perform the checks in
6251 // CheckTemplateSpecializationScope.
6252 if (!Cur
->Encloses(DC
) && !IsTemplateId
) {
6253 if (Cur
->isRecord())
6254 Diag(Loc
, diag::err_member_qualification
)
6255 << Name
<< SS
.getRange();
6256 else if (isa
<TranslationUnitDecl
>(DC
))
6257 Diag(Loc
, diag::err_invalid_declarator_global_scope
)
6258 << Name
<< SS
.getRange();
6259 else if (isa
<FunctionDecl
>(Cur
))
6260 Diag(Loc
, diag::err_invalid_declarator_in_function
)
6261 << Name
<< SS
.getRange();
6262 else if (isa
<BlockDecl
>(Cur
))
6263 Diag(Loc
, diag::err_invalid_declarator_in_block
)
6264 << Name
<< SS
.getRange();
6265 else if (isa
<ExportDecl
>(Cur
)) {
6266 if (!isa
<NamespaceDecl
>(DC
))
6267 Diag(Loc
, diag::err_export_non_namespace_scope_name
)
6268 << Name
<< SS
.getRange();
6270 // The cases that DC is not NamespaceDecl should be handled in
6271 // CheckRedeclarationExported.
6274 Diag(Loc
, diag::err_invalid_declarator_scope
)
6275 << Name
<< cast
<NamedDecl
>(Cur
) << cast
<NamedDecl
>(DC
) << SS
.getRange();
6280 if (Cur
->isRecord()) {
6281 // Cannot qualify members within a class.
6282 Diag(Loc
, diag::err_member_qualification
)
6283 << Name
<< SS
.getRange();
6286 // C++ constructors and destructors with incorrect scopes can break
6287 // our AST invariants by having the wrong underlying types. If
6288 // that's the case, then drop this declaration entirely.
6289 if ((Name
.getNameKind() == DeclarationName::CXXConstructorName
||
6290 Name
.getNameKind() == DeclarationName::CXXDestructorName
) &&
6291 !Context
.hasSameType(Name
.getCXXNameType(),
6292 Context
.getTypeDeclType(cast
<CXXRecordDecl
>(Cur
))))
6298 // C++11 [dcl.meaning]p1:
6299 // [...] "The nested-name-specifier of the qualified declarator-id shall
6300 // not begin with a decltype-specifer"
6301 NestedNameSpecifierLoc
SpecLoc(SS
.getScopeRep(), SS
.location_data());
6302 while (SpecLoc
.getPrefix())
6303 SpecLoc
= SpecLoc
.getPrefix();
6304 if (isa_and_nonnull
<DecltypeType
>(
6305 SpecLoc
.getNestedNameSpecifier()->getAsType()))
6306 Diag(Loc
, diag::err_decltype_in_declarator
)
6307 << SpecLoc
.getTypeLoc().getSourceRange();
6312 NamedDecl
*Sema::HandleDeclarator(Scope
*S
, Declarator
&D
,
6313 MultiTemplateParamsArg TemplateParamLists
) {
6314 // TODO: consider using NameInfo for diagnostic.
6315 DeclarationNameInfo NameInfo
= GetNameForDeclarator(D
);
6316 DeclarationName Name
= NameInfo
.getName();
6318 // All of these full declarators require an identifier. If it doesn't have
6319 // one, the ParsedFreeStandingDeclSpec action should be used.
6320 if (D
.isDecompositionDeclarator()) {
6321 return ActOnDecompositionDeclarator(S
, D
, TemplateParamLists
);
6323 if (!D
.isInvalidType()) // Reject this if we think it is valid.
6324 Diag(D
.getDeclSpec().getBeginLoc(), diag::err_declarator_need_ident
)
6325 << D
.getDeclSpec().getSourceRange() << D
.getSourceRange();
6327 } else if (DiagnoseUnexpandedParameterPack(NameInfo
, UPPC_DeclarationType
))
6330 // The scope passed in may not be a decl scope. Zip up the scope tree until
6331 // we find one that is.
6332 while ((S
->getFlags() & Scope::DeclScope
) == 0 ||
6333 (S
->getFlags() & Scope::TemplateParamScope
) != 0)
6336 DeclContext
*DC
= CurContext
;
6337 if (D
.getCXXScopeSpec().isInvalid())
6339 else if (D
.getCXXScopeSpec().isSet()) {
6340 if (DiagnoseUnexpandedParameterPack(D
.getCXXScopeSpec(),
6341 UPPC_DeclarationQualifier
))
6344 bool EnteringContext
= !D
.getDeclSpec().isFriendSpecified();
6345 DC
= computeDeclContext(D
.getCXXScopeSpec(), EnteringContext
);
6346 if (!DC
|| isa
<EnumDecl
>(DC
)) {
6347 // If we could not compute the declaration context, it's because the
6348 // declaration context is dependent but does not refer to a class,
6349 // class template, or class template partial specialization. Complain
6350 // and return early, to avoid the coming semantic disaster.
6351 Diag(D
.getIdentifierLoc(),
6352 diag::err_template_qualified_declarator_no_match
)
6353 << D
.getCXXScopeSpec().getScopeRep()
6354 << D
.getCXXScopeSpec().getRange();
6357 bool IsDependentContext
= DC
->isDependentContext();
6359 if (!IsDependentContext
&&
6360 RequireCompleteDeclContext(D
.getCXXScopeSpec(), DC
))
6363 // If a class is incomplete, do not parse entities inside it.
6364 if (isa
<CXXRecordDecl
>(DC
) && !cast
<CXXRecordDecl
>(DC
)->hasDefinition()) {
6365 Diag(D
.getIdentifierLoc(),
6366 diag::err_member_def_undefined_record
)
6367 << Name
<< DC
<< D
.getCXXScopeSpec().getRange();
6370 if (!D
.getDeclSpec().isFriendSpecified()) {
6371 if (diagnoseQualifiedDeclaration(
6372 D
.getCXXScopeSpec(), DC
, Name
, D
.getIdentifierLoc(),
6373 D
.getName().getKind() == UnqualifiedIdKind::IK_TemplateId
)) {
6381 // Check whether we need to rebuild the type of the given
6382 // declaration in the current instantiation.
6383 if (EnteringContext
&& IsDependentContext
&&
6384 TemplateParamLists
.size() != 0) {
6385 ContextRAII
SavedContext(*this, DC
);
6386 if (RebuildDeclaratorInCurrentInstantiation(*this, D
, Name
))
6391 TypeSourceInfo
*TInfo
= GetTypeForDeclarator(D
, S
);
6392 QualType R
= TInfo
->getType();
6394 if (DiagnoseUnexpandedParameterPack(D
.getIdentifierLoc(), TInfo
,
6395 UPPC_DeclarationType
))
6398 LookupResult
Previous(*this, NameInfo
, LookupOrdinaryName
,
6399 forRedeclarationInCurContext());
6401 // See if this is a redefinition of a variable in the same scope.
6402 if (!D
.getCXXScopeSpec().isSet()) {
6403 bool IsLinkageLookup
= false;
6404 bool CreateBuiltins
= false;
6406 // If the declaration we're planning to build will be a function
6407 // or object with linkage, then look for another declaration with
6408 // linkage (C99 6.2.2p4-5 and C++ [basic.link]p6).
6410 // If the declaration we're planning to build will be declared with
6411 // external linkage in the translation unit, create any builtin with
6413 if (D
.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef
)
6415 else if (CurContext
->isFunctionOrMethod() &&
6416 (D
.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_extern
||
6417 R
->isFunctionType())) {
6418 IsLinkageLookup
= true;
6420 CurContext
->getEnclosingNamespaceContext()->isTranslationUnit();
6421 } else if (CurContext
->getRedeclContext()->isTranslationUnit() &&
6422 D
.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_static
)
6423 CreateBuiltins
= true;
6425 if (IsLinkageLookup
) {
6426 Previous
.clear(LookupRedeclarationWithLinkage
);
6427 Previous
.setRedeclarationKind(ForExternalRedeclaration
);
6430 LookupName(Previous
, S
, CreateBuiltins
);
6431 } else { // Something like "int foo::x;"
6432 LookupQualifiedName(Previous
, DC
);
6434 // C++ [dcl.meaning]p1:
6435 // When the declarator-id is qualified, the declaration shall refer to a
6436 // previously declared member of the class or namespace to which the
6437 // qualifier refers (or, in the case of a namespace, of an element of the
6438 // inline namespace set of that namespace (7.3.1)) or to a specialization
6441 // Note that we already checked the context above, and that we do not have
6442 // enough information to make sure that Previous contains the declaration
6443 // we want to match. For example, given:
6450 // void X::f(int) { } // ill-formed
6452 // In this case, Previous will point to the overload set
6453 // containing the two f's declared in X, but neither of them
6456 RemoveUsingDecls(Previous
);
6459 if (Previous
.isSingleResult() &&
6460 Previous
.getFoundDecl()->isTemplateParameter()) {
6461 // Maybe we will complain about the shadowed template parameter.
6462 if (!D
.isInvalidType())
6463 DiagnoseTemplateParameterShadow(D
.getIdentifierLoc(),
6464 Previous
.getFoundDecl());
6466 // Just pretend that we didn't see the previous declaration.
6470 if (!R
->isFunctionType() && DiagnoseClassNameShadow(DC
, NameInfo
))
6471 // Forget that the previous declaration is the injected-class-name.
6474 // In C++, the previous declaration we find might be a tag type
6475 // (class or enum). In this case, the new declaration will hide the
6476 // tag type. Note that this applies to functions, function templates, and
6477 // variables, but not to typedefs (C++ [dcl.typedef]p4) or variable templates.
6478 if (Previous
.isSingleTagDecl() &&
6479 D
.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_typedef
&&
6480 (TemplateParamLists
.size() == 0 || R
->isFunctionType()))
6483 // Check that there are no default arguments other than in the parameters
6484 // of a function declaration (C++ only).
6485 if (getLangOpts().CPlusPlus
)
6486 CheckExtraCXXDefaultArguments(D
);
6490 bool AddToScope
= true;
6491 if (D
.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef
) {
6492 if (TemplateParamLists
.size()) {
6493 Diag(D
.getIdentifierLoc(), diag::err_template_typedef
);
6497 New
= ActOnTypedefDeclarator(S
, D
, DC
, TInfo
, Previous
);
6498 } else if (R
->isFunctionType()) {
6499 New
= ActOnFunctionDeclarator(S
, D
, DC
, TInfo
, Previous
,
6503 New
= ActOnVariableDeclarator(S
, D
, DC
, TInfo
, Previous
, TemplateParamLists
,
6510 // If this has an identifier and is not a function template specialization,
6511 // add it to the scope stack.
6512 if (New
->getDeclName() && AddToScope
)
6513 PushOnScopeChains(New
, S
);
6515 if (isInOpenMPDeclareTargetContext())
6516 checkDeclIsAllowedInOpenMPTarget(nullptr, New
);
6521 /// Helper method to turn variable array types into constant array
6522 /// types in certain situations which would otherwise be errors (for
6523 /// GCC compatibility).
6524 static QualType
TryToFixInvalidVariablyModifiedType(QualType T
,
6525 ASTContext
&Context
,
6526 bool &SizeIsNegative
,
6527 llvm::APSInt
&Oversized
) {
6528 // This method tries to turn a variable array into a constant
6529 // array even when the size isn't an ICE. This is necessary
6530 // for compatibility with code that depends on gcc's buggy
6531 // constant expression folding, like struct {char x[(int)(char*)2];}
6532 SizeIsNegative
= false;
6535 if (T
->isDependentType())
6538 QualifierCollector Qs
;
6539 const Type
*Ty
= Qs
.strip(T
);
6541 if (const PointerType
* PTy
= dyn_cast
<PointerType
>(Ty
)) {
6542 QualType Pointee
= PTy
->getPointeeType();
6543 QualType FixedType
=
6544 TryToFixInvalidVariablyModifiedType(Pointee
, Context
, SizeIsNegative
,
6546 if (FixedType
.isNull()) return FixedType
;
6547 FixedType
= Context
.getPointerType(FixedType
);
6548 return Qs
.apply(Context
, FixedType
);
6550 if (const ParenType
* PTy
= dyn_cast
<ParenType
>(Ty
)) {
6551 QualType Inner
= PTy
->getInnerType();
6552 QualType FixedType
=
6553 TryToFixInvalidVariablyModifiedType(Inner
, Context
, SizeIsNegative
,
6555 if (FixedType
.isNull()) return FixedType
;
6556 FixedType
= Context
.getParenType(FixedType
);
6557 return Qs
.apply(Context
, FixedType
);
6560 const VariableArrayType
* VLATy
= dyn_cast
<VariableArrayType
>(T
);
6564 QualType ElemTy
= VLATy
->getElementType();
6565 if (ElemTy
->isVariablyModifiedType()) {
6566 ElemTy
= TryToFixInvalidVariablyModifiedType(ElemTy
, Context
,
6567 SizeIsNegative
, Oversized
);
6568 if (ElemTy
.isNull())
6572 Expr::EvalResult Result
;
6573 if (!VLATy
->getSizeExpr() ||
6574 !VLATy
->getSizeExpr()->EvaluateAsInt(Result
, Context
))
6577 llvm::APSInt Res
= Result
.Val
.getInt();
6579 // Check whether the array size is negative.
6580 if (Res
.isSigned() && Res
.isNegative()) {
6581 SizeIsNegative
= true;
6585 // Check whether the array is too large to be addressed.
6586 unsigned ActiveSizeBits
=
6587 (!ElemTy
->isDependentType() && !ElemTy
->isVariablyModifiedType() &&
6588 !ElemTy
->isIncompleteType() && !ElemTy
->isUndeducedType())
6589 ? ConstantArrayType::getNumAddressingBits(Context
, ElemTy
, Res
)
6590 : Res
.getActiveBits();
6591 if (ActiveSizeBits
> ConstantArrayType::getMaxSizeBits(Context
)) {
6596 QualType FoldedArrayType
= Context
.getConstantArrayType(
6597 ElemTy
, Res
, VLATy
->getSizeExpr(), ArrayType::Normal
, 0);
6598 return Qs
.apply(Context
, FoldedArrayType
);
6602 FixInvalidVariablyModifiedTypeLoc(TypeLoc SrcTL
, TypeLoc DstTL
) {
6603 SrcTL
= SrcTL
.getUnqualifiedLoc();
6604 DstTL
= DstTL
.getUnqualifiedLoc();
6605 if (PointerTypeLoc SrcPTL
= SrcTL
.getAs
<PointerTypeLoc
>()) {
6606 PointerTypeLoc DstPTL
= DstTL
.castAs
<PointerTypeLoc
>();
6607 FixInvalidVariablyModifiedTypeLoc(SrcPTL
.getPointeeLoc(),
6608 DstPTL
.getPointeeLoc());
6609 DstPTL
.setStarLoc(SrcPTL
.getStarLoc());
6612 if (ParenTypeLoc SrcPTL
= SrcTL
.getAs
<ParenTypeLoc
>()) {
6613 ParenTypeLoc DstPTL
= DstTL
.castAs
<ParenTypeLoc
>();
6614 FixInvalidVariablyModifiedTypeLoc(SrcPTL
.getInnerLoc(),
6615 DstPTL
.getInnerLoc());
6616 DstPTL
.setLParenLoc(SrcPTL
.getLParenLoc());
6617 DstPTL
.setRParenLoc(SrcPTL
.getRParenLoc());
6620 ArrayTypeLoc SrcATL
= SrcTL
.castAs
<ArrayTypeLoc
>();
6621 ArrayTypeLoc DstATL
= DstTL
.castAs
<ArrayTypeLoc
>();
6622 TypeLoc SrcElemTL
= SrcATL
.getElementLoc();
6623 TypeLoc DstElemTL
= DstATL
.getElementLoc();
6624 if (VariableArrayTypeLoc SrcElemATL
=
6625 SrcElemTL
.getAs
<VariableArrayTypeLoc
>()) {
6626 ConstantArrayTypeLoc DstElemATL
= DstElemTL
.castAs
<ConstantArrayTypeLoc
>();
6627 FixInvalidVariablyModifiedTypeLoc(SrcElemATL
, DstElemATL
);
6629 DstElemTL
.initializeFullCopy(SrcElemTL
);
6631 DstATL
.setLBracketLoc(SrcATL
.getLBracketLoc());
6632 DstATL
.setSizeExpr(SrcATL
.getSizeExpr());
6633 DstATL
.setRBracketLoc(SrcATL
.getRBracketLoc());
6636 /// Helper method to turn variable array types into constant array
6637 /// types in certain situations which would otherwise be errors (for
6638 /// GCC compatibility).
6639 static TypeSourceInfo
*
6640 TryToFixInvalidVariablyModifiedTypeSourceInfo(TypeSourceInfo
*TInfo
,
6641 ASTContext
&Context
,
6642 bool &SizeIsNegative
,
6643 llvm::APSInt
&Oversized
) {
6645 = TryToFixInvalidVariablyModifiedType(TInfo
->getType(), Context
,
6646 SizeIsNegative
, Oversized
);
6647 if (FixedTy
.isNull())
6649 TypeSourceInfo
*FixedTInfo
= Context
.getTrivialTypeSourceInfo(FixedTy
);
6650 FixInvalidVariablyModifiedTypeLoc(TInfo
->getTypeLoc(),
6651 FixedTInfo
->getTypeLoc());
6655 /// Attempt to fold a variable-sized type to a constant-sized type, returning
6656 /// true if we were successful.
6657 bool Sema::tryToFixVariablyModifiedVarType(TypeSourceInfo
*&TInfo
,
6658 QualType
&T
, SourceLocation Loc
,
6659 unsigned FailedFoldDiagID
) {
6660 bool SizeIsNegative
;
6661 llvm::APSInt Oversized
;
6662 TypeSourceInfo
*FixedTInfo
= TryToFixInvalidVariablyModifiedTypeSourceInfo(
6663 TInfo
, Context
, SizeIsNegative
, Oversized
);
6665 Diag(Loc
, diag::ext_vla_folded_to_constant
);
6667 T
= FixedTInfo
->getType();
6672 Diag(Loc
, diag::err_typecheck_negative_array_size
);
6673 else if (Oversized
.getBoolValue())
6674 Diag(Loc
, diag::err_array_too_large
) << toString(Oversized
, 10);
6675 else if (FailedFoldDiagID
)
6676 Diag(Loc
, FailedFoldDiagID
);
6680 /// Register the given locally-scoped extern "C" declaration so
6681 /// that it can be found later for redeclarations. We include any extern "C"
6682 /// declaration that is not visible in the translation unit here, not just
6683 /// function-scope declarations.
6685 Sema::RegisterLocallyScopedExternCDecl(NamedDecl
*ND
, Scope
*S
) {
6686 if (!getLangOpts().CPlusPlus
&&
6687 ND
->getLexicalDeclContext()->getRedeclContext()->isTranslationUnit())
6688 // Don't need to track declarations in the TU in C.
6691 // Note that we have a locally-scoped external with this name.
6692 Context
.getExternCContextDecl()->makeDeclVisibleInContext(ND
);
6695 NamedDecl
*Sema::findLocallyScopedExternCDecl(DeclarationName Name
) {
6696 // FIXME: We can have multiple results via __attribute__((overloadable)).
6697 auto Result
= Context
.getExternCContextDecl()->lookup(Name
);
6698 return Result
.empty() ? nullptr : *Result
.begin();
6701 /// Diagnose function specifiers on a declaration of an identifier that
6702 /// does not identify a function.
6703 void Sema::DiagnoseFunctionSpecifiers(const DeclSpec
&DS
) {
6704 // FIXME: We should probably indicate the identifier in question to avoid
6705 // confusion for constructs like "virtual int a(), b;"
6706 if (DS
.isVirtualSpecified())
6707 Diag(DS
.getVirtualSpecLoc(),
6708 diag::err_virtual_non_function
);
6710 if (DS
.hasExplicitSpecifier())
6711 Diag(DS
.getExplicitSpecLoc(),
6712 diag::err_explicit_non_function
);
6714 if (DS
.isNoreturnSpecified())
6715 Diag(DS
.getNoreturnSpecLoc(),
6716 diag::err_noreturn_non_function
);
6720 Sema::ActOnTypedefDeclarator(Scope
* S
, Declarator
& D
, DeclContext
* DC
,
6721 TypeSourceInfo
*TInfo
, LookupResult
&Previous
) {
6722 // Typedef declarators cannot be qualified (C++ [dcl.meaning]p1).
6723 if (D
.getCXXScopeSpec().isSet()) {
6724 Diag(D
.getIdentifierLoc(), diag::err_qualified_typedef_declarator
)
6725 << D
.getCXXScopeSpec().getRange();
6727 // Pretend we didn't see the scope specifier.
6732 DiagnoseFunctionSpecifiers(D
.getDeclSpec());
6734 if (D
.getDeclSpec().isInlineSpecified())
6735 Diag(D
.getDeclSpec().getInlineSpecLoc(), diag::err_inline_non_function
)
6736 << getLangOpts().CPlusPlus17
;
6737 if (D
.getDeclSpec().hasConstexprSpecifier())
6738 Diag(D
.getDeclSpec().getConstexprSpecLoc(), diag::err_invalid_constexpr
)
6739 << 1 << static_cast<int>(D
.getDeclSpec().getConstexprSpecifier());
6741 if (D
.getName().getKind() != UnqualifiedIdKind::IK_Identifier
) {
6742 if (D
.getName().getKind() == UnqualifiedIdKind::IK_DeductionGuideName
)
6743 Diag(D
.getName().StartLocation
,
6744 diag::err_deduction_guide_invalid_specifier
)
6747 Diag(D
.getName().StartLocation
, diag::err_typedef_not_identifier
)
6748 << D
.getName().getSourceRange();
6752 TypedefDecl
*NewTD
= ParseTypedefDecl(S
, D
, TInfo
->getType(), TInfo
);
6753 if (!NewTD
) return nullptr;
6755 // Handle attributes prior to checking for duplicates in MergeVarDecl
6756 ProcessDeclAttributes(S
, NewTD
, D
);
6758 CheckTypedefForVariablyModifiedType(S
, NewTD
);
6760 bool Redeclaration
= D
.isRedeclaration();
6761 NamedDecl
*ND
= ActOnTypedefNameDecl(S
, DC
, NewTD
, Previous
, Redeclaration
);
6762 D
.setRedeclaration(Redeclaration
);
6767 Sema::CheckTypedefForVariablyModifiedType(Scope
*S
, TypedefNameDecl
*NewTD
) {
6768 // C99 6.7.7p2: If a typedef name specifies a variably modified type
6769 // then it shall have block scope.
6770 // Note that variably modified types must be fixed before merging the decl so
6771 // that redeclarations will match.
6772 TypeSourceInfo
*TInfo
= NewTD
->getTypeSourceInfo();
6773 QualType T
= TInfo
->getType();
6774 if (T
->isVariablyModifiedType()) {
6775 setFunctionHasBranchProtectedScope();
6777 if (S
->getFnParent() == nullptr) {
6778 bool SizeIsNegative
;
6779 llvm::APSInt Oversized
;
6780 TypeSourceInfo
*FixedTInfo
=
6781 TryToFixInvalidVariablyModifiedTypeSourceInfo(TInfo
, Context
,
6785 Diag(NewTD
->getLocation(), diag::ext_vla_folded_to_constant
);
6786 NewTD
->setTypeSourceInfo(FixedTInfo
);
6789 Diag(NewTD
->getLocation(), diag::err_typecheck_negative_array_size
);
6790 else if (T
->isVariableArrayType())
6791 Diag(NewTD
->getLocation(), diag::err_vla_decl_in_file_scope
);
6792 else if (Oversized
.getBoolValue())
6793 Diag(NewTD
->getLocation(), diag::err_array_too_large
)
6794 << toString(Oversized
, 10);
6796 Diag(NewTD
->getLocation(), diag::err_vm_decl_in_file_scope
);
6797 NewTD
->setInvalidDecl();
6803 /// ActOnTypedefNameDecl - Perform semantic checking for a declaration which
6804 /// declares a typedef-name, either using the 'typedef' type specifier or via
6805 /// a C++0x [dcl.typedef]p2 alias-declaration: 'using T = A;'.
6807 Sema::ActOnTypedefNameDecl(Scope
*S
, DeclContext
*DC
, TypedefNameDecl
*NewTD
,
6808 LookupResult
&Previous
, bool &Redeclaration
) {
6810 // Find the shadowed declaration before filtering for scope.
6811 NamedDecl
*ShadowedDecl
= getShadowedDeclaration(NewTD
, Previous
);
6813 // Merge the decl with the existing one if appropriate. If the decl is
6814 // in an outer scope, it isn't the same thing.
6815 FilterLookupForScope(Previous
, DC
, S
, /*ConsiderLinkage*/false,
6816 /*AllowInlineNamespace*/false);
6817 filterNonConflictingPreviousTypedefDecls(*this, NewTD
, Previous
);
6818 if (!Previous
.empty()) {
6819 Redeclaration
= true;
6820 MergeTypedefNameDecl(S
, NewTD
, Previous
);
6822 inferGslPointerAttribute(NewTD
);
6825 if (ShadowedDecl
&& !Redeclaration
)
6826 CheckShadow(NewTD
, ShadowedDecl
, Previous
);
6828 // If this is the C FILE type, notify the AST context.
6829 if (IdentifierInfo
*II
= NewTD
->getIdentifier())
6830 if (!NewTD
->isInvalidDecl() &&
6831 NewTD
->getDeclContext()->getRedeclContext()->isTranslationUnit()) {
6832 switch (II
->getInterestingIdentifierID()) {
6833 case tok::InterestingIdentifierKind::FILE:
6834 Context
.setFILEDecl(NewTD
);
6836 case tok::InterestingIdentifierKind::jmp_buf:
6837 Context
.setjmp_bufDecl(NewTD
);
6839 case tok::InterestingIdentifierKind::sigjmp_buf
:
6840 Context
.setsigjmp_bufDecl(NewTD
);
6842 case tok::InterestingIdentifierKind::ucontext_t
:
6843 Context
.setucontext_tDecl(NewTD
);
6845 case tok::InterestingIdentifierKind::float_t
:
6846 case tok::InterestingIdentifierKind::double_t
:
6847 NewTD
->addAttr(AvailableOnlyInDefaultEvalMethodAttr::Create(Context
));
6857 /// Determines whether the given declaration is an out-of-scope
6858 /// previous declaration.
6860 /// This routine should be invoked when name lookup has found a
6861 /// previous declaration (PrevDecl) that is not in the scope where a
6862 /// new declaration by the same name is being introduced. If the new
6863 /// declaration occurs in a local scope, previous declarations with
6864 /// linkage may still be considered previous declarations (C99
6865 /// 6.2.2p4-5, C++ [basic.link]p6).
6867 /// \param PrevDecl the previous declaration found by name
6870 /// \param DC the context in which the new declaration is being
6873 /// \returns true if PrevDecl is an out-of-scope previous declaration
6874 /// for a new delcaration with the same name.
6876 isOutOfScopePreviousDeclaration(NamedDecl
*PrevDecl
, DeclContext
*DC
,
6877 ASTContext
&Context
) {
6881 if (!PrevDecl
->hasLinkage())
6884 if (Context
.getLangOpts().CPlusPlus
) {
6885 // C++ [basic.link]p6:
6886 // If there is a visible declaration of an entity with linkage
6887 // having the same name and type, ignoring entities declared
6888 // outside the innermost enclosing namespace scope, the block
6889 // scope declaration declares that same entity and receives the
6890 // linkage of the previous declaration.
6891 DeclContext
*OuterContext
= DC
->getRedeclContext();
6892 if (!OuterContext
->isFunctionOrMethod())
6893 // This rule only applies to block-scope declarations.
6896 DeclContext
*PrevOuterContext
= PrevDecl
->getDeclContext();
6897 if (PrevOuterContext
->isRecord())
6898 // We found a member function: ignore it.
6901 // Find the innermost enclosing namespace for the new and
6902 // previous declarations.
6903 OuterContext
= OuterContext
->getEnclosingNamespaceContext();
6904 PrevOuterContext
= PrevOuterContext
->getEnclosingNamespaceContext();
6906 // The previous declaration is in a different namespace, so it
6907 // isn't the same function.
6908 if (!OuterContext
->Equals(PrevOuterContext
))
6915 static void SetNestedNameSpecifier(Sema
&S
, DeclaratorDecl
*DD
, Declarator
&D
) {
6916 CXXScopeSpec
&SS
= D
.getCXXScopeSpec();
6917 if (!SS
.isSet()) return;
6918 DD
->setQualifierInfo(SS
.getWithLocInContext(S
.Context
));
6921 bool Sema::inferObjCARCLifetime(ValueDecl
*decl
) {
6922 QualType type
= decl
->getType();
6923 Qualifiers::ObjCLifetime lifetime
= type
.getObjCLifetime();
6924 if (lifetime
== Qualifiers::OCL_Autoreleasing
) {
6925 // Various kinds of declaration aren't allowed to be __autoreleasing.
6926 unsigned kind
= -1U;
6927 if (VarDecl
*var
= dyn_cast
<VarDecl
>(decl
)) {
6928 if (var
->hasAttr
<BlocksAttr
>())
6929 kind
= 0; // __block
6930 else if (!var
->hasLocalStorage())
6932 } else if (isa
<ObjCIvarDecl
>(decl
)) {
6934 } else if (isa
<FieldDecl
>(decl
)) {
6939 Diag(decl
->getLocation(), diag::err_arc_autoreleasing_var
)
6942 } else if (lifetime
== Qualifiers::OCL_None
) {
6943 // Try to infer lifetime.
6944 if (!type
->isObjCLifetimeType())
6947 lifetime
= type
->getObjCARCImplicitLifetime();
6948 type
= Context
.getLifetimeQualifiedType(type
, lifetime
);
6949 decl
->setType(type
);
6952 if (VarDecl
*var
= dyn_cast
<VarDecl
>(decl
)) {
6953 // Thread-local variables cannot have lifetime.
6954 if (lifetime
&& lifetime
!= Qualifiers::OCL_ExplicitNone
&&
6955 var
->getTLSKind()) {
6956 Diag(var
->getLocation(), diag::err_arc_thread_ownership
)
6965 void Sema::deduceOpenCLAddressSpace(ValueDecl
*Decl
) {
6966 if (Decl
->getType().hasAddressSpace())
6968 if (Decl
->getType()->isDependentType())
6970 if (VarDecl
*Var
= dyn_cast
<VarDecl
>(Decl
)) {
6971 QualType Type
= Var
->getType();
6972 if (Type
->isSamplerT() || Type
->isVoidType())
6974 LangAS ImplAS
= LangAS::opencl_private
;
6975 // OpenCL C v3.0 s6.7.8 - For OpenCL C 2.0 or with the
6976 // __opencl_c_program_scope_global_variables feature, the address space
6977 // for a variable at program scope or a static or extern variable inside
6978 // a function are inferred to be __global.
6979 if (getOpenCLOptions().areProgramScopeVariablesSupported(getLangOpts()) &&
6980 Var
->hasGlobalStorage())
6981 ImplAS
= LangAS::opencl_global
;
6982 // If the original type from a decayed type is an array type and that array
6983 // type has no address space yet, deduce it now.
6984 if (auto DT
= dyn_cast
<DecayedType
>(Type
)) {
6985 auto OrigTy
= DT
->getOriginalType();
6986 if (!OrigTy
.hasAddressSpace() && OrigTy
->isArrayType()) {
6987 // Add the address space to the original array type and then propagate
6988 // that to the element type through `getAsArrayType`.
6989 OrigTy
= Context
.getAddrSpaceQualType(OrigTy
, ImplAS
);
6990 OrigTy
= QualType(Context
.getAsArrayType(OrigTy
), 0);
6991 // Re-generate the decayed type.
6992 Type
= Context
.getDecayedType(OrigTy
);
6995 Type
= Context
.getAddrSpaceQualType(Type
, ImplAS
);
6996 // Apply any qualifiers (including address space) from the array type to
6997 // the element type. This implements C99 6.7.3p8: "If the specification of
6998 // an array type includes any type qualifiers, the element type is so
6999 // qualified, not the array type."
7000 if (Type
->isArrayType())
7001 Type
= QualType(Context
.getAsArrayType(Type
), 0);
7002 Decl
->setType(Type
);
7006 static void checkAttributesAfterMerging(Sema
&S
, NamedDecl
&ND
) {
7007 // Ensure that an auto decl is deduced otherwise the checks below might cache
7008 // the wrong linkage.
7009 assert(S
.ParsingInitForAutoVars
.count(&ND
) == 0);
7011 // 'weak' only applies to declarations with external linkage.
7012 if (WeakAttr
*Attr
= ND
.getAttr
<WeakAttr
>()) {
7013 if (!ND
.isExternallyVisible()) {
7014 S
.Diag(Attr
->getLocation(), diag::err_attribute_weak_static
);
7015 ND
.dropAttr
<WeakAttr
>();
7018 if (WeakRefAttr
*Attr
= ND
.getAttr
<WeakRefAttr
>()) {
7019 if (ND
.isExternallyVisible()) {
7020 S
.Diag(Attr
->getLocation(), diag::err_attribute_weakref_not_static
);
7021 ND
.dropAttr
<WeakRefAttr
>();
7022 ND
.dropAttr
<AliasAttr
>();
7026 if (auto *VD
= dyn_cast
<VarDecl
>(&ND
)) {
7027 if (VD
->hasInit()) {
7028 if (const auto *Attr
= VD
->getAttr
<AliasAttr
>()) {
7029 assert(VD
->isThisDeclarationADefinition() &&
7030 !VD
->isExternallyVisible() && "Broken AliasAttr handled late!");
7031 S
.Diag(Attr
->getLocation(), diag::err_alias_is_definition
) << VD
<< 0;
7032 VD
->dropAttr
<AliasAttr
>();
7037 // 'selectany' only applies to externally visible variable declarations.
7038 // It does not apply to functions.
7039 if (SelectAnyAttr
*Attr
= ND
.getAttr
<SelectAnyAttr
>()) {
7040 if (isa
<FunctionDecl
>(ND
) || !ND
.isExternallyVisible()) {
7041 S
.Diag(Attr
->getLocation(),
7042 diag::err_attribute_selectany_non_extern_data
);
7043 ND
.dropAttr
<SelectAnyAttr
>();
7047 if (const InheritableAttr
*Attr
= getDLLAttr(&ND
)) {
7048 auto *VD
= dyn_cast
<VarDecl
>(&ND
);
7049 bool IsAnonymousNS
= false;
7050 bool IsMicrosoft
= S
.Context
.getTargetInfo().getCXXABI().isMicrosoft();
7052 const NamespaceDecl
*NS
= dyn_cast
<NamespaceDecl
>(VD
->getDeclContext());
7053 while (NS
&& !IsAnonymousNS
) {
7054 IsAnonymousNS
= NS
->isAnonymousNamespace();
7055 NS
= dyn_cast
<NamespaceDecl
>(NS
->getParent());
7058 // dll attributes require external linkage. Static locals may have external
7059 // linkage but still cannot be explicitly imported or exported.
7060 // In Microsoft mode, a variable defined in anonymous namespace must have
7061 // external linkage in order to be exported.
7062 bool AnonNSInMicrosoftMode
= IsAnonymousNS
&& IsMicrosoft
;
7063 if ((ND
.isExternallyVisible() && AnonNSInMicrosoftMode
) ||
7064 (!AnonNSInMicrosoftMode
&&
7065 (!ND
.isExternallyVisible() || (VD
&& VD
->isStaticLocal())))) {
7066 S
.Diag(ND
.getLocation(), diag::err_attribute_dll_not_extern
)
7068 ND
.setInvalidDecl();
7072 // Check the attributes on the function type, if any.
7073 if (const auto *FD
= dyn_cast
<FunctionDecl
>(&ND
)) {
7074 // Don't declare this variable in the second operand of the for-statement;
7075 // GCC miscompiles that by ending its lifetime before evaluating the
7076 // third operand. See gcc.gnu.org/PR86769.
7077 AttributedTypeLoc ATL
;
7078 for (TypeLoc TL
= FD
->getTypeSourceInfo()->getTypeLoc();
7079 (ATL
= TL
.getAsAdjusted
<AttributedTypeLoc
>());
7080 TL
= ATL
.getModifiedLoc()) {
7081 // The [[lifetimebound]] attribute can be applied to the implicit object
7082 // parameter of a non-static member function (other than a ctor or dtor)
7083 // by applying it to the function type.
7084 if (const auto *A
= ATL
.getAttrAs
<LifetimeBoundAttr
>()) {
7085 const auto *MD
= dyn_cast
<CXXMethodDecl
>(FD
);
7086 if (!MD
|| MD
->isStatic()) {
7087 S
.Diag(A
->getLocation(), diag::err_lifetimebound_no_object_param
)
7088 << !MD
<< A
->getRange();
7089 } else if (isa
<CXXConstructorDecl
>(MD
) || isa
<CXXDestructorDecl
>(MD
)) {
7090 S
.Diag(A
->getLocation(), diag::err_lifetimebound_ctor_dtor
)
7091 << isa
<CXXDestructorDecl
>(MD
) << A
->getRange();
7098 static void checkDLLAttributeRedeclaration(Sema
&S
, NamedDecl
*OldDecl
,
7100 bool IsSpecialization
,
7101 bool IsDefinition
) {
7102 if (OldDecl
->isInvalidDecl() || NewDecl
->isInvalidDecl())
7105 bool IsTemplate
= false;
7106 if (TemplateDecl
*OldTD
= dyn_cast
<TemplateDecl
>(OldDecl
)) {
7107 OldDecl
= OldTD
->getTemplatedDecl();
7109 if (!IsSpecialization
)
7110 IsDefinition
= false;
7112 if (TemplateDecl
*NewTD
= dyn_cast
<TemplateDecl
>(NewDecl
)) {
7113 NewDecl
= NewTD
->getTemplatedDecl();
7117 if (!OldDecl
|| !NewDecl
)
7120 const DLLImportAttr
*OldImportAttr
= OldDecl
->getAttr
<DLLImportAttr
>();
7121 const DLLExportAttr
*OldExportAttr
= OldDecl
->getAttr
<DLLExportAttr
>();
7122 const DLLImportAttr
*NewImportAttr
= NewDecl
->getAttr
<DLLImportAttr
>();
7123 const DLLExportAttr
*NewExportAttr
= NewDecl
->getAttr
<DLLExportAttr
>();
7125 // dllimport and dllexport are inheritable attributes so we have to exclude
7126 // inherited attribute instances.
7127 bool HasNewAttr
= (NewImportAttr
&& !NewImportAttr
->isInherited()) ||
7128 (NewExportAttr
&& !NewExportAttr
->isInherited());
7130 // A redeclaration is not allowed to add a dllimport or dllexport attribute,
7131 // the only exception being explicit specializations.
7132 // Implicitly generated declarations are also excluded for now because there
7133 // is no other way to switch these to use dllimport or dllexport.
7134 bool AddsAttr
= !(OldImportAttr
|| OldExportAttr
) && HasNewAttr
;
7136 if (AddsAttr
&& !IsSpecialization
&& !OldDecl
->isImplicit()) {
7137 // Allow with a warning for free functions and global variables.
7138 bool JustWarn
= false;
7139 if (!OldDecl
->isCXXClassMember()) {
7140 auto *VD
= dyn_cast
<VarDecl
>(OldDecl
);
7141 if (VD
&& !VD
->getDescribedVarTemplate())
7143 auto *FD
= dyn_cast
<FunctionDecl
>(OldDecl
);
7144 if (FD
&& FD
->getTemplatedKind() == FunctionDecl::TK_NonTemplate
)
7148 // We cannot change a declaration that's been used because IR has already
7149 // been emitted. Dllimported functions will still work though (modulo
7150 // address equality) as they can use the thunk.
7151 if (OldDecl
->isUsed())
7152 if (!isa
<FunctionDecl
>(OldDecl
) || !NewImportAttr
)
7155 unsigned DiagID
= JustWarn
? diag::warn_attribute_dll_redeclaration
7156 : diag::err_attribute_dll_redeclaration
;
7157 S
.Diag(NewDecl
->getLocation(), DiagID
)
7159 << (NewImportAttr
? (const Attr
*)NewImportAttr
: NewExportAttr
);
7160 S
.Diag(OldDecl
->getLocation(), diag::note_previous_declaration
);
7162 NewDecl
->setInvalidDecl();
7167 // A redeclaration is not allowed to drop a dllimport attribute, the only
7168 // exceptions being inline function definitions (except for function
7169 // templates), local extern declarations, qualified friend declarations or
7170 // special MSVC extension: in the last case, the declaration is treated as if
7171 // it were marked dllexport.
7172 bool IsInline
= false, IsStaticDataMember
= false, IsQualifiedFriend
= false;
7173 bool IsMicrosoftABI
= S
.Context
.getTargetInfo().shouldDLLImportComdatSymbols();
7174 if (const auto *VD
= dyn_cast
<VarDecl
>(NewDecl
)) {
7175 // Ignore static data because out-of-line definitions are diagnosed
7177 IsStaticDataMember
= VD
->isStaticDataMember();
7178 IsDefinition
= VD
->isThisDeclarationADefinition(S
.Context
) !=
7179 VarDecl::DeclarationOnly
;
7180 } else if (const auto *FD
= dyn_cast
<FunctionDecl
>(NewDecl
)) {
7181 IsInline
= FD
->isInlined();
7182 IsQualifiedFriend
= FD
->getQualifier() &&
7183 FD
->getFriendObjectKind() == Decl::FOK_Declared
;
7186 if (OldImportAttr
&& !HasNewAttr
&&
7187 (!IsInline
|| (IsMicrosoftABI
&& IsTemplate
)) && !IsStaticDataMember
&&
7188 !NewDecl
->isLocalExternDecl() && !IsQualifiedFriend
) {
7189 if (IsMicrosoftABI
&& IsDefinition
) {
7190 if (IsSpecialization
) {
7192 NewDecl
->getLocation(),
7193 diag::err_attribute_dllimport_function_specialization_definition
);
7194 S
.Diag(OldImportAttr
->getLocation(), diag::note_attribute
);
7195 NewDecl
->dropAttr
<DLLImportAttr
>();
7197 S
.Diag(NewDecl
->getLocation(),
7198 diag::warn_redeclaration_without_import_attribute
)
7200 S
.Diag(OldDecl
->getLocation(), diag::note_previous_declaration
);
7201 NewDecl
->dropAttr
<DLLImportAttr
>();
7202 NewDecl
->addAttr(DLLExportAttr::CreateImplicit(
7203 S
.Context
, NewImportAttr
->getRange()));
7205 } else if (IsMicrosoftABI
&& IsSpecialization
) {
7206 assert(!IsDefinition
);
7207 // MSVC allows this. Keep the inherited attribute.
7209 S
.Diag(NewDecl
->getLocation(),
7210 diag::warn_redeclaration_without_attribute_prev_attribute_ignored
)
7211 << NewDecl
<< OldImportAttr
;
7212 S
.Diag(OldDecl
->getLocation(), diag::note_previous_declaration
);
7213 S
.Diag(OldImportAttr
->getLocation(), diag::note_previous_attribute
);
7214 OldDecl
->dropAttr
<DLLImportAttr
>();
7215 NewDecl
->dropAttr
<DLLImportAttr
>();
7217 } else if (IsInline
&& OldImportAttr
&& !IsMicrosoftABI
) {
7218 // In MinGW, seeing a function declared inline drops the dllimport
7220 OldDecl
->dropAttr
<DLLImportAttr
>();
7221 NewDecl
->dropAttr
<DLLImportAttr
>();
7222 S
.Diag(NewDecl
->getLocation(),
7223 diag::warn_dllimport_dropped_from_inline_function
)
7224 << NewDecl
<< OldImportAttr
;
7227 // A specialization of a class template member function is processed here
7228 // since it's a redeclaration. If the parent class is dllexport, the
7229 // specialization inherits that attribute. This doesn't happen automatically
7230 // since the parent class isn't instantiated until later.
7231 if (const CXXMethodDecl
*MD
= dyn_cast
<CXXMethodDecl
>(NewDecl
)) {
7232 if (MD
->getTemplatedKind() == FunctionDecl::TK_MemberSpecialization
&&
7233 !NewImportAttr
&& !NewExportAttr
) {
7234 if (const DLLExportAttr
*ParentExportAttr
=
7235 MD
->getParent()->getAttr
<DLLExportAttr
>()) {
7236 DLLExportAttr
*NewAttr
= ParentExportAttr
->clone(S
.Context
);
7237 NewAttr
->setInherited(true);
7238 NewDecl
->addAttr(NewAttr
);
7244 /// Given that we are within the definition of the given function,
7245 /// will that definition behave like C99's 'inline', where the
7246 /// definition is discarded except for optimization purposes?
7247 static bool isFunctionDefinitionDiscarded(Sema
&S
, FunctionDecl
*FD
) {
7248 // Try to avoid calling GetGVALinkageForFunction.
7250 // All cases of this require the 'inline' keyword.
7251 if (!FD
->isInlined()) return false;
7253 // This is only possible in C++ with the gnu_inline attribute.
7254 if (S
.getLangOpts().CPlusPlus
&& !FD
->hasAttr
<GNUInlineAttr
>())
7257 // Okay, go ahead and call the relatively-more-expensive function.
7258 return S
.Context
.GetGVALinkageForFunction(FD
) == GVA_AvailableExternally
;
7261 /// Determine whether a variable is extern "C" prior to attaching
7262 /// an initializer. We can't just call isExternC() here, because that
7263 /// will also compute and cache whether the declaration is externally
7264 /// visible, which might change when we attach the initializer.
7266 /// This can only be used if the declaration is known to not be a
7267 /// redeclaration of an internal linkage declaration.
7273 /// Attaching the initializer here makes this declaration not externally
7274 /// visible, because its type has internal linkage.
7276 /// FIXME: This is a hack.
7277 template<typename T
>
7278 static bool isIncompleteDeclExternC(Sema
&S
, const T
*D
) {
7279 if (S
.getLangOpts().CPlusPlus
) {
7280 // In C++, the overloadable attribute negates the effects of extern "C".
7281 if (!D
->isInExternCContext() || D
->template hasAttr
<OverloadableAttr
>())
7284 // So do CUDA's host/device attributes.
7285 if (S
.getLangOpts().CUDA
&& (D
->template hasAttr
<CUDADeviceAttr
>() ||
7286 D
->template hasAttr
<CUDAHostAttr
>()))
7289 return D
->isExternC();
7292 static bool shouldConsiderLinkage(const VarDecl
*VD
) {
7293 const DeclContext
*DC
= VD
->getDeclContext()->getRedeclContext();
7294 if (DC
->isFunctionOrMethod() || isa
<OMPDeclareReductionDecl
>(DC
) ||
7295 isa
<OMPDeclareMapperDecl
>(DC
))
7296 return VD
->hasExternalStorage();
7297 if (DC
->isFileContext())
7301 if (DC
->getDeclKind() == Decl::HLSLBuffer
)
7304 if (isa
<RequiresExprBodyDecl
>(DC
))
7306 llvm_unreachable("Unexpected context");
7309 static bool shouldConsiderLinkage(const FunctionDecl
*FD
) {
7310 const DeclContext
*DC
= FD
->getDeclContext()->getRedeclContext();
7311 if (DC
->isFileContext() || DC
->isFunctionOrMethod() ||
7312 isa
<OMPDeclareReductionDecl
>(DC
) || isa
<OMPDeclareMapperDecl
>(DC
))
7316 llvm_unreachable("Unexpected context");
7319 static bool hasParsedAttr(Scope
*S
, const Declarator
&PD
,
7320 ParsedAttr::Kind Kind
) {
7321 // Check decl attributes on the DeclSpec.
7322 if (PD
.getDeclSpec().getAttributes().hasAttribute(Kind
))
7325 // Walk the declarator structure, checking decl attributes that were in a type
7326 // position to the decl itself.
7327 for (unsigned I
= 0, E
= PD
.getNumTypeObjects(); I
!= E
; ++I
) {
7328 if (PD
.getTypeObject(I
).getAttrs().hasAttribute(Kind
))
7332 // Finally, check attributes on the decl itself.
7333 return PD
.getAttributes().hasAttribute(Kind
) ||
7334 PD
.getDeclarationAttributes().hasAttribute(Kind
);
7337 /// Adjust the \c DeclContext for a function or variable that might be a
7338 /// function-local external declaration.
7339 bool Sema::adjustContextForLocalExternDecl(DeclContext
*&DC
) {
7340 if (!DC
->isFunctionOrMethod())
7343 // If this is a local extern function or variable declared within a function
7344 // template, don't add it into the enclosing namespace scope until it is
7345 // instantiated; it might have a dependent type right now.
7346 if (DC
->isDependentContext())
7349 // C++11 [basic.link]p7:
7350 // When a block scope declaration of an entity with linkage is not found to
7351 // refer to some other declaration, then that entity is a member of the
7352 // innermost enclosing namespace.
7354 // Per C++11 [namespace.def]p6, the innermost enclosing namespace is a
7355 // semantically-enclosing namespace, not a lexically-enclosing one.
7356 while (!DC
->isFileContext() && !isa
<LinkageSpecDecl
>(DC
))
7357 DC
= DC
->getParent();
7361 /// Returns true if given declaration has external C language linkage.
7362 static bool isDeclExternC(const Decl
*D
) {
7363 if (const auto *FD
= dyn_cast
<FunctionDecl
>(D
))
7364 return FD
->isExternC();
7365 if (const auto *VD
= dyn_cast
<VarDecl
>(D
))
7366 return VD
->isExternC();
7368 llvm_unreachable("Unknown type of decl!");
7371 /// Returns true if there hasn't been any invalid type diagnosed.
7372 static bool diagnoseOpenCLTypes(Sema
&Se
, VarDecl
*NewVD
) {
7373 DeclContext
*DC
= NewVD
->getDeclContext();
7374 QualType R
= NewVD
->getType();
7376 // OpenCL v2.0 s6.9.b - Image type can only be used as a function argument.
7377 // OpenCL v2.0 s6.13.16.1 - Pipe type can only be used as a function
7379 if (R
->isImageType() || R
->isPipeType()) {
7380 Se
.Diag(NewVD
->getLocation(),
7381 diag::err_opencl_type_can_only_be_used_as_function_parameter
)
7383 NewVD
->setInvalidDecl();
7387 // OpenCL v1.2 s6.9.r:
7388 // The event type cannot be used to declare a program scope variable.
7389 // OpenCL v2.0 s6.9.q:
7390 // The clk_event_t and reserve_id_t types cannot be declared in program
7392 if (NewVD
->hasGlobalStorage() && !NewVD
->isStaticLocal()) {
7393 if (R
->isReserveIDT() || R
->isClkEventT() || R
->isEventT()) {
7394 Se
.Diag(NewVD
->getLocation(),
7395 diag::err_invalid_type_for_program_scope_var
)
7397 NewVD
->setInvalidDecl();
7402 // OpenCL v1.0 s6.8.a.3: Pointers to functions are not allowed.
7403 if (!Se
.getOpenCLOptions().isAvailableOption("__cl_clang_function_pointers",
7404 Se
.getLangOpts())) {
7405 QualType NR
= R
.getCanonicalType();
7406 while (NR
->isPointerType() || NR
->isMemberFunctionPointerType() ||
7407 NR
->isReferenceType()) {
7408 if (NR
->isFunctionPointerType() || NR
->isMemberFunctionPointerType() ||
7409 NR
->isFunctionReferenceType()) {
7410 Se
.Diag(NewVD
->getLocation(), diag::err_opencl_function_pointer
)
7411 << NR
->isReferenceType();
7412 NewVD
->setInvalidDecl();
7415 NR
= NR
->getPointeeType();
7419 if (!Se
.getOpenCLOptions().isAvailableOption("cl_khr_fp16",
7420 Se
.getLangOpts())) {
7421 // OpenCL v1.2 s6.1.1.1: reject declaring variables of the half and
7422 // half array type (unless the cl_khr_fp16 extension is enabled).
7423 if (Se
.Context
.getBaseElementType(R
)->isHalfType()) {
7424 Se
.Diag(NewVD
->getLocation(), diag::err_opencl_half_declaration
) << R
;
7425 NewVD
->setInvalidDecl();
7430 // OpenCL v1.2 s6.9.r:
7431 // The event type cannot be used with the __local, __constant and __global
7432 // address space qualifiers.
7433 if (R
->isEventT()) {
7434 if (R
.getAddressSpace() != LangAS::opencl_private
) {
7435 Se
.Diag(NewVD
->getBeginLoc(), diag::err_event_t_addr_space_qual
);
7436 NewVD
->setInvalidDecl();
7441 if (R
->isSamplerT()) {
7442 // OpenCL v1.2 s6.9.b p4:
7443 // The sampler type cannot be used with the __local and __global address
7444 // space qualifiers.
7445 if (R
.getAddressSpace() == LangAS::opencl_local
||
7446 R
.getAddressSpace() == LangAS::opencl_global
) {
7447 Se
.Diag(NewVD
->getLocation(), diag::err_wrong_sampler_addressspace
);
7448 NewVD
->setInvalidDecl();
7451 // OpenCL v1.2 s6.12.14.1:
7452 // A global sampler must be declared with either the constant address
7453 // space qualifier or with the const qualifier.
7454 if (DC
->isTranslationUnit() &&
7455 !(R
.getAddressSpace() == LangAS::opencl_constant
||
7456 R
.isConstQualified())) {
7457 Se
.Diag(NewVD
->getLocation(), diag::err_opencl_nonconst_global_sampler
);
7458 NewVD
->setInvalidDecl();
7460 if (NewVD
->isInvalidDecl())
7467 template <typename AttrTy
>
7468 static void copyAttrFromTypedefToDecl(Sema
&S
, Decl
*D
, const TypedefType
*TT
) {
7469 const TypedefNameDecl
*TND
= TT
->getDecl();
7470 if (const auto *Attribute
= TND
->getAttr
<AttrTy
>()) {
7471 AttrTy
*Clone
= Attribute
->clone(S
.Context
);
7472 Clone
->setInherited(true);
7477 // This function emits warning and a corresponding note based on the
7478 // ReadOnlyPlacementAttr attribute. The warning checks that all global variable
7479 // declarations of an annotated type must be const qualified.
7480 void emitReadOnlyPlacementAttrWarning(Sema
&S
, const VarDecl
*VD
) {
7481 QualType VarType
= VD
->getType().getCanonicalType();
7483 // Ignore local declarations (for now) and those with const qualification.
7484 // TODO: Local variables should not be allowed if their type declaration has
7485 // ReadOnlyPlacementAttr attribute. To be handled in follow-up patch.
7486 if (!VD
|| VD
->hasLocalStorage() || VD
->getType().isConstQualified())
7489 if (VarType
->isArrayType()) {
7490 // Retrieve element type for array declarations.
7491 VarType
= S
.getASTContext().getBaseElementType(VarType
);
7494 const RecordDecl
*RD
= VarType
->getAsRecordDecl();
7496 // Check if the record declaration is present and if it has any attributes.
7500 if (const auto *ConstDecl
= RD
->getAttr
<ReadOnlyPlacementAttr
>()) {
7501 S
.Diag(VD
->getLocation(), diag::warn_var_decl_not_read_only
) << RD
;
7502 S
.Diag(ConstDecl
->getLocation(), diag::note_enforce_read_only_placement
);
7507 NamedDecl
*Sema::ActOnVariableDeclarator(
7508 Scope
*S
, Declarator
&D
, DeclContext
*DC
, TypeSourceInfo
*TInfo
,
7509 LookupResult
&Previous
, MultiTemplateParamsArg TemplateParamLists
,
7510 bool &AddToScope
, ArrayRef
<BindingDecl
*> Bindings
) {
7511 QualType R
= TInfo
->getType();
7512 DeclarationName Name
= GetNameForDeclarator(D
).getName();
7514 IdentifierInfo
*II
= Name
.getAsIdentifierInfo();
7515 bool IsPlaceholderVariable
= false;
7517 if (D
.isDecompositionDeclarator()) {
7518 // Take the name of the first declarator as our name for diagnostic
7520 auto &Decomp
= D
.getDecompositionDeclarator();
7521 if (!Decomp
.bindings().empty()) {
7522 II
= Decomp
.bindings()[0].Name
;
7526 Diag(D
.getIdentifierLoc(), diag::err_bad_variable_name
) << Name
;
7531 DeclSpec::SCS SCSpec
= D
.getDeclSpec().getStorageClassSpec();
7532 StorageClass SC
= StorageClassSpecToVarDeclStorageClass(D
.getDeclSpec());
7534 if (LangOpts
.CPlusPlus
&& (DC
->isClosure() || DC
->isFunctionOrMethod()) &&
7535 SC
!= SC_Static
&& SC
!= SC_Extern
&& II
&& II
->isPlaceholder()) {
7536 IsPlaceholderVariable
= true;
7537 if (!Previous
.empty()) {
7538 NamedDecl
*PrevDecl
= *Previous
.begin();
7539 bool SameDC
= PrevDecl
->getDeclContext()->getRedeclContext()->Equals(
7540 DC
->getRedeclContext());
7541 if (SameDC
&& isDeclInScope(PrevDecl
, CurContext
, S
, false))
7542 DiagPlaceholderVariableDefinition(D
.getIdentifierLoc());
7546 // dllimport globals without explicit storage class are treated as extern. We
7547 // have to change the storage class this early to get the right DeclContext.
7548 if (SC
== SC_None
&& !DC
->isRecord() &&
7549 hasParsedAttr(S
, D
, ParsedAttr::AT_DLLImport
) &&
7550 !hasParsedAttr(S
, D
, ParsedAttr::AT_DLLExport
))
7553 DeclContext
*OriginalDC
= DC
;
7554 bool IsLocalExternDecl
= SC
== SC_Extern
&&
7555 adjustContextForLocalExternDecl(DC
);
7557 if (SCSpec
== DeclSpec::SCS_mutable
) {
7558 // mutable can only appear on non-static class members, so it's always
7560 Diag(D
.getIdentifierLoc(), diag::err_mutable_nonmember
);
7565 if (getLangOpts().CPlusPlus11
&& SCSpec
== DeclSpec::SCS_register
&&
7566 !D
.getAsmLabel() && !getSourceManager().isInSystemMacro(
7567 D
.getDeclSpec().getStorageClassSpecLoc())) {
7568 // In C++11, the 'register' storage class specifier is deprecated.
7569 // Suppress the warning in system macros, it's used in macros in some
7570 // popular C system headers, such as in glibc's htonl() macro.
7571 Diag(D
.getDeclSpec().getStorageClassSpecLoc(),
7572 getLangOpts().CPlusPlus17
? diag::ext_register_storage_class
7573 : diag::warn_deprecated_register
)
7574 << FixItHint::CreateRemoval(D
.getDeclSpec().getStorageClassSpecLoc());
7577 DiagnoseFunctionSpecifiers(D
.getDeclSpec());
7579 if (!DC
->isRecord() && S
->getFnParent() == nullptr) {
7580 // C99 6.9p2: The storage-class specifiers auto and register shall not
7581 // appear in the declaration specifiers in an external declaration.
7582 // Global Register+Asm is a GNU extension we support.
7583 if (SC
== SC_Auto
|| (SC
== SC_Register
&& !D
.getAsmLabel())) {
7584 Diag(D
.getIdentifierLoc(), diag::err_typecheck_sclass_fscope
);
7589 // If this variable has a VLA type and an initializer, try to
7590 // fold to a constant-sized type. This is otherwise invalid.
7591 if (D
.hasInitializer() && R
->isVariableArrayType())
7592 tryToFixVariablyModifiedVarType(TInfo
, R
, D
.getIdentifierLoc(),
7595 bool IsMemberSpecialization
= false;
7596 bool IsVariableTemplateSpecialization
= false;
7597 bool IsPartialSpecialization
= false;
7598 bool IsVariableTemplate
= false;
7599 VarDecl
*NewVD
= nullptr;
7600 VarTemplateDecl
*NewTemplate
= nullptr;
7601 TemplateParameterList
*TemplateParams
= nullptr;
7602 if (!getLangOpts().CPlusPlus
) {
7603 NewVD
= VarDecl::Create(Context
, DC
, D
.getBeginLoc(), D
.getIdentifierLoc(),
7606 if (R
->getContainedDeducedType())
7607 ParsingInitForAutoVars
.insert(NewVD
);
7609 if (D
.isInvalidType())
7610 NewVD
->setInvalidDecl();
7612 if (NewVD
->getType().hasNonTrivialToPrimitiveDestructCUnion() &&
7613 NewVD
->hasLocalStorage())
7614 checkNonTrivialCUnion(NewVD
->getType(), NewVD
->getLocation(),
7615 NTCUC_AutoVar
, NTCUK_Destruct
);
7617 bool Invalid
= false;
7619 if (DC
->isRecord() && !CurContext
->isRecord()) {
7620 // This is an out-of-line definition of a static data member.
7625 Diag(D
.getDeclSpec().getStorageClassSpecLoc(),
7626 diag::err_static_out_of_line
)
7627 << FixItHint::CreateRemoval(D
.getDeclSpec().getStorageClassSpecLoc());
7632 // [dcl.stc] p2: The auto or register specifiers shall be applied only
7633 // to names of variables declared in a block or to function parameters.
7634 // [dcl.stc] p6: The extern specifier cannot be used in the declaration
7637 Diag(D
.getDeclSpec().getStorageClassSpecLoc(),
7638 diag::err_storage_class_for_static_member
)
7639 << FixItHint::CreateRemoval(D
.getDeclSpec().getStorageClassSpecLoc());
7641 case SC_PrivateExtern
:
7642 llvm_unreachable("C storage class in c++!");
7646 if (SC
== SC_Static
&& CurContext
->isRecord()) {
7647 if (const CXXRecordDecl
*RD
= dyn_cast
<CXXRecordDecl
>(DC
)) {
7648 // Walk up the enclosing DeclContexts to check for any that are
7649 // incompatible with static data members.
7650 const DeclContext
*FunctionOrMethod
= nullptr;
7651 const CXXRecordDecl
*AnonStruct
= nullptr;
7652 for (DeclContext
*Ctxt
= DC
; Ctxt
; Ctxt
= Ctxt
->getParent()) {
7653 if (Ctxt
->isFunctionOrMethod()) {
7654 FunctionOrMethod
= Ctxt
;
7657 const CXXRecordDecl
*ParentDecl
= dyn_cast
<CXXRecordDecl
>(Ctxt
);
7658 if (ParentDecl
&& !ParentDecl
->getDeclName()) {
7659 AnonStruct
= ParentDecl
;
7663 if (FunctionOrMethod
) {
7664 // C++ [class.static.data]p5: A local class shall not have static data
7666 Diag(D
.getIdentifierLoc(),
7667 diag::err_static_data_member_not_allowed_in_local_class
)
7668 << Name
<< RD
->getDeclName() << RD
->getTagKind();
7669 } else if (AnonStruct
) {
7670 // C++ [class.static.data]p4: Unnamed classes and classes contained
7671 // directly or indirectly within unnamed classes shall not contain
7672 // static data members.
7673 Diag(D
.getIdentifierLoc(),
7674 diag::err_static_data_member_not_allowed_in_anon_struct
)
7675 << Name
<< AnonStruct
->getTagKind();
7677 } else if (RD
->isUnion()) {
7678 // C++98 [class.union]p1: If a union contains a static data member,
7679 // the program is ill-formed. C++11 drops this restriction.
7680 Diag(D
.getIdentifierLoc(),
7681 getLangOpts().CPlusPlus11
7682 ? diag::warn_cxx98_compat_static_data_member_in_union
7683 : diag::ext_static_data_member_in_union
) << Name
;
7688 // Match up the template parameter lists with the scope specifier, then
7689 // determine whether we have a template or a template specialization.
7690 bool InvalidScope
= false;
7691 TemplateParams
= MatchTemplateParametersToScopeSpecifier(
7692 D
.getDeclSpec().getBeginLoc(), D
.getIdentifierLoc(),
7693 D
.getCXXScopeSpec(),
7694 D
.getName().getKind() == UnqualifiedIdKind::IK_TemplateId
7695 ? D
.getName().TemplateId
7698 /*never a friend*/ false, IsMemberSpecialization
, InvalidScope
);
7699 Invalid
|= InvalidScope
;
7701 if (TemplateParams
) {
7702 if (!TemplateParams
->size() &&
7703 D
.getName().getKind() != UnqualifiedIdKind::IK_TemplateId
) {
7704 // There is an extraneous 'template<>' for this variable. Complain
7705 // about it, but allow the declaration of the variable.
7706 Diag(TemplateParams
->getTemplateLoc(),
7707 diag::err_template_variable_noparams
)
7709 << SourceRange(TemplateParams
->getTemplateLoc(),
7710 TemplateParams
->getRAngleLoc());
7711 TemplateParams
= nullptr;
7713 // Check that we can declare a template here.
7714 if (CheckTemplateDeclScope(S
, TemplateParams
))
7717 if (D
.getName().getKind() == UnqualifiedIdKind::IK_TemplateId
) {
7718 // This is an explicit specialization or a partial specialization.
7719 IsVariableTemplateSpecialization
= true;
7720 IsPartialSpecialization
= TemplateParams
->size() > 0;
7721 } else { // if (TemplateParams->size() > 0)
7722 // This is a template declaration.
7723 IsVariableTemplate
= true;
7725 // Only C++1y supports variable templates (N3651).
7726 Diag(D
.getIdentifierLoc(),
7727 getLangOpts().CPlusPlus14
7728 ? diag::warn_cxx11_compat_variable_template
7729 : diag::ext_variable_template
);
7733 // Check that we can declare a member specialization here.
7734 if (!TemplateParamLists
.empty() && IsMemberSpecialization
&&
7735 CheckTemplateDeclScope(S
, TemplateParamLists
.back()))
7738 D
.getName().getKind() != UnqualifiedIdKind::IK_TemplateId
) &&
7739 "should have a 'template<>' for this decl");
7742 if (IsVariableTemplateSpecialization
) {
7743 SourceLocation TemplateKWLoc
=
7744 TemplateParamLists
.size() > 0
7745 ? TemplateParamLists
[0]->getTemplateLoc()
7747 DeclResult Res
= ActOnVarTemplateSpecialization(
7748 S
, D
, TInfo
, TemplateKWLoc
, TemplateParams
, SC
,
7749 IsPartialSpecialization
);
7750 if (Res
.isInvalid())
7752 NewVD
= cast
<VarDecl
>(Res
.get());
7754 } else if (D
.isDecompositionDeclarator()) {
7755 NewVD
= DecompositionDecl::Create(Context
, DC
, D
.getBeginLoc(),
7756 D
.getIdentifierLoc(), R
, TInfo
, SC
,
7759 NewVD
= VarDecl::Create(Context
, DC
, D
.getBeginLoc(),
7760 D
.getIdentifierLoc(), II
, R
, TInfo
, SC
);
7762 // If this is supposed to be a variable template, create it as such.
7763 if (IsVariableTemplate
) {
7765 VarTemplateDecl::Create(Context
, DC
, D
.getIdentifierLoc(), Name
,
7766 TemplateParams
, NewVD
);
7767 NewVD
->setDescribedVarTemplate(NewTemplate
);
7770 // If this decl has an auto type in need of deduction, make a note of the
7771 // Decl so we can diagnose uses of it in its own initializer.
7772 if (R
->getContainedDeducedType())
7773 ParsingInitForAutoVars
.insert(NewVD
);
7775 if (D
.isInvalidType() || Invalid
) {
7776 NewVD
->setInvalidDecl();
7778 NewTemplate
->setInvalidDecl();
7781 SetNestedNameSpecifier(*this, NewVD
, D
);
7783 // If we have any template parameter lists that don't directly belong to
7784 // the variable (matching the scope specifier), store them.
7785 // An explicit variable template specialization does not own any template
7787 bool IsExplicitSpecialization
=
7788 IsVariableTemplateSpecialization
&& !IsPartialSpecialization
;
7789 unsigned VDTemplateParamLists
=
7790 (TemplateParams
&& !IsExplicitSpecialization
) ? 1 : 0;
7791 if (TemplateParamLists
.size() > VDTemplateParamLists
)
7792 NewVD
->setTemplateParameterListsInfo(
7793 Context
, TemplateParamLists
.drop_back(VDTemplateParamLists
));
7796 if (D
.getDeclSpec().isInlineSpecified()) {
7797 if (!getLangOpts().CPlusPlus
) {
7798 Diag(D
.getDeclSpec().getInlineSpecLoc(), diag::err_inline_non_function
)
7800 } else if (CurContext
->isFunctionOrMethod()) {
7801 // 'inline' is not allowed on block scope variable declaration.
7802 Diag(D
.getDeclSpec().getInlineSpecLoc(),
7803 diag::err_inline_declaration_block_scope
) << Name
7804 << FixItHint::CreateRemoval(D
.getDeclSpec().getInlineSpecLoc());
7806 Diag(D
.getDeclSpec().getInlineSpecLoc(),
7807 getLangOpts().CPlusPlus17
? diag::warn_cxx14_compat_inline_variable
7808 : diag::ext_inline_variable
);
7809 NewVD
->setInlineSpecified();
7813 // Set the lexical context. If the declarator has a C++ scope specifier, the
7814 // lexical context will be different from the semantic context.
7815 NewVD
->setLexicalDeclContext(CurContext
);
7817 NewTemplate
->setLexicalDeclContext(CurContext
);
7819 if (IsLocalExternDecl
) {
7820 if (D
.isDecompositionDeclarator())
7821 for (auto *B
: Bindings
)
7822 B
->setLocalExternDecl();
7824 NewVD
->setLocalExternDecl();
7827 bool EmitTLSUnsupportedError
= false;
7828 if (DeclSpec::TSCS TSCS
= D
.getDeclSpec().getThreadStorageClassSpec()) {
7829 // C++11 [dcl.stc]p4:
7830 // When thread_local is applied to a variable of block scope the
7831 // storage-class-specifier static is implied if it does not appear
7833 // Core issue: 'static' is not implied if the variable is declared
7835 if (NewVD
->hasLocalStorage() &&
7836 (SCSpec
!= DeclSpec::SCS_unspecified
||
7837 TSCS
!= DeclSpec::TSCS_thread_local
||
7838 !DC
->isFunctionOrMethod()))
7839 Diag(D
.getDeclSpec().getThreadStorageClassSpecLoc(),
7840 diag::err_thread_non_global
)
7841 << DeclSpec::getSpecifierName(TSCS
);
7842 else if (!Context
.getTargetInfo().isTLSSupported()) {
7843 if (getLangOpts().CUDA
|| getLangOpts().OpenMPIsTargetDevice
||
7844 getLangOpts().SYCLIsDevice
) {
7845 // Postpone error emission until we've collected attributes required to
7846 // figure out whether it's a host or device variable and whether the
7847 // error should be ignored.
7848 EmitTLSUnsupportedError
= true;
7849 // We still need to mark the variable as TLS so it shows up in AST with
7850 // proper storage class for other tools to use even if we're not going
7851 // to emit any code for it.
7852 NewVD
->setTSCSpec(TSCS
);
7854 Diag(D
.getDeclSpec().getThreadStorageClassSpecLoc(),
7855 diag::err_thread_unsupported
);
7857 NewVD
->setTSCSpec(TSCS
);
7860 switch (D
.getDeclSpec().getConstexprSpecifier()) {
7861 case ConstexprSpecKind::Unspecified
:
7864 case ConstexprSpecKind::Consteval
:
7865 Diag(D
.getDeclSpec().getConstexprSpecLoc(),
7866 diag::err_constexpr_wrong_decl_kind
)
7867 << static_cast<int>(D
.getDeclSpec().getConstexprSpecifier());
7870 case ConstexprSpecKind::Constexpr
:
7871 NewVD
->setConstexpr(true);
7872 // C++1z [dcl.spec.constexpr]p1:
7873 // A static data member declared with the constexpr specifier is
7874 // implicitly an inline variable.
7875 if (NewVD
->isStaticDataMember() &&
7876 (getLangOpts().CPlusPlus17
||
7877 Context
.getTargetInfo().getCXXABI().isMicrosoft()))
7878 NewVD
->setImplicitlyInline();
7881 case ConstexprSpecKind::Constinit
:
7882 if (!NewVD
->hasGlobalStorage())
7883 Diag(D
.getDeclSpec().getConstexprSpecLoc(),
7884 diag::err_constinit_local_variable
);
7887 ConstInitAttr::Create(Context
, D
.getDeclSpec().getConstexprSpecLoc(),
7888 ConstInitAttr::Keyword_constinit
));
7893 // An inline definition of a function with external linkage shall
7894 // not contain a definition of a modifiable object with static or
7895 // thread storage duration...
7896 // We only apply this when the function is required to be defined
7897 // elsewhere, i.e. when the function is not 'extern inline'. Note
7898 // that a local variable with thread storage duration still has to
7899 // be marked 'static'. Also note that it's possible to get these
7900 // semantics in C++ using __attribute__((gnu_inline)).
7901 if (SC
== SC_Static
&& S
->getFnParent() != nullptr &&
7902 !NewVD
->getType().isConstQualified()) {
7903 FunctionDecl
*CurFD
= getCurFunctionDecl();
7904 if (CurFD
&& isFunctionDefinitionDiscarded(*this, CurFD
)) {
7905 Diag(D
.getDeclSpec().getStorageClassSpecLoc(),
7906 diag::warn_static_local_in_extern_inline
);
7907 MaybeSuggestAddingStaticToDecl(CurFD
);
7911 if (D
.getDeclSpec().isModulePrivateSpecified()) {
7912 if (IsVariableTemplateSpecialization
)
7913 Diag(NewVD
->getLocation(), diag::err_module_private_specialization
)
7914 << (IsPartialSpecialization
? 1 : 0)
7915 << FixItHint::CreateRemoval(
7916 D
.getDeclSpec().getModulePrivateSpecLoc());
7917 else if (IsMemberSpecialization
)
7918 Diag(NewVD
->getLocation(), diag::err_module_private_specialization
)
7920 << FixItHint::CreateRemoval(D
.getDeclSpec().getModulePrivateSpecLoc());
7921 else if (NewVD
->hasLocalStorage())
7922 Diag(NewVD
->getLocation(), diag::err_module_private_local
)
7924 << SourceRange(D
.getDeclSpec().getModulePrivateSpecLoc())
7925 << FixItHint::CreateRemoval(
7926 D
.getDeclSpec().getModulePrivateSpecLoc());
7928 NewVD
->setModulePrivate();
7930 NewTemplate
->setModulePrivate();
7931 for (auto *B
: Bindings
)
7932 B
->setModulePrivate();
7936 if (getLangOpts().OpenCL
) {
7937 deduceOpenCLAddressSpace(NewVD
);
7939 DeclSpec::TSCS TSC
= D
.getDeclSpec().getThreadStorageClassSpec();
7940 if (TSC
!= TSCS_unspecified
) {
7941 Diag(D
.getDeclSpec().getThreadStorageClassSpecLoc(),
7942 diag::err_opencl_unknown_type_specifier
)
7943 << getLangOpts().getOpenCLVersionString()
7944 << DeclSpec::getSpecifierName(TSC
) << 1;
7945 NewVD
->setInvalidDecl();
7949 // WebAssembly tables are always in address space 1 (wasm_var). Don't apply
7950 // address space if the table has local storage (semantic checks elsewhere
7951 // will produce an error anyway).
7952 if (const auto *ATy
= dyn_cast
<ArrayType
>(NewVD
->getType())) {
7953 if (ATy
&& ATy
->getElementType().isWebAssemblyReferenceType() &&
7954 !NewVD
->hasLocalStorage()) {
7955 QualType Type
= Context
.getAddrSpaceQualType(
7956 NewVD
->getType(), Context
.getLangASForBuiltinAddressSpace(1));
7957 NewVD
->setType(Type
);
7961 // Handle attributes prior to checking for duplicates in MergeVarDecl
7962 ProcessDeclAttributes(S
, NewVD
, D
);
7964 // FIXME: This is probably the wrong location to be doing this and we should
7965 // probably be doing this for more attributes (especially for function
7966 // pointer attributes such as format, warn_unused_result, etc.). Ideally
7967 // the code to copy attributes would be generated by TableGen.
7968 if (R
->isFunctionPointerType())
7969 if (const auto *TT
= R
->getAs
<TypedefType
>())
7970 copyAttrFromTypedefToDecl
<AllocSizeAttr
>(*this, NewVD
, TT
);
7972 if (getLangOpts().CUDA
|| getLangOpts().OpenMPIsTargetDevice
||
7973 getLangOpts().SYCLIsDevice
) {
7974 if (EmitTLSUnsupportedError
&&
7975 ((getLangOpts().CUDA
&& DeclAttrsMatchCUDAMode(getLangOpts(), NewVD
)) ||
7976 (getLangOpts().OpenMPIsTargetDevice
&&
7977 OMPDeclareTargetDeclAttr::isDeclareTargetDeclaration(NewVD
))))
7978 Diag(D
.getDeclSpec().getThreadStorageClassSpecLoc(),
7979 diag::err_thread_unsupported
);
7981 if (EmitTLSUnsupportedError
&&
7982 (LangOpts
.SYCLIsDevice
||
7983 (LangOpts
.OpenMP
&& LangOpts
.OpenMPIsTargetDevice
)))
7984 targetDiag(D
.getIdentifierLoc(), diag::err_thread_unsupported
);
7985 // CUDA B.2.5: "__shared__ and __constant__ variables have implied static
7986 // storage [duration]."
7987 if (SC
== SC_None
&& S
->getFnParent() != nullptr &&
7988 (NewVD
->hasAttr
<CUDASharedAttr
>() ||
7989 NewVD
->hasAttr
<CUDAConstantAttr
>())) {
7990 NewVD
->setStorageClass(SC_Static
);
7994 // Ensure that dllimport globals without explicit storage class are treated as
7995 // extern. The storage class is set above using parsed attributes. Now we can
7996 // check the VarDecl itself.
7997 assert(!NewVD
->hasAttr
<DLLImportAttr
>() ||
7998 NewVD
->getAttr
<DLLImportAttr
>()->isInherited() ||
7999 NewVD
->isStaticDataMember() || NewVD
->getStorageClass() != SC_None
);
8001 // In auto-retain/release, infer strong retension for variables of
8003 if (getLangOpts().ObjCAutoRefCount
&& inferObjCARCLifetime(NewVD
))
8004 NewVD
->setInvalidDecl();
8006 // Handle GNU asm-label extension (encoded as an attribute).
8007 if (Expr
*E
= (Expr
*)D
.getAsmLabel()) {
8008 // The parser guarantees this is a string.
8009 StringLiteral
*SE
= cast
<StringLiteral
>(E
);
8010 StringRef Label
= SE
->getString();
8011 if (S
->getFnParent() != nullptr) {
8015 Diag(E
->getExprLoc(), diag::warn_asm_label_on_auto_decl
) << Label
;
8018 // Local Named register
8019 if (!Context
.getTargetInfo().isValidGCCRegisterName(Label
) &&
8020 DeclAttrsMatchCUDAMode(getLangOpts(), getCurFunctionDecl()))
8021 Diag(E
->getExprLoc(), diag::err_asm_unknown_register_name
) << Label
;
8025 case SC_PrivateExtern
:
8028 } else if (SC
== SC_Register
) {
8029 // Global Named register
8030 if (DeclAttrsMatchCUDAMode(getLangOpts(), NewVD
)) {
8031 const auto &TI
= Context
.getTargetInfo();
8032 bool HasSizeMismatch
;
8034 if (!TI
.isValidGCCRegisterName(Label
))
8035 Diag(E
->getExprLoc(), diag::err_asm_unknown_register_name
) << Label
;
8036 else if (!TI
.validateGlobalRegisterVariable(Label
,
8037 Context
.getTypeSize(R
),
8039 Diag(E
->getExprLoc(), diag::err_asm_invalid_global_var_reg
) << Label
;
8040 else if (HasSizeMismatch
)
8041 Diag(E
->getExprLoc(), diag::err_asm_register_size_mismatch
) << Label
;
8044 if (!R
->isIntegralType(Context
) && !R
->isPointerType()) {
8045 Diag(D
.getBeginLoc(), diag::err_asm_bad_register_type
);
8046 NewVD
->setInvalidDecl(true);
8050 NewVD
->addAttr(AsmLabelAttr::Create(Context
, Label
,
8051 /*IsLiteralLabel=*/true,
8052 SE
->getStrTokenLoc(0)));
8053 } else if (!ExtnameUndeclaredIdentifiers
.empty()) {
8054 llvm::DenseMap
<IdentifierInfo
*,AsmLabelAttr
*>::iterator I
=
8055 ExtnameUndeclaredIdentifiers
.find(NewVD
->getIdentifier());
8056 if (I
!= ExtnameUndeclaredIdentifiers
.end()) {
8057 if (isDeclExternC(NewVD
)) {
8058 NewVD
->addAttr(I
->second
);
8059 ExtnameUndeclaredIdentifiers
.erase(I
);
8061 Diag(NewVD
->getLocation(), diag::warn_redefine_extname_not_applied
)
8062 << /*Variable*/1 << NewVD
;
8066 // Find the shadowed declaration before filtering for scope.
8067 NamedDecl
*ShadowedDecl
= D
.getCXXScopeSpec().isEmpty()
8068 ? getShadowedDeclaration(NewVD
, Previous
)
8071 // Don't consider existing declarations that are in a different
8072 // scope and are out-of-semantic-context declarations (if the new
8073 // declaration has linkage).
8074 FilterLookupForScope(Previous
, OriginalDC
, S
, shouldConsiderLinkage(NewVD
),
8075 D
.getCXXScopeSpec().isNotEmpty() ||
8076 IsMemberSpecialization
||
8077 IsVariableTemplateSpecialization
);
8079 // Check whether the previous declaration is in the same block scope. This
8080 // affects whether we merge types with it, per C++11 [dcl.array]p3.
8081 if (getLangOpts().CPlusPlus
&&
8082 NewVD
->isLocalVarDecl() && NewVD
->hasExternalStorage())
8083 NewVD
->setPreviousDeclInSameBlockScope(
8084 Previous
.isSingleResult() && !Previous
.isShadowed() &&
8085 isDeclInScope(Previous
.getFoundDecl(), OriginalDC
, S
, false));
8087 if (!getLangOpts().CPlusPlus
) {
8088 D
.setRedeclaration(CheckVariableDeclaration(NewVD
, Previous
));
8090 // If this is an explicit specialization of a static data member, check it.
8091 if (IsMemberSpecialization
&& !NewVD
->isInvalidDecl() &&
8092 CheckMemberSpecialization(NewVD
, Previous
))
8093 NewVD
->setInvalidDecl();
8095 // Merge the decl with the existing one if appropriate.
8096 if (!Previous
.empty()) {
8097 if (Previous
.isSingleResult() &&
8098 isa
<FieldDecl
>(Previous
.getFoundDecl()) &&
8099 D
.getCXXScopeSpec().isSet()) {
8100 // The user tried to define a non-static data member
8101 // out-of-line (C++ [dcl.meaning]p1).
8102 Diag(NewVD
->getLocation(), diag::err_nonstatic_member_out_of_line
)
8103 << D
.getCXXScopeSpec().getRange();
8105 NewVD
->setInvalidDecl();
8107 } else if (D
.getCXXScopeSpec().isSet()) {
8108 // No previous declaration in the qualifying scope.
8109 Diag(D
.getIdentifierLoc(), diag::err_no_member
)
8110 << Name
<< computeDeclContext(D
.getCXXScopeSpec(), true)
8111 << D
.getCXXScopeSpec().getRange();
8112 NewVD
->setInvalidDecl();
8115 if (!IsVariableTemplateSpecialization
&& !IsPlaceholderVariable
)
8116 D
.setRedeclaration(CheckVariableDeclaration(NewVD
, Previous
));
8118 // CheckVariableDeclaration will set NewVD as invalid if something is in
8119 // error like WebAssembly tables being declared as arrays with a non-zero
8120 // size, but then parsing continues and emits further errors on that line.
8121 // To avoid that we check here if it happened and return nullptr.
8122 if (NewVD
->getType()->isWebAssemblyTableType() && NewVD
->isInvalidDecl())
8126 VarTemplateDecl
*PrevVarTemplate
=
8127 NewVD
->getPreviousDecl()
8128 ? NewVD
->getPreviousDecl()->getDescribedVarTemplate()
8131 // Check the template parameter list of this declaration, possibly
8132 // merging in the template parameter list from the previous variable
8133 // template declaration.
8134 if (CheckTemplateParameterList(
8136 PrevVarTemplate
? PrevVarTemplate
->getTemplateParameters()
8138 (D
.getCXXScopeSpec().isSet() && DC
&& DC
->isRecord() &&
8139 DC
->isDependentContext())
8140 ? TPC_ClassTemplateMember
8142 NewVD
->setInvalidDecl();
8144 // If we are providing an explicit specialization of a static variable
8145 // template, make a note of that.
8146 if (PrevVarTemplate
&&
8147 PrevVarTemplate
->getInstantiatedFromMemberTemplate())
8148 PrevVarTemplate
->setMemberSpecialization();
8152 // Diagnose shadowed variables iff this isn't a redeclaration.
8153 if (!IsPlaceholderVariable
&& ShadowedDecl
&& !D
.isRedeclaration())
8154 CheckShadow(NewVD
, ShadowedDecl
, Previous
);
8156 ProcessPragmaWeak(S
, NewVD
);
8158 // If this is the first declaration of an extern C variable, update
8159 // the map of such variables.
8160 if (NewVD
->isFirstDecl() && !NewVD
->isInvalidDecl() &&
8161 isIncompleteDeclExternC(*this, NewVD
))
8162 RegisterLocallyScopedExternCDecl(NewVD
, S
);
8164 if (getLangOpts().CPlusPlus
&& NewVD
->isStaticLocal()) {
8165 MangleNumberingContext
*MCtx
;
8166 Decl
*ManglingContextDecl
;
8167 std::tie(MCtx
, ManglingContextDecl
) =
8168 getCurrentMangleNumberContext(NewVD
->getDeclContext());
8170 Context
.setManglingNumber(
8171 NewVD
, MCtx
->getManglingNumber(
8172 NewVD
, getMSManglingNumber(getLangOpts(), S
)));
8173 Context
.setStaticLocalNumber(NewVD
, MCtx
->getStaticLocalNumber(NewVD
));
8177 // Special handling of variable named 'main'.
8178 if (Name
.getAsIdentifierInfo() && Name
.getAsIdentifierInfo()->isStr("main") &&
8179 NewVD
->getDeclContext()->getRedeclContext()->isTranslationUnit() &&
8180 !getLangOpts().Freestanding
&& !NewVD
->getDescribedVarTemplate()) {
8182 // C++ [basic.start.main]p3
8183 // A program that declares a variable main at global scope is ill-formed.
8184 if (getLangOpts().CPlusPlus
)
8185 Diag(D
.getBeginLoc(), diag::err_main_global_variable
);
8187 // In C, and external-linkage variable named main results in undefined
8189 else if (NewVD
->hasExternalFormalLinkage())
8190 Diag(D
.getBeginLoc(), diag::warn_main_redefined
);
8193 if (D
.isRedeclaration() && !Previous
.empty()) {
8194 NamedDecl
*Prev
= Previous
.getRepresentativeDecl();
8195 checkDLLAttributeRedeclaration(*this, Prev
, NewVD
, IsMemberSpecialization
,
8196 D
.isFunctionDefinition());
8200 if (NewVD
->isInvalidDecl())
8201 NewTemplate
->setInvalidDecl();
8202 ActOnDocumentableDecl(NewTemplate
);
8206 if (IsMemberSpecialization
&& !NewVD
->isInvalidDecl())
8207 CompleteMemberSpecialization(NewVD
, Previous
);
8209 emitReadOnlyPlacementAttrWarning(*this, NewVD
);
8214 /// Enum describing the %select options in diag::warn_decl_shadow.
8215 enum ShadowedDeclKind
{
8222 SDK_StructuredBinding
8225 /// Determine what kind of declaration we're shadowing.
8226 static ShadowedDeclKind
computeShadowedDeclKind(const NamedDecl
*ShadowedDecl
,
8227 const DeclContext
*OldDC
) {
8228 if (isa
<TypeAliasDecl
>(ShadowedDecl
))
8230 else if (isa
<TypedefDecl
>(ShadowedDecl
))
8232 else if (isa
<BindingDecl
>(ShadowedDecl
))
8233 return SDK_StructuredBinding
;
8234 else if (isa
<RecordDecl
>(OldDC
))
8235 return isa
<FieldDecl
>(ShadowedDecl
) ? SDK_Field
: SDK_StaticMember
;
8237 return OldDC
->isFileContext() ? SDK_Global
: SDK_Local
;
8240 /// Return the location of the capture if the given lambda captures the given
8241 /// variable \p VD, or an invalid source location otherwise.
8242 static SourceLocation
getCaptureLocation(const LambdaScopeInfo
*LSI
,
8243 const VarDecl
*VD
) {
8244 for (const Capture
&Capture
: LSI
->Captures
) {
8245 if (Capture
.isVariableCapture() && Capture
.getVariable() == VD
)
8246 return Capture
.getLocation();
8248 return SourceLocation();
8251 static bool shouldWarnIfShadowedDecl(const DiagnosticsEngine
&Diags
,
8252 const LookupResult
&R
) {
8253 // Only diagnose if we're shadowing an unambiguous field or variable.
8254 if (R
.getResultKind() != LookupResult::Found
)
8257 // Return false if warning is ignored.
8258 return !Diags
.isIgnored(diag::warn_decl_shadow
, R
.getNameLoc());
8261 /// Return the declaration shadowed by the given variable \p D, or null
8262 /// if it doesn't shadow any declaration or shadowing warnings are disabled.
8263 NamedDecl
*Sema::getShadowedDeclaration(const VarDecl
*D
,
8264 const LookupResult
&R
) {
8265 if (!shouldWarnIfShadowedDecl(Diags
, R
))
8268 // Don't diagnose declarations at file scope.
8269 if (D
->hasGlobalStorage() && !D
->isStaticLocal())
8272 NamedDecl
*ShadowedDecl
= R
.getFoundDecl();
8273 return isa
<VarDecl
, FieldDecl
, BindingDecl
>(ShadowedDecl
) ? ShadowedDecl
8277 /// Return the declaration shadowed by the given typedef \p D, or null
8278 /// if it doesn't shadow any declaration or shadowing warnings are disabled.
8279 NamedDecl
*Sema::getShadowedDeclaration(const TypedefNameDecl
*D
,
8280 const LookupResult
&R
) {
8281 // Don't warn if typedef declaration is part of a class
8282 if (D
->getDeclContext()->isRecord())
8285 if (!shouldWarnIfShadowedDecl(Diags
, R
))
8288 NamedDecl
*ShadowedDecl
= R
.getFoundDecl();
8289 return isa
<TypedefNameDecl
>(ShadowedDecl
) ? ShadowedDecl
: nullptr;
8292 /// Return the declaration shadowed by the given variable \p D, or null
8293 /// if it doesn't shadow any declaration or shadowing warnings are disabled.
8294 NamedDecl
*Sema::getShadowedDeclaration(const BindingDecl
*D
,
8295 const LookupResult
&R
) {
8296 if (!shouldWarnIfShadowedDecl(Diags
, R
))
8299 NamedDecl
*ShadowedDecl
= R
.getFoundDecl();
8300 return isa
<VarDecl
, FieldDecl
, BindingDecl
>(ShadowedDecl
) ? ShadowedDecl
8304 /// Diagnose variable or built-in function shadowing. Implements
8307 /// This method is called whenever a VarDecl is added to a "useful"
8310 /// \param ShadowedDecl the declaration that is shadowed by the given variable
8311 /// \param R the lookup of the name
8313 void Sema::CheckShadow(NamedDecl
*D
, NamedDecl
*ShadowedDecl
,
8314 const LookupResult
&R
) {
8315 DeclContext
*NewDC
= D
->getDeclContext();
8317 if (FieldDecl
*FD
= dyn_cast
<FieldDecl
>(ShadowedDecl
)) {
8318 // Fields are not shadowed by variables in C++ static methods.
8319 if (CXXMethodDecl
*MD
= dyn_cast
<CXXMethodDecl
>(NewDC
))
8323 // Fields shadowed by constructor parameters are a special case. Usually
8324 // the constructor initializes the field with the parameter.
8325 if (isa
<CXXConstructorDecl
>(NewDC
))
8326 if (const auto PVD
= dyn_cast
<ParmVarDecl
>(D
)) {
8327 // Remember that this was shadowed so we can either warn about its
8328 // modification or its existence depending on warning settings.
8329 ShadowingDecls
.insert({PVD
->getCanonicalDecl(), FD
});
8334 if (VarDecl
*shadowedVar
= dyn_cast
<VarDecl
>(ShadowedDecl
))
8335 if (shadowedVar
->isExternC()) {
8336 // For shadowing external vars, make sure that we point to the global
8337 // declaration, not a locally scoped extern declaration.
8338 for (auto *I
: shadowedVar
->redecls())
8339 if (I
->isFileVarDecl()) {
8345 DeclContext
*OldDC
= ShadowedDecl
->getDeclContext()->getRedeclContext();
8347 unsigned WarningDiag
= diag::warn_decl_shadow
;
8348 SourceLocation CaptureLoc
;
8349 if (isa
<VarDecl
>(D
) && isa
<VarDecl
>(ShadowedDecl
) && NewDC
&&
8350 isa
<CXXMethodDecl
>(NewDC
)) {
8351 if (const auto *RD
= dyn_cast
<CXXRecordDecl
>(NewDC
->getParent())) {
8352 if (RD
->isLambda() && OldDC
->Encloses(NewDC
->getLexicalParent())) {
8353 if (RD
->getLambdaCaptureDefault() == LCD_None
) {
8354 // Try to avoid warnings for lambdas with an explicit capture list.
8355 const auto *LSI
= cast
<LambdaScopeInfo
>(getCurFunction());
8356 // Warn only when the lambda captures the shadowed decl explicitly.
8357 CaptureLoc
= getCaptureLocation(LSI
, cast
<VarDecl
>(ShadowedDecl
));
8358 if (CaptureLoc
.isInvalid())
8359 WarningDiag
= diag::warn_decl_shadow_uncaptured_local
;
8361 // Remember that this was shadowed so we can avoid the warning if the
8362 // shadowed decl isn't captured and the warning settings allow it.
8363 cast
<LambdaScopeInfo
>(getCurFunction())
8364 ->ShadowingDecls
.push_back(
8365 {cast
<VarDecl
>(D
), cast
<VarDecl
>(ShadowedDecl
)});
8370 if (cast
<VarDecl
>(ShadowedDecl
)->hasLocalStorage()) {
8371 // A variable can't shadow a local variable in an enclosing scope, if
8372 // they are separated by a non-capturing declaration context.
8373 for (DeclContext
*ParentDC
= NewDC
;
8374 ParentDC
&& !ParentDC
->Equals(OldDC
);
8375 ParentDC
= getLambdaAwareParentOfDeclContext(ParentDC
)) {
8376 // Only block literals, captured statements, and lambda expressions
8377 // can capture; other scopes don't.
8378 if (!isa
<BlockDecl
>(ParentDC
) && !isa
<CapturedDecl
>(ParentDC
) &&
8379 !isLambdaCallOperator(ParentDC
)) {
8387 // Never warn about shadowing a placeholder variable.
8388 if (ShadowedDecl
->isPlaceholderVar(getLangOpts()))
8391 // Only warn about certain kinds of shadowing for class members.
8392 if (NewDC
&& NewDC
->isRecord()) {
8393 // In particular, don't warn about shadowing non-class members.
8394 if (!OldDC
->isRecord())
8397 // TODO: should we warn about static data members shadowing
8398 // static data members from base classes?
8400 // TODO: don't diagnose for inaccessible shadowed members.
8401 // This is hard to do perfectly because we might friend the
8402 // shadowing context, but that's just a false negative.
8406 DeclarationName Name
= R
.getLookupName();
8408 // Emit warning and note.
8409 ShadowedDeclKind Kind
= computeShadowedDeclKind(ShadowedDecl
, OldDC
);
8410 Diag(R
.getNameLoc(), WarningDiag
) << Name
<< Kind
<< OldDC
;
8411 if (!CaptureLoc
.isInvalid())
8412 Diag(CaptureLoc
, diag::note_var_explicitly_captured_here
)
8413 << Name
<< /*explicitly*/ 1;
8414 Diag(ShadowedDecl
->getLocation(), diag::note_previous_declaration
);
8417 /// Diagnose shadowing for variables shadowed in the lambda record \p LambdaRD
8418 /// when these variables are captured by the lambda.
8419 void Sema::DiagnoseShadowingLambdaDecls(const LambdaScopeInfo
*LSI
) {
8420 for (const auto &Shadow
: LSI
->ShadowingDecls
) {
8421 const VarDecl
*ShadowedDecl
= Shadow
.ShadowedDecl
;
8422 // Try to avoid the warning when the shadowed decl isn't captured.
8423 SourceLocation CaptureLoc
= getCaptureLocation(LSI
, ShadowedDecl
);
8424 const DeclContext
*OldDC
= ShadowedDecl
->getDeclContext();
8425 Diag(Shadow
.VD
->getLocation(), CaptureLoc
.isInvalid()
8426 ? diag::warn_decl_shadow_uncaptured_local
8427 : diag::warn_decl_shadow
)
8428 << Shadow
.VD
->getDeclName()
8429 << computeShadowedDeclKind(ShadowedDecl
, OldDC
) << OldDC
;
8430 if (!CaptureLoc
.isInvalid())
8431 Diag(CaptureLoc
, diag::note_var_explicitly_captured_here
)
8432 << Shadow
.VD
->getDeclName() << /*explicitly*/ 0;
8433 Diag(ShadowedDecl
->getLocation(), diag::note_previous_declaration
);
8437 /// Check -Wshadow without the advantage of a previous lookup.
8438 void Sema::CheckShadow(Scope
*S
, VarDecl
*D
) {
8439 if (Diags
.isIgnored(diag::warn_decl_shadow
, D
->getLocation()))
8442 LookupResult
R(*this, D
->getDeclName(), D
->getLocation(),
8443 Sema::LookupOrdinaryName
, Sema::ForVisibleRedeclaration
);
8445 if (NamedDecl
*ShadowedDecl
= getShadowedDeclaration(D
, R
))
8446 CheckShadow(D
, ShadowedDecl
, R
);
8449 /// Check if 'E', which is an expression that is about to be modified, refers
8450 /// to a constructor parameter that shadows a field.
8451 void Sema::CheckShadowingDeclModification(Expr
*E
, SourceLocation Loc
) {
8452 // Quickly ignore expressions that can't be shadowing ctor parameters.
8453 if (!getLangOpts().CPlusPlus
|| ShadowingDecls
.empty())
8455 E
= E
->IgnoreParenImpCasts();
8456 auto *DRE
= dyn_cast
<DeclRefExpr
>(E
);
8459 const NamedDecl
*D
= cast
<NamedDecl
>(DRE
->getDecl()->getCanonicalDecl());
8460 auto I
= ShadowingDecls
.find(D
);
8461 if (I
== ShadowingDecls
.end())
8463 const NamedDecl
*ShadowedDecl
= I
->second
;
8464 const DeclContext
*OldDC
= ShadowedDecl
->getDeclContext();
8465 Diag(Loc
, diag::warn_modifying_shadowing_decl
) << D
<< OldDC
;
8466 Diag(D
->getLocation(), diag::note_var_declared_here
) << D
;
8467 Diag(ShadowedDecl
->getLocation(), diag::note_previous_declaration
);
8469 // Avoid issuing multiple warnings about the same decl.
8470 ShadowingDecls
.erase(I
);
8473 /// Check for conflict between this global or extern "C" declaration and
8474 /// previous global or extern "C" declarations. This is only used in C++.
8475 template<typename T
>
8476 static bool checkGlobalOrExternCConflict(
8477 Sema
&S
, const T
*ND
, bool IsGlobal
, LookupResult
&Previous
) {
8478 assert(S
.getLangOpts().CPlusPlus
&& "only C++ has extern \"C\"");
8479 NamedDecl
*Prev
= S
.findLocallyScopedExternCDecl(ND
->getDeclName());
8481 if (!Prev
&& IsGlobal
&& !isIncompleteDeclExternC(S
, ND
)) {
8482 // The common case: this global doesn't conflict with any extern "C"
8488 if (!IsGlobal
|| isIncompleteDeclExternC(S
, ND
)) {
8489 // Both the old and new declarations have C language linkage. This is a
8492 Previous
.addDecl(Prev
);
8496 // This is a global, non-extern "C" declaration, and there is a previous
8497 // non-global extern "C" declaration. Diagnose if this is a variable
8499 if (!isa
<VarDecl
>(ND
))
8502 // The declaration is extern "C". Check for any declaration in the
8503 // translation unit which might conflict.
8505 // We have already performed the lookup into the translation unit.
8507 for (LookupResult::iterator I
= Previous
.begin(), E
= Previous
.end();
8509 if (isa
<VarDecl
>(*I
)) {
8515 DeclContext::lookup_result R
=
8516 S
.Context
.getTranslationUnitDecl()->lookup(ND
->getDeclName());
8517 for (DeclContext::lookup_result::iterator I
= R
.begin(), E
= R
.end();
8519 if (isa
<VarDecl
>(*I
)) {
8523 // FIXME: If we have any other entity with this name in global scope,
8524 // the declaration is ill-formed, but that is a defect: it breaks the
8525 // 'stat' hack, for instance. Only variables can have mangled name
8526 // clashes with extern "C" declarations, so only they deserve a
8535 // Use the first declaration's location to ensure we point at something which
8536 // is lexically inside an extern "C" linkage-spec.
8537 assert(Prev
&& "should have found a previous declaration to diagnose");
8538 if (FunctionDecl
*FD
= dyn_cast
<FunctionDecl
>(Prev
))
8539 Prev
= FD
->getFirstDecl();
8541 Prev
= cast
<VarDecl
>(Prev
)->getFirstDecl();
8543 S
.Diag(ND
->getLocation(), diag::err_extern_c_global_conflict
)
8545 S
.Diag(Prev
->getLocation(), diag::note_extern_c_global_conflict
)
8550 /// Apply special rules for handling extern "C" declarations. Returns \c true
8551 /// if we have found that this is a redeclaration of some prior entity.
8553 /// Per C++ [dcl.link]p6:
8554 /// Two declarations [for a function or variable] with C language linkage
8555 /// with the same name that appear in different scopes refer to the same
8556 /// [entity]. An entity with C language linkage shall not be declared with
8557 /// the same name as an entity in global scope.
8558 template<typename T
>
8559 static bool checkForConflictWithNonVisibleExternC(Sema
&S
, const T
*ND
,
8560 LookupResult
&Previous
) {
8561 if (!S
.getLangOpts().CPlusPlus
) {
8562 // In C, when declaring a global variable, look for a corresponding 'extern'
8563 // variable declared in function scope. We don't need this in C++, because
8564 // we find local extern decls in the surrounding file-scope DeclContext.
8565 if (ND
->getDeclContext()->getRedeclContext()->isTranslationUnit()) {
8566 if (NamedDecl
*Prev
= S
.findLocallyScopedExternCDecl(ND
->getDeclName())) {
8568 Previous
.addDecl(Prev
);
8575 // A declaration in the translation unit can conflict with an extern "C"
8577 if (ND
->getDeclContext()->getRedeclContext()->isTranslationUnit())
8578 return checkGlobalOrExternCConflict(S
, ND
, /*IsGlobal*/true, Previous
);
8580 // An extern "C" declaration can conflict with a declaration in the
8581 // translation unit or can be a redeclaration of an extern "C" declaration
8582 // in another scope.
8583 if (isIncompleteDeclExternC(S
,ND
))
8584 return checkGlobalOrExternCConflict(S
, ND
, /*IsGlobal*/false, Previous
);
8586 // Neither global nor extern "C": nothing to do.
8590 void Sema::CheckVariableDeclarationType(VarDecl
*NewVD
) {
8591 // If the decl is already known invalid, don't check it.
8592 if (NewVD
->isInvalidDecl())
8595 QualType T
= NewVD
->getType();
8597 // Defer checking an 'auto' type until its initializer is attached.
8598 if (T
->isUndeducedType())
8601 if (NewVD
->hasAttrs())
8602 CheckAlignasUnderalignment(NewVD
);
8604 if (T
->isObjCObjectType()) {
8605 Diag(NewVD
->getLocation(), diag::err_statically_allocated_object
)
8606 << FixItHint::CreateInsertion(NewVD
->getLocation(), "*");
8607 T
= Context
.getObjCObjectPointerType(T
);
8611 // Emit an error if an address space was applied to decl with local storage.
8612 // This includes arrays of objects with address space qualifiers, but not
8613 // automatic variables that point to other address spaces.
8614 // ISO/IEC TR 18037 S5.1.2
8615 if (!getLangOpts().OpenCL
&& NewVD
->hasLocalStorage() &&
8616 T
.getAddressSpace() != LangAS::Default
) {
8617 Diag(NewVD
->getLocation(), diag::err_as_qualified_auto_decl
) << 0;
8618 NewVD
->setInvalidDecl();
8622 // OpenCL v1.2 s6.8 - The static qualifier is valid only in program
8624 if (getLangOpts().OpenCLVersion
== 120 &&
8625 !getOpenCLOptions().isAvailableOption("cl_clang_storage_class_specifiers",
8627 NewVD
->isStaticLocal()) {
8628 Diag(NewVD
->getLocation(), diag::err_static_function_scope
);
8629 NewVD
->setInvalidDecl();
8633 if (getLangOpts().OpenCL
) {
8634 if (!diagnoseOpenCLTypes(*this, NewVD
))
8637 // OpenCL v2.0 s6.12.5 - The __block storage type is not supported.
8638 if (NewVD
->hasAttr
<BlocksAttr
>()) {
8639 Diag(NewVD
->getLocation(), diag::err_opencl_block_storage_type
);
8643 if (T
->isBlockPointerType()) {
8644 // OpenCL v2.0 s6.12.5 - Any block declaration must be const qualified and
8645 // can't use 'extern' storage class.
8646 if (!T
.isConstQualified()) {
8647 Diag(NewVD
->getLocation(), diag::err_opencl_invalid_block_declaration
)
8649 NewVD
->setInvalidDecl();
8652 if (NewVD
->hasExternalStorage()) {
8653 Diag(NewVD
->getLocation(), diag::err_opencl_extern_block_declaration
);
8654 NewVD
->setInvalidDecl();
8659 // FIXME: Adding local AS in C++ for OpenCL might make sense.
8660 if (NewVD
->isFileVarDecl() || NewVD
->isStaticLocal() ||
8661 NewVD
->hasExternalStorage()) {
8662 if (!T
->isSamplerT() && !T
->isDependentType() &&
8663 !(T
.getAddressSpace() == LangAS::opencl_constant
||
8664 (T
.getAddressSpace() == LangAS::opencl_global
&&
8665 getOpenCLOptions().areProgramScopeVariablesSupported(
8667 int Scope
= NewVD
->isStaticLocal() | NewVD
->hasExternalStorage() << 1;
8668 if (getOpenCLOptions().areProgramScopeVariablesSupported(getLangOpts()))
8669 Diag(NewVD
->getLocation(), diag::err_opencl_global_invalid_addr_space
)
8670 << Scope
<< "global or constant";
8672 Diag(NewVD
->getLocation(), diag::err_opencl_global_invalid_addr_space
)
8673 << Scope
<< "constant";
8674 NewVD
->setInvalidDecl();
8678 if (T
.getAddressSpace() == LangAS::opencl_global
) {
8679 Diag(NewVD
->getLocation(), diag::err_opencl_function_variable
)
8680 << 1 /*is any function*/ << "global";
8681 NewVD
->setInvalidDecl();
8684 if (T
.getAddressSpace() == LangAS::opencl_constant
||
8685 T
.getAddressSpace() == LangAS::opencl_local
) {
8686 FunctionDecl
*FD
= getCurFunctionDecl();
8687 // OpenCL v1.1 s6.5.2 and s6.5.3: no local or constant variables
8689 if (FD
&& !FD
->hasAttr
<OpenCLKernelAttr
>()) {
8690 if (T
.getAddressSpace() == LangAS::opencl_constant
)
8691 Diag(NewVD
->getLocation(), diag::err_opencl_function_variable
)
8692 << 0 /*non-kernel only*/ << "constant";
8694 Diag(NewVD
->getLocation(), diag::err_opencl_function_variable
)
8695 << 0 /*non-kernel only*/ << "local";
8696 NewVD
->setInvalidDecl();
8699 // OpenCL v2.0 s6.5.2 and s6.5.3: local and constant variables must be
8700 // in the outermost scope of a kernel function.
8701 if (FD
&& FD
->hasAttr
<OpenCLKernelAttr
>()) {
8702 if (!getCurScope()->isFunctionScope()) {
8703 if (T
.getAddressSpace() == LangAS::opencl_constant
)
8704 Diag(NewVD
->getLocation(), diag::err_opencl_addrspace_scope
)
8707 Diag(NewVD
->getLocation(), diag::err_opencl_addrspace_scope
)
8709 NewVD
->setInvalidDecl();
8713 } else if (T
.getAddressSpace() != LangAS::opencl_private
&&
8714 // If we are parsing a template we didn't deduce an addr
8716 T
.getAddressSpace() != LangAS::Default
) {
8717 // Do not allow other address spaces on automatic variable.
8718 Diag(NewVD
->getLocation(), diag::err_as_qualified_auto_decl
) << 1;
8719 NewVD
->setInvalidDecl();
8725 if (NewVD
->hasLocalStorage() && T
.isObjCGCWeak()
8726 && !NewVD
->hasAttr
<BlocksAttr
>()) {
8727 if (getLangOpts().getGC() != LangOptions::NonGC
)
8728 Diag(NewVD
->getLocation(), diag::warn_gc_attribute_weak_on_local
);
8730 assert(!getLangOpts().ObjCAutoRefCount
);
8731 Diag(NewVD
->getLocation(), diag::warn_attribute_weak_on_local
);
8735 // WebAssembly tables must be static with a zero length and can't be
8736 // declared within functions.
8737 if (T
->isWebAssemblyTableType()) {
8738 if (getCurScope()->getParent()) { // Parent is null at top-level
8739 Diag(NewVD
->getLocation(), diag::err_wasm_table_in_function
);
8740 NewVD
->setInvalidDecl();
8743 if (NewVD
->getStorageClass() != SC_Static
) {
8744 Diag(NewVD
->getLocation(), diag::err_wasm_table_must_be_static
);
8745 NewVD
->setInvalidDecl();
8748 const auto *ATy
= dyn_cast
<ConstantArrayType
>(T
.getTypePtr());
8749 if (!ATy
|| ATy
->getSize().getSExtValue() != 0) {
8750 Diag(NewVD
->getLocation(),
8751 diag::err_typecheck_wasm_table_must_have_zero_length
);
8752 NewVD
->setInvalidDecl();
8757 bool isVM
= T
->isVariablyModifiedType();
8758 if (isVM
|| NewVD
->hasAttr
<CleanupAttr
>() ||
8759 NewVD
->hasAttr
<BlocksAttr
>())
8760 setFunctionHasBranchProtectedScope();
8762 if ((isVM
&& NewVD
->hasLinkage()) ||
8763 (T
->isVariableArrayType() && NewVD
->hasGlobalStorage())) {
8764 bool SizeIsNegative
;
8765 llvm::APSInt Oversized
;
8766 TypeSourceInfo
*FixedTInfo
= TryToFixInvalidVariablyModifiedTypeSourceInfo(
8767 NewVD
->getTypeSourceInfo(), Context
, SizeIsNegative
, Oversized
);
8769 if (FixedTInfo
&& T
== NewVD
->getTypeSourceInfo()->getType())
8770 FixedT
= FixedTInfo
->getType();
8771 else if (FixedTInfo
) {
8772 // Type and type-as-written are canonically different. We need to fix up
8773 // both types separately.
8774 FixedT
= TryToFixInvalidVariablyModifiedType(T
, Context
, SizeIsNegative
,
8777 if ((!FixedTInfo
|| FixedT
.isNull()) && T
->isVariableArrayType()) {
8778 const VariableArrayType
*VAT
= Context
.getAsVariableArrayType(T
);
8779 // FIXME: This won't give the correct result for
8781 SourceRange SizeRange
= VAT
->getSizeExpr()->getSourceRange();
8783 if (NewVD
->isFileVarDecl())
8784 Diag(NewVD
->getLocation(), diag::err_vla_decl_in_file_scope
)
8786 else if (NewVD
->isStaticLocal())
8787 Diag(NewVD
->getLocation(), diag::err_vla_decl_has_static_storage
)
8790 Diag(NewVD
->getLocation(), diag::err_vla_decl_has_extern_linkage
)
8792 NewVD
->setInvalidDecl();
8797 if (NewVD
->isFileVarDecl())
8798 Diag(NewVD
->getLocation(), diag::err_vm_decl_in_file_scope
);
8800 Diag(NewVD
->getLocation(), diag::err_vm_decl_has_extern_linkage
);
8801 NewVD
->setInvalidDecl();
8805 Diag(NewVD
->getLocation(), diag::ext_vla_folded_to_constant
);
8806 NewVD
->setType(FixedT
);
8807 NewVD
->setTypeSourceInfo(FixedTInfo
);
8810 if (T
->isVoidType()) {
8811 // C++98 [dcl.stc]p5: The extern specifier can be applied only to the names
8812 // of objects and functions.
8813 if (NewVD
->isThisDeclarationADefinition() || getLangOpts().CPlusPlus
) {
8814 Diag(NewVD
->getLocation(), diag::err_typecheck_decl_incomplete_type
)
8816 NewVD
->setInvalidDecl();
8821 if (!NewVD
->hasLocalStorage() && NewVD
->hasAttr
<BlocksAttr
>()) {
8822 Diag(NewVD
->getLocation(), diag::err_block_on_nonlocal
);
8823 NewVD
->setInvalidDecl();
8827 if (!NewVD
->hasLocalStorage() && T
->isSizelessType() &&
8828 !T
.isWebAssemblyReferenceType()) {
8829 Diag(NewVD
->getLocation(), diag::err_sizeless_nonlocal
) << T
;
8830 NewVD
->setInvalidDecl();
8834 if (isVM
&& NewVD
->hasAttr
<BlocksAttr
>()) {
8835 Diag(NewVD
->getLocation(), diag::err_block_on_vm
);
8836 NewVD
->setInvalidDecl();
8840 if (NewVD
->isConstexpr() && !T
->isDependentType() &&
8841 RequireLiteralType(NewVD
->getLocation(), T
,
8842 diag::err_constexpr_var_non_literal
)) {
8843 NewVD
->setInvalidDecl();
8847 // PPC MMA non-pointer types are not allowed as non-local variable types.
8848 if (Context
.getTargetInfo().getTriple().isPPC64() &&
8849 !NewVD
->isLocalVarDecl() &&
8850 CheckPPCMMAType(T
, NewVD
->getLocation())) {
8851 NewVD
->setInvalidDecl();
8855 // Check that SVE types are only used in functions with SVE available.
8856 if (T
->isSVESizelessBuiltinType() && isa
<FunctionDecl
>(CurContext
)) {
8857 const FunctionDecl
*FD
= cast
<FunctionDecl
>(CurContext
);
8858 llvm::StringMap
<bool> CallerFeatureMap
;
8859 Context
.getFunctionFeatureMap(CallerFeatureMap
, FD
);
8860 if (!Builtin::evaluateRequiredTargetFeatures(
8861 "sve", CallerFeatureMap
)) {
8862 Diag(NewVD
->getLocation(), diag::err_sve_vector_in_non_sve_target
) << T
;
8863 NewVD
->setInvalidDecl();
8869 checkRVVTypeSupport(T
, NewVD
->getLocation(), cast
<ValueDecl
>(CurContext
));
8872 /// Perform semantic checking on a newly-created variable
8875 /// This routine performs all of the type-checking required for a
8876 /// variable declaration once it has been built. It is used both to
8877 /// check variables after they have been parsed and their declarators
8878 /// have been translated into a declaration, and to check variables
8879 /// that have been instantiated from a template.
8881 /// Sets NewVD->isInvalidDecl() if an error was encountered.
8883 /// Returns true if the variable declaration is a redeclaration.
8884 bool Sema::CheckVariableDeclaration(VarDecl
*NewVD
, LookupResult
&Previous
) {
8885 CheckVariableDeclarationType(NewVD
);
8887 // If the decl is already known invalid, don't check it.
8888 if (NewVD
->isInvalidDecl())
8891 // If we did not find anything by this name, look for a non-visible
8892 // extern "C" declaration with the same name.
8893 if (Previous
.empty() &&
8894 checkForConflictWithNonVisibleExternC(*this, NewVD
, Previous
))
8895 Previous
.setShadowed();
8897 if (!Previous
.empty()) {
8898 MergeVarDecl(NewVD
, Previous
);
8904 /// AddOverriddenMethods - See if a method overrides any in the base classes,
8905 /// and if so, check that it's a valid override and remember it.
8906 bool Sema::AddOverriddenMethods(CXXRecordDecl
*DC
, CXXMethodDecl
*MD
) {
8907 llvm::SmallPtrSet
<const CXXMethodDecl
*, 4> Overridden
;
8909 // Look for methods in base classes that this method might override.
8910 CXXBasePaths
Paths(/*FindAmbiguities=*/true, /*RecordPaths=*/false,
8911 /*DetectVirtual=*/false);
8912 auto VisitBase
= [&] (const CXXBaseSpecifier
*Specifier
, CXXBasePath
&Path
) {
8913 CXXRecordDecl
*BaseRecord
= Specifier
->getType()->getAsCXXRecordDecl();
8914 DeclarationName Name
= MD
->getDeclName();
8916 if (Name
.getNameKind() == DeclarationName::CXXDestructorName
) {
8917 // We really want to find the base class destructor here.
8918 QualType T
= Context
.getTypeDeclType(BaseRecord
);
8919 CanQualType CT
= Context
.getCanonicalType(T
);
8920 Name
= Context
.DeclarationNames
.getCXXDestructorName(CT
);
8923 for (NamedDecl
*BaseND
: BaseRecord
->lookup(Name
)) {
8924 CXXMethodDecl
*BaseMD
=
8925 dyn_cast
<CXXMethodDecl
>(BaseND
->getCanonicalDecl());
8926 if (!BaseMD
|| !BaseMD
->isVirtual() ||
8927 IsOverload(MD
, BaseMD
, /*UseMemberUsingDeclRules=*/false,
8928 /*ConsiderCudaAttrs=*/true,
8929 // C++2a [class.virtual]p2 does not consider requires
8930 // clauses when overriding.
8931 /*ConsiderRequiresClauses=*/false))
8934 if (Overridden
.insert(BaseMD
).second
) {
8935 MD
->addOverriddenMethod(BaseMD
);
8936 CheckOverridingFunctionReturnType(MD
, BaseMD
);
8937 CheckOverridingFunctionAttributes(MD
, BaseMD
);
8938 CheckOverridingFunctionExceptionSpec(MD
, BaseMD
);
8939 CheckIfOverriddenFunctionIsMarkedFinal(MD
, BaseMD
);
8942 // A method can only override one function from each base class. We
8943 // don't track indirectly overridden methods from bases of bases.
8950 DC
->lookupInBases(VisitBase
, Paths
);
8951 return !Overridden
.empty();
8955 // Struct for holding all of the extra arguments needed by
8956 // DiagnoseInvalidRedeclaration to call Sema::ActOnFunctionDeclarator.
8957 struct ActOnFDArgs
{
8960 MultiTemplateParamsArg TemplateParamLists
;
8963 } // end anonymous namespace
8967 // Callback to only accept typo corrections that have a non-zero edit distance.
8968 // Also only accept corrections that have the same parent decl.
8969 class DifferentNameValidatorCCC final
: public CorrectionCandidateCallback
{
8971 DifferentNameValidatorCCC(ASTContext
&Context
, FunctionDecl
*TypoFD
,
8972 CXXRecordDecl
*Parent
)
8973 : Context(Context
), OriginalFD(TypoFD
),
8974 ExpectedParent(Parent
? Parent
->getCanonicalDecl() : nullptr) {}
8976 bool ValidateCandidate(const TypoCorrection
&candidate
) override
{
8977 if (candidate
.getEditDistance() == 0)
8980 SmallVector
<unsigned, 1> MismatchedParams
;
8981 for (TypoCorrection::const_decl_iterator CDecl
= candidate
.begin(),
8982 CDeclEnd
= candidate
.end();
8983 CDecl
!= CDeclEnd
; ++CDecl
) {
8984 FunctionDecl
*FD
= dyn_cast
<FunctionDecl
>(*CDecl
);
8986 if (FD
&& !FD
->hasBody() &&
8987 hasSimilarParameters(Context
, FD
, OriginalFD
, MismatchedParams
)) {
8988 if (CXXMethodDecl
*MD
= dyn_cast
<CXXMethodDecl
>(FD
)) {
8989 CXXRecordDecl
*Parent
= MD
->getParent();
8990 if (Parent
&& Parent
->getCanonicalDecl() == ExpectedParent
)
8992 } else if (!ExpectedParent
) {
9001 std::unique_ptr
<CorrectionCandidateCallback
> clone() override
{
9002 return std::make_unique
<DifferentNameValidatorCCC
>(*this);
9006 ASTContext
&Context
;
9007 FunctionDecl
*OriginalFD
;
9008 CXXRecordDecl
*ExpectedParent
;
9011 } // end anonymous namespace
9013 void Sema::MarkTypoCorrectedFunctionDefinition(const NamedDecl
*F
) {
9014 TypoCorrectedFunctionDefinitions
.insert(F
);
9017 /// Generate diagnostics for an invalid function redeclaration.
9019 /// This routine handles generating the diagnostic messages for an invalid
9020 /// function redeclaration, including finding possible similar declarations
9021 /// or performing typo correction if there are no previous declarations with
9024 /// Returns a NamedDecl iff typo correction was performed and substituting in
9025 /// the new declaration name does not cause new errors.
9026 static NamedDecl
*DiagnoseInvalidRedeclaration(
9027 Sema
&SemaRef
, LookupResult
&Previous
, FunctionDecl
*NewFD
,
9028 ActOnFDArgs
&ExtraArgs
, bool IsLocalFriend
, Scope
*S
) {
9029 DeclarationName Name
= NewFD
->getDeclName();
9030 DeclContext
*NewDC
= NewFD
->getDeclContext();
9031 SmallVector
<unsigned, 1> MismatchedParams
;
9032 SmallVector
<std::pair
<FunctionDecl
*, unsigned>, 1> NearMatches
;
9033 TypoCorrection Correction
;
9034 bool IsDefinition
= ExtraArgs
.D
.isFunctionDefinition();
9036 IsLocalFriend
? diag::err_no_matching_local_friend
:
9037 NewFD
->getFriendObjectKind() ? diag::err_qualified_friend_no_match
:
9038 diag::err_member_decl_does_not_match
;
9039 LookupResult
Prev(SemaRef
, Name
, NewFD
->getLocation(),
9040 IsLocalFriend
? Sema::LookupLocalFriendName
9041 : Sema::LookupOrdinaryName
,
9042 Sema::ForVisibleRedeclaration
);
9044 NewFD
->setInvalidDecl();
9046 SemaRef
.LookupName(Prev
, S
);
9048 SemaRef
.LookupQualifiedName(Prev
, NewDC
);
9049 assert(!Prev
.isAmbiguous() &&
9050 "Cannot have an ambiguity in previous-declaration lookup");
9051 CXXMethodDecl
*MD
= dyn_cast
<CXXMethodDecl
>(NewFD
);
9052 DifferentNameValidatorCCC
CCC(SemaRef
.Context
, NewFD
,
9053 MD
? MD
->getParent() : nullptr);
9054 if (!Prev
.empty()) {
9055 for (LookupResult::iterator Func
= Prev
.begin(), FuncEnd
= Prev
.end();
9056 Func
!= FuncEnd
; ++Func
) {
9057 FunctionDecl
*FD
= dyn_cast
<FunctionDecl
>(*Func
);
9059 hasSimilarParameters(SemaRef
.Context
, FD
, NewFD
, MismatchedParams
)) {
9060 // Add 1 to the index so that 0 can mean the mismatch didn't
9061 // involve a parameter
9063 MismatchedParams
.empty() ? 0 : MismatchedParams
.front() + 1;
9064 NearMatches
.push_back(std::make_pair(FD
, ParamNum
));
9067 // If the qualified name lookup yielded nothing, try typo correction
9068 } else if ((Correction
= SemaRef
.CorrectTypo(
9069 Prev
.getLookupNameInfo(), Prev
.getLookupKind(), S
,
9070 &ExtraArgs
.D
.getCXXScopeSpec(), CCC
, Sema::CTK_ErrorRecovery
,
9071 IsLocalFriend
? nullptr : NewDC
))) {
9072 // Set up everything for the call to ActOnFunctionDeclarator
9073 ExtraArgs
.D
.SetIdentifier(Correction
.getCorrectionAsIdentifierInfo(),
9074 ExtraArgs
.D
.getIdentifierLoc());
9076 Previous
.setLookupName(Correction
.getCorrection());
9077 for (TypoCorrection::decl_iterator CDecl
= Correction
.begin(),
9078 CDeclEnd
= Correction
.end();
9079 CDecl
!= CDeclEnd
; ++CDecl
) {
9080 FunctionDecl
*FD
= dyn_cast
<FunctionDecl
>(*CDecl
);
9081 if (FD
&& !FD
->hasBody() &&
9082 hasSimilarParameters(SemaRef
.Context
, FD
, NewFD
, MismatchedParams
)) {
9083 Previous
.addDecl(FD
);
9086 bool wasRedeclaration
= ExtraArgs
.D
.isRedeclaration();
9089 // Retry building the function declaration with the new previous
9090 // declarations, and with errors suppressed.
9093 Sema::SFINAETrap
Trap(SemaRef
);
9095 // TODO: Refactor ActOnFunctionDeclarator so that we can call only the
9096 // pieces need to verify the typo-corrected C++ declaration and hopefully
9097 // eliminate the need for the parameter pack ExtraArgs.
9098 Result
= SemaRef
.ActOnFunctionDeclarator(
9099 ExtraArgs
.S
, ExtraArgs
.D
,
9100 Correction
.getCorrectionDecl()->getDeclContext(),
9101 NewFD
->getTypeSourceInfo(), Previous
, ExtraArgs
.TemplateParamLists
,
9102 ExtraArgs
.AddToScope
);
9104 if (Trap
.hasErrorOccurred())
9109 // Determine which correction we picked.
9110 Decl
*Canonical
= Result
->getCanonicalDecl();
9111 for (LookupResult::iterator I
= Previous
.begin(), E
= Previous
.end();
9113 if ((*I
)->getCanonicalDecl() == Canonical
)
9114 Correction
.setCorrectionDecl(*I
);
9116 // Let Sema know about the correction.
9117 SemaRef
.MarkTypoCorrectedFunctionDefinition(Result
);
9118 SemaRef
.diagnoseTypo(
9120 SemaRef
.PDiag(IsLocalFriend
9121 ? diag::err_no_matching_local_friend_suggest
9122 : diag::err_member_decl_does_not_match_suggest
)
9123 << Name
<< NewDC
<< IsDefinition
);
9127 // Pretend the typo correction never occurred
9128 ExtraArgs
.D
.SetIdentifier(Name
.getAsIdentifierInfo(),
9129 ExtraArgs
.D
.getIdentifierLoc());
9130 ExtraArgs
.D
.setRedeclaration(wasRedeclaration
);
9132 Previous
.setLookupName(Name
);
9135 SemaRef
.Diag(NewFD
->getLocation(), DiagMsg
)
9136 << Name
<< NewDC
<< IsDefinition
<< NewFD
->getLocation();
9138 bool NewFDisConst
= false;
9139 if (CXXMethodDecl
*NewMD
= dyn_cast
<CXXMethodDecl
>(NewFD
))
9140 NewFDisConst
= NewMD
->isConst();
9142 for (SmallVectorImpl
<std::pair
<FunctionDecl
*, unsigned> >::iterator
9143 NearMatch
= NearMatches
.begin(), NearMatchEnd
= NearMatches
.end();
9144 NearMatch
!= NearMatchEnd
; ++NearMatch
) {
9145 FunctionDecl
*FD
= NearMatch
->first
;
9146 CXXMethodDecl
*MD
= dyn_cast
<CXXMethodDecl
>(FD
);
9147 bool FDisConst
= MD
&& MD
->isConst();
9148 bool IsMember
= MD
|| !IsLocalFriend
;
9150 // FIXME: These notes are poorly worded for the local friend case.
9151 if (unsigned Idx
= NearMatch
->second
) {
9152 ParmVarDecl
*FDParam
= FD
->getParamDecl(Idx
-1);
9153 SourceLocation Loc
= FDParam
->getTypeSpecStartLoc();
9154 if (Loc
.isInvalid()) Loc
= FD
->getLocation();
9155 SemaRef
.Diag(Loc
, IsMember
? diag::note_member_def_close_param_match
9156 : diag::note_local_decl_close_param_match
)
9157 << Idx
<< FDParam
->getType()
9158 << NewFD
->getParamDecl(Idx
- 1)->getType();
9159 } else if (FDisConst
!= NewFDisConst
) {
9160 SemaRef
.Diag(FD
->getLocation(), diag::note_member_def_close_const_match
)
9161 << NewFDisConst
<< FD
->getSourceRange().getEnd()
9163 ? FixItHint::CreateRemoval(ExtraArgs
.D
.getFunctionTypeInfo()
9164 .getConstQualifierLoc())
9165 : FixItHint::CreateInsertion(ExtraArgs
.D
.getFunctionTypeInfo()
9167 .getLocWithOffset(1),
9170 SemaRef
.Diag(FD
->getLocation(),
9171 IsMember
? diag::note_member_def_close_match
9172 : diag::note_local_decl_close_match
);
9177 static StorageClass
getFunctionStorageClass(Sema
&SemaRef
, Declarator
&D
) {
9178 switch (D
.getDeclSpec().getStorageClassSpec()) {
9179 default: llvm_unreachable("Unknown storage class!");
9180 case DeclSpec::SCS_auto
:
9181 case DeclSpec::SCS_register
:
9182 case DeclSpec::SCS_mutable
:
9183 SemaRef
.Diag(D
.getDeclSpec().getStorageClassSpecLoc(),
9184 diag::err_typecheck_sclass_func
);
9185 D
.getMutableDeclSpec().ClearStorageClassSpecs();
9188 case DeclSpec::SCS_unspecified
: break;
9189 case DeclSpec::SCS_extern
:
9190 if (D
.getDeclSpec().isExternInLinkageSpec())
9193 case DeclSpec::SCS_static
: {
9194 if (SemaRef
.CurContext
->getRedeclContext()->isFunctionOrMethod()) {
9196 // The declaration of an identifier for a function that has
9197 // block scope shall have no explicit storage-class specifier
9198 // other than extern
9199 // See also (C++ [dcl.stc]p4).
9200 SemaRef
.Diag(D
.getDeclSpec().getStorageClassSpecLoc(),
9201 diag::err_static_block_func
);
9206 case DeclSpec::SCS_private_extern
: return SC_PrivateExtern
;
9209 // No explicit storage class has already been returned
9213 static FunctionDecl
*CreateNewFunctionDecl(Sema
&SemaRef
, Declarator
&D
,
9214 DeclContext
*DC
, QualType
&R
,
9215 TypeSourceInfo
*TInfo
,
9217 bool &IsVirtualOkay
) {
9218 DeclarationNameInfo NameInfo
= SemaRef
.GetNameForDeclarator(D
);
9219 DeclarationName Name
= NameInfo
.getName();
9221 FunctionDecl
*NewFD
= nullptr;
9222 bool isInline
= D
.getDeclSpec().isInlineSpecified();
9224 if (!SemaRef
.getLangOpts().CPlusPlus
) {
9225 // Determine whether the function was written with a prototype. This is
9227 // - there is a prototype in the declarator, or
9228 // - the type R of the function is some kind of typedef or other non-
9229 // attributed reference to a type name (which eventually refers to a
9230 // function type). Note, we can't always look at the adjusted type to
9231 // check this case because attributes may cause a non-function
9232 // declarator to still have a function type. e.g.,
9233 // typedef void func(int a);
9234 // __attribute__((noreturn)) func other_func; // This has a prototype
9236 (D
.isFunctionDeclarator() && D
.getFunctionTypeInfo().hasPrototype
) ||
9237 (D
.getDeclSpec().isTypeRep() &&
9238 SemaRef
.GetTypeFromParser(D
.getDeclSpec().getRepAsType(), nullptr)
9239 ->isFunctionProtoType()) ||
9240 (!R
->getAsAdjusted
<FunctionType
>() && R
->isFunctionProtoType());
9242 (HasPrototype
|| !SemaRef
.getLangOpts().requiresStrictPrototypes()) &&
9243 "Strict prototypes are required");
9245 NewFD
= FunctionDecl::Create(
9246 SemaRef
.Context
, DC
, D
.getBeginLoc(), NameInfo
, R
, TInfo
, SC
,
9247 SemaRef
.getCurFPFeatures().isFPConstrained(), isInline
, HasPrototype
,
9248 ConstexprSpecKind::Unspecified
,
9249 /*TrailingRequiresClause=*/nullptr);
9250 if (D
.isInvalidType())
9251 NewFD
->setInvalidDecl();
9256 ExplicitSpecifier ExplicitSpecifier
= D
.getDeclSpec().getExplicitSpecifier();
9258 ConstexprSpecKind ConstexprKind
= D
.getDeclSpec().getConstexprSpecifier();
9259 if (ConstexprKind
== ConstexprSpecKind::Constinit
) {
9260 SemaRef
.Diag(D
.getDeclSpec().getConstexprSpecLoc(),
9261 diag::err_constexpr_wrong_decl_kind
)
9262 << static_cast<int>(ConstexprKind
);
9263 ConstexprKind
= ConstexprSpecKind::Unspecified
;
9264 D
.getMutableDeclSpec().ClearConstexprSpec();
9266 Expr
*TrailingRequiresClause
= D
.getTrailingRequiresClause();
9268 if (Name
.getNameKind() == DeclarationName::CXXConstructorName
) {
9269 // This is a C++ constructor declaration.
9270 assert(DC
->isRecord() &&
9271 "Constructors can only be declared in a member context");
9273 R
= SemaRef
.CheckConstructorDeclarator(D
, R
, SC
);
9274 return CXXConstructorDecl::Create(
9275 SemaRef
.Context
, cast
<CXXRecordDecl
>(DC
), D
.getBeginLoc(), NameInfo
, R
,
9276 TInfo
, ExplicitSpecifier
, SemaRef
.getCurFPFeatures().isFPConstrained(),
9277 isInline
, /*isImplicitlyDeclared=*/false, ConstexprKind
,
9278 InheritedConstructor(), TrailingRequiresClause
);
9280 } else if (Name
.getNameKind() == DeclarationName::CXXDestructorName
) {
9281 // This is a C++ destructor declaration.
9282 if (DC
->isRecord()) {
9283 R
= SemaRef
.CheckDestructorDeclarator(D
, R
, SC
);
9284 CXXRecordDecl
*Record
= cast
<CXXRecordDecl
>(DC
);
9285 CXXDestructorDecl
*NewDD
= CXXDestructorDecl::Create(
9286 SemaRef
.Context
, Record
, D
.getBeginLoc(), NameInfo
, R
, TInfo
,
9287 SemaRef
.getCurFPFeatures().isFPConstrained(), isInline
,
9288 /*isImplicitlyDeclared=*/false, ConstexprKind
,
9289 TrailingRequiresClause
);
9290 // User defined destructors start as not selected if the class definition is still
9292 if (Record
->isBeingDefined())
9293 NewDD
->setIneligibleOrNotSelected(true);
9295 // If the destructor needs an implicit exception specification, set it
9296 // now. FIXME: It'd be nice to be able to create the right type to start
9297 // with, but the type needs to reference the destructor declaration.
9298 if (SemaRef
.getLangOpts().CPlusPlus11
)
9299 SemaRef
.AdjustDestructorExceptionSpec(NewDD
);
9301 IsVirtualOkay
= true;
9305 SemaRef
.Diag(D
.getIdentifierLoc(), diag::err_destructor_not_member
);
9308 // Create a FunctionDecl to satisfy the function definition parsing
9310 return FunctionDecl::Create(
9311 SemaRef
.Context
, DC
, D
.getBeginLoc(), D
.getIdentifierLoc(), Name
, R
,
9312 TInfo
, SC
, SemaRef
.getCurFPFeatures().isFPConstrained(), isInline
,
9313 /*hasPrototype=*/true, ConstexprKind
, TrailingRequiresClause
);
9316 } else if (Name
.getNameKind() == DeclarationName::CXXConversionFunctionName
) {
9317 if (!DC
->isRecord()) {
9318 SemaRef
.Diag(D
.getIdentifierLoc(),
9319 diag::err_conv_function_not_member
);
9323 SemaRef
.CheckConversionDeclarator(D
, R
, SC
);
9324 if (D
.isInvalidType())
9327 IsVirtualOkay
= true;
9328 return CXXConversionDecl::Create(
9329 SemaRef
.Context
, cast
<CXXRecordDecl
>(DC
), D
.getBeginLoc(), NameInfo
, R
,
9330 TInfo
, SemaRef
.getCurFPFeatures().isFPConstrained(), isInline
,
9331 ExplicitSpecifier
, ConstexprKind
, SourceLocation(),
9332 TrailingRequiresClause
);
9334 } else if (Name
.getNameKind() == DeclarationName::CXXDeductionGuideName
) {
9335 if (TrailingRequiresClause
)
9336 SemaRef
.Diag(TrailingRequiresClause
->getBeginLoc(),
9337 diag::err_trailing_requires_clause_on_deduction_guide
)
9338 << TrailingRequiresClause
->getSourceRange();
9339 if (SemaRef
.CheckDeductionGuideDeclarator(D
, R
, SC
))
9341 return CXXDeductionGuideDecl::Create(SemaRef
.Context
, DC
, D
.getBeginLoc(),
9342 ExplicitSpecifier
, NameInfo
, R
, TInfo
,
9344 } else if (DC
->isRecord()) {
9345 // If the name of the function is the same as the name of the record,
9346 // then this must be an invalid constructor that has a return type.
9347 // (The parser checks for a return type and makes the declarator a
9348 // constructor if it has no return type).
9349 if (Name
.getAsIdentifierInfo() &&
9350 Name
.getAsIdentifierInfo() == cast
<CXXRecordDecl
>(DC
)->getIdentifier()){
9351 SemaRef
.Diag(D
.getIdentifierLoc(), diag::err_constructor_return_type
)
9352 << SourceRange(D
.getDeclSpec().getTypeSpecTypeLoc())
9353 << SourceRange(D
.getIdentifierLoc());
9357 // This is a C++ method declaration.
9358 CXXMethodDecl
*Ret
= CXXMethodDecl::Create(
9359 SemaRef
.Context
, cast
<CXXRecordDecl
>(DC
), D
.getBeginLoc(), NameInfo
, R
,
9360 TInfo
, SC
, SemaRef
.getCurFPFeatures().isFPConstrained(), isInline
,
9361 ConstexprKind
, SourceLocation(), TrailingRequiresClause
);
9362 IsVirtualOkay
= !Ret
->isStatic();
9366 SemaRef
.getLangOpts().CPlusPlus
&& D
.getDeclSpec().isFriendSpecified();
9367 if (!isFriend
&& SemaRef
.CurContext
->isRecord())
9370 // Determine whether the function was written with a
9371 // prototype. This true when:
9372 // - we're in C++ (where every function has a prototype),
9373 return FunctionDecl::Create(
9374 SemaRef
.Context
, DC
, D
.getBeginLoc(), NameInfo
, R
, TInfo
, SC
,
9375 SemaRef
.getCurFPFeatures().isFPConstrained(), isInline
,
9376 true /*HasPrototype*/, ConstexprKind
, TrailingRequiresClause
);
9380 enum OpenCLParamType
{
9384 InvalidAddrSpacePtrKernelParam
,
9389 static bool isOpenCLSizeDependentType(ASTContext
&C
, QualType Ty
) {
9390 // Size dependent types are just typedefs to normal integer types
9391 // (e.g. unsigned long), so we cannot distinguish them from other typedefs to
9392 // integers other than by their names.
9393 StringRef SizeTypeNames
[] = {"size_t", "intptr_t", "uintptr_t", "ptrdiff_t"};
9395 // Remove typedefs one by one until we reach a typedef
9396 // for a size dependent type.
9397 QualType DesugaredTy
= Ty
;
9399 ArrayRef
<StringRef
> Names(SizeTypeNames
);
9400 auto Match
= llvm::find(Names
, DesugaredTy
.getUnqualifiedType().getAsString());
9401 if (Names
.end() != Match
)
9405 DesugaredTy
= Ty
.getSingleStepDesugaredType(C
);
9406 } while (DesugaredTy
!= Ty
);
9411 static OpenCLParamType
getOpenCLKernelParameterType(Sema
&S
, QualType PT
) {
9412 if (PT
->isDependentType())
9413 return InvalidKernelParam
;
9415 if (PT
->isPointerType() || PT
->isReferenceType()) {
9416 QualType PointeeType
= PT
->getPointeeType();
9417 if (PointeeType
.getAddressSpace() == LangAS::opencl_generic
||
9418 PointeeType
.getAddressSpace() == LangAS::opencl_private
||
9419 PointeeType
.getAddressSpace() == LangAS::Default
)
9420 return InvalidAddrSpacePtrKernelParam
;
9422 if (PointeeType
->isPointerType()) {
9423 // This is a pointer to pointer parameter.
9424 // Recursively check inner type.
9425 OpenCLParamType ParamKind
= getOpenCLKernelParameterType(S
, PointeeType
);
9426 if (ParamKind
== InvalidAddrSpacePtrKernelParam
||
9427 ParamKind
== InvalidKernelParam
)
9430 // OpenCL v3.0 s6.11.a:
9431 // A restriction to pass pointers to pointers only applies to OpenCL C
9433 if (S
.getLangOpts().getOpenCLCompatibleVersion() > 120)
9434 return ValidKernelParam
;
9436 return PtrPtrKernelParam
;
9439 // C++ for OpenCL v1.0 s2.4:
9440 // Moreover the types used in parameters of the kernel functions must be:
9441 // Standard layout types for pointer parameters. The same applies to
9442 // reference if an implementation supports them in kernel parameters.
9443 if (S
.getLangOpts().OpenCLCPlusPlus
&&
9444 !S
.getOpenCLOptions().isAvailableOption(
9445 "__cl_clang_non_portable_kernel_param_types", S
.getLangOpts())) {
9446 auto CXXRec
= PointeeType
.getCanonicalType()->getAsCXXRecordDecl();
9447 bool IsStandardLayoutType
= true;
9449 // If template type is not ODR-used its definition is only available
9450 // in the template definition not its instantiation.
9451 // FIXME: This logic doesn't work for types that depend on template
9452 // parameter (PR58590).
9453 if (!CXXRec
->hasDefinition())
9454 CXXRec
= CXXRec
->getTemplateInstantiationPattern();
9455 if (!CXXRec
|| !CXXRec
->hasDefinition() || !CXXRec
->isStandardLayout())
9456 IsStandardLayoutType
= false;
9458 if (!PointeeType
->isAtomicType() && !PointeeType
->isVoidType() &&
9459 !IsStandardLayoutType
)
9460 return InvalidKernelParam
;
9463 // OpenCL v1.2 s6.9.p:
9464 // A restriction to pass pointers only applies to OpenCL C v1.2 or below.
9465 if (S
.getLangOpts().getOpenCLCompatibleVersion() > 120)
9466 return ValidKernelParam
;
9468 return PtrKernelParam
;
9471 // OpenCL v1.2 s6.9.k:
9472 // Arguments to kernel functions in a program cannot be declared with the
9473 // built-in scalar types bool, half, size_t, ptrdiff_t, intptr_t, and
9474 // uintptr_t or a struct and/or union that contain fields declared to be one
9475 // of these built-in scalar types.
9476 if (isOpenCLSizeDependentType(S
.getASTContext(), PT
))
9477 return InvalidKernelParam
;
9479 if (PT
->isImageType())
9480 return PtrKernelParam
;
9482 if (PT
->isBooleanType() || PT
->isEventT() || PT
->isReserveIDT())
9483 return InvalidKernelParam
;
9485 // OpenCL extension spec v1.2 s9.5:
9486 // This extension adds support for half scalar and vector types as built-in
9487 // types that can be used for arithmetic operations, conversions etc.
9488 if (!S
.getOpenCLOptions().isAvailableOption("cl_khr_fp16", S
.getLangOpts()) &&
9490 return InvalidKernelParam
;
9492 // Look into an array argument to check if it has a forbidden type.
9493 if (PT
->isArrayType()) {
9494 const Type
*UnderlyingTy
= PT
->getPointeeOrArrayElementType();
9495 // Call ourself to check an underlying type of an array. Since the
9496 // getPointeeOrArrayElementType returns an innermost type which is not an
9497 // array, this recursive call only happens once.
9498 return getOpenCLKernelParameterType(S
, QualType(UnderlyingTy
, 0));
9501 // C++ for OpenCL v1.0 s2.4:
9502 // Moreover the types used in parameters of the kernel functions must be:
9503 // Trivial and standard-layout types C++17 [basic.types] (plain old data
9504 // types) for parameters passed by value;
9505 if (S
.getLangOpts().OpenCLCPlusPlus
&&
9506 !S
.getOpenCLOptions().isAvailableOption(
9507 "__cl_clang_non_portable_kernel_param_types", S
.getLangOpts()) &&
9508 !PT
->isOpenCLSpecificType() && !PT
.isPODType(S
.Context
))
9509 return InvalidKernelParam
;
9511 if (PT
->isRecordType())
9512 return RecordKernelParam
;
9514 return ValidKernelParam
;
9517 static void checkIsValidOpenCLKernelParameter(
9521 llvm::SmallPtrSetImpl
<const Type
*> &ValidTypes
) {
9522 QualType PT
= Param
->getType();
9524 // Cache the valid types we encounter to avoid rechecking structs that are
9526 if (ValidTypes
.count(PT
.getTypePtr()))
9529 switch (getOpenCLKernelParameterType(S
, PT
)) {
9530 case PtrPtrKernelParam
:
9531 // OpenCL v3.0 s6.11.a:
9532 // A kernel function argument cannot be declared as a pointer to a pointer
9533 // type. [...] This restriction only applies to OpenCL C 1.2 or below.
9534 S
.Diag(Param
->getLocation(), diag::err_opencl_ptrptr_kernel_param
);
9538 case InvalidAddrSpacePtrKernelParam
:
9539 // OpenCL v1.0 s6.5:
9540 // __kernel function arguments declared to be a pointer of a type can point
9541 // to one of the following address spaces only : __global, __local or
9543 S
.Diag(Param
->getLocation(), diag::err_kernel_arg_address_space
);
9547 // OpenCL v1.2 s6.9.k:
9548 // Arguments to kernel functions in a program cannot be declared with the
9549 // built-in scalar types bool, half, size_t, ptrdiff_t, intptr_t, and
9550 // uintptr_t or a struct and/or union that contain fields declared to be
9551 // one of these built-in scalar types.
9553 case InvalidKernelParam
:
9554 // OpenCL v1.2 s6.8 n:
9555 // A kernel function argument cannot be declared
9557 // Do not diagnose half type since it is diagnosed as invalid argument
9558 // type for any function elsewhere.
9559 if (!PT
->isHalfType()) {
9560 S
.Diag(Param
->getLocation(), diag::err_bad_kernel_param_type
) << PT
;
9562 // Explain what typedefs are involved.
9563 const TypedefType
*Typedef
= nullptr;
9564 while ((Typedef
= PT
->getAs
<TypedefType
>())) {
9565 SourceLocation Loc
= Typedef
->getDecl()->getLocation();
9566 // SourceLocation may be invalid for a built-in type.
9568 S
.Diag(Loc
, diag::note_entity_declared_at
) << PT
;
9569 PT
= Typedef
->desugar();
9576 case PtrKernelParam
:
9577 case ValidKernelParam
:
9578 ValidTypes
.insert(PT
.getTypePtr());
9581 case RecordKernelParam
:
9585 // Track nested structs we will inspect
9586 SmallVector
<const Decl
*, 4> VisitStack
;
9588 // Track where we are in the nested structs. Items will migrate from
9589 // VisitStack to HistoryStack as we do the DFS for bad field.
9590 SmallVector
<const FieldDecl
*, 4> HistoryStack
;
9591 HistoryStack
.push_back(nullptr);
9593 // At this point we already handled everything except of a RecordType or
9594 // an ArrayType of a RecordType.
9595 assert((PT
->isArrayType() || PT
->isRecordType()) && "Unexpected type.");
9596 const RecordType
*RecTy
=
9597 PT
->getPointeeOrArrayElementType()->getAs
<RecordType
>();
9598 const RecordDecl
*OrigRecDecl
= RecTy
->getDecl();
9600 VisitStack
.push_back(RecTy
->getDecl());
9601 assert(VisitStack
.back() && "First decl null?");
9604 const Decl
*Next
= VisitStack
.pop_back_val();
9606 assert(!HistoryStack
.empty());
9607 // Found a marker, we have gone up a level
9608 if (const FieldDecl
*Hist
= HistoryStack
.pop_back_val())
9609 ValidTypes
.insert(Hist
->getType().getTypePtr());
9614 // Adds everything except the original parameter declaration (which is not a
9615 // field itself) to the history stack.
9616 const RecordDecl
*RD
;
9617 if (const FieldDecl
*Field
= dyn_cast
<FieldDecl
>(Next
)) {
9618 HistoryStack
.push_back(Field
);
9620 QualType FieldTy
= Field
->getType();
9621 // Other field types (known to be valid or invalid) are handled while we
9622 // walk around RecordDecl::fields().
9623 assert((FieldTy
->isArrayType() || FieldTy
->isRecordType()) &&
9624 "Unexpected type.");
9625 const Type
*FieldRecTy
= FieldTy
->getPointeeOrArrayElementType();
9627 RD
= FieldRecTy
->castAs
<RecordType
>()->getDecl();
9629 RD
= cast
<RecordDecl
>(Next
);
9632 // Add a null marker so we know when we've gone back up a level
9633 VisitStack
.push_back(nullptr);
9635 for (const auto *FD
: RD
->fields()) {
9636 QualType QT
= FD
->getType();
9638 if (ValidTypes
.count(QT
.getTypePtr()))
9641 OpenCLParamType ParamType
= getOpenCLKernelParameterType(S
, QT
);
9642 if (ParamType
== ValidKernelParam
)
9645 if (ParamType
== RecordKernelParam
) {
9646 VisitStack
.push_back(FD
);
9650 // OpenCL v1.2 s6.9.p:
9651 // Arguments to kernel functions that are declared to be a struct or union
9652 // do not allow OpenCL objects to be passed as elements of the struct or
9653 // union. This restriction was lifted in OpenCL v2.0 with the introduction
9655 if (ParamType
== PtrKernelParam
|| ParamType
== PtrPtrKernelParam
||
9656 ParamType
== InvalidAddrSpacePtrKernelParam
) {
9657 S
.Diag(Param
->getLocation(),
9658 diag::err_record_with_pointers_kernel_param
)
9659 << PT
->isUnionType()
9662 S
.Diag(Param
->getLocation(), diag::err_bad_kernel_param_type
) << PT
;
9665 S
.Diag(OrigRecDecl
->getLocation(), diag::note_within_field_of_type
)
9666 << OrigRecDecl
->getDeclName();
9668 // We have an error, now let's go back up through history and show where
9669 // the offending field came from
9670 for (ArrayRef
<const FieldDecl
*>::const_iterator
9671 I
= HistoryStack
.begin() + 1,
9672 E
= HistoryStack
.end();
9674 const FieldDecl
*OuterField
= *I
;
9675 S
.Diag(OuterField
->getLocation(), diag::note_within_field_of_type
)
9676 << OuterField
->getType();
9679 S
.Diag(FD
->getLocation(), diag::note_illegal_field_declared_here
)
9680 << QT
->isPointerType()
9685 } while (!VisitStack
.empty());
9688 /// Find the DeclContext in which a tag is implicitly declared if we see an
9689 /// elaborated type specifier in the specified context, and lookup finds
9691 static DeclContext
*getTagInjectionContext(DeclContext
*DC
) {
9692 while (!DC
->isFileContext() && !DC
->isFunctionOrMethod())
9693 DC
= DC
->getParent();
9697 /// Find the Scope in which a tag is implicitly declared if we see an
9698 /// elaborated type specifier in the specified context, and lookup finds
9700 static Scope
*getTagInjectionScope(Scope
*S
, const LangOptions
&LangOpts
) {
9701 while (S
->isClassScope() ||
9702 (LangOpts
.CPlusPlus
&&
9703 S
->isFunctionPrototypeScope()) ||
9704 ((S
->getFlags() & Scope::DeclScope
) == 0) ||
9705 (S
->getEntity() && S
->getEntity()->isTransparentContext()))
9710 /// Determine whether a declaration matches a known function in namespace std.
9711 static bool isStdBuiltin(ASTContext
&Ctx
, FunctionDecl
*FD
,
9712 unsigned BuiltinID
) {
9713 switch (BuiltinID
) {
9714 case Builtin::BI__GetExceptionInfo
:
9715 // No type checking whatsoever.
9716 return Ctx
.getTargetInfo().getCXXABI().isMicrosoft();
9718 case Builtin::BIaddressof
:
9719 case Builtin::BI__addressof
:
9720 case Builtin::BIforward
:
9721 case Builtin::BIforward_like
:
9722 case Builtin::BImove
:
9723 case Builtin::BImove_if_noexcept
:
9724 case Builtin::BIas_const
: {
9725 // Ensure that we don't treat the algorithm
9726 // OutputIt std::move(InputIt, InputIt, OutputIt)
9727 // as the builtin std::move.
9728 const auto *FPT
= FD
->getType()->castAs
<FunctionProtoType
>();
9729 return FPT
->getNumParams() == 1 && !FPT
->isVariadic();
9738 Sema::ActOnFunctionDeclarator(Scope
*S
, Declarator
&D
, DeclContext
*DC
,
9739 TypeSourceInfo
*TInfo
, LookupResult
&Previous
,
9740 MultiTemplateParamsArg TemplateParamListsRef
,
9742 QualType R
= TInfo
->getType();
9744 assert(R
->isFunctionType());
9745 if (R
.getCanonicalType()->castAs
<FunctionType
>()->getCmseNSCallAttr())
9746 Diag(D
.getIdentifierLoc(), diag::err_function_decl_cmse_ns_call
);
9748 SmallVector
<TemplateParameterList
*, 4> TemplateParamLists
;
9749 llvm::append_range(TemplateParamLists
, TemplateParamListsRef
);
9750 if (TemplateParameterList
*Invented
= D
.getInventedTemplateParameterList()) {
9751 if (!TemplateParamLists
.empty() &&
9752 Invented
->getDepth() == TemplateParamLists
.back()->getDepth())
9753 TemplateParamLists
.back() = Invented
;
9755 TemplateParamLists
.push_back(Invented
);
9758 // TODO: consider using NameInfo for diagnostic.
9759 DeclarationNameInfo NameInfo
= GetNameForDeclarator(D
);
9760 DeclarationName Name
= NameInfo
.getName();
9761 StorageClass SC
= getFunctionStorageClass(*this, D
);
9763 if (DeclSpec::TSCS TSCS
= D
.getDeclSpec().getThreadStorageClassSpec())
9764 Diag(D
.getDeclSpec().getThreadStorageClassSpecLoc(),
9765 diag::err_invalid_thread
)
9766 << DeclSpec::getSpecifierName(TSCS
);
9768 if (D
.isFirstDeclarationOfMember())
9769 adjustMemberFunctionCC(R
, D
.isStaticMember(), D
.isCtorOrDtor(),
9770 D
.getIdentifierLoc());
9772 bool isFriend
= false;
9773 FunctionTemplateDecl
*FunctionTemplate
= nullptr;
9774 bool isMemberSpecialization
= false;
9775 bool isFunctionTemplateSpecialization
= false;
9777 bool isDependentClassScopeExplicitSpecialization
= false;
9778 bool HasExplicitTemplateArgs
= false;
9779 TemplateArgumentListInfo TemplateArgs
;
9781 bool isVirtualOkay
= false;
9783 DeclContext
*OriginalDC
= DC
;
9784 bool IsLocalExternDecl
= adjustContextForLocalExternDecl(DC
);
9786 FunctionDecl
*NewFD
= CreateNewFunctionDecl(*this, D
, DC
, R
, TInfo
, SC
,
9788 if (!NewFD
) return nullptr;
9790 if (OriginalLexicalContext
&& OriginalLexicalContext
->isObjCContainer())
9791 NewFD
->setTopLevelDeclInObjCContainer();
9793 // Set the lexical context. If this is a function-scope declaration, or has a
9794 // C++ scope specifier, or is the object of a friend declaration, the lexical
9795 // context will be different from the semantic context.
9796 NewFD
->setLexicalDeclContext(CurContext
);
9798 if (IsLocalExternDecl
)
9799 NewFD
->setLocalExternDecl();
9801 if (getLangOpts().CPlusPlus
) {
9802 // The rules for implicit inlines changed in C++20 for methods and friends
9803 // with an in-class definition (when such a definition is not attached to
9804 // the global module). User-specified 'inline' overrides this (set when
9805 // the function decl is created above).
9806 // FIXME: We need a better way to separate C++ standard and clang modules.
9807 bool ImplicitInlineCXX20
= !getLangOpts().CPlusPlusModules
||
9808 !NewFD
->getOwningModule() ||
9809 NewFD
->getOwningModule()->isGlobalModule() ||
9810 NewFD
->getOwningModule()->isHeaderLikeModule();
9811 bool isInline
= D
.getDeclSpec().isInlineSpecified();
9812 bool isVirtual
= D
.getDeclSpec().isVirtualSpecified();
9813 bool hasExplicit
= D
.getDeclSpec().hasExplicitSpecifier();
9814 isFriend
= D
.getDeclSpec().isFriendSpecified();
9815 if (isFriend
&& !isInline
&& D
.isFunctionDefinition()) {
9816 // Pre-C++20 [class.friend]p5
9817 // A function can be defined in a friend declaration of a
9818 // class . . . . Such a function is implicitly inline.
9819 // Post C++20 [class.friend]p7
9820 // Such a function is implicitly an inline function if it is attached
9821 // to the global module.
9822 NewFD
->setImplicitlyInline(ImplicitInlineCXX20
);
9825 // If this is a method defined in an __interface, and is not a constructor
9826 // or an overloaded operator, then set the pure flag (isVirtual will already
9828 if (const CXXRecordDecl
*Parent
=
9829 dyn_cast
<CXXRecordDecl
>(NewFD
->getDeclContext())) {
9830 if (Parent
->isInterface() && cast
<CXXMethodDecl
>(NewFD
)->isUserProvided())
9831 NewFD
->setPure(true);
9833 // C++ [class.union]p2
9834 // A union can have member functions, but not virtual functions.
9835 if (isVirtual
&& Parent
->isUnion()) {
9836 Diag(D
.getDeclSpec().getVirtualSpecLoc(), diag::err_virtual_in_union
);
9837 NewFD
->setInvalidDecl();
9839 if ((Parent
->isClass() || Parent
->isStruct()) &&
9840 Parent
->hasAttr
<SYCLSpecialClassAttr
>() &&
9841 NewFD
->getKind() == Decl::Kind::CXXMethod
&& NewFD
->getIdentifier() &&
9842 NewFD
->getName() == "__init" && D
.isFunctionDefinition()) {
9843 if (auto *Def
= Parent
->getDefinition())
9844 Def
->setInitMethod(true);
9848 SetNestedNameSpecifier(*this, NewFD
, D
);
9849 isMemberSpecialization
= false;
9850 isFunctionTemplateSpecialization
= false;
9851 if (D
.isInvalidType())
9852 NewFD
->setInvalidDecl();
9854 // Match up the template parameter lists with the scope specifier, then
9855 // determine whether we have a template or a template specialization.
9856 bool Invalid
= false;
9857 TemplateParameterList
*TemplateParams
=
9858 MatchTemplateParametersToScopeSpecifier(
9859 D
.getDeclSpec().getBeginLoc(), D
.getIdentifierLoc(),
9860 D
.getCXXScopeSpec(),
9861 D
.getName().getKind() == UnqualifiedIdKind::IK_TemplateId
9862 ? D
.getName().TemplateId
9864 TemplateParamLists
, isFriend
, isMemberSpecialization
,
9866 if (TemplateParams
) {
9867 // Check that we can declare a template here.
9868 if (CheckTemplateDeclScope(S
, TemplateParams
))
9869 NewFD
->setInvalidDecl();
9871 if (TemplateParams
->size() > 0) {
9872 // This is a function template
9874 // A destructor cannot be a template.
9875 if (Name
.getNameKind() == DeclarationName::CXXDestructorName
) {
9876 Diag(NewFD
->getLocation(), diag::err_destructor_template
);
9877 NewFD
->setInvalidDecl();
9880 // If we're adding a template to a dependent context, we may need to
9881 // rebuilding some of the types used within the template parameter list,
9882 // now that we know what the current instantiation is.
9883 if (DC
->isDependentContext()) {
9884 ContextRAII
SavedContext(*this, DC
);
9885 if (RebuildTemplateParamsInCurrentInstantiation(TemplateParams
))
9889 FunctionTemplate
= FunctionTemplateDecl::Create(Context
, DC
,
9890 NewFD
->getLocation(),
9891 Name
, TemplateParams
,
9893 FunctionTemplate
->setLexicalDeclContext(CurContext
);
9894 NewFD
->setDescribedFunctionTemplate(FunctionTemplate
);
9896 // For source fidelity, store the other template param lists.
9897 if (TemplateParamLists
.size() > 1) {
9898 NewFD
->setTemplateParameterListsInfo(Context
,
9899 ArrayRef
<TemplateParameterList
*>(TemplateParamLists
)
9903 // This is a function template specialization.
9904 isFunctionTemplateSpecialization
= true;
9905 // For source fidelity, store all the template param lists.
9906 if (TemplateParamLists
.size() > 0)
9907 NewFD
->setTemplateParameterListsInfo(Context
, TemplateParamLists
);
9909 // C++0x [temp.expl.spec]p20 forbids "template<> friend void foo(int);".
9911 // We want to remove the "template<>", found here.
9912 SourceRange RemoveRange
= TemplateParams
->getSourceRange();
9914 // If we remove the template<> and the name is not a
9915 // template-id, we're actually silently creating a problem:
9916 // the friend declaration will refer to an untemplated decl,
9917 // and clearly the user wants a template specialization. So
9918 // we need to insert '<>' after the name.
9919 SourceLocation InsertLoc
;
9920 if (D
.getName().getKind() != UnqualifiedIdKind::IK_TemplateId
) {
9921 InsertLoc
= D
.getName().getSourceRange().getEnd();
9922 InsertLoc
= getLocForEndOfToken(InsertLoc
);
9925 Diag(D
.getIdentifierLoc(), diag::err_template_spec_decl_friend
)
9926 << Name
<< RemoveRange
9927 << FixItHint::CreateRemoval(RemoveRange
)
9928 << FixItHint::CreateInsertion(InsertLoc
, "<>");
9933 // Check that we can declare a template here.
9934 if (!TemplateParamLists
.empty() && isMemberSpecialization
&&
9935 CheckTemplateDeclScope(S
, TemplateParamLists
.back()))
9936 NewFD
->setInvalidDecl();
9938 // All template param lists were matched against the scope specifier:
9939 // this is NOT (an explicit specialization of) a template.
9940 if (TemplateParamLists
.size() > 0)
9941 // For source fidelity, store all the template param lists.
9942 NewFD
->setTemplateParameterListsInfo(Context
, TemplateParamLists
);
9946 NewFD
->setInvalidDecl();
9947 if (FunctionTemplate
)
9948 FunctionTemplate
->setInvalidDecl();
9951 // C++ [dcl.fct.spec]p5:
9952 // The virtual specifier shall only be used in declarations of
9953 // nonstatic class member functions that appear within a
9954 // member-specification of a class declaration; see 10.3.
9956 if (isVirtual
&& !NewFD
->isInvalidDecl()) {
9957 if (!isVirtualOkay
) {
9958 Diag(D
.getDeclSpec().getVirtualSpecLoc(),
9959 diag::err_virtual_non_function
);
9960 } else if (!CurContext
->isRecord()) {
9961 // 'virtual' was specified outside of the class.
9962 Diag(D
.getDeclSpec().getVirtualSpecLoc(),
9963 diag::err_virtual_out_of_class
)
9964 << FixItHint::CreateRemoval(D
.getDeclSpec().getVirtualSpecLoc());
9965 } else if (NewFD
->getDescribedFunctionTemplate()) {
9966 // C++ [temp.mem]p3:
9967 // A member function template shall not be virtual.
9968 Diag(D
.getDeclSpec().getVirtualSpecLoc(),
9969 diag::err_virtual_member_function_template
)
9970 << FixItHint::CreateRemoval(D
.getDeclSpec().getVirtualSpecLoc());
9972 // Okay: Add virtual to the method.
9973 NewFD
->setVirtualAsWritten(true);
9976 if (getLangOpts().CPlusPlus14
&&
9977 NewFD
->getReturnType()->isUndeducedType())
9978 Diag(D
.getDeclSpec().getVirtualSpecLoc(), diag::err_auto_fn_virtual
);
9981 if (getLangOpts().CPlusPlus14
&&
9982 (NewFD
->isDependentContext() ||
9983 (isFriend
&& CurContext
->isDependentContext())) &&
9984 NewFD
->getReturnType()->isUndeducedType()) {
9985 // If the function template is referenced directly (for instance, as a
9986 // member of the current instantiation), pretend it has a dependent type.
9987 // This is not really justified by the standard, but is the only sane
9989 // FIXME: For a friend function, we have not marked the function as being
9990 // a friend yet, so 'isDependentContext' on the FD doesn't work.
9991 const FunctionProtoType
*FPT
=
9992 NewFD
->getType()->castAs
<FunctionProtoType
>();
9993 QualType Result
= SubstAutoTypeDependent(FPT
->getReturnType());
9994 NewFD
->setType(Context
.getFunctionType(Result
, FPT
->getParamTypes(),
9995 FPT
->getExtProtoInfo()));
9998 // C++ [dcl.fct.spec]p3:
9999 // The inline specifier shall not appear on a block scope function
10001 if (isInline
&& !NewFD
->isInvalidDecl()) {
10002 if (CurContext
->isFunctionOrMethod()) {
10003 // 'inline' is not allowed on block scope function declaration.
10004 Diag(D
.getDeclSpec().getInlineSpecLoc(),
10005 diag::err_inline_declaration_block_scope
) << Name
10006 << FixItHint::CreateRemoval(D
.getDeclSpec().getInlineSpecLoc());
10010 // C++ [dcl.fct.spec]p6:
10011 // The explicit specifier shall be used only in the declaration of a
10012 // constructor or conversion function within its class definition;
10013 // see 12.3.1 and 12.3.2.
10014 if (hasExplicit
&& !NewFD
->isInvalidDecl() &&
10015 !isa
<CXXDeductionGuideDecl
>(NewFD
)) {
10016 if (!CurContext
->isRecord()) {
10017 // 'explicit' was specified outside of the class.
10018 Diag(D
.getDeclSpec().getExplicitSpecLoc(),
10019 diag::err_explicit_out_of_class
)
10020 << FixItHint::CreateRemoval(D
.getDeclSpec().getExplicitSpecRange());
10021 } else if (!isa
<CXXConstructorDecl
>(NewFD
) &&
10022 !isa
<CXXConversionDecl
>(NewFD
)) {
10023 // 'explicit' was specified on a function that wasn't a constructor
10024 // or conversion function.
10025 Diag(D
.getDeclSpec().getExplicitSpecLoc(),
10026 diag::err_explicit_non_ctor_or_conv_function
)
10027 << FixItHint::CreateRemoval(D
.getDeclSpec().getExplicitSpecRange());
10031 ConstexprSpecKind ConstexprKind
= D
.getDeclSpec().getConstexprSpecifier();
10032 if (ConstexprKind
!= ConstexprSpecKind::Unspecified
) {
10033 // C++11 [dcl.constexpr]p2: constexpr functions and constexpr constructors
10034 // are implicitly inline.
10035 NewFD
->setImplicitlyInline();
10037 // C++11 [dcl.constexpr]p3: functions declared constexpr are required to
10038 // be either constructors or to return a literal type. Therefore,
10039 // destructors cannot be declared constexpr.
10040 if (isa
<CXXDestructorDecl
>(NewFD
) &&
10041 (!getLangOpts().CPlusPlus20
||
10042 ConstexprKind
== ConstexprSpecKind::Consteval
)) {
10043 Diag(D
.getDeclSpec().getConstexprSpecLoc(), diag::err_constexpr_dtor
)
10044 << static_cast<int>(ConstexprKind
);
10045 NewFD
->setConstexprKind(getLangOpts().CPlusPlus20
10046 ? ConstexprSpecKind::Unspecified
10047 : ConstexprSpecKind::Constexpr
);
10049 // C++20 [dcl.constexpr]p2: An allocation function, or a
10050 // deallocation function shall not be declared with the consteval
10052 if (ConstexprKind
== ConstexprSpecKind::Consteval
&&
10053 (NewFD
->getOverloadedOperator() == OO_New
||
10054 NewFD
->getOverloadedOperator() == OO_Array_New
||
10055 NewFD
->getOverloadedOperator() == OO_Delete
||
10056 NewFD
->getOverloadedOperator() == OO_Array_Delete
)) {
10057 Diag(D
.getDeclSpec().getConstexprSpecLoc(),
10058 diag::err_invalid_consteval_decl_kind
)
10060 NewFD
->setConstexprKind(ConstexprSpecKind::Constexpr
);
10064 // If __module_private__ was specified, mark the function accordingly.
10065 if (D
.getDeclSpec().isModulePrivateSpecified()) {
10066 if (isFunctionTemplateSpecialization
) {
10067 SourceLocation ModulePrivateLoc
10068 = D
.getDeclSpec().getModulePrivateSpecLoc();
10069 Diag(ModulePrivateLoc
, diag::err_module_private_specialization
)
10071 << FixItHint::CreateRemoval(ModulePrivateLoc
);
10073 NewFD
->setModulePrivate();
10074 if (FunctionTemplate
)
10075 FunctionTemplate
->setModulePrivate();
10080 if (FunctionTemplate
) {
10081 FunctionTemplate
->setObjectOfFriendDecl();
10082 FunctionTemplate
->setAccess(AS_public
);
10084 NewFD
->setObjectOfFriendDecl();
10085 NewFD
->setAccess(AS_public
);
10088 // If a function is defined as defaulted or deleted, mark it as such now.
10089 // We'll do the relevant checks on defaulted / deleted functions later.
10090 switch (D
.getFunctionDefinitionKind()) {
10091 case FunctionDefinitionKind::Declaration
:
10092 case FunctionDefinitionKind::Definition
:
10095 case FunctionDefinitionKind::Defaulted
:
10096 NewFD
->setDefaulted();
10099 case FunctionDefinitionKind::Deleted
:
10100 NewFD
->setDeletedAsWritten();
10104 if (isa
<CXXMethodDecl
>(NewFD
) && DC
== CurContext
&&
10105 D
.isFunctionDefinition() && !isInline
) {
10106 // Pre C++20 [class.mfct]p2:
10107 // A member function may be defined (8.4) in its class definition, in
10108 // which case it is an inline member function (7.1.2)
10109 // Post C++20 [class.mfct]p1:
10110 // If a member function is attached to the global module and is defined
10111 // in its class definition, it is inline.
10112 NewFD
->setImplicitlyInline(ImplicitInlineCXX20
);
10115 if (SC
== SC_Static
&& isa
<CXXMethodDecl
>(NewFD
) &&
10116 !CurContext
->isRecord()) {
10117 // C++ [class.static]p1:
10118 // A data or function member of a class may be declared static
10119 // in a class definition, in which case it is a static member of
10122 // Complain about the 'static' specifier if it's on an out-of-line
10123 // member function definition.
10125 // MSVC permits the use of a 'static' storage specifier on an out-of-line
10126 // member function template declaration and class member template
10127 // declaration (MSVC versions before 2015), warn about this.
10128 Diag(D
.getDeclSpec().getStorageClassSpecLoc(),
10129 ((!getLangOpts().isCompatibleWithMSVC(LangOptions::MSVC2015
) &&
10130 cast
<CXXRecordDecl
>(DC
)->getDescribedClassTemplate()) ||
10131 (getLangOpts().MSVCCompat
&& NewFD
->getDescribedFunctionTemplate()))
10132 ? diag::ext_static_out_of_line
: diag::err_static_out_of_line
)
10133 << FixItHint::CreateRemoval(D
.getDeclSpec().getStorageClassSpecLoc());
10136 // C++11 [except.spec]p15:
10137 // A deallocation function with no exception-specification is treated
10138 // as if it were specified with noexcept(true).
10139 const FunctionProtoType
*FPT
= R
->getAs
<FunctionProtoType
>();
10140 if ((Name
.getCXXOverloadedOperator() == OO_Delete
||
10141 Name
.getCXXOverloadedOperator() == OO_Array_Delete
) &&
10142 getLangOpts().CPlusPlus11
&& FPT
&& !FPT
->hasExceptionSpec())
10143 NewFD
->setType(Context
.getFunctionType(
10144 FPT
->getReturnType(), FPT
->getParamTypes(),
10145 FPT
->getExtProtoInfo().withExceptionSpec(EST_BasicNoexcept
)));
10147 // C++20 [dcl.inline]/7
10148 // If an inline function or variable that is attached to a named module
10149 // is declared in a definition domain, it shall be defined in that
10151 // So, if the current declaration does not have a definition, we must
10152 // check at the end of the TU (or when the PMF starts) to see that we
10153 // have a definition at that point.
10154 if (isInline
&& !D
.isFunctionDefinition() && getLangOpts().CPlusPlus20
&&
10155 NewFD
->hasOwningModule() &&
10156 NewFD
->getOwningModule()->isModulePurview()) {
10157 PendingInlineFuncDecls
.insert(NewFD
);
10161 // Filter out previous declarations that don't match the scope.
10162 FilterLookupForScope(Previous
, OriginalDC
, S
, shouldConsiderLinkage(NewFD
),
10163 D
.getCXXScopeSpec().isNotEmpty() ||
10164 isMemberSpecialization
||
10165 isFunctionTemplateSpecialization
);
10167 // Handle GNU asm-label extension (encoded as an attribute).
10168 if (Expr
*E
= (Expr
*) D
.getAsmLabel()) {
10169 // The parser guarantees this is a string.
10170 StringLiteral
*SE
= cast
<StringLiteral
>(E
);
10171 NewFD
->addAttr(AsmLabelAttr::Create(Context
, SE
->getString(),
10172 /*IsLiteralLabel=*/true,
10173 SE
->getStrTokenLoc(0)));
10174 } else if (!ExtnameUndeclaredIdentifiers
.empty()) {
10175 llvm::DenseMap
<IdentifierInfo
*,AsmLabelAttr
*>::iterator I
=
10176 ExtnameUndeclaredIdentifiers
.find(NewFD
->getIdentifier());
10177 if (I
!= ExtnameUndeclaredIdentifiers
.end()) {
10178 if (isDeclExternC(NewFD
)) {
10179 NewFD
->addAttr(I
->second
);
10180 ExtnameUndeclaredIdentifiers
.erase(I
);
10182 Diag(NewFD
->getLocation(), diag::warn_redefine_extname_not_applied
)
10183 << /*Variable*/0 << NewFD
;
10187 // Copy the parameter declarations from the declarator D to the function
10188 // declaration NewFD, if they are available. First scavenge them into Params.
10189 SmallVector
<ParmVarDecl
*, 16> Params
;
10191 if (D
.isFunctionDeclarator(FTIIdx
)) {
10192 DeclaratorChunk::FunctionTypeInfo
&FTI
= D
.getTypeObject(FTIIdx
).Fun
;
10194 // Check for C99 6.7.5.3p10 - foo(void) is a non-varargs
10195 // function that takes no arguments, not a function that takes a
10196 // single void argument.
10197 // We let through "const void" here because Sema::GetTypeForDeclarator
10198 // already checks for that case.
10199 if (FTIHasNonVoidParameters(FTI
) && FTI
.Params
[0].Param
) {
10200 for (unsigned i
= 0, e
= FTI
.NumParams
; i
!= e
; ++i
) {
10201 ParmVarDecl
*Param
= cast
<ParmVarDecl
>(FTI
.Params
[i
].Param
);
10202 assert(Param
->getDeclContext() != NewFD
&& "Was set before ?");
10203 Param
->setDeclContext(NewFD
);
10204 Params
.push_back(Param
);
10206 if (Param
->isInvalidDecl())
10207 NewFD
->setInvalidDecl();
10211 if (!getLangOpts().CPlusPlus
) {
10212 // In C, find all the tag declarations from the prototype and move them
10213 // into the function DeclContext. Remove them from the surrounding tag
10214 // injection context of the function, which is typically but not always
10216 DeclContext
*PrototypeTagContext
=
10217 getTagInjectionContext(NewFD
->getLexicalDeclContext());
10218 for (NamedDecl
*NonParmDecl
: FTI
.getDeclsInPrototype()) {
10219 auto *TD
= dyn_cast
<TagDecl
>(NonParmDecl
);
10221 // We don't want to reparent enumerators. Look at their parent enum
10224 if (auto *ECD
= dyn_cast
<EnumConstantDecl
>(NonParmDecl
))
10225 TD
= cast
<EnumDecl
>(ECD
->getDeclContext());
10229 DeclContext
*TagDC
= TD
->getLexicalDeclContext();
10230 if (!TagDC
->containsDecl(TD
))
10232 TagDC
->removeDecl(TD
);
10233 TD
->setDeclContext(NewFD
);
10234 NewFD
->addDecl(TD
);
10236 // Preserve the lexical DeclContext if it is not the surrounding tag
10237 // injection context of the FD. In this example, the semantic context of
10238 // E will be f and the lexical context will be S, while both the
10239 // semantic and lexical contexts of S will be f:
10240 // void f(struct S { enum E { a } f; } s);
10241 if (TagDC
!= PrototypeTagContext
)
10242 TD
->setLexicalDeclContext(TagDC
);
10245 } else if (const FunctionProtoType
*FT
= R
->getAs
<FunctionProtoType
>()) {
10246 // When we're declaring a function with a typedef, typeof, etc as in the
10247 // following example, we'll need to synthesize (unnamed)
10248 // parameters for use in the declaration.
10251 // typedef void fn(int);
10255 // Synthesize a parameter for each argument type.
10256 for (const auto &AI
: FT
->param_types()) {
10257 ParmVarDecl
*Param
=
10258 BuildParmVarDeclForTypedef(NewFD
, D
.getIdentifierLoc(), AI
);
10259 Param
->setScopeInfo(0, Params
.size());
10260 Params
.push_back(Param
);
10263 assert(R
->isFunctionNoProtoType() && NewFD
->getNumParams() == 0 &&
10264 "Should not need args for typedef of non-prototype fn");
10267 // Finally, we know we have the right number of parameters, install them.
10268 NewFD
->setParams(Params
);
10270 if (D
.getDeclSpec().isNoreturnSpecified())
10272 C11NoReturnAttr::Create(Context
, D
.getDeclSpec().getNoreturnSpecLoc()));
10274 // Functions returning a variably modified type violate C99 6.7.5.2p2
10275 // because all functions have linkage.
10276 if (!NewFD
->isInvalidDecl() &&
10277 NewFD
->getReturnType()->isVariablyModifiedType()) {
10278 Diag(NewFD
->getLocation(), diag::err_vm_func_decl
);
10279 NewFD
->setInvalidDecl();
10282 // Apply an implicit SectionAttr if '#pragma clang section text' is active
10283 if (PragmaClangTextSection
.Valid
&& D
.isFunctionDefinition() &&
10284 !NewFD
->hasAttr
<SectionAttr
>())
10285 NewFD
->addAttr(PragmaClangTextSectionAttr::CreateImplicit(
10286 Context
, PragmaClangTextSection
.SectionName
,
10287 PragmaClangTextSection
.PragmaLocation
));
10289 // Apply an implicit SectionAttr if #pragma code_seg is active.
10290 if (CodeSegStack
.CurrentValue
&& D
.isFunctionDefinition() &&
10291 !NewFD
->hasAttr
<SectionAttr
>()) {
10292 NewFD
->addAttr(SectionAttr::CreateImplicit(
10293 Context
, CodeSegStack
.CurrentValue
->getString(),
10294 CodeSegStack
.CurrentPragmaLocation
, SectionAttr::Declspec_allocate
));
10295 if (UnifySection(CodeSegStack
.CurrentValue
->getString(),
10296 ASTContext::PSF_Implicit
| ASTContext::PSF_Execute
|
10297 ASTContext::PSF_Read
,
10299 NewFD
->dropAttr
<SectionAttr
>();
10302 // Apply an implicit StrictGuardStackCheckAttr if #pragma strict_gs_check is
10304 if (StrictGuardStackCheckStack
.CurrentValue
&& D
.isFunctionDefinition() &&
10305 !NewFD
->hasAttr
<StrictGuardStackCheckAttr
>())
10306 NewFD
->addAttr(StrictGuardStackCheckAttr::CreateImplicit(
10307 Context
, PragmaClangTextSection
.PragmaLocation
));
10309 // Apply an implicit CodeSegAttr from class declspec or
10310 // apply an implicit SectionAttr from #pragma code_seg if active.
10311 if (!NewFD
->hasAttr
<CodeSegAttr
>()) {
10312 if (Attr
*SAttr
= getImplicitCodeSegOrSectionAttrForFunction(NewFD
,
10313 D
.isFunctionDefinition())) {
10314 NewFD
->addAttr(SAttr
);
10318 // Handle attributes.
10319 ProcessDeclAttributes(S
, NewFD
, D
);
10320 const auto *NewTVA
= NewFD
->getAttr
<TargetVersionAttr
>();
10321 if (NewTVA
&& !NewTVA
->isDefaultVersion() &&
10322 !Context
.getTargetInfo().hasFeature("fmv")) {
10323 // Don't add to scope fmv functions declarations if fmv disabled
10324 AddToScope
= false;
10328 if (getLangOpts().OpenCL
|| getLangOpts().HLSL
) {
10329 // Neither OpenCL nor HLSL allow an address space qualifyer on a return
10332 // OpenCL v1.1 s6.5: Using an address space qualifier in a function return
10333 // type declaration will generate a compilation error.
10334 LangAS AddressSpace
= NewFD
->getReturnType().getAddressSpace();
10335 if (AddressSpace
!= LangAS::Default
) {
10336 Diag(NewFD
->getLocation(), diag::err_return_value_with_address_space
);
10337 NewFD
->setInvalidDecl();
10341 if (getLangOpts().HLSL
) {
10342 auto &TargetInfo
= getASTContext().getTargetInfo();
10343 // Skip operator overload which not identifier.
10344 // Also make sure NewFD is in translation-unit scope.
10345 if (!NewFD
->isInvalidDecl() && Name
.isIdentifier() &&
10346 NewFD
->getName() == TargetInfo
.getTargetOpts().HLSLEntry
&&
10347 S
->getDepth() == 0) {
10348 CheckHLSLEntryPoint(NewFD
);
10349 if (!NewFD
->isInvalidDecl()) {
10350 auto Env
= TargetInfo
.getTriple().getEnvironment();
10351 HLSLShaderAttr::ShaderType ShaderType
=
10352 static_cast<HLSLShaderAttr::ShaderType
>(
10353 hlsl::getStageFromEnvironment(Env
));
10354 // To share code with HLSLShaderAttr, add HLSLShaderAttr to entry
10356 if (HLSLShaderAttr
*NT
= NewFD
->getAttr
<HLSLShaderAttr
>()) {
10357 if (NT
->getType() != ShaderType
)
10358 Diag(NT
->getLocation(), diag::err_hlsl_entry_shader_attr_mismatch
)
10361 NewFD
->addAttr(HLSLShaderAttr::Create(Context
, ShaderType
,
10362 NewFD
->getBeginLoc()));
10368 if (!getLangOpts().CPlusPlus
) {
10369 // Perform semantic checking on the function declaration.
10370 if (!NewFD
->isInvalidDecl() && NewFD
->isMain())
10371 CheckMain(NewFD
, D
.getDeclSpec());
10373 if (!NewFD
->isInvalidDecl() && NewFD
->isMSVCRTEntryPoint())
10374 CheckMSVCRTEntryPoint(NewFD
);
10376 if (!NewFD
->isInvalidDecl())
10377 D
.setRedeclaration(CheckFunctionDeclaration(S
, NewFD
, Previous
,
10378 isMemberSpecialization
,
10379 D
.isFunctionDefinition()));
10380 else if (!Previous
.empty())
10381 // Recover gracefully from an invalid redeclaration.
10382 D
.setRedeclaration(true);
10383 assert((NewFD
->isInvalidDecl() || !D
.isRedeclaration() ||
10384 Previous
.getResultKind() != LookupResult::FoundOverloaded
) &&
10385 "previous declaration set still overloaded");
10387 // Diagnose no-prototype function declarations with calling conventions that
10388 // don't support variadic calls. Only do this in C and do it after merging
10389 // possibly prototyped redeclarations.
10390 const FunctionType
*FT
= NewFD
->getType()->castAs
<FunctionType
>();
10391 if (isa
<FunctionNoProtoType
>(FT
) && !D
.isFunctionDefinition()) {
10392 CallingConv CC
= FT
->getExtInfo().getCC();
10393 if (!supportsVariadicCall(CC
)) {
10394 // Windows system headers sometimes accidentally use stdcall without
10395 // (void) parameters, so we relax this to a warning.
10397 CC
== CC_X86StdCall
? diag::warn_cconv_knr
: diag::err_cconv_knr
;
10398 Diag(NewFD
->getLocation(), DiagID
)
10399 << FunctionType::getNameForCallConv(CC
);
10403 if (NewFD
->getReturnType().hasNonTrivialToPrimitiveDestructCUnion() ||
10404 NewFD
->getReturnType().hasNonTrivialToPrimitiveCopyCUnion())
10405 checkNonTrivialCUnion(NewFD
->getReturnType(),
10406 NewFD
->getReturnTypeSourceRange().getBegin(),
10407 NTCUC_FunctionReturn
, NTCUK_Destruct
|NTCUK_Copy
);
10409 // C++11 [replacement.functions]p3:
10410 // The program's definitions shall not be specified as inline.
10412 // N.B. We diagnose declarations instead of definitions per LWG issue 2340.
10414 // Suppress the diagnostic if the function is __attribute__((used)), since
10415 // that forces an external definition to be emitted.
10416 if (D
.getDeclSpec().isInlineSpecified() &&
10417 NewFD
->isReplaceableGlobalAllocationFunction() &&
10418 !NewFD
->hasAttr
<UsedAttr
>())
10419 Diag(D
.getDeclSpec().getInlineSpecLoc(),
10420 diag::ext_operator_new_delete_declared_inline
)
10421 << NewFD
->getDeclName();
10423 // If the declarator is a template-id, translate the parser's template
10424 // argument list into our AST format.
10425 if (D
.getName().getKind() == UnqualifiedIdKind::IK_TemplateId
) {
10426 TemplateIdAnnotation
*TemplateId
= D
.getName().TemplateId
;
10427 TemplateArgs
.setLAngleLoc(TemplateId
->LAngleLoc
);
10428 TemplateArgs
.setRAngleLoc(TemplateId
->RAngleLoc
);
10429 ASTTemplateArgsPtr
TemplateArgsPtr(TemplateId
->getTemplateArgs(),
10430 TemplateId
->NumArgs
);
10431 translateTemplateArguments(TemplateArgsPtr
,
10434 HasExplicitTemplateArgs
= true;
10436 if (NewFD
->isInvalidDecl()) {
10437 HasExplicitTemplateArgs
= false;
10438 } else if (FunctionTemplate
) {
10439 // Function template with explicit template arguments.
10440 Diag(D
.getIdentifierLoc(), diag::err_function_template_partial_spec
)
10441 << SourceRange(TemplateId
->LAngleLoc
, TemplateId
->RAngleLoc
);
10443 HasExplicitTemplateArgs
= false;
10445 assert((isFunctionTemplateSpecialization
||
10446 D
.getDeclSpec().isFriendSpecified()) &&
10447 "should have a 'template<>' for this decl");
10448 // "friend void foo<>(int);" is an implicit specialization decl.
10449 isFunctionTemplateSpecialization
= true;
10451 } else if (isFriend
&& isFunctionTemplateSpecialization
) {
10452 // This combination is only possible in a recovery case; the user
10453 // wrote something like:
10454 // template <> friend void foo(int);
10455 // which we're recovering from as if the user had written:
10456 // friend void foo<>(int);
10457 // Go ahead and fake up a template id.
10458 HasExplicitTemplateArgs
= true;
10459 TemplateArgs
.setLAngleLoc(D
.getIdentifierLoc());
10460 TemplateArgs
.setRAngleLoc(D
.getIdentifierLoc());
10463 // We do not add HD attributes to specializations here because
10464 // they may have different constexpr-ness compared to their
10465 // templates and, after maybeAddCUDAHostDeviceAttrs() is applied,
10466 // may end up with different effective targets. Instead, a
10467 // specialization inherits its target attributes from its template
10468 // in the CheckFunctionTemplateSpecialization() call below.
10469 if (getLangOpts().CUDA
&& !isFunctionTemplateSpecialization
)
10470 maybeAddCUDAHostDeviceAttrs(NewFD
, Previous
);
10472 // If it's a friend (and only if it's a friend), it's possible
10473 // that either the specialized function type or the specialized
10474 // template is dependent, and therefore matching will fail. In
10475 // this case, don't check the specialization yet.
10476 if (isFunctionTemplateSpecialization
&& isFriend
&&
10477 (NewFD
->getType()->isDependentType() || DC
->isDependentContext() ||
10478 TemplateSpecializationType::anyInstantiationDependentTemplateArguments(
10479 TemplateArgs
.arguments()))) {
10480 assert(HasExplicitTemplateArgs
&&
10481 "friend function specialization without template args");
10482 if (CheckDependentFunctionTemplateSpecialization(NewFD
, TemplateArgs
,
10484 NewFD
->setInvalidDecl();
10485 } else if (isFunctionTemplateSpecialization
) {
10486 if (CurContext
->isDependentContext() && CurContext
->isRecord()
10488 isDependentClassScopeExplicitSpecialization
= true;
10489 } else if (!NewFD
->isInvalidDecl() &&
10490 CheckFunctionTemplateSpecialization(
10491 NewFD
, (HasExplicitTemplateArgs
? &TemplateArgs
: nullptr),
10493 NewFD
->setInvalidDecl();
10495 // C++ [dcl.stc]p1:
10496 // A storage-class-specifier shall not be specified in an explicit
10497 // specialization (14.7.3)
10498 FunctionTemplateSpecializationInfo
*Info
=
10499 NewFD
->getTemplateSpecializationInfo();
10500 if (Info
&& SC
!= SC_None
) {
10501 if (SC
!= Info
->getTemplate()->getTemplatedDecl()->getStorageClass())
10502 Diag(NewFD
->getLocation(),
10503 diag::err_explicit_specialization_inconsistent_storage_class
)
10505 << FixItHint::CreateRemoval(
10506 D
.getDeclSpec().getStorageClassSpecLoc());
10509 Diag(NewFD
->getLocation(),
10510 diag::ext_explicit_specialization_storage_class
)
10511 << FixItHint::CreateRemoval(
10512 D
.getDeclSpec().getStorageClassSpecLoc());
10514 } else if (isMemberSpecialization
&& isa
<CXXMethodDecl
>(NewFD
)) {
10515 if (CheckMemberSpecialization(NewFD
, Previous
))
10516 NewFD
->setInvalidDecl();
10519 // Perform semantic checking on the function declaration.
10520 if (!isDependentClassScopeExplicitSpecialization
) {
10521 if (!NewFD
->isInvalidDecl() && NewFD
->isMain())
10522 CheckMain(NewFD
, D
.getDeclSpec());
10524 if (!NewFD
->isInvalidDecl() && NewFD
->isMSVCRTEntryPoint())
10525 CheckMSVCRTEntryPoint(NewFD
);
10527 if (!NewFD
->isInvalidDecl())
10528 D
.setRedeclaration(CheckFunctionDeclaration(S
, NewFD
, Previous
,
10529 isMemberSpecialization
,
10530 D
.isFunctionDefinition()));
10531 else if (!Previous
.empty())
10532 // Recover gracefully from an invalid redeclaration.
10533 D
.setRedeclaration(true);
10536 assert((NewFD
->isInvalidDecl() || NewFD
->isMultiVersion() ||
10537 !D
.isRedeclaration() ||
10538 Previous
.getResultKind() != LookupResult::FoundOverloaded
) &&
10539 "previous declaration set still overloaded");
10541 NamedDecl
*PrincipalDecl
= (FunctionTemplate
10542 ? cast
<NamedDecl
>(FunctionTemplate
)
10545 if (isFriend
&& NewFD
->getPreviousDecl()) {
10546 AccessSpecifier Access
= AS_public
;
10547 if (!NewFD
->isInvalidDecl())
10548 Access
= NewFD
->getPreviousDecl()->getAccess();
10550 NewFD
->setAccess(Access
);
10551 if (FunctionTemplate
) FunctionTemplate
->setAccess(Access
);
10554 if (NewFD
->isOverloadedOperator() && !DC
->isRecord() &&
10555 PrincipalDecl
->isInIdentifierNamespace(Decl::IDNS_Ordinary
))
10556 PrincipalDecl
->setNonMemberOperator();
10558 // If we have a function template, check the template parameter
10559 // list. This will check and merge default template arguments.
10560 if (FunctionTemplate
) {
10561 FunctionTemplateDecl
*PrevTemplate
=
10562 FunctionTemplate
->getPreviousDecl();
10563 CheckTemplateParameterList(FunctionTemplate
->getTemplateParameters(),
10564 PrevTemplate
? PrevTemplate
->getTemplateParameters()
10566 D
.getDeclSpec().isFriendSpecified()
10567 ? (D
.isFunctionDefinition()
10568 ? TPC_FriendFunctionTemplateDefinition
10569 : TPC_FriendFunctionTemplate
)
10570 : (D
.getCXXScopeSpec().isSet() &&
10571 DC
&& DC
->isRecord() &&
10572 DC
->isDependentContext())
10573 ? TPC_ClassTemplateMember
10574 : TPC_FunctionTemplate
);
10577 if (NewFD
->isInvalidDecl()) {
10578 // Ignore all the rest of this.
10579 } else if (!D
.isRedeclaration()) {
10580 struct ActOnFDArgs ExtraArgs
= { S
, D
, TemplateParamLists
,
10582 // Fake up an access specifier if it's supposed to be a class member.
10583 if (isa
<CXXRecordDecl
>(NewFD
->getDeclContext()))
10584 NewFD
->setAccess(AS_public
);
10586 // Qualified decls generally require a previous declaration.
10587 if (D
.getCXXScopeSpec().isSet()) {
10588 // ...with the major exception of templated-scope or
10589 // dependent-scope friend declarations.
10591 // TODO: we currently also suppress this check in dependent
10592 // contexts because (1) the parameter depth will be off when
10593 // matching friend templates and (2) we might actually be
10594 // selecting a friend based on a dependent factor. But there
10595 // are situations where these conditions don't apply and we
10596 // can actually do this check immediately.
10598 // Unless the scope is dependent, it's always an error if qualified
10599 // redeclaration lookup found nothing at all. Diagnose that now;
10600 // nothing will diagnose that error later.
10602 (D
.getCXXScopeSpec().getScopeRep()->isDependent() ||
10603 (!Previous
.empty() && CurContext
->isDependentContext()))) {
10605 } else if (NewFD
->isCPUDispatchMultiVersion() ||
10606 NewFD
->isCPUSpecificMultiVersion()) {
10607 // ignore this, we allow the redeclaration behavior here to create new
10608 // versions of the function.
10610 // The user tried to provide an out-of-line definition for a
10611 // function that is a member of a class or namespace, but there
10612 // was no such member function declared (C++ [class.mfct]p2,
10613 // C++ [namespace.memdef]p2). For example:
10619 // void X::f() { } // ill-formed
10621 // Complain about this problem, and attempt to suggest close
10622 // matches (e.g., those that differ only in cv-qualifiers and
10623 // whether the parameter types are references).
10625 if (NamedDecl
*Result
= DiagnoseInvalidRedeclaration(
10626 *this, Previous
, NewFD
, ExtraArgs
, false, nullptr)) {
10627 AddToScope
= ExtraArgs
.AddToScope
;
10632 // Unqualified local friend declarations are required to resolve
10634 } else if (isFriend
&& cast
<CXXRecordDecl
>(CurContext
)->isLocalClass()) {
10635 if (NamedDecl
*Result
= DiagnoseInvalidRedeclaration(
10636 *this, Previous
, NewFD
, ExtraArgs
, true, S
)) {
10637 AddToScope
= ExtraArgs
.AddToScope
;
10641 } else if (!D
.isFunctionDefinition() &&
10642 isa
<CXXMethodDecl
>(NewFD
) && NewFD
->isOutOfLine() &&
10643 !isFriend
&& !isFunctionTemplateSpecialization
&&
10644 !isMemberSpecialization
) {
10645 // An out-of-line member function declaration must also be a
10646 // definition (C++ [class.mfct]p2).
10647 // Note that this is not the case for explicit specializations of
10648 // function templates or member functions of class templates, per
10649 // C++ [temp.expl.spec]p2. We also allow these declarations as an
10650 // extension for compatibility with old SWIG code which likes to
10652 Diag(NewFD
->getLocation(), diag::ext_out_of_line_declaration
)
10653 << D
.getCXXScopeSpec().getRange();
10657 // If this is the first declaration of a library builtin function, add
10658 // attributes as appropriate.
10659 if (!D
.isRedeclaration()) {
10660 if (IdentifierInfo
*II
= Previous
.getLookupName().getAsIdentifierInfo()) {
10661 if (unsigned BuiltinID
= II
->getBuiltinID()) {
10662 bool InStdNamespace
= Context
.BuiltinInfo
.isInStdNamespace(BuiltinID
);
10663 if (!InStdNamespace
&&
10664 NewFD
->getDeclContext()->getRedeclContext()->isFileContext()) {
10665 if (NewFD
->getLanguageLinkage() == CLanguageLinkage
) {
10666 // Validate the type matches unless this builtin is specified as
10667 // matching regardless of its declared type.
10668 if (Context
.BuiltinInfo
.allowTypeMismatch(BuiltinID
)) {
10669 NewFD
->addAttr(BuiltinAttr::CreateImplicit(Context
, BuiltinID
));
10671 ASTContext::GetBuiltinTypeError Error
;
10672 LookupNecessaryTypesForBuiltin(S
, BuiltinID
);
10673 QualType BuiltinType
= Context
.GetBuiltinType(BuiltinID
, Error
);
10675 if (!Error
&& !BuiltinType
.isNull() &&
10676 Context
.hasSameFunctionTypeIgnoringExceptionSpec(
10677 NewFD
->getType(), BuiltinType
))
10678 NewFD
->addAttr(BuiltinAttr::CreateImplicit(Context
, BuiltinID
));
10681 } else if (InStdNamespace
&& NewFD
->isInStdNamespace() &&
10682 isStdBuiltin(Context
, NewFD
, BuiltinID
)) {
10683 NewFD
->addAttr(BuiltinAttr::CreateImplicit(Context
, BuiltinID
));
10689 ProcessPragmaWeak(S
, NewFD
);
10690 checkAttributesAfterMerging(*this, *NewFD
);
10692 AddKnownFunctionAttributes(NewFD
);
10694 if (NewFD
->hasAttr
<OverloadableAttr
>() &&
10695 !NewFD
->getType()->getAs
<FunctionProtoType
>()) {
10696 Diag(NewFD
->getLocation(),
10697 diag::err_attribute_overloadable_no_prototype
)
10699 NewFD
->dropAttr
<OverloadableAttr
>();
10702 // If there's a #pragma GCC visibility in scope, and this isn't a class
10703 // member, set the visibility of this function.
10704 if (!DC
->isRecord() && NewFD
->isExternallyVisible())
10705 AddPushedVisibilityAttribute(NewFD
);
10707 // If there's a #pragma clang arc_cf_code_audited in scope, consider
10708 // marking the function.
10709 AddCFAuditedAttribute(NewFD
);
10711 // If this is a function definition, check if we have to apply any
10712 // attributes (i.e. optnone and no_builtin) due to a pragma.
10713 if (D
.isFunctionDefinition()) {
10714 AddRangeBasedOptnone(NewFD
);
10715 AddImplicitMSFunctionNoBuiltinAttr(NewFD
);
10716 AddSectionMSAllocText(NewFD
);
10717 ModifyFnAttributesMSPragmaOptimize(NewFD
);
10720 // If this is the first declaration of an extern C variable, update
10721 // the map of such variables.
10722 if (NewFD
->isFirstDecl() && !NewFD
->isInvalidDecl() &&
10723 isIncompleteDeclExternC(*this, NewFD
))
10724 RegisterLocallyScopedExternCDecl(NewFD
, S
);
10726 // Set this FunctionDecl's range up to the right paren.
10727 NewFD
->setRangeEnd(D
.getSourceRange().getEnd());
10729 if (D
.isRedeclaration() && !Previous
.empty()) {
10730 NamedDecl
*Prev
= Previous
.getRepresentativeDecl();
10731 checkDLLAttributeRedeclaration(*this, Prev
, NewFD
,
10732 isMemberSpecialization
||
10733 isFunctionTemplateSpecialization
,
10734 D
.isFunctionDefinition());
10737 if (getLangOpts().CUDA
) {
10738 IdentifierInfo
*II
= NewFD
->getIdentifier();
10739 if (II
&& II
->isStr(getCudaConfigureFuncName()) &&
10740 !NewFD
->isInvalidDecl() &&
10741 NewFD
->getDeclContext()->getRedeclContext()->isTranslationUnit()) {
10742 if (!R
->castAs
<FunctionType
>()->getReturnType()->isScalarType())
10743 Diag(NewFD
->getLocation(), diag::err_config_scalar_return
)
10744 << getCudaConfigureFuncName();
10745 Context
.setcudaConfigureCallDecl(NewFD
);
10748 // Variadic functions, other than a *declaration* of printf, are not allowed
10749 // in device-side CUDA code, unless someone passed
10750 // -fcuda-allow-variadic-functions.
10751 if (!getLangOpts().CUDAAllowVariadicFunctions
&& NewFD
->isVariadic() &&
10752 (NewFD
->hasAttr
<CUDADeviceAttr
>() ||
10753 NewFD
->hasAttr
<CUDAGlobalAttr
>()) &&
10754 !(II
&& II
->isStr("printf") && NewFD
->isExternC() &&
10755 !D
.isFunctionDefinition())) {
10756 Diag(NewFD
->getLocation(), diag::err_variadic_device_fn
);
10760 MarkUnusedFileScopedDecl(NewFD
);
10764 if (getLangOpts().OpenCL
&& NewFD
->hasAttr
<OpenCLKernelAttr
>()) {
10765 // OpenCL v1.2 s6.8 static is invalid for kernel functions.
10766 if (SC
== SC_Static
) {
10767 Diag(D
.getIdentifierLoc(), diag::err_static_kernel
);
10768 D
.setInvalidType();
10771 // OpenCL v1.2, s6.9 -- Kernels can only have return type void.
10772 if (!NewFD
->getReturnType()->isVoidType()) {
10773 SourceRange RTRange
= NewFD
->getReturnTypeSourceRange();
10774 Diag(D
.getIdentifierLoc(), diag::err_expected_kernel_void_return_type
)
10775 << (RTRange
.isValid() ? FixItHint::CreateReplacement(RTRange
, "void")
10777 D
.setInvalidType();
10780 llvm::SmallPtrSet
<const Type
*, 16> ValidTypes
;
10781 for (auto *Param
: NewFD
->parameters())
10782 checkIsValidOpenCLKernelParameter(*this, D
, Param
, ValidTypes
);
10784 if (getLangOpts().OpenCLCPlusPlus
) {
10785 if (DC
->isRecord()) {
10786 Diag(D
.getIdentifierLoc(), diag::err_method_kernel
);
10787 D
.setInvalidType();
10789 if (FunctionTemplate
) {
10790 Diag(D
.getIdentifierLoc(), diag::err_template_kernel
);
10791 D
.setInvalidType();
10796 if (getLangOpts().CPlusPlus
) {
10797 // Precalculate whether this is a friend function template with a constraint
10798 // that depends on an enclosing template, per [temp.friend]p9.
10799 if (isFriend
&& FunctionTemplate
&&
10800 FriendConstraintsDependOnEnclosingTemplate(NewFD
))
10801 NewFD
->setFriendConstraintRefersToEnclosingTemplate(true);
10803 if (FunctionTemplate
) {
10804 if (NewFD
->isInvalidDecl())
10805 FunctionTemplate
->setInvalidDecl();
10806 return FunctionTemplate
;
10809 if (isMemberSpecialization
&& !NewFD
->isInvalidDecl())
10810 CompleteMemberSpecialization(NewFD
, Previous
);
10813 for (const ParmVarDecl
*Param
: NewFD
->parameters()) {
10814 QualType PT
= Param
->getType();
10816 // OpenCL 2.0 pipe restrictions forbids pipe packet types to be non-value
10818 if (getLangOpts().getOpenCLCompatibleVersion() >= 200) {
10819 if(const PipeType
*PipeTy
= PT
->getAs
<PipeType
>()) {
10820 QualType ElemTy
= PipeTy
->getElementType();
10821 if (ElemTy
->isReferenceType() || ElemTy
->isPointerType()) {
10822 Diag(Param
->getTypeSpecStartLoc(), diag::err_reference_pipe_type
);
10823 D
.setInvalidType();
10827 // WebAssembly tables can't be used as function parameters.
10828 if (Context
.getTargetInfo().getTriple().isWasm()) {
10829 if (PT
->getUnqualifiedDesugaredType()->isWebAssemblyTableType()) {
10830 Diag(Param
->getTypeSpecStartLoc(),
10831 diag::err_wasm_table_as_function_parameter
);
10832 D
.setInvalidType();
10837 // Here we have an function template explicit specialization at class scope.
10838 // The actual specialization will be postponed to template instatiation
10839 // time via the ClassScopeFunctionSpecializationDecl node.
10840 if (isDependentClassScopeExplicitSpecialization
) {
10841 ClassScopeFunctionSpecializationDecl
*NewSpec
=
10842 ClassScopeFunctionSpecializationDecl::Create(
10843 Context
, CurContext
, NewFD
->getLocation(),
10844 cast
<CXXMethodDecl
>(NewFD
),
10845 HasExplicitTemplateArgs
, TemplateArgs
);
10846 CurContext
->addDecl(NewSpec
);
10847 AddToScope
= false;
10850 // Diagnose availability attributes. Availability cannot be used on functions
10851 // that are run during load/unload.
10852 if (const auto *attr
= NewFD
->getAttr
<AvailabilityAttr
>()) {
10853 if (NewFD
->hasAttr
<ConstructorAttr
>()) {
10854 Diag(attr
->getLocation(), diag::warn_availability_on_static_initializer
)
10856 NewFD
->dropAttr
<AvailabilityAttr
>();
10858 if (NewFD
->hasAttr
<DestructorAttr
>()) {
10859 Diag(attr
->getLocation(), diag::warn_availability_on_static_initializer
)
10861 NewFD
->dropAttr
<AvailabilityAttr
>();
10865 // Diagnose no_builtin attribute on function declaration that are not a
10867 // FIXME: We should really be doing this in
10868 // SemaDeclAttr.cpp::handleNoBuiltinAttr, unfortunately we only have access to
10869 // the FunctionDecl and at this point of the code
10870 // FunctionDecl::isThisDeclarationADefinition() which always returns `false`
10871 // because Sema::ActOnStartOfFunctionDef has not been called yet.
10872 if (const auto *NBA
= NewFD
->getAttr
<NoBuiltinAttr
>())
10873 switch (D
.getFunctionDefinitionKind()) {
10874 case FunctionDefinitionKind::Defaulted
:
10875 case FunctionDefinitionKind::Deleted
:
10876 Diag(NBA
->getLocation(),
10877 diag::err_attribute_no_builtin_on_defaulted_deleted_function
)
10878 << NBA
->getSpelling();
10880 case FunctionDefinitionKind::Declaration
:
10881 Diag(NBA
->getLocation(), diag::err_attribute_no_builtin_on_non_definition
)
10882 << NBA
->getSpelling();
10884 case FunctionDefinitionKind::Definition
:
10891 /// Return a CodeSegAttr from a containing class. The Microsoft docs say
10892 /// when __declspec(code_seg) "is applied to a class, all member functions of
10893 /// the class and nested classes -- this includes compiler-generated special
10894 /// member functions -- are put in the specified segment."
10895 /// The actual behavior is a little more complicated. The Microsoft compiler
10896 /// won't check outer classes if there is an active value from #pragma code_seg.
10897 /// The CodeSeg is always applied from the direct parent but only from outer
10898 /// classes when the #pragma code_seg stack is empty. See:
10899 /// https://reviews.llvm.org/D22931, the Microsoft feedback page is no longer
10900 /// available since MS has removed the page.
10901 static Attr
*getImplicitCodeSegAttrFromClass(Sema
&S
, const FunctionDecl
*FD
) {
10902 const auto *Method
= dyn_cast
<CXXMethodDecl
>(FD
);
10905 const CXXRecordDecl
*Parent
= Method
->getParent();
10906 if (const auto *SAttr
= Parent
->getAttr
<CodeSegAttr
>()) {
10907 Attr
*NewAttr
= SAttr
->clone(S
.getASTContext());
10908 NewAttr
->setImplicit(true);
10912 // The Microsoft compiler won't check outer classes for the CodeSeg
10913 // when the #pragma code_seg stack is active.
10914 if (S
.CodeSegStack
.CurrentValue
)
10917 while ((Parent
= dyn_cast
<CXXRecordDecl
>(Parent
->getParent()))) {
10918 if (const auto *SAttr
= Parent
->getAttr
<CodeSegAttr
>()) {
10919 Attr
*NewAttr
= SAttr
->clone(S
.getASTContext());
10920 NewAttr
->setImplicit(true);
10927 /// Returns an implicit CodeSegAttr if a __declspec(code_seg) is found on a
10928 /// containing class. Otherwise it will return implicit SectionAttr if the
10929 /// function is a definition and there is an active value on CodeSegStack
10930 /// (from the current #pragma code-seg value).
10932 /// \param FD Function being declared.
10933 /// \param IsDefinition Whether it is a definition or just a declaration.
10934 /// \returns A CodeSegAttr or SectionAttr to apply to the function or
10935 /// nullptr if no attribute should be added.
10936 Attr
*Sema::getImplicitCodeSegOrSectionAttrForFunction(const FunctionDecl
*FD
,
10937 bool IsDefinition
) {
10938 if (Attr
*A
= getImplicitCodeSegAttrFromClass(*this, FD
))
10940 if (!FD
->hasAttr
<SectionAttr
>() && IsDefinition
&&
10941 CodeSegStack
.CurrentValue
)
10942 return SectionAttr::CreateImplicit(
10943 getASTContext(), CodeSegStack
.CurrentValue
->getString(),
10944 CodeSegStack
.CurrentPragmaLocation
, SectionAttr::Declspec_allocate
);
10948 /// Determines if we can perform a correct type check for \p D as a
10949 /// redeclaration of \p PrevDecl. If not, we can generally still perform a
10950 /// best-effort check.
10952 /// \param NewD The new declaration.
10953 /// \param OldD The old declaration.
10954 /// \param NewT The portion of the type of the new declaration to check.
10955 /// \param OldT The portion of the type of the old declaration to check.
10956 bool Sema::canFullyTypeCheckRedeclaration(ValueDecl
*NewD
, ValueDecl
*OldD
,
10957 QualType NewT
, QualType OldT
) {
10958 if (!NewD
->getLexicalDeclContext()->isDependentContext())
10961 // For dependently-typed local extern declarations and friends, we can't
10962 // perform a correct type check in general until instantiation:
10965 // template<typename T> void g() { T f(); }
10967 // (valid if g() is only instantiated with T = int).
10968 if (NewT
->isDependentType() &&
10969 (NewD
->isLocalExternDecl() || NewD
->getFriendObjectKind()))
10972 // Similarly, if the previous declaration was a dependent local extern
10973 // declaration, we don't really know its type yet.
10974 if (OldT
->isDependentType() && OldD
->isLocalExternDecl())
10980 /// Checks if the new declaration declared in dependent context must be
10981 /// put in the same redeclaration chain as the specified declaration.
10983 /// \param D Declaration that is checked.
10984 /// \param PrevDecl Previous declaration found with proper lookup method for the
10985 /// same declaration name.
10986 /// \returns True if D must be added to the redeclaration chain which PrevDecl
10989 bool Sema::shouldLinkDependentDeclWithPrevious(Decl
*D
, Decl
*PrevDecl
) {
10990 if (!D
->getLexicalDeclContext()->isDependentContext())
10993 // Don't chain dependent friend function definitions until instantiation, to
10994 // permit cases like
10997 // template<typename T> class C1 { friend void func() {} };
10998 // template<typename T> class C2 { friend void func() {} };
11000 // ... which is valid if only one of C1 and C2 is ever instantiated.
11002 // FIXME: This need only apply to function definitions. For now, we proxy
11003 // this by checking for a file-scope function. We do not want this to apply
11004 // to friend declarations nominating member functions, because that gets in
11005 // the way of access checks.
11006 if (D
->getFriendObjectKind() && D
->getDeclContext()->isFileContext())
11009 auto *VD
= dyn_cast
<ValueDecl
>(D
);
11010 auto *PrevVD
= dyn_cast
<ValueDecl
>(PrevDecl
);
11011 return !VD
|| !PrevVD
||
11012 canFullyTypeCheckRedeclaration(VD
, PrevVD
, VD
->getType(),
11013 PrevVD
->getType());
11016 /// Check the target or target_version attribute of the function for
11017 /// MultiVersion validity.
11019 /// Returns true if there was an error, false otherwise.
11020 static bool CheckMultiVersionValue(Sema
&S
, const FunctionDecl
*FD
) {
11021 const auto *TA
= FD
->getAttr
<TargetAttr
>();
11022 const auto *TVA
= FD
->getAttr
<TargetVersionAttr
>();
11025 "MultiVersion candidate requires a target or target_version attribute");
11026 const TargetInfo
&TargetInfo
= S
.Context
.getTargetInfo();
11027 enum ErrType
{ Feature
= 0, Architecture
= 1 };
11030 ParsedTargetAttr ParseInfo
=
11031 S
.getASTContext().getTargetInfo().parseTargetAttr(TA
->getFeaturesStr());
11032 if (!ParseInfo
.CPU
.empty() && !TargetInfo
.validateCpuIs(ParseInfo
.CPU
)) {
11033 S
.Diag(FD
->getLocation(), diag::err_bad_multiversion_option
)
11034 << Architecture
<< ParseInfo
.CPU
;
11037 for (const auto &Feat
: ParseInfo
.Features
) {
11038 auto BareFeat
= StringRef
{Feat
}.substr(1);
11039 if (Feat
[0] == '-') {
11040 S
.Diag(FD
->getLocation(), diag::err_bad_multiversion_option
)
11041 << Feature
<< ("no-" + BareFeat
).str();
11045 if (!TargetInfo
.validateCpuSupports(BareFeat
) ||
11046 !TargetInfo
.isValidFeatureName(BareFeat
)) {
11047 S
.Diag(FD
->getLocation(), diag::err_bad_multiversion_option
)
11048 << Feature
<< BareFeat
;
11055 llvm::SmallVector
<StringRef
, 8> Feats
;
11056 TVA
->getFeatures(Feats
);
11057 for (const auto &Feat
: Feats
) {
11058 if (!TargetInfo
.validateCpuSupports(Feat
)) {
11059 S
.Diag(FD
->getLocation(), diag::err_bad_multiversion_option
)
11060 << Feature
<< Feat
;
11068 // Provide a white-list of attributes that are allowed to be combined with
11069 // multiversion functions.
11070 static bool AttrCompatibleWithMultiVersion(attr::Kind Kind
,
11071 MultiVersionKind MVKind
) {
11072 // Note: this list/diagnosis must match the list in
11073 // checkMultiversionAttributesAllSame.
11078 return MVKind
== MultiVersionKind::Target
;
11079 case attr::NonNull
:
11080 case attr::NoThrow
:
11085 static bool checkNonMultiVersionCompatAttributes(Sema
&S
,
11086 const FunctionDecl
*FD
,
11087 const FunctionDecl
*CausedFD
,
11088 MultiVersionKind MVKind
) {
11089 const auto Diagnose
= [FD
, CausedFD
, MVKind
](Sema
&S
, const Attr
*A
) {
11090 S
.Diag(FD
->getLocation(), diag::err_multiversion_disallowed_other_attr
)
11091 << static_cast<unsigned>(MVKind
) << A
;
11093 S
.Diag(CausedFD
->getLocation(), diag::note_multiversioning_caused_here
);
11097 for (const Attr
*A
: FD
->attrs()) {
11098 switch (A
->getKind()) {
11099 case attr::CPUDispatch
:
11100 case attr::CPUSpecific
:
11101 if (MVKind
!= MultiVersionKind::CPUDispatch
&&
11102 MVKind
!= MultiVersionKind::CPUSpecific
)
11103 return Diagnose(S
, A
);
11106 if (MVKind
!= MultiVersionKind::Target
)
11107 return Diagnose(S
, A
);
11109 case attr::TargetVersion
:
11110 if (MVKind
!= MultiVersionKind::TargetVersion
)
11111 return Diagnose(S
, A
);
11113 case attr::TargetClones
:
11114 if (MVKind
!= MultiVersionKind::TargetClones
)
11115 return Diagnose(S
, A
);
11118 if (!AttrCompatibleWithMultiVersion(A
->getKind(), MVKind
))
11119 return Diagnose(S
, A
);
11126 bool Sema::areMultiversionVariantFunctionsCompatible(
11127 const FunctionDecl
*OldFD
, const FunctionDecl
*NewFD
,
11128 const PartialDiagnostic
&NoProtoDiagID
,
11129 const PartialDiagnosticAt
&NoteCausedDiagIDAt
,
11130 const PartialDiagnosticAt
&NoSupportDiagIDAt
,
11131 const PartialDiagnosticAt
&DiffDiagIDAt
, bool TemplatesSupported
,
11132 bool ConstexprSupported
, bool CLinkageMayDiffer
) {
11133 enum DoesntSupport
{
11140 DefaultedFuncs
= 6,
11141 ConstexprFuncs
= 7,
11142 ConstevalFuncs
= 8,
11151 LanguageLinkage
= 5,
11154 if (NoProtoDiagID
.getDiagID() != 0 && OldFD
&&
11155 !OldFD
->getType()->getAs
<FunctionProtoType
>()) {
11156 Diag(OldFD
->getLocation(), NoProtoDiagID
);
11157 Diag(NoteCausedDiagIDAt
.first
, NoteCausedDiagIDAt
.second
);
11161 if (NoProtoDiagID
.getDiagID() != 0 &&
11162 !NewFD
->getType()->getAs
<FunctionProtoType
>())
11163 return Diag(NewFD
->getLocation(), NoProtoDiagID
);
11165 if (!TemplatesSupported
&&
11166 NewFD
->getTemplatedKind() == FunctionDecl::TK_FunctionTemplate
)
11167 return Diag(NoSupportDiagIDAt
.first
, NoSupportDiagIDAt
.second
)
11170 if (const auto *NewCXXFD
= dyn_cast
<CXXMethodDecl
>(NewFD
)) {
11171 if (NewCXXFD
->isVirtual())
11172 return Diag(NoSupportDiagIDAt
.first
, NoSupportDiagIDAt
.second
)
11175 if (isa
<CXXConstructorDecl
>(NewCXXFD
))
11176 return Diag(NoSupportDiagIDAt
.first
, NoSupportDiagIDAt
.second
)
11179 if (isa
<CXXDestructorDecl
>(NewCXXFD
))
11180 return Diag(NoSupportDiagIDAt
.first
, NoSupportDiagIDAt
.second
)
11184 if (NewFD
->isDeleted())
11185 return Diag(NoSupportDiagIDAt
.first
, NoSupportDiagIDAt
.second
)
11188 if (NewFD
->isDefaulted())
11189 return Diag(NoSupportDiagIDAt
.first
, NoSupportDiagIDAt
.second
)
11192 if (!ConstexprSupported
&& NewFD
->isConstexpr())
11193 return Diag(NoSupportDiagIDAt
.first
, NoSupportDiagIDAt
.second
)
11194 << (NewFD
->isConsteval() ? ConstevalFuncs
: ConstexprFuncs
);
11196 QualType NewQType
= Context
.getCanonicalType(NewFD
->getType());
11197 const auto *NewType
= cast
<FunctionType
>(NewQType
);
11198 QualType NewReturnType
= NewType
->getReturnType();
11200 if (NewReturnType
->isUndeducedType())
11201 return Diag(NoSupportDiagIDAt
.first
, NoSupportDiagIDAt
.second
)
11204 // Ensure the return type is identical.
11206 QualType OldQType
= Context
.getCanonicalType(OldFD
->getType());
11207 const auto *OldType
= cast
<FunctionType
>(OldQType
);
11208 FunctionType::ExtInfo OldTypeInfo
= OldType
->getExtInfo();
11209 FunctionType::ExtInfo NewTypeInfo
= NewType
->getExtInfo();
11211 if (OldTypeInfo
.getCC() != NewTypeInfo
.getCC())
11212 return Diag(DiffDiagIDAt
.first
, DiffDiagIDAt
.second
) << CallingConv
;
11214 QualType OldReturnType
= OldType
->getReturnType();
11216 if (OldReturnType
!= NewReturnType
)
11217 return Diag(DiffDiagIDAt
.first
, DiffDiagIDAt
.second
) << ReturnType
;
11219 if (OldFD
->getConstexprKind() != NewFD
->getConstexprKind())
11220 return Diag(DiffDiagIDAt
.first
, DiffDiagIDAt
.second
) << ConstexprSpec
;
11222 if (OldFD
->isInlineSpecified() != NewFD
->isInlineSpecified())
11223 return Diag(DiffDiagIDAt
.first
, DiffDiagIDAt
.second
) << InlineSpec
;
11225 if (OldFD
->getFormalLinkage() != NewFD
->getFormalLinkage())
11226 return Diag(DiffDiagIDAt
.first
, DiffDiagIDAt
.second
) << Linkage
;
11228 if (!CLinkageMayDiffer
&& OldFD
->isExternC() != NewFD
->isExternC())
11229 return Diag(DiffDiagIDAt
.first
, DiffDiagIDAt
.second
) << LanguageLinkage
;
11231 if (CheckEquivalentExceptionSpec(
11232 OldFD
->getType()->getAs
<FunctionProtoType
>(), OldFD
->getLocation(),
11233 NewFD
->getType()->getAs
<FunctionProtoType
>(), NewFD
->getLocation()))
11239 static bool CheckMultiVersionAdditionalRules(Sema
&S
, const FunctionDecl
*OldFD
,
11240 const FunctionDecl
*NewFD
,
11242 MultiVersionKind MVKind
) {
11243 if (!S
.getASTContext().getTargetInfo().supportsMultiVersioning()) {
11244 S
.Diag(NewFD
->getLocation(), diag::err_multiversion_not_supported
);
11246 S
.Diag(OldFD
->getLocation(), diag::note_previous_declaration
);
11250 bool IsCPUSpecificCPUDispatchMVKind
=
11251 MVKind
== MultiVersionKind::CPUDispatch
||
11252 MVKind
== MultiVersionKind::CPUSpecific
;
11254 if (CausesMV
&& OldFD
&&
11255 checkNonMultiVersionCompatAttributes(S
, OldFD
, NewFD
, MVKind
))
11258 if (checkNonMultiVersionCompatAttributes(S
, NewFD
, nullptr, MVKind
))
11261 // Only allow transition to MultiVersion if it hasn't been used.
11262 if (OldFD
&& CausesMV
&& OldFD
->isUsed(false))
11263 return S
.Diag(NewFD
->getLocation(), diag::err_multiversion_after_used
);
11265 return S
.areMultiversionVariantFunctionsCompatible(
11266 OldFD
, NewFD
, S
.PDiag(diag::err_multiversion_noproto
),
11267 PartialDiagnosticAt(NewFD
->getLocation(),
11268 S
.PDiag(diag::note_multiversioning_caused_here
)),
11269 PartialDiagnosticAt(NewFD
->getLocation(),
11270 S
.PDiag(diag::err_multiversion_doesnt_support
)
11271 << static_cast<unsigned>(MVKind
)),
11272 PartialDiagnosticAt(NewFD
->getLocation(),
11273 S
.PDiag(diag::err_multiversion_diff
)),
11274 /*TemplatesSupported=*/false,
11275 /*ConstexprSupported=*/!IsCPUSpecificCPUDispatchMVKind
,
11276 /*CLinkageMayDiffer=*/false);
11279 /// Check the validity of a multiversion function declaration that is the
11280 /// first of its kind. Also sets the multiversion'ness' of the function itself.
11282 /// This sets NewFD->isInvalidDecl() to true if there was an error.
11284 /// Returns true if there was an error, false otherwise.
11285 static bool CheckMultiVersionFirstFunction(Sema
&S
, FunctionDecl
*FD
) {
11286 MultiVersionKind MVKind
= FD
->getMultiVersionKind();
11287 assert(MVKind
!= MultiVersionKind::None
&&
11288 "Function lacks multiversion attribute");
11289 const auto *TA
= FD
->getAttr
<TargetAttr
>();
11290 const auto *TVA
= FD
->getAttr
<TargetVersionAttr
>();
11291 // Target and target_version only causes MV if it is default, otherwise this
11292 // is a normal function.
11293 if ((TA
&& !TA
->isDefaultVersion()) || (TVA
&& !TVA
->isDefaultVersion()))
11296 if ((TA
|| TVA
) && CheckMultiVersionValue(S
, FD
)) {
11297 FD
->setInvalidDecl();
11301 if (CheckMultiVersionAdditionalRules(S
, nullptr, FD
, true, MVKind
)) {
11302 FD
->setInvalidDecl();
11306 FD
->setIsMultiVersion();
11310 static bool PreviousDeclsHaveMultiVersionAttribute(const FunctionDecl
*FD
) {
11311 for (const Decl
*D
= FD
->getPreviousDecl(); D
; D
= D
->getPreviousDecl()) {
11312 if (D
->getAsFunction()->getMultiVersionKind() != MultiVersionKind::None
)
11319 static bool CheckTargetCausesMultiVersioning(Sema
&S
, FunctionDecl
*OldFD
,
11320 FunctionDecl
*NewFD
,
11321 bool &Redeclaration
,
11322 NamedDecl
*&OldDecl
,
11323 LookupResult
&Previous
) {
11324 const auto *NewTA
= NewFD
->getAttr
<TargetAttr
>();
11325 const auto *NewTVA
= NewFD
->getAttr
<TargetVersionAttr
>();
11326 const auto *OldTA
= OldFD
->getAttr
<TargetAttr
>();
11327 const auto *OldTVA
= OldFD
->getAttr
<TargetVersionAttr
>();
11328 // If the old decl is NOT MultiVersioned yet, and we don't cause that
11329 // to change, this is a simple redeclaration.
11330 if ((NewTA
&& !NewTA
->isDefaultVersion() &&
11331 (!OldTA
|| OldTA
->getFeaturesStr() == NewTA
->getFeaturesStr())) ||
11332 (NewTVA
&& !NewTVA
->isDefaultVersion() &&
11333 (!OldTVA
|| OldTVA
->getName() == NewTVA
->getName())))
11336 // Otherwise, this decl causes MultiVersioning.
11337 if (CheckMultiVersionAdditionalRules(S
, OldFD
, NewFD
, true,
11338 NewTVA
? MultiVersionKind::TargetVersion
11339 : MultiVersionKind::Target
)) {
11340 NewFD
->setInvalidDecl();
11344 if (CheckMultiVersionValue(S
, NewFD
)) {
11345 NewFD
->setInvalidDecl();
11349 // If this is 'default', permit the forward declaration.
11350 if (!OldFD
->isMultiVersion() &&
11351 ((NewTA
&& NewTA
->isDefaultVersion() && !OldTA
) ||
11352 (NewTVA
&& NewTVA
->isDefaultVersion() && !OldTVA
))) {
11353 Redeclaration
= true;
11355 OldFD
->setIsMultiVersion();
11356 NewFD
->setIsMultiVersion();
11360 if (CheckMultiVersionValue(S
, OldFD
)) {
11361 S
.Diag(NewFD
->getLocation(), diag::note_multiversioning_caused_here
);
11362 NewFD
->setInvalidDecl();
11367 ParsedTargetAttr OldParsed
=
11368 S
.getASTContext().getTargetInfo().parseTargetAttr(
11369 OldTA
->getFeaturesStr());
11370 llvm::sort(OldParsed
.Features
);
11371 ParsedTargetAttr NewParsed
=
11372 S
.getASTContext().getTargetInfo().parseTargetAttr(
11373 NewTA
->getFeaturesStr());
11374 // Sort order doesn't matter, it just needs to be consistent.
11375 llvm::sort(NewParsed
.Features
);
11376 if (OldParsed
== NewParsed
) {
11377 S
.Diag(NewFD
->getLocation(), diag::err_multiversion_duplicate
);
11378 S
.Diag(OldFD
->getLocation(), diag::note_previous_declaration
);
11379 NewFD
->setInvalidDecl();
11385 llvm::SmallVector
<StringRef
, 8> Feats
;
11386 OldTVA
->getFeatures(Feats
);
11388 llvm::SmallVector
<StringRef
, 8> NewFeats
;
11389 NewTVA
->getFeatures(NewFeats
);
11390 llvm::sort(NewFeats
);
11392 if (Feats
== NewFeats
) {
11393 S
.Diag(NewFD
->getLocation(), diag::err_multiversion_duplicate
);
11394 S
.Diag(OldFD
->getLocation(), diag::note_previous_declaration
);
11395 NewFD
->setInvalidDecl();
11400 for (const auto *FD
: OldFD
->redecls()) {
11401 const auto *CurTA
= FD
->getAttr
<TargetAttr
>();
11402 const auto *CurTVA
= FD
->getAttr
<TargetVersionAttr
>();
11403 // We allow forward declarations before ANY multiversioning attributes, but
11404 // nothing after the fact.
11405 if (PreviousDeclsHaveMultiVersionAttribute(FD
) &&
11406 ((NewTA
&& (!CurTA
|| CurTA
->isInherited())) ||
11407 (NewTVA
&& (!CurTVA
|| CurTVA
->isInherited())))) {
11408 S
.Diag(FD
->getLocation(), diag::err_multiversion_required_in_redecl
)
11409 << (NewTA
? 0 : 2);
11410 S
.Diag(NewFD
->getLocation(), diag::note_multiversioning_caused_here
);
11411 NewFD
->setInvalidDecl();
11416 OldFD
->setIsMultiVersion();
11417 NewFD
->setIsMultiVersion();
11418 Redeclaration
= false;
11424 static bool MultiVersionTypesCompatible(MultiVersionKind Old
,
11425 MultiVersionKind New
) {
11426 if (Old
== New
|| Old
== MultiVersionKind::None
||
11427 New
== MultiVersionKind::None
)
11430 return (Old
== MultiVersionKind::CPUDispatch
&&
11431 New
== MultiVersionKind::CPUSpecific
) ||
11432 (Old
== MultiVersionKind::CPUSpecific
&&
11433 New
== MultiVersionKind::CPUDispatch
);
11436 /// Check the validity of a new function declaration being added to an existing
11437 /// multiversioned declaration collection.
11438 static bool CheckMultiVersionAdditionalDecl(
11439 Sema
&S
, FunctionDecl
*OldFD
, FunctionDecl
*NewFD
,
11440 MultiVersionKind NewMVKind
, const CPUDispatchAttr
*NewCPUDisp
,
11441 const CPUSpecificAttr
*NewCPUSpec
, const TargetClonesAttr
*NewClones
,
11442 bool &Redeclaration
, NamedDecl
*&OldDecl
, LookupResult
&Previous
) {
11443 const auto *NewTA
= NewFD
->getAttr
<TargetAttr
>();
11444 const auto *NewTVA
= NewFD
->getAttr
<TargetVersionAttr
>();
11445 MultiVersionKind OldMVKind
= OldFD
->getMultiVersionKind();
11446 // Disallow mixing of multiversioning types.
11447 if (!MultiVersionTypesCompatible(OldMVKind
, NewMVKind
)) {
11448 S
.Diag(NewFD
->getLocation(), diag::err_multiversion_types_mixed
);
11449 S
.Diag(OldFD
->getLocation(), diag::note_previous_declaration
);
11450 NewFD
->setInvalidDecl();
11454 ParsedTargetAttr NewParsed
;
11456 NewParsed
= S
.getASTContext().getTargetInfo().parseTargetAttr(
11457 NewTA
->getFeaturesStr());
11458 llvm::sort(NewParsed
.Features
);
11460 llvm::SmallVector
<StringRef
, 8> NewFeats
;
11462 NewTVA
->getFeatures(NewFeats
);
11463 llvm::sort(NewFeats
);
11466 bool UseMemberUsingDeclRules
=
11467 S
.CurContext
->isRecord() && !NewFD
->getFriendObjectKind();
11469 bool MayNeedOverloadableChecks
=
11470 AllowOverloadingOfFunction(Previous
, S
.Context
, NewFD
);
11472 // Next, check ALL non-invalid non-overloads to see if this is a redeclaration
11473 // of a previous member of the MultiVersion set.
11474 for (NamedDecl
*ND
: Previous
) {
11475 FunctionDecl
*CurFD
= ND
->getAsFunction();
11476 if (!CurFD
|| CurFD
->isInvalidDecl())
11478 if (MayNeedOverloadableChecks
&&
11479 S
.IsOverload(NewFD
, CurFD
, UseMemberUsingDeclRules
))
11482 if (NewMVKind
== MultiVersionKind::None
&&
11483 OldMVKind
== MultiVersionKind::TargetVersion
) {
11484 NewFD
->addAttr(TargetVersionAttr::CreateImplicit(
11485 S
.Context
, "default", NewFD
->getSourceRange()));
11486 NewFD
->setIsMultiVersion();
11487 NewMVKind
= MultiVersionKind::TargetVersion
;
11489 NewTVA
= NewFD
->getAttr
<TargetVersionAttr
>();
11490 NewTVA
->getFeatures(NewFeats
);
11491 llvm::sort(NewFeats
);
11495 switch (NewMVKind
) {
11496 case MultiVersionKind::None
:
11497 assert(OldMVKind
== MultiVersionKind::TargetClones
&&
11498 "Only target_clones can be omitted in subsequent declarations");
11500 case MultiVersionKind::Target
: {
11501 const auto *CurTA
= CurFD
->getAttr
<TargetAttr
>();
11502 if (CurTA
->getFeaturesStr() == NewTA
->getFeaturesStr()) {
11503 NewFD
->setIsMultiVersion();
11504 Redeclaration
= true;
11509 ParsedTargetAttr CurParsed
=
11510 S
.getASTContext().getTargetInfo().parseTargetAttr(
11511 CurTA
->getFeaturesStr());
11512 llvm::sort(CurParsed
.Features
);
11513 if (CurParsed
== NewParsed
) {
11514 S
.Diag(NewFD
->getLocation(), diag::err_multiversion_duplicate
);
11515 S
.Diag(CurFD
->getLocation(), diag::note_previous_declaration
);
11516 NewFD
->setInvalidDecl();
11521 case MultiVersionKind::TargetVersion
: {
11522 const auto *CurTVA
= CurFD
->getAttr
<TargetVersionAttr
>();
11523 if (CurTVA
->getName() == NewTVA
->getName()) {
11524 NewFD
->setIsMultiVersion();
11525 Redeclaration
= true;
11529 llvm::SmallVector
<StringRef
, 8> CurFeats
;
11531 CurTVA
->getFeatures(CurFeats
);
11532 llvm::sort(CurFeats
);
11534 if (CurFeats
== NewFeats
) {
11535 S
.Diag(NewFD
->getLocation(), diag::err_multiversion_duplicate
);
11536 S
.Diag(CurFD
->getLocation(), diag::note_previous_declaration
);
11537 NewFD
->setInvalidDecl();
11542 case MultiVersionKind::TargetClones
: {
11543 const auto *CurClones
= CurFD
->getAttr
<TargetClonesAttr
>();
11544 Redeclaration
= true;
11546 NewFD
->setIsMultiVersion();
11548 if (CurClones
&& NewClones
&&
11549 (CurClones
->featuresStrs_size() != NewClones
->featuresStrs_size() ||
11550 !std::equal(CurClones
->featuresStrs_begin(),
11551 CurClones
->featuresStrs_end(),
11552 NewClones
->featuresStrs_begin()))) {
11553 S
.Diag(NewFD
->getLocation(), diag::err_target_clone_doesnt_match
);
11554 S
.Diag(CurFD
->getLocation(), diag::note_previous_declaration
);
11555 NewFD
->setInvalidDecl();
11561 case MultiVersionKind::CPUSpecific
:
11562 case MultiVersionKind::CPUDispatch
: {
11563 const auto *CurCPUSpec
= CurFD
->getAttr
<CPUSpecificAttr
>();
11564 const auto *CurCPUDisp
= CurFD
->getAttr
<CPUDispatchAttr
>();
11565 // Handle CPUDispatch/CPUSpecific versions.
11566 // Only 1 CPUDispatch function is allowed, this will make it go through
11567 // the redeclaration errors.
11568 if (NewMVKind
== MultiVersionKind::CPUDispatch
&&
11569 CurFD
->hasAttr
<CPUDispatchAttr
>()) {
11570 if (CurCPUDisp
->cpus_size() == NewCPUDisp
->cpus_size() &&
11572 CurCPUDisp
->cpus_begin(), CurCPUDisp
->cpus_end(),
11573 NewCPUDisp
->cpus_begin(),
11574 [](const IdentifierInfo
*Cur
, const IdentifierInfo
*New
) {
11575 return Cur
->getName() == New
->getName();
11577 NewFD
->setIsMultiVersion();
11578 Redeclaration
= true;
11583 // If the declarations don't match, this is an error condition.
11584 S
.Diag(NewFD
->getLocation(), diag::err_cpu_dispatch_mismatch
);
11585 S
.Diag(CurFD
->getLocation(), diag::note_previous_declaration
);
11586 NewFD
->setInvalidDecl();
11589 if (NewMVKind
== MultiVersionKind::CPUSpecific
&& CurCPUSpec
) {
11590 if (CurCPUSpec
->cpus_size() == NewCPUSpec
->cpus_size() &&
11592 CurCPUSpec
->cpus_begin(), CurCPUSpec
->cpus_end(),
11593 NewCPUSpec
->cpus_begin(),
11594 [](const IdentifierInfo
*Cur
, const IdentifierInfo
*New
) {
11595 return Cur
->getName() == New
->getName();
11597 NewFD
->setIsMultiVersion();
11598 Redeclaration
= true;
11603 // Only 1 version of CPUSpecific is allowed for each CPU.
11604 for (const IdentifierInfo
*CurII
: CurCPUSpec
->cpus()) {
11605 for (const IdentifierInfo
*NewII
: NewCPUSpec
->cpus()) {
11606 if (CurII
== NewII
) {
11607 S
.Diag(NewFD
->getLocation(), diag::err_cpu_specific_multiple_defs
)
11609 S
.Diag(CurFD
->getLocation(), diag::note_previous_declaration
);
11610 NewFD
->setInvalidDecl();
11621 // Else, this is simply a non-redecl case. Checking the 'value' is only
11622 // necessary in the Target case, since The CPUSpecific/Dispatch cases are
11623 // handled in the attribute adding step.
11624 if ((NewMVKind
== MultiVersionKind::TargetVersion
||
11625 NewMVKind
== MultiVersionKind::Target
) &&
11626 CheckMultiVersionValue(S
, NewFD
)) {
11627 NewFD
->setInvalidDecl();
11631 if (CheckMultiVersionAdditionalRules(S
, OldFD
, NewFD
,
11632 !OldFD
->isMultiVersion(), NewMVKind
)) {
11633 NewFD
->setInvalidDecl();
11637 // Permit forward declarations in the case where these two are compatible.
11638 if (!OldFD
->isMultiVersion()) {
11639 OldFD
->setIsMultiVersion();
11640 NewFD
->setIsMultiVersion();
11641 Redeclaration
= true;
11646 NewFD
->setIsMultiVersion();
11647 Redeclaration
= false;
11653 /// Check the validity of a mulitversion function declaration.
11654 /// Also sets the multiversion'ness' of the function itself.
11656 /// This sets NewFD->isInvalidDecl() to true if there was an error.
11658 /// Returns true if there was an error, false otherwise.
11659 static bool CheckMultiVersionFunction(Sema
&S
, FunctionDecl
*NewFD
,
11660 bool &Redeclaration
, NamedDecl
*&OldDecl
,
11661 LookupResult
&Previous
) {
11662 const auto *NewTA
= NewFD
->getAttr
<TargetAttr
>();
11663 const auto *NewTVA
= NewFD
->getAttr
<TargetVersionAttr
>();
11664 const auto *NewCPUDisp
= NewFD
->getAttr
<CPUDispatchAttr
>();
11665 const auto *NewCPUSpec
= NewFD
->getAttr
<CPUSpecificAttr
>();
11666 const auto *NewClones
= NewFD
->getAttr
<TargetClonesAttr
>();
11667 MultiVersionKind MVKind
= NewFD
->getMultiVersionKind();
11669 // Main isn't allowed to become a multiversion function, however it IS
11670 // permitted to have 'main' be marked with the 'target' optimization hint,
11671 // for 'target_version' only default is allowed.
11672 if (NewFD
->isMain()) {
11673 if (MVKind
!= MultiVersionKind::None
&&
11674 !(MVKind
== MultiVersionKind::Target
&& !NewTA
->isDefaultVersion()) &&
11675 !(MVKind
== MultiVersionKind::TargetVersion
&&
11676 NewTVA
->isDefaultVersion())) {
11677 S
.Diag(NewFD
->getLocation(), diag::err_multiversion_not_allowed_on_main
);
11678 NewFD
->setInvalidDecl();
11684 // Target attribute on AArch64 is not used for multiversioning
11685 if (NewTA
&& S
.getASTContext().getTargetInfo().getTriple().isAArch64())
11688 if (!OldDecl
|| !OldDecl
->getAsFunction() ||
11689 OldDecl
->getDeclContext()->getRedeclContext() !=
11690 NewFD
->getDeclContext()->getRedeclContext()) {
11691 // If there's no previous declaration, AND this isn't attempting to cause
11692 // multiversioning, this isn't an error condition.
11693 if (MVKind
== MultiVersionKind::None
)
11695 return CheckMultiVersionFirstFunction(S
, NewFD
);
11698 FunctionDecl
*OldFD
= OldDecl
->getAsFunction();
11700 if (!OldFD
->isMultiVersion() && MVKind
== MultiVersionKind::None
) {
11701 // No target_version attributes mean default
11703 const auto *OldTVA
= OldFD
->getAttr
<TargetVersionAttr
>();
11705 NewFD
->addAttr(TargetVersionAttr::CreateImplicit(
11706 S
.Context
, "default", NewFD
->getSourceRange()));
11707 NewFD
->setIsMultiVersion();
11708 OldFD
->setIsMultiVersion();
11710 Redeclaration
= true;
11717 // Multiversioned redeclarations aren't allowed to omit the attribute, except
11718 // for target_clones and target_version.
11719 if (OldFD
->isMultiVersion() && MVKind
== MultiVersionKind::None
&&
11720 OldFD
->getMultiVersionKind() != MultiVersionKind::TargetClones
&&
11721 OldFD
->getMultiVersionKind() != MultiVersionKind::TargetVersion
) {
11722 S
.Diag(NewFD
->getLocation(), diag::err_multiversion_required_in_redecl
)
11723 << (OldFD
->getMultiVersionKind() != MultiVersionKind::Target
);
11724 NewFD
->setInvalidDecl();
11728 if (!OldFD
->isMultiVersion()) {
11730 case MultiVersionKind::Target
:
11731 case MultiVersionKind::TargetVersion
:
11732 return CheckTargetCausesMultiVersioning(S
, OldFD
, NewFD
, Redeclaration
,
11733 OldDecl
, Previous
);
11734 case MultiVersionKind::TargetClones
:
11735 if (OldFD
->isUsed(false)) {
11736 NewFD
->setInvalidDecl();
11737 return S
.Diag(NewFD
->getLocation(), diag::err_multiversion_after_used
);
11739 OldFD
->setIsMultiVersion();
11742 case MultiVersionKind::CPUDispatch
:
11743 case MultiVersionKind::CPUSpecific
:
11744 case MultiVersionKind::None
:
11749 // At this point, we have a multiversion function decl (in OldFD) AND an
11750 // appropriate attribute in the current function decl. Resolve that these are
11751 // still compatible with previous declarations.
11752 return CheckMultiVersionAdditionalDecl(S
, OldFD
, NewFD
, MVKind
, NewCPUDisp
,
11753 NewCPUSpec
, NewClones
, Redeclaration
,
11754 OldDecl
, Previous
);
11757 /// Perform semantic checking of a new function declaration.
11759 /// Performs semantic analysis of the new function declaration
11760 /// NewFD. This routine performs all semantic checking that does not
11761 /// require the actual declarator involved in the declaration, and is
11762 /// used both for the declaration of functions as they are parsed
11763 /// (called via ActOnDeclarator) and for the declaration of functions
11764 /// that have been instantiated via C++ template instantiation (called
11765 /// via InstantiateDecl).
11767 /// \param IsMemberSpecialization whether this new function declaration is
11768 /// a member specialization (that replaces any definition provided by the
11769 /// previous declaration).
11771 /// This sets NewFD->isInvalidDecl() to true if there was an error.
11773 /// \returns true if the function declaration is a redeclaration.
11774 bool Sema::CheckFunctionDeclaration(Scope
*S
, FunctionDecl
*NewFD
,
11775 LookupResult
&Previous
,
11776 bool IsMemberSpecialization
,
11778 assert(!NewFD
->getReturnType()->isVariablyModifiedType() &&
11779 "Variably modified return types are not handled here");
11781 // Determine whether the type of this function should be merged with
11782 // a previous visible declaration. This never happens for functions in C++,
11783 // and always happens in C if the previous declaration was visible.
11784 bool MergeTypeWithPrevious
= !getLangOpts().CPlusPlus
&&
11785 !Previous
.isShadowed();
11787 bool Redeclaration
= false;
11788 NamedDecl
*OldDecl
= nullptr;
11789 bool MayNeedOverloadableChecks
= false;
11791 // Merge or overload the declaration with an existing declaration of
11792 // the same name, if appropriate.
11793 if (!Previous
.empty()) {
11794 // Determine whether NewFD is an overload of PrevDecl or
11795 // a declaration that requires merging. If it's an overload,
11796 // there's no more work to do here; we'll just add the new
11797 // function to the scope.
11798 if (!AllowOverloadingOfFunction(Previous
, Context
, NewFD
)) {
11799 NamedDecl
*Candidate
= Previous
.getRepresentativeDecl();
11800 if (shouldLinkPossiblyHiddenDecl(Candidate
, NewFD
)) {
11801 Redeclaration
= true;
11802 OldDecl
= Candidate
;
11805 MayNeedOverloadableChecks
= true;
11806 switch (CheckOverload(S
, NewFD
, Previous
, OldDecl
,
11807 /*NewIsUsingDecl*/ false)) {
11809 Redeclaration
= true;
11812 case Ovl_NonFunction
:
11813 Redeclaration
= true;
11817 Redeclaration
= false;
11823 // Check for a previous extern "C" declaration with this name.
11824 if (!Redeclaration
&&
11825 checkForConflictWithNonVisibleExternC(*this, NewFD
, Previous
)) {
11826 if (!Previous
.empty()) {
11827 // This is an extern "C" declaration with the same name as a previous
11828 // declaration, and thus redeclares that entity...
11829 Redeclaration
= true;
11830 OldDecl
= Previous
.getFoundDecl();
11831 MergeTypeWithPrevious
= false;
11833 // ... except in the presence of __attribute__((overloadable)).
11834 if (OldDecl
->hasAttr
<OverloadableAttr
>() ||
11835 NewFD
->hasAttr
<OverloadableAttr
>()) {
11836 if (IsOverload(NewFD
, cast
<FunctionDecl
>(OldDecl
), false)) {
11837 MayNeedOverloadableChecks
= true;
11838 Redeclaration
= false;
11845 if (CheckMultiVersionFunction(*this, NewFD
, Redeclaration
, OldDecl
, Previous
))
11846 return Redeclaration
;
11848 // PPC MMA non-pointer types are not allowed as function return types.
11849 if (Context
.getTargetInfo().getTriple().isPPC64() &&
11850 CheckPPCMMAType(NewFD
->getReturnType(), NewFD
->getLocation())) {
11851 NewFD
->setInvalidDecl();
11854 // C++11 [dcl.constexpr]p8:
11855 // A constexpr specifier for a non-static member function that is not
11856 // a constructor declares that member function to be const.
11858 // This needs to be delayed until we know whether this is an out-of-line
11859 // definition of a static member function.
11861 // This rule is not present in C++1y, so we produce a backwards
11862 // compatibility warning whenever it happens in C++11.
11863 CXXMethodDecl
*MD
= dyn_cast
<CXXMethodDecl
>(NewFD
);
11864 if (!getLangOpts().CPlusPlus14
&& MD
&& MD
->isConstexpr() &&
11865 !MD
->isStatic() && !isa
<CXXConstructorDecl
>(MD
) &&
11866 !isa
<CXXDestructorDecl
>(MD
) && !MD
->getMethodQualifiers().hasConst()) {
11867 CXXMethodDecl
*OldMD
= nullptr;
11869 OldMD
= dyn_cast_or_null
<CXXMethodDecl
>(OldDecl
->getAsFunction());
11870 if (!OldMD
|| !OldMD
->isStatic()) {
11871 const FunctionProtoType
*FPT
=
11872 MD
->getType()->castAs
<FunctionProtoType
>();
11873 FunctionProtoType::ExtProtoInfo EPI
= FPT
->getExtProtoInfo();
11874 EPI
.TypeQuals
.addConst();
11875 MD
->setType(Context
.getFunctionType(FPT
->getReturnType(),
11876 FPT
->getParamTypes(), EPI
));
11878 // Warn that we did this, if we're not performing template instantiation.
11879 // In that case, we'll have warned already when the template was defined.
11880 if (!inTemplateInstantiation()) {
11881 SourceLocation AddConstLoc
;
11882 if (FunctionTypeLoc FTL
= MD
->getTypeSourceInfo()->getTypeLoc()
11883 .IgnoreParens().getAs
<FunctionTypeLoc
>())
11884 AddConstLoc
= getLocForEndOfToken(FTL
.getRParenLoc());
11886 Diag(MD
->getLocation(), diag::warn_cxx14_compat_constexpr_not_const
)
11887 << FixItHint::CreateInsertion(AddConstLoc
, " const");
11892 if (Redeclaration
) {
11893 // NewFD and OldDecl represent declarations that need to be
11895 if (MergeFunctionDecl(NewFD
, OldDecl
, S
, MergeTypeWithPrevious
,
11897 NewFD
->setInvalidDecl();
11898 return Redeclaration
;
11902 Previous
.addDecl(OldDecl
);
11904 if (FunctionTemplateDecl
*OldTemplateDecl
=
11905 dyn_cast
<FunctionTemplateDecl
>(OldDecl
)) {
11906 auto *OldFD
= OldTemplateDecl
->getTemplatedDecl();
11907 FunctionTemplateDecl
*NewTemplateDecl
11908 = NewFD
->getDescribedFunctionTemplate();
11909 assert(NewTemplateDecl
&& "Template/non-template mismatch");
11911 // The call to MergeFunctionDecl above may have created some state in
11912 // NewTemplateDecl that needs to be merged with OldTemplateDecl before we
11913 // can add it as a redeclaration.
11914 NewTemplateDecl
->mergePrevDecl(OldTemplateDecl
);
11916 NewFD
->setPreviousDeclaration(OldFD
);
11917 if (NewFD
->isCXXClassMember()) {
11918 NewFD
->setAccess(OldTemplateDecl
->getAccess());
11919 NewTemplateDecl
->setAccess(OldTemplateDecl
->getAccess());
11922 // If this is an explicit specialization of a member that is a function
11923 // template, mark it as a member specialization.
11924 if (IsMemberSpecialization
&&
11925 NewTemplateDecl
->getInstantiatedFromMemberTemplate()) {
11926 NewTemplateDecl
->setMemberSpecialization();
11927 assert(OldTemplateDecl
->isMemberSpecialization());
11928 // Explicit specializations of a member template do not inherit deleted
11929 // status from the parent member template that they are specializing.
11930 if (OldFD
->isDeleted()) {
11931 // FIXME: This assert will not hold in the presence of modules.
11932 assert(OldFD
->getCanonicalDecl() == OldFD
);
11933 // FIXME: We need an update record for this AST mutation.
11934 OldFD
->setDeletedAsWritten(false);
11939 if (shouldLinkDependentDeclWithPrevious(NewFD
, OldDecl
)) {
11940 auto *OldFD
= cast
<FunctionDecl
>(OldDecl
);
11941 // This needs to happen first so that 'inline' propagates.
11942 NewFD
->setPreviousDeclaration(OldFD
);
11943 if (NewFD
->isCXXClassMember())
11944 NewFD
->setAccess(OldFD
->getAccess());
11947 } else if (!getLangOpts().CPlusPlus
&& MayNeedOverloadableChecks
&&
11948 !NewFD
->getAttr
<OverloadableAttr
>()) {
11949 assert((Previous
.empty() ||
11950 llvm::any_of(Previous
,
11951 [](const NamedDecl
*ND
) {
11952 return ND
->hasAttr
<OverloadableAttr
>();
11954 "Non-redecls shouldn't happen without overloadable present");
11956 auto OtherUnmarkedIter
= llvm::find_if(Previous
, [](const NamedDecl
*ND
) {
11957 const auto *FD
= dyn_cast
<FunctionDecl
>(ND
);
11958 return FD
&& !FD
->hasAttr
<OverloadableAttr
>();
11961 if (OtherUnmarkedIter
!= Previous
.end()) {
11962 Diag(NewFD
->getLocation(),
11963 diag::err_attribute_overloadable_multiple_unmarked_overloads
);
11964 Diag((*OtherUnmarkedIter
)->getLocation(),
11965 diag::note_attribute_overloadable_prev_overload
)
11968 NewFD
->addAttr(OverloadableAttr::CreateImplicit(Context
));
11972 if (LangOpts
.OpenMP
)
11973 ActOnFinishedFunctionDefinitionInOpenMPAssumeScope(NewFD
);
11975 // Semantic checking for this function declaration (in isolation).
11977 if (getLangOpts().CPlusPlus
) {
11978 // C++-specific checks.
11979 if (CXXConstructorDecl
*Constructor
= dyn_cast
<CXXConstructorDecl
>(NewFD
)) {
11980 CheckConstructor(Constructor
);
11981 } else if (CXXDestructorDecl
*Destructor
=
11982 dyn_cast
<CXXDestructorDecl
>(NewFD
)) {
11983 // We check here for invalid destructor names.
11984 // If we have a friend destructor declaration that is dependent, we can't
11985 // diagnose right away because cases like this are still valid:
11986 // template <class T> struct A { friend T::X::~Y(); };
11987 // struct B { struct Y { ~Y(); }; using X = Y; };
11988 // template struct A<B>;
11989 if (NewFD
->getFriendObjectKind() == Decl::FriendObjectKind::FOK_None
||
11990 !Destructor
->getThisType()->isDependentType()) {
11991 CXXRecordDecl
*Record
= Destructor
->getParent();
11992 QualType ClassType
= Context
.getTypeDeclType(Record
);
11994 DeclarationName Name
= Context
.DeclarationNames
.getCXXDestructorName(
11995 Context
.getCanonicalType(ClassType
));
11996 if (NewFD
->getDeclName() != Name
) {
11997 Diag(NewFD
->getLocation(), diag::err_destructor_name
);
11998 NewFD
->setInvalidDecl();
11999 return Redeclaration
;
12002 } else if (auto *Guide
= dyn_cast
<CXXDeductionGuideDecl
>(NewFD
)) {
12003 if (auto *TD
= Guide
->getDescribedFunctionTemplate())
12004 CheckDeductionGuideTemplate(TD
);
12006 // A deduction guide is not on the list of entities that can be
12007 // explicitly specialized.
12008 if (Guide
->getTemplateSpecializationKind() == TSK_ExplicitSpecialization
)
12009 Diag(Guide
->getBeginLoc(), diag::err_deduction_guide_specialized
)
12010 << /*explicit specialization*/ 1;
12013 // Find any virtual functions that this function overrides.
12014 if (CXXMethodDecl
*Method
= dyn_cast
<CXXMethodDecl
>(NewFD
)) {
12015 if (!Method
->isFunctionTemplateSpecialization() &&
12016 !Method
->getDescribedFunctionTemplate() &&
12017 Method
->isCanonicalDecl()) {
12018 AddOverriddenMethods(Method
->getParent(), Method
);
12020 if (Method
->isVirtual() && NewFD
->getTrailingRequiresClause())
12021 // C++2a [class.virtual]p6
12022 // A virtual method shall not have a requires-clause.
12023 Diag(NewFD
->getTrailingRequiresClause()->getBeginLoc(),
12024 diag::err_constrained_virtual_method
);
12026 if (Method
->isStatic())
12027 checkThisInStaticMemberFunctionType(Method
);
12030 // C++20: dcl.decl.general p4:
12031 // The optional requires-clause ([temp.pre]) in an init-declarator or
12032 // member-declarator shall be present only if the declarator declares a
12033 // templated function ([dcl.fct]).
12034 if (Expr
*TRC
= NewFD
->getTrailingRequiresClause()) {
12036 // An entity is templated if it is
12038 // - an entity defined ([basic.def]) or created ([class.temporary]) in a
12039 // templated entity,
12040 // - a member of a templated entity,
12041 // - an enumerator for an enumeration that is a templated entity, or
12042 // - the closure type of a lambda-expression ([expr.prim.lambda.closure])
12043 // appearing in the declaration of a templated entity. [Note 6: A local
12044 // class, a local or block variable, or a friend function defined in a
12045 // templated entity is a templated entity. — end note]
12047 // A templated function is a function template or a function that is
12048 // templated. A templated class is a class template or a class that is
12049 // templated. A templated variable is a variable template or a variable
12050 // that is templated.
12052 if (!NewFD
->getDescribedFunctionTemplate() && // -a template
12053 // defined... in a templated entity
12054 !(DeclIsDefn
&& NewFD
->isTemplated()) &&
12055 // a member of a templated entity
12056 !(isa
<CXXMethodDecl
>(NewFD
) && NewFD
->isTemplated()) &&
12057 // Don't complain about instantiations, they've already had these
12058 // rules + others enforced.
12059 !NewFD
->isTemplateInstantiation()) {
12060 Diag(TRC
->getBeginLoc(), diag::err_constrained_non_templated_function
);
12064 if (CXXConversionDecl
*Conversion
= dyn_cast
<CXXConversionDecl
>(NewFD
))
12065 ActOnConversionDeclarator(Conversion
);
12067 // Extra checking for C++ overloaded operators (C++ [over.oper]).
12068 if (NewFD
->isOverloadedOperator() &&
12069 CheckOverloadedOperatorDeclaration(NewFD
)) {
12070 NewFD
->setInvalidDecl();
12071 return Redeclaration
;
12074 // Extra checking for C++0x literal operators (C++0x [over.literal]).
12075 if (NewFD
->getLiteralIdentifier() &&
12076 CheckLiteralOperatorDeclaration(NewFD
)) {
12077 NewFD
->setInvalidDecl();
12078 return Redeclaration
;
12081 // In C++, check default arguments now that we have merged decls. Unless
12082 // the lexical context is the class, because in this case this is done
12083 // during delayed parsing anyway.
12084 if (!CurContext
->isRecord())
12085 CheckCXXDefaultArguments(NewFD
);
12087 // If this function is declared as being extern "C", then check to see if
12088 // the function returns a UDT (class, struct, or union type) that is not C
12089 // compatible, and if it does, warn the user.
12090 // But, issue any diagnostic on the first declaration only.
12091 if (Previous
.empty() && NewFD
->isExternC()) {
12092 QualType R
= NewFD
->getReturnType();
12093 if (R
->isIncompleteType() && !R
->isVoidType())
12094 Diag(NewFD
->getLocation(), diag::warn_return_value_udt_incomplete
)
12096 else if (!R
.isPODType(Context
) && !R
->isVoidType() &&
12097 !R
->isObjCObjectPointerType())
12098 Diag(NewFD
->getLocation(), diag::warn_return_value_udt
) << NewFD
<< R
;
12101 // C++1z [dcl.fct]p6:
12102 // [...] whether the function has a non-throwing exception-specification
12103 // [is] part of the function type
12105 // This results in an ABI break between C++14 and C++17 for functions whose
12106 // declared type includes an exception-specification in a parameter or
12107 // return type. (Exception specifications on the function itself are OK in
12108 // most cases, and exception specifications are not permitted in most other
12109 // contexts where they could make it into a mangling.)
12110 if (!getLangOpts().CPlusPlus17
&& !NewFD
->getPrimaryTemplate()) {
12111 auto HasNoexcept
= [&](QualType T
) -> bool {
12112 // Strip off declarator chunks that could be between us and a function
12113 // type. We don't need to look far, exception specifications are very
12114 // restricted prior to C++17.
12115 if (auto *RT
= T
->getAs
<ReferenceType
>())
12116 T
= RT
->getPointeeType();
12117 else if (T
->isAnyPointerType())
12118 T
= T
->getPointeeType();
12119 else if (auto *MPT
= T
->getAs
<MemberPointerType
>())
12120 T
= MPT
->getPointeeType();
12121 if (auto *FPT
= T
->getAs
<FunctionProtoType
>())
12122 if (FPT
->isNothrow())
12127 auto *FPT
= NewFD
->getType()->castAs
<FunctionProtoType
>();
12128 bool AnyNoexcept
= HasNoexcept(FPT
->getReturnType());
12129 for (QualType T
: FPT
->param_types())
12130 AnyNoexcept
|= HasNoexcept(T
);
12132 Diag(NewFD
->getLocation(),
12133 diag::warn_cxx17_compat_exception_spec_in_signature
)
12137 if (!Redeclaration
&& LangOpts
.CUDA
)
12138 checkCUDATargetOverload(NewFD
, Previous
);
12141 // Check if the function definition uses any AArch64 SME features without
12142 // having the '+sme' feature enabled.
12144 bool UsesSM
= NewFD
->hasAttr
<ArmLocallyStreamingAttr
>();
12145 bool UsesZA
= NewFD
->hasAttr
<ArmNewZAAttr
>();
12146 if (const auto *FPT
= NewFD
->getType()->getAs
<FunctionProtoType
>()) {
12147 FunctionProtoType::ExtProtoInfo EPI
= FPT
->getExtProtoInfo();
12149 EPI
.AArch64SMEAttributes
& FunctionType::SME_PStateSMEnabledMask
;
12150 UsesZA
|= EPI
.AArch64SMEAttributes
& FunctionType::SME_PStateZASharedMask
;
12153 if (UsesSM
|| UsesZA
) {
12154 llvm::StringMap
<bool> FeatureMap
;
12155 Context
.getFunctionFeatureMap(FeatureMap
, NewFD
);
12156 if (!FeatureMap
.contains("sme")) {
12158 Diag(NewFD
->getLocation(),
12159 diag::err_sme_definition_using_sm_in_non_sme_target
);
12161 Diag(NewFD
->getLocation(),
12162 diag::err_sme_definition_using_za_in_non_sme_target
);
12167 return Redeclaration
;
12170 void Sema::CheckMain(FunctionDecl
* FD
, const DeclSpec
& DS
) {
12171 // C++11 [basic.start.main]p3:
12172 // A program that [...] declares main to be inline, static or
12173 // constexpr is ill-formed.
12174 // C11 6.7.4p4: In a hosted environment, no function specifier(s) shall
12175 // appear in a declaration of main.
12176 // static main is not an error under C99, but we should warn about it.
12177 // We accept _Noreturn main as an extension.
12178 if (FD
->getStorageClass() == SC_Static
)
12179 Diag(DS
.getStorageClassSpecLoc(), getLangOpts().CPlusPlus
12180 ? diag::err_static_main
: diag::warn_static_main
)
12181 << FixItHint::CreateRemoval(DS
.getStorageClassSpecLoc());
12182 if (FD
->isInlineSpecified())
12183 Diag(DS
.getInlineSpecLoc(), diag::err_inline_main
)
12184 << FixItHint::CreateRemoval(DS
.getInlineSpecLoc());
12185 if (DS
.isNoreturnSpecified()) {
12186 SourceLocation NoreturnLoc
= DS
.getNoreturnSpecLoc();
12187 SourceRange
NoreturnRange(NoreturnLoc
, getLocForEndOfToken(NoreturnLoc
));
12188 Diag(NoreturnLoc
, diag::ext_noreturn_main
);
12189 Diag(NoreturnLoc
, diag::note_main_remove_noreturn
)
12190 << FixItHint::CreateRemoval(NoreturnRange
);
12192 if (FD
->isConstexpr()) {
12193 Diag(DS
.getConstexprSpecLoc(), diag::err_constexpr_main
)
12194 << FD
->isConsteval()
12195 << FixItHint::CreateRemoval(DS
.getConstexprSpecLoc());
12196 FD
->setConstexprKind(ConstexprSpecKind::Unspecified
);
12199 if (getLangOpts().OpenCL
) {
12200 Diag(FD
->getLocation(), diag::err_opencl_no_main
)
12201 << FD
->hasAttr
<OpenCLKernelAttr
>();
12202 FD
->setInvalidDecl();
12206 // Functions named main in hlsl are default entries, but don't have specific
12207 // signatures they are required to conform to.
12208 if (getLangOpts().HLSL
)
12211 QualType T
= FD
->getType();
12212 assert(T
->isFunctionType() && "function decl is not of function type");
12213 const FunctionType
* FT
= T
->castAs
<FunctionType
>();
12215 // Set default calling convention for main()
12216 if (FT
->getCallConv() != CC_C
) {
12217 FT
= Context
.adjustFunctionType(FT
, FT
->getExtInfo().withCallingConv(CC_C
));
12218 FD
->setType(QualType(FT
, 0));
12219 T
= Context
.getCanonicalType(FD
->getType());
12222 if (getLangOpts().GNUMode
&& !getLangOpts().CPlusPlus
) {
12223 // In C with GNU extensions we allow main() to have non-integer return
12224 // type, but we should warn about the extension, and we disable the
12225 // implicit-return-zero rule.
12227 // GCC in C mode accepts qualified 'int'.
12228 if (Context
.hasSameUnqualifiedType(FT
->getReturnType(), Context
.IntTy
))
12229 FD
->setHasImplicitReturnZero(true);
12231 Diag(FD
->getTypeSpecStartLoc(), diag::ext_main_returns_nonint
);
12232 SourceRange RTRange
= FD
->getReturnTypeSourceRange();
12233 if (RTRange
.isValid())
12234 Diag(RTRange
.getBegin(), diag::note_main_change_return_type
)
12235 << FixItHint::CreateReplacement(RTRange
, "int");
12238 // In C and C++, main magically returns 0 if you fall off the end;
12239 // set the flag which tells us that.
12240 // This is C++ [basic.start.main]p5 and C99 5.1.2.2.3.
12242 // All the standards say that main() should return 'int'.
12243 if (Context
.hasSameType(FT
->getReturnType(), Context
.IntTy
))
12244 FD
->setHasImplicitReturnZero(true);
12246 // Otherwise, this is just a flat-out error.
12247 SourceRange RTRange
= FD
->getReturnTypeSourceRange();
12248 Diag(FD
->getTypeSpecStartLoc(), diag::err_main_returns_nonint
)
12249 << (RTRange
.isValid() ? FixItHint::CreateReplacement(RTRange
, "int")
12251 FD
->setInvalidDecl(true);
12255 // Treat protoless main() as nullary.
12256 if (isa
<FunctionNoProtoType
>(FT
)) return;
12258 const FunctionProtoType
* FTP
= cast
<const FunctionProtoType
>(FT
);
12259 unsigned nparams
= FTP
->getNumParams();
12260 assert(FD
->getNumParams() == nparams
);
12262 bool HasExtraParameters
= (nparams
> 3);
12264 if (FTP
->isVariadic()) {
12265 Diag(FD
->getLocation(), diag::ext_variadic_main
);
12266 // FIXME: if we had information about the location of the ellipsis, we
12267 // could add a FixIt hint to remove it as a parameter.
12270 // Darwin passes an undocumented fourth argument of type char**. If
12271 // other platforms start sprouting these, the logic below will start
12273 if (nparams
== 4 && Context
.getTargetInfo().getTriple().isOSDarwin())
12274 HasExtraParameters
= false;
12276 if (HasExtraParameters
) {
12277 Diag(FD
->getLocation(), diag::err_main_surplus_args
) << nparams
;
12278 FD
->setInvalidDecl(true);
12282 // FIXME: a lot of the following diagnostics would be improved
12283 // if we had some location information about types.
12286 Context
.getPointerType(Context
.getPointerType(Context
.CharTy
));
12287 QualType Expected
[] = { Context
.IntTy
, CharPP
, CharPP
, CharPP
};
12289 for (unsigned i
= 0; i
< nparams
; ++i
) {
12290 QualType AT
= FTP
->getParamType(i
);
12292 bool mismatch
= true;
12294 if (Context
.hasSameUnqualifiedType(AT
, Expected
[i
]))
12296 else if (Expected
[i
] == CharPP
) {
12297 // As an extension, the following forms are okay:
12299 // char const * const *
12302 QualifierCollector qs
;
12303 const PointerType
* PT
;
12304 if ((PT
= qs
.strip(AT
)->getAs
<PointerType
>()) &&
12305 (PT
= qs
.strip(PT
->getPointeeType())->getAs
<PointerType
>()) &&
12306 Context
.hasSameType(QualType(qs
.strip(PT
->getPointeeType()), 0),
12309 mismatch
= !qs
.empty();
12314 Diag(FD
->getLocation(), diag::err_main_arg_wrong
) << i
<< Expected
[i
];
12315 // TODO: suggest replacing given type with expected type
12316 FD
->setInvalidDecl(true);
12320 if (nparams
== 1 && !FD
->isInvalidDecl()) {
12321 Diag(FD
->getLocation(), diag::warn_main_one_arg
);
12324 if (!FD
->isInvalidDecl() && FD
->getDescribedFunctionTemplate()) {
12325 Diag(FD
->getLocation(), diag::err_mainlike_template_decl
) << FD
;
12326 FD
->setInvalidDecl();
12330 static bool isDefaultStdCall(FunctionDecl
*FD
, Sema
&S
) {
12332 // Default calling convention for main and wmain is __cdecl
12333 if (FD
->getName() == "main" || FD
->getName() == "wmain")
12336 // Default calling convention for MinGW is __cdecl
12337 const llvm::Triple
&T
= S
.Context
.getTargetInfo().getTriple();
12338 if (T
.isWindowsGNUEnvironment())
12341 // Default calling convention for WinMain, wWinMain and DllMain
12342 // is __stdcall on 32 bit Windows
12343 if (T
.isOSWindows() && T
.getArch() == llvm::Triple::x86
)
12349 void Sema::CheckMSVCRTEntryPoint(FunctionDecl
*FD
) {
12350 QualType T
= FD
->getType();
12351 assert(T
->isFunctionType() && "function decl is not of function type");
12352 const FunctionType
*FT
= T
->castAs
<FunctionType
>();
12354 // Set an implicit return of 'zero' if the function can return some integral,
12355 // enumeration, pointer or nullptr type.
12356 if (FT
->getReturnType()->isIntegralOrEnumerationType() ||
12357 FT
->getReturnType()->isAnyPointerType() ||
12358 FT
->getReturnType()->isNullPtrType())
12359 // DllMain is exempt because a return value of zero means it failed.
12360 if (FD
->getName() != "DllMain")
12361 FD
->setHasImplicitReturnZero(true);
12363 // Explicity specified calling conventions are applied to MSVC entry points
12364 if (!hasExplicitCallingConv(T
)) {
12365 if (isDefaultStdCall(FD
, *this)) {
12366 if (FT
->getCallConv() != CC_X86StdCall
) {
12367 FT
= Context
.adjustFunctionType(
12368 FT
, FT
->getExtInfo().withCallingConv(CC_X86StdCall
));
12369 FD
->setType(QualType(FT
, 0));
12371 } else if (FT
->getCallConv() != CC_C
) {
12372 FT
= Context
.adjustFunctionType(FT
,
12373 FT
->getExtInfo().withCallingConv(CC_C
));
12374 FD
->setType(QualType(FT
, 0));
12378 if (!FD
->isInvalidDecl() && FD
->getDescribedFunctionTemplate()) {
12379 Diag(FD
->getLocation(), diag::err_mainlike_template_decl
) << FD
;
12380 FD
->setInvalidDecl();
12384 void Sema::CheckHLSLEntryPoint(FunctionDecl
*FD
) {
12385 auto &TargetInfo
= getASTContext().getTargetInfo();
12386 auto const Triple
= TargetInfo
.getTriple();
12387 switch (Triple
.getEnvironment()) {
12389 // FIXME: check all shader profiles.
12391 case llvm::Triple::EnvironmentType::Compute
:
12392 if (!FD
->hasAttr
<HLSLNumThreadsAttr
>()) {
12393 Diag(FD
->getLocation(), diag::err_hlsl_missing_numthreads
)
12394 << Triple
.getEnvironmentName();
12395 FD
->setInvalidDecl();
12400 for (const auto *Param
: FD
->parameters()) {
12401 if (!Param
->hasAttr
<HLSLAnnotationAttr
>()) {
12402 // FIXME: Handle struct parameters where annotations are on struct fields.
12403 // See: https://github.com/llvm/llvm-project/issues/57875
12404 Diag(FD
->getLocation(), diag::err_hlsl_missing_semantic_annotation
);
12405 Diag(Param
->getLocation(), diag::note_previous_decl
) << Param
;
12406 FD
->setInvalidDecl();
12409 // FIXME: Verify return type semantic annotation.
12412 bool Sema::CheckForConstantInitializer(Expr
*Init
, QualType DclT
) {
12413 // FIXME: Need strict checking. In C89, we need to check for
12414 // any assignment, increment, decrement, function-calls, or
12415 // commas outside of a sizeof. In C99, it's the same list,
12416 // except that the aforementioned are allowed in unevaluated
12417 // expressions. Everything else falls under the
12418 // "may accept other forms of constant expressions" exception.
12420 // Regular C++ code will not end up here (exceptions: language extensions,
12421 // OpenCL C++ etc), so the constant expression rules there don't matter.
12422 if (Init
->isValueDependent()) {
12423 assert(Init
->containsErrors() &&
12424 "Dependent code should only occur in error-recovery path.");
12427 const Expr
*Culprit
;
12428 if (Init
->isConstantInitializer(Context
, false, &Culprit
))
12430 Diag(Culprit
->getExprLoc(), diag::err_init_element_not_constant
)
12431 << Culprit
->getSourceRange();
12436 // Visits an initialization expression to see if OrigDecl is evaluated in
12437 // its own initialization and throws a warning if it does.
12438 class SelfReferenceChecker
12439 : public EvaluatedExprVisitor
<SelfReferenceChecker
> {
12444 bool isReferenceType
;
12447 llvm::SmallVector
<unsigned, 4> InitFieldIndex
;
12450 typedef EvaluatedExprVisitor
<SelfReferenceChecker
> Inherited
;
12452 SelfReferenceChecker(Sema
&S
, Decl
*OrigDecl
) : Inherited(S
.Context
),
12453 S(S
), OrigDecl(OrigDecl
) {
12455 isRecordType
= false;
12456 isReferenceType
= false;
12457 isInitList
= false;
12458 if (ValueDecl
*VD
= dyn_cast
<ValueDecl
>(OrigDecl
)) {
12459 isPODType
= VD
->getType().isPODType(S
.Context
);
12460 isRecordType
= VD
->getType()->isRecordType();
12461 isReferenceType
= VD
->getType()->isReferenceType();
12465 // For most expressions, just call the visitor. For initializer lists,
12466 // track the index of the field being initialized since fields are
12467 // initialized in order allowing use of previously initialized fields.
12468 void CheckExpr(Expr
*E
) {
12469 InitListExpr
*InitList
= dyn_cast
<InitListExpr
>(E
);
12475 // Track and increment the index here.
12477 InitFieldIndex
.push_back(0);
12478 for (auto *Child
: InitList
->children()) {
12479 CheckExpr(cast
<Expr
>(Child
));
12480 ++InitFieldIndex
.back();
12482 InitFieldIndex
.pop_back();
12485 // Returns true if MemberExpr is checked and no further checking is needed.
12486 // Returns false if additional checking is required.
12487 bool CheckInitListMemberExpr(MemberExpr
*E
, bool CheckReference
) {
12488 llvm::SmallVector
<FieldDecl
*, 4> Fields
;
12490 bool ReferenceField
= false;
12492 // Get the field members used.
12493 while (MemberExpr
*ME
= dyn_cast
<MemberExpr
>(Base
)) {
12494 FieldDecl
*FD
= dyn_cast
<FieldDecl
>(ME
->getMemberDecl());
12497 Fields
.push_back(FD
);
12498 if (FD
->getType()->isReferenceType())
12499 ReferenceField
= true;
12500 Base
= ME
->getBase()->IgnoreParenImpCasts();
12503 // Keep checking only if the base Decl is the same.
12504 DeclRefExpr
*DRE
= dyn_cast
<DeclRefExpr
>(Base
);
12505 if (!DRE
|| DRE
->getDecl() != OrigDecl
)
12508 // A reference field can be bound to an unininitialized field.
12509 if (CheckReference
&& !ReferenceField
)
12512 // Convert FieldDecls to their index number.
12513 llvm::SmallVector
<unsigned, 4> UsedFieldIndex
;
12514 for (const FieldDecl
*I
: llvm::reverse(Fields
))
12515 UsedFieldIndex
.push_back(I
->getFieldIndex());
12517 // See if a warning is needed by checking the first difference in index
12518 // numbers. If field being used has index less than the field being
12519 // initialized, then the use is safe.
12520 for (auto UsedIter
= UsedFieldIndex
.begin(),
12521 UsedEnd
= UsedFieldIndex
.end(),
12522 OrigIter
= InitFieldIndex
.begin(),
12523 OrigEnd
= InitFieldIndex
.end();
12524 UsedIter
!= UsedEnd
&& OrigIter
!= OrigEnd
; ++UsedIter
, ++OrigIter
) {
12525 if (*UsedIter
< *OrigIter
)
12527 if (*UsedIter
> *OrigIter
)
12531 // TODO: Add a different warning which will print the field names.
12532 HandleDeclRefExpr(DRE
);
12536 // For most expressions, the cast is directly above the DeclRefExpr.
12537 // For conditional operators, the cast can be outside the conditional
12538 // operator if both expressions are DeclRefExpr's.
12539 void HandleValue(Expr
*E
) {
12540 E
= E
->IgnoreParens();
12541 if (DeclRefExpr
* DRE
= dyn_cast
<DeclRefExpr
>(E
)) {
12542 HandleDeclRefExpr(DRE
);
12546 if (ConditionalOperator
*CO
= dyn_cast
<ConditionalOperator
>(E
)) {
12547 Visit(CO
->getCond());
12548 HandleValue(CO
->getTrueExpr());
12549 HandleValue(CO
->getFalseExpr());
12553 if (BinaryConditionalOperator
*BCO
=
12554 dyn_cast
<BinaryConditionalOperator
>(E
)) {
12555 Visit(BCO
->getCond());
12556 HandleValue(BCO
->getFalseExpr());
12560 if (OpaqueValueExpr
*OVE
= dyn_cast
<OpaqueValueExpr
>(E
)) {
12561 HandleValue(OVE
->getSourceExpr());
12565 if (BinaryOperator
*BO
= dyn_cast
<BinaryOperator
>(E
)) {
12566 if (BO
->getOpcode() == BO_Comma
) {
12567 Visit(BO
->getLHS());
12568 HandleValue(BO
->getRHS());
12573 if (isa
<MemberExpr
>(E
)) {
12575 if (CheckInitListMemberExpr(cast
<MemberExpr
>(E
),
12576 false /*CheckReference*/))
12580 Expr
*Base
= E
->IgnoreParenImpCasts();
12581 while (MemberExpr
*ME
= dyn_cast
<MemberExpr
>(Base
)) {
12582 // Check for static member variables and don't warn on them.
12583 if (!isa
<FieldDecl
>(ME
->getMemberDecl()))
12585 Base
= ME
->getBase()->IgnoreParenImpCasts();
12587 if (DeclRefExpr
*DRE
= dyn_cast
<DeclRefExpr
>(Base
))
12588 HandleDeclRefExpr(DRE
);
12595 // Reference types not handled in HandleValue are handled here since all
12596 // uses of references are bad, not just r-value uses.
12597 void VisitDeclRefExpr(DeclRefExpr
*E
) {
12598 if (isReferenceType
)
12599 HandleDeclRefExpr(E
);
12602 void VisitImplicitCastExpr(ImplicitCastExpr
*E
) {
12603 if (E
->getCastKind() == CK_LValueToRValue
) {
12604 HandleValue(E
->getSubExpr());
12608 Inherited::VisitImplicitCastExpr(E
);
12611 void VisitMemberExpr(MemberExpr
*E
) {
12613 if (CheckInitListMemberExpr(E
, true /*CheckReference*/))
12617 // Don't warn on arrays since they can be treated as pointers.
12618 if (E
->getType()->canDecayToPointerType()) return;
12620 // Warn when a non-static method call is followed by non-static member
12621 // field accesses, which is followed by a DeclRefExpr.
12622 CXXMethodDecl
*MD
= dyn_cast
<CXXMethodDecl
>(E
->getMemberDecl());
12623 bool Warn
= (MD
&& !MD
->isStatic());
12624 Expr
*Base
= E
->getBase()->IgnoreParenImpCasts();
12625 while (MemberExpr
*ME
= dyn_cast
<MemberExpr
>(Base
)) {
12626 if (!isa
<FieldDecl
>(ME
->getMemberDecl()))
12628 Base
= ME
->getBase()->IgnoreParenImpCasts();
12631 if (DeclRefExpr
*DRE
= dyn_cast
<DeclRefExpr
>(Base
)) {
12633 HandleDeclRefExpr(DRE
);
12637 // The base of a MemberExpr is not a MemberExpr or a DeclRefExpr.
12638 // Visit that expression.
12642 void VisitCXXOperatorCallExpr(CXXOperatorCallExpr
*E
) {
12643 Expr
*Callee
= E
->getCallee();
12645 if (isa
<UnresolvedLookupExpr
>(Callee
))
12646 return Inherited::VisitCXXOperatorCallExpr(E
);
12649 for (auto Arg
: E
->arguments())
12650 HandleValue(Arg
->IgnoreParenImpCasts());
12653 void VisitUnaryOperator(UnaryOperator
*E
) {
12654 // For POD record types, addresses of its own members are well-defined.
12655 if (E
->getOpcode() == UO_AddrOf
&& isRecordType
&&
12656 isa
<MemberExpr
>(E
->getSubExpr()->IgnoreParens())) {
12658 HandleValue(E
->getSubExpr());
12662 if (E
->isIncrementDecrementOp()) {
12663 HandleValue(E
->getSubExpr());
12667 Inherited::VisitUnaryOperator(E
);
12670 void VisitObjCMessageExpr(ObjCMessageExpr
*E
) {}
12672 void VisitCXXConstructExpr(CXXConstructExpr
*E
) {
12673 if (E
->getConstructor()->isCopyConstructor()) {
12674 Expr
*ArgExpr
= E
->getArg(0);
12675 if (InitListExpr
*ILE
= dyn_cast
<InitListExpr
>(ArgExpr
))
12676 if (ILE
->getNumInits() == 1)
12677 ArgExpr
= ILE
->getInit(0);
12678 if (ImplicitCastExpr
*ICE
= dyn_cast
<ImplicitCastExpr
>(ArgExpr
))
12679 if (ICE
->getCastKind() == CK_NoOp
)
12680 ArgExpr
= ICE
->getSubExpr();
12681 HandleValue(ArgExpr
);
12684 Inherited::VisitCXXConstructExpr(E
);
12687 void VisitCallExpr(CallExpr
*E
) {
12688 // Treat std::move as a use.
12689 if (E
->isCallToStdMove()) {
12690 HandleValue(E
->getArg(0));
12694 Inherited::VisitCallExpr(E
);
12697 void VisitBinaryOperator(BinaryOperator
*E
) {
12698 if (E
->isCompoundAssignmentOp()) {
12699 HandleValue(E
->getLHS());
12700 Visit(E
->getRHS());
12704 Inherited::VisitBinaryOperator(E
);
12707 // A custom visitor for BinaryConditionalOperator is needed because the
12708 // regular visitor would check the condition and true expression separately
12709 // but both point to the same place giving duplicate diagnostics.
12710 void VisitBinaryConditionalOperator(BinaryConditionalOperator
*E
) {
12711 Visit(E
->getCond());
12712 Visit(E
->getFalseExpr());
12715 void HandleDeclRefExpr(DeclRefExpr
*DRE
) {
12716 Decl
* ReferenceDecl
= DRE
->getDecl();
12717 if (OrigDecl
!= ReferenceDecl
) return;
12719 if (isReferenceType
) {
12720 diag
= diag::warn_uninit_self_reference_in_reference_init
;
12721 } else if (cast
<VarDecl
>(OrigDecl
)->isStaticLocal()) {
12722 diag
= diag::warn_static_self_reference_in_init
;
12723 } else if (isa
<TranslationUnitDecl
>(OrigDecl
->getDeclContext()) ||
12724 isa
<NamespaceDecl
>(OrigDecl
->getDeclContext()) ||
12725 DRE
->getDecl()->getType()->isRecordType()) {
12726 diag
= diag::warn_uninit_self_reference_in_init
;
12728 // Local variables will be handled by the CFG analysis.
12732 S
.DiagRuntimeBehavior(DRE
->getBeginLoc(), DRE
,
12734 << DRE
->getDecl() << OrigDecl
->getLocation()
12735 << DRE
->getSourceRange());
12739 /// CheckSelfReference - Warns if OrigDecl is used in expression E.
12740 static void CheckSelfReference(Sema
&S
, Decl
* OrigDecl
, Expr
*E
,
12742 // Parameters arguments are occassionially constructed with itself,
12743 // for instance, in recursive functions. Skip them.
12744 if (isa
<ParmVarDecl
>(OrigDecl
))
12747 E
= E
->IgnoreParens();
12749 // Skip checking T a = a where T is not a record or reference type.
12750 // Doing so is a way to silence uninitialized warnings.
12751 if (!DirectInit
&& !cast
<VarDecl
>(OrigDecl
)->getType()->isRecordType())
12752 if (ImplicitCastExpr
*ICE
= dyn_cast
<ImplicitCastExpr
>(E
))
12753 if (ICE
->getCastKind() == CK_LValueToRValue
)
12754 if (DeclRefExpr
*DRE
= dyn_cast
<DeclRefExpr
>(ICE
->getSubExpr()))
12755 if (DRE
->getDecl() == OrigDecl
)
12758 SelfReferenceChecker(S
, OrigDecl
).CheckExpr(E
);
12760 } // end anonymous namespace
12763 // Simple wrapper to add the name of a variable or (if no variable is
12764 // available) a DeclarationName into a diagnostic.
12765 struct VarDeclOrName
{
12767 DeclarationName Name
;
12769 friend const Sema::SemaDiagnosticBuilder
&
12770 operator<<(const Sema::SemaDiagnosticBuilder
&Diag
, VarDeclOrName VN
) {
12771 return VN
.VDecl
? Diag
<< VN
.VDecl
: Diag
<< VN
.Name
;
12774 } // end anonymous namespace
12776 QualType
Sema::deduceVarTypeFromInitializer(VarDecl
*VDecl
,
12777 DeclarationName Name
, QualType Type
,
12778 TypeSourceInfo
*TSI
,
12779 SourceRange Range
, bool DirectInit
,
12781 bool IsInitCapture
= !VDecl
;
12782 assert((!VDecl
|| !VDecl
->isInitCapture()) &&
12783 "init captures are expected to be deduced prior to initialization");
12785 VarDeclOrName VN
{VDecl
, Name
};
12787 DeducedType
*Deduced
= Type
->getContainedDeducedType();
12788 assert(Deduced
&& "deduceVarTypeFromInitializer for non-deduced type");
12790 // C++11 [dcl.spec.auto]p3
12792 assert(VDecl
&& "no init for init capture deduction?");
12794 // Except for class argument deduction, and then for an initializing
12795 // declaration only, i.e. no static at class scope or extern.
12796 if (!isa
<DeducedTemplateSpecializationType
>(Deduced
) ||
12797 VDecl
->hasExternalStorage() ||
12798 VDecl
->isStaticDataMember()) {
12799 Diag(VDecl
->getLocation(), diag::err_auto_var_requires_init
)
12800 << VDecl
->getDeclName() << Type
;
12805 ArrayRef
<Expr
*> DeduceInits
;
12807 DeduceInits
= Init
;
12809 auto *PL
= dyn_cast_if_present
<ParenListExpr
>(Init
);
12810 if (DirectInit
&& PL
)
12811 DeduceInits
= PL
->exprs();
12813 if (isa
<DeducedTemplateSpecializationType
>(Deduced
)) {
12814 assert(VDecl
&& "non-auto type for init capture deduction?");
12815 InitializedEntity Entity
= InitializedEntity::InitializeVariable(VDecl
);
12816 InitializationKind Kind
= InitializationKind::CreateForInit(
12817 VDecl
->getLocation(), DirectInit
, Init
);
12818 // FIXME: Initialization should not be taking a mutable list of inits.
12819 SmallVector
<Expr
*, 8> InitsCopy(DeduceInits
.begin(), DeduceInits
.end());
12820 return DeduceTemplateSpecializationFromInitializer(TSI
, Entity
, Kind
,
12825 if (auto *IL
= dyn_cast
<InitListExpr
>(Init
))
12826 DeduceInits
= IL
->inits();
12829 // Deduction only works if we have exactly one source expression.
12830 if (DeduceInits
.empty()) {
12831 // It isn't possible to write this directly, but it is possible to
12832 // end up in this situation with "auto x(some_pack...);"
12833 Diag(Init
->getBeginLoc(), IsInitCapture
12834 ? diag::err_init_capture_no_expression
12835 : diag::err_auto_var_init_no_expression
)
12836 << VN
<< Type
<< Range
;
12840 if (DeduceInits
.size() > 1) {
12841 Diag(DeduceInits
[1]->getBeginLoc(),
12842 IsInitCapture
? diag::err_init_capture_multiple_expressions
12843 : diag::err_auto_var_init_multiple_expressions
)
12844 << VN
<< Type
<< Range
;
12848 Expr
*DeduceInit
= DeduceInits
[0];
12849 if (DirectInit
&& isa
<InitListExpr
>(DeduceInit
)) {
12850 Diag(Init
->getBeginLoc(), IsInitCapture
12851 ? diag::err_init_capture_paren_braces
12852 : diag::err_auto_var_init_paren_braces
)
12853 << isa
<InitListExpr
>(Init
) << VN
<< Type
<< Range
;
12857 // Expressions default to 'id' when we're in a debugger.
12858 bool DefaultedAnyToId
= false;
12859 if (getLangOpts().DebuggerCastResultToId
&&
12860 Init
->getType() == Context
.UnknownAnyTy
&& !IsInitCapture
) {
12861 ExprResult Result
= forceUnknownAnyToType(Init
, Context
.getObjCIdType());
12862 if (Result
.isInvalid()) {
12865 Init
= Result
.get();
12866 DefaultedAnyToId
= true;
12869 // C++ [dcl.decomp]p1:
12870 // If the assignment-expression [...] has array type A and no ref-qualifier
12871 // is present, e has type cv A
12872 if (VDecl
&& isa
<DecompositionDecl
>(VDecl
) &&
12873 Context
.hasSameUnqualifiedType(Type
, Context
.getAutoDeductType()) &&
12874 DeduceInit
->getType()->isConstantArrayType())
12875 return Context
.getQualifiedType(DeduceInit
->getType(),
12876 Type
.getQualifiers());
12878 QualType DeducedType
;
12879 TemplateDeductionInfo
Info(DeduceInit
->getExprLoc());
12880 TemplateDeductionResult Result
=
12881 DeduceAutoType(TSI
->getTypeLoc(), DeduceInit
, DeducedType
, Info
);
12882 if (Result
!= TDK_Success
&& Result
!= TDK_AlreadyDiagnosed
) {
12883 if (!IsInitCapture
)
12884 DiagnoseAutoDeductionFailure(VDecl
, DeduceInit
);
12885 else if (isa
<InitListExpr
>(Init
))
12886 Diag(Range
.getBegin(),
12887 diag::err_init_capture_deduction_failure_from_init_list
)
12889 << (DeduceInit
->getType().isNull() ? TSI
->getType()
12890 : DeduceInit
->getType())
12891 << DeduceInit
->getSourceRange();
12893 Diag(Range
.getBegin(), diag::err_init_capture_deduction_failure
)
12894 << VN
<< TSI
->getType()
12895 << (DeduceInit
->getType().isNull() ? TSI
->getType()
12896 : DeduceInit
->getType())
12897 << DeduceInit
->getSourceRange();
12900 // Warn if we deduced 'id'. 'auto' usually implies type-safety, but using
12901 // 'id' instead of a specific object type prevents most of our usual
12903 // We only want to warn outside of template instantiations, though:
12904 // inside a template, the 'id' could have come from a parameter.
12905 if (!inTemplateInstantiation() && !DefaultedAnyToId
&& !IsInitCapture
&&
12906 !DeducedType
.isNull() && DeducedType
->isObjCIdType()) {
12907 SourceLocation Loc
= TSI
->getTypeLoc().getBeginLoc();
12908 Diag(Loc
, diag::warn_auto_var_is_id
) << VN
<< Range
;
12911 return DeducedType
;
12914 bool Sema::DeduceVariableDeclarationType(VarDecl
*VDecl
, bool DirectInit
,
12916 assert(!Init
|| !Init
->containsErrors());
12917 QualType DeducedType
= deduceVarTypeFromInitializer(
12918 VDecl
, VDecl
->getDeclName(), VDecl
->getType(), VDecl
->getTypeSourceInfo(),
12919 VDecl
->getSourceRange(), DirectInit
, Init
);
12920 if (DeducedType
.isNull()) {
12921 VDecl
->setInvalidDecl();
12925 VDecl
->setType(DeducedType
);
12926 assert(VDecl
->isLinkageValid());
12928 // In ARC, infer lifetime.
12929 if (getLangOpts().ObjCAutoRefCount
&& inferObjCARCLifetime(VDecl
))
12930 VDecl
->setInvalidDecl();
12932 if (getLangOpts().OpenCL
)
12933 deduceOpenCLAddressSpace(VDecl
);
12935 // If this is a redeclaration, check that the type we just deduced matches
12936 // the previously declared type.
12937 if (VarDecl
*Old
= VDecl
->getPreviousDecl()) {
12938 // We never need to merge the type, because we cannot form an incomplete
12939 // array of auto, nor deduce such a type.
12940 MergeVarDeclTypes(VDecl
, Old
, /*MergeTypeWithPrevious*/ false);
12943 // Check the deduced type is valid for a variable declaration.
12944 CheckVariableDeclarationType(VDecl
);
12945 return VDecl
->isInvalidDecl();
12948 void Sema::checkNonTrivialCUnionInInitializer(const Expr
*Init
,
12949 SourceLocation Loc
) {
12950 if (auto *EWC
= dyn_cast
<ExprWithCleanups
>(Init
))
12951 Init
= EWC
->getSubExpr();
12953 if (auto *CE
= dyn_cast
<ConstantExpr
>(Init
))
12954 Init
= CE
->getSubExpr();
12956 QualType InitType
= Init
->getType();
12957 assert((InitType
.hasNonTrivialToPrimitiveDefaultInitializeCUnion() ||
12958 InitType
.hasNonTrivialToPrimitiveCopyCUnion()) &&
12959 "shouldn't be called if type doesn't have a non-trivial C struct");
12960 if (auto *ILE
= dyn_cast
<InitListExpr
>(Init
)) {
12961 for (auto *I
: ILE
->inits()) {
12962 if (!I
->getType().hasNonTrivialToPrimitiveDefaultInitializeCUnion() &&
12963 !I
->getType().hasNonTrivialToPrimitiveCopyCUnion())
12965 SourceLocation SL
= I
->getExprLoc();
12966 checkNonTrivialCUnionInInitializer(I
, SL
.isValid() ? SL
: Loc
);
12971 if (isa
<ImplicitValueInitExpr
>(Init
)) {
12972 if (InitType
.hasNonTrivialToPrimitiveDefaultInitializeCUnion())
12973 checkNonTrivialCUnion(InitType
, Loc
, NTCUC_DefaultInitializedObject
,
12976 // Assume all other explicit initializers involving copying some existing
12978 // TODO: ignore any explicit initializers where we can guarantee
12980 if (InitType
.hasNonTrivialToPrimitiveCopyCUnion())
12981 checkNonTrivialCUnion(InitType
, Loc
, NTCUC_CopyInit
, NTCUK_Copy
);
12987 bool shouldIgnoreForRecordTriviality(const FieldDecl
*FD
) {
12988 // Ignore unavailable fields. A field can be marked as unavailable explicitly
12989 // in the source code or implicitly by the compiler if it is in a union
12990 // defined in a system header and has non-trivial ObjC ownership
12991 // qualifications. We don't want those fields to participate in determining
12992 // whether the containing union is non-trivial.
12993 return FD
->hasAttr
<UnavailableAttr
>();
12996 struct DiagNonTrivalCUnionDefaultInitializeVisitor
12997 : DefaultInitializedTypeVisitor
<DiagNonTrivalCUnionDefaultInitializeVisitor
,
13000 DefaultInitializedTypeVisitor
<DiagNonTrivalCUnionDefaultInitializeVisitor
,
13003 DiagNonTrivalCUnionDefaultInitializeVisitor(
13004 QualType OrigTy
, SourceLocation OrigLoc
,
13005 Sema::NonTrivialCUnionContext UseContext
, Sema
&S
)
13006 : OrigTy(OrigTy
), OrigLoc(OrigLoc
), UseContext(UseContext
), S(S
) {}
13008 void visitWithKind(QualType::PrimitiveDefaultInitializeKind PDIK
, QualType QT
,
13009 const FieldDecl
*FD
, bool InNonTrivialUnion
) {
13010 if (const auto *AT
= S
.Context
.getAsArrayType(QT
))
13011 return this->asDerived().visit(S
.Context
.getBaseElementType(AT
), FD
,
13012 InNonTrivialUnion
);
13013 return Super::visitWithKind(PDIK
, QT
, FD
, InNonTrivialUnion
);
13016 void visitARCStrong(QualType QT
, const FieldDecl
*FD
,
13017 bool InNonTrivialUnion
) {
13018 if (InNonTrivialUnion
)
13019 S
.Diag(FD
->getLocation(), diag::note_non_trivial_c_union
)
13020 << 1 << 0 << QT
<< FD
->getName();
13023 void visitARCWeak(QualType QT
, const FieldDecl
*FD
, bool InNonTrivialUnion
) {
13024 if (InNonTrivialUnion
)
13025 S
.Diag(FD
->getLocation(), diag::note_non_trivial_c_union
)
13026 << 1 << 0 << QT
<< FD
->getName();
13029 void visitStruct(QualType QT
, const FieldDecl
*FD
, bool InNonTrivialUnion
) {
13030 const RecordDecl
*RD
= QT
->castAs
<RecordType
>()->getDecl();
13031 if (RD
->isUnion()) {
13032 if (OrigLoc
.isValid()) {
13033 bool IsUnion
= false;
13034 if (auto *OrigRD
= OrigTy
->getAsRecordDecl())
13035 IsUnion
= OrigRD
->isUnion();
13036 S
.Diag(OrigLoc
, diag::err_non_trivial_c_union_in_invalid_context
)
13037 << 0 << OrigTy
<< IsUnion
<< UseContext
;
13038 // Reset OrigLoc so that this diagnostic is emitted only once.
13039 OrigLoc
= SourceLocation();
13041 InNonTrivialUnion
= true;
13044 if (InNonTrivialUnion
)
13045 S
.Diag(RD
->getLocation(), diag::note_non_trivial_c_union
)
13046 << 0 << 0 << QT
.getUnqualifiedType() << "";
13048 for (const FieldDecl
*FD
: RD
->fields())
13049 if (!shouldIgnoreForRecordTriviality(FD
))
13050 asDerived().visit(FD
->getType(), FD
, InNonTrivialUnion
);
13053 void visitTrivial(QualType QT
, const FieldDecl
*FD
, bool InNonTrivialUnion
) {}
13055 // The non-trivial C union type or the struct/union type that contains a
13056 // non-trivial C union.
13058 SourceLocation OrigLoc
;
13059 Sema::NonTrivialCUnionContext UseContext
;
13063 struct DiagNonTrivalCUnionDestructedTypeVisitor
13064 : DestructedTypeVisitor
<DiagNonTrivalCUnionDestructedTypeVisitor
, void> {
13066 DestructedTypeVisitor
<DiagNonTrivalCUnionDestructedTypeVisitor
, void>;
13068 DiagNonTrivalCUnionDestructedTypeVisitor(
13069 QualType OrigTy
, SourceLocation OrigLoc
,
13070 Sema::NonTrivialCUnionContext UseContext
, Sema
&S
)
13071 : OrigTy(OrigTy
), OrigLoc(OrigLoc
), UseContext(UseContext
), S(S
) {}
13073 void visitWithKind(QualType::DestructionKind DK
, QualType QT
,
13074 const FieldDecl
*FD
, bool InNonTrivialUnion
) {
13075 if (const auto *AT
= S
.Context
.getAsArrayType(QT
))
13076 return this->asDerived().visit(S
.Context
.getBaseElementType(AT
), FD
,
13077 InNonTrivialUnion
);
13078 return Super::visitWithKind(DK
, QT
, FD
, InNonTrivialUnion
);
13081 void visitARCStrong(QualType QT
, const FieldDecl
*FD
,
13082 bool InNonTrivialUnion
) {
13083 if (InNonTrivialUnion
)
13084 S
.Diag(FD
->getLocation(), diag::note_non_trivial_c_union
)
13085 << 1 << 1 << QT
<< FD
->getName();
13088 void visitARCWeak(QualType QT
, const FieldDecl
*FD
, bool InNonTrivialUnion
) {
13089 if (InNonTrivialUnion
)
13090 S
.Diag(FD
->getLocation(), diag::note_non_trivial_c_union
)
13091 << 1 << 1 << QT
<< FD
->getName();
13094 void visitStruct(QualType QT
, const FieldDecl
*FD
, bool InNonTrivialUnion
) {
13095 const RecordDecl
*RD
= QT
->castAs
<RecordType
>()->getDecl();
13096 if (RD
->isUnion()) {
13097 if (OrigLoc
.isValid()) {
13098 bool IsUnion
= false;
13099 if (auto *OrigRD
= OrigTy
->getAsRecordDecl())
13100 IsUnion
= OrigRD
->isUnion();
13101 S
.Diag(OrigLoc
, diag::err_non_trivial_c_union_in_invalid_context
)
13102 << 1 << OrigTy
<< IsUnion
<< UseContext
;
13103 // Reset OrigLoc so that this diagnostic is emitted only once.
13104 OrigLoc
= SourceLocation();
13106 InNonTrivialUnion
= true;
13109 if (InNonTrivialUnion
)
13110 S
.Diag(RD
->getLocation(), diag::note_non_trivial_c_union
)
13111 << 0 << 1 << QT
.getUnqualifiedType() << "";
13113 for (const FieldDecl
*FD
: RD
->fields())
13114 if (!shouldIgnoreForRecordTriviality(FD
))
13115 asDerived().visit(FD
->getType(), FD
, InNonTrivialUnion
);
13118 void visitTrivial(QualType QT
, const FieldDecl
*FD
, bool InNonTrivialUnion
) {}
13119 void visitCXXDestructor(QualType QT
, const FieldDecl
*FD
,
13120 bool InNonTrivialUnion
) {}
13122 // The non-trivial C union type or the struct/union type that contains a
13123 // non-trivial C union.
13125 SourceLocation OrigLoc
;
13126 Sema::NonTrivialCUnionContext UseContext
;
13130 struct DiagNonTrivalCUnionCopyVisitor
13131 : CopiedTypeVisitor
<DiagNonTrivalCUnionCopyVisitor
, false, void> {
13132 using Super
= CopiedTypeVisitor
<DiagNonTrivalCUnionCopyVisitor
, false, void>;
13134 DiagNonTrivalCUnionCopyVisitor(QualType OrigTy
, SourceLocation OrigLoc
,
13135 Sema::NonTrivialCUnionContext UseContext
,
13137 : OrigTy(OrigTy
), OrigLoc(OrigLoc
), UseContext(UseContext
), S(S
) {}
13139 void visitWithKind(QualType::PrimitiveCopyKind PCK
, QualType QT
,
13140 const FieldDecl
*FD
, bool InNonTrivialUnion
) {
13141 if (const auto *AT
= S
.Context
.getAsArrayType(QT
))
13142 return this->asDerived().visit(S
.Context
.getBaseElementType(AT
), FD
,
13143 InNonTrivialUnion
);
13144 return Super::visitWithKind(PCK
, QT
, FD
, InNonTrivialUnion
);
13147 void visitARCStrong(QualType QT
, const FieldDecl
*FD
,
13148 bool InNonTrivialUnion
) {
13149 if (InNonTrivialUnion
)
13150 S
.Diag(FD
->getLocation(), diag::note_non_trivial_c_union
)
13151 << 1 << 2 << QT
<< FD
->getName();
13154 void visitARCWeak(QualType QT
, const FieldDecl
*FD
, bool InNonTrivialUnion
) {
13155 if (InNonTrivialUnion
)
13156 S
.Diag(FD
->getLocation(), diag::note_non_trivial_c_union
)
13157 << 1 << 2 << QT
<< FD
->getName();
13160 void visitStruct(QualType QT
, const FieldDecl
*FD
, bool InNonTrivialUnion
) {
13161 const RecordDecl
*RD
= QT
->castAs
<RecordType
>()->getDecl();
13162 if (RD
->isUnion()) {
13163 if (OrigLoc
.isValid()) {
13164 bool IsUnion
= false;
13165 if (auto *OrigRD
= OrigTy
->getAsRecordDecl())
13166 IsUnion
= OrigRD
->isUnion();
13167 S
.Diag(OrigLoc
, diag::err_non_trivial_c_union_in_invalid_context
)
13168 << 2 << OrigTy
<< IsUnion
<< UseContext
;
13169 // Reset OrigLoc so that this diagnostic is emitted only once.
13170 OrigLoc
= SourceLocation();
13172 InNonTrivialUnion
= true;
13175 if (InNonTrivialUnion
)
13176 S
.Diag(RD
->getLocation(), diag::note_non_trivial_c_union
)
13177 << 0 << 2 << QT
.getUnqualifiedType() << "";
13179 for (const FieldDecl
*FD
: RD
->fields())
13180 if (!shouldIgnoreForRecordTriviality(FD
))
13181 asDerived().visit(FD
->getType(), FD
, InNonTrivialUnion
);
13184 void preVisit(QualType::PrimitiveCopyKind PCK
, QualType QT
,
13185 const FieldDecl
*FD
, bool InNonTrivialUnion
) {}
13186 void visitTrivial(QualType QT
, const FieldDecl
*FD
, bool InNonTrivialUnion
) {}
13187 void visitVolatileTrivial(QualType QT
, const FieldDecl
*FD
,
13188 bool InNonTrivialUnion
) {}
13190 // The non-trivial C union type or the struct/union type that contains a
13191 // non-trivial C union.
13193 SourceLocation OrigLoc
;
13194 Sema::NonTrivialCUnionContext UseContext
;
13200 void Sema::checkNonTrivialCUnion(QualType QT
, SourceLocation Loc
,
13201 NonTrivialCUnionContext UseContext
,
13202 unsigned NonTrivialKind
) {
13203 assert((QT
.hasNonTrivialToPrimitiveDefaultInitializeCUnion() ||
13204 QT
.hasNonTrivialToPrimitiveDestructCUnion() ||
13205 QT
.hasNonTrivialToPrimitiveCopyCUnion()) &&
13206 "shouldn't be called if type doesn't have a non-trivial C union");
13208 if ((NonTrivialKind
& NTCUK_Init
) &&
13209 QT
.hasNonTrivialToPrimitiveDefaultInitializeCUnion())
13210 DiagNonTrivalCUnionDefaultInitializeVisitor(QT
, Loc
, UseContext
, *this)
13211 .visit(QT
, nullptr, false);
13212 if ((NonTrivialKind
& NTCUK_Destruct
) &&
13213 QT
.hasNonTrivialToPrimitiveDestructCUnion())
13214 DiagNonTrivalCUnionDestructedTypeVisitor(QT
, Loc
, UseContext
, *this)
13215 .visit(QT
, nullptr, false);
13216 if ((NonTrivialKind
& NTCUK_Copy
) && QT
.hasNonTrivialToPrimitiveCopyCUnion())
13217 DiagNonTrivalCUnionCopyVisitor(QT
, Loc
, UseContext
, *this)
13218 .visit(QT
, nullptr, false);
13221 /// AddInitializerToDecl - Adds the initializer Init to the
13222 /// declaration dcl. If DirectInit is true, this is C++ direct
13223 /// initialization rather than copy initialization.
13224 void Sema::AddInitializerToDecl(Decl
*RealDecl
, Expr
*Init
, bool DirectInit
) {
13225 // If there is no declaration, there was an error parsing it. Just ignore
13226 // the initializer.
13227 if (!RealDecl
|| RealDecl
->isInvalidDecl()) {
13228 CorrectDelayedTyposInExpr(Init
, dyn_cast_or_null
<VarDecl
>(RealDecl
));
13232 if (CXXMethodDecl
*Method
= dyn_cast
<CXXMethodDecl
>(RealDecl
)) {
13233 // Pure-specifiers are handled in ActOnPureSpecifier.
13234 Diag(Method
->getLocation(), diag::err_member_function_initialization
)
13235 << Method
->getDeclName() << Init
->getSourceRange();
13236 Method
->setInvalidDecl();
13240 VarDecl
*VDecl
= dyn_cast
<VarDecl
>(RealDecl
);
13242 assert(!isa
<FieldDecl
>(RealDecl
) && "field init shouldn't get here");
13243 Diag(RealDecl
->getLocation(), diag::err_illegal_initializer
);
13244 RealDecl
->setInvalidDecl();
13248 // WebAssembly tables can't be used to initialise a variable.
13249 if (Init
&& !Init
->getType().isNull() &&
13250 Init
->getType()->isWebAssemblyTableType()) {
13251 Diag(Init
->getExprLoc(), diag::err_wasm_table_art
) << 0;
13252 VDecl
->setInvalidDecl();
13256 // C++11 [decl.spec.auto]p6. Deduce the type which 'auto' stands in for.
13257 if (VDecl
->getType()->isUndeducedType()) {
13258 // Attempt typo correction early so that the type of the init expression can
13259 // be deduced based on the chosen correction if the original init contains a
13261 ExprResult Res
= CorrectDelayedTyposInExpr(Init
, VDecl
);
13262 if (!Res
.isUsable()) {
13263 // There are unresolved typos in Init, just drop them.
13264 // FIXME: improve the recovery strategy to preserve the Init.
13265 RealDecl
->setInvalidDecl();
13268 if (Res
.get()->containsErrors()) {
13269 // Invalidate the decl as we don't know the type for recovery-expr yet.
13270 RealDecl
->setInvalidDecl();
13271 VDecl
->setInit(Res
.get());
13276 if (DeduceVariableDeclarationType(VDecl
, DirectInit
, Init
))
13280 // dllimport cannot be used on variable definitions.
13281 if (VDecl
->hasAttr
<DLLImportAttr
>() && !VDecl
->isStaticDataMember()) {
13282 Diag(VDecl
->getLocation(), diag::err_attribute_dllimport_data_definition
);
13283 VDecl
->setInvalidDecl();
13287 // C99 6.7.8p5. If the declaration of an identifier has block scope, and
13288 // the identifier has external or internal linkage, the declaration shall
13289 // have no initializer for the identifier.
13290 // C++14 [dcl.init]p5 is the same restriction for C++.
13291 if (VDecl
->isLocalVarDecl() && VDecl
->hasExternalStorage()) {
13292 Diag(VDecl
->getLocation(), diag::err_block_extern_cant_init
);
13293 VDecl
->setInvalidDecl();
13297 if (!VDecl
->getType()->isDependentType()) {
13298 // A definition must end up with a complete type, which means it must be
13299 // complete with the restriction that an array type might be completed by
13300 // the initializer; note that later code assumes this restriction.
13301 QualType BaseDeclType
= VDecl
->getType();
13302 if (const ArrayType
*Array
= Context
.getAsIncompleteArrayType(BaseDeclType
))
13303 BaseDeclType
= Array
->getElementType();
13304 if (RequireCompleteType(VDecl
->getLocation(), BaseDeclType
,
13305 diag::err_typecheck_decl_incomplete_type
)) {
13306 RealDecl
->setInvalidDecl();
13310 // The variable can not have an abstract class type.
13311 if (RequireNonAbstractType(VDecl
->getLocation(), VDecl
->getType(),
13312 diag::err_abstract_type_in_decl
,
13313 AbstractVariableType
))
13314 VDecl
->setInvalidDecl();
13317 // C++ [module.import/6] external definitions are not permitted in header
13319 if (getLangOpts().CPlusPlusModules
&& currentModuleIsHeaderUnit() &&
13320 !VDecl
->isInvalidDecl() && VDecl
->isThisDeclarationADefinition() &&
13321 VDecl
->getFormalLinkage() == Linkage::ExternalLinkage
&&
13322 !VDecl
->isInline() && !VDecl
->isTemplated() &&
13323 !isa
<VarTemplateSpecializationDecl
>(VDecl
)) {
13324 Diag(VDecl
->getLocation(), diag::err_extern_def_in_header_unit
);
13325 VDecl
->setInvalidDecl();
13328 // If adding the initializer will turn this declaration into a definition,
13329 // and we already have a definition for this variable, diagnose or otherwise
13330 // handle the situation.
13331 if (VarDecl
*Def
= VDecl
->getDefinition())
13332 if (Def
!= VDecl
&&
13333 (!VDecl
->isStaticDataMember() || VDecl
->isOutOfLine()) &&
13334 !VDecl
->isThisDeclarationADemotedDefinition() &&
13335 checkVarDeclRedefinition(Def
, VDecl
))
13338 if (getLangOpts().CPlusPlus
) {
13339 // C++ [class.static.data]p4
13340 // If a static data member is of const integral or const
13341 // enumeration type, its declaration in the class definition can
13342 // specify a constant-initializer which shall be an integral
13343 // constant expression (5.19). In that case, the member can appear
13344 // in integral constant expressions. The member shall still be
13345 // defined in a namespace scope if it is used in the program and the
13346 // namespace scope definition shall not contain an initializer.
13348 // We already performed a redefinition check above, but for static
13349 // data members we also need to check whether there was an in-class
13350 // declaration with an initializer.
13351 if (VDecl
->isStaticDataMember() && VDecl
->getCanonicalDecl()->hasInit()) {
13352 Diag(Init
->getExprLoc(), diag::err_static_data_member_reinitialization
)
13353 << VDecl
->getDeclName();
13354 Diag(VDecl
->getCanonicalDecl()->getInit()->getExprLoc(),
13355 diag::note_previous_initializer
)
13360 if (VDecl
->hasLocalStorage())
13361 setFunctionHasBranchProtectedScope();
13363 if (DiagnoseUnexpandedParameterPack(Init
, UPPC_Initializer
)) {
13364 VDecl
->setInvalidDecl();
13369 // OpenCL 1.1 6.5.2: "Variables allocated in the __local address space inside
13370 // a kernel function cannot be initialized."
13371 if (VDecl
->getType().getAddressSpace() == LangAS::opencl_local
) {
13372 Diag(VDecl
->getLocation(), diag::err_local_cant_init
);
13373 VDecl
->setInvalidDecl();
13377 // The LoaderUninitialized attribute acts as a definition (of undef).
13378 if (VDecl
->hasAttr
<LoaderUninitializedAttr
>()) {
13379 Diag(VDecl
->getLocation(), diag::err_loader_uninitialized_cant_init
);
13380 VDecl
->setInvalidDecl();
13384 // Get the decls type and save a reference for later, since
13385 // CheckInitializerTypes may change it.
13386 QualType DclT
= VDecl
->getType(), SavT
= DclT
;
13388 // Expressions default to 'id' when we're in a debugger
13389 // and we are assigning it to a variable of Objective-C pointer type.
13390 if (getLangOpts().DebuggerCastResultToId
&& DclT
->isObjCObjectPointerType() &&
13391 Init
->getType() == Context
.UnknownAnyTy
) {
13392 ExprResult Result
= forceUnknownAnyToType(Init
, Context
.getObjCIdType());
13393 if (Result
.isInvalid()) {
13394 VDecl
->setInvalidDecl();
13397 Init
= Result
.get();
13400 // Perform the initialization.
13401 ParenListExpr
*CXXDirectInit
= dyn_cast
<ParenListExpr
>(Init
);
13402 bool IsParenListInit
= false;
13403 if (!VDecl
->isInvalidDecl()) {
13404 InitializedEntity Entity
= InitializedEntity::InitializeVariable(VDecl
);
13405 InitializationKind Kind
= InitializationKind::CreateForInit(
13406 VDecl
->getLocation(), DirectInit
, Init
);
13408 MultiExprArg Args
= Init
;
13410 Args
= MultiExprArg(CXXDirectInit
->getExprs(),
13411 CXXDirectInit
->getNumExprs());
13413 // Try to correct any TypoExprs in the initialization arguments.
13414 for (size_t Idx
= 0; Idx
< Args
.size(); ++Idx
) {
13415 ExprResult Res
= CorrectDelayedTyposInExpr(
13416 Args
[Idx
], VDecl
, /*RecoverUncorrectedTypos=*/true,
13417 [this, Entity
, Kind
](Expr
*E
) {
13418 InitializationSequence
Init(*this, Entity
, Kind
, MultiExprArg(E
));
13419 return Init
.Failed() ? ExprError() : E
;
13421 if (Res
.isInvalid()) {
13422 VDecl
->setInvalidDecl();
13423 } else if (Res
.get() != Args
[Idx
]) {
13424 Args
[Idx
] = Res
.get();
13427 if (VDecl
->isInvalidDecl())
13430 InitializationSequence
InitSeq(*this, Entity
, Kind
, Args
,
13431 /*TopLevelOfInitList=*/false,
13432 /*TreatUnavailableAsInvalid=*/false);
13433 ExprResult Result
= InitSeq
.Perform(*this, Entity
, Kind
, Args
, &DclT
);
13434 if (Result
.isInvalid()) {
13435 // If the provided initializer fails to initialize the var decl,
13436 // we attach a recovery expr for better recovery.
13437 auto RecoveryExpr
=
13438 CreateRecoveryExpr(Init
->getBeginLoc(), Init
->getEndLoc(), Args
);
13439 if (RecoveryExpr
.get())
13440 VDecl
->setInit(RecoveryExpr
.get());
13444 Init
= Result
.getAs
<Expr
>();
13445 IsParenListInit
= !InitSeq
.steps().empty() &&
13446 InitSeq
.step_begin()->Kind
==
13447 InitializationSequence::SK_ParenthesizedListInit
;
13450 // Check for self-references within variable initializers.
13451 // Variables declared within a function/method body (except for references)
13452 // are handled by a dataflow analysis.
13453 // This is undefined behavior in C++, but valid in C.
13454 if (getLangOpts().CPlusPlus
)
13455 if (!VDecl
->hasLocalStorage() || VDecl
->getType()->isRecordType() ||
13456 VDecl
->getType()->isReferenceType())
13457 CheckSelfReference(*this, RealDecl
, Init
, DirectInit
);
13459 // If the type changed, it means we had an incomplete type that was
13460 // completed by the initializer. For example:
13461 // int ary[] = { 1, 3, 5 };
13462 // "ary" transitions from an IncompleteArrayType to a ConstantArrayType.
13463 if (!VDecl
->isInvalidDecl() && (DclT
!= SavT
))
13464 VDecl
->setType(DclT
);
13466 if (!VDecl
->isInvalidDecl()) {
13467 checkUnsafeAssigns(VDecl
->getLocation(), VDecl
->getType(), Init
);
13469 if (VDecl
->hasAttr
<BlocksAttr
>())
13470 checkRetainCycles(VDecl
, Init
);
13472 // It is safe to assign a weak reference into a strong variable.
13473 // Although this code can still have problems:
13474 // id x = self.weakProp;
13475 // id y = self.weakProp;
13476 // we do not warn to warn spuriously when 'x' and 'y' are on separate
13477 // paths through the function. This should be revisited if
13478 // -Wrepeated-use-of-weak is made flow-sensitive.
13479 if (FunctionScopeInfo
*FSI
= getCurFunction())
13480 if ((VDecl
->getType().getObjCLifetime() == Qualifiers::OCL_Strong
||
13481 VDecl
->getType().isNonWeakInMRRWithObjCWeak(Context
)) &&
13482 !Diags
.isIgnored(diag::warn_arc_repeated_use_of_weak
,
13483 Init
->getBeginLoc()))
13484 FSI
->markSafeWeakUse(Init
);
13487 // The initialization is usually a full-expression.
13489 // FIXME: If this is a braced initialization of an aggregate, it is not
13490 // an expression, and each individual field initializer is a separate
13491 // full-expression. For instance, in:
13493 // struct Temp { ~Temp(); };
13494 // struct S { S(Temp); };
13495 // struct T { S a, b; } t = { Temp(), Temp() }
13497 // we should destroy the first Temp before constructing the second.
13498 ExprResult Result
=
13499 ActOnFinishFullExpr(Init
, VDecl
->getLocation(),
13500 /*DiscardedValue*/ false, VDecl
->isConstexpr());
13501 if (Result
.isInvalid()) {
13502 VDecl
->setInvalidDecl();
13505 Init
= Result
.get();
13507 // Attach the initializer to the decl.
13508 VDecl
->setInit(Init
);
13510 if (VDecl
->isLocalVarDecl()) {
13511 // Don't check the initializer if the declaration is malformed.
13512 if (VDecl
->isInvalidDecl()) {
13515 // OpenCL v1.2 s6.5.3: __constant locals must be constant-initialized.
13516 // This is true even in C++ for OpenCL.
13517 } else if (VDecl
->getType().getAddressSpace() == LangAS::opencl_constant
) {
13518 CheckForConstantInitializer(Init
, DclT
);
13520 // Otherwise, C++ does not restrict the initializer.
13521 } else if (getLangOpts().CPlusPlus
) {
13524 // C99 6.7.8p4: All the expressions in an initializer for an object that has
13525 // static storage duration shall be constant expressions or string literals.
13526 } else if (VDecl
->getStorageClass() == SC_Static
) {
13527 CheckForConstantInitializer(Init
, DclT
);
13529 // C89 is stricter than C99 for aggregate initializers.
13530 // C89 6.5.7p3: All the expressions [...] in an initializer list
13531 // for an object that has aggregate or union type shall be
13532 // constant expressions.
13533 } else if (!getLangOpts().C99
&& VDecl
->getType()->isAggregateType() &&
13534 isa
<InitListExpr
>(Init
)) {
13535 const Expr
*Culprit
;
13536 if (!Init
->isConstantInitializer(Context
, false, &Culprit
)) {
13537 Diag(Culprit
->getExprLoc(),
13538 diag::ext_aggregate_init_not_constant
)
13539 << Culprit
->getSourceRange();
13543 if (auto *E
= dyn_cast
<ExprWithCleanups
>(Init
))
13544 if (auto *BE
= dyn_cast
<BlockExpr
>(E
->getSubExpr()->IgnoreParens()))
13545 if (VDecl
->hasLocalStorage())
13546 BE
->getBlockDecl()->setCanAvoidCopyToHeap();
13547 } else if (VDecl
->isStaticDataMember() && !VDecl
->isInline() &&
13548 VDecl
->getLexicalDeclContext()->isRecord()) {
13549 // This is an in-class initialization for a static data member, e.g.,
13552 // static const int value = 17;
13555 // C++ [class.mem]p4:
13556 // A member-declarator can contain a constant-initializer only
13557 // if it declares a static member (9.4) of const integral or
13558 // const enumeration type, see 9.4.2.
13560 // C++11 [class.static.data]p3:
13561 // If a non-volatile non-inline const static data member is of integral
13562 // or enumeration type, its declaration in the class definition can
13563 // specify a brace-or-equal-initializer in which every initializer-clause
13564 // that is an assignment-expression is a constant expression. A static
13565 // data member of literal type can be declared in the class definition
13566 // with the constexpr specifier; if so, its declaration shall specify a
13567 // brace-or-equal-initializer in which every initializer-clause that is
13568 // an assignment-expression is a constant expression.
13570 // Do nothing on dependent types.
13571 if (DclT
->isDependentType()) {
13573 // Allow any 'static constexpr' members, whether or not they are of literal
13574 // type. We separately check that every constexpr variable is of literal
13576 } else if (VDecl
->isConstexpr()) {
13578 // Require constness.
13579 } else if (!DclT
.isConstQualified()) {
13580 Diag(VDecl
->getLocation(), diag::err_in_class_initializer_non_const
)
13581 << Init
->getSourceRange();
13582 VDecl
->setInvalidDecl();
13584 // We allow integer constant expressions in all cases.
13585 } else if (DclT
->isIntegralOrEnumerationType()) {
13586 // Check whether the expression is a constant expression.
13587 SourceLocation Loc
;
13588 if (getLangOpts().CPlusPlus11
&& DclT
.isVolatileQualified())
13589 // In C++11, a non-constexpr const static data member with an
13590 // in-class initializer cannot be volatile.
13591 Diag(VDecl
->getLocation(), diag::err_in_class_initializer_volatile
);
13592 else if (Init
->isValueDependent())
13593 ; // Nothing to check.
13594 else if (Init
->isIntegerConstantExpr(Context
, &Loc
))
13595 ; // Ok, it's an ICE!
13596 else if (Init
->getType()->isScopedEnumeralType() &&
13597 Init
->isCXX11ConstantExpr(Context
))
13598 ; // Ok, it is a scoped-enum constant expression.
13599 else if (Init
->isEvaluatable(Context
)) {
13600 // If we can constant fold the initializer through heroics, accept it,
13601 // but report this as a use of an extension for -pedantic.
13602 Diag(Loc
, diag::ext_in_class_initializer_non_constant
)
13603 << Init
->getSourceRange();
13605 // Otherwise, this is some crazy unknown case. Report the issue at the
13606 // location provided by the isIntegerConstantExpr failed check.
13607 Diag(Loc
, diag::err_in_class_initializer_non_constant
)
13608 << Init
->getSourceRange();
13609 VDecl
->setInvalidDecl();
13612 // We allow foldable floating-point constants as an extension.
13613 } else if (DclT
->isFloatingType()) { // also permits complex, which is ok
13614 // In C++98, this is a GNU extension. In C++11, it is not, but we support
13615 // it anyway and provide a fixit to add the 'constexpr'.
13616 if (getLangOpts().CPlusPlus11
) {
13617 Diag(VDecl
->getLocation(),
13618 diag::ext_in_class_initializer_float_type_cxx11
)
13619 << DclT
<< Init
->getSourceRange();
13620 Diag(VDecl
->getBeginLoc(),
13621 diag::note_in_class_initializer_float_type_cxx11
)
13622 << FixItHint::CreateInsertion(VDecl
->getBeginLoc(), "constexpr ");
13624 Diag(VDecl
->getLocation(), diag::ext_in_class_initializer_float_type
)
13625 << DclT
<< Init
->getSourceRange();
13627 if (!Init
->isValueDependent() && !Init
->isEvaluatable(Context
)) {
13628 Diag(Init
->getExprLoc(), diag::err_in_class_initializer_non_constant
)
13629 << Init
->getSourceRange();
13630 VDecl
->setInvalidDecl();
13634 // Suggest adding 'constexpr' in C++11 for literal types.
13635 } else if (getLangOpts().CPlusPlus11
&& DclT
->isLiteralType(Context
)) {
13636 Diag(VDecl
->getLocation(), diag::err_in_class_initializer_literal_type
)
13637 << DclT
<< Init
->getSourceRange()
13638 << FixItHint::CreateInsertion(VDecl
->getBeginLoc(), "constexpr ");
13639 VDecl
->setConstexpr(true);
13642 Diag(VDecl
->getLocation(), diag::err_in_class_initializer_bad_type
)
13643 << DclT
<< Init
->getSourceRange();
13644 VDecl
->setInvalidDecl();
13646 } else if (VDecl
->isFileVarDecl()) {
13647 // In C, extern is typically used to avoid tentative definitions when
13648 // declaring variables in headers, but adding an intializer makes it a
13649 // definition. This is somewhat confusing, so GCC and Clang both warn on it.
13650 // In C++, extern is often used to give implictly static const variables
13651 // external linkage, so don't warn in that case. If selectany is present,
13652 // this might be header code intended for C and C++ inclusion, so apply the
13654 if (VDecl
->getStorageClass() == SC_Extern
&&
13655 ((!getLangOpts().CPlusPlus
&& !VDecl
->hasAttr
<SelectAnyAttr
>()) ||
13656 !Context
.getBaseElementType(VDecl
->getType()).isConstQualified()) &&
13657 !(getLangOpts().CPlusPlus
&& VDecl
->isExternC()) &&
13658 !isTemplateInstantiation(VDecl
->getTemplateSpecializationKind()))
13659 Diag(VDecl
->getLocation(), diag::warn_extern_init
);
13661 // In Microsoft C++ mode, a const variable defined in namespace scope has
13662 // external linkage by default if the variable is declared with
13663 // __declspec(dllexport).
13664 if (Context
.getTargetInfo().getCXXABI().isMicrosoft() &&
13665 getLangOpts().CPlusPlus
&& VDecl
->getType().isConstQualified() &&
13666 VDecl
->hasAttr
<DLLExportAttr
>() && VDecl
->getDefinition())
13667 VDecl
->setStorageClass(SC_Extern
);
13669 // C99 6.7.8p4. All file scoped initializers need to be constant.
13670 if (!getLangOpts().CPlusPlus
&& !VDecl
->isInvalidDecl())
13671 CheckForConstantInitializer(Init
, DclT
);
13674 QualType InitType
= Init
->getType();
13675 if (!InitType
.isNull() &&
13676 (InitType
.hasNonTrivialToPrimitiveDefaultInitializeCUnion() ||
13677 InitType
.hasNonTrivialToPrimitiveCopyCUnion()))
13678 checkNonTrivialCUnionInInitializer(Init
, Init
->getExprLoc());
13680 // We will represent direct-initialization similarly to copy-initialization:
13681 // int x(1); -as-> int x = 1;
13682 // ClassType x(a,b,c); -as-> ClassType x = ClassType(a,b,c);
13684 // Clients that want to distinguish between the two forms, can check for
13685 // direct initializer using VarDecl::getInitStyle().
13686 // A major benefit is that clients that don't particularly care about which
13687 // exactly form was it (like the CodeGen) can handle both cases without
13688 // special case code.
13691 // The form of initialization (using parentheses or '=') is generally
13692 // insignificant, but does matter when the entity being initialized has a
13694 if (CXXDirectInit
) {
13695 assert(DirectInit
&& "Call-style initializer must be direct init.");
13696 VDecl
->setInitStyle(IsParenListInit
? VarDecl::ParenListInit
13697 : VarDecl::CallInit
);
13698 } else if (DirectInit
) {
13699 // This must be list-initialization. No other way is direct-initialization.
13700 VDecl
->setInitStyle(VarDecl::ListInit
);
13703 if (LangOpts
.OpenMP
&&
13704 (LangOpts
.OpenMPIsTargetDevice
|| !LangOpts
.OMPTargetTriples
.empty()) &&
13705 VDecl
->isFileVarDecl())
13706 DeclsToCheckForDeferredDiags
.insert(VDecl
);
13707 CheckCompleteVariableDeclaration(VDecl
);
13710 /// ActOnInitializerError - Given that there was an error parsing an
13711 /// initializer for the given declaration, try to at least re-establish
13712 /// invariants such as whether a variable's type is either dependent or
13714 void Sema::ActOnInitializerError(Decl
*D
) {
13715 // Our main concern here is re-establishing invariants like "a
13716 // variable's type is either dependent or complete".
13717 if (!D
|| D
->isInvalidDecl()) return;
13719 VarDecl
*VD
= dyn_cast
<VarDecl
>(D
);
13722 // Bindings are not usable if we can't make sense of the initializer.
13723 if (auto *DD
= dyn_cast
<DecompositionDecl
>(D
))
13724 for (auto *BD
: DD
->bindings())
13725 BD
->setInvalidDecl();
13727 // Auto types are meaningless if we can't make sense of the initializer.
13728 if (VD
->getType()->isUndeducedType()) {
13729 D
->setInvalidDecl();
13733 QualType Ty
= VD
->getType();
13734 if (Ty
->isDependentType()) return;
13736 // Require a complete type.
13737 if (RequireCompleteType(VD
->getLocation(),
13738 Context
.getBaseElementType(Ty
),
13739 diag::err_typecheck_decl_incomplete_type
)) {
13740 VD
->setInvalidDecl();
13744 // Require a non-abstract type.
13745 if (RequireNonAbstractType(VD
->getLocation(), Ty
,
13746 diag::err_abstract_type_in_decl
,
13747 AbstractVariableType
)) {
13748 VD
->setInvalidDecl();
13752 // Don't bother complaining about constructors or destructors,
13756 void Sema::ActOnUninitializedDecl(Decl
*RealDecl
) {
13757 // If there is no declaration, there was an error parsing it. Just ignore it.
13761 if (VarDecl
*Var
= dyn_cast
<VarDecl
>(RealDecl
)) {
13762 QualType Type
= Var
->getType();
13764 // C++1z [dcl.dcl]p1 grammar implies that an initializer is mandatory.
13765 if (isa
<DecompositionDecl
>(RealDecl
)) {
13766 Diag(Var
->getLocation(), diag::err_decomp_decl_requires_init
) << Var
;
13767 Var
->setInvalidDecl();
13771 if (Type
->isUndeducedType() &&
13772 DeduceVariableDeclarationType(Var
, false, nullptr))
13775 // C++11 [class.static.data]p3: A static data member can be declared with
13776 // the constexpr specifier; if so, its declaration shall specify
13777 // a brace-or-equal-initializer.
13778 // C++11 [dcl.constexpr]p1: The constexpr specifier shall be applied only to
13779 // the definition of a variable [...] or the declaration of a static data
13781 if (Var
->isConstexpr() && !Var
->isThisDeclarationADefinition() &&
13782 !Var
->isThisDeclarationADemotedDefinition()) {
13783 if (Var
->isStaticDataMember()) {
13784 // C++1z removes the relevant rule; the in-class declaration is always
13785 // a definition there.
13786 if (!getLangOpts().CPlusPlus17
&&
13787 !Context
.getTargetInfo().getCXXABI().isMicrosoft()) {
13788 Diag(Var
->getLocation(),
13789 diag::err_constexpr_static_mem_var_requires_init
)
13791 Var
->setInvalidDecl();
13795 Diag(Var
->getLocation(), diag::err_invalid_constexpr_var_decl
);
13796 Var
->setInvalidDecl();
13801 // OpenCL v1.1 s6.5.3: variables declared in the constant address space must
13803 if (!Var
->isInvalidDecl() &&
13804 Var
->getType().getAddressSpace() == LangAS::opencl_constant
&&
13805 Var
->getStorageClass() != SC_Extern
&& !Var
->getInit()) {
13806 bool HasConstExprDefaultConstructor
= false;
13807 if (CXXRecordDecl
*RD
= Var
->getType()->getAsCXXRecordDecl()) {
13808 for (auto *Ctor
: RD
->ctors()) {
13809 if (Ctor
->isConstexpr() && Ctor
->getNumParams() == 0 &&
13810 Ctor
->getMethodQualifiers().getAddressSpace() ==
13811 LangAS::opencl_constant
) {
13812 HasConstExprDefaultConstructor
= true;
13816 if (!HasConstExprDefaultConstructor
) {
13817 Diag(Var
->getLocation(), diag::err_opencl_constant_no_init
);
13818 Var
->setInvalidDecl();
13823 if (!Var
->isInvalidDecl() && RealDecl
->hasAttr
<LoaderUninitializedAttr
>()) {
13824 if (Var
->getStorageClass() == SC_Extern
) {
13825 Diag(Var
->getLocation(), diag::err_loader_uninitialized_extern_decl
)
13827 Var
->setInvalidDecl();
13830 if (RequireCompleteType(Var
->getLocation(), Var
->getType(),
13831 diag::err_typecheck_decl_incomplete_type
)) {
13832 Var
->setInvalidDecl();
13835 if (CXXRecordDecl
*RD
= Var
->getType()->getAsCXXRecordDecl()) {
13836 if (!RD
->hasTrivialDefaultConstructor()) {
13837 Diag(Var
->getLocation(), diag::err_loader_uninitialized_trivial_ctor
);
13838 Var
->setInvalidDecl();
13842 // The declaration is unitialized, no need for further checks.
13846 VarDecl::DefinitionKind DefKind
= Var
->isThisDeclarationADefinition();
13847 if (!Var
->isInvalidDecl() && DefKind
!= VarDecl::DeclarationOnly
&&
13848 Var
->getType().hasNonTrivialToPrimitiveDefaultInitializeCUnion())
13849 checkNonTrivialCUnion(Var
->getType(), Var
->getLocation(),
13850 NTCUC_DefaultInitializedObject
, NTCUK_Init
);
13854 case VarDecl::Definition
:
13855 if (!Var
->isStaticDataMember() || !Var
->getAnyInitializer())
13858 // We have an out-of-line definition of a static data member
13859 // that has an in-class initializer, so we type-check this like
13864 case VarDecl::DeclarationOnly
:
13865 // It's only a declaration.
13867 // Block scope. C99 6.7p7: If an identifier for an object is
13868 // declared with no linkage (C99 6.2.2p6), the type for the
13869 // object shall be complete.
13870 if (!Type
->isDependentType() && Var
->isLocalVarDecl() &&
13871 !Var
->hasLinkage() && !Var
->isInvalidDecl() &&
13872 RequireCompleteType(Var
->getLocation(), Type
,
13873 diag::err_typecheck_decl_incomplete_type
))
13874 Var
->setInvalidDecl();
13876 // Make sure that the type is not abstract.
13877 if (!Type
->isDependentType() && !Var
->isInvalidDecl() &&
13878 RequireNonAbstractType(Var
->getLocation(), Type
,
13879 diag::err_abstract_type_in_decl
,
13880 AbstractVariableType
))
13881 Var
->setInvalidDecl();
13882 if (!Type
->isDependentType() && !Var
->isInvalidDecl() &&
13883 Var
->getStorageClass() == SC_PrivateExtern
) {
13884 Diag(Var
->getLocation(), diag::warn_private_extern
);
13885 Diag(Var
->getLocation(), diag::note_private_extern
);
13888 if (Context
.getTargetInfo().allowDebugInfoForExternalRef() &&
13889 !Var
->isInvalidDecl())
13890 ExternalDeclarations
.push_back(Var
);
13894 case VarDecl::TentativeDefinition
:
13895 // File scope. C99 6.9.2p2: A declaration of an identifier for an
13896 // object that has file scope without an initializer, and without a
13897 // storage-class specifier or with the storage-class specifier "static",
13898 // constitutes a tentative definition. Note: A tentative definition with
13899 // external linkage is valid (C99 6.2.2p5).
13900 if (!Var
->isInvalidDecl()) {
13901 if (const IncompleteArrayType
*ArrayT
13902 = Context
.getAsIncompleteArrayType(Type
)) {
13903 if (RequireCompleteSizedType(
13904 Var
->getLocation(), ArrayT
->getElementType(),
13905 diag::err_array_incomplete_or_sizeless_type
))
13906 Var
->setInvalidDecl();
13907 } else if (Var
->getStorageClass() == SC_Static
) {
13908 // C99 6.9.2p3: If the declaration of an identifier for an object is
13909 // a tentative definition and has internal linkage (C99 6.2.2p3), the
13910 // declared type shall not be an incomplete type.
13911 // NOTE: code such as the following
13912 // static struct s;
13913 // struct s { int a; };
13914 // is accepted by gcc. Hence here we issue a warning instead of
13915 // an error and we do not invalidate the static declaration.
13916 // NOTE: to avoid multiple warnings, only check the first declaration.
13917 if (Var
->isFirstDecl())
13918 RequireCompleteType(Var
->getLocation(), Type
,
13919 diag::ext_typecheck_decl_incomplete_type
);
13923 // Record the tentative definition; we're done.
13924 if (!Var
->isInvalidDecl())
13925 TentativeDefinitions
.push_back(Var
);
13929 // Provide a specific diagnostic for uninitialized variable
13930 // definitions with incomplete array type.
13931 if (Type
->isIncompleteArrayType()) {
13932 if (Var
->isConstexpr())
13933 Diag(Var
->getLocation(), diag::err_constexpr_var_requires_const_init
)
13936 Diag(Var
->getLocation(),
13937 diag::err_typecheck_incomplete_array_needs_initializer
);
13938 Var
->setInvalidDecl();
13942 // Provide a specific diagnostic for uninitialized variable
13943 // definitions with reference type.
13944 if (Type
->isReferenceType()) {
13945 Diag(Var
->getLocation(), diag::err_reference_var_requires_init
)
13946 << Var
<< SourceRange(Var
->getLocation(), Var
->getLocation());
13950 // Do not attempt to type-check the default initializer for a
13951 // variable with dependent type.
13952 if (Type
->isDependentType())
13955 if (Var
->isInvalidDecl())
13958 if (!Var
->hasAttr
<AliasAttr
>()) {
13959 if (RequireCompleteType(Var
->getLocation(),
13960 Context
.getBaseElementType(Type
),
13961 diag::err_typecheck_decl_incomplete_type
)) {
13962 Var
->setInvalidDecl();
13969 // The variable can not have an abstract class type.
13970 if (RequireNonAbstractType(Var
->getLocation(), Type
,
13971 diag::err_abstract_type_in_decl
,
13972 AbstractVariableType
)) {
13973 Var
->setInvalidDecl();
13977 // Check for jumps past the implicit initializer. C++0x
13978 // clarifies that this applies to a "variable with automatic
13979 // storage duration", not a "local variable".
13980 // C++11 [stmt.dcl]p3
13981 // A program that jumps from a point where a variable with automatic
13982 // storage duration is not in scope to a point where it is in scope is
13983 // ill-formed unless the variable has scalar type, class type with a
13984 // trivial default constructor and a trivial destructor, a cv-qualified
13985 // version of one of these types, or an array of one of the preceding
13986 // types and is declared without an initializer.
13987 if (getLangOpts().CPlusPlus
&& Var
->hasLocalStorage()) {
13988 if (const RecordType
*Record
13989 = Context
.getBaseElementType(Type
)->getAs
<RecordType
>()) {
13990 CXXRecordDecl
*CXXRecord
= cast
<CXXRecordDecl
>(Record
->getDecl());
13991 // Mark the function (if we're in one) for further checking even if the
13992 // looser rules of C++11 do not require such checks, so that we can
13993 // diagnose incompatibilities with C++98.
13994 if (!CXXRecord
->isPOD())
13995 setFunctionHasBranchProtectedScope();
13998 // In OpenCL, we can't initialize objects in the __local address space,
13999 // even implicitly, so don't synthesize an implicit initializer.
14000 if (getLangOpts().OpenCL
&&
14001 Var
->getType().getAddressSpace() == LangAS::opencl_local
)
14003 // C++03 [dcl.init]p9:
14004 // If no initializer is specified for an object, and the
14005 // object is of (possibly cv-qualified) non-POD class type (or
14006 // array thereof), the object shall be default-initialized; if
14007 // the object is of const-qualified type, the underlying class
14008 // type shall have a user-declared default
14009 // constructor. Otherwise, if no initializer is specified for
14010 // a non- static object, the object and its subobjects, if
14011 // any, have an indeterminate initial value); if the object
14012 // or any of its subobjects are of const-qualified type, the
14013 // program is ill-formed.
14014 // C++0x [dcl.init]p11:
14015 // If no initializer is specified for an object, the object is
14016 // default-initialized; [...].
14017 InitializedEntity Entity
= InitializedEntity::InitializeVariable(Var
);
14018 InitializationKind Kind
14019 = InitializationKind::CreateDefault(Var
->getLocation());
14021 InitializationSequence
InitSeq(*this, Entity
, Kind
, std::nullopt
);
14022 ExprResult Init
= InitSeq
.Perform(*this, Entity
, Kind
, std::nullopt
);
14025 Var
->setInit(MaybeCreateExprWithCleanups(Init
.get()));
14026 // This is important for template substitution.
14027 Var
->setInitStyle(VarDecl::CallInit
);
14028 } else if (Init
.isInvalid()) {
14029 // If default-init fails, attach a recovery-expr initializer to track
14030 // that initialization was attempted and failed.
14031 auto RecoveryExpr
=
14032 CreateRecoveryExpr(Var
->getLocation(), Var
->getLocation(), {});
14033 if (RecoveryExpr
.get())
14034 Var
->setInit(RecoveryExpr
.get());
14037 CheckCompleteVariableDeclaration(Var
);
14041 void Sema::ActOnCXXForRangeDecl(Decl
*D
) {
14042 // If there is no declaration, there was an error parsing it. Ignore it.
14046 VarDecl
*VD
= dyn_cast
<VarDecl
>(D
);
14048 Diag(D
->getLocation(), diag::err_for_range_decl_must_be_var
);
14049 D
->setInvalidDecl();
14053 VD
->setCXXForRangeDecl(true);
14055 // for-range-declaration cannot be given a storage class specifier.
14057 switch (VD
->getStorageClass()) {
14066 case SC_PrivateExtern
:
14077 // for-range-declaration cannot be given a storage class specifier con't.
14078 switch (VD
->getTSCSpec()) {
14079 case TSCS_thread_local
:
14082 case TSCS___thread
:
14083 case TSCS__Thread_local
:
14084 case TSCS_unspecified
:
14089 Diag(VD
->getOuterLocStart(), diag::err_for_range_storage_class
)
14091 D
->setInvalidDecl();
14095 StmtResult
Sema::ActOnCXXForRangeIdentifier(Scope
*S
, SourceLocation IdentLoc
,
14096 IdentifierInfo
*Ident
,
14097 ParsedAttributes
&Attrs
) {
14098 // C++1y [stmt.iter]p1:
14099 // A range-based for statement of the form
14100 // for ( for-range-identifier : for-range-initializer ) statement
14101 // is equivalent to
14102 // for ( auto&& for-range-identifier : for-range-initializer ) statement
14103 DeclSpec
DS(Attrs
.getPool().getFactory());
14105 const char *PrevSpec
;
14107 DS
.SetTypeSpecType(DeclSpec::TST_auto
, IdentLoc
, PrevSpec
, DiagID
,
14108 getPrintingPolicy());
14110 Declarator
D(DS
, ParsedAttributesView::none(), DeclaratorContext::ForInit
);
14111 D
.SetIdentifier(Ident
, IdentLoc
);
14112 D
.takeAttributes(Attrs
);
14114 D
.AddTypeInfo(DeclaratorChunk::getReference(0, IdentLoc
, /*lvalue*/ false),
14116 Decl
*Var
= ActOnDeclarator(S
, D
);
14117 cast
<VarDecl
>(Var
)->setCXXForRangeDecl(true);
14118 FinalizeDeclaration(Var
);
14119 return ActOnDeclStmt(FinalizeDeclaratorGroup(S
, DS
, Var
), IdentLoc
,
14120 Attrs
.Range
.getEnd().isValid() ? Attrs
.Range
.getEnd()
14124 void Sema::CheckCompleteVariableDeclaration(VarDecl
*var
) {
14125 if (var
->isInvalidDecl()) return;
14127 MaybeAddCUDAConstantAttr(var
);
14129 if (getLangOpts().OpenCL
) {
14130 // OpenCL v2.0 s6.12.5 - Every block variable declaration must have an
14132 if (var
->getTypeSourceInfo()->getType()->isBlockPointerType() &&
14134 Diag(var
->getLocation(), diag::err_opencl_invalid_block_declaration
)
14136 var
->setInvalidDecl();
14141 // In Objective-C, don't allow jumps past the implicit initialization of a
14142 // local retaining variable.
14143 if (getLangOpts().ObjC
&&
14144 var
->hasLocalStorage()) {
14145 switch (var
->getType().getObjCLifetime()) {
14146 case Qualifiers::OCL_None
:
14147 case Qualifiers::OCL_ExplicitNone
:
14148 case Qualifiers::OCL_Autoreleasing
:
14151 case Qualifiers::OCL_Weak
:
14152 case Qualifiers::OCL_Strong
:
14153 setFunctionHasBranchProtectedScope();
14158 if (var
->hasLocalStorage() &&
14159 var
->getType().isDestructedType() == QualType::DK_nontrivial_c_struct
)
14160 setFunctionHasBranchProtectedScope();
14162 // Warn about externally-visible variables being defined without a
14163 // prior declaration. We only want to do this for global
14164 // declarations, but we also specifically need to avoid doing it for
14165 // class members because the linkage of an anonymous class can
14166 // change if it's later given a typedef name.
14167 if (var
->isThisDeclarationADefinition() &&
14168 var
->getDeclContext()->getRedeclContext()->isFileContext() &&
14169 var
->isExternallyVisible() && var
->hasLinkage() &&
14170 !var
->isInline() && !var
->getDescribedVarTemplate() &&
14171 var
->getStorageClass() != SC_Register
&&
14172 !isa
<VarTemplatePartialSpecializationDecl
>(var
) &&
14173 !isTemplateInstantiation(var
->getTemplateSpecializationKind()) &&
14174 !getDiagnostics().isIgnored(diag::warn_missing_variable_declarations
,
14175 var
->getLocation())) {
14176 // Find a previous declaration that's not a definition.
14177 VarDecl
*prev
= var
->getPreviousDecl();
14178 while (prev
&& prev
->isThisDeclarationADefinition())
14179 prev
= prev
->getPreviousDecl();
14182 Diag(var
->getLocation(), diag::warn_missing_variable_declarations
) << var
;
14183 Diag(var
->getTypeSpecStartLoc(), diag::note_static_for_internal_linkage
)
14184 << /* variable */ 0;
14188 // Cache the result of checking for constant initialization.
14189 std::optional
<bool> CacheHasConstInit
;
14190 const Expr
*CacheCulprit
= nullptr;
14191 auto checkConstInit
= [&]() mutable {
14192 if (!CacheHasConstInit
)
14193 CacheHasConstInit
= var
->getInit()->isConstantInitializer(
14194 Context
, var
->getType()->isReferenceType(), &CacheCulprit
);
14195 return *CacheHasConstInit
;
14198 if (var
->getTLSKind() == VarDecl::TLS_Static
) {
14199 if (var
->getType().isDestructedType()) {
14200 // GNU C++98 edits for __thread, [basic.start.term]p3:
14201 // The type of an object with thread storage duration shall not
14202 // have a non-trivial destructor.
14203 Diag(var
->getLocation(), diag::err_thread_nontrivial_dtor
);
14204 if (getLangOpts().CPlusPlus11
)
14205 Diag(var
->getLocation(), diag::note_use_thread_local
);
14206 } else if (getLangOpts().CPlusPlus
&& var
->hasInit()) {
14207 if (!checkConstInit()) {
14208 // GNU C++98 edits for __thread, [basic.start.init]p4:
14209 // An object of thread storage duration shall not require dynamic
14211 // FIXME: Need strict checking here.
14212 Diag(CacheCulprit
->getExprLoc(), diag::err_thread_dynamic_init
)
14213 << CacheCulprit
->getSourceRange();
14214 if (getLangOpts().CPlusPlus11
)
14215 Diag(var
->getLocation(), diag::note_use_thread_local
);
14221 if (!var
->getType()->isStructureType() && var
->hasInit() &&
14222 isa
<InitListExpr
>(var
->getInit())) {
14223 const auto *ILE
= cast
<InitListExpr
>(var
->getInit());
14224 unsigned NumInits
= ILE
->getNumInits();
14226 for (unsigned I
= 0; I
< NumInits
; ++I
) {
14227 const auto *Init
= ILE
->getInit(I
);
14230 const auto *SL
= dyn_cast
<StringLiteral
>(Init
->IgnoreImpCasts());
14234 unsigned NumConcat
= SL
->getNumConcatenated();
14235 // Diagnose missing comma in string array initialization.
14236 // Do not warn when all the elements in the initializer are concatenated
14237 // together. Do not warn for macros too.
14238 if (NumConcat
== 2 && !SL
->getBeginLoc().isMacroID()) {
14239 bool OnlyOneMissingComma
= true;
14240 for (unsigned J
= I
+ 1; J
< NumInits
; ++J
) {
14241 const auto *Init
= ILE
->getInit(J
);
14244 const auto *SLJ
= dyn_cast
<StringLiteral
>(Init
->IgnoreImpCasts());
14245 if (!SLJ
|| SLJ
->getNumConcatenated() > 1) {
14246 OnlyOneMissingComma
= false;
14251 if (OnlyOneMissingComma
) {
14252 SmallVector
<FixItHint
, 1> Hints
;
14253 for (unsigned i
= 0; i
< NumConcat
- 1; ++i
)
14254 Hints
.push_back(FixItHint::CreateInsertion(
14255 PP
.getLocForEndOfToken(SL
->getStrTokenLoc(i
)), ","));
14257 Diag(SL
->getStrTokenLoc(1),
14258 diag::warn_concatenated_literal_array_init
)
14260 Diag(SL
->getBeginLoc(),
14261 diag::note_concatenated_string_literal_silence
);
14263 // In any case, stop now.
14270 QualType type
= var
->getType();
14272 if (var
->hasAttr
<BlocksAttr
>())
14273 getCurFunction()->addByrefBlockVar(var
);
14275 Expr
*Init
= var
->getInit();
14276 bool GlobalStorage
= var
->hasGlobalStorage();
14277 bool IsGlobal
= GlobalStorage
&& !var
->isStaticLocal();
14278 QualType baseType
= Context
.getBaseElementType(type
);
14279 bool HasConstInit
= true;
14281 // Check whether the initializer is sufficiently constant.
14282 if (getLangOpts().CPlusPlus
&& !type
->isDependentType() && Init
&&
14283 !Init
->isValueDependent() &&
14284 (GlobalStorage
|| var
->isConstexpr() ||
14285 var
->mightBeUsableInConstantExpressions(Context
))) {
14286 // If this variable might have a constant initializer or might be usable in
14287 // constant expressions, check whether or not it actually is now. We can't
14288 // do this lazily, because the result might depend on things that change
14289 // later, such as which constexpr functions happen to be defined.
14290 SmallVector
<PartialDiagnosticAt
, 8> Notes
;
14291 if (!getLangOpts().CPlusPlus11
) {
14292 // Prior to C++11, in contexts where a constant initializer is required,
14293 // the set of valid constant initializers is described by syntactic rules
14294 // in [expr.const]p2-6.
14295 // FIXME: Stricter checking for these rules would be useful for constinit /
14296 // -Wglobal-constructors.
14297 HasConstInit
= checkConstInit();
14299 // Compute and cache the constant value, and remember that we have a
14300 // constant initializer.
14301 if (HasConstInit
) {
14302 (void)var
->checkForConstantInitialization(Notes
);
14304 } else if (CacheCulprit
) {
14305 Notes
.emplace_back(CacheCulprit
->getExprLoc(),
14306 PDiag(diag::note_invalid_subexpr_in_const_expr
));
14307 Notes
.back().second
<< CacheCulprit
->getSourceRange();
14310 // Evaluate the initializer to see if it's a constant initializer.
14311 HasConstInit
= var
->checkForConstantInitialization(Notes
);
14314 if (HasConstInit
) {
14315 // FIXME: Consider replacing the initializer with a ConstantExpr.
14316 } else if (var
->isConstexpr()) {
14317 SourceLocation DiagLoc
= var
->getLocation();
14318 // If the note doesn't add any useful information other than a source
14319 // location, fold it into the primary diagnostic.
14320 if (Notes
.size() == 1 && Notes
[0].second
.getDiagID() ==
14321 diag::note_invalid_subexpr_in_const_expr
) {
14322 DiagLoc
= Notes
[0].first
;
14325 Diag(DiagLoc
, diag::err_constexpr_var_requires_const_init
)
14326 << var
<< Init
->getSourceRange();
14327 for (unsigned I
= 0, N
= Notes
.size(); I
!= N
; ++I
)
14328 Diag(Notes
[I
].first
, Notes
[I
].second
);
14329 } else if (GlobalStorage
&& var
->hasAttr
<ConstInitAttr
>()) {
14330 auto *Attr
= var
->getAttr
<ConstInitAttr
>();
14331 Diag(var
->getLocation(), diag::err_require_constant_init_failed
)
14332 << Init
->getSourceRange();
14333 Diag(Attr
->getLocation(), diag::note_declared_required_constant_init_here
)
14334 << Attr
->getRange() << Attr
->isConstinit();
14335 for (auto &it
: Notes
)
14336 Diag(it
.first
, it
.second
);
14337 } else if (IsGlobal
&&
14338 !getDiagnostics().isIgnored(diag::warn_global_constructor
,
14339 var
->getLocation())) {
14340 // Warn about globals which don't have a constant initializer. Don't
14341 // warn about globals with a non-trivial destructor because we already
14342 // warned about them.
14343 CXXRecordDecl
*RD
= baseType
->getAsCXXRecordDecl();
14344 if (!(RD
&& !RD
->hasTrivialDestructor())) {
14345 // checkConstInit() here permits trivial default initialization even in
14346 // C++11 onwards, where such an initializer is not a constant initializer
14347 // but nonetheless doesn't require a global constructor.
14348 if (!checkConstInit())
14349 Diag(var
->getLocation(), diag::warn_global_constructor
)
14350 << Init
->getSourceRange();
14355 // Apply section attributes and pragmas to global variables.
14356 if (GlobalStorage
&& var
->isThisDeclarationADefinition() &&
14357 !inTemplateInstantiation()) {
14358 PragmaStack
<StringLiteral
*> *Stack
= nullptr;
14359 int SectionFlags
= ASTContext::PSF_Read
;
14361 Context
.getTargetInfo().getTriple().isWindowsMSVCEnvironment();
14362 std::optional
<QualType::NonConstantStorageReason
> Reason
;
14363 if (HasConstInit
&&
14364 !(Reason
= var
->getType().isNonConstantStorage(Context
, true, false))) {
14365 Stack
= &ConstSegStack
;
14367 SectionFlags
|= ASTContext::PSF_Write
;
14368 Stack
= var
->hasInit() && HasConstInit
? &DataSegStack
: &BSSSegStack
;
14370 if (const SectionAttr
*SA
= var
->getAttr
<SectionAttr
>()) {
14371 if (SA
->getSyntax() == AttributeCommonInfo::AS_Declspec
)
14372 SectionFlags
|= ASTContext::PSF_Implicit
;
14373 UnifySection(SA
->getName(), SectionFlags
, var
);
14374 } else if (Stack
->CurrentValue
) {
14375 if (Stack
!= &ConstSegStack
&& MSVCEnv
&&
14376 ConstSegStack
.CurrentValue
!= ConstSegStack
.DefaultValue
&&
14377 var
->getType().isConstQualified()) {
14378 assert((!Reason
|| Reason
!= QualType::NonConstantStorageReason::
14379 NonConstNonReferenceType
) &&
14380 "This case should've already been handled elsewhere");
14381 Diag(var
->getLocation(), diag::warn_section_msvc_compat
)
14382 << var
<< ConstSegStack
.CurrentValue
<< (int)(!HasConstInit
14383 ? QualType::NonConstantStorageReason::NonTrivialCtor
14386 SectionFlags
|= ASTContext::PSF_Implicit
;
14387 auto SectionName
= Stack
->CurrentValue
->getString();
14388 var
->addAttr(SectionAttr::CreateImplicit(Context
, SectionName
,
14389 Stack
->CurrentPragmaLocation
,
14390 SectionAttr::Declspec_allocate
));
14391 if (UnifySection(SectionName
, SectionFlags
, var
))
14392 var
->dropAttr
<SectionAttr
>();
14395 // Apply the init_seg attribute if this has an initializer. If the
14396 // initializer turns out to not be dynamic, we'll end up ignoring this
14398 if (CurInitSeg
&& var
->getInit())
14399 var
->addAttr(InitSegAttr::CreateImplicit(Context
, CurInitSeg
->getString(),
14403 // All the following checks are C++ only.
14404 if (!getLangOpts().CPlusPlus
) {
14405 // If this variable must be emitted, add it as an initializer for the
14407 if (Context
.DeclMustBeEmitted(var
) && !ModuleScopes
.empty())
14408 Context
.addModuleInitializer(ModuleScopes
.back().Module
, var
);
14412 // Require the destructor.
14413 if (!type
->isDependentType())
14414 if (const RecordType
*recordType
= baseType
->getAs
<RecordType
>())
14415 FinalizeVarWithDestructor(var
, recordType
);
14417 // If this variable must be emitted, add it as an initializer for the current
14419 if (Context
.DeclMustBeEmitted(var
) && !ModuleScopes
.empty())
14420 Context
.addModuleInitializer(ModuleScopes
.back().Module
, var
);
14422 // Build the bindings if this is a structured binding declaration.
14423 if (auto *DD
= dyn_cast
<DecompositionDecl
>(var
))
14424 CheckCompleteDecompositionDeclaration(DD
);
14427 /// Check if VD needs to be dllexport/dllimport due to being in a
14428 /// dllexport/import function.
14429 void Sema::CheckStaticLocalForDllExport(VarDecl
*VD
) {
14430 assert(VD
->isStaticLocal());
14432 auto *FD
= dyn_cast_or_null
<FunctionDecl
>(VD
->getParentFunctionOrMethod());
14434 // Find outermost function when VD is in lambda function.
14435 while (FD
&& !getDLLAttr(FD
) &&
14436 !FD
->hasAttr
<DLLExportStaticLocalAttr
>() &&
14437 !FD
->hasAttr
<DLLImportStaticLocalAttr
>()) {
14438 FD
= dyn_cast_or_null
<FunctionDecl
>(FD
->getParentFunctionOrMethod());
14444 // Static locals inherit dll attributes from their function.
14445 if (Attr
*A
= getDLLAttr(FD
)) {
14446 auto *NewAttr
= cast
<InheritableAttr
>(A
->clone(getASTContext()));
14447 NewAttr
->setInherited(true);
14448 VD
->addAttr(NewAttr
);
14449 } else if (Attr
*A
= FD
->getAttr
<DLLExportStaticLocalAttr
>()) {
14450 auto *NewAttr
= DLLExportAttr::CreateImplicit(getASTContext(), *A
);
14451 NewAttr
->setInherited(true);
14452 VD
->addAttr(NewAttr
);
14454 // Export this function to enforce exporting this static variable even
14455 // if it is not used in this compilation unit.
14456 if (!FD
->hasAttr
<DLLExportAttr
>())
14457 FD
->addAttr(NewAttr
);
14459 } else if (Attr
*A
= FD
->getAttr
<DLLImportStaticLocalAttr
>()) {
14460 auto *NewAttr
= DLLImportAttr::CreateImplicit(getASTContext(), *A
);
14461 NewAttr
->setInherited(true);
14462 VD
->addAttr(NewAttr
);
14466 void Sema::CheckThreadLocalForLargeAlignment(VarDecl
*VD
) {
14467 assert(VD
->getTLSKind());
14469 // Perform TLS alignment check here after attributes attached to the variable
14470 // which may affect the alignment have been processed. Only perform the check
14471 // if the target has a maximum TLS alignment (zero means no constraints).
14472 if (unsigned MaxAlign
= Context
.getTargetInfo().getMaxTLSAlign()) {
14473 // Protect the check so that it's not performed on dependent types and
14474 // dependent alignments (we can't determine the alignment in that case).
14475 if (!VD
->hasDependentAlignment()) {
14476 CharUnits MaxAlignChars
= Context
.toCharUnitsFromBits(MaxAlign
);
14477 if (Context
.getDeclAlign(VD
) > MaxAlignChars
) {
14478 Diag(VD
->getLocation(), diag::err_tls_var_aligned_over_maximum
)
14479 << (unsigned)Context
.getDeclAlign(VD
).getQuantity() << VD
14480 << (unsigned)MaxAlignChars
.getQuantity();
14486 /// FinalizeDeclaration - called by ParseDeclarationAfterDeclarator to perform
14487 /// any semantic actions necessary after any initializer has been attached.
14488 void Sema::FinalizeDeclaration(Decl
*ThisDecl
) {
14489 // Note that we are no longer parsing the initializer for this declaration.
14490 ParsingInitForAutoVars
.erase(ThisDecl
);
14492 VarDecl
*VD
= dyn_cast_or_null
<VarDecl
>(ThisDecl
);
14496 // Apply an implicit SectionAttr if '#pragma clang section bss|data|rodata' is active
14497 if (VD
->hasGlobalStorage() && VD
->isThisDeclarationADefinition() &&
14498 !inTemplateInstantiation() && !VD
->hasAttr
<SectionAttr
>()) {
14499 if (PragmaClangBSSSection
.Valid
)
14500 VD
->addAttr(PragmaClangBSSSectionAttr::CreateImplicit(
14501 Context
, PragmaClangBSSSection
.SectionName
,
14502 PragmaClangBSSSection
.PragmaLocation
));
14503 if (PragmaClangDataSection
.Valid
)
14504 VD
->addAttr(PragmaClangDataSectionAttr::CreateImplicit(
14505 Context
, PragmaClangDataSection
.SectionName
,
14506 PragmaClangDataSection
.PragmaLocation
));
14507 if (PragmaClangRodataSection
.Valid
)
14508 VD
->addAttr(PragmaClangRodataSectionAttr::CreateImplicit(
14509 Context
, PragmaClangRodataSection
.SectionName
,
14510 PragmaClangRodataSection
.PragmaLocation
));
14511 if (PragmaClangRelroSection
.Valid
)
14512 VD
->addAttr(PragmaClangRelroSectionAttr::CreateImplicit(
14513 Context
, PragmaClangRelroSection
.SectionName
,
14514 PragmaClangRelroSection
.PragmaLocation
));
14517 if (auto *DD
= dyn_cast
<DecompositionDecl
>(ThisDecl
)) {
14518 for (auto *BD
: DD
->bindings()) {
14519 FinalizeDeclaration(BD
);
14523 checkAttributesAfterMerging(*this, *VD
);
14525 if (VD
->isStaticLocal())
14526 CheckStaticLocalForDllExport(VD
);
14528 if (VD
->getTLSKind())
14529 CheckThreadLocalForLargeAlignment(VD
);
14531 // Perform check for initializers of device-side global variables.
14532 // CUDA allows empty constructors as initializers (see E.2.3.1, CUDA
14533 // 7.5). We must also apply the same checks to all __shared__
14534 // variables whether they are local or not. CUDA also allows
14535 // constant initializers for __constant__ and __device__ variables.
14536 if (getLangOpts().CUDA
)
14537 checkAllowedCUDAInitializer(VD
);
14539 // Grab the dllimport or dllexport attribute off of the VarDecl.
14540 const InheritableAttr
*DLLAttr
= getDLLAttr(VD
);
14542 // Imported static data members cannot be defined out-of-line.
14543 if (const auto *IA
= dyn_cast_or_null
<DLLImportAttr
>(DLLAttr
)) {
14544 if (VD
->isStaticDataMember() && VD
->isOutOfLine() &&
14545 VD
->isThisDeclarationADefinition()) {
14546 // We allow definitions of dllimport class template static data members
14548 CXXRecordDecl
*Context
=
14549 cast
<CXXRecordDecl
>(VD
->getFirstDecl()->getDeclContext());
14550 bool IsClassTemplateMember
=
14551 isa
<ClassTemplatePartialSpecializationDecl
>(Context
) ||
14552 Context
->getDescribedClassTemplate();
14554 Diag(VD
->getLocation(),
14555 IsClassTemplateMember
14556 ? diag::warn_attribute_dllimport_static_field_definition
14557 : diag::err_attribute_dllimport_static_field_definition
);
14558 Diag(IA
->getLocation(), diag::note_attribute
);
14559 if (!IsClassTemplateMember
)
14560 VD
->setInvalidDecl();
14564 // dllimport/dllexport variables cannot be thread local, their TLS index
14565 // isn't exported with the variable.
14566 if (DLLAttr
&& VD
->getTLSKind()) {
14567 auto *F
= dyn_cast_or_null
<FunctionDecl
>(VD
->getParentFunctionOrMethod());
14568 if (F
&& getDLLAttr(F
)) {
14569 assert(VD
->isStaticLocal());
14570 // But if this is a static local in a dlimport/dllexport function, the
14571 // function will never be inlined, which means the var would never be
14572 // imported, so having it marked import/export is safe.
14574 Diag(VD
->getLocation(), diag::err_attribute_dll_thread_local
) << VD
14576 VD
->setInvalidDecl();
14580 if (UsedAttr
*Attr
= VD
->getAttr
<UsedAttr
>()) {
14581 if (!Attr
->isInherited() && !VD
->isThisDeclarationADefinition()) {
14582 Diag(Attr
->getLocation(), diag::warn_attribute_ignored_on_non_definition
)
14584 VD
->dropAttr
<UsedAttr
>();
14587 if (RetainAttr
*Attr
= VD
->getAttr
<RetainAttr
>()) {
14588 if (!Attr
->isInherited() && !VD
->isThisDeclarationADefinition()) {
14589 Diag(Attr
->getLocation(), diag::warn_attribute_ignored_on_non_definition
)
14591 VD
->dropAttr
<RetainAttr
>();
14595 const DeclContext
*DC
= VD
->getDeclContext();
14596 // If there's a #pragma GCC visibility in scope, and this isn't a class
14597 // member, set the visibility of this variable.
14598 if (DC
->getRedeclContext()->isFileContext() && VD
->isExternallyVisible())
14599 AddPushedVisibilityAttribute(VD
);
14601 // FIXME: Warn on unused var template partial specializations.
14602 if (VD
->isFileVarDecl() && !isa
<VarTemplatePartialSpecializationDecl
>(VD
))
14603 MarkUnusedFileScopedDecl(VD
);
14605 // Now we have parsed the initializer and can update the table of magic
14607 if (!VD
->hasAttr
<TypeTagForDatatypeAttr
>() ||
14608 !VD
->getType()->isIntegralOrEnumerationType())
14611 for (const auto *I
: ThisDecl
->specific_attrs
<TypeTagForDatatypeAttr
>()) {
14612 const Expr
*MagicValueExpr
= VD
->getInit();
14613 if (!MagicValueExpr
) {
14616 std::optional
<llvm::APSInt
> MagicValueInt
;
14617 if (!(MagicValueInt
= MagicValueExpr
->getIntegerConstantExpr(Context
))) {
14618 Diag(I
->getRange().getBegin(),
14619 diag::err_type_tag_for_datatype_not_ice
)
14620 << LangOpts
.CPlusPlus
<< MagicValueExpr
->getSourceRange();
14623 if (MagicValueInt
->getActiveBits() > 64) {
14624 Diag(I
->getRange().getBegin(),
14625 diag::err_type_tag_for_datatype_too_large
)
14626 << LangOpts
.CPlusPlus
<< MagicValueExpr
->getSourceRange();
14629 uint64_t MagicValue
= MagicValueInt
->getZExtValue();
14630 RegisterTypeTagForDatatype(I
->getArgumentKind(),
14632 I
->getMatchingCType(),
14633 I
->getLayoutCompatible(),
14634 I
->getMustBeNull());
14638 static bool hasDeducedAuto(DeclaratorDecl
*DD
) {
14639 auto *VD
= dyn_cast
<VarDecl
>(DD
);
14640 return VD
&& !VD
->getType()->hasAutoForTrailingReturnType();
14643 Sema::DeclGroupPtrTy
Sema::FinalizeDeclaratorGroup(Scope
*S
, const DeclSpec
&DS
,
14644 ArrayRef
<Decl
*> Group
) {
14645 SmallVector
<Decl
*, 8> Decls
;
14647 if (DS
.isTypeSpecOwned())
14648 Decls
.push_back(DS
.getRepAsDecl());
14650 DeclaratorDecl
*FirstDeclaratorInGroup
= nullptr;
14651 DecompositionDecl
*FirstDecompDeclaratorInGroup
= nullptr;
14652 bool DiagnosedMultipleDecomps
= false;
14653 DeclaratorDecl
*FirstNonDeducedAutoInGroup
= nullptr;
14654 bool DiagnosedNonDeducedAuto
= false;
14656 for (unsigned i
= 0, e
= Group
.size(); i
!= e
; ++i
) {
14657 if (Decl
*D
= Group
[i
]) {
14658 // Check if the Decl has been declared in '#pragma omp declare target'
14659 // directive and has static storage duration.
14660 if (auto *VD
= dyn_cast
<VarDecl
>(D
);
14661 LangOpts
.OpenMP
&& VD
&& VD
->hasAttr
<OMPDeclareTargetDeclAttr
>() &&
14662 VD
->hasGlobalStorage())
14663 ActOnOpenMPDeclareTargetInitializer(D
);
14664 // For declarators, there are some additional syntactic-ish checks we need
14666 if (auto *DD
= dyn_cast
<DeclaratorDecl
>(D
)) {
14667 if (!FirstDeclaratorInGroup
)
14668 FirstDeclaratorInGroup
= DD
;
14669 if (!FirstDecompDeclaratorInGroup
)
14670 FirstDecompDeclaratorInGroup
= dyn_cast
<DecompositionDecl
>(D
);
14671 if (!FirstNonDeducedAutoInGroup
&& DS
.hasAutoTypeSpec() &&
14672 !hasDeducedAuto(DD
))
14673 FirstNonDeducedAutoInGroup
= DD
;
14675 if (FirstDeclaratorInGroup
!= DD
) {
14676 // A decomposition declaration cannot be combined with any other
14677 // declaration in the same group.
14678 if (FirstDecompDeclaratorInGroup
&& !DiagnosedMultipleDecomps
) {
14679 Diag(FirstDecompDeclaratorInGroup
->getLocation(),
14680 diag::err_decomp_decl_not_alone
)
14681 << FirstDeclaratorInGroup
->getSourceRange()
14682 << DD
->getSourceRange();
14683 DiagnosedMultipleDecomps
= true;
14686 // A declarator that uses 'auto' in any way other than to declare a
14687 // variable with a deduced type cannot be combined with any other
14688 // declarator in the same group.
14689 if (FirstNonDeducedAutoInGroup
&& !DiagnosedNonDeducedAuto
) {
14690 Diag(FirstNonDeducedAutoInGroup
->getLocation(),
14691 diag::err_auto_non_deduced_not_alone
)
14692 << FirstNonDeducedAutoInGroup
->getType()
14693 ->hasAutoForTrailingReturnType()
14694 << FirstDeclaratorInGroup
->getSourceRange()
14695 << DD
->getSourceRange();
14696 DiagnosedNonDeducedAuto
= true;
14701 Decls
.push_back(D
);
14705 if (DeclSpec::isDeclRep(DS
.getTypeSpecType())) {
14706 if (TagDecl
*Tag
= dyn_cast_or_null
<TagDecl
>(DS
.getRepAsDecl())) {
14707 handleTagNumbering(Tag
, S
);
14708 if (FirstDeclaratorInGroup
&& !Tag
->hasNameForLinkage() &&
14709 getLangOpts().CPlusPlus
)
14710 Context
.addDeclaratorForUnnamedTagDecl(Tag
, FirstDeclaratorInGroup
);
14714 return BuildDeclaratorGroup(Decls
);
14717 /// BuildDeclaratorGroup - convert a list of declarations into a declaration
14718 /// group, performing any necessary semantic checking.
14719 Sema::DeclGroupPtrTy
14720 Sema::BuildDeclaratorGroup(MutableArrayRef
<Decl
*> Group
) {
14721 // C++14 [dcl.spec.auto]p7: (DR1347)
14722 // If the type that replaces the placeholder type is not the same in each
14723 // deduction, the program is ill-formed.
14724 if (Group
.size() > 1) {
14726 VarDecl
*DeducedDecl
= nullptr;
14727 for (unsigned i
= 0, e
= Group
.size(); i
!= e
; ++i
) {
14728 VarDecl
*D
= dyn_cast
<VarDecl
>(Group
[i
]);
14729 if (!D
|| D
->isInvalidDecl())
14731 DeducedType
*DT
= D
->getType()->getContainedDeducedType();
14732 if (!DT
|| DT
->getDeducedType().isNull())
14734 if (Deduced
.isNull()) {
14735 Deduced
= DT
->getDeducedType();
14737 } else if (!Context
.hasSameType(DT
->getDeducedType(), Deduced
)) {
14738 auto *AT
= dyn_cast
<AutoType
>(DT
);
14739 auto Dia
= Diag(D
->getTypeSourceInfo()->getTypeLoc().getBeginLoc(),
14740 diag::err_auto_different_deductions
)
14741 << (AT
? (unsigned)AT
->getKeyword() : 3) << Deduced
14742 << DeducedDecl
->getDeclName() << DT
->getDeducedType()
14743 << D
->getDeclName();
14744 if (DeducedDecl
->hasInit())
14745 Dia
<< DeducedDecl
->getInit()->getSourceRange();
14747 Dia
<< D
->getInit()->getSourceRange();
14748 D
->setInvalidDecl();
14754 ActOnDocumentableDecls(Group
);
14756 return DeclGroupPtrTy::make(
14757 DeclGroupRef::Create(Context
, Group
.data(), Group
.size()));
14760 void Sema::ActOnDocumentableDecl(Decl
*D
) {
14761 ActOnDocumentableDecls(D
);
14764 void Sema::ActOnDocumentableDecls(ArrayRef
<Decl
*> Group
) {
14765 // Don't parse the comment if Doxygen diagnostics are ignored.
14766 if (Group
.empty() || !Group
[0])
14769 if (Diags
.isIgnored(diag::warn_doc_param_not_found
,
14770 Group
[0]->getLocation()) &&
14771 Diags
.isIgnored(diag::warn_unknown_comment_command_name
,
14772 Group
[0]->getLocation()))
14775 if (Group
.size() >= 2) {
14776 // This is a decl group. Normally it will contain only declarations
14777 // produced from declarator list. But in case we have any definitions or
14778 // additional declaration references:
14779 // 'typedef struct S {} S;'
14780 // 'typedef struct S *S;'
14782 // FinalizeDeclaratorGroup adds these as separate declarations.
14783 Decl
*MaybeTagDecl
= Group
[0];
14784 if (MaybeTagDecl
&& isa
<TagDecl
>(MaybeTagDecl
)) {
14785 Group
= Group
.slice(1);
14789 // FIMXE: We assume every Decl in the group is in the same file.
14790 // This is false when preprocessor constructs the group from decls in
14791 // different files (e. g. macros or #include).
14792 Context
.attachCommentsToJustParsedDecls(Group
, &getPreprocessor());
14795 /// Common checks for a parameter-declaration that should apply to both function
14796 /// parameters and non-type template parameters.
14797 void Sema::CheckFunctionOrTemplateParamDeclarator(Scope
*S
, Declarator
&D
) {
14798 // Check that there are no default arguments inside the type of this
14800 if (getLangOpts().CPlusPlus
)
14801 CheckExtraCXXDefaultArguments(D
);
14803 // Parameter declarators cannot be qualified (C++ [dcl.meaning]p1).
14804 if (D
.getCXXScopeSpec().isSet()) {
14805 Diag(D
.getIdentifierLoc(), diag::err_qualified_param_declarator
)
14806 << D
.getCXXScopeSpec().getRange();
14809 // [dcl.meaning]p1: An unqualified-id occurring in a declarator-id shall be a
14810 // simple identifier except [...irrelevant cases...].
14811 switch (D
.getName().getKind()) {
14812 case UnqualifiedIdKind::IK_Identifier
:
14815 case UnqualifiedIdKind::IK_OperatorFunctionId
:
14816 case UnqualifiedIdKind::IK_ConversionFunctionId
:
14817 case UnqualifiedIdKind::IK_LiteralOperatorId
:
14818 case UnqualifiedIdKind::IK_ConstructorName
:
14819 case UnqualifiedIdKind::IK_DestructorName
:
14820 case UnqualifiedIdKind::IK_ImplicitSelfParam
:
14821 case UnqualifiedIdKind::IK_DeductionGuideName
:
14822 Diag(D
.getIdentifierLoc(), diag::err_bad_parameter_name
)
14823 << GetNameForDeclarator(D
).getName();
14826 case UnqualifiedIdKind::IK_TemplateId
:
14827 case UnqualifiedIdKind::IK_ConstructorTemplateId
:
14828 // GetNameForDeclarator would not produce a useful name in this case.
14829 Diag(D
.getIdentifierLoc(), diag::err_bad_parameter_name_template_id
);
14834 /// ActOnParamDeclarator - Called from Parser::ParseFunctionDeclarator()
14835 /// to introduce parameters into function prototype scope.
14836 Decl
*Sema::ActOnParamDeclarator(Scope
*S
, Declarator
&D
) {
14837 const DeclSpec
&DS
= D
.getDeclSpec();
14839 // Verify C99 6.7.5.3p2: The only SCS allowed is 'register'.
14841 // C++03 [dcl.stc]p2 also permits 'auto'.
14842 StorageClass SC
= SC_None
;
14843 if (DS
.getStorageClassSpec() == DeclSpec::SCS_register
) {
14845 // In C++11, the 'register' storage class specifier is deprecated.
14846 // In C++17, it is not allowed, but we tolerate it as an extension.
14847 if (getLangOpts().CPlusPlus11
) {
14848 Diag(DS
.getStorageClassSpecLoc(),
14849 getLangOpts().CPlusPlus17
? diag::ext_register_storage_class
14850 : diag::warn_deprecated_register
)
14851 << FixItHint::CreateRemoval(DS
.getStorageClassSpecLoc());
14853 } else if (getLangOpts().CPlusPlus
&&
14854 DS
.getStorageClassSpec() == DeclSpec::SCS_auto
) {
14856 } else if (DS
.getStorageClassSpec() != DeclSpec::SCS_unspecified
) {
14857 Diag(DS
.getStorageClassSpecLoc(),
14858 diag::err_invalid_storage_class_in_func_decl
);
14859 D
.getMutableDeclSpec().ClearStorageClassSpecs();
14862 if (DeclSpec::TSCS TSCS
= DS
.getThreadStorageClassSpec())
14863 Diag(DS
.getThreadStorageClassSpecLoc(), diag::err_invalid_thread
)
14864 << DeclSpec::getSpecifierName(TSCS
);
14865 if (DS
.isInlineSpecified())
14866 Diag(DS
.getInlineSpecLoc(), diag::err_inline_non_function
)
14867 << getLangOpts().CPlusPlus17
;
14868 if (DS
.hasConstexprSpecifier())
14869 Diag(DS
.getConstexprSpecLoc(), diag::err_invalid_constexpr
)
14870 << 0 << static_cast<int>(D
.getDeclSpec().getConstexprSpecifier());
14872 DiagnoseFunctionSpecifiers(DS
);
14874 CheckFunctionOrTemplateParamDeclarator(S
, D
);
14876 TypeSourceInfo
*TInfo
= GetTypeForDeclarator(D
, S
);
14877 QualType parmDeclType
= TInfo
->getType();
14879 // Check for redeclaration of parameters, e.g. int foo(int x, int x);
14880 IdentifierInfo
*II
= D
.getIdentifier();
14882 LookupResult
R(*this, II
, D
.getIdentifierLoc(), LookupOrdinaryName
,
14883 ForVisibleRedeclaration
);
14886 NamedDecl
*PrevDecl
= *R
.begin();
14887 if (R
.isSingleResult() && PrevDecl
->isTemplateParameter()) {
14888 // Maybe we will complain about the shadowed template parameter.
14889 DiagnoseTemplateParameterShadow(D
.getIdentifierLoc(), PrevDecl
);
14890 // Just pretend that we didn't see the previous declaration.
14891 PrevDecl
= nullptr;
14893 if (PrevDecl
&& S
->isDeclScope(PrevDecl
)) {
14894 Diag(D
.getIdentifierLoc(), diag::err_param_redefinition
) << II
;
14895 Diag(PrevDecl
->getLocation(), diag::note_previous_declaration
);
14896 // Recover by removing the name
14898 D
.SetIdentifier(nullptr, D
.getIdentifierLoc());
14899 D
.setInvalidType(true);
14904 // Temporarily put parameter variables in the translation unit, not
14905 // the enclosing context. This prevents them from accidentally
14906 // looking like class members in C++.
14908 CheckParameter(Context
.getTranslationUnitDecl(), D
.getBeginLoc(),
14909 D
.getIdentifierLoc(), II
, parmDeclType
, TInfo
, SC
);
14911 if (D
.isInvalidType())
14912 New
->setInvalidDecl();
14914 assert(S
->isFunctionPrototypeScope());
14915 assert(S
->getFunctionPrototypeDepth() >= 1);
14916 New
->setScopeInfo(S
->getFunctionPrototypeDepth() - 1,
14917 S
->getNextFunctionPrototypeIndex());
14919 // Add the parameter declaration into this scope.
14922 IdResolver
.AddDecl(New
);
14924 ProcessDeclAttributes(S
, New
, D
);
14926 if (D
.getDeclSpec().isModulePrivateSpecified())
14927 Diag(New
->getLocation(), diag::err_module_private_local
)
14928 << 1 << New
<< SourceRange(D
.getDeclSpec().getModulePrivateSpecLoc())
14929 << FixItHint::CreateRemoval(D
.getDeclSpec().getModulePrivateSpecLoc());
14931 if (New
->hasAttr
<BlocksAttr
>()) {
14932 Diag(New
->getLocation(), diag::err_block_on_nonlocal
);
14935 if (getLangOpts().OpenCL
)
14936 deduceOpenCLAddressSpace(New
);
14941 /// Synthesizes a variable for a parameter arising from a
14943 ParmVarDecl
*Sema::BuildParmVarDeclForTypedef(DeclContext
*DC
,
14944 SourceLocation Loc
,
14946 /* FIXME: setting StartLoc == Loc.
14947 Would it be worth to modify callers so as to provide proper source
14948 location for the unnamed parameters, embedding the parameter's type? */
14949 ParmVarDecl
*Param
= ParmVarDecl::Create(Context
, DC
, Loc
, Loc
, nullptr,
14950 T
, Context
.getTrivialTypeSourceInfo(T
, Loc
),
14952 Param
->setImplicit();
14956 void Sema::DiagnoseUnusedParameters(ArrayRef
<ParmVarDecl
*> Parameters
) {
14957 // Don't diagnose unused-parameter errors in template instantiations; we
14958 // will already have done so in the template itself.
14959 if (inTemplateInstantiation())
14962 for (const ParmVarDecl
*Parameter
: Parameters
) {
14963 if (!Parameter
->isReferenced() && Parameter
->getDeclName() &&
14964 !Parameter
->hasAttr
<UnusedAttr
>() &&
14965 !Parameter
->getIdentifier()->isPlaceholder()) {
14966 Diag(Parameter
->getLocation(), diag::warn_unused_parameter
)
14967 << Parameter
->getDeclName();
14972 void Sema::DiagnoseSizeOfParametersAndReturnValue(
14973 ArrayRef
<ParmVarDecl
*> Parameters
, QualType ReturnTy
, NamedDecl
*D
) {
14974 if (LangOpts
.NumLargeByValueCopy
== 0) // No check.
14977 // Warn if the return value is pass-by-value and larger than the specified
14979 if (!ReturnTy
->isDependentType() && ReturnTy
.isPODType(Context
)) {
14980 unsigned Size
= Context
.getTypeSizeInChars(ReturnTy
).getQuantity();
14981 if (Size
> LangOpts
.NumLargeByValueCopy
)
14982 Diag(D
->getLocation(), diag::warn_return_value_size
) << D
<< Size
;
14985 // Warn if any parameter is pass-by-value and larger than the specified
14987 for (const ParmVarDecl
*Parameter
: Parameters
) {
14988 QualType T
= Parameter
->getType();
14989 if (T
->isDependentType() || !T
.isPODType(Context
))
14991 unsigned Size
= Context
.getTypeSizeInChars(T
).getQuantity();
14992 if (Size
> LangOpts
.NumLargeByValueCopy
)
14993 Diag(Parameter
->getLocation(), diag::warn_parameter_size
)
14994 << Parameter
<< Size
;
14998 ParmVarDecl
*Sema::CheckParameter(DeclContext
*DC
, SourceLocation StartLoc
,
14999 SourceLocation NameLoc
, IdentifierInfo
*Name
,
15000 QualType T
, TypeSourceInfo
*TSInfo
,
15002 // In ARC, infer a lifetime qualifier for appropriate parameter types.
15003 if (getLangOpts().ObjCAutoRefCount
&&
15004 T
.getObjCLifetime() == Qualifiers::OCL_None
&&
15005 T
->isObjCLifetimeType()) {
15007 Qualifiers::ObjCLifetime lifetime
;
15009 // Special cases for arrays:
15010 // - if it's const, use __unsafe_unretained
15011 // - otherwise, it's an error
15012 if (T
->isArrayType()) {
15013 if (!T
.isConstQualified()) {
15014 if (DelayedDiagnostics
.shouldDelayDiagnostics())
15015 DelayedDiagnostics
.add(
15016 sema::DelayedDiagnostic::makeForbiddenType(
15017 NameLoc
, diag::err_arc_array_param_no_ownership
, T
, false));
15019 Diag(NameLoc
, diag::err_arc_array_param_no_ownership
)
15020 << TSInfo
->getTypeLoc().getSourceRange();
15022 lifetime
= Qualifiers::OCL_ExplicitNone
;
15024 lifetime
= T
->getObjCARCImplicitLifetime();
15026 T
= Context
.getLifetimeQualifiedType(T
, lifetime
);
15029 ParmVarDecl
*New
= ParmVarDecl::Create(Context
, DC
, StartLoc
, NameLoc
, Name
,
15030 Context
.getAdjustedParameterType(T
),
15031 TSInfo
, SC
, nullptr);
15033 // Make a note if we created a new pack in the scope of a lambda, so that
15034 // we know that references to that pack must also be expanded within the
15036 if (New
->isParameterPack())
15037 if (auto *LSI
= getEnclosingLambda())
15038 LSI
->LocalPacks
.push_back(New
);
15040 if (New
->getType().hasNonTrivialToPrimitiveDestructCUnion() ||
15041 New
->getType().hasNonTrivialToPrimitiveCopyCUnion())
15042 checkNonTrivialCUnion(New
->getType(), New
->getLocation(),
15043 NTCUC_FunctionParam
, NTCUK_Destruct
|NTCUK_Copy
);
15045 // Parameter declarators cannot be interface types. All ObjC objects are
15046 // passed by reference.
15047 if (T
->isObjCObjectType()) {
15048 SourceLocation TypeEndLoc
=
15049 getLocForEndOfToken(TSInfo
->getTypeLoc().getEndLoc());
15051 diag::err_object_cannot_be_passed_returned_by_value
) << 1 << T
15052 << FixItHint::CreateInsertion(TypeEndLoc
, "*");
15053 T
= Context
.getObjCObjectPointerType(T
);
15057 // ISO/IEC TR 18037 S6.7.3: "The type of an object with automatic storage
15058 // duration shall not be qualified by an address-space qualifier."
15059 // Since all parameters have automatic store duration, they can not have
15060 // an address space.
15061 if (T
.getAddressSpace() != LangAS::Default
&&
15062 // OpenCL allows function arguments declared to be an array of a type
15063 // to be qualified with an address space.
15064 !(getLangOpts().OpenCL
&&
15065 (T
->isArrayType() || T
.getAddressSpace() == LangAS::opencl_private
)) &&
15066 // WebAssembly allows reference types as parameters. Funcref in particular
15067 // lives in a different address space.
15068 !(T
->isFunctionPointerType() &&
15069 T
.getAddressSpace() == LangAS::wasm_funcref
)) {
15070 Diag(NameLoc
, diag::err_arg_with_address_space
);
15071 New
->setInvalidDecl();
15074 // PPC MMA non-pointer types are not allowed as function argument types.
15075 if (Context
.getTargetInfo().getTriple().isPPC64() &&
15076 CheckPPCMMAType(New
->getOriginalType(), New
->getLocation())) {
15077 New
->setInvalidDecl();
15083 void Sema::ActOnFinishKNRParamDeclarations(Scope
*S
, Declarator
&D
,
15084 SourceLocation LocAfterDecls
) {
15085 DeclaratorChunk::FunctionTypeInfo
&FTI
= D
.getFunctionTypeInfo();
15087 // C99 6.9.1p6 "If a declarator includes an identifier list, each declaration
15088 // in the declaration list shall have at least one declarator, those
15089 // declarators shall only declare identifiers from the identifier list, and
15090 // every identifier in the identifier list shall be declared.
15092 // C89 3.7.1p5 "If a declarator includes an identifier list, only the
15093 // identifiers it names shall be declared in the declaration list."
15095 // This is why we only diagnose in C99 and later. Note, the other conditions
15096 // listed are checked elsewhere.
15097 if (!FTI
.hasPrototype
) {
15098 for (int i
= FTI
.NumParams
; i
!= 0; /* decrement in loop */) {
15100 if (FTI
.Params
[i
].Param
== nullptr) {
15101 if (getLangOpts().C99
) {
15102 SmallString
<256> Code
;
15103 llvm::raw_svector_ostream(Code
)
15104 << " int " << FTI
.Params
[i
].Ident
->getName() << ";\n";
15105 Diag(FTI
.Params
[i
].IdentLoc
, diag::ext_param_not_declared
)
15106 << FTI
.Params
[i
].Ident
15107 << FixItHint::CreateInsertion(LocAfterDecls
, Code
);
15110 // Implicitly declare the argument as type 'int' for lack of a better
15112 AttributeFactory attrs
;
15113 DeclSpec
DS(attrs
);
15114 const char* PrevSpec
; // unused
15115 unsigned DiagID
; // unused
15116 DS
.SetTypeSpecType(DeclSpec::TST_int
, FTI
.Params
[i
].IdentLoc
, PrevSpec
,
15117 DiagID
, Context
.getPrintingPolicy());
15118 // Use the identifier location for the type source range.
15119 DS
.SetRangeStart(FTI
.Params
[i
].IdentLoc
);
15120 DS
.SetRangeEnd(FTI
.Params
[i
].IdentLoc
);
15121 Declarator
ParamD(DS
, ParsedAttributesView::none(),
15122 DeclaratorContext::KNRTypeList
);
15123 ParamD
.SetIdentifier(FTI
.Params
[i
].Ident
, FTI
.Params
[i
].IdentLoc
);
15124 FTI
.Params
[i
].Param
= ActOnParamDeclarator(S
, ParamD
);
15131 Sema::ActOnStartOfFunctionDef(Scope
*FnBodyScope
, Declarator
&D
,
15132 MultiTemplateParamsArg TemplateParameterLists
,
15133 SkipBodyInfo
*SkipBody
, FnBodyKind BodyKind
) {
15134 assert(getCurFunctionDecl() == nullptr && "Function parsing confused");
15135 assert(D
.isFunctionDeclarator() && "Not a function declarator!");
15136 Scope
*ParentScope
= FnBodyScope
->getParent();
15138 // Check if we are in an `omp begin/end declare variant` scope. If we are, and
15139 // we define a non-templated function definition, we will create a declaration
15140 // instead (=BaseFD), and emit the definition with a mangled name afterwards.
15141 // The base function declaration will have the equivalent of an `omp declare
15142 // variant` annotation which specifies the mangled definition as a
15143 // specialization function under the OpenMP context defined as part of the
15144 // `omp begin declare variant`.
15145 SmallVector
<FunctionDecl
*, 4> Bases
;
15146 if (LangOpts
.OpenMP
&& isInOpenMPDeclareVariantScope())
15147 ActOnStartOfFunctionDefinitionInOpenMPDeclareVariantScope(
15148 ParentScope
, D
, TemplateParameterLists
, Bases
);
15150 D
.setFunctionDefinitionKind(FunctionDefinitionKind::Definition
);
15151 Decl
*DP
= HandleDeclarator(ParentScope
, D
, TemplateParameterLists
);
15152 Decl
*Dcl
= ActOnStartOfFunctionDef(FnBodyScope
, DP
, SkipBody
, BodyKind
);
15154 if (!Bases
.empty())
15155 ActOnFinishedFunctionDefinitionInOpenMPDeclareVariantScope(Dcl
, Bases
);
15160 void Sema::ActOnFinishInlineFunctionDef(FunctionDecl
*D
) {
15161 Consumer
.HandleInlineFunctionDefinition(D
);
15164 static bool FindPossiblePrototype(const FunctionDecl
*FD
,
15165 const FunctionDecl
*&PossiblePrototype
) {
15166 for (const FunctionDecl
*Prev
= FD
->getPreviousDecl(); Prev
;
15167 Prev
= Prev
->getPreviousDecl()) {
15168 // Ignore any declarations that occur in function or method
15169 // scope, because they aren't visible from the header.
15170 if (Prev
->getLexicalDeclContext()->isFunctionOrMethod())
15173 PossiblePrototype
= Prev
;
15174 return Prev
->getType()->isFunctionProtoType();
15180 ShouldWarnAboutMissingPrototype(const FunctionDecl
*FD
,
15181 const FunctionDecl
*&PossiblePrototype
) {
15182 // Don't warn about invalid declarations.
15183 if (FD
->isInvalidDecl())
15186 // Or declarations that aren't global.
15187 if (!FD
->isGlobal())
15190 // Don't warn about C++ member functions.
15191 if (isa
<CXXMethodDecl
>(FD
))
15194 // Don't warn about 'main'.
15195 if (isa
<TranslationUnitDecl
>(FD
->getDeclContext()->getRedeclContext()))
15196 if (IdentifierInfo
*II
= FD
->getIdentifier())
15197 if (II
->isStr("main") || II
->isStr("efi_main"))
15200 // Don't warn about inline functions.
15201 if (FD
->isInlined())
15204 // Don't warn about function templates.
15205 if (FD
->getDescribedFunctionTemplate())
15208 // Don't warn about function template specializations.
15209 if (FD
->isFunctionTemplateSpecialization())
15212 // Don't warn for OpenCL kernels.
15213 if (FD
->hasAttr
<OpenCLKernelAttr
>())
15216 // Don't warn on explicitly deleted functions.
15217 if (FD
->isDeleted())
15220 // Don't warn on implicitly local functions (such as having local-typed
15222 if (!FD
->isExternallyVisible())
15225 // If we were able to find a potential prototype, don't warn.
15226 if (FindPossiblePrototype(FD
, PossiblePrototype
))
15233 Sema::CheckForFunctionRedefinition(FunctionDecl
*FD
,
15234 const FunctionDecl
*EffectiveDefinition
,
15235 SkipBodyInfo
*SkipBody
) {
15236 const FunctionDecl
*Definition
= EffectiveDefinition
;
15238 !FD
->isDefined(Definition
, /*CheckForPendingFriendDefinition*/ true))
15241 if (Definition
->getFriendObjectKind() != Decl::FOK_None
) {
15242 if (FunctionDecl
*OrigDef
= Definition
->getInstantiatedFromMemberFunction()) {
15243 if (FunctionDecl
*OrigFD
= FD
->getInstantiatedFromMemberFunction()) {
15244 // A merged copy of the same function, instantiated as a member of
15245 // the same class, is OK.
15246 if (declaresSameEntity(OrigFD
, OrigDef
) &&
15247 declaresSameEntity(cast
<Decl
>(Definition
->getLexicalDeclContext()),
15248 cast
<Decl
>(FD
->getLexicalDeclContext())))
15254 if (canRedefineFunction(Definition
, getLangOpts()))
15257 // Don't emit an error when this is redefinition of a typo-corrected
15259 if (TypoCorrectedFunctionDefinitions
.count(Definition
))
15262 // If we don't have a visible definition of the function, and it's inline or
15263 // a template, skip the new definition.
15264 if (SkipBody
&& !hasVisibleDefinition(Definition
) &&
15265 (Definition
->getFormalLinkage() == InternalLinkage
||
15266 Definition
->isInlined() ||
15267 Definition
->getDescribedFunctionTemplate() ||
15268 Definition
->getNumTemplateParameterLists())) {
15269 SkipBody
->ShouldSkip
= true;
15270 SkipBody
->Previous
= const_cast<FunctionDecl
*>(Definition
);
15271 if (auto *TD
= Definition
->getDescribedFunctionTemplate())
15272 makeMergedDefinitionVisible(TD
);
15273 makeMergedDefinitionVisible(const_cast<FunctionDecl
*>(Definition
));
15277 if (getLangOpts().GNUMode
&& Definition
->isInlineSpecified() &&
15278 Definition
->getStorageClass() == SC_Extern
)
15279 Diag(FD
->getLocation(), diag::err_redefinition_extern_inline
)
15280 << FD
<< getLangOpts().CPlusPlus
;
15282 Diag(FD
->getLocation(), diag::err_redefinition
) << FD
;
15284 Diag(Definition
->getLocation(), diag::note_previous_definition
);
15285 FD
->setInvalidDecl();
15288 LambdaScopeInfo
*Sema::RebuildLambdaScopeInfo(CXXMethodDecl
*CallOperator
) {
15289 CXXRecordDecl
*LambdaClass
= CallOperator
->getParent();
15291 LambdaScopeInfo
*LSI
= PushLambdaScope();
15292 LSI
->CallOperator
= CallOperator
;
15293 LSI
->Lambda
= LambdaClass
;
15294 LSI
->ReturnType
= CallOperator
->getReturnType();
15295 const LambdaCaptureDefault LCD
= LambdaClass
->getLambdaCaptureDefault();
15297 if (LCD
== LCD_None
)
15298 LSI
->ImpCaptureStyle
= CapturingScopeInfo::ImpCap_None
;
15299 else if (LCD
== LCD_ByCopy
)
15300 LSI
->ImpCaptureStyle
= CapturingScopeInfo::ImpCap_LambdaByval
;
15301 else if (LCD
== LCD_ByRef
)
15302 LSI
->ImpCaptureStyle
= CapturingScopeInfo::ImpCap_LambdaByref
;
15303 DeclarationNameInfo DNI
= CallOperator
->getNameInfo();
15305 LSI
->IntroducerRange
= DNI
.getCXXOperatorNameRange();
15306 LSI
->Mutable
= !CallOperator
->isConst();
15308 // Add the captures to the LSI so they can be noted as already
15309 // captured within tryCaptureVar.
15310 auto I
= LambdaClass
->field_begin();
15311 for (const auto &C
: LambdaClass
->captures()) {
15312 if (C
.capturesVariable()) {
15313 ValueDecl
*VD
= C
.getCapturedVar();
15314 if (VD
->isInitCapture())
15315 CurrentInstantiationScope
->InstantiatedLocal(VD
, VD
);
15316 const bool ByRef
= C
.getCaptureKind() == LCK_ByRef
;
15317 LSI
->addCapture(VD
, /*IsBlock*/false, ByRef
,
15318 /*RefersToEnclosingVariableOrCapture*/true, C
.getLocation(),
15319 /*EllipsisLoc*/C
.isPackExpansion()
15320 ? C
.getEllipsisLoc() : SourceLocation(),
15321 I
->getType(), /*Invalid*/false);
15323 } else if (C
.capturesThis()) {
15324 LSI
->addThisCapture(/*Nested*/ false, C
.getLocation(), I
->getType(),
15325 C
.getCaptureKind() == LCK_StarThis
);
15327 LSI
->addVLATypeCapture(C
.getLocation(), I
->getCapturedVLAType(),
15335 Decl
*Sema::ActOnStartOfFunctionDef(Scope
*FnBodyScope
, Decl
*D
,
15336 SkipBodyInfo
*SkipBody
,
15337 FnBodyKind BodyKind
) {
15339 // Parsing the function declaration failed in some way. Push on a fake scope
15340 // anyway so we can try to parse the function body.
15341 PushFunctionScope();
15342 PushExpressionEvaluationContext(ExprEvalContexts
.back().Context
);
15346 FunctionDecl
*FD
= nullptr;
15348 if (FunctionTemplateDecl
*FunTmpl
= dyn_cast
<FunctionTemplateDecl
>(D
))
15349 FD
= FunTmpl
->getTemplatedDecl();
15351 FD
= cast
<FunctionDecl
>(D
);
15353 // Do not push if it is a lambda because one is already pushed when building
15354 // the lambda in ActOnStartOfLambdaDefinition().
15355 if (!isLambdaCallOperator(FD
))
15356 // [expr.const]/p14.1
15357 // An expression or conversion is in an immediate function context if it is
15358 // potentially evaluated and either: its innermost enclosing non-block scope
15359 // is a function parameter scope of an immediate function.
15360 PushExpressionEvaluationContext(
15361 FD
->isConsteval() ? ExpressionEvaluationContext::ImmediateFunctionContext
15362 : ExprEvalContexts
.back().Context
);
15364 // Each ExpressionEvaluationContextRecord also keeps track of whether the
15365 // context is nested in an immediate function context, so smaller contexts
15366 // that appear inside immediate functions (like variable initializers) are
15367 // considered to be inside an immediate function context even though by
15368 // themselves they are not immediate function contexts. But when a new
15369 // function is entered, we need to reset this tracking, since the entered
15370 // function might be not an immediate function.
15371 ExprEvalContexts
.back().InImmediateFunctionContext
= FD
->isConsteval();
15372 ExprEvalContexts
.back().InImmediateEscalatingFunctionContext
=
15373 getLangOpts().CPlusPlus20
&& FD
->isImmediateEscalating();
15375 // Check for defining attributes before the check for redefinition.
15376 if (const auto *Attr
= FD
->getAttr
<AliasAttr
>()) {
15377 Diag(Attr
->getLocation(), diag::err_alias_is_definition
) << FD
<< 0;
15378 FD
->dropAttr
<AliasAttr
>();
15379 FD
->setInvalidDecl();
15381 if (const auto *Attr
= FD
->getAttr
<IFuncAttr
>()) {
15382 Diag(Attr
->getLocation(), diag::err_alias_is_definition
) << FD
<< 1;
15383 FD
->dropAttr
<IFuncAttr
>();
15384 FD
->setInvalidDecl();
15386 if (const auto *Attr
= FD
->getAttr
<TargetVersionAttr
>()) {
15387 if (!Context
.getTargetInfo().hasFeature("fmv") &&
15388 !Attr
->isDefaultVersion()) {
15389 // If function multi versioning disabled skip parsing function body
15390 // defined with non-default target_version attribute
15392 SkipBody
->ShouldSkip
= true;
15397 if (auto *Ctor
= dyn_cast
<CXXConstructorDecl
>(FD
)) {
15398 if (Ctor
->getTemplateSpecializationKind() == TSK_ExplicitSpecialization
&&
15399 Ctor
->isDefaultConstructor() &&
15400 Context
.getTargetInfo().getCXXABI().isMicrosoft()) {
15401 // If this is an MS ABI dllexport default constructor, instantiate any
15402 // default arguments.
15403 InstantiateDefaultCtorDefaultArgs(Ctor
);
15407 // See if this is a redefinition. If 'will have body' (or similar) is already
15408 // set, then these checks were already performed when it was set.
15409 if (!FD
->willHaveBody() && !FD
->isLateTemplateParsed() &&
15410 !FD
->isThisDeclarationInstantiatedFromAFriendDefinition()) {
15411 CheckForFunctionRedefinition(FD
, nullptr, SkipBody
);
15413 // If we're skipping the body, we're done. Don't enter the scope.
15414 if (SkipBody
&& SkipBody
->ShouldSkip
)
15418 // Mark this function as "will have a body eventually". This lets users to
15419 // call e.g. isInlineDefinitionExternallyVisible while we're still parsing
15421 FD
->setWillHaveBody();
15423 // If we are instantiating a generic lambda call operator, push
15424 // a LambdaScopeInfo onto the function stack. But use the information
15425 // that's already been calculated (ActOnLambdaExpr) to prime the current
15426 // LambdaScopeInfo.
15427 // When the template operator is being specialized, the LambdaScopeInfo,
15428 // has to be properly restored so that tryCaptureVariable doesn't try
15429 // and capture any new variables. In addition when calculating potential
15430 // captures during transformation of nested lambdas, it is necessary to
15431 // have the LSI properly restored.
15432 if (isGenericLambdaCallOperatorSpecialization(FD
)) {
15433 assert(inTemplateInstantiation() &&
15434 "There should be an active template instantiation on the stack "
15435 "when instantiating a generic lambda!");
15436 RebuildLambdaScopeInfo(cast
<CXXMethodDecl
>(D
));
15438 // Enter a new function scope
15439 PushFunctionScope();
15442 // Builtin functions cannot be defined.
15443 if (unsigned BuiltinID
= FD
->getBuiltinID()) {
15444 if (!Context
.BuiltinInfo
.isPredefinedLibFunction(BuiltinID
) &&
15445 !Context
.BuiltinInfo
.isPredefinedRuntimeFunction(BuiltinID
)) {
15446 Diag(FD
->getLocation(), diag::err_builtin_definition
) << FD
;
15447 FD
->setInvalidDecl();
15451 // The return type of a function definition must be complete (C99 6.9.1p3).
15452 // C++23 [dcl.fct.def.general]/p2
15453 // The type of [...] the return for a function definition
15454 // shall not be a (possibly cv-qualified) class type that is incomplete
15455 // or abstract within the function body unless the function is deleted.
15456 QualType ResultType
= FD
->getReturnType();
15457 if (!ResultType
->isDependentType() && !ResultType
->isVoidType() &&
15458 !FD
->isInvalidDecl() && BodyKind
!= FnBodyKind::Delete
&&
15459 (RequireCompleteType(FD
->getLocation(), ResultType
,
15460 diag::err_func_def_incomplete_result
) ||
15461 RequireNonAbstractType(FD
->getLocation(), FD
->getReturnType(),
15462 diag::err_abstract_type_in_decl
,
15463 AbstractReturnType
)))
15464 FD
->setInvalidDecl();
15467 PushDeclContext(FnBodyScope
, FD
);
15469 // Check the validity of our function parameters
15470 if (BodyKind
!= FnBodyKind::Delete
)
15471 CheckParmsForFunctionDef(FD
->parameters(),
15472 /*CheckParameterNames=*/true);
15474 // Add non-parameter declarations already in the function to the current
15477 for (Decl
*NPD
: FD
->decls()) {
15478 auto *NonParmDecl
= dyn_cast
<NamedDecl
>(NPD
);
15481 assert(!isa
<ParmVarDecl
>(NonParmDecl
) &&
15482 "parameters should not be in newly created FD yet");
15484 // If the decl has a name, make it accessible in the current scope.
15485 if (NonParmDecl
->getDeclName())
15486 PushOnScopeChains(NonParmDecl
, FnBodyScope
, /*AddToContext=*/false);
15488 // Similarly, dive into enums and fish their constants out, making them
15489 // accessible in this scope.
15490 if (auto *ED
= dyn_cast
<EnumDecl
>(NonParmDecl
)) {
15491 for (auto *EI
: ED
->enumerators())
15492 PushOnScopeChains(EI
, FnBodyScope
, /*AddToContext=*/false);
15497 // Introduce our parameters into the function scope
15498 for (auto *Param
: FD
->parameters()) {
15499 Param
->setOwningFunction(FD
);
15501 // If this has an identifier, add it to the scope stack.
15502 if (Param
->getIdentifier() && FnBodyScope
) {
15503 CheckShadow(FnBodyScope
, Param
);
15505 PushOnScopeChains(Param
, FnBodyScope
);
15509 // C++ [module.import/6] external definitions are not permitted in header
15510 // units. Deleted and Defaulted functions are implicitly inline (but the
15511 // inline state is not set at this point, so check the BodyKind explicitly).
15512 // FIXME: Consider an alternate location for the test where the inlined()
15513 // state is complete.
15514 if (getLangOpts().CPlusPlusModules
&& currentModuleIsHeaderUnit() &&
15515 !FD
->isInvalidDecl() && !FD
->isInlined() &&
15516 BodyKind
!= FnBodyKind::Delete
&& BodyKind
!= FnBodyKind::Default
&&
15517 FD
->getFormalLinkage() == Linkage::ExternalLinkage
&&
15518 !FD
->isTemplated() && !FD
->isTemplateInstantiation()) {
15519 assert(FD
->isThisDeclarationADefinition());
15520 Diag(FD
->getLocation(), diag::err_extern_def_in_header_unit
);
15521 FD
->setInvalidDecl();
15524 // Ensure that the function's exception specification is instantiated.
15525 if (const FunctionProtoType
*FPT
= FD
->getType()->getAs
<FunctionProtoType
>())
15526 ResolveExceptionSpec(D
->getLocation(), FPT
);
15528 // dllimport cannot be applied to non-inline function definitions.
15529 if (FD
->hasAttr
<DLLImportAttr
>() && !FD
->isInlined() &&
15530 !FD
->isTemplateInstantiation()) {
15531 assert(!FD
->hasAttr
<DLLExportAttr
>());
15532 Diag(FD
->getLocation(), diag::err_attribute_dllimport_function_definition
);
15533 FD
->setInvalidDecl();
15536 // We want to attach documentation to original Decl (which might be
15537 // a function template).
15538 ActOnDocumentableDecl(D
);
15539 if (getCurLexicalContext()->isObjCContainer() &&
15540 getCurLexicalContext()->getDeclKind() != Decl::ObjCCategoryImpl
&&
15541 getCurLexicalContext()->getDeclKind() != Decl::ObjCImplementation
)
15542 Diag(FD
->getLocation(), diag::warn_function_def_in_objc_container
);
15547 /// Given the set of return statements within a function body,
15548 /// compute the variables that are subject to the named return value
15551 /// Each of the variables that is subject to the named return value
15552 /// optimization will be marked as NRVO variables in the AST, and any
15553 /// return statement that has a marked NRVO variable as its NRVO candidate can
15554 /// use the named return value optimization.
15556 /// This function applies a very simplistic algorithm for NRVO: if every return
15557 /// statement in the scope of a variable has the same NRVO candidate, that
15558 /// candidate is an NRVO variable.
15559 void Sema::computeNRVO(Stmt
*Body
, FunctionScopeInfo
*Scope
) {
15560 ReturnStmt
**Returns
= Scope
->Returns
.data();
15562 for (unsigned I
= 0, E
= Scope
->Returns
.size(); I
!= E
; ++I
) {
15563 if (const VarDecl
*NRVOCandidate
= Returns
[I
]->getNRVOCandidate()) {
15564 if (!NRVOCandidate
->isNRVOVariable())
15565 Returns
[I
]->setNRVOCandidate(nullptr);
15570 bool Sema::canDelayFunctionBody(const Declarator
&D
) {
15571 // We can't delay parsing the body of a constexpr function template (yet).
15572 if (D
.getDeclSpec().hasConstexprSpecifier())
15575 // We can't delay parsing the body of a function template with a deduced
15576 // return type (yet).
15577 if (D
.getDeclSpec().hasAutoTypeSpec()) {
15578 // If the placeholder introduces a non-deduced trailing return type,
15579 // we can still delay parsing it.
15580 if (D
.getNumTypeObjects()) {
15581 const auto &Outer
= D
.getTypeObject(D
.getNumTypeObjects() - 1);
15582 if (Outer
.Kind
== DeclaratorChunk::Function
&&
15583 Outer
.Fun
.hasTrailingReturnType()) {
15584 QualType Ty
= GetTypeFromParser(Outer
.Fun
.getTrailingReturnType());
15585 return Ty
.isNull() || !Ty
->isUndeducedType();
15594 bool Sema::canSkipFunctionBody(Decl
*D
) {
15595 // We cannot skip the body of a function (or function template) which is
15596 // constexpr, since we may need to evaluate its body in order to parse the
15597 // rest of the file.
15598 // We cannot skip the body of a function with an undeduced return type,
15599 // because any callers of that function need to know the type.
15600 if (const FunctionDecl
*FD
= D
->getAsFunction()) {
15601 if (FD
->isConstexpr())
15603 // We can't simply call Type::isUndeducedType here, because inside template
15604 // auto can be deduced to a dependent type, which is not considered
15606 if (FD
->getReturnType()->getContainedDeducedType())
15609 return Consumer
.shouldSkipFunctionBody(D
);
15612 Decl
*Sema::ActOnSkippedFunctionBody(Decl
*Decl
) {
15615 if (FunctionDecl
*FD
= Decl
->getAsFunction())
15616 FD
->setHasSkippedBody();
15617 else if (ObjCMethodDecl
*MD
= dyn_cast
<ObjCMethodDecl
>(Decl
))
15618 MD
->setHasSkippedBody();
15622 Decl
*Sema::ActOnFinishFunctionBody(Decl
*D
, Stmt
*BodyArg
) {
15623 return ActOnFinishFunctionBody(D
, BodyArg
, false);
15626 /// RAII object that pops an ExpressionEvaluationContext when exiting a function
15628 class ExitFunctionBodyRAII
{
15630 ExitFunctionBodyRAII(Sema
&S
, bool IsLambda
) : S(S
), IsLambda(IsLambda
) {}
15631 ~ExitFunctionBodyRAII() {
15633 S
.PopExpressionEvaluationContext();
15638 bool IsLambda
= false;
15641 static void diagnoseImplicitlyRetainedSelf(Sema
&S
) {
15642 llvm::DenseMap
<const BlockDecl
*, bool> EscapeInfo
;
15644 auto IsOrNestedInEscapingBlock
= [&](const BlockDecl
*BD
) {
15645 if (EscapeInfo
.count(BD
))
15646 return EscapeInfo
[BD
];
15649 const BlockDecl
*CurBD
= BD
;
15652 R
= !CurBD
->doesNotEscape();
15655 CurBD
= CurBD
->getParent()->getInnermostBlockDecl();
15658 return EscapeInfo
[BD
] = R
;
15661 // If the location where 'self' is implicitly retained is inside a escaping
15662 // block, emit a diagnostic.
15663 for (const std::pair
<SourceLocation
, const BlockDecl
*> &P
:
15664 S
.ImplicitlyRetainedSelfLocs
)
15665 if (IsOrNestedInEscapingBlock(P
.second
))
15666 S
.Diag(P
.first
, diag::warn_implicitly_retains_self
)
15667 << FixItHint::CreateInsertion(P
.first
, "self->");
15670 Decl
*Sema::ActOnFinishFunctionBody(Decl
*dcl
, Stmt
*Body
,
15671 bool IsInstantiation
) {
15672 FunctionScopeInfo
*FSI
= getCurFunction();
15673 FunctionDecl
*FD
= dcl
? dcl
->getAsFunction() : nullptr;
15675 if (FSI
->UsesFPIntrin
&& FD
&& !FD
->hasAttr
<StrictFPAttr
>())
15676 FD
->addAttr(StrictFPAttr::CreateImplicit(Context
));
15678 sema::AnalysisBasedWarnings::Policy WP
= AnalysisWarnings
.getDefaultPolicy();
15679 sema::AnalysisBasedWarnings::Policy
*ActivePolicy
= nullptr;
15681 if (getLangOpts().Coroutines
&& FSI
->isCoroutine())
15682 CheckCompletedCoroutineBody(FD
, Body
);
15685 // Do not call PopExpressionEvaluationContext() if it is a lambda because
15686 // one is already popped when finishing the lambda in BuildLambdaExpr().
15687 // This is meant to pop the context added in ActOnStartOfFunctionDef().
15688 ExitFunctionBodyRAII
ExitRAII(*this, isLambdaCallOperator(FD
));
15691 FD
->setWillHaveBody(false);
15692 CheckImmediateEscalatingFunctionDefinition(FD
, FSI
);
15694 if (getLangOpts().CPlusPlus14
) {
15695 if (!FD
->isInvalidDecl() && Body
&& !FD
->isDependentContext() &&
15696 FD
->getReturnType()->isUndeducedType()) {
15697 // For a function with a deduced result type to return void,
15698 // the result type as written must be 'auto' or 'decltype(auto)',
15699 // possibly cv-qualified or constrained, but not ref-qualified.
15700 if (!FD
->getReturnType()->getAs
<AutoType
>()) {
15701 Diag(dcl
->getLocation(), diag::err_auto_fn_no_return_but_not_auto
)
15702 << FD
->getReturnType();
15703 FD
->setInvalidDecl();
15705 // Falling off the end of the function is the same as 'return;'.
15706 Expr
*Dummy
= nullptr;
15707 if (DeduceFunctionTypeFromReturnExpr(
15708 FD
, dcl
->getLocation(), Dummy
,
15709 FD
->getReturnType()->getAs
<AutoType
>()))
15710 FD
->setInvalidDecl();
15713 } else if (getLangOpts().CPlusPlus11
&& isLambdaCallOperator(FD
)) {
15714 // In C++11, we don't use 'auto' deduction rules for lambda call
15715 // operators because we don't support return type deduction.
15716 auto *LSI
= getCurLambda();
15717 if (LSI
->HasImplicitReturnType
) {
15718 deduceClosureReturnType(*LSI
);
15720 // C++11 [expr.prim.lambda]p4:
15721 // [...] if there are no return statements in the compound-statement
15722 // [the deduced type is] the type void
15724 LSI
->ReturnType
.isNull() ? Context
.VoidTy
: LSI
->ReturnType
;
15726 // Update the return type to the deduced type.
15727 const auto *Proto
= FD
->getType()->castAs
<FunctionProtoType
>();
15728 FD
->setType(Context
.getFunctionType(RetType
, Proto
->getParamTypes(),
15729 Proto
->getExtProtoInfo()));
15733 // If the function implicitly returns zero (like 'main') or is naked,
15734 // don't complain about missing return statements.
15735 if (FD
->hasImplicitReturnZero() || FD
->hasAttr
<NakedAttr
>())
15736 WP
.disableCheckFallThrough();
15738 // MSVC permits the use of pure specifier (=0) on function definition,
15739 // defined at class scope, warn about this non-standard construct.
15740 if (getLangOpts().MicrosoftExt
&& FD
->isPure() && !FD
->isOutOfLine())
15741 Diag(FD
->getLocation(), diag::ext_pure_function_definition
);
15743 if (!FD
->isInvalidDecl()) {
15744 // Don't diagnose unused parameters of defaulted, deleted or naked
15746 if (!FD
->isDeleted() && !FD
->isDefaulted() && !FD
->hasSkippedBody() &&
15747 !FD
->hasAttr
<NakedAttr
>())
15748 DiagnoseUnusedParameters(FD
->parameters());
15749 DiagnoseSizeOfParametersAndReturnValue(FD
->parameters(),
15750 FD
->getReturnType(), FD
);
15752 // If this is a structor, we need a vtable.
15753 if (CXXConstructorDecl
*Constructor
= dyn_cast
<CXXConstructorDecl
>(FD
))
15754 MarkVTableUsed(FD
->getLocation(), Constructor
->getParent());
15755 else if (CXXDestructorDecl
*Destructor
=
15756 dyn_cast
<CXXDestructorDecl
>(FD
))
15757 MarkVTableUsed(FD
->getLocation(), Destructor
->getParent());
15759 // Try to apply the named return value optimization. We have to check
15760 // if we can do this here because lambdas keep return statements around
15761 // to deduce an implicit return type.
15762 if (FD
->getReturnType()->isRecordType() &&
15763 (!getLangOpts().CPlusPlus
|| !FD
->isDependentContext()))
15764 computeNRVO(Body
, FSI
);
15767 // GNU warning -Wmissing-prototypes:
15768 // Warn if a global function is defined without a previous
15769 // prototype declaration. This warning is issued even if the
15770 // definition itself provides a prototype. The aim is to detect
15771 // global functions that fail to be declared in header files.
15772 const FunctionDecl
*PossiblePrototype
= nullptr;
15773 if (ShouldWarnAboutMissingPrototype(FD
, PossiblePrototype
)) {
15774 Diag(FD
->getLocation(), diag::warn_missing_prototype
) << FD
;
15776 if (PossiblePrototype
) {
15777 // We found a declaration that is not a prototype,
15778 // but that could be a zero-parameter prototype
15779 if (TypeSourceInfo
*TI
= PossiblePrototype
->getTypeSourceInfo()) {
15780 TypeLoc TL
= TI
->getTypeLoc();
15781 if (FunctionNoProtoTypeLoc FTL
= TL
.getAs
<FunctionNoProtoTypeLoc
>())
15782 Diag(PossiblePrototype
->getLocation(),
15783 diag::note_declaration_not_a_prototype
)
15784 << (FD
->getNumParams() != 0)
15785 << (FD
->getNumParams() == 0 ? FixItHint::CreateInsertion(
15786 FTL
.getRParenLoc(), "void")
15790 // Returns true if the token beginning at this Loc is `const`.
15791 auto isLocAtConst
= [&](SourceLocation Loc
, const SourceManager
&SM
,
15792 const LangOptions
&LangOpts
) {
15793 std::pair
<FileID
, unsigned> LocInfo
= SM
.getDecomposedLoc(Loc
);
15794 if (LocInfo
.first
.isInvalid())
15797 bool Invalid
= false;
15798 StringRef Buffer
= SM
.getBufferData(LocInfo
.first
, &Invalid
);
15802 if (LocInfo
.second
> Buffer
.size())
15805 const char *LexStart
= Buffer
.data() + LocInfo
.second
;
15806 StringRef
StartTok(LexStart
, Buffer
.size() - LocInfo
.second
);
15808 return StartTok
.consume_front("const") &&
15809 (StartTok
.empty() || isWhitespace(StartTok
[0]) ||
15810 StartTok
.startswith("/*") || StartTok
.startswith("//"));
15813 auto findBeginLoc
= [&]() {
15814 // If the return type has `const` qualifier, we want to insert
15815 // `static` before `const` (and not before the typename).
15816 if ((FD
->getReturnType()->isAnyPointerType() &&
15817 FD
->getReturnType()->getPointeeType().isConstQualified()) ||
15818 FD
->getReturnType().isConstQualified()) {
15819 // But only do this if we can determine where the `const` is.
15821 if (isLocAtConst(FD
->getBeginLoc(), getSourceManager(),
15824 return FD
->getBeginLoc();
15826 return FD
->getTypeSpecStartLoc();
15828 Diag(FD
->getTypeSpecStartLoc(),
15829 diag::note_static_for_internal_linkage
)
15830 << /* function */ 1
15831 << (FD
->getStorageClass() == SC_None
15832 ? FixItHint::CreateInsertion(findBeginLoc(), "static ")
15837 // We might not have found a prototype because we didn't wish to warn on
15838 // the lack of a missing prototype. Try again without the checks for
15839 // whether we want to warn on the missing prototype.
15840 if (!PossiblePrototype
)
15841 (void)FindPossiblePrototype(FD
, PossiblePrototype
);
15843 // If the function being defined does not have a prototype, then we may
15844 // need to diagnose it as changing behavior in C23 because we now know
15845 // whether the function accepts arguments or not. This only handles the
15846 // case where the definition has no prototype but does have parameters
15847 // and either there is no previous potential prototype, or the previous
15848 // potential prototype also has no actual prototype. This handles cases
15850 // void f(); void f(a) int a; {}
15851 // void g(a) int a; {}
15852 // See MergeFunctionDecl() for other cases of the behavior change
15853 // diagnostic. See GetFullTypeForDeclarator() for handling of a function
15854 // type without a prototype.
15855 if (!FD
->hasWrittenPrototype() && FD
->getNumParams() != 0 &&
15856 (!PossiblePrototype
|| (!PossiblePrototype
->hasWrittenPrototype() &&
15857 !PossiblePrototype
->isImplicit()))) {
15858 // The function definition has parameters, so this will change behavior
15859 // in C23. If there is a possible prototype, it comes before the
15860 // function definition.
15861 // FIXME: The declaration may have already been diagnosed as being
15862 // deprecated in GetFullTypeForDeclarator() if it had no arguments, but
15863 // there's no way to test for the "changes behavior" condition in
15864 // SemaType.cpp when forming the declaration's function type. So, we do
15865 // this awkward dance instead.
15867 // If we have a possible prototype and it declares a function with a
15868 // prototype, we don't want to diagnose it; if we have a possible
15869 // prototype and it has no prototype, it may have already been
15870 // diagnosed in SemaType.cpp as deprecated depending on whether
15871 // -Wstrict-prototypes is enabled. If we already warned about it being
15872 // deprecated, add a note that it also changes behavior. If we didn't
15873 // warn about it being deprecated (because the diagnostic is not
15874 // enabled), warn now that it is deprecated and changes behavior.
15876 // This K&R C function definition definitely changes behavior in C23,
15878 Diag(FD
->getLocation(), diag::warn_non_prototype_changes_behavior
)
15879 << /*definition*/ 1 << /* not supported in C23 */ 0;
15881 // If we have a possible prototype for the function which is a user-
15882 // visible declaration, we already tested that it has no prototype.
15883 // This will change behavior in C23. This gets a warning rather than a
15884 // note because it's the same behavior-changing problem as with the
15886 if (PossiblePrototype
)
15887 Diag(PossiblePrototype
->getLocation(),
15888 diag::warn_non_prototype_changes_behavior
)
15889 << /*declaration*/ 0 << /* conflicting */ 1 << /*subsequent*/ 1
15890 << /*definition*/ 1;
15893 // Warn on CPUDispatch with an actual body.
15894 if (FD
->isMultiVersion() && FD
->hasAttr
<CPUDispatchAttr
>() && Body
)
15895 if (const auto *CmpndBody
= dyn_cast
<CompoundStmt
>(Body
))
15896 if (!CmpndBody
->body_empty())
15897 Diag(CmpndBody
->body_front()->getBeginLoc(),
15898 diag::warn_dispatch_body_ignored
);
15900 if (auto *MD
= dyn_cast
<CXXMethodDecl
>(FD
)) {
15901 const CXXMethodDecl
*KeyFunction
;
15902 if (MD
->isOutOfLine() && (MD
= MD
->getCanonicalDecl()) &&
15904 (KeyFunction
= Context
.getCurrentKeyFunction(MD
->getParent())) &&
15905 MD
== KeyFunction
->getCanonicalDecl()) {
15906 // Update the key-function state if necessary for this ABI.
15907 if (FD
->isInlined() &&
15908 !Context
.getTargetInfo().getCXXABI().canKeyFunctionBeInline()) {
15909 Context
.setNonKeyFunction(MD
);
15911 // If the newly-chosen key function is already defined, then we
15912 // need to mark the vtable as used retroactively.
15913 KeyFunction
= Context
.getCurrentKeyFunction(MD
->getParent());
15914 const FunctionDecl
*Definition
;
15915 if (KeyFunction
&& KeyFunction
->isDefined(Definition
))
15916 MarkVTableUsed(Definition
->getLocation(), MD
->getParent(), true);
15918 // We just defined they key function; mark the vtable as used.
15919 MarkVTableUsed(FD
->getLocation(), MD
->getParent(), true);
15925 (FD
== getCurFunctionDecl() || getCurLambda()->CallOperator
== FD
) &&
15926 "Function parsing confused");
15927 } else if (ObjCMethodDecl
*MD
= dyn_cast_or_null
<ObjCMethodDecl
>(dcl
)) {
15928 assert(MD
== getCurMethodDecl() && "Method parsing confused");
15930 if (!MD
->isInvalidDecl()) {
15931 DiagnoseSizeOfParametersAndReturnValue(MD
->parameters(),
15932 MD
->getReturnType(), MD
);
15935 computeNRVO(Body
, FSI
);
15937 if (FSI
->ObjCShouldCallSuper
) {
15938 Diag(MD
->getEndLoc(), diag::warn_objc_missing_super_call
)
15939 << MD
->getSelector().getAsString();
15940 FSI
->ObjCShouldCallSuper
= false;
15942 if (FSI
->ObjCWarnForNoDesignatedInitChain
) {
15943 const ObjCMethodDecl
*InitMethod
= nullptr;
15944 bool isDesignated
=
15945 MD
->isDesignatedInitializerForTheInterface(&InitMethod
);
15946 assert(isDesignated
&& InitMethod
);
15947 (void)isDesignated
;
15949 auto superIsNSObject
= [&](const ObjCMethodDecl
*MD
) {
15950 auto IFace
= MD
->getClassInterface();
15953 auto SuperD
= IFace
->getSuperClass();
15956 return SuperD
->getIdentifier() ==
15957 NSAPIObj
->getNSClassId(NSAPI::ClassId_NSObject
);
15959 // Don't issue this warning for unavailable inits or direct subclasses
15961 if (!MD
->isUnavailable() && !superIsNSObject(MD
)) {
15962 Diag(MD
->getLocation(),
15963 diag::warn_objc_designated_init_missing_super_call
);
15964 Diag(InitMethod
->getLocation(),
15965 diag::note_objc_designated_init_marked_here
);
15967 FSI
->ObjCWarnForNoDesignatedInitChain
= false;
15969 if (FSI
->ObjCWarnForNoInitDelegation
) {
15970 // Don't issue this warning for unavaialable inits.
15971 if (!MD
->isUnavailable())
15972 Diag(MD
->getLocation(),
15973 diag::warn_objc_secondary_init_missing_init_call
);
15974 FSI
->ObjCWarnForNoInitDelegation
= false;
15977 diagnoseImplicitlyRetainedSelf(*this);
15979 // Parsing the function declaration failed in some way. Pop the fake scope
15981 PopFunctionScopeInfo(ActivePolicy
, dcl
);
15985 if (Body
&& FSI
->HasPotentialAvailabilityViolations
)
15986 DiagnoseUnguardedAvailabilityViolations(dcl
);
15988 assert(!FSI
->ObjCShouldCallSuper
&&
15989 "This should only be set for ObjC methods, which should have been "
15990 "handled in the block above.");
15992 // Verify and clean out per-function state.
15993 if (Body
&& (!FD
|| !FD
->isDefaulted())) {
15994 // C++ constructors that have function-try-blocks can't have return
15995 // statements in the handlers of that block. (C++ [except.handle]p14)
15997 if (FD
&& isa
<CXXConstructorDecl
>(FD
) && isa
<CXXTryStmt
>(Body
))
15998 DiagnoseReturnInConstructorExceptionHandler(cast
<CXXTryStmt
>(Body
));
16000 // Verify that gotos and switch cases don't jump into scopes illegally.
16001 if (FSI
->NeedsScopeChecking() && !PP
.isCodeCompletionEnabled())
16002 DiagnoseInvalidJumps(Body
);
16004 if (CXXDestructorDecl
*Destructor
= dyn_cast
<CXXDestructorDecl
>(dcl
)) {
16005 if (!Destructor
->getParent()->isDependentType())
16006 CheckDestructor(Destructor
);
16008 MarkBaseAndMemberDestructorsReferenced(Destructor
->getLocation(),
16009 Destructor
->getParent());
16012 // If any errors have occurred, clear out any temporaries that may have
16013 // been leftover. This ensures that these temporaries won't be picked up
16014 // for deletion in some later function.
16015 if (hasUncompilableErrorOccurred() ||
16016 getDiagnostics().getSuppressAllDiagnostics()) {
16017 DiscardCleanupsInEvaluationContext();
16019 if (!hasUncompilableErrorOccurred() && !isa
<FunctionTemplateDecl
>(dcl
)) {
16020 // Since the body is valid, issue any analysis-based warnings that are
16022 ActivePolicy
= &WP
;
16025 if (!IsInstantiation
&& FD
&& FD
->isConstexpr() && !FD
->isInvalidDecl() &&
16026 !CheckConstexprFunctionDefinition(FD
, CheckConstexprKind::Diagnose
))
16027 FD
->setInvalidDecl();
16029 if (FD
&& FD
->hasAttr
<NakedAttr
>()) {
16030 for (const Stmt
*S
: Body
->children()) {
16031 // Allow local register variables without initializer as they don't
16032 // require prologue.
16033 bool RegisterVariables
= false;
16034 if (auto *DS
= dyn_cast
<DeclStmt
>(S
)) {
16035 for (const auto *Decl
: DS
->decls()) {
16036 if (const auto *Var
= dyn_cast
<VarDecl
>(Decl
)) {
16037 RegisterVariables
=
16038 Var
->hasAttr
<AsmLabelAttr
>() && !Var
->hasInit();
16039 if (!RegisterVariables
)
16044 if (RegisterVariables
)
16046 if (!isa
<AsmStmt
>(S
) && !isa
<NullStmt
>(S
)) {
16047 Diag(S
->getBeginLoc(), diag::err_non_asm_stmt_in_naked_function
);
16048 Diag(FD
->getAttr
<NakedAttr
>()->getLocation(), diag::note_attribute
);
16049 FD
->setInvalidDecl();
16055 assert(ExprCleanupObjects
.size() ==
16056 ExprEvalContexts
.back().NumCleanupObjects
&&
16057 "Leftover temporaries in function");
16058 assert(!Cleanup
.exprNeedsCleanups() &&
16059 "Unaccounted cleanups in function");
16060 assert(MaybeODRUseExprs
.empty() &&
16061 "Leftover expressions for odr-use checking");
16063 } // Pops the ExitFunctionBodyRAII scope, which needs to happen before we pop
16064 // the declaration context below. Otherwise, we're unable to transform
16065 // 'this' expressions when transforming immediate context functions.
16067 if (!IsInstantiation
)
16070 PopFunctionScopeInfo(ActivePolicy
, dcl
);
16071 // If any errors have occurred, clear out any temporaries that may have
16072 // been leftover. This ensures that these temporaries won't be picked up for
16073 // deletion in some later function.
16074 if (hasUncompilableErrorOccurred()) {
16075 DiscardCleanupsInEvaluationContext();
16078 if (FD
&& ((LangOpts
.OpenMP
&& (LangOpts
.OpenMPIsTargetDevice
||
16079 !LangOpts
.OMPTargetTriples
.empty())) ||
16080 LangOpts
.CUDA
|| LangOpts
.SYCLIsDevice
)) {
16081 auto ES
= getEmissionStatus(FD
);
16082 if (ES
== Sema::FunctionEmissionStatus::Emitted
||
16083 ES
== Sema::FunctionEmissionStatus::Unknown
)
16084 DeclsToCheckForDeferredDiags
.insert(FD
);
16087 if (FD
&& !FD
->isDeleted())
16088 checkTypeSupport(FD
->getType(), FD
->getLocation(), FD
);
16093 /// When we finish delayed parsing of an attribute, we must attach it to the
16095 void Sema::ActOnFinishDelayedAttribute(Scope
*S
, Decl
*D
,
16096 ParsedAttributes
&Attrs
) {
16097 // Always attach attributes to the underlying decl.
16098 if (TemplateDecl
*TD
= dyn_cast
<TemplateDecl
>(D
))
16099 D
= TD
->getTemplatedDecl();
16100 ProcessDeclAttributeList(S
, D
, Attrs
);
16102 if (CXXMethodDecl
*Method
= dyn_cast_or_null
<CXXMethodDecl
>(D
))
16103 if (Method
->isStatic())
16104 checkThisInStaticMemberFunctionAttributes(Method
);
16107 /// ImplicitlyDefineFunction - An undeclared identifier was used in a function
16108 /// call, forming a call to an implicitly defined function (per C99 6.5.1p2).
16109 NamedDecl
*Sema::ImplicitlyDefineFunction(SourceLocation Loc
,
16110 IdentifierInfo
&II
, Scope
*S
) {
16111 // It is not valid to implicitly define a function in C23.
16112 assert(LangOpts
.implicitFunctionsAllowed() &&
16113 "Implicit function declarations aren't allowed in this language mode");
16115 // Find the scope in which the identifier is injected and the corresponding
16117 // FIXME: C89 does not say what happens if there is no enclosing block scope.
16118 // In that case, we inject the declaration into the translation unit scope
16120 Scope
*BlockScope
= S
;
16121 while (!BlockScope
->isCompoundStmtScope() && BlockScope
->getParent())
16122 BlockScope
= BlockScope
->getParent();
16124 // Loop until we find a DeclContext that is either a function/method or the
16125 // translation unit, which are the only two valid places to implicitly define
16126 // a function. This avoids accidentally defining the function within a tag
16127 // declaration, for example.
16128 Scope
*ContextScope
= BlockScope
;
16129 while (!ContextScope
->getEntity() ||
16130 (!ContextScope
->getEntity()->isFunctionOrMethod() &&
16131 !ContextScope
->getEntity()->isTranslationUnit()))
16132 ContextScope
= ContextScope
->getParent();
16133 ContextRAII
SavedContext(*this, ContextScope
->getEntity());
16135 // Before we produce a declaration for an implicitly defined
16136 // function, see whether there was a locally-scoped declaration of
16137 // this name as a function or variable. If so, use that
16138 // (non-visible) declaration, and complain about it.
16139 NamedDecl
*ExternCPrev
= findLocallyScopedExternCDecl(&II
);
16141 // We still need to inject the function into the enclosing block scope so
16142 // that later (non-call) uses can see it.
16143 PushOnScopeChains(ExternCPrev
, BlockScope
, /*AddToContext*/false);
16145 // C89 footnote 38:
16146 // If in fact it is not defined as having type "function returning int",
16147 // the behavior is undefined.
16148 if (!isa
<FunctionDecl
>(ExternCPrev
) ||
16149 !Context
.typesAreCompatible(
16150 cast
<FunctionDecl
>(ExternCPrev
)->getType(),
16151 Context
.getFunctionNoProtoType(Context
.IntTy
))) {
16152 Diag(Loc
, diag::ext_use_out_of_scope_declaration
)
16153 << ExternCPrev
<< !getLangOpts().C99
;
16154 Diag(ExternCPrev
->getLocation(), diag::note_previous_declaration
);
16155 return ExternCPrev
;
16159 // Extension in C99 (defaults to error). Legal in C89, but warn about it.
16161 if (II
.getName().startswith("__builtin_"))
16162 diag_id
= diag::warn_builtin_unknown
;
16163 // OpenCL v2.0 s6.9.u - Implicit function declaration is not supported.
16164 else if (getLangOpts().C99
)
16165 diag_id
= diag::ext_implicit_function_decl_c99
;
16167 diag_id
= diag::warn_implicit_function_decl
;
16169 TypoCorrection Corrected
;
16170 // Because typo correction is expensive, only do it if the implicit
16171 // function declaration is going to be treated as an error.
16173 // Perform the correction before issuing the main diagnostic, as some
16174 // consumers use typo-correction callbacks to enhance the main diagnostic.
16175 if (S
&& !ExternCPrev
&&
16176 (Diags
.getDiagnosticLevel(diag_id
, Loc
) >= DiagnosticsEngine::Error
)) {
16177 DeclFilterCCC
<FunctionDecl
> CCC
{};
16178 Corrected
= CorrectTypo(DeclarationNameInfo(&II
, Loc
), LookupOrdinaryName
,
16179 S
, nullptr, CCC
, CTK_NonError
);
16182 Diag(Loc
, diag_id
) << &II
;
16184 // If the correction is going to suggest an implicitly defined function,
16185 // skip the correction as not being a particularly good idea.
16186 bool Diagnose
= true;
16187 if (const auto *D
= Corrected
.getCorrectionDecl())
16188 Diagnose
= !D
->isImplicit();
16190 diagnoseTypo(Corrected
, PDiag(diag::note_function_suggestion
),
16191 /*ErrorRecovery*/ false);
16194 // If we found a prior declaration of this function, don't bother building
16195 // another one. We've already pushed that one into scope, so there's nothing
16198 return ExternCPrev
;
16200 // Set a Declarator for the implicit definition: int foo();
16202 AttributeFactory attrFactory
;
16203 DeclSpec
DS(attrFactory
);
16205 bool Error
= DS
.SetTypeSpecType(DeclSpec::TST_int
, Loc
, Dummy
, DiagID
,
16206 Context
.getPrintingPolicy());
16207 (void)Error
; // Silence warning.
16208 assert(!Error
&& "Error setting up implicit decl!");
16209 SourceLocation NoLoc
;
16210 Declarator
D(DS
, ParsedAttributesView::none(), DeclaratorContext::Block
);
16211 D
.AddTypeInfo(DeclaratorChunk::getFunction(/*HasProto=*/false,
16212 /*IsAmbiguous=*/false,
16213 /*LParenLoc=*/NoLoc
,
16214 /*Params=*/nullptr,
16216 /*EllipsisLoc=*/NoLoc
,
16217 /*RParenLoc=*/NoLoc
,
16218 /*RefQualifierIsLvalueRef=*/true,
16219 /*RefQualifierLoc=*/NoLoc
,
16220 /*MutableLoc=*/NoLoc
, EST_None
,
16221 /*ESpecRange=*/SourceRange(),
16222 /*Exceptions=*/nullptr,
16223 /*ExceptionRanges=*/nullptr,
16224 /*NumExceptions=*/0,
16225 /*NoexceptExpr=*/nullptr,
16226 /*ExceptionSpecTokens=*/nullptr,
16227 /*DeclsInPrototype=*/std::nullopt
,
16229 std::move(DS
.getAttributes()), SourceLocation());
16230 D
.SetIdentifier(&II
, Loc
);
16232 // Insert this function into the enclosing block scope.
16233 FunctionDecl
*FD
= cast
<FunctionDecl
>(ActOnDeclarator(BlockScope
, D
));
16236 AddKnownFunctionAttributes(FD
);
16241 /// If this function is a C++ replaceable global allocation function
16242 /// (C++2a [basic.stc.dynamic.allocation], C++2a [new.delete]),
16243 /// adds any function attributes that we know a priori based on the standard.
16245 /// We need to check for duplicate attributes both here and where user-written
16246 /// attributes are applied to declarations.
16247 void Sema::AddKnownFunctionAttributesForReplaceableGlobalAllocationFunction(
16248 FunctionDecl
*FD
) {
16249 if (FD
->isInvalidDecl())
16252 if (FD
->getDeclName().getCXXOverloadedOperator() != OO_New
&&
16253 FD
->getDeclName().getCXXOverloadedOperator() != OO_Array_New
)
16256 std::optional
<unsigned> AlignmentParam
;
16257 bool IsNothrow
= false;
16258 if (!FD
->isReplaceableGlobalAllocationFunction(&AlignmentParam
, &IsNothrow
))
16261 // C++2a [basic.stc.dynamic.allocation]p4:
16262 // An allocation function that has a non-throwing exception specification
16263 // indicates failure by returning a null pointer value. Any other allocation
16264 // function never returns a null pointer value and indicates failure only by
16265 // throwing an exception [...]
16267 // However, -fcheck-new invalidates this possible assumption, so don't add
16268 // NonNull when that is enabled.
16269 if (!IsNothrow
&& !FD
->hasAttr
<ReturnsNonNullAttr
>() &&
16270 !getLangOpts().CheckNew
)
16271 FD
->addAttr(ReturnsNonNullAttr::CreateImplicit(Context
, FD
->getLocation()));
16273 // C++2a [basic.stc.dynamic.allocation]p2:
16274 // An allocation function attempts to allocate the requested amount of
16275 // storage. [...] If the request succeeds, the value returned by a
16276 // replaceable allocation function is a [...] pointer value p0 different
16277 // from any previously returned value p1 [...]
16279 // However, this particular information is being added in codegen,
16280 // because there is an opt-out switch for it (-fno-assume-sane-operator-new)
16282 // C++2a [basic.stc.dynamic.allocation]p2:
16283 // An allocation function attempts to allocate the requested amount of
16284 // storage. If it is successful, it returns the address of the start of a
16285 // block of storage whose length in bytes is at least as large as the
16287 if (!FD
->hasAttr
<AllocSizeAttr
>()) {
16288 FD
->addAttr(AllocSizeAttr::CreateImplicit(
16289 Context
, /*ElemSizeParam=*/ParamIdx(1, FD
),
16290 /*NumElemsParam=*/ParamIdx(), FD
->getLocation()));
16293 // C++2a [basic.stc.dynamic.allocation]p3:
16294 // For an allocation function [...], the pointer returned on a successful
16295 // call shall represent the address of storage that is aligned as follows:
16296 // (3.1) If the allocation function takes an argument of type
16297 // std​::​align_Âval_Ât, the storage will have the alignment
16298 // specified by the value of this argument.
16299 if (AlignmentParam
&& !FD
->hasAttr
<AllocAlignAttr
>()) {
16300 FD
->addAttr(AllocAlignAttr::CreateImplicit(
16301 Context
, ParamIdx(*AlignmentParam
, FD
), FD
->getLocation()));
16305 // C++2a [basic.stc.dynamic.allocation]p3:
16306 // For an allocation function [...], the pointer returned on a successful
16307 // call shall represent the address of storage that is aligned as follows:
16308 // (3.2) Otherwise, if the allocation function is named operator new[],
16309 // the storage is aligned for any object that does not have
16310 // new-extended alignment ([basic.align]) and is no larger than the
16312 // (3.3) Otherwise, the storage is aligned for any object that does not
16313 // have new-extended alignment and is of the requested size.
16316 /// Adds any function attributes that we know a priori based on
16317 /// the declaration of this function.
16319 /// These attributes can apply both to implicitly-declared builtins
16320 /// (like __builtin___printf_chk) or to library-declared functions
16321 /// like NSLog or printf.
16323 /// We need to check for duplicate attributes both here and where user-written
16324 /// attributes are applied to declarations.
16325 void Sema::AddKnownFunctionAttributes(FunctionDecl
*FD
) {
16326 if (FD
->isInvalidDecl())
16329 // If this is a built-in function, map its builtin attributes to
16330 // actual attributes.
16331 if (unsigned BuiltinID
= FD
->getBuiltinID()) {
16332 // Handle printf-formatting attributes.
16333 unsigned FormatIdx
;
16335 if (Context
.BuiltinInfo
.isPrintfLike(BuiltinID
, FormatIdx
, HasVAListArg
)) {
16336 if (!FD
->hasAttr
<FormatAttr
>()) {
16337 const char *fmt
= "printf";
16338 unsigned int NumParams
= FD
->getNumParams();
16339 if (FormatIdx
< NumParams
&& // NumParams may be 0 (e.g. vfprintf)
16340 FD
->getParamDecl(FormatIdx
)->getType()->isObjCObjectPointerType())
16342 FD
->addAttr(FormatAttr::CreateImplicit(Context
,
16343 &Context
.Idents
.get(fmt
),
16345 HasVAListArg
? 0 : FormatIdx
+2,
16346 FD
->getLocation()));
16349 if (Context
.BuiltinInfo
.isScanfLike(BuiltinID
, FormatIdx
,
16351 if (!FD
->hasAttr
<FormatAttr
>())
16352 FD
->addAttr(FormatAttr::CreateImplicit(Context
,
16353 &Context
.Idents
.get("scanf"),
16355 HasVAListArg
? 0 : FormatIdx
+2,
16356 FD
->getLocation()));
16359 // Handle automatically recognized callbacks.
16360 SmallVector
<int, 4> Encoding
;
16361 if (!FD
->hasAttr
<CallbackAttr
>() &&
16362 Context
.BuiltinInfo
.performsCallback(BuiltinID
, Encoding
))
16363 FD
->addAttr(CallbackAttr::CreateImplicit(
16364 Context
, Encoding
.data(), Encoding
.size(), FD
->getLocation()));
16366 // Mark const if we don't care about errno and/or floating point exceptions
16367 // that are the only thing preventing the function from being const. This
16368 // allows IRgen to use LLVM intrinsics for such functions.
16369 bool NoExceptions
=
16370 getLangOpts().getDefaultExceptionMode() == LangOptions::FPE_Ignore
;
16371 bool ConstWithoutErrnoAndExceptions
=
16372 Context
.BuiltinInfo
.isConstWithoutErrnoAndExceptions(BuiltinID
);
16373 bool ConstWithoutExceptions
=
16374 Context
.BuiltinInfo
.isConstWithoutExceptions(BuiltinID
);
16375 if (!FD
->hasAttr
<ConstAttr
>() &&
16376 (ConstWithoutErrnoAndExceptions
|| ConstWithoutExceptions
) &&
16377 (!ConstWithoutErrnoAndExceptions
||
16378 (!getLangOpts().MathErrno
&& NoExceptions
)) &&
16379 (!ConstWithoutExceptions
|| NoExceptions
))
16380 FD
->addAttr(ConstAttr::CreateImplicit(Context
, FD
->getLocation()));
16382 // We make "fma" on GNU or Windows const because we know it does not set
16383 // errno in those environments even though it could set errno based on the
16385 const llvm::Triple
&Trip
= Context
.getTargetInfo().getTriple();
16386 if ((Trip
.isGNUEnvironment() || Trip
.isOSMSVCRT()) &&
16387 !FD
->hasAttr
<ConstAttr
>()) {
16388 switch (BuiltinID
) {
16389 case Builtin::BI__builtin_fma
:
16390 case Builtin::BI__builtin_fmaf
:
16391 case Builtin::BI__builtin_fmal
:
16392 case Builtin::BIfma
:
16393 case Builtin::BIfmaf
:
16394 case Builtin::BIfmal
:
16395 FD
->addAttr(ConstAttr::CreateImplicit(Context
, FD
->getLocation()));
16402 if (Context
.BuiltinInfo
.isReturnsTwice(BuiltinID
) &&
16403 !FD
->hasAttr
<ReturnsTwiceAttr
>())
16404 FD
->addAttr(ReturnsTwiceAttr::CreateImplicit(Context
,
16405 FD
->getLocation()));
16406 if (Context
.BuiltinInfo
.isNoThrow(BuiltinID
) && !FD
->hasAttr
<NoThrowAttr
>())
16407 FD
->addAttr(NoThrowAttr::CreateImplicit(Context
, FD
->getLocation()));
16408 if (Context
.BuiltinInfo
.isPure(BuiltinID
) && !FD
->hasAttr
<PureAttr
>())
16409 FD
->addAttr(PureAttr::CreateImplicit(Context
, FD
->getLocation()));
16410 if (Context
.BuiltinInfo
.isConst(BuiltinID
) && !FD
->hasAttr
<ConstAttr
>())
16411 FD
->addAttr(ConstAttr::CreateImplicit(Context
, FD
->getLocation()));
16412 if (getLangOpts().CUDA
&& Context
.BuiltinInfo
.isTSBuiltin(BuiltinID
) &&
16413 !FD
->hasAttr
<CUDADeviceAttr
>() && !FD
->hasAttr
<CUDAHostAttr
>()) {
16414 // Add the appropriate attribute, depending on the CUDA compilation mode
16415 // and which target the builtin belongs to. For example, during host
16416 // compilation, aux builtins are __device__, while the rest are __host__.
16417 if (getLangOpts().CUDAIsDevice
!=
16418 Context
.BuiltinInfo
.isAuxBuiltinID(BuiltinID
))
16419 FD
->addAttr(CUDADeviceAttr::CreateImplicit(Context
, FD
->getLocation()));
16421 FD
->addAttr(CUDAHostAttr::CreateImplicit(Context
, FD
->getLocation()));
16424 // Add known guaranteed alignment for allocation functions.
16425 switch (BuiltinID
) {
16426 case Builtin::BImemalign
:
16427 case Builtin::BIaligned_alloc
:
16428 if (!FD
->hasAttr
<AllocAlignAttr
>())
16429 FD
->addAttr(AllocAlignAttr::CreateImplicit(Context
, ParamIdx(1, FD
),
16430 FD
->getLocation()));
16436 // Add allocsize attribute for allocation functions.
16437 switch (BuiltinID
) {
16438 case Builtin::BIcalloc
:
16439 FD
->addAttr(AllocSizeAttr::CreateImplicit(
16440 Context
, ParamIdx(1, FD
), ParamIdx(2, FD
), FD
->getLocation()));
16442 case Builtin::BImemalign
:
16443 case Builtin::BIaligned_alloc
:
16444 case Builtin::BIrealloc
:
16445 FD
->addAttr(AllocSizeAttr::CreateImplicit(Context
, ParamIdx(2, FD
),
16446 ParamIdx(), FD
->getLocation()));
16448 case Builtin::BImalloc
:
16449 FD
->addAttr(AllocSizeAttr::CreateImplicit(Context
, ParamIdx(1, FD
),
16450 ParamIdx(), FD
->getLocation()));
16456 // Add lifetime attribute to std::move, std::fowrard et al.
16457 switch (BuiltinID
) {
16458 case Builtin::BIaddressof
:
16459 case Builtin::BI__addressof
:
16460 case Builtin::BI__builtin_addressof
:
16461 case Builtin::BIas_const
:
16462 case Builtin::BIforward
:
16463 case Builtin::BIforward_like
:
16464 case Builtin::BImove
:
16465 case Builtin::BImove_if_noexcept
:
16466 if (ParmVarDecl
*P
= FD
->getParamDecl(0u);
16467 !P
->hasAttr
<LifetimeBoundAttr
>())
16469 LifetimeBoundAttr::CreateImplicit(Context
, FD
->getLocation()));
16476 AddKnownFunctionAttributesForReplaceableGlobalAllocationFunction(FD
);
16478 // If C++ exceptions are enabled but we are told extern "C" functions cannot
16479 // throw, add an implicit nothrow attribute to any extern "C" function we come
16481 if (getLangOpts().CXXExceptions
&& getLangOpts().ExternCNoUnwind
&&
16482 FD
->isExternC() && !FD
->hasAttr
<NoThrowAttr
>()) {
16483 const auto *FPT
= FD
->getType()->getAs
<FunctionProtoType
>();
16484 if (!FPT
|| FPT
->getExceptionSpecType() == EST_None
)
16485 FD
->addAttr(NoThrowAttr::CreateImplicit(Context
, FD
->getLocation()));
16488 IdentifierInfo
*Name
= FD
->getIdentifier();
16491 if ((!getLangOpts().CPlusPlus
&&
16492 FD
->getDeclContext()->isTranslationUnit()) ||
16493 (isa
<LinkageSpecDecl
>(FD
->getDeclContext()) &&
16494 cast
<LinkageSpecDecl
>(FD
->getDeclContext())->getLanguage() ==
16495 LinkageSpecDecl::lang_c
)) {
16496 // Okay: this could be a libc/libm/Objective-C function we know
16501 if (Name
->isStr("asprintf") || Name
->isStr("vasprintf")) {
16502 // FIXME: asprintf and vasprintf aren't C99 functions. Should they be
16503 // target-specific builtins, perhaps?
16504 if (!FD
->hasAttr
<FormatAttr
>())
16505 FD
->addAttr(FormatAttr::CreateImplicit(Context
,
16506 &Context
.Idents
.get("printf"), 2,
16507 Name
->isStr("vasprintf") ? 0 : 3,
16508 FD
->getLocation()));
16511 if (Name
->isStr("__CFStringMakeConstantString")) {
16512 // We already have a __builtin___CFStringMakeConstantString,
16513 // but builds that use -fno-constant-cfstrings don't go through that.
16514 if (!FD
->hasAttr
<FormatArgAttr
>())
16515 FD
->addAttr(FormatArgAttr::CreateImplicit(Context
, ParamIdx(1, FD
),
16516 FD
->getLocation()));
16520 TypedefDecl
*Sema::ParseTypedefDecl(Scope
*S
, Declarator
&D
, QualType T
,
16521 TypeSourceInfo
*TInfo
) {
16522 assert(D
.getIdentifier() && "Wrong callback for declspec without declarator");
16523 assert(!T
.isNull() && "GetTypeForDeclarator() returned null type");
16526 assert(D
.isInvalidType() && "no declarator info for valid type");
16527 TInfo
= Context
.getTrivialTypeSourceInfo(T
);
16530 // Scope manipulation handled by caller.
16531 TypedefDecl
*NewTD
=
16532 TypedefDecl::Create(Context
, CurContext
, D
.getBeginLoc(),
16533 D
.getIdentifierLoc(), D
.getIdentifier(), TInfo
);
16535 // Bail out immediately if we have an invalid declaration.
16536 if (D
.isInvalidType()) {
16537 NewTD
->setInvalidDecl();
16541 if (D
.getDeclSpec().isModulePrivateSpecified()) {
16542 if (CurContext
->isFunctionOrMethod())
16543 Diag(NewTD
->getLocation(), diag::err_module_private_local
)
16545 << SourceRange(D
.getDeclSpec().getModulePrivateSpecLoc())
16546 << FixItHint::CreateRemoval(
16547 D
.getDeclSpec().getModulePrivateSpecLoc());
16549 NewTD
->setModulePrivate();
16552 // C++ [dcl.typedef]p8:
16553 // If the typedef declaration defines an unnamed class (or
16554 // enum), the first typedef-name declared by the declaration
16555 // to be that class type (or enum type) is used to denote the
16556 // class type (or enum type) for linkage purposes only.
16557 // We need to check whether the type was declared in the declaration.
16558 switch (D
.getDeclSpec().getTypeSpecType()) {
16561 case TST_interface
:
16564 TagDecl
*tagFromDeclSpec
= cast
<TagDecl
>(D
.getDeclSpec().getRepAsDecl());
16565 setTagNameForLinkagePurposes(tagFromDeclSpec
, NewTD
);
16576 /// Check that this is a valid underlying type for an enum declaration.
16577 bool Sema::CheckEnumUnderlyingType(TypeSourceInfo
*TI
) {
16578 SourceLocation UnderlyingLoc
= TI
->getTypeLoc().getBeginLoc();
16579 QualType T
= TI
->getType();
16581 if (T
->isDependentType())
16584 // This doesn't use 'isIntegralType' despite the error message mentioning
16585 // integral type because isIntegralType would also allow enum types in C.
16586 if (const BuiltinType
*BT
= T
->getAs
<BuiltinType
>())
16587 if (BT
->isInteger())
16590 if (T
->isBitIntType())
16593 return Diag(UnderlyingLoc
, diag::err_enum_invalid_underlying
) << T
;
16596 /// Check whether this is a valid redeclaration of a previous enumeration.
16597 /// \return true if the redeclaration was invalid.
16598 bool Sema::CheckEnumRedeclaration(SourceLocation EnumLoc
, bool IsScoped
,
16599 QualType EnumUnderlyingTy
, bool IsFixed
,
16600 const EnumDecl
*Prev
) {
16601 if (IsScoped
!= Prev
->isScoped()) {
16602 Diag(EnumLoc
, diag::err_enum_redeclare_scoped_mismatch
)
16603 << Prev
->isScoped();
16604 Diag(Prev
->getLocation(), diag::note_previous_declaration
);
16608 if (IsFixed
&& Prev
->isFixed()) {
16609 if (!EnumUnderlyingTy
->isDependentType() &&
16610 !Prev
->getIntegerType()->isDependentType() &&
16611 !Context
.hasSameUnqualifiedType(EnumUnderlyingTy
,
16612 Prev
->getIntegerType())) {
16613 // TODO: Highlight the underlying type of the redeclaration.
16614 Diag(EnumLoc
, diag::err_enum_redeclare_type_mismatch
)
16615 << EnumUnderlyingTy
<< Prev
->getIntegerType();
16616 Diag(Prev
->getLocation(), diag::note_previous_declaration
)
16617 << Prev
->getIntegerTypeRange();
16620 } else if (IsFixed
!= Prev
->isFixed()) {
16621 Diag(EnumLoc
, diag::err_enum_redeclare_fixed_mismatch
)
16622 << Prev
->isFixed();
16623 Diag(Prev
->getLocation(), diag::note_previous_declaration
);
16630 /// Get diagnostic %select index for tag kind for
16631 /// redeclaration diagnostic message.
16632 /// WARNING: Indexes apply to particular diagnostics only!
16634 /// \returns diagnostic %select index.
16635 static unsigned getRedeclDiagFromTagKind(TagTypeKind Tag
) {
16637 case TTK_Struct
: return 0;
16638 case TTK_Interface
: return 1;
16639 case TTK_Class
: return 2;
16640 default: llvm_unreachable("Invalid tag kind for redecl diagnostic!");
16644 /// Determine if tag kind is a class-key compatible with
16645 /// class for redeclaration (class, struct, or __interface).
16647 /// \returns true iff the tag kind is compatible.
16648 static bool isClassCompatTagKind(TagTypeKind Tag
)
16650 return Tag
== TTK_Struct
|| Tag
== TTK_Class
|| Tag
== TTK_Interface
;
16653 Sema::NonTagKind
Sema::getNonTagTypeDeclKind(const Decl
*PrevDecl
,
16655 if (isa
<TypedefDecl
>(PrevDecl
))
16656 return NTK_Typedef
;
16657 else if (isa
<TypeAliasDecl
>(PrevDecl
))
16658 return NTK_TypeAlias
;
16659 else if (isa
<ClassTemplateDecl
>(PrevDecl
))
16660 return NTK_Template
;
16661 else if (isa
<TypeAliasTemplateDecl
>(PrevDecl
))
16662 return NTK_TypeAliasTemplate
;
16663 else if (isa
<TemplateTemplateParmDecl
>(PrevDecl
))
16664 return NTK_TemplateTemplateArgument
;
16667 case TTK_Interface
:
16669 return getLangOpts().CPlusPlus
? NTK_NonClass
: NTK_NonStruct
;
16671 return NTK_NonUnion
;
16673 return NTK_NonEnum
;
16675 llvm_unreachable("invalid TTK");
16678 /// Determine whether a tag with a given kind is acceptable
16679 /// as a redeclaration of the given tag declaration.
16681 /// \returns true if the new tag kind is acceptable, false otherwise.
16682 bool Sema::isAcceptableTagRedeclaration(const TagDecl
*Previous
,
16683 TagTypeKind NewTag
, bool isDefinition
,
16684 SourceLocation NewTagLoc
,
16685 const IdentifierInfo
*Name
) {
16686 // C++ [dcl.type.elab]p3:
16687 // The class-key or enum keyword present in the
16688 // elaborated-type-specifier shall agree in kind with the
16689 // declaration to which the name in the elaborated-type-specifier
16690 // refers. This rule also applies to the form of
16691 // elaborated-type-specifier that declares a class-name or
16692 // friend class since it can be construed as referring to the
16693 // definition of the class. Thus, in any
16694 // elaborated-type-specifier, the enum keyword shall be used to
16695 // refer to an enumeration (7.2), the union class-key shall be
16696 // used to refer to a union (clause 9), and either the class or
16697 // struct class-key shall be used to refer to a class (clause 9)
16698 // declared using the class or struct class-key.
16699 TagTypeKind OldTag
= Previous
->getTagKind();
16700 if (OldTag
!= NewTag
&&
16701 !(isClassCompatTagKind(OldTag
) && isClassCompatTagKind(NewTag
)))
16704 // Tags are compatible, but we might still want to warn on mismatched tags.
16705 // Non-class tags can't be mismatched at this point.
16706 if (!isClassCompatTagKind(NewTag
))
16709 // Declarations for which -Wmismatched-tags is disabled are entirely ignored
16710 // by our warning analysis. We don't want to warn about mismatches with (eg)
16711 // declarations in system headers that are designed to be specialized, but if
16712 // a user asks us to warn, we should warn if their code contains mismatched
16714 auto IsIgnoredLoc
= [&](SourceLocation Loc
) {
16715 return getDiagnostics().isIgnored(diag::warn_struct_class_tag_mismatch
,
16718 if (IsIgnoredLoc(NewTagLoc
))
16721 auto IsIgnored
= [&](const TagDecl
*Tag
) {
16722 return IsIgnoredLoc(Tag
->getLocation());
16724 while (IsIgnored(Previous
)) {
16725 Previous
= Previous
->getPreviousDecl();
16728 OldTag
= Previous
->getTagKind();
16731 bool isTemplate
= false;
16732 if (const CXXRecordDecl
*Record
= dyn_cast
<CXXRecordDecl
>(Previous
))
16733 isTemplate
= Record
->getDescribedClassTemplate();
16735 if (inTemplateInstantiation()) {
16736 if (OldTag
!= NewTag
) {
16737 // In a template instantiation, do not offer fix-its for tag mismatches
16738 // since they usually mess up the template instead of fixing the problem.
16739 Diag(NewTagLoc
, diag::warn_struct_class_tag_mismatch
)
16740 << getRedeclDiagFromTagKind(NewTag
) << isTemplate
<< Name
16741 << getRedeclDiagFromTagKind(OldTag
);
16742 // FIXME: Note previous location?
16747 if (isDefinition
) {
16748 // On definitions, check all previous tags and issue a fix-it for each
16749 // one that doesn't match the current tag.
16750 if (Previous
->getDefinition()) {
16751 // Don't suggest fix-its for redefinitions.
16755 bool previousMismatch
= false;
16756 for (const TagDecl
*I
: Previous
->redecls()) {
16757 if (I
->getTagKind() != NewTag
) {
16758 // Ignore previous declarations for which the warning was disabled.
16762 if (!previousMismatch
) {
16763 previousMismatch
= true;
16764 Diag(NewTagLoc
, diag::warn_struct_class_previous_tag_mismatch
)
16765 << getRedeclDiagFromTagKind(NewTag
) << isTemplate
<< Name
16766 << getRedeclDiagFromTagKind(I
->getTagKind());
16768 Diag(I
->getInnerLocStart(), diag::note_struct_class_suggestion
)
16769 << getRedeclDiagFromTagKind(NewTag
)
16770 << FixItHint::CreateReplacement(I
->getInnerLocStart(),
16771 TypeWithKeyword::getTagTypeKindName(NewTag
));
16777 // Identify the prevailing tag kind: this is the kind of the definition (if
16778 // there is a non-ignored definition), or otherwise the kind of the prior
16779 // (non-ignored) declaration.
16780 const TagDecl
*PrevDef
= Previous
->getDefinition();
16781 if (PrevDef
&& IsIgnored(PrevDef
))
16783 const TagDecl
*Redecl
= PrevDef
? PrevDef
: Previous
;
16784 if (Redecl
->getTagKind() != NewTag
) {
16785 Diag(NewTagLoc
, diag::warn_struct_class_tag_mismatch
)
16786 << getRedeclDiagFromTagKind(NewTag
) << isTemplate
<< Name
16787 << getRedeclDiagFromTagKind(OldTag
);
16788 Diag(Redecl
->getLocation(), diag::note_previous_use
);
16790 // If there is a previous definition, suggest a fix-it.
16792 Diag(NewTagLoc
, diag::note_struct_class_suggestion
)
16793 << getRedeclDiagFromTagKind(Redecl
->getTagKind())
16794 << FixItHint::CreateReplacement(SourceRange(NewTagLoc
),
16795 TypeWithKeyword::getTagTypeKindName(Redecl
->getTagKind()));
16802 /// Add a minimal nested name specifier fixit hint to allow lookup of a tag name
16803 /// from an outer enclosing namespace or file scope inside a friend declaration.
16804 /// This should provide the commented out code in the following snippet:
16808 /// struct Y { friend struct /*N::*/ X; };
16811 static FixItHint
createFriendTagNNSFixIt(Sema
&SemaRef
, NamedDecl
*ND
, Scope
*S
,
16812 SourceLocation NameLoc
) {
16813 // While the decl is in a namespace, do repeated lookup of that name and see
16814 // if we get the same namespace back. If we do not, continue until
16815 // translation unit scope, at which point we have a fully qualified NNS.
16816 SmallVector
<IdentifierInfo
*, 4> Namespaces
;
16817 DeclContext
*DC
= ND
->getDeclContext()->getRedeclContext();
16818 for (; !DC
->isTranslationUnit(); DC
= DC
->getParent()) {
16819 // This tag should be declared in a namespace, which can only be enclosed by
16820 // other namespaces. Bail if there's an anonymous namespace in the chain.
16821 NamespaceDecl
*Namespace
= dyn_cast
<NamespaceDecl
>(DC
);
16822 if (!Namespace
|| Namespace
->isAnonymousNamespace())
16823 return FixItHint();
16824 IdentifierInfo
*II
= Namespace
->getIdentifier();
16825 Namespaces
.push_back(II
);
16826 NamedDecl
*Lookup
= SemaRef
.LookupSingleName(
16827 S
, II
, NameLoc
, Sema::LookupNestedNameSpecifierName
);
16828 if (Lookup
== Namespace
)
16832 // Once we have all the namespaces, reverse them to go outermost first, and
16834 SmallString
<64> Insertion
;
16835 llvm::raw_svector_ostream
OS(Insertion
);
16836 if (DC
->isTranslationUnit())
16838 std::reverse(Namespaces
.begin(), Namespaces
.end());
16839 for (auto *II
: Namespaces
)
16840 OS
<< II
->getName() << "::";
16841 return FixItHint::CreateInsertion(NameLoc
, Insertion
);
16844 /// Determine whether a tag originally declared in context \p OldDC can
16845 /// be redeclared with an unqualified name in \p NewDC (assuming name lookup
16846 /// found a declaration in \p OldDC as a previous decl, perhaps through a
16847 /// using-declaration).
16848 static bool isAcceptableTagRedeclContext(Sema
&S
, DeclContext
*OldDC
,
16849 DeclContext
*NewDC
) {
16850 OldDC
= OldDC
->getRedeclContext();
16851 NewDC
= NewDC
->getRedeclContext();
16853 if (OldDC
->Equals(NewDC
))
16856 // In MSVC mode, we allow a redeclaration if the contexts are related (either
16857 // encloses the other).
16858 if (S
.getLangOpts().MSVCCompat
&&
16859 (OldDC
->Encloses(NewDC
) || NewDC
->Encloses(OldDC
)))
16865 /// This is invoked when we see 'struct foo' or 'struct {'. In the
16866 /// former case, Name will be non-null. In the later case, Name will be null.
16867 /// TagSpec indicates what kind of tag this is. TUK indicates whether this is a
16868 /// reference/declaration/definition of a tag.
16870 /// \param IsTypeSpecifier \c true if this is a type-specifier (or
16871 /// trailing-type-specifier) other than one in an alias-declaration.
16873 /// \param SkipBody If non-null, will be set to indicate if the caller should
16874 /// skip the definition of this tag and treat it as if it were a declaration.
16876 Sema::ActOnTag(Scope
*S
, unsigned TagSpec
, TagUseKind TUK
, SourceLocation KWLoc
,
16877 CXXScopeSpec
&SS
, IdentifierInfo
*Name
, SourceLocation NameLoc
,
16878 const ParsedAttributesView
&Attrs
, AccessSpecifier AS
,
16879 SourceLocation ModulePrivateLoc
,
16880 MultiTemplateParamsArg TemplateParameterLists
, bool &OwnedDecl
,
16881 bool &IsDependent
, SourceLocation ScopedEnumKWLoc
,
16882 bool ScopedEnumUsesClassTag
, TypeResult UnderlyingType
,
16883 bool IsTypeSpecifier
, bool IsTemplateParamOrArg
,
16884 OffsetOfKind OOK
, SkipBodyInfo
*SkipBody
) {
16885 // If this is not a definition, it must have a name.
16886 IdentifierInfo
*OrigName
= Name
;
16887 assert((Name
!= nullptr || TUK
== TUK_Definition
) &&
16888 "Nameless record must be a definition!");
16889 assert(TemplateParameterLists
.size() == 0 || TUK
!= TUK_Reference
);
16892 TagTypeKind Kind
= TypeWithKeyword::getTagTypeKindForTypeSpec(TagSpec
);
16893 bool ScopedEnum
= ScopedEnumKWLoc
.isValid();
16895 // FIXME: Check member specializations more carefully.
16896 bool isMemberSpecialization
= false;
16897 bool Invalid
= false;
16899 // We only need to do this matching if we have template parameters
16900 // or a scope specifier, which also conveniently avoids this work
16901 // for non-C++ cases.
16902 if (TemplateParameterLists
.size() > 0 ||
16903 (SS
.isNotEmpty() && TUK
!= TUK_Reference
)) {
16904 if (TemplateParameterList
*TemplateParams
=
16905 MatchTemplateParametersToScopeSpecifier(
16906 KWLoc
, NameLoc
, SS
, nullptr, TemplateParameterLists
,
16907 TUK
== TUK_Friend
, isMemberSpecialization
, Invalid
)) {
16908 if (Kind
== TTK_Enum
) {
16909 Diag(KWLoc
, diag::err_enum_template
);
16913 if (TemplateParams
->size() > 0) {
16914 // This is a declaration or definition of a class template (which may
16915 // be a member of another template).
16921 DeclResult Result
= CheckClassTemplate(
16922 S
, TagSpec
, TUK
, KWLoc
, SS
, Name
, NameLoc
, Attrs
, TemplateParams
,
16923 AS
, ModulePrivateLoc
,
16924 /*FriendLoc*/ SourceLocation(), TemplateParameterLists
.size() - 1,
16925 TemplateParameterLists
.data(), SkipBody
);
16926 return Result
.get();
16928 // The "template<>" header is extraneous.
16929 Diag(TemplateParams
->getTemplateLoc(), diag::err_template_tag_noparams
)
16930 << TypeWithKeyword::getTagTypeKindName(Kind
) << Name
;
16931 isMemberSpecialization
= true;
16935 if (!TemplateParameterLists
.empty() && isMemberSpecialization
&&
16936 CheckTemplateDeclScope(S
, TemplateParameterLists
.back()))
16940 // Figure out the underlying type if this a enum declaration. We need to do
16941 // this early, because it's needed to detect if this is an incompatible
16943 llvm::PointerUnion
<const Type
*, TypeSourceInfo
*> EnumUnderlying
;
16944 bool IsFixed
= !UnderlyingType
.isUnset() || ScopedEnum
;
16946 if (Kind
== TTK_Enum
) {
16947 if (UnderlyingType
.isInvalid() || (!UnderlyingType
.get() && ScopedEnum
)) {
16948 // No underlying type explicitly specified, or we failed to parse the
16949 // type, default to int.
16950 EnumUnderlying
= Context
.IntTy
.getTypePtr();
16951 } else if (UnderlyingType
.get()) {
16952 // C++0x 7.2p2: The type-specifier-seq of an enum-base shall name an
16953 // integral type; any cv-qualification is ignored.
16954 TypeSourceInfo
*TI
= nullptr;
16955 GetTypeFromParser(UnderlyingType
.get(), &TI
);
16956 EnumUnderlying
= TI
;
16958 if (CheckEnumUnderlyingType(TI
))
16959 // Recover by falling back to int.
16960 EnumUnderlying
= Context
.IntTy
.getTypePtr();
16962 if (DiagnoseUnexpandedParameterPack(TI
->getTypeLoc().getBeginLoc(), TI
,
16963 UPPC_FixedUnderlyingType
))
16964 EnumUnderlying
= Context
.IntTy
.getTypePtr();
16966 } else if (Context
.getTargetInfo().getTriple().isWindowsMSVCEnvironment()) {
16967 // For MSVC ABI compatibility, unfixed enums must use an underlying type
16968 // of 'int'. However, if this is an unfixed forward declaration, don't set
16969 // the underlying type unless the user enables -fms-compatibility. This
16970 // makes unfixed forward declared enums incomplete and is more conforming.
16971 if (TUK
== TUK_Definition
|| getLangOpts().MSVCCompat
)
16972 EnumUnderlying
= Context
.IntTy
.getTypePtr();
16976 DeclContext
*SearchDC
= CurContext
;
16977 DeclContext
*DC
= CurContext
;
16978 bool isStdBadAlloc
= false;
16979 bool isStdAlignValT
= false;
16981 RedeclarationKind Redecl
= forRedeclarationInCurContext();
16982 if (TUK
== TUK_Friend
|| TUK
== TUK_Reference
)
16983 Redecl
= NotForRedeclaration
;
16985 /// Create a new tag decl in C/ObjC. Since the ODR-like semantics for ObjC/C
16986 /// implemented asks for structural equivalence checking, the returned decl
16987 /// here is passed back to the parser, allowing the tag body to be parsed.
16988 auto createTagFromNewDecl
= [&]() -> TagDecl
* {
16989 assert(!getLangOpts().CPlusPlus
&& "not meant for C++ usage");
16990 // If there is an identifier, use the location of the identifier as the
16991 // location of the decl, otherwise use the location of the struct/union
16993 SourceLocation Loc
= NameLoc
.isValid() ? NameLoc
: KWLoc
;
16994 TagDecl
*New
= nullptr;
16996 if (Kind
== TTK_Enum
) {
16997 New
= EnumDecl::Create(Context
, SearchDC
, KWLoc
, Loc
, Name
, nullptr,
16998 ScopedEnum
, ScopedEnumUsesClassTag
, IsFixed
);
16999 // If this is an undefined enum, bail.
17000 if (TUK
!= TUK_Definition
&& !Invalid
)
17002 if (EnumUnderlying
) {
17003 EnumDecl
*ED
= cast
<EnumDecl
>(New
);
17004 if (TypeSourceInfo
*TI
= EnumUnderlying
.dyn_cast
<TypeSourceInfo
*>())
17005 ED
->setIntegerTypeSourceInfo(TI
);
17007 ED
->setIntegerType(QualType(EnumUnderlying
.get
<const Type
*>(), 0));
17008 QualType EnumTy
= ED
->getIntegerType();
17009 ED
->setPromotionType(Context
.isPromotableIntegerType(EnumTy
)
17010 ? Context
.getPromotedIntegerType(EnumTy
)
17013 } else { // struct/union
17014 New
= RecordDecl::Create(Context
, Kind
, SearchDC
, KWLoc
, Loc
, Name
,
17018 if (RecordDecl
*RD
= dyn_cast
<RecordDecl
>(New
)) {
17019 // Add alignment attributes if necessary; these attributes are checked
17020 // when the ASTContext lays out the structure.
17022 // It is important for implementing the correct semantics that this
17023 // happen here (in ActOnTag). The #pragma pack stack is
17024 // maintained as a result of parser callbacks which can occur at
17025 // many points during the parsing of a struct declaration (because
17026 // the #pragma tokens are effectively skipped over during the
17027 // parsing of the struct).
17028 if (TUK
== TUK_Definition
&& (!SkipBody
|| !SkipBody
->ShouldSkip
)) {
17029 AddAlignmentAttributesForRecord(RD
);
17030 AddMsStructLayoutForRecord(RD
);
17033 New
->setLexicalDeclContext(CurContext
);
17037 LookupResult
Previous(*this, Name
, NameLoc
, LookupTagName
, Redecl
);
17038 if (Name
&& SS
.isNotEmpty()) {
17039 // We have a nested-name tag ('struct foo::bar').
17041 // Check for invalid 'foo::'.
17042 if (SS
.isInvalid()) {
17044 goto CreateNewDecl
;
17047 // If this is a friend or a reference to a class in a dependent
17048 // context, don't try to make a decl for it.
17049 if (TUK
== TUK_Friend
|| TUK
== TUK_Reference
) {
17050 DC
= computeDeclContext(SS
, false);
17052 IsDependent
= true;
17056 DC
= computeDeclContext(SS
, true);
17058 Diag(SS
.getRange().getBegin(), diag::err_dependent_nested_name_spec
)
17064 if (RequireCompleteDeclContext(SS
, DC
))
17068 // Look-up name inside 'foo::'.
17069 LookupQualifiedName(Previous
, DC
);
17071 if (Previous
.isAmbiguous())
17074 if (Previous
.empty()) {
17075 // Name lookup did not find anything. However, if the
17076 // nested-name-specifier refers to the current instantiation,
17077 // and that current instantiation has any dependent base
17078 // classes, we might find something at instantiation time: treat
17079 // this as a dependent elaborated-type-specifier.
17080 // But this only makes any sense for reference-like lookups.
17081 if (Previous
.wasNotFoundInCurrentInstantiation() &&
17082 (TUK
== TUK_Reference
|| TUK
== TUK_Friend
)) {
17083 IsDependent
= true;
17087 // A tag 'foo::bar' must already exist.
17088 Diag(NameLoc
, diag::err_not_tag_in_scope
)
17089 << Kind
<< Name
<< DC
<< SS
.getRange();
17092 goto CreateNewDecl
;
17095 // C++14 [class.mem]p14:
17096 // If T is the name of a class, then each of the following shall have a
17097 // name different from T:
17098 // -- every member of class T that is itself a type
17099 if (TUK
!= TUK_Reference
&& TUK
!= TUK_Friend
&&
17100 DiagnoseClassNameShadow(SearchDC
, DeclarationNameInfo(Name
, NameLoc
)))
17103 // If this is a named struct, check to see if there was a previous forward
17104 // declaration or definition.
17105 // FIXME: We're looking into outer scopes here, even when we
17106 // shouldn't be. Doing so can result in ambiguities that we
17107 // shouldn't be diagnosing.
17108 LookupName(Previous
, S
);
17110 // When declaring or defining a tag, ignore ambiguities introduced
17111 // by types using'ed into this scope.
17112 if (Previous
.isAmbiguous() &&
17113 (TUK
== TUK_Definition
|| TUK
== TUK_Declaration
)) {
17114 LookupResult::Filter F
= Previous
.makeFilter();
17115 while (F
.hasNext()) {
17116 NamedDecl
*ND
= F
.next();
17117 if (!ND
->getDeclContext()->getRedeclContext()->Equals(
17118 SearchDC
->getRedeclContext()))
17124 // C++11 [namespace.memdef]p3:
17125 // If the name in a friend declaration is neither qualified nor
17126 // a template-id and the declaration is a function or an
17127 // elaborated-type-specifier, the lookup to determine whether
17128 // the entity has been previously declared shall not consider
17129 // any scopes outside the innermost enclosing namespace.
17131 // MSVC doesn't implement the above rule for types, so a friend tag
17132 // declaration may be a redeclaration of a type declared in an enclosing
17133 // scope. They do implement this rule for friend functions.
17135 // Does it matter that this should be by scope instead of by
17136 // semantic context?
17137 if (!Previous
.empty() && TUK
== TUK_Friend
) {
17138 DeclContext
*EnclosingNS
= SearchDC
->getEnclosingNamespaceContext();
17139 LookupResult::Filter F
= Previous
.makeFilter();
17140 bool FriendSawTagOutsideEnclosingNamespace
= false;
17141 while (F
.hasNext()) {
17142 NamedDecl
*ND
= F
.next();
17143 DeclContext
*DC
= ND
->getDeclContext()->getRedeclContext();
17144 if (DC
->isFileContext() &&
17145 !EnclosingNS
->Encloses(ND
->getDeclContext())) {
17146 if (getLangOpts().MSVCCompat
)
17147 FriendSawTagOutsideEnclosingNamespace
= true;
17154 // Diagnose this MSVC extension in the easy case where lookup would have
17155 // unambiguously found something outside the enclosing namespace.
17156 if (Previous
.isSingleResult() && FriendSawTagOutsideEnclosingNamespace
) {
17157 NamedDecl
*ND
= Previous
.getFoundDecl();
17158 Diag(NameLoc
, diag::ext_friend_tag_redecl_outside_namespace
)
17159 << createFriendTagNNSFixIt(*this, ND
, S
, NameLoc
);
17163 // Note: there used to be some attempt at recovery here.
17164 if (Previous
.isAmbiguous())
17167 if (!getLangOpts().CPlusPlus
&& TUK
!= TUK_Reference
) {
17168 // FIXME: This makes sure that we ignore the contexts associated
17169 // with C structs, unions, and enums when looking for a matching
17170 // tag declaration or definition. See the similar lookup tweak
17171 // in Sema::LookupName; is there a better way to deal with this?
17172 while (isa
<RecordDecl
, EnumDecl
, ObjCContainerDecl
>(SearchDC
))
17173 SearchDC
= SearchDC
->getParent();
17174 } else if (getLangOpts().CPlusPlus
) {
17175 // Inside ObjCContainer want to keep it as a lexical decl context but go
17176 // past it (most often to TranslationUnit) to find the semantic decl
17178 while (isa
<ObjCContainerDecl
>(SearchDC
))
17179 SearchDC
= SearchDC
->getParent();
17181 } else if (getLangOpts().CPlusPlus
) {
17182 // Don't use ObjCContainerDecl as the semantic decl context for anonymous
17183 // TagDecl the same way as we skip it for named TagDecl.
17184 while (isa
<ObjCContainerDecl
>(SearchDC
))
17185 SearchDC
= SearchDC
->getParent();
17188 if (Previous
.isSingleResult() &&
17189 Previous
.getFoundDecl()->isTemplateParameter()) {
17190 // Maybe we will complain about the shadowed template parameter.
17191 DiagnoseTemplateParameterShadow(NameLoc
, Previous
.getFoundDecl());
17192 // Just pretend that we didn't see the previous declaration.
17196 if (getLangOpts().CPlusPlus
&& Name
&& DC
&& StdNamespace
&&
17197 DC
->Equals(getStdNamespace())) {
17198 if (Name
->isStr("bad_alloc")) {
17199 // This is a declaration of or a reference to "std::bad_alloc".
17200 isStdBadAlloc
= true;
17202 // If std::bad_alloc has been implicitly declared (but made invisible to
17203 // name lookup), fill in this implicit declaration as the previous
17204 // declaration, so that the declarations get chained appropriately.
17205 if (Previous
.empty() && StdBadAlloc
)
17206 Previous
.addDecl(getStdBadAlloc());
17207 } else if (Name
->isStr("align_val_t")) {
17208 isStdAlignValT
= true;
17209 if (Previous
.empty() && StdAlignValT
)
17210 Previous
.addDecl(getStdAlignValT());
17214 // If we didn't find a previous declaration, and this is a reference
17215 // (or friend reference), move to the correct scope. In C++, we
17216 // also need to do a redeclaration lookup there, just in case
17217 // there's a shadow friend decl.
17218 if (Name
&& Previous
.empty() &&
17219 (TUK
== TUK_Reference
|| TUK
== TUK_Friend
|| IsTemplateParamOrArg
)) {
17220 if (Invalid
) goto CreateNewDecl
;
17221 assert(SS
.isEmpty());
17223 if (TUK
== TUK_Reference
|| IsTemplateParamOrArg
) {
17224 // C++ [basic.scope.pdecl]p5:
17225 // -- for an elaborated-type-specifier of the form
17227 // class-key identifier
17229 // if the elaborated-type-specifier is used in the
17230 // decl-specifier-seq or parameter-declaration-clause of a
17231 // function defined in namespace scope, the identifier is
17232 // declared as a class-name in the namespace that contains
17233 // the declaration; otherwise, except as a friend
17234 // declaration, the identifier is declared in the smallest
17235 // non-class, non-function-prototype scope that contains the
17238 // C99 6.7.2.3p8 has a similar (but not identical!) provision for
17239 // C structs and unions.
17241 // It is an error in C++ to declare (rather than define) an enum
17242 // type, including via an elaborated type specifier. We'll
17243 // diagnose that later; for now, declare the enum in the same
17244 // scope as we would have picked for any other tag type.
17246 // GNU C also supports this behavior as part of its incomplete
17247 // enum types extension, while GNU C++ does not.
17249 // Find the context where we'll be declaring the tag.
17250 // FIXME: We would like to maintain the current DeclContext as the
17251 // lexical context,
17252 SearchDC
= getTagInjectionContext(SearchDC
);
17254 // Find the scope where we'll be declaring the tag.
17255 S
= getTagInjectionScope(S
, getLangOpts());
17257 assert(TUK
== TUK_Friend
);
17258 CXXRecordDecl
*RD
= dyn_cast
<CXXRecordDecl
>(SearchDC
);
17260 // C++ [namespace.memdef]p3:
17261 // If a friend declaration in a non-local class first declares a
17262 // class or function, the friend class or function is a member of
17263 // the innermost enclosing namespace.
17264 SearchDC
= RD
->isLocalClass() ? RD
->isLocalClass()
17265 : SearchDC
->getEnclosingNamespaceContext();
17268 // In C++, we need to do a redeclaration lookup to properly
17269 // diagnose some problems.
17270 // FIXME: redeclaration lookup is also used (with and without C++) to find a
17271 // hidden declaration so that we don't get ambiguity errors when using a
17272 // type declared by an elaborated-type-specifier. In C that is not correct
17273 // and we should instead merge compatible types found by lookup.
17274 if (getLangOpts().CPlusPlus
) {
17275 // FIXME: This can perform qualified lookups into function contexts,
17276 // which are meaningless.
17277 Previous
.setRedeclarationKind(forRedeclarationInCurContext());
17278 LookupQualifiedName(Previous
, SearchDC
);
17280 Previous
.setRedeclarationKind(forRedeclarationInCurContext());
17281 LookupName(Previous
, S
);
17285 // If we have a known previous declaration to use, then use it.
17286 if (Previous
.empty() && SkipBody
&& SkipBody
->Previous
)
17287 Previous
.addDecl(SkipBody
->Previous
);
17289 if (!Previous
.empty()) {
17290 NamedDecl
*PrevDecl
= Previous
.getFoundDecl();
17291 NamedDecl
*DirectPrevDecl
= Previous
.getRepresentativeDecl();
17293 // It's okay to have a tag decl in the same scope as a typedef
17294 // which hides a tag decl in the same scope. Finding this
17295 // with a redeclaration lookup can only actually happen in C++.
17297 // This is also okay for elaborated-type-specifiers, which is
17298 // technically forbidden by the current standard but which is
17299 // okay according to the likely resolution of an open issue;
17300 // see http://www.open-std.org/jtc1/sc22/wg21/docs/cwg_active.html#407
17301 if (getLangOpts().CPlusPlus
) {
17302 if (TypedefNameDecl
*TD
= dyn_cast
<TypedefNameDecl
>(PrevDecl
)) {
17303 if (const TagType
*TT
= TD
->getUnderlyingType()->getAs
<TagType
>()) {
17304 TagDecl
*Tag
= TT
->getDecl();
17305 if (Tag
->getDeclName() == Name
&&
17306 Tag
->getDeclContext()->getRedeclContext()
17307 ->Equals(TD
->getDeclContext()->getRedeclContext())) {
17310 Previous
.addDecl(Tag
);
17311 Previous
.resolveKind();
17317 // If this is a redeclaration of a using shadow declaration, it must
17318 // declare a tag in the same context. In MSVC mode, we allow a
17319 // redefinition if either context is within the other.
17320 if (auto *Shadow
= dyn_cast
<UsingShadowDecl
>(DirectPrevDecl
)) {
17321 auto *OldTag
= dyn_cast
<TagDecl
>(PrevDecl
);
17322 if (SS
.isEmpty() && TUK
!= TUK_Reference
&& TUK
!= TUK_Friend
&&
17323 isDeclInScope(Shadow
, SearchDC
, S
, isMemberSpecialization
) &&
17324 !(OldTag
&& isAcceptableTagRedeclContext(
17325 *this, OldTag
->getDeclContext(), SearchDC
))) {
17326 Diag(KWLoc
, diag::err_using_decl_conflict_reverse
);
17327 Diag(Shadow
->getTargetDecl()->getLocation(),
17328 diag::note_using_decl_target
);
17329 Diag(Shadow
->getIntroducer()->getLocation(), diag::note_using_decl
)
17331 // Recover by ignoring the old declaration.
17333 goto CreateNewDecl
;
17337 if (TagDecl
*PrevTagDecl
= dyn_cast
<TagDecl
>(PrevDecl
)) {
17338 // If this is a use of a previous tag, or if the tag is already declared
17339 // in the same scope (so that the definition/declaration completes or
17340 // rementions the tag), reuse the decl.
17341 if (TUK
== TUK_Reference
|| TUK
== TUK_Friend
||
17342 isDeclInScope(DirectPrevDecl
, SearchDC
, S
,
17343 SS
.isNotEmpty() || isMemberSpecialization
)) {
17344 // Make sure that this wasn't declared as an enum and now used as a
17345 // struct or something similar.
17346 if (!isAcceptableTagRedeclaration(PrevTagDecl
, Kind
,
17347 TUK
== TUK_Definition
, KWLoc
,
17349 bool SafeToContinue
17350 = (PrevTagDecl
->getTagKind() != TTK_Enum
&&
17352 if (SafeToContinue
)
17353 Diag(KWLoc
, diag::err_use_with_wrong_tag
)
17355 << FixItHint::CreateReplacement(SourceRange(KWLoc
),
17356 PrevTagDecl
->getKindName());
17358 Diag(KWLoc
, diag::err_use_with_wrong_tag
) << Name
;
17359 Diag(PrevTagDecl
->getLocation(), diag::note_previous_use
);
17361 if (SafeToContinue
)
17362 Kind
= PrevTagDecl
->getTagKind();
17364 // Recover by making this an anonymous redefinition.
17371 if (Kind
== TTK_Enum
&& PrevTagDecl
->getTagKind() == TTK_Enum
) {
17372 const EnumDecl
*PrevEnum
= cast
<EnumDecl
>(PrevTagDecl
);
17373 if (TUK
== TUK_Reference
|| TUK
== TUK_Friend
)
17374 return PrevTagDecl
;
17376 QualType EnumUnderlyingTy
;
17377 if (TypeSourceInfo
*TI
= EnumUnderlying
.dyn_cast
<TypeSourceInfo
*>())
17378 EnumUnderlyingTy
= TI
->getType().getUnqualifiedType();
17379 else if (const Type
*T
= EnumUnderlying
.dyn_cast
<const Type
*>())
17380 EnumUnderlyingTy
= QualType(T
, 0);
17382 // All conflicts with previous declarations are recovered by
17383 // returning the previous declaration, unless this is a definition,
17384 // in which case we want the caller to bail out.
17385 if (CheckEnumRedeclaration(NameLoc
.isValid() ? NameLoc
: KWLoc
,
17386 ScopedEnum
, EnumUnderlyingTy
,
17387 IsFixed
, PrevEnum
))
17388 return TUK
== TUK_Declaration
? PrevTagDecl
: nullptr;
17391 // C++11 [class.mem]p1:
17392 // A member shall not be declared twice in the member-specification,
17393 // except that a nested class or member class template can be declared
17394 // and then later defined.
17395 if (TUK
== TUK_Declaration
&& PrevDecl
->isCXXClassMember() &&
17396 S
->isDeclScope(PrevDecl
)) {
17397 Diag(NameLoc
, diag::ext_member_redeclared
);
17398 Diag(PrevTagDecl
->getLocation(), diag::note_previous_declaration
);
17402 // If this is a use, just return the declaration we found, unless
17403 // we have attributes.
17404 if (TUK
== TUK_Reference
|| TUK
== TUK_Friend
) {
17405 if (!Attrs
.empty()) {
17406 // FIXME: Diagnose these attributes. For now, we create a new
17407 // declaration to hold them.
17408 } else if (TUK
== TUK_Reference
&&
17409 (PrevTagDecl
->getFriendObjectKind() ==
17410 Decl::FOK_Undeclared
||
17411 PrevDecl
->getOwningModule() != getCurrentModule()) &&
17413 // This declaration is a reference to an existing entity, but
17414 // has different visibility from that entity: it either makes
17415 // a friend visible or it makes a type visible in a new module.
17416 // In either case, create a new declaration. We only do this if
17417 // the declaration would have meant the same thing if no prior
17418 // declaration were found, that is, if it was found in the same
17419 // scope where we would have injected a declaration.
17420 if (!getTagInjectionContext(CurContext
)->getRedeclContext()
17421 ->Equals(PrevDecl
->getDeclContext()->getRedeclContext()))
17422 return PrevTagDecl
;
17423 // This is in the injected scope, create a new declaration in
17425 S
= getTagInjectionScope(S
, getLangOpts());
17427 return PrevTagDecl
;
17431 // Diagnose attempts to redefine a tag.
17432 if (TUK
== TUK_Definition
) {
17433 if (NamedDecl
*Def
= PrevTagDecl
->getDefinition()) {
17434 // If we're defining a specialization and the previous definition
17435 // is from an implicit instantiation, don't emit an error
17436 // here; we'll catch this in the general case below.
17437 bool IsExplicitSpecializationAfterInstantiation
= false;
17438 if (isMemberSpecialization
) {
17439 if (CXXRecordDecl
*RD
= dyn_cast
<CXXRecordDecl
>(Def
))
17440 IsExplicitSpecializationAfterInstantiation
=
17441 RD
->getTemplateSpecializationKind() !=
17442 TSK_ExplicitSpecialization
;
17443 else if (EnumDecl
*ED
= dyn_cast
<EnumDecl
>(Def
))
17444 IsExplicitSpecializationAfterInstantiation
=
17445 ED
->getTemplateSpecializationKind() !=
17446 TSK_ExplicitSpecialization
;
17449 // Note that clang allows ODR-like semantics for ObjC/C, i.e., do
17450 // not keep more that one definition around (merge them). However,
17451 // ensure the decl passes the structural compatibility check in
17452 // C11 6.2.7/1 (or 6.1.2.6/1 in C89).
17453 NamedDecl
*Hidden
= nullptr;
17454 if (SkipBody
&& !hasVisibleDefinition(Def
, &Hidden
)) {
17455 // There is a definition of this tag, but it is not visible. We
17456 // explicitly make use of C++'s one definition rule here, and
17457 // assume that this definition is identical to the hidden one
17458 // we already have. Make the existing definition visible and
17459 // use it in place of this one.
17460 if (!getLangOpts().CPlusPlus
) {
17461 // Postpone making the old definition visible until after we
17462 // complete parsing the new one and do the structural
17464 SkipBody
->CheckSameAsPrevious
= true;
17465 SkipBody
->New
= createTagFromNewDecl();
17466 SkipBody
->Previous
= Def
;
17469 SkipBody
->ShouldSkip
= true;
17470 SkipBody
->Previous
= Def
;
17471 makeMergedDefinitionVisible(Hidden
);
17472 // Carry on and handle it like a normal definition. We'll
17473 // skip starting the definitiion later.
17475 } else if (!IsExplicitSpecializationAfterInstantiation
) {
17476 // A redeclaration in function prototype scope in C isn't
17477 // visible elsewhere, so merely issue a warning.
17478 if (!getLangOpts().CPlusPlus
&& S
->containedInPrototypeScope())
17479 Diag(NameLoc
, diag::warn_redefinition_in_param_list
) << Name
;
17481 Diag(NameLoc
, diag::err_redefinition
) << Name
;
17482 notePreviousDefinition(Def
,
17483 NameLoc
.isValid() ? NameLoc
: KWLoc
);
17484 // If this is a redefinition, recover by making this
17485 // struct be anonymous, which will make any later
17486 // references get the previous definition.
17492 // If the type is currently being defined, complain
17493 // about a nested redefinition.
17494 auto *TD
= Context
.getTagDeclType(PrevTagDecl
)->getAsTagDecl();
17495 if (TD
->isBeingDefined()) {
17496 Diag(NameLoc
, diag::err_nested_redefinition
) << Name
;
17497 Diag(PrevTagDecl
->getLocation(),
17498 diag::note_previous_definition
);
17505 // Okay, this is definition of a previously declared or referenced
17506 // tag. We're going to create a new Decl for it.
17509 // Okay, we're going to make a redeclaration. If this is some kind
17510 // of reference, make sure we build the redeclaration in the same DC
17511 // as the original, and ignore the current access specifier.
17512 if (TUK
== TUK_Friend
|| TUK
== TUK_Reference
) {
17513 SearchDC
= PrevTagDecl
->getDeclContext();
17517 // If we get here we have (another) forward declaration or we
17518 // have a definition. Just create a new decl.
17521 // If we get here, this is a definition of a new tag type in a nested
17522 // scope, e.g. "struct foo; void bar() { struct foo; }", just create a
17523 // new decl/type. We set PrevDecl to NULL so that the entities
17524 // have distinct types.
17527 // If we get here, we're going to create a new Decl. If PrevDecl
17528 // is non-NULL, it's a definition of the tag declared by
17529 // PrevDecl. If it's NULL, we have a new definition.
17531 // Otherwise, PrevDecl is not a tag, but was found with tag
17532 // lookup. This is only actually possible in C++, where a few
17533 // things like templates still live in the tag namespace.
17535 // Use a better diagnostic if an elaborated-type-specifier
17536 // found the wrong kind of type on the first
17537 // (non-redeclaration) lookup.
17538 if ((TUK
== TUK_Reference
|| TUK
== TUK_Friend
) &&
17539 !Previous
.isForRedeclaration()) {
17540 NonTagKind NTK
= getNonTagTypeDeclKind(PrevDecl
, Kind
);
17541 Diag(NameLoc
, diag::err_tag_reference_non_tag
) << PrevDecl
<< NTK
17543 Diag(PrevDecl
->getLocation(), diag::note_declared_at
);
17546 // Otherwise, only diagnose if the declaration is in scope.
17547 } else if (!isDeclInScope(DirectPrevDecl
, SearchDC
, S
,
17548 SS
.isNotEmpty() || isMemberSpecialization
)) {
17551 // Diagnose implicit declarations introduced by elaborated types.
17552 } else if (TUK
== TUK_Reference
|| TUK
== TUK_Friend
) {
17553 NonTagKind NTK
= getNonTagTypeDeclKind(PrevDecl
, Kind
);
17554 Diag(NameLoc
, diag::err_tag_reference_conflict
) << NTK
;
17555 Diag(PrevDecl
->getLocation(), diag::note_previous_decl
) << PrevDecl
;
17558 // Otherwise it's a declaration. Call out a particularly common
17560 } else if (TypedefNameDecl
*TND
= dyn_cast
<TypedefNameDecl
>(PrevDecl
)) {
17562 if (isa
<TypeAliasDecl
>(PrevDecl
)) Kind
= 1;
17563 Diag(NameLoc
, diag::err_tag_definition_of_typedef
)
17564 << Name
<< Kind
<< TND
->getUnderlyingType();
17565 Diag(PrevDecl
->getLocation(), diag::note_previous_decl
) << PrevDecl
;
17568 // Otherwise, diagnose.
17570 // The tag name clashes with something else in the target scope,
17571 // issue an error and recover by making this tag be anonymous.
17572 Diag(NameLoc
, diag::err_redefinition_different_kind
) << Name
;
17573 notePreviousDefinition(PrevDecl
, NameLoc
);
17578 // The existing declaration isn't relevant to us; we're in a
17579 // new scope, so clear out the previous declaration.
17586 TagDecl
*PrevDecl
= nullptr;
17587 if (Previous
.isSingleResult())
17588 PrevDecl
= cast
<TagDecl
>(Previous
.getFoundDecl());
17590 // If there is an identifier, use the location of the identifier as the
17591 // location of the decl, otherwise use the location of the struct/union
17593 SourceLocation Loc
= NameLoc
.isValid() ? NameLoc
: KWLoc
;
17595 // Otherwise, create a new declaration. If there is a previous
17596 // declaration of the same entity, the two will be linked via
17600 if (Kind
== TTK_Enum
) {
17601 // FIXME: Tag decls should be chained to any simultaneous vardecls, e.g.:
17602 // enum X { A, B, C } D; D should chain to X.
17603 New
= EnumDecl::Create(Context
, SearchDC
, KWLoc
, Loc
, Name
,
17604 cast_or_null
<EnumDecl
>(PrevDecl
), ScopedEnum
,
17605 ScopedEnumUsesClassTag
, IsFixed
);
17607 if (isStdAlignValT
&& (!StdAlignValT
|| getStdAlignValT()->isImplicit()))
17608 StdAlignValT
= cast
<EnumDecl
>(New
);
17610 // If this is an undefined enum, warn.
17611 if (TUK
!= TUK_Definition
&& !Invalid
) {
17613 if (IsFixed
&& cast
<EnumDecl
>(New
)->isFixed()) {
17614 // C++0x: 7.2p2: opaque-enum-declaration.
17615 // Conflicts are diagnosed above. Do nothing.
17617 else if (PrevDecl
&& (Def
= cast
<EnumDecl
>(PrevDecl
)->getDefinition())) {
17618 Diag(Loc
, diag::ext_forward_ref_enum_def
)
17620 Diag(Def
->getLocation(), diag::note_previous_definition
);
17622 unsigned DiagID
= diag::ext_forward_ref_enum
;
17623 if (getLangOpts().MSVCCompat
)
17624 DiagID
= diag::ext_ms_forward_ref_enum
;
17625 else if (getLangOpts().CPlusPlus
)
17626 DiagID
= diag::err_forward_ref_enum
;
17631 if (EnumUnderlying
) {
17632 EnumDecl
*ED
= cast
<EnumDecl
>(New
);
17633 if (TypeSourceInfo
*TI
= EnumUnderlying
.dyn_cast
<TypeSourceInfo
*>())
17634 ED
->setIntegerTypeSourceInfo(TI
);
17636 ED
->setIntegerType(QualType(EnumUnderlying
.get
<const Type
*>(), 0));
17637 QualType EnumTy
= ED
->getIntegerType();
17638 ED
->setPromotionType(Context
.isPromotableIntegerType(EnumTy
)
17639 ? Context
.getPromotedIntegerType(EnumTy
)
17641 assert(ED
->isComplete() && "enum with type should be complete");
17644 // struct/union/class
17646 // FIXME: Tag decls should be chained to any simultaneous vardecls, e.g.:
17647 // struct X { int A; } D; D should chain to X.
17648 if (getLangOpts().CPlusPlus
) {
17649 // FIXME: Look for a way to use RecordDecl for simple structs.
17650 New
= CXXRecordDecl::Create(Context
, Kind
, SearchDC
, KWLoc
, Loc
, Name
,
17651 cast_or_null
<CXXRecordDecl
>(PrevDecl
));
17653 if (isStdBadAlloc
&& (!StdBadAlloc
|| getStdBadAlloc()->isImplicit()))
17654 StdBadAlloc
= cast
<CXXRecordDecl
>(New
);
17656 New
= RecordDecl::Create(Context
, Kind
, SearchDC
, KWLoc
, Loc
, Name
,
17657 cast_or_null
<RecordDecl
>(PrevDecl
));
17660 if (OOK
!= OOK_Outside
&& TUK
== TUK_Definition
&& !getLangOpts().CPlusPlus
)
17661 Diag(New
->getLocation(), diag::ext_type_defined_in_offsetof
)
17662 << (OOK
== OOK_Macro
) << New
->getSourceRange();
17664 // C++11 [dcl.type]p3:
17665 // A type-specifier-seq shall not define a class or enumeration [...].
17666 if (!Invalid
&& getLangOpts().CPlusPlus
&&
17667 (IsTypeSpecifier
|| IsTemplateParamOrArg
) && TUK
== TUK_Definition
) {
17668 Diag(New
->getLocation(), diag::err_type_defined_in_type_specifier
)
17669 << Context
.getTagDeclType(New
);
17673 if (!Invalid
&& getLangOpts().CPlusPlus
&& TUK
== TUK_Definition
&&
17674 DC
->getDeclKind() == Decl::Enum
) {
17675 Diag(New
->getLocation(), diag::err_type_defined_in_enum
)
17676 << Context
.getTagDeclType(New
);
17680 // Maybe add qualifier info.
17681 if (SS
.isNotEmpty()) {
17683 // If this is either a declaration or a definition, check the
17684 // nested-name-specifier against the current context.
17685 if ((TUK
== TUK_Definition
|| TUK
== TUK_Declaration
) &&
17686 diagnoseQualifiedDeclaration(SS
, DC
, OrigName
, Loc
,
17687 isMemberSpecialization
))
17690 New
->setQualifierInfo(SS
.getWithLocInContext(Context
));
17691 if (TemplateParameterLists
.size() > 0) {
17692 New
->setTemplateParameterListsInfo(Context
, TemplateParameterLists
);
17699 if (RecordDecl
*RD
= dyn_cast
<RecordDecl
>(New
)) {
17700 // Add alignment attributes if necessary; these attributes are checked when
17701 // the ASTContext lays out the structure.
17703 // It is important for implementing the correct semantics that this
17704 // happen here (in ActOnTag). The #pragma pack stack is
17705 // maintained as a result of parser callbacks which can occur at
17706 // many points during the parsing of a struct declaration (because
17707 // the #pragma tokens are effectively skipped over during the
17708 // parsing of the struct).
17709 if (TUK
== TUK_Definition
&& (!SkipBody
|| !SkipBody
->ShouldSkip
)) {
17710 AddAlignmentAttributesForRecord(RD
);
17711 AddMsStructLayoutForRecord(RD
);
17715 if (ModulePrivateLoc
.isValid()) {
17716 if (isMemberSpecialization
)
17717 Diag(New
->getLocation(), diag::err_module_private_specialization
)
17719 << FixItHint::CreateRemoval(ModulePrivateLoc
);
17720 // __module_private__ does not apply to local classes. However, we only
17721 // diagnose this as an error when the declaration specifiers are
17722 // freestanding. Here, we just ignore the __module_private__.
17723 else if (!SearchDC
->isFunctionOrMethod())
17724 New
->setModulePrivate();
17727 // If this is a specialization of a member class (of a class template),
17728 // check the specialization.
17729 if (isMemberSpecialization
&& CheckMemberSpecialization(New
, Previous
))
17732 // If we're declaring or defining a tag in function prototype scope in C,
17733 // note that this type can only be used within the function and add it to
17734 // the list of decls to inject into the function definition scope.
17735 if ((Name
|| Kind
== TTK_Enum
) &&
17736 getNonFieldDeclScope(S
)->isFunctionPrototypeScope()) {
17737 if (getLangOpts().CPlusPlus
) {
17738 // C++ [dcl.fct]p6:
17739 // Types shall not be defined in return or parameter types.
17740 if (TUK
== TUK_Definition
&& !IsTypeSpecifier
) {
17741 Diag(Loc
, diag::err_type_defined_in_param_type
)
17745 } else if (!PrevDecl
) {
17746 Diag(Loc
, diag::warn_decl_in_param_list
) << Context
.getTagDeclType(New
);
17751 New
->setInvalidDecl();
17753 // Set the lexical context. If the tag has a C++ scope specifier, the
17754 // lexical context will be different from the semantic context.
17755 New
->setLexicalDeclContext(CurContext
);
17757 // Mark this as a friend decl if applicable.
17758 // In Microsoft mode, a friend declaration also acts as a forward
17759 // declaration so we always pass true to setObjectOfFriendDecl to make
17760 // the tag name visible.
17761 if (TUK
== TUK_Friend
)
17762 New
->setObjectOfFriendDecl(getLangOpts().MSVCCompat
);
17764 // Set the access specifier.
17765 if (!Invalid
&& SearchDC
->isRecord())
17766 SetMemberAccessSpecifier(New
, PrevDecl
, AS
);
17769 CheckRedeclarationInModule(New
, PrevDecl
);
17771 if (TUK
== TUK_Definition
&& (!SkipBody
|| !SkipBody
->ShouldSkip
))
17772 New
->startDefinition();
17774 ProcessDeclAttributeList(S
, New
, Attrs
);
17775 AddPragmaAttributes(S
, New
);
17777 // If this has an identifier, add it to the scope stack.
17778 if (TUK
== TUK_Friend
) {
17779 // We might be replacing an existing declaration in the lookup tables;
17780 // if so, borrow its access specifier.
17782 New
->setAccess(PrevDecl
->getAccess());
17784 DeclContext
*DC
= New
->getDeclContext()->getRedeclContext();
17785 DC
->makeDeclVisibleInContext(New
);
17786 if (Name
) // can be null along some error paths
17787 if (Scope
*EnclosingScope
= getScopeForDeclContext(S
, DC
))
17788 PushOnScopeChains(New
, EnclosingScope
, /* AddToContext = */ false);
17790 S
= getNonFieldDeclScope(S
);
17791 PushOnScopeChains(New
, S
, true);
17793 CurContext
->addDecl(New
);
17796 // If this is the C FILE type, notify the AST context.
17797 if (IdentifierInfo
*II
= New
->getIdentifier())
17798 if (!New
->isInvalidDecl() &&
17799 New
->getDeclContext()->getRedeclContext()->isTranslationUnit() &&
17801 Context
.setFILEDecl(New
);
17804 mergeDeclAttributes(New
, PrevDecl
);
17806 if (auto *CXXRD
= dyn_cast
<CXXRecordDecl
>(New
))
17807 inferGslOwnerPointerAttribute(CXXRD
);
17809 // If there's a #pragma GCC visibility in scope, set the visibility of this
17811 AddPushedVisibilityAttribute(New
);
17813 if (isMemberSpecialization
&& !New
->isInvalidDecl())
17814 CompleteMemberSpecialization(New
, Previous
);
17817 // In C++, don't return an invalid declaration. We can't recover well from
17818 // the cases where we make the type anonymous.
17819 if (Invalid
&& getLangOpts().CPlusPlus
) {
17820 if (New
->isBeingDefined())
17821 if (auto RD
= dyn_cast
<RecordDecl
>(New
))
17822 RD
->completeDefinition();
17824 } else if (SkipBody
&& SkipBody
->ShouldSkip
) {
17825 return SkipBody
->Previous
;
17831 void Sema::ActOnTagStartDefinition(Scope
*S
, Decl
*TagD
) {
17832 AdjustDeclIfTemplate(TagD
);
17833 TagDecl
*Tag
= cast
<TagDecl
>(TagD
);
17835 // Enter the tag context.
17836 PushDeclContext(S
, Tag
);
17838 ActOnDocumentableDecl(TagD
);
17840 // If there's a #pragma GCC visibility in scope, set the visibility of this
17842 AddPushedVisibilityAttribute(Tag
);
17845 bool Sema::ActOnDuplicateDefinition(Decl
*Prev
, SkipBodyInfo
&SkipBody
) {
17846 if (!hasStructuralCompatLayout(Prev
, SkipBody
.New
))
17849 // Make the previous decl visible.
17850 makeMergedDefinitionVisible(SkipBody
.Previous
);
17854 void Sema::ActOnObjCContainerStartDefinition(ObjCContainerDecl
*IDecl
) {
17855 assert(IDecl
->getLexicalParent() == CurContext
&&
17856 "The next DeclContext should be lexically contained in the current one.");
17857 CurContext
= IDecl
;
17860 void Sema::ActOnStartCXXMemberDeclarations(Scope
*S
, Decl
*TagD
,
17861 SourceLocation FinalLoc
,
17862 bool IsFinalSpelledSealed
,
17864 SourceLocation LBraceLoc
) {
17865 AdjustDeclIfTemplate(TagD
);
17866 CXXRecordDecl
*Record
= cast
<CXXRecordDecl
>(TagD
);
17868 FieldCollector
->StartClass();
17870 if (!Record
->getIdentifier())
17874 Record
->markAbstract();
17876 if (FinalLoc
.isValid()) {
17877 Record
->addAttr(FinalAttr::Create(Context
, FinalLoc
,
17878 IsFinalSpelledSealed
17879 ? FinalAttr::Keyword_sealed
17880 : FinalAttr::Keyword_final
));
17883 // [...] The class-name is also inserted into the scope of the
17884 // class itself; this is known as the injected-class-name. For
17885 // purposes of access checking, the injected-class-name is treated
17886 // as if it were a public member name.
17887 CXXRecordDecl
*InjectedClassName
= CXXRecordDecl::Create(
17888 Context
, Record
->getTagKind(), CurContext
, Record
->getBeginLoc(),
17889 Record
->getLocation(), Record
->getIdentifier(),
17890 /*PrevDecl=*/nullptr,
17891 /*DelayTypeCreation=*/true);
17892 Context
.getTypeDeclType(InjectedClassName
, Record
);
17893 InjectedClassName
->setImplicit();
17894 InjectedClassName
->setAccess(AS_public
);
17895 if (ClassTemplateDecl
*Template
= Record
->getDescribedClassTemplate())
17896 InjectedClassName
->setDescribedClassTemplate(Template
);
17897 PushOnScopeChains(InjectedClassName
, S
);
17898 assert(InjectedClassName
->isInjectedClassName() &&
17899 "Broken injected-class-name");
17902 void Sema::ActOnTagFinishDefinition(Scope
*S
, Decl
*TagD
,
17903 SourceRange BraceRange
) {
17904 AdjustDeclIfTemplate(TagD
);
17905 TagDecl
*Tag
= cast
<TagDecl
>(TagD
);
17906 Tag
->setBraceRange(BraceRange
);
17908 // Make sure we "complete" the definition even it is invalid.
17909 if (Tag
->isBeingDefined()) {
17910 assert(Tag
->isInvalidDecl() && "We should already have completed it");
17911 if (RecordDecl
*RD
= dyn_cast
<RecordDecl
>(Tag
))
17912 RD
->completeDefinition();
17915 if (auto *RD
= dyn_cast
<CXXRecordDecl
>(Tag
)) {
17916 FieldCollector
->FinishClass();
17917 if (RD
->hasAttr
<SYCLSpecialClassAttr
>()) {
17918 auto *Def
= RD
->getDefinition();
17919 assert(Def
&& "The record is expected to have a completed definition");
17920 unsigned NumInitMethods
= 0;
17921 for (auto *Method
: Def
->methods()) {
17922 if (!Method
->getIdentifier())
17924 if (Method
->getName() == "__init")
17927 if (NumInitMethods
> 1 || !Def
->hasInitMethod())
17928 Diag(RD
->getLocation(), diag::err_sycl_special_type_num_init_method
);
17932 // Exit this scope of this tag's definition.
17935 if (getCurLexicalContext()->isObjCContainer() &&
17936 Tag
->getDeclContext()->isFileContext())
17937 Tag
->setTopLevelDeclInObjCContainer();
17939 // Notify the consumer that we've defined a tag.
17940 if (!Tag
->isInvalidDecl())
17941 Consumer
.HandleTagDeclDefinition(Tag
);
17943 // Clangs implementation of #pragma align(packed) differs in bitfield layout
17944 // from XLs and instead matches the XL #pragma pack(1) behavior.
17945 if (Context
.getTargetInfo().getTriple().isOSAIX() &&
17946 AlignPackStack
.hasValue()) {
17947 AlignPackInfo APInfo
= AlignPackStack
.CurrentValue
;
17948 // Only diagnose #pragma align(packed).
17949 if (!APInfo
.IsAlignAttr() || APInfo
.getAlignMode() != AlignPackInfo::Packed
)
17951 const RecordDecl
*RD
= dyn_cast
<RecordDecl
>(Tag
);
17954 // Only warn if there is at least 1 bitfield member.
17955 if (llvm::any_of(RD
->fields(),
17956 [](const FieldDecl
*FD
) { return FD
->isBitField(); }))
17957 Diag(BraceRange
.getBegin(), diag::warn_pragma_align_not_xl_compatible
);
17961 void Sema::ActOnObjCContainerFinishDefinition() {
17962 // Exit this scope of this interface definition.
17966 void Sema::ActOnObjCTemporaryExitContainerContext(ObjCContainerDecl
*ObjCCtx
) {
17967 assert(ObjCCtx
== CurContext
&& "Mismatch of container contexts");
17968 OriginalLexicalContext
= ObjCCtx
;
17969 ActOnObjCContainerFinishDefinition();
17972 void Sema::ActOnObjCReenterContainerContext(ObjCContainerDecl
*ObjCCtx
) {
17973 ActOnObjCContainerStartDefinition(ObjCCtx
);
17974 OriginalLexicalContext
= nullptr;
17977 void Sema::ActOnTagDefinitionError(Scope
*S
, Decl
*TagD
) {
17978 AdjustDeclIfTemplate(TagD
);
17979 TagDecl
*Tag
= cast
<TagDecl
>(TagD
);
17980 Tag
->setInvalidDecl();
17982 // Make sure we "complete" the definition even it is invalid.
17983 if (Tag
->isBeingDefined()) {
17984 if (RecordDecl
*RD
= dyn_cast
<RecordDecl
>(Tag
))
17985 RD
->completeDefinition();
17988 // We're undoing ActOnTagStartDefinition here, not
17989 // ActOnStartCXXMemberDeclarations, so we don't have to mess with
17990 // the FieldCollector.
17995 // Note that FieldName may be null for anonymous bitfields.
17996 ExprResult
Sema::VerifyBitField(SourceLocation FieldLoc
,
17997 IdentifierInfo
*FieldName
, QualType FieldTy
,
17998 bool IsMsStruct
, Expr
*BitWidth
) {
18000 if (BitWidth
->containsErrors())
18001 return ExprError();
18003 // C99 6.7.2.1p4 - verify the field type.
18004 // C++ 9.6p3: A bit-field shall have integral or enumeration type.
18005 if (!FieldTy
->isDependentType() && !FieldTy
->isIntegralOrEnumerationType()) {
18006 // Handle incomplete and sizeless types with a specific error.
18007 if (RequireCompleteSizedType(FieldLoc
, FieldTy
,
18008 diag::err_field_incomplete_or_sizeless
))
18009 return ExprError();
18011 return Diag(FieldLoc
, diag::err_not_integral_type_bitfield
)
18012 << FieldName
<< FieldTy
<< BitWidth
->getSourceRange();
18013 return Diag(FieldLoc
, diag::err_not_integral_type_anon_bitfield
)
18014 << FieldTy
<< BitWidth
->getSourceRange();
18015 } else if (DiagnoseUnexpandedParameterPack(const_cast<Expr
*>(BitWidth
),
18016 UPPC_BitFieldWidth
))
18017 return ExprError();
18019 // If the bit-width is type- or value-dependent, don't try to check
18021 if (BitWidth
->isValueDependent() || BitWidth
->isTypeDependent())
18024 llvm::APSInt Value
;
18025 ExprResult ICE
= VerifyIntegerConstantExpression(BitWidth
, &Value
, AllowFold
);
18026 if (ICE
.isInvalid())
18028 BitWidth
= ICE
.get();
18030 // Zero-width bitfield is ok for anonymous field.
18031 if (Value
== 0 && FieldName
)
18032 return Diag(FieldLoc
, diag::err_bitfield_has_zero_width
) << FieldName
;
18034 if (Value
.isSigned() && Value
.isNegative()) {
18036 return Diag(FieldLoc
, diag::err_bitfield_has_negative_width
)
18037 << FieldName
<< toString(Value
, 10);
18038 return Diag(FieldLoc
, diag::err_anon_bitfield_has_negative_width
)
18039 << toString(Value
, 10);
18042 // The size of the bit-field must not exceed our maximum permitted object
18044 if (Value
.getActiveBits() > ConstantArrayType::getMaxSizeBits(Context
)) {
18045 return Diag(FieldLoc
, diag::err_bitfield_too_wide
)
18046 << !FieldName
<< FieldName
<< toString(Value
, 10);
18049 if (!FieldTy
->isDependentType()) {
18050 uint64_t TypeStorageSize
= Context
.getTypeSize(FieldTy
);
18051 uint64_t TypeWidth
= Context
.getIntWidth(FieldTy
);
18052 bool BitfieldIsOverwide
= Value
.ugt(TypeWidth
);
18054 // Over-wide bitfields are an error in C or when using the MSVC bitfield
18056 bool CStdConstraintViolation
=
18057 BitfieldIsOverwide
&& !getLangOpts().CPlusPlus
;
18058 bool MSBitfieldViolation
=
18059 Value
.ugt(TypeStorageSize
) &&
18060 (IsMsStruct
|| Context
.getTargetInfo().getCXXABI().isMicrosoft());
18061 if (CStdConstraintViolation
|| MSBitfieldViolation
) {
18062 unsigned DiagWidth
=
18063 CStdConstraintViolation
? TypeWidth
: TypeStorageSize
;
18064 return Diag(FieldLoc
, diag::err_bitfield_width_exceeds_type_width
)
18065 << (bool)FieldName
<< FieldName
<< toString(Value
, 10)
18066 << !CStdConstraintViolation
<< DiagWidth
;
18069 // Warn on types where the user might conceivably expect to get all
18070 // specified bits as value bits: that's all integral types other than
18072 if (BitfieldIsOverwide
&& !FieldTy
->isBooleanType() && FieldName
) {
18073 Diag(FieldLoc
, diag::warn_bitfield_width_exceeds_type_width
)
18074 << FieldName
<< toString(Value
, 10)
18075 << (unsigned)TypeWidth
;
18082 /// ActOnField - Each field of a C struct/union is passed into this in order
18083 /// to create a FieldDecl object for it.
18084 Decl
*Sema::ActOnField(Scope
*S
, Decl
*TagD
, SourceLocation DeclStart
,
18085 Declarator
&D
, Expr
*BitfieldWidth
) {
18086 FieldDecl
*Res
= HandleField(S
, cast_or_null
<RecordDecl
>(TagD
),
18087 DeclStart
, D
, static_cast<Expr
*>(BitfieldWidth
),
18088 /*InitStyle=*/ICIS_NoInit
, AS_public
);
18092 /// HandleField - Analyze a field of a C struct or a C++ data member.
18094 FieldDecl
*Sema::HandleField(Scope
*S
, RecordDecl
*Record
,
18095 SourceLocation DeclStart
,
18096 Declarator
&D
, Expr
*BitWidth
,
18097 InClassInitStyle InitStyle
,
18098 AccessSpecifier AS
) {
18099 if (D
.isDecompositionDeclarator()) {
18100 const DecompositionDeclarator
&Decomp
= D
.getDecompositionDeclarator();
18101 Diag(Decomp
.getLSquareLoc(), diag::err_decomp_decl_context
)
18102 << Decomp
.getSourceRange();
18106 IdentifierInfo
*II
= D
.getIdentifier();
18107 SourceLocation Loc
= DeclStart
;
18108 if (II
) Loc
= D
.getIdentifierLoc();
18110 TypeSourceInfo
*TInfo
= GetTypeForDeclarator(D
, S
);
18111 QualType T
= TInfo
->getType();
18112 if (getLangOpts().CPlusPlus
) {
18113 CheckExtraCXXDefaultArguments(D
);
18115 if (DiagnoseUnexpandedParameterPack(D
.getIdentifierLoc(), TInfo
,
18116 UPPC_DataMemberType
)) {
18117 D
.setInvalidType();
18119 TInfo
= Context
.getTrivialTypeSourceInfo(T
, Loc
);
18123 DiagnoseFunctionSpecifiers(D
.getDeclSpec());
18125 if (D
.getDeclSpec().isInlineSpecified())
18126 Diag(D
.getDeclSpec().getInlineSpecLoc(), diag::err_inline_non_function
)
18127 << getLangOpts().CPlusPlus17
;
18128 if (DeclSpec::TSCS TSCS
= D
.getDeclSpec().getThreadStorageClassSpec())
18129 Diag(D
.getDeclSpec().getThreadStorageClassSpecLoc(),
18130 diag::err_invalid_thread
)
18131 << DeclSpec::getSpecifierName(TSCS
);
18133 // Check to see if this name was declared as a member previously
18134 NamedDecl
*PrevDecl
= nullptr;
18135 LookupResult
Previous(*this, II
, Loc
, LookupMemberName
,
18136 ForVisibleRedeclaration
);
18137 LookupName(Previous
, S
);
18138 switch (Previous
.getResultKind()) {
18139 case LookupResult::Found
:
18140 case LookupResult::FoundUnresolvedValue
:
18141 PrevDecl
= Previous
.getAsSingle
<NamedDecl
>();
18144 case LookupResult::FoundOverloaded
:
18145 PrevDecl
= Previous
.getRepresentativeDecl();
18148 case LookupResult::NotFound
:
18149 case LookupResult::NotFoundInCurrentInstantiation
:
18150 case LookupResult::Ambiguous
:
18153 Previous
.suppressDiagnostics();
18155 if (PrevDecl
&& PrevDecl
->isTemplateParameter()) {
18156 // Maybe we will complain about the shadowed template parameter.
18157 DiagnoseTemplateParameterShadow(D
.getIdentifierLoc(), PrevDecl
);
18158 // Just pretend that we didn't see the previous declaration.
18159 PrevDecl
= nullptr;
18162 if (PrevDecl
&& !isDeclInScope(PrevDecl
, Record
, S
))
18163 PrevDecl
= nullptr;
18166 = (D
.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_mutable
);
18167 SourceLocation TSSL
= D
.getBeginLoc();
18169 = CheckFieldDecl(II
, T
, TInfo
, Record
, Loc
, Mutable
, BitWidth
, InitStyle
,
18170 TSSL
, AS
, PrevDecl
, &D
);
18172 if (NewFD
->isInvalidDecl())
18173 Record
->setInvalidDecl();
18175 if (D
.getDeclSpec().isModulePrivateSpecified())
18176 NewFD
->setModulePrivate();
18178 if (NewFD
->isInvalidDecl() && PrevDecl
) {
18179 // Don't introduce NewFD into scope; there's already something
18180 // with the same name in the same scope.
18182 PushOnScopeChains(NewFD
, S
);
18184 Record
->addDecl(NewFD
);
18189 /// Build a new FieldDecl and check its well-formedness.
18191 /// This routine builds a new FieldDecl given the fields name, type,
18192 /// record, etc. \p PrevDecl should refer to any previous declaration
18193 /// with the same name and in the same scope as the field to be
18196 /// \returns a new FieldDecl.
18198 /// \todo The Declarator argument is a hack. It will be removed once
18199 FieldDecl
*Sema::CheckFieldDecl(DeclarationName Name
, QualType T
,
18200 TypeSourceInfo
*TInfo
,
18201 RecordDecl
*Record
, SourceLocation Loc
,
18202 bool Mutable
, Expr
*BitWidth
,
18203 InClassInitStyle InitStyle
,
18204 SourceLocation TSSL
,
18205 AccessSpecifier AS
, NamedDecl
*PrevDecl
,
18207 IdentifierInfo
*II
= Name
.getAsIdentifierInfo();
18208 bool InvalidDecl
= false;
18209 if (D
) InvalidDecl
= D
->isInvalidType();
18211 // If we receive a broken type, recover by assuming 'int' and
18212 // marking this declaration as invalid.
18213 if (T
.isNull() || T
->containsErrors()) {
18214 InvalidDecl
= true;
18218 QualType EltTy
= Context
.getBaseElementType(T
);
18219 if (!EltTy
->isDependentType() && !EltTy
->containsErrors()) {
18220 if (RequireCompleteSizedType(Loc
, EltTy
,
18221 diag::err_field_incomplete_or_sizeless
)) {
18222 // Fields of incomplete type force their record to be invalid.
18223 Record
->setInvalidDecl();
18224 InvalidDecl
= true;
18227 EltTy
->isIncompleteType(&Def
);
18228 if (Def
&& Def
->isInvalidDecl()) {
18229 Record
->setInvalidDecl();
18230 InvalidDecl
= true;
18235 // TR 18037 does not allow fields to be declared with address space
18236 if (T
.hasAddressSpace() || T
->isDependentAddressSpaceType() ||
18237 T
->getBaseElementTypeUnsafe()->isDependentAddressSpaceType()) {
18238 Diag(Loc
, diag::err_field_with_address_space
);
18239 Record
->setInvalidDecl();
18240 InvalidDecl
= true;
18243 if (LangOpts
.OpenCL
) {
18244 // OpenCL v1.2 s6.9b,r & OpenCL v2.0 s6.12.5 - The following types cannot be
18245 // used as structure or union field: image, sampler, event or block types.
18246 if (T
->isEventT() || T
->isImageType() || T
->isSamplerT() ||
18247 T
->isBlockPointerType()) {
18248 Diag(Loc
, diag::err_opencl_type_struct_or_union_field
) << T
;
18249 Record
->setInvalidDecl();
18250 InvalidDecl
= true;
18252 // OpenCL v1.2 s6.9.c: bitfields are not supported, unless Clang extension
18254 if (BitWidth
&& !getOpenCLOptions().isAvailableOption(
18255 "__cl_clang_bitfields", LangOpts
)) {
18256 Diag(Loc
, diag::err_opencl_bitfields
);
18257 InvalidDecl
= true;
18261 // Anonymous bit-fields cannot be cv-qualified (CWG 2229).
18262 if (!InvalidDecl
&& getLangOpts().CPlusPlus
&& !II
&& BitWidth
&&
18263 T
.hasQualifiers()) {
18264 InvalidDecl
= true;
18265 Diag(Loc
, diag::err_anon_bitfield_qualifiers
);
18268 // C99 6.7.2.1p8: A member of a structure or union may have any type other
18269 // than a variably modified type.
18270 if (!InvalidDecl
&& T
->isVariablyModifiedType()) {
18271 if (!tryToFixVariablyModifiedVarType(
18272 TInfo
, T
, Loc
, diag::err_typecheck_field_variable_size
))
18273 InvalidDecl
= true;
18276 // Fields can not have abstract class types
18277 if (!InvalidDecl
&& RequireNonAbstractType(Loc
, T
,
18278 diag::err_abstract_type_in_decl
,
18279 AbstractFieldType
))
18280 InvalidDecl
= true;
18283 BitWidth
= nullptr;
18284 // If this is declared as a bit-field, check the bit-field.
18287 VerifyBitField(Loc
, II
, T
, Record
->isMsStruct(Context
), BitWidth
).get();
18289 InvalidDecl
= true;
18290 BitWidth
= nullptr;
18294 // Check that 'mutable' is consistent with the type of the declaration.
18295 if (!InvalidDecl
&& Mutable
) {
18296 unsigned DiagID
= 0;
18297 if (T
->isReferenceType())
18298 DiagID
= getLangOpts().MSVCCompat
? diag::ext_mutable_reference
18299 : diag::err_mutable_reference
;
18300 else if (T
.isConstQualified())
18301 DiagID
= diag::err_mutable_const
;
18304 SourceLocation ErrLoc
= Loc
;
18305 if (D
&& D
->getDeclSpec().getStorageClassSpecLoc().isValid())
18306 ErrLoc
= D
->getDeclSpec().getStorageClassSpecLoc();
18307 Diag(ErrLoc
, DiagID
);
18308 if (DiagID
!= diag::ext_mutable_reference
) {
18310 InvalidDecl
= true;
18315 // C++11 [class.union]p8 (DR1460):
18316 // At most one variant member of a union may have a
18317 // brace-or-equal-initializer.
18318 if (InitStyle
!= ICIS_NoInit
)
18319 checkDuplicateDefaultInit(*this, cast
<CXXRecordDecl
>(Record
), Loc
);
18321 FieldDecl
*NewFD
= FieldDecl::Create(Context
, Record
, TSSL
, Loc
, II
, T
, TInfo
,
18322 BitWidth
, Mutable
, InitStyle
);
18324 NewFD
->setInvalidDecl();
18326 if (PrevDecl
&& !isa
<TagDecl
>(PrevDecl
) &&
18327 !PrevDecl
->isPlaceholderVar(getLangOpts())) {
18328 Diag(Loc
, diag::err_duplicate_member
) << II
;
18329 Diag(PrevDecl
->getLocation(), diag::note_previous_declaration
);
18330 NewFD
->setInvalidDecl();
18333 if (!InvalidDecl
&& getLangOpts().CPlusPlus
) {
18334 if (Record
->isUnion()) {
18335 if (const RecordType
*RT
= EltTy
->getAs
<RecordType
>()) {
18336 CXXRecordDecl
* RDecl
= cast
<CXXRecordDecl
>(RT
->getDecl());
18337 if (RDecl
->getDefinition()) {
18338 // C++ [class.union]p1: An object of a class with a non-trivial
18339 // constructor, a non-trivial copy constructor, a non-trivial
18340 // destructor, or a non-trivial copy assignment operator
18341 // cannot be a member of a union, nor can an array of such
18343 if (CheckNontrivialField(NewFD
))
18344 NewFD
->setInvalidDecl();
18348 // C++ [class.union]p1: If a union contains a member of reference type,
18349 // the program is ill-formed, except when compiling with MSVC extensions
18351 if (EltTy
->isReferenceType()) {
18352 Diag(NewFD
->getLocation(), getLangOpts().MicrosoftExt
?
18353 diag::ext_union_member_of_reference_type
:
18354 diag::err_union_member_of_reference_type
)
18355 << NewFD
->getDeclName() << EltTy
;
18356 if (!getLangOpts().MicrosoftExt
)
18357 NewFD
->setInvalidDecl();
18362 // FIXME: We need to pass in the attributes given an AST
18363 // representation, not a parser representation.
18365 // FIXME: The current scope is almost... but not entirely... correct here.
18366 ProcessDeclAttributes(getCurScope(), NewFD
, *D
);
18368 if (NewFD
->hasAttrs())
18369 CheckAlignasUnderalignment(NewFD
);
18372 // In auto-retain/release, infer strong retension for fields of
18373 // retainable type.
18374 if (getLangOpts().ObjCAutoRefCount
&& inferObjCARCLifetime(NewFD
))
18375 NewFD
->setInvalidDecl();
18377 if (T
.isObjCGCWeak())
18378 Diag(Loc
, diag::warn_attribute_weak_on_field
);
18380 // PPC MMA non-pointer types are not allowed as field types.
18381 if (Context
.getTargetInfo().getTriple().isPPC64() &&
18382 CheckPPCMMAType(T
, NewFD
->getLocation()))
18383 NewFD
->setInvalidDecl();
18385 NewFD
->setAccess(AS
);
18389 bool Sema::CheckNontrivialField(FieldDecl
*FD
) {
18391 assert(getLangOpts().CPlusPlus
&& "valid check only for C++");
18393 if (FD
->isInvalidDecl() || FD
->getType()->isDependentType())
18396 QualType EltTy
= Context
.getBaseElementType(FD
->getType());
18397 if (const RecordType
*RT
= EltTy
->getAs
<RecordType
>()) {
18398 CXXRecordDecl
*RDecl
= cast
<CXXRecordDecl
>(RT
->getDecl());
18399 if (RDecl
->getDefinition()) {
18400 // We check for copy constructors before constructors
18401 // because otherwise we'll never get complaints about
18402 // copy constructors.
18404 CXXSpecialMember member
= CXXInvalid
;
18405 // We're required to check for any non-trivial constructors. Since the
18406 // implicit default constructor is suppressed if there are any
18407 // user-declared constructors, we just need to check that there is a
18408 // trivial default constructor and a trivial copy constructor. (We don't
18409 // worry about move constructors here, since this is a C++98 check.)
18410 if (RDecl
->hasNonTrivialCopyConstructor())
18411 member
= CXXCopyConstructor
;
18412 else if (!RDecl
->hasTrivialDefaultConstructor())
18413 member
= CXXDefaultConstructor
;
18414 else if (RDecl
->hasNonTrivialCopyAssignment())
18415 member
= CXXCopyAssignment
;
18416 else if (RDecl
->hasNonTrivialDestructor())
18417 member
= CXXDestructor
;
18419 if (member
!= CXXInvalid
) {
18420 if (!getLangOpts().CPlusPlus11
&&
18421 getLangOpts().ObjCAutoRefCount
&& RDecl
->hasObjectMember()) {
18422 // Objective-C++ ARC: it is an error to have a non-trivial field of
18423 // a union. However, system headers in Objective-C programs
18424 // occasionally have Objective-C lifetime objects within unions,
18425 // and rather than cause the program to fail, we make those
18426 // members unavailable.
18427 SourceLocation Loc
= FD
->getLocation();
18428 if (getSourceManager().isInSystemHeader(Loc
)) {
18429 if (!FD
->hasAttr
<UnavailableAttr
>())
18430 FD
->addAttr(UnavailableAttr::CreateImplicit(Context
, "",
18431 UnavailableAttr::IR_ARCFieldWithOwnership
, Loc
));
18436 Diag(FD
->getLocation(), getLangOpts().CPlusPlus11
?
18437 diag::warn_cxx98_compat_nontrivial_union_or_anon_struct_member
:
18438 diag::err_illegal_union_or_anon_struct_member
)
18439 << FD
->getParent()->isUnion() << FD
->getDeclName() << member
;
18440 DiagnoseNontrivial(RDecl
, member
);
18441 return !getLangOpts().CPlusPlus11
;
18449 /// TranslateIvarVisibility - Translate visibility from a token ID to an
18450 /// AST enum value.
18451 static ObjCIvarDecl::AccessControl
18452 TranslateIvarVisibility(tok::ObjCKeywordKind ivarVisibility
) {
18453 switch (ivarVisibility
) {
18454 default: llvm_unreachable("Unknown visitibility kind");
18455 case tok::objc_private
: return ObjCIvarDecl::Private
;
18456 case tok::objc_public
: return ObjCIvarDecl::Public
;
18457 case tok::objc_protected
: return ObjCIvarDecl::Protected
;
18458 case tok::objc_package
: return ObjCIvarDecl::Package
;
18462 /// ActOnIvar - Each ivar field of an objective-c class is passed into this
18463 /// in order to create an IvarDecl object for it.
18464 Decl
*Sema::ActOnIvar(Scope
*S
,
18465 SourceLocation DeclStart
,
18466 Declarator
&D
, Expr
*BitfieldWidth
,
18467 tok::ObjCKeywordKind Visibility
) {
18469 IdentifierInfo
*II
= D
.getIdentifier();
18470 Expr
*BitWidth
= (Expr
*)BitfieldWidth
;
18471 SourceLocation Loc
= DeclStart
;
18472 if (II
) Loc
= D
.getIdentifierLoc();
18474 // FIXME: Unnamed fields can be handled in various different ways, for
18475 // example, unnamed unions inject all members into the struct namespace!
18477 TypeSourceInfo
*TInfo
= GetTypeForDeclarator(D
, S
);
18478 QualType T
= TInfo
->getType();
18481 // 6.7.2.1p3, 6.7.2.1p4
18482 BitWidth
= VerifyBitField(Loc
, II
, T
, /*IsMsStruct*/false, BitWidth
).get();
18484 D
.setInvalidType();
18491 if (T
->isReferenceType()) {
18492 Diag(Loc
, diag::err_ivar_reference_type
);
18493 D
.setInvalidType();
18495 // C99 6.7.2.1p8: A member of a structure or union may have any type other
18496 // than a variably modified type.
18497 else if (T
->isVariablyModifiedType()) {
18498 if (!tryToFixVariablyModifiedVarType(
18499 TInfo
, T
, Loc
, diag::err_typecheck_ivar_variable_size
))
18500 D
.setInvalidType();
18503 // Get the visibility (access control) for this ivar.
18504 ObjCIvarDecl::AccessControl ac
=
18505 Visibility
!= tok::objc_not_keyword
? TranslateIvarVisibility(Visibility
)
18506 : ObjCIvarDecl::None
;
18507 // Must set ivar's DeclContext to its enclosing interface.
18508 ObjCContainerDecl
*EnclosingDecl
= cast
<ObjCContainerDecl
>(CurContext
);
18509 if (!EnclosingDecl
|| EnclosingDecl
->isInvalidDecl())
18511 ObjCContainerDecl
*EnclosingContext
;
18512 if (ObjCImplementationDecl
*IMPDecl
=
18513 dyn_cast
<ObjCImplementationDecl
>(EnclosingDecl
)) {
18514 if (LangOpts
.ObjCRuntime
.isFragile()) {
18515 // Case of ivar declared in an implementation. Context is that of its class.
18516 EnclosingContext
= IMPDecl
->getClassInterface();
18517 assert(EnclosingContext
&& "Implementation has no class interface!");
18520 EnclosingContext
= EnclosingDecl
;
18522 if (ObjCCategoryDecl
*CDecl
=
18523 dyn_cast
<ObjCCategoryDecl
>(EnclosingDecl
)) {
18524 if (LangOpts
.ObjCRuntime
.isFragile() || !CDecl
->IsClassExtension()) {
18525 Diag(Loc
, diag::err_misplaced_ivar
) << CDecl
->IsClassExtension();
18529 EnclosingContext
= EnclosingDecl
;
18532 // Construct the decl.
18533 ObjCIvarDecl
*NewID
= ObjCIvarDecl::Create(Context
, EnclosingContext
,
18534 DeclStart
, Loc
, II
, T
,
18535 TInfo
, ac
, (Expr
*)BitfieldWidth
);
18538 NamedDecl
*PrevDecl
= LookupSingleName(S
, II
, Loc
, LookupMemberName
,
18539 ForVisibleRedeclaration
);
18540 if (PrevDecl
&& isDeclInScope(PrevDecl
, EnclosingContext
, S
)
18541 && !isa
<TagDecl
>(PrevDecl
)) {
18542 Diag(Loc
, diag::err_duplicate_member
) << II
;
18543 Diag(PrevDecl
->getLocation(), diag::note_previous_declaration
);
18544 NewID
->setInvalidDecl();
18548 // Process attributes attached to the ivar.
18549 ProcessDeclAttributes(S
, NewID
, D
);
18551 if (D
.isInvalidType())
18552 NewID
->setInvalidDecl();
18554 // In ARC, infer 'retaining' for ivars of retainable type.
18555 if (getLangOpts().ObjCAutoRefCount
&& inferObjCARCLifetime(NewID
))
18556 NewID
->setInvalidDecl();
18558 if (D
.getDeclSpec().isModulePrivateSpecified())
18559 NewID
->setModulePrivate();
18562 // FIXME: When interfaces are DeclContexts, we'll need to add
18563 // these to the interface.
18565 IdResolver
.AddDecl(NewID
);
18568 if (LangOpts
.ObjCRuntime
.isNonFragile() &&
18569 !NewID
->isInvalidDecl() && isa
<ObjCInterfaceDecl
>(EnclosingDecl
))
18570 Diag(Loc
, diag::warn_ivars_in_interface
);
18575 /// ActOnLastBitfield - This routine handles synthesized bitfields rules for
18576 /// class and class extensions. For every class \@interface and class
18577 /// extension \@interface, if the last ivar is a bitfield of any type,
18578 /// then add an implicit `char :0` ivar to the end of that interface.
18579 void Sema::ActOnLastBitfield(SourceLocation DeclLoc
,
18580 SmallVectorImpl
<Decl
*> &AllIvarDecls
) {
18581 if (LangOpts
.ObjCRuntime
.isFragile() || AllIvarDecls
.empty())
18584 Decl
*ivarDecl
= AllIvarDecls
[AllIvarDecls
.size()-1];
18585 ObjCIvarDecl
*Ivar
= cast
<ObjCIvarDecl
>(ivarDecl
);
18587 if (!Ivar
->isBitField() || Ivar
->isZeroLengthBitField(Context
))
18589 ObjCInterfaceDecl
*ID
= dyn_cast
<ObjCInterfaceDecl
>(CurContext
);
18591 if (ObjCCategoryDecl
*CD
= dyn_cast
<ObjCCategoryDecl
>(CurContext
)) {
18592 if (!CD
->IsClassExtension())
18595 // No need to add this to end of @implementation.
18599 // All conditions are met. Add a new bitfield to the tail end of ivars.
18600 llvm::APInt
Zero(Context
.getTypeSize(Context
.IntTy
), 0);
18601 Expr
* BW
= IntegerLiteral::Create(Context
, Zero
, Context
.IntTy
, DeclLoc
);
18603 Ivar
= ObjCIvarDecl::Create(Context
, cast
<ObjCContainerDecl
>(CurContext
),
18604 DeclLoc
, DeclLoc
, nullptr,
18606 Context
.getTrivialTypeSourceInfo(Context
.CharTy
,
18608 ObjCIvarDecl::Private
, BW
,
18610 AllIvarDecls
.push_back(Ivar
);
18613 /// [class.dtor]p4:
18614 /// At the end of the definition of a class, overload resolution is
18615 /// performed among the prospective destructors declared in that class with
18616 /// an empty argument list to select the destructor for the class, also
18617 /// known as the selected destructor.
18619 /// We do the overload resolution here, then mark the selected constructor in the AST.
18620 /// Later CXXRecordDecl::getDestructor() will return the selected constructor.
18621 static void ComputeSelectedDestructor(Sema
&S
, CXXRecordDecl
*Record
) {
18622 if (!Record
->hasUserDeclaredDestructor()) {
18626 SourceLocation Loc
= Record
->getLocation();
18627 OverloadCandidateSet
OCS(Loc
, OverloadCandidateSet::CSK_Normal
);
18629 for (auto *Decl
: Record
->decls()) {
18630 if (auto *DD
= dyn_cast
<CXXDestructorDecl
>(Decl
)) {
18631 if (DD
->isInvalidDecl())
18633 S
.AddOverloadCandidate(DD
, DeclAccessPair::make(DD
, DD
->getAccess()), {},
18635 assert(DD
->isIneligibleOrNotSelected() && "Selecting a destructor but a destructor was already selected.");
18642 OverloadCandidateSet::iterator Best
;
18644 OverloadCandidateDisplayKind DisplayKind
;
18646 switch (OCS
.BestViableFunction(S
, Loc
, Best
)) {
18649 Record
->addedSelectedDestructor(dyn_cast
<CXXDestructorDecl
>(Best
->Function
));
18653 Msg
= diag::err_ambiguous_destructor
;
18654 DisplayKind
= OCD_AmbiguousCandidates
;
18657 case OR_No_Viable_Function
:
18658 Msg
= diag::err_no_viable_destructor
;
18659 DisplayKind
= OCD_AllCandidates
;
18664 // OpenCL have got their own thing going with destructors. It's slightly broken,
18665 // but we allow it.
18666 if (!S
.LangOpts
.OpenCL
) {
18667 PartialDiagnostic Diag
= S
.PDiag(Msg
) << Record
;
18668 OCS
.NoteCandidates(PartialDiagnosticAt(Loc
, Diag
), S
, DisplayKind
, {});
18669 Record
->setInvalidDecl();
18671 // It's a bit hacky: At this point we've raised an error but we want the
18672 // rest of the compiler to continue somehow working. However almost
18673 // everything we'll try to do with the class will depend on there being a
18674 // destructor. So let's pretend the first one is selected and hope for the
18676 Record
->addedSelectedDestructor(dyn_cast
<CXXDestructorDecl
>(OCS
.begin()->Function
));
18680 /// [class.mem.special]p5
18681 /// Two special member functions are of the same kind if:
18682 /// - they are both default constructors,
18683 /// - they are both copy or move constructors with the same first parameter
18685 /// - they are both copy or move assignment operators with the same first
18686 /// parameter type and the same cv-qualifiers and ref-qualifier, if any.
18687 static bool AreSpecialMemberFunctionsSameKind(ASTContext
&Context
,
18690 Sema::CXXSpecialMember CSM
) {
18691 // We don't want to compare templates to non-templates: See
18692 // https://github.com/llvm/llvm-project/issues/59206
18693 if (CSM
== Sema::CXXDefaultConstructor
)
18694 return bool(M1
->getDescribedFunctionTemplate()) ==
18695 bool(M2
->getDescribedFunctionTemplate());
18696 if (!Context
.hasSameType(M1
->getParamDecl(0)->getType(),
18697 M2
->getParamDecl(0)->getType()))
18699 if (!Context
.hasSameType(M1
->getThisType(), M2
->getThisType()))
18705 /// [class.mem.special]p6:
18706 /// An eligible special member function is a special member function for which:
18707 /// - the function is not deleted,
18708 /// - the associated constraints, if any, are satisfied, and
18709 /// - no special member function of the same kind whose associated constraints
18710 /// [CWG2595], if any, are satisfied is more constrained.
18711 static void SetEligibleMethods(Sema
&S
, CXXRecordDecl
*Record
,
18712 ArrayRef
<CXXMethodDecl
*> Methods
,
18713 Sema::CXXSpecialMember CSM
) {
18714 SmallVector
<bool, 4> SatisfactionStatus
;
18716 for (CXXMethodDecl
*Method
: Methods
) {
18717 const Expr
*Constraints
= Method
->getTrailingRequiresClause();
18719 SatisfactionStatus
.push_back(true);
18721 ConstraintSatisfaction Satisfaction
;
18722 if (S
.CheckFunctionConstraints(Method
, Satisfaction
))
18723 SatisfactionStatus
.push_back(false);
18725 SatisfactionStatus
.push_back(Satisfaction
.IsSatisfied
);
18729 for (size_t i
= 0; i
< Methods
.size(); i
++) {
18730 if (!SatisfactionStatus
[i
])
18732 CXXMethodDecl
*Method
= Methods
[i
];
18733 CXXMethodDecl
*OrigMethod
= Method
;
18734 if (FunctionDecl
*MF
= OrigMethod
->getInstantiatedFromMemberFunction())
18735 OrigMethod
= cast
<CXXMethodDecl
>(MF
);
18737 const Expr
*Constraints
= OrigMethod
->getTrailingRequiresClause();
18738 bool AnotherMethodIsMoreConstrained
= false;
18739 for (size_t j
= 0; j
< Methods
.size(); j
++) {
18740 if (i
== j
|| !SatisfactionStatus
[j
])
18742 CXXMethodDecl
*OtherMethod
= Methods
[j
];
18743 if (FunctionDecl
*MF
= OtherMethod
->getInstantiatedFromMemberFunction())
18744 OtherMethod
= cast
<CXXMethodDecl
>(MF
);
18746 if (!AreSpecialMemberFunctionsSameKind(S
.Context
, OrigMethod
, OtherMethod
,
18750 const Expr
*OtherConstraints
= OtherMethod
->getTrailingRequiresClause();
18751 if (!OtherConstraints
)
18753 if (!Constraints
) {
18754 AnotherMethodIsMoreConstrained
= true;
18757 if (S
.IsAtLeastAsConstrained(OtherMethod
, {OtherConstraints
}, OrigMethod
,
18759 AnotherMethodIsMoreConstrained
)) {
18760 // There was an error with the constraints comparison. Exit the loop
18761 // and don't consider this function eligible.
18762 AnotherMethodIsMoreConstrained
= true;
18764 if (AnotherMethodIsMoreConstrained
)
18767 // FIXME: Do not consider deleted methods as eligible after implementing
18768 // DR1734 and DR1496.
18769 if (!AnotherMethodIsMoreConstrained
) {
18770 Method
->setIneligibleOrNotSelected(false);
18771 Record
->addedEligibleSpecialMemberFunction(Method
, 1 << CSM
);
18776 static void ComputeSpecialMemberFunctionsEligiblity(Sema
&S
,
18777 CXXRecordDecl
*Record
) {
18778 SmallVector
<CXXMethodDecl
*, 4> DefaultConstructors
;
18779 SmallVector
<CXXMethodDecl
*, 4> CopyConstructors
;
18780 SmallVector
<CXXMethodDecl
*, 4> MoveConstructors
;
18781 SmallVector
<CXXMethodDecl
*, 4> CopyAssignmentOperators
;
18782 SmallVector
<CXXMethodDecl
*, 4> MoveAssignmentOperators
;
18784 for (auto *Decl
: Record
->decls()) {
18785 auto *MD
= dyn_cast
<CXXMethodDecl
>(Decl
);
18787 auto *FTD
= dyn_cast
<FunctionTemplateDecl
>(Decl
);
18789 MD
= dyn_cast
<CXXMethodDecl
>(FTD
->getTemplatedDecl());
18793 if (auto *CD
= dyn_cast
<CXXConstructorDecl
>(MD
)) {
18794 if (CD
->isInvalidDecl())
18796 if (CD
->isDefaultConstructor())
18797 DefaultConstructors
.push_back(MD
);
18798 else if (CD
->isCopyConstructor())
18799 CopyConstructors
.push_back(MD
);
18800 else if (CD
->isMoveConstructor())
18801 MoveConstructors
.push_back(MD
);
18802 } else if (MD
->isCopyAssignmentOperator()) {
18803 CopyAssignmentOperators
.push_back(MD
);
18804 } else if (MD
->isMoveAssignmentOperator()) {
18805 MoveAssignmentOperators
.push_back(MD
);
18809 SetEligibleMethods(S
, Record
, DefaultConstructors
,
18810 Sema::CXXDefaultConstructor
);
18811 SetEligibleMethods(S
, Record
, CopyConstructors
, Sema::CXXCopyConstructor
);
18812 SetEligibleMethods(S
, Record
, MoveConstructors
, Sema::CXXMoveConstructor
);
18813 SetEligibleMethods(S
, Record
, CopyAssignmentOperators
,
18814 Sema::CXXCopyAssignment
);
18815 SetEligibleMethods(S
, Record
, MoveAssignmentOperators
,
18816 Sema::CXXMoveAssignment
);
18819 void Sema::ActOnFields(Scope
*S
, SourceLocation RecLoc
, Decl
*EnclosingDecl
,
18820 ArrayRef
<Decl
*> Fields
, SourceLocation LBrac
,
18821 SourceLocation RBrac
,
18822 const ParsedAttributesView
&Attrs
) {
18823 assert(EnclosingDecl
&& "missing record or interface decl");
18825 // If this is an Objective-C @implementation or category and we have
18826 // new fields here we should reset the layout of the interface since
18827 // it will now change.
18828 if (!Fields
.empty() && isa
<ObjCContainerDecl
>(EnclosingDecl
)) {
18829 ObjCContainerDecl
*DC
= cast
<ObjCContainerDecl
>(EnclosingDecl
);
18830 switch (DC
->getKind()) {
18832 case Decl::ObjCCategory
:
18833 Context
.ResetObjCLayout(cast
<ObjCCategoryDecl
>(DC
)->getClassInterface());
18835 case Decl::ObjCImplementation
:
18837 ResetObjCLayout(cast
<ObjCImplementationDecl
>(DC
)->getClassInterface());
18842 RecordDecl
*Record
= dyn_cast
<RecordDecl
>(EnclosingDecl
);
18843 CXXRecordDecl
*CXXRecord
= dyn_cast
<CXXRecordDecl
>(EnclosingDecl
);
18845 // Start counting up the number of named members; make sure to include
18846 // members of anonymous structs and unions in the total.
18847 unsigned NumNamedMembers
= 0;
18849 for (const auto *I
: Record
->decls()) {
18850 if (const auto *IFD
= dyn_cast
<IndirectFieldDecl
>(I
))
18851 if (IFD
->getDeclName())
18856 // Verify that all the fields are okay.
18857 SmallVector
<FieldDecl
*, 32> RecFields
;
18859 for (ArrayRef
<Decl
*>::iterator i
= Fields
.begin(), end
= Fields
.end();
18861 FieldDecl
*FD
= cast
<FieldDecl
>(*i
);
18863 // Get the type for the field.
18864 const Type
*FDTy
= FD
->getType().getTypePtr();
18866 if (!FD
->isAnonymousStructOrUnion()) {
18867 // Remember all fields written by the user.
18868 RecFields
.push_back(FD
);
18871 // If the field is already invalid for some reason, don't emit more
18872 // diagnostics about it.
18873 if (FD
->isInvalidDecl()) {
18874 EnclosingDecl
->setInvalidDecl();
18879 // A structure or union shall not contain a member with
18880 // incomplete or function type (hence, a structure shall not
18881 // contain an instance of itself, but may contain a pointer to
18882 // an instance of itself), except that the last member of a
18883 // structure with more than one named member may have incomplete
18884 // array type; such a structure (and any union containing,
18885 // possibly recursively, a member that is such a structure)
18886 // shall not be a member of a structure or an element of an
18888 bool IsLastField
= (i
+ 1 == Fields
.end());
18889 if (FDTy
->isFunctionType()) {
18890 // Field declared as a function.
18891 Diag(FD
->getLocation(), diag::err_field_declared_as_function
)
18892 << FD
->getDeclName();
18893 FD
->setInvalidDecl();
18894 EnclosingDecl
->setInvalidDecl();
18896 } else if (FDTy
->isIncompleteArrayType() &&
18897 (Record
|| isa
<ObjCContainerDecl
>(EnclosingDecl
))) {
18899 // Flexible array member.
18900 // Microsoft and g++ is more permissive regarding flexible array.
18901 // It will accept flexible array in union and also
18902 // as the sole element of a struct/class.
18903 unsigned DiagID
= 0;
18904 if (!Record
->isUnion() && !IsLastField
) {
18905 Diag(FD
->getLocation(), diag::err_flexible_array_not_at_end
)
18906 << FD
->getDeclName() << FD
->getType() << Record
->getTagKind();
18907 Diag((*(i
+ 1))->getLocation(), diag::note_next_field_declaration
);
18908 FD
->setInvalidDecl();
18909 EnclosingDecl
->setInvalidDecl();
18911 } else if (Record
->isUnion())
18912 DiagID
= getLangOpts().MicrosoftExt
18913 ? diag::ext_flexible_array_union_ms
18914 : getLangOpts().CPlusPlus
18915 ? diag::ext_flexible_array_union_gnu
18916 : diag::err_flexible_array_union
;
18917 else if (NumNamedMembers
< 1)
18918 DiagID
= getLangOpts().MicrosoftExt
18919 ? diag::ext_flexible_array_empty_aggregate_ms
18920 : getLangOpts().CPlusPlus
18921 ? diag::ext_flexible_array_empty_aggregate_gnu
18922 : diag::err_flexible_array_empty_aggregate
;
18925 Diag(FD
->getLocation(), DiagID
) << FD
->getDeclName()
18926 << Record
->getTagKind();
18927 // While the layout of types that contain virtual bases is not specified
18928 // by the C++ standard, both the Itanium and Microsoft C++ ABIs place
18929 // virtual bases after the derived members. This would make a flexible
18930 // array member declared at the end of an object not adjacent to the end
18932 if (CXXRecord
&& CXXRecord
->getNumVBases() != 0)
18933 Diag(FD
->getLocation(), diag::err_flexible_array_virtual_base
)
18934 << FD
->getDeclName() << Record
->getTagKind();
18935 if (!getLangOpts().C99
)
18936 Diag(FD
->getLocation(), diag::ext_c99_flexible_array_member
)
18937 << FD
->getDeclName() << Record
->getTagKind();
18939 // If the element type has a non-trivial destructor, we would not
18940 // implicitly destroy the elements, so disallow it for now.
18942 // FIXME: GCC allows this. We should probably either implicitly delete
18943 // the destructor of the containing class, or just allow this.
18944 QualType BaseElem
= Context
.getBaseElementType(FD
->getType());
18945 if (!BaseElem
->isDependentType() && BaseElem
.isDestructedType()) {
18946 Diag(FD
->getLocation(), diag::err_flexible_array_has_nontrivial_dtor
)
18947 << FD
->getDeclName() << FD
->getType();
18948 FD
->setInvalidDecl();
18949 EnclosingDecl
->setInvalidDecl();
18952 // Okay, we have a legal flexible array member at the end of the struct.
18953 Record
->setHasFlexibleArrayMember(true);
18955 // In ObjCContainerDecl ivars with incomplete array type are accepted,
18956 // unless they are followed by another ivar. That check is done
18957 // elsewhere, after synthesized ivars are known.
18959 } else if (!FDTy
->isDependentType() &&
18960 RequireCompleteSizedType(
18961 FD
->getLocation(), FD
->getType(),
18962 diag::err_field_incomplete_or_sizeless
)) {
18964 FD
->setInvalidDecl();
18965 EnclosingDecl
->setInvalidDecl();
18967 } else if (const RecordType
*FDTTy
= FDTy
->getAs
<RecordType
>()) {
18968 if (Record
&& FDTTy
->getDecl()->hasFlexibleArrayMember()) {
18969 // A type which contains a flexible array member is considered to be a
18970 // flexible array member.
18971 Record
->setHasFlexibleArrayMember(true);
18972 if (!Record
->isUnion()) {
18973 // If this is a struct/class and this is not the last element, reject
18974 // it. Note that GCC supports variable sized arrays in the middle of
18977 Diag(FD
->getLocation(), diag::ext_variable_sized_type_in_struct
)
18978 << FD
->getDeclName() << FD
->getType();
18980 // We support flexible arrays at the end of structs in
18981 // other structs as an extension.
18982 Diag(FD
->getLocation(), diag::ext_flexible_array_in_struct
)
18983 << FD
->getDeclName();
18987 if (isa
<ObjCContainerDecl
>(EnclosingDecl
) &&
18988 RequireNonAbstractType(FD
->getLocation(), FD
->getType(),
18989 diag::err_abstract_type_in_decl
,
18990 AbstractIvarType
)) {
18991 // Ivars can not have abstract class types
18992 FD
->setInvalidDecl();
18994 if (Record
&& FDTTy
->getDecl()->hasObjectMember())
18995 Record
->setHasObjectMember(true);
18996 if (Record
&& FDTTy
->getDecl()->hasVolatileMember())
18997 Record
->setHasVolatileMember(true);
18998 } else if (FDTy
->isObjCObjectType()) {
18999 /// A field cannot be an Objective-c object
19000 Diag(FD
->getLocation(), diag::err_statically_allocated_object
)
19001 << FixItHint::CreateInsertion(FD
->getLocation(), "*");
19002 QualType T
= Context
.getObjCObjectPointerType(FD
->getType());
19004 } else if (Record
&& Record
->isUnion() &&
19005 FD
->getType().hasNonTrivialObjCLifetime() &&
19006 getSourceManager().isInSystemHeader(FD
->getLocation()) &&
19007 !getLangOpts().CPlusPlus
&& !FD
->hasAttr
<UnavailableAttr
>() &&
19008 (FD
->getType().getObjCLifetime() != Qualifiers::OCL_Strong
||
19009 !Context
.hasDirectOwnershipQualifier(FD
->getType()))) {
19010 // For backward compatibility, fields of C unions declared in system
19011 // headers that have non-trivial ObjC ownership qualifications are marked
19012 // as unavailable unless the qualifier is explicit and __strong. This can
19013 // break ABI compatibility between programs compiled with ARC and MRR, but
19014 // is a better option than rejecting programs using those unions under
19016 FD
->addAttr(UnavailableAttr::CreateImplicit(
19017 Context
, "", UnavailableAttr::IR_ARCFieldWithOwnership
,
19018 FD
->getLocation()));
19019 } else if (getLangOpts().ObjC
&&
19020 getLangOpts().getGC() != LangOptions::NonGC
&& Record
&&
19021 !Record
->hasObjectMember()) {
19022 if (FD
->getType()->isObjCObjectPointerType() ||
19023 FD
->getType().isObjCGCStrong())
19024 Record
->setHasObjectMember(true);
19025 else if (Context
.getAsArrayType(FD
->getType())) {
19026 QualType BaseType
= Context
.getBaseElementType(FD
->getType());
19027 if (BaseType
->isRecordType() &&
19028 BaseType
->castAs
<RecordType
>()->getDecl()->hasObjectMember())
19029 Record
->setHasObjectMember(true);
19030 else if (BaseType
->isObjCObjectPointerType() ||
19031 BaseType
.isObjCGCStrong())
19032 Record
->setHasObjectMember(true);
19036 if (Record
&& !getLangOpts().CPlusPlus
&&
19037 !shouldIgnoreForRecordTriviality(FD
)) {
19038 QualType FT
= FD
->getType();
19039 if (FT
.isNonTrivialToPrimitiveDefaultInitialize()) {
19040 Record
->setNonTrivialToPrimitiveDefaultInitialize(true);
19041 if (FT
.hasNonTrivialToPrimitiveDefaultInitializeCUnion() ||
19043 Record
->setHasNonTrivialToPrimitiveDefaultInitializeCUnion(true);
19045 QualType::PrimitiveCopyKind PCK
= FT
.isNonTrivialToPrimitiveCopy();
19046 if (PCK
!= QualType::PCK_Trivial
&& PCK
!= QualType::PCK_VolatileTrivial
) {
19047 Record
->setNonTrivialToPrimitiveCopy(true);
19048 if (FT
.hasNonTrivialToPrimitiveCopyCUnion() || Record
->isUnion())
19049 Record
->setHasNonTrivialToPrimitiveCopyCUnion(true);
19051 if (FT
.isDestructedType()) {
19052 Record
->setNonTrivialToPrimitiveDestroy(true);
19053 Record
->setParamDestroyedInCallee(true);
19054 if (FT
.hasNonTrivialToPrimitiveDestructCUnion() || Record
->isUnion())
19055 Record
->setHasNonTrivialToPrimitiveDestructCUnion(true);
19058 if (const auto *RT
= FT
->getAs
<RecordType
>()) {
19059 if (RT
->getDecl()->getArgPassingRestrictions() ==
19060 RecordDecl::APK_CanNeverPassInRegs
)
19061 Record
->setArgPassingRestrictions(RecordDecl::APK_CanNeverPassInRegs
);
19062 } else if (FT
.getQualifiers().getObjCLifetime() == Qualifiers::OCL_Weak
)
19063 Record
->setArgPassingRestrictions(RecordDecl::APK_CanNeverPassInRegs
);
19066 if (Record
&& FD
->getType().isVolatileQualified())
19067 Record
->setHasVolatileMember(true);
19068 // Keep track of the number of named members.
19069 if (FD
->getIdentifier())
19073 // Okay, we successfully defined 'Record'.
19075 bool Completed
= false;
19077 if (!CXXRecord
->isInvalidDecl()) {
19078 // Set access bits correctly on the directly-declared conversions.
19079 for (CXXRecordDecl::conversion_iterator
19080 I
= CXXRecord
->conversion_begin(),
19081 E
= CXXRecord
->conversion_end(); I
!= E
; ++I
)
19082 I
.setAccess((*I
)->getAccess());
19085 // Add any implicitly-declared members to this class.
19086 AddImplicitlyDeclaredMembersToClass(CXXRecord
);
19088 if (!CXXRecord
->isDependentType()) {
19089 if (!CXXRecord
->isInvalidDecl()) {
19090 // If we have virtual base classes, we may end up finding multiple
19091 // final overriders for a given virtual function. Check for this
19093 if (CXXRecord
->getNumVBases()) {
19094 CXXFinalOverriderMap FinalOverriders
;
19095 CXXRecord
->getFinalOverriders(FinalOverriders
);
19097 for (CXXFinalOverriderMap::iterator M
= FinalOverriders
.begin(),
19098 MEnd
= FinalOverriders
.end();
19100 for (OverridingMethods::iterator SO
= M
->second
.begin(),
19101 SOEnd
= M
->second
.end();
19102 SO
!= SOEnd
; ++SO
) {
19103 assert(SO
->second
.size() > 0 &&
19104 "Virtual function without overriding functions?");
19105 if (SO
->second
.size() == 1)
19108 // C++ [class.virtual]p2:
19109 // In a derived class, if a virtual member function of a base
19110 // class subobject has more than one final overrider the
19111 // program is ill-formed.
19112 Diag(Record
->getLocation(), diag::err_multiple_final_overriders
)
19113 << (const NamedDecl
*)M
->first
<< Record
;
19114 Diag(M
->first
->getLocation(),
19115 diag::note_overridden_virtual_function
);
19116 for (OverridingMethods::overriding_iterator
19117 OM
= SO
->second
.begin(),
19118 OMEnd
= SO
->second
.end();
19120 Diag(OM
->Method
->getLocation(), diag::note_final_overrider
)
19121 << (const NamedDecl
*)M
->first
<< OM
->Method
->getParent();
19123 Record
->setInvalidDecl();
19126 CXXRecord
->completeDefinition(&FinalOverriders
);
19130 ComputeSelectedDestructor(*this, CXXRecord
);
19131 ComputeSpecialMemberFunctionsEligiblity(*this, CXXRecord
);
19136 Record
->completeDefinition();
19138 // Handle attributes before checking the layout.
19139 ProcessDeclAttributeList(S
, Record
, Attrs
);
19141 // Check to see if a FieldDecl is a pointer to a function.
19142 auto IsFunctionPointerOrForwardDecl
= [&](const Decl
*D
) {
19143 const FieldDecl
*FD
= dyn_cast
<FieldDecl
>(D
);
19145 // Check whether this is a forward declaration that was inserted by
19146 // Clang. This happens when a non-forward declared / defined type is
19150 // struct bar *(*f)();
19151 // struct bar *(*g)();
19154 // "struct bar" shows up in the decl AST as a "RecordDecl" with an
19155 // incomplete definition.
19156 if (const auto *TD
= dyn_cast
<TagDecl
>(D
))
19157 return !TD
->isCompleteDefinition();
19160 QualType FieldType
= FD
->getType().getDesugaredType(Context
);
19161 if (isa
<PointerType
>(FieldType
)) {
19162 QualType PointeeType
= cast
<PointerType
>(FieldType
)->getPointeeType();
19163 return PointeeType
.getDesugaredType(Context
)->isFunctionType();
19168 // Maybe randomize the record's decls. We automatically randomize a record
19169 // of function pointers, unless it has the "no_randomize_layout" attribute.
19170 if (!getLangOpts().CPlusPlus
&&
19171 (Record
->hasAttr
<RandomizeLayoutAttr
>() ||
19172 (!Record
->hasAttr
<NoRandomizeLayoutAttr
>() &&
19173 llvm::all_of(Record
->decls(), IsFunctionPointerOrForwardDecl
))) &&
19174 !Record
->isUnion() && !getLangOpts().RandstructSeed
.empty() &&
19175 !Record
->isRandomized()) {
19176 SmallVector
<Decl
*, 32> NewDeclOrdering
;
19177 if (randstruct::randomizeStructureLayout(Context
, Record
,
19179 Record
->reorderDecls(NewDeclOrdering
);
19182 // We may have deferred checking for a deleted destructor. Check now.
19184 auto *Dtor
= CXXRecord
->getDestructor();
19185 if (Dtor
&& Dtor
->isImplicit() &&
19186 ShouldDeleteSpecialMember(Dtor
, CXXDestructor
)) {
19187 CXXRecord
->setImplicitDestructorIsDeleted();
19188 SetDeclDeleted(Dtor
, CXXRecord
->getLocation());
19192 if (Record
->hasAttrs()) {
19193 CheckAlignasUnderalignment(Record
);
19195 if (const MSInheritanceAttr
*IA
= Record
->getAttr
<MSInheritanceAttr
>())
19196 checkMSInheritanceAttrOnDefinition(cast
<CXXRecordDecl
>(Record
),
19197 IA
->getRange(), IA
->getBestCase(),
19198 IA
->getInheritanceModel());
19201 // Check if the structure/union declaration is a type that can have zero
19202 // size in C. For C this is a language extension, for C++ it may cause
19203 // compatibility problems.
19204 bool CheckForZeroSize
;
19205 if (!getLangOpts().CPlusPlus
) {
19206 CheckForZeroSize
= true;
19208 // For C++ filter out types that cannot be referenced in C code.
19209 CXXRecordDecl
*CXXRecord
= cast
<CXXRecordDecl
>(Record
);
19211 CXXRecord
->getLexicalDeclContext()->isExternCContext() &&
19212 !CXXRecord
->isDependentType() && !inTemplateInstantiation() &&
19213 CXXRecord
->isCLike();
19215 if (CheckForZeroSize
) {
19216 bool ZeroSize
= true;
19217 bool IsEmpty
= true;
19218 unsigned NonBitFields
= 0;
19219 for (RecordDecl::field_iterator I
= Record
->field_begin(),
19220 E
= Record
->field_end();
19221 (NonBitFields
== 0 || ZeroSize
) && I
!= E
; ++I
) {
19223 if (I
->isUnnamedBitfield()) {
19224 if (!I
->isZeroLengthBitField(Context
))
19228 QualType FieldType
= I
->getType();
19229 if (FieldType
->isIncompleteType() ||
19230 !Context
.getTypeSizeInChars(FieldType
).isZero())
19235 // Empty structs are an extension in C (C99 6.7.2.1p7). They are
19236 // allowed in C++, but warn if its declaration is inside
19237 // extern "C" block.
19239 Diag(RecLoc
, getLangOpts().CPlusPlus
?
19240 diag::warn_zero_size_struct_union_in_extern_c
:
19241 diag::warn_zero_size_struct_union_compat
)
19242 << IsEmpty
<< Record
->isUnion() << (NonBitFields
> 1);
19245 // Structs without named members are extension in C (C99 6.7.2.1p7),
19246 // but are accepted by GCC.
19247 if (NonBitFields
== 0 && !getLangOpts().CPlusPlus
) {
19248 Diag(RecLoc
, IsEmpty
? diag::ext_empty_struct_union
:
19249 diag::ext_no_named_members_in_struct_union
)
19250 << Record
->isUnion();
19254 ObjCIvarDecl
**ClsFields
=
19255 reinterpret_cast<ObjCIvarDecl
**>(RecFields
.data());
19256 if (ObjCInterfaceDecl
*ID
= dyn_cast
<ObjCInterfaceDecl
>(EnclosingDecl
)) {
19257 ID
->setEndOfDefinitionLoc(RBrac
);
19258 // Add ivar's to class's DeclContext.
19259 for (unsigned i
= 0, e
= RecFields
.size(); i
!= e
; ++i
) {
19260 ClsFields
[i
]->setLexicalDeclContext(ID
);
19261 ID
->addDecl(ClsFields
[i
]);
19263 // Must enforce the rule that ivars in the base classes may not be
19265 if (ID
->getSuperClass())
19266 DiagnoseDuplicateIvars(ID
, ID
->getSuperClass());
19267 } else if (ObjCImplementationDecl
*IMPDecl
=
19268 dyn_cast
<ObjCImplementationDecl
>(EnclosingDecl
)) {
19269 assert(IMPDecl
&& "ActOnFields - missing ObjCImplementationDecl");
19270 for (unsigned I
= 0, N
= RecFields
.size(); I
!= N
; ++I
)
19271 // Ivar declared in @implementation never belongs to the implementation.
19272 // Only it is in implementation's lexical context.
19273 ClsFields
[I
]->setLexicalDeclContext(IMPDecl
);
19274 CheckImplementationIvars(IMPDecl
, ClsFields
, RecFields
.size(), RBrac
);
19275 IMPDecl
->setIvarLBraceLoc(LBrac
);
19276 IMPDecl
->setIvarRBraceLoc(RBrac
);
19277 } else if (ObjCCategoryDecl
*CDecl
=
19278 dyn_cast
<ObjCCategoryDecl
>(EnclosingDecl
)) {
19279 // case of ivars in class extension; all other cases have been
19280 // reported as errors elsewhere.
19281 // FIXME. Class extension does not have a LocEnd field.
19282 // CDecl->setLocEnd(RBrac);
19283 // Add ivar's to class extension's DeclContext.
19284 // Diagnose redeclaration of private ivars.
19285 ObjCInterfaceDecl
*IDecl
= CDecl
->getClassInterface();
19286 for (unsigned i
= 0, e
= RecFields
.size(); i
!= e
; ++i
) {
19288 if (const ObjCIvarDecl
*ClsIvar
=
19289 IDecl
->getIvarDecl(ClsFields
[i
]->getIdentifier())) {
19290 Diag(ClsFields
[i
]->getLocation(),
19291 diag::err_duplicate_ivar_declaration
);
19292 Diag(ClsIvar
->getLocation(), diag::note_previous_definition
);
19295 for (const auto *Ext
: IDecl
->known_extensions()) {
19296 if (const ObjCIvarDecl
*ClsExtIvar
19297 = Ext
->getIvarDecl(ClsFields
[i
]->getIdentifier())) {
19298 Diag(ClsFields
[i
]->getLocation(),
19299 diag::err_duplicate_ivar_declaration
);
19300 Diag(ClsExtIvar
->getLocation(), diag::note_previous_definition
);
19305 ClsFields
[i
]->setLexicalDeclContext(CDecl
);
19306 CDecl
->addDecl(ClsFields
[i
]);
19308 CDecl
->setIvarLBraceLoc(LBrac
);
19309 CDecl
->setIvarRBraceLoc(RBrac
);
19314 /// Determine whether the given integral value is representable within
19315 /// the given type T.
19316 static bool isRepresentableIntegerValue(ASTContext
&Context
,
19317 llvm::APSInt
&Value
,
19319 assert((T
->isIntegralType(Context
) || T
->isEnumeralType()) &&
19320 "Integral type required!");
19321 unsigned BitWidth
= Context
.getIntWidth(T
);
19323 if (Value
.isUnsigned() || Value
.isNonNegative()) {
19324 if (T
->isSignedIntegerOrEnumerationType())
19326 return Value
.getActiveBits() <= BitWidth
;
19328 return Value
.getSignificantBits() <= BitWidth
;
19331 // Given an integral type, return the next larger integral type
19332 // (or a NULL type of no such type exists).
19333 static QualType
getNextLargerIntegralType(ASTContext
&Context
, QualType T
) {
19334 // FIXME: Int128/UInt128 support, which also needs to be introduced into
19335 // enum checking below.
19336 assert((T
->isIntegralType(Context
) ||
19337 T
->isEnumeralType()) && "Integral type required!");
19338 const unsigned NumTypes
= 4;
19339 QualType SignedIntegralTypes
[NumTypes
] = {
19340 Context
.ShortTy
, Context
.IntTy
, Context
.LongTy
, Context
.LongLongTy
19342 QualType UnsignedIntegralTypes
[NumTypes
] = {
19343 Context
.UnsignedShortTy
, Context
.UnsignedIntTy
, Context
.UnsignedLongTy
,
19344 Context
.UnsignedLongLongTy
19347 unsigned BitWidth
= Context
.getTypeSize(T
);
19348 QualType
*Types
= T
->isSignedIntegerOrEnumerationType()? SignedIntegralTypes
19349 : UnsignedIntegralTypes
;
19350 for (unsigned I
= 0; I
!= NumTypes
; ++I
)
19351 if (Context
.getTypeSize(Types
[I
]) > BitWidth
)
19357 EnumConstantDecl
*Sema::CheckEnumConstant(EnumDecl
*Enum
,
19358 EnumConstantDecl
*LastEnumConst
,
19359 SourceLocation IdLoc
,
19360 IdentifierInfo
*Id
,
19362 unsigned IntWidth
= Context
.getTargetInfo().getIntWidth();
19363 llvm::APSInt
EnumVal(IntWidth
);
19366 if (Val
&& DiagnoseUnexpandedParameterPack(Val
, UPPC_EnumeratorValue
))
19370 Val
= DefaultLvalueConversion(Val
).get();
19373 if (Enum
->isDependentType() || Val
->isTypeDependent() ||
19374 Val
->containsErrors())
19375 EltTy
= Context
.DependentTy
;
19377 // FIXME: We don't allow folding in C++11 mode for an enum with a fixed
19378 // underlying type, but do allow it in all other contexts.
19379 if (getLangOpts().CPlusPlus11
&& Enum
->isFixed()) {
19380 // C++11 [dcl.enum]p5: If the underlying type is fixed, [...] the
19381 // constant-expression in the enumerator-definition shall be a converted
19382 // constant expression of the underlying type.
19383 EltTy
= Enum
->getIntegerType();
19384 ExprResult Converted
=
19385 CheckConvertedConstantExpression(Val
, EltTy
, EnumVal
,
19387 if (Converted
.isInvalid())
19390 Val
= Converted
.get();
19391 } else if (!Val
->isValueDependent() &&
19393 VerifyIntegerConstantExpression(Val
, &EnumVal
, AllowFold
)
19395 // C99 6.7.2.2p2: Make sure we have an integer constant expression.
19397 if (Enum
->isComplete()) {
19398 EltTy
= Enum
->getIntegerType();
19400 // In Obj-C and Microsoft mode, require the enumeration value to be
19401 // representable in the underlying type of the enumeration. In C++11,
19402 // we perform a non-narrowing conversion as part of converted constant
19403 // expression checking.
19404 if (!isRepresentableIntegerValue(Context
, EnumVal
, EltTy
)) {
19405 if (Context
.getTargetInfo()
19407 .isWindowsMSVCEnvironment()) {
19408 Diag(IdLoc
, diag::ext_enumerator_too_large
) << EltTy
;
19410 Diag(IdLoc
, diag::err_enumerator_too_large
) << EltTy
;
19414 // Cast to the underlying type.
19415 Val
= ImpCastExprToType(Val
, EltTy
,
19416 EltTy
->isBooleanType() ? CK_IntegralToBoolean
19419 } else if (getLangOpts().CPlusPlus
) {
19420 // C++11 [dcl.enum]p5:
19421 // If the underlying type is not fixed, the type of each enumerator
19422 // is the type of its initializing value:
19423 // - If an initializer is specified for an enumerator, the
19424 // initializing value has the same type as the expression.
19425 EltTy
= Val
->getType();
19428 // The expression that defines the value of an enumeration constant
19429 // shall be an integer constant expression that has a value
19430 // representable as an int.
19432 // Complain if the value is not representable in an int.
19433 if (!isRepresentableIntegerValue(Context
, EnumVal
, Context
.IntTy
))
19434 Diag(IdLoc
, diag::ext_enum_value_not_int
)
19435 << toString(EnumVal
, 10) << Val
->getSourceRange()
19436 << (EnumVal
.isUnsigned() || EnumVal
.isNonNegative());
19437 else if (!Context
.hasSameType(Val
->getType(), Context
.IntTy
)) {
19438 // Force the type of the expression to 'int'.
19439 Val
= ImpCastExprToType(Val
, Context
.IntTy
, CK_IntegralCast
).get();
19441 EltTy
= Val
->getType();
19448 if (Enum
->isDependentType())
19449 EltTy
= Context
.DependentTy
;
19450 else if (!LastEnumConst
) {
19451 // C++0x [dcl.enum]p5:
19452 // If the underlying type is not fixed, the type of each enumerator
19453 // is the type of its initializing value:
19454 // - If no initializer is specified for the first enumerator, the
19455 // initializing value has an unspecified integral type.
19457 // GCC uses 'int' for its unspecified integral type, as does
19459 if (Enum
->isFixed()) {
19460 EltTy
= Enum
->getIntegerType();
19463 EltTy
= Context
.IntTy
;
19466 // Assign the last value + 1.
19467 EnumVal
= LastEnumConst
->getInitVal();
19469 EltTy
= LastEnumConst
->getType();
19471 // Check for overflow on increment.
19472 if (EnumVal
< LastEnumConst
->getInitVal()) {
19473 // C++0x [dcl.enum]p5:
19474 // If the underlying type is not fixed, the type of each enumerator
19475 // is the type of its initializing value:
19477 // - Otherwise the type of the initializing value is the same as
19478 // the type of the initializing value of the preceding enumerator
19479 // unless the incremented value is not representable in that type,
19480 // in which case the type is an unspecified integral type
19481 // sufficient to contain the incremented value. If no such type
19482 // exists, the program is ill-formed.
19483 QualType T
= getNextLargerIntegralType(Context
, EltTy
);
19484 if (T
.isNull() || Enum
->isFixed()) {
19485 // There is no integral type larger enough to represent this
19486 // value. Complain, then allow the value to wrap around.
19487 EnumVal
= LastEnumConst
->getInitVal();
19488 EnumVal
= EnumVal
.zext(EnumVal
.getBitWidth() * 2);
19490 if (Enum
->isFixed())
19491 // When the underlying type is fixed, this is ill-formed.
19492 Diag(IdLoc
, diag::err_enumerator_wrapped
)
19493 << toString(EnumVal
, 10)
19496 Diag(IdLoc
, diag::ext_enumerator_increment_too_large
)
19497 << toString(EnumVal
, 10);
19502 // Retrieve the last enumerator's value, extent that type to the
19503 // type that is supposed to be large enough to represent the incremented
19504 // value, then increment.
19505 EnumVal
= LastEnumConst
->getInitVal();
19506 EnumVal
.setIsSigned(EltTy
->isSignedIntegerOrEnumerationType());
19507 EnumVal
= EnumVal
.zextOrTrunc(Context
.getIntWidth(EltTy
));
19510 // If we're not in C++, diagnose the overflow of enumerator values,
19511 // which in C99 means that the enumerator value is not representable in
19512 // an int (C99 6.7.2.2p2). However, we support GCC's extension that
19513 // permits enumerator values that are representable in some larger
19515 if (!getLangOpts().CPlusPlus
&& !T
.isNull())
19516 Diag(IdLoc
, diag::warn_enum_value_overflow
);
19517 } else if (!getLangOpts().CPlusPlus
&&
19518 !EltTy
->isDependentType() &&
19519 !isRepresentableIntegerValue(Context
, EnumVal
, EltTy
)) {
19520 // Enforce C99 6.7.2.2p2 even when we compute the next value.
19521 Diag(IdLoc
, diag::ext_enum_value_not_int
)
19522 << toString(EnumVal
, 10) << 1;
19527 if (!EltTy
->isDependentType()) {
19528 // Make the enumerator value match the signedness and size of the
19529 // enumerator's type.
19530 EnumVal
= EnumVal
.extOrTrunc(Context
.getIntWidth(EltTy
));
19531 EnumVal
.setIsSigned(EltTy
->isSignedIntegerOrEnumerationType());
19534 return EnumConstantDecl::Create(Context
, Enum
, IdLoc
, Id
, EltTy
,
19538 Sema::SkipBodyInfo
Sema::shouldSkipAnonEnumBody(Scope
*S
, IdentifierInfo
*II
,
19539 SourceLocation IILoc
) {
19540 if (!(getLangOpts().Modules
|| getLangOpts().ModulesLocalVisibility
) ||
19541 !getLangOpts().CPlusPlus
)
19542 return SkipBodyInfo();
19544 // We have an anonymous enum definition. Look up the first enumerator to
19545 // determine if we should merge the definition with an existing one and
19547 NamedDecl
*PrevDecl
= LookupSingleName(S
, II
, IILoc
, LookupOrdinaryName
,
19548 forRedeclarationInCurContext());
19549 auto *PrevECD
= dyn_cast_or_null
<EnumConstantDecl
>(PrevDecl
);
19551 return SkipBodyInfo();
19553 EnumDecl
*PrevED
= cast
<EnumDecl
>(PrevECD
->getDeclContext());
19555 if (!PrevED
->getDeclName() && !hasVisibleDefinition(PrevED
, &Hidden
)) {
19557 Skip
.Previous
= Hidden
;
19561 return SkipBodyInfo();
19564 Decl
*Sema::ActOnEnumConstant(Scope
*S
, Decl
*theEnumDecl
, Decl
*lastEnumConst
,
19565 SourceLocation IdLoc
, IdentifierInfo
*Id
,
19566 const ParsedAttributesView
&Attrs
,
19567 SourceLocation EqualLoc
, Expr
*Val
) {
19568 EnumDecl
*TheEnumDecl
= cast
<EnumDecl
>(theEnumDecl
);
19569 EnumConstantDecl
*LastEnumConst
=
19570 cast_or_null
<EnumConstantDecl
>(lastEnumConst
);
19572 // The scope passed in may not be a decl scope. Zip up the scope tree until
19573 // we find one that is.
19574 S
= getNonFieldDeclScope(S
);
19576 // Verify that there isn't already something declared with this name in this
19578 LookupResult
R(*this, Id
, IdLoc
, LookupOrdinaryName
, ForVisibleRedeclaration
);
19580 NamedDecl
*PrevDecl
= R
.getAsSingle
<NamedDecl
>();
19582 if (PrevDecl
&& PrevDecl
->isTemplateParameter()) {
19583 // Maybe we will complain about the shadowed template parameter.
19584 DiagnoseTemplateParameterShadow(IdLoc
, PrevDecl
);
19585 // Just pretend that we didn't see the previous declaration.
19586 PrevDecl
= nullptr;
19589 // C++ [class.mem]p15:
19590 // If T is the name of a class, then each of the following shall have a name
19591 // different from T:
19592 // - every enumerator of every member of class T that is an unscoped
19594 if (getLangOpts().CPlusPlus
&& !TheEnumDecl
->isScoped())
19595 DiagnoseClassNameShadow(TheEnumDecl
->getDeclContext(),
19596 DeclarationNameInfo(Id
, IdLoc
));
19598 EnumConstantDecl
*New
=
19599 CheckEnumConstant(TheEnumDecl
, LastEnumConst
, IdLoc
, Id
, Val
);
19604 if (!TheEnumDecl
->isScoped() && isa
<ValueDecl
>(PrevDecl
)) {
19605 // Check for other kinds of shadowing not already handled.
19606 CheckShadow(New
, PrevDecl
, R
);
19609 // When in C++, we may get a TagDecl with the same name; in this case the
19610 // enum constant will 'hide' the tag.
19611 assert((getLangOpts().CPlusPlus
|| !isa
<TagDecl
>(PrevDecl
)) &&
19612 "Received TagDecl when not in C++!");
19613 if (!isa
<TagDecl
>(PrevDecl
) && isDeclInScope(PrevDecl
, CurContext
, S
)) {
19614 if (isa
<EnumConstantDecl
>(PrevDecl
))
19615 Diag(IdLoc
, diag::err_redefinition_of_enumerator
) << Id
;
19617 Diag(IdLoc
, diag::err_redefinition
) << Id
;
19618 notePreviousDefinition(PrevDecl
, IdLoc
);
19623 // Process attributes.
19624 ProcessDeclAttributeList(S
, New
, Attrs
);
19625 AddPragmaAttributes(S
, New
);
19627 // Register this decl in the current scope stack.
19628 New
->setAccess(TheEnumDecl
->getAccess());
19629 PushOnScopeChains(New
, S
);
19631 ActOnDocumentableDecl(New
);
19636 // Returns true when the enum initial expression does not trigger the
19637 // duplicate enum warning. A few common cases are exempted as follows:
19638 // Element2 = Element1
19639 // Element2 = Element1 + 1
19640 // Element2 = Element1 - 1
19641 // Where Element2 and Element1 are from the same enum.
19642 static bool ValidDuplicateEnum(EnumConstantDecl
*ECD
, EnumDecl
*Enum
) {
19643 Expr
*InitExpr
= ECD
->getInitExpr();
19646 InitExpr
= InitExpr
->IgnoreImpCasts();
19648 if (BinaryOperator
*BO
= dyn_cast
<BinaryOperator
>(InitExpr
)) {
19649 if (!BO
->isAdditiveOp())
19651 IntegerLiteral
*IL
= dyn_cast
<IntegerLiteral
>(BO
->getRHS());
19654 if (IL
->getValue() != 1)
19657 InitExpr
= BO
->getLHS();
19660 // This checks if the elements are from the same enum.
19661 DeclRefExpr
*DRE
= dyn_cast
<DeclRefExpr
>(InitExpr
);
19665 EnumConstantDecl
*EnumConstant
= dyn_cast
<EnumConstantDecl
>(DRE
->getDecl());
19669 if (cast
<EnumDecl
>(TagDecl::castFromDeclContext(ECD
->getDeclContext())) !=
19676 // Emits a warning when an element is implicitly set a value that
19677 // a previous element has already been set to.
19678 static void CheckForDuplicateEnumValues(Sema
&S
, ArrayRef
<Decl
*> Elements
,
19679 EnumDecl
*Enum
, QualType EnumType
) {
19680 // Avoid anonymous enums
19681 if (!Enum
->getIdentifier())
19684 // Only check for small enums.
19685 if (Enum
->getNumPositiveBits() > 63 || Enum
->getNumNegativeBits() > 64)
19688 if (S
.Diags
.isIgnored(diag::warn_duplicate_enum_values
, Enum
->getLocation()))
19691 typedef SmallVector
<EnumConstantDecl
*, 3> ECDVector
;
19692 typedef SmallVector
<std::unique_ptr
<ECDVector
>, 3> DuplicatesVector
;
19694 typedef llvm::PointerUnion
<EnumConstantDecl
*, ECDVector
*> DeclOrVector
;
19696 // DenseMaps cannot contain the all ones int64_t value, so use unordered_map.
19697 typedef std::unordered_map
<int64_t, DeclOrVector
> ValueToVectorMap
;
19699 // Use int64_t as a key to avoid needing special handling for map keys.
19700 auto EnumConstantToKey
= [](const EnumConstantDecl
*D
) {
19701 llvm::APSInt Val
= D
->getInitVal();
19702 return Val
.isSigned() ? Val
.getSExtValue() : Val
.getZExtValue();
19705 DuplicatesVector DupVector
;
19706 ValueToVectorMap EnumMap
;
19708 // Populate the EnumMap with all values represented by enum constants without
19710 for (auto *Element
: Elements
) {
19711 EnumConstantDecl
*ECD
= cast_or_null
<EnumConstantDecl
>(Element
);
19713 // Null EnumConstantDecl means a previous diagnostic has been emitted for
19714 // this constant. Skip this enum since it may be ill-formed.
19719 // Constants with initializers are handled in the next loop.
19720 if (ECD
->getInitExpr())
19723 // Duplicate values are handled in the next loop.
19724 EnumMap
.insert({EnumConstantToKey(ECD
), ECD
});
19727 if (EnumMap
.size() == 0)
19730 // Create vectors for any values that has duplicates.
19731 for (auto *Element
: Elements
) {
19732 // The last loop returned if any constant was null.
19733 EnumConstantDecl
*ECD
= cast
<EnumConstantDecl
>(Element
);
19734 if (!ValidDuplicateEnum(ECD
, Enum
))
19737 auto Iter
= EnumMap
.find(EnumConstantToKey(ECD
));
19738 if (Iter
== EnumMap
.end())
19741 DeclOrVector
& Entry
= Iter
->second
;
19742 if (EnumConstantDecl
*D
= Entry
.dyn_cast
<EnumConstantDecl
*>()) {
19743 // Ensure constants are different.
19747 // Create new vector and push values onto it.
19748 auto Vec
= std::make_unique
<ECDVector
>();
19750 Vec
->push_back(ECD
);
19752 // Update entry to point to the duplicates vector.
19755 // Store the vector somewhere we can consult later for quick emission of
19757 DupVector
.emplace_back(std::move(Vec
));
19761 ECDVector
*Vec
= Entry
.get
<ECDVector
*>();
19762 // Make sure constants are not added more than once.
19763 if (*Vec
->begin() == ECD
)
19766 Vec
->push_back(ECD
);
19769 // Emit diagnostics.
19770 for (const auto &Vec
: DupVector
) {
19771 assert(Vec
->size() > 1 && "ECDVector should have at least 2 elements.");
19773 // Emit warning for one enum constant.
19774 auto *FirstECD
= Vec
->front();
19775 S
.Diag(FirstECD
->getLocation(), diag::warn_duplicate_enum_values
)
19776 << FirstECD
<< toString(FirstECD
->getInitVal(), 10)
19777 << FirstECD
->getSourceRange();
19779 // Emit one note for each of the remaining enum constants with
19781 for (auto *ECD
: llvm::drop_begin(*Vec
))
19782 S
.Diag(ECD
->getLocation(), diag::note_duplicate_element
)
19783 << ECD
<< toString(ECD
->getInitVal(), 10)
19784 << ECD
->getSourceRange();
19788 bool Sema::IsValueInFlagEnum(const EnumDecl
*ED
, const llvm::APInt
&Val
,
19789 bool AllowMask
) const {
19790 assert(ED
->isClosedFlag() && "looking for value in non-flag or open enum");
19791 assert(ED
->isCompleteDefinition() && "expected enum definition");
19793 auto R
= FlagBitsCache
.insert(std::make_pair(ED
, llvm::APInt()));
19794 llvm::APInt
&FlagBits
= R
.first
->second
;
19797 for (auto *E
: ED
->enumerators()) {
19798 const auto &EVal
= E
->getInitVal();
19799 // Only single-bit enumerators introduce new flag values.
19800 if (EVal
.isPowerOf2())
19801 FlagBits
= FlagBits
.zext(EVal
.getBitWidth()) | EVal
;
19805 // A value is in a flag enum if either its bits are a subset of the enum's
19806 // flag bits (the first condition) or we are allowing masks and the same is
19807 // true of its complement (the second condition). When masks are allowed, we
19808 // allow the common idiom of ~(enum1 | enum2) to be a valid enum value.
19810 // While it's true that any value could be used as a mask, the assumption is
19811 // that a mask will have all of the insignificant bits set. Anything else is
19812 // likely a logic error.
19813 llvm::APInt FlagMask
= ~FlagBits
.zextOrTrunc(Val
.getBitWidth());
19814 return !(FlagMask
& Val
) || (AllowMask
&& !(FlagMask
& ~Val
));
19817 void Sema::ActOnEnumBody(SourceLocation EnumLoc
, SourceRange BraceRange
,
19818 Decl
*EnumDeclX
, ArrayRef
<Decl
*> Elements
, Scope
*S
,
19819 const ParsedAttributesView
&Attrs
) {
19820 EnumDecl
*Enum
= cast
<EnumDecl
>(EnumDeclX
);
19821 QualType EnumType
= Context
.getTypeDeclType(Enum
);
19823 ProcessDeclAttributeList(S
, Enum
, Attrs
);
19825 if (Enum
->isDependentType()) {
19826 for (unsigned i
= 0, e
= Elements
.size(); i
!= e
; ++i
) {
19827 EnumConstantDecl
*ECD
=
19828 cast_or_null
<EnumConstantDecl
>(Elements
[i
]);
19829 if (!ECD
) continue;
19831 ECD
->setType(EnumType
);
19834 Enum
->completeDefinition(Context
.DependentTy
, Context
.DependentTy
, 0, 0);
19838 // TODO: If the result value doesn't fit in an int, it must be a long or long
19839 // long value. ISO C does not support this, but GCC does as an extension,
19841 unsigned IntWidth
= Context
.getTargetInfo().getIntWidth();
19842 unsigned CharWidth
= Context
.getTargetInfo().getCharWidth();
19843 unsigned ShortWidth
= Context
.getTargetInfo().getShortWidth();
19845 // Verify that all the values are okay, compute the size of the values, and
19846 // reverse the list.
19847 unsigned NumNegativeBits
= 0;
19848 unsigned NumPositiveBits
= 0;
19850 for (unsigned i
= 0, e
= Elements
.size(); i
!= e
; ++i
) {
19851 EnumConstantDecl
*ECD
=
19852 cast_or_null
<EnumConstantDecl
>(Elements
[i
]);
19853 if (!ECD
) continue; // Already issued a diagnostic.
19855 const llvm::APSInt
&InitVal
= ECD
->getInitVal();
19857 // Keep track of the size of positive and negative values.
19858 if (InitVal
.isUnsigned() || InitVal
.isNonNegative()) {
19859 // If the enumerator is zero that should still be counted as a positive
19860 // bit since we need a bit to store the value zero.
19861 unsigned ActiveBits
= InitVal
.getActiveBits();
19862 NumPositiveBits
= std::max({NumPositiveBits
, ActiveBits
, 1u});
19865 std::max(NumNegativeBits
, (unsigned)InitVal
.getSignificantBits());
19869 // If we have an empty set of enumerators we still need one bit.
19870 // From [dcl.enum]p8
19871 // If the enumerator-list is empty, the values of the enumeration are as if
19872 // the enumeration had a single enumerator with value 0
19873 if (!NumPositiveBits
&& !NumNegativeBits
)
19874 NumPositiveBits
= 1;
19876 // Figure out the type that should be used for this enum.
19878 unsigned BestWidth
;
19880 // C++0x N3000 [conv.prom]p3:
19881 // An rvalue of an unscoped enumeration type whose underlying
19882 // type is not fixed can be converted to an rvalue of the first
19883 // of the following types that can represent all the values of
19884 // the enumeration: int, unsigned int, long int, unsigned long
19885 // int, long long int, or unsigned long long int.
19887 // An identifier declared as an enumeration constant has type int.
19888 // The C99 rule is modified by a gcc extension
19889 QualType BestPromotionType
;
19891 bool Packed
= Enum
->hasAttr
<PackedAttr
>();
19892 // -fshort-enums is the equivalent to specifying the packed attribute on all
19893 // enum definitions.
19894 if (LangOpts
.ShortEnums
)
19897 // If the enum already has a type because it is fixed or dictated by the
19898 // target, promote that type instead of analyzing the enumerators.
19899 if (Enum
->isComplete()) {
19900 BestType
= Enum
->getIntegerType();
19901 if (Context
.isPromotableIntegerType(BestType
))
19902 BestPromotionType
= Context
.getPromotedIntegerType(BestType
);
19904 BestPromotionType
= BestType
;
19906 BestWidth
= Context
.getIntWidth(BestType
);
19908 else if (NumNegativeBits
) {
19909 // If there is a negative value, figure out the smallest integer type (of
19910 // int/long/longlong) that fits.
19911 // If it's packed, check also if it fits a char or a short.
19912 if (Packed
&& NumNegativeBits
<= CharWidth
&& NumPositiveBits
< CharWidth
) {
19913 BestType
= Context
.SignedCharTy
;
19914 BestWidth
= CharWidth
;
19915 } else if (Packed
&& NumNegativeBits
<= ShortWidth
&&
19916 NumPositiveBits
< ShortWidth
) {
19917 BestType
= Context
.ShortTy
;
19918 BestWidth
= ShortWidth
;
19919 } else if (NumNegativeBits
<= IntWidth
&& NumPositiveBits
< IntWidth
) {
19920 BestType
= Context
.IntTy
;
19921 BestWidth
= IntWidth
;
19923 BestWidth
= Context
.getTargetInfo().getLongWidth();
19925 if (NumNegativeBits
<= BestWidth
&& NumPositiveBits
< BestWidth
) {
19926 BestType
= Context
.LongTy
;
19928 BestWidth
= Context
.getTargetInfo().getLongLongWidth();
19930 if (NumNegativeBits
> BestWidth
|| NumPositiveBits
>= BestWidth
)
19931 Diag(Enum
->getLocation(), diag::ext_enum_too_large
);
19932 BestType
= Context
.LongLongTy
;
19935 BestPromotionType
= (BestWidth
<= IntWidth
? Context
.IntTy
: BestType
);
19937 // If there is no negative value, figure out the smallest type that fits
19938 // all of the enumerator values.
19939 // If it's packed, check also if it fits a char or a short.
19940 if (Packed
&& NumPositiveBits
<= CharWidth
) {
19941 BestType
= Context
.UnsignedCharTy
;
19942 BestPromotionType
= Context
.IntTy
;
19943 BestWidth
= CharWidth
;
19944 } else if (Packed
&& NumPositiveBits
<= ShortWidth
) {
19945 BestType
= Context
.UnsignedShortTy
;
19946 BestPromotionType
= Context
.IntTy
;
19947 BestWidth
= ShortWidth
;
19948 } else if (NumPositiveBits
<= IntWidth
) {
19949 BestType
= Context
.UnsignedIntTy
;
19950 BestWidth
= IntWidth
;
19952 = (NumPositiveBits
== BestWidth
|| !getLangOpts().CPlusPlus
)
19953 ? Context
.UnsignedIntTy
: Context
.IntTy
;
19954 } else if (NumPositiveBits
<=
19955 (BestWidth
= Context
.getTargetInfo().getLongWidth())) {
19956 BestType
= Context
.UnsignedLongTy
;
19958 = (NumPositiveBits
== BestWidth
|| !getLangOpts().CPlusPlus
)
19959 ? Context
.UnsignedLongTy
: Context
.LongTy
;
19961 BestWidth
= Context
.getTargetInfo().getLongLongWidth();
19962 assert(NumPositiveBits
<= BestWidth
&&
19963 "How could an initializer get larger than ULL?");
19964 BestType
= Context
.UnsignedLongLongTy
;
19966 = (NumPositiveBits
== BestWidth
|| !getLangOpts().CPlusPlus
)
19967 ? Context
.UnsignedLongLongTy
: Context
.LongLongTy
;
19971 // Loop over all of the enumerator constants, changing their types to match
19972 // the type of the enum if needed.
19973 for (auto *D
: Elements
) {
19974 auto *ECD
= cast_or_null
<EnumConstantDecl
>(D
);
19975 if (!ECD
) continue; // Already issued a diagnostic.
19977 // Standard C says the enumerators have int type, but we allow, as an
19978 // extension, the enumerators to be larger than int size. If each
19979 // enumerator value fits in an int, type it as an int, otherwise type it the
19980 // same as the enumerator decl itself. This means that in "enum { X = 1U }"
19981 // that X has type 'int', not 'unsigned'.
19983 // Determine whether the value fits into an int.
19984 llvm::APSInt InitVal
= ECD
->getInitVal();
19986 // If it fits into an integer type, force it. Otherwise force it to match
19987 // the enum decl type.
19991 if (!getLangOpts().CPlusPlus
&&
19992 !Enum
->isFixed() &&
19993 isRepresentableIntegerValue(Context
, InitVal
, Context
.IntTy
)) {
19994 NewTy
= Context
.IntTy
;
19995 NewWidth
= IntWidth
;
19997 } else if (ECD
->getType() == BestType
) {
19998 // Already the right type!
19999 if (getLangOpts().CPlusPlus
)
20000 // C++ [dcl.enum]p4: Following the closing brace of an
20001 // enum-specifier, each enumerator has the type of its
20003 ECD
->setType(EnumType
);
20007 NewWidth
= BestWidth
;
20008 NewSign
= BestType
->isSignedIntegerOrEnumerationType();
20011 // Adjust the APSInt value.
20012 InitVal
= InitVal
.extOrTrunc(NewWidth
);
20013 InitVal
.setIsSigned(NewSign
);
20014 ECD
->setInitVal(InitVal
);
20016 // Adjust the Expr initializer and type.
20017 if (ECD
->getInitExpr() &&
20018 !Context
.hasSameType(NewTy
, ECD
->getInitExpr()->getType()))
20019 ECD
->setInitExpr(ImplicitCastExpr::Create(
20020 Context
, NewTy
, CK_IntegralCast
, ECD
->getInitExpr(),
20021 /*base paths*/ nullptr, VK_PRValue
, FPOptionsOverride()));
20022 if (getLangOpts().CPlusPlus
)
20023 // C++ [dcl.enum]p4: Following the closing brace of an
20024 // enum-specifier, each enumerator has the type of its
20026 ECD
->setType(EnumType
);
20028 ECD
->setType(NewTy
);
20031 Enum
->completeDefinition(BestType
, BestPromotionType
,
20032 NumPositiveBits
, NumNegativeBits
);
20034 CheckForDuplicateEnumValues(*this, Elements
, Enum
, EnumType
);
20036 if (Enum
->isClosedFlag()) {
20037 for (Decl
*D
: Elements
) {
20038 EnumConstantDecl
*ECD
= cast_or_null
<EnumConstantDecl
>(D
);
20039 if (!ECD
) continue; // Already issued a diagnostic.
20041 llvm::APSInt InitVal
= ECD
->getInitVal();
20042 if (InitVal
!= 0 && !InitVal
.isPowerOf2() &&
20043 !IsValueInFlagEnum(Enum
, InitVal
, true))
20044 Diag(ECD
->getLocation(), diag::warn_flag_enum_constant_out_of_range
)
20049 // Now that the enum type is defined, ensure it's not been underaligned.
20050 if (Enum
->hasAttrs())
20051 CheckAlignasUnderalignment(Enum
);
20054 Decl
*Sema::ActOnFileScopeAsmDecl(Expr
*expr
,
20055 SourceLocation StartLoc
,
20056 SourceLocation EndLoc
) {
20057 StringLiteral
*AsmString
= cast
<StringLiteral
>(expr
);
20059 FileScopeAsmDecl
*New
= FileScopeAsmDecl::Create(Context
, CurContext
,
20060 AsmString
, StartLoc
,
20062 CurContext
->addDecl(New
);
20066 Decl
*Sema::ActOnTopLevelStmtDecl(Stmt
*Statement
) {
20067 auto *New
= TopLevelStmtDecl::Create(Context
, Statement
);
20068 Context
.getTranslationUnitDecl()->addDecl(New
);
20072 void Sema::ActOnPragmaRedefineExtname(IdentifierInfo
* Name
,
20073 IdentifierInfo
* AliasName
,
20074 SourceLocation PragmaLoc
,
20075 SourceLocation NameLoc
,
20076 SourceLocation AliasNameLoc
) {
20077 NamedDecl
*PrevDecl
= LookupSingleName(TUScope
, Name
, NameLoc
,
20078 LookupOrdinaryName
);
20079 AttributeCommonInfo
Info(AliasName
, SourceRange(AliasNameLoc
),
20080 AttributeCommonInfo::Form::Pragma());
20081 AsmLabelAttr
*Attr
= AsmLabelAttr::CreateImplicit(
20082 Context
, AliasName
->getName(), /*IsLiteralLabel=*/true, Info
);
20084 // If a declaration that:
20085 // 1) declares a function or a variable
20086 // 2) has external linkage
20087 // already exists, add a label attribute to it.
20088 if (PrevDecl
&& (isa
<FunctionDecl
>(PrevDecl
) || isa
<VarDecl
>(PrevDecl
))) {
20089 if (isDeclExternC(PrevDecl
))
20090 PrevDecl
->addAttr(Attr
);
20092 Diag(PrevDecl
->getLocation(), diag::warn_redefine_extname_not_applied
)
20093 << /*Variable*/(isa
<FunctionDecl
>(PrevDecl
) ? 0 : 1) << PrevDecl
;
20094 // Otherwise, add a label attribute to ExtnameUndeclaredIdentifiers.
20096 (void)ExtnameUndeclaredIdentifiers
.insert(std::make_pair(Name
, Attr
));
20099 void Sema::ActOnPragmaWeakID(IdentifierInfo
* Name
,
20100 SourceLocation PragmaLoc
,
20101 SourceLocation NameLoc
) {
20102 Decl
*PrevDecl
= LookupSingleName(TUScope
, Name
, NameLoc
, LookupOrdinaryName
);
20105 PrevDecl
->addAttr(WeakAttr::CreateImplicit(Context
, PragmaLoc
));
20107 (void)WeakUndeclaredIdentifiers
[Name
].insert(WeakInfo(nullptr, NameLoc
));
20111 void Sema::ActOnPragmaWeakAlias(IdentifierInfo
* Name
,
20112 IdentifierInfo
* AliasName
,
20113 SourceLocation PragmaLoc
,
20114 SourceLocation NameLoc
,
20115 SourceLocation AliasNameLoc
) {
20116 Decl
*PrevDecl
= LookupSingleName(TUScope
, AliasName
, AliasNameLoc
,
20117 LookupOrdinaryName
);
20118 WeakInfo W
= WeakInfo(Name
, NameLoc
);
20120 if (PrevDecl
&& (isa
<FunctionDecl
>(PrevDecl
) || isa
<VarDecl
>(PrevDecl
))) {
20121 if (!PrevDecl
->hasAttr
<AliasAttr
>())
20122 if (NamedDecl
*ND
= dyn_cast
<NamedDecl
>(PrevDecl
))
20123 DeclApplyPragmaWeak(TUScope
, ND
, W
);
20125 (void)WeakUndeclaredIdentifiers
[AliasName
].insert(W
);
20129 ObjCContainerDecl
*Sema::getObjCDeclContext() const {
20130 return (dyn_cast_or_null
<ObjCContainerDecl
>(CurContext
));
20133 Sema::FunctionEmissionStatus
Sema::getEmissionStatus(const FunctionDecl
*FD
,
20135 assert(FD
&& "Expected non-null FunctionDecl");
20137 // SYCL functions can be template, so we check if they have appropriate
20138 // attribute prior to checking if it is a template.
20139 if (LangOpts
.SYCLIsDevice
&& FD
->hasAttr
<SYCLKernelAttr
>())
20140 return FunctionEmissionStatus::Emitted
;
20142 // Templates are emitted when they're instantiated.
20143 if (FD
->isDependentContext())
20144 return FunctionEmissionStatus::TemplateDiscarded
;
20146 // Check whether this function is an externally visible definition.
20147 auto IsEmittedForExternalSymbol
= [this, FD
]() {
20148 // We have to check the GVA linkage of the function's *definition* -- if we
20149 // only have a declaration, we don't know whether or not the function will
20150 // be emitted, because (say) the definition could include "inline".
20151 const FunctionDecl
*Def
= FD
->getDefinition();
20153 return Def
&& !isDiscardableGVALinkage(
20154 getASTContext().GetGVALinkageForFunction(Def
));
20157 if (LangOpts
.OpenMPIsTargetDevice
) {
20158 // In OpenMP device mode we will not emit host only functions, or functions
20159 // we don't need due to their linkage.
20160 std::optional
<OMPDeclareTargetDeclAttr::DevTypeTy
> DevTy
=
20161 OMPDeclareTargetDeclAttr::getDeviceType(FD
->getCanonicalDecl());
20162 // DevTy may be changed later by
20163 // #pragma omp declare target to(*) device_type(*).
20164 // Therefore DevTy having no value does not imply host. The emission status
20165 // will be checked again at the end of compilation unit with Final = true.
20167 if (*DevTy
== OMPDeclareTargetDeclAttr::DT_Host
)
20168 return FunctionEmissionStatus::OMPDiscarded
;
20169 // If we have an explicit value for the device type, or we are in a target
20170 // declare context, we need to emit all extern and used symbols.
20171 if (isInOpenMPDeclareTargetContext() || DevTy
)
20172 if (IsEmittedForExternalSymbol())
20173 return FunctionEmissionStatus::Emitted
;
20174 // Device mode only emits what it must, if it wasn't tagged yet and needed,
20177 return FunctionEmissionStatus::OMPDiscarded
;
20178 } else if (LangOpts
.OpenMP
> 45) {
20179 // In OpenMP host compilation prior to 5.0 everything was an emitted host
20180 // function. In 5.0, no_host was introduced which might cause a function to
20182 std::optional
<OMPDeclareTargetDeclAttr::DevTypeTy
> DevTy
=
20183 OMPDeclareTargetDeclAttr::getDeviceType(FD
->getCanonicalDecl());
20185 if (*DevTy
== OMPDeclareTargetDeclAttr::DT_NoHost
)
20186 return FunctionEmissionStatus::OMPDiscarded
;
20189 if (Final
&& LangOpts
.OpenMP
&& !LangOpts
.CUDA
)
20190 return FunctionEmissionStatus::Emitted
;
20192 if (LangOpts
.CUDA
) {
20193 // When compiling for device, host functions are never emitted. Similarly,
20194 // when compiling for host, device and global functions are never emitted.
20195 // (Technically, we do emit a host-side stub for global functions, but this
20196 // doesn't count for our purposes here.)
20197 Sema::CUDAFunctionTarget T
= IdentifyCUDATarget(FD
);
20198 if (LangOpts
.CUDAIsDevice
&& T
== Sema::CFT_Host
)
20199 return FunctionEmissionStatus::CUDADiscarded
;
20200 if (!LangOpts
.CUDAIsDevice
&&
20201 (T
== Sema::CFT_Device
|| T
== Sema::CFT_Global
))
20202 return FunctionEmissionStatus::CUDADiscarded
;
20204 if (IsEmittedForExternalSymbol())
20205 return FunctionEmissionStatus::Emitted
;
20208 // Otherwise, the function is known-emitted if it's in our set of
20209 // known-emitted functions.
20210 return FunctionEmissionStatus::Unknown
;
20213 bool Sema::shouldIgnoreInHostDeviceCheck(FunctionDecl
*Callee
) {
20214 // Host-side references to a __global__ function refer to the stub, so the
20215 // function itself is never emitted and therefore should not be marked.
20216 // If we have host fn calls kernel fn calls host+device, the HD function
20217 // does not get instantiated on the host. We model this by omitting at the
20218 // call to the kernel from the callgraph. This ensures that, when compiling
20219 // for host, only HD functions actually called from the host get marked as
20221 return LangOpts
.CUDA
&& !LangOpts
.CUDAIsDevice
&&
20222 IdentifyCUDATarget(Callee
) == CFT_Global
;