1 //===- ICF.cpp ------------------------------------------------------------===//
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
7 //===----------------------------------------------------------------------===//
9 // ICF is short for Identical Code Folding. That is a size optimization to
10 // identify and merge two or more read-only sections (typically functions)
11 // that happened to have the same contents. It usually reduces output size
14 // On Windows, ICF is enabled by default.
16 // See ELF/ICF.cpp for the details about the algorithm.
18 //===----------------------------------------------------------------------===//
21 #include "COFFLinkerContext.h"
24 #include "lld/Common/ErrorHandler.h"
25 #include "lld/Common/Timer.h"
26 #include "llvm/ADT/Hashing.h"
27 #include "llvm/Support/Debug.h"
28 #include "llvm/Support/Parallel.h"
29 #include "llvm/Support/raw_ostream.h"
30 #include "llvm/Support/xxhash.h"
41 ICF(COFFLinkerContext
&c
) : ctx(c
){};
45 void segregate(size_t begin
, size_t end
, bool constant
);
47 bool assocEquals(const SectionChunk
*a
, const SectionChunk
*b
);
49 bool equalsConstant(const SectionChunk
*a
, const SectionChunk
*b
);
50 bool equalsVariable(const SectionChunk
*a
, const SectionChunk
*b
);
52 bool isEligible(SectionChunk
*c
);
54 size_t findBoundary(size_t begin
, size_t end
);
56 void forEachClassRange(size_t begin
, size_t end
,
57 std::function
<void(size_t, size_t)> fn
);
59 void forEachClass(std::function
<void(size_t, size_t)> fn
);
61 std::vector
<SectionChunk
*> chunks
;
63 std::atomic
<bool> repeat
= {false};
65 COFFLinkerContext
&ctx
;
68 // Returns true if section S is subject of ICF.
70 // Microsoft's documentation
71 // (https://msdn.microsoft.com/en-us/library/bxwfs976.aspx; visited April
72 // 2017) says that /opt:icf folds both functions and read-only data.
73 // Despite that, the MSVC linker folds only functions. We found
74 // a few instances of programs that are not safe for data merging.
75 // Therefore, we merge only functions just like the MSVC tool. However, we also
76 // merge read-only sections in a couple of cases where the address of the
77 // section is insignificant to the user program and the behaviour matches that
78 // of the Visual C++ linker.
79 bool ICF::isEligible(SectionChunk
*c
) {
80 // Non-comdat chunks, dead chunks, and writable chunks are not eligible.
81 bool writable
= c
->getOutputCharacteristics() & llvm::COFF::IMAGE_SCN_MEM_WRITE
;
82 if (!c
->isCOMDAT() || !c
->live
|| writable
)
85 // Under regular (not safe) ICF, all code sections are eligible.
86 if ((ctx
.config
.doICF
== ICFLevel::All
) &&
87 c
->getOutputCharacteristics() & llvm::COFF::IMAGE_SCN_MEM_EXECUTE
)
90 // .pdata and .xdata unwind info sections are eligible.
91 StringRef outSecName
= c
->getSectionName().split('$').first
;
92 if (outSecName
== ".pdata" || outSecName
== ".xdata")
96 if (c
->sym
&& c
->sym
->getName().starts_with("??_7"))
99 // Anything else not in an address-significance table is eligible.
100 return !c
->keepUnique
;
103 // Split an equivalence class into smaller classes.
104 void ICF::segregate(size_t begin
, size_t end
, bool constant
) {
105 while (begin
< end
) {
106 // Divide [Begin, End) into two. Let Mid be the start index of the
108 auto bound
= std::stable_partition(
109 chunks
.begin() + begin
+ 1, chunks
.begin() + end
, [&](SectionChunk
*s
) {
111 return equalsConstant(chunks
[begin
], s
);
112 return equalsVariable(chunks
[begin
], s
);
114 size_t mid
= bound
- chunks
.begin();
116 // Split [Begin, End) into [Begin, Mid) and [Mid, End). We use Mid as an
117 // equivalence class ID because every group ends with a unique index.
118 for (size_t i
= begin
; i
< mid
; ++i
)
119 chunks
[i
]->eqClass
[(cnt
+ 1) % 2] = mid
;
121 // If we created a group, we need to iterate the main loop again.
129 // Returns true if two sections' associative children are equal.
130 bool ICF::assocEquals(const SectionChunk
*a
, const SectionChunk
*b
) {
131 // Ignore associated metadata sections that don't participate in ICF, such as
132 // debug info and CFGuard metadata.
133 auto considerForICF
= [](const SectionChunk
&assoc
) {
134 StringRef Name
= assoc
.getSectionName();
135 return !(Name
.starts_with(".debug") || Name
== ".gfids$y" ||
136 Name
== ".giats$y" || Name
== ".gljmp$y");
138 auto ra
= make_filter_range(a
->children(), considerForICF
);
139 auto rb
= make_filter_range(b
->children(), considerForICF
);
140 return std::equal(ra
.begin(), ra
.end(), rb
.begin(), rb
.end(),
141 [&](const SectionChunk
&ia
, const SectionChunk
&ib
) {
142 return ia
.eqClass
[cnt
% 2] == ib
.eqClass
[cnt
% 2];
146 // Compare "non-moving" part of two sections, namely everything
147 // except relocation targets.
148 bool ICF::equalsConstant(const SectionChunk
*a
, const SectionChunk
*b
) {
149 if (a
->relocsSize
!= b
->relocsSize
)
152 // Compare relocations.
153 auto eq
= [&](const coff_relocation
&r1
, const coff_relocation
&r2
) {
154 if (r1
.Type
!= r2
.Type
||
155 r1
.VirtualAddress
!= r2
.VirtualAddress
) {
158 Symbol
*b1
= a
->file
->getSymbol(r1
.SymbolTableIndex
);
159 Symbol
*b2
= b
->file
->getSymbol(r2
.SymbolTableIndex
);
162 if (auto *d1
= dyn_cast
<DefinedRegular
>(b1
))
163 if (auto *d2
= dyn_cast
<DefinedRegular
>(b2
))
164 return d1
->getValue() == d2
->getValue() &&
165 d1
->getChunk()->eqClass
[cnt
% 2] == d2
->getChunk()->eqClass
[cnt
% 2];
168 if (!std::equal(a
->getRelocs().begin(), a
->getRelocs().end(),
169 b
->getRelocs().begin(), eq
))
172 // Compare section attributes and contents.
173 return a
->getOutputCharacteristics() == b
->getOutputCharacteristics() &&
174 a
->getSectionName() == b
->getSectionName() &&
175 a
->header
->SizeOfRawData
== b
->header
->SizeOfRawData
&&
176 a
->checksum
== b
->checksum
&& a
->getContents() == b
->getContents() &&
180 // Compare "moving" part of two sections, namely relocation targets.
181 bool ICF::equalsVariable(const SectionChunk
*a
, const SectionChunk
*b
) {
182 // Compare relocations.
183 auto eq
= [&](const coff_relocation
&r1
, const coff_relocation
&r2
) {
184 Symbol
*b1
= a
->file
->getSymbol(r1
.SymbolTableIndex
);
185 Symbol
*b2
= b
->file
->getSymbol(r2
.SymbolTableIndex
);
188 if (auto *d1
= dyn_cast
<DefinedRegular
>(b1
))
189 if (auto *d2
= dyn_cast
<DefinedRegular
>(b2
))
190 return d1
->getChunk()->eqClass
[cnt
% 2] == d2
->getChunk()->eqClass
[cnt
% 2];
193 return std::equal(a
->getRelocs().begin(), a
->getRelocs().end(),
194 b
->getRelocs().begin(), eq
) &&
198 // Find the first Chunk after Begin that has a different class from Begin.
199 size_t ICF::findBoundary(size_t begin
, size_t end
) {
200 for (size_t i
= begin
+ 1; i
< end
; ++i
)
201 if (chunks
[begin
]->eqClass
[cnt
% 2] != chunks
[i
]->eqClass
[cnt
% 2])
206 void ICF::forEachClassRange(size_t begin
, size_t end
,
207 std::function
<void(size_t, size_t)> fn
) {
208 while (begin
< end
) {
209 size_t mid
= findBoundary(begin
, end
);
215 // Call Fn on each class group.
216 void ICF::forEachClass(std::function
<void(size_t, size_t)> fn
) {
217 // If the number of sections are too small to use threading,
218 // call Fn sequentially.
219 if (chunks
.size() < 1024) {
220 forEachClassRange(0, chunks
.size(), fn
);
225 // Shard into non-overlapping intervals, and call Fn in parallel.
226 // The sharding must be completed before any calls to Fn are made
227 // so that Fn can modify the Chunks in its shard without causing data
229 const size_t numShards
= 256;
230 size_t step
= chunks
.size() / numShards
;
231 size_t boundaries
[numShards
+ 1];
233 boundaries
[numShards
] = chunks
.size();
234 parallelFor(1, numShards
, [&](size_t i
) {
235 boundaries
[i
] = findBoundary((i
- 1) * step
, chunks
.size());
237 parallelFor(1, numShards
+ 1, [&](size_t i
) {
238 if (boundaries
[i
- 1] < boundaries
[i
]) {
239 forEachClassRange(boundaries
[i
- 1], boundaries
[i
], fn
);
245 // Merge identical COMDAT sections.
246 // Two sections are considered the same if their section headers,
247 // contents and relocations are all the same.
249 ScopedTimer
t(ctx
.icfTimer
);
251 // Collect only mergeable sections and group by hash value.
253 for (Chunk
*c
: ctx
.symtab
.getChunks()) {
254 if (auto *sc
= dyn_cast
<SectionChunk
>(c
)) {
256 chunks
.push_back(sc
);
258 sc
->eqClass
[0] = nextId
++;
262 // Make sure that ICF doesn't merge sections that are being handled by string
264 for (MergeChunk
*mc
: ctx
.mergeChunkInstances
)
266 for (SectionChunk
*sc
: mc
->sections
)
267 sc
->eqClass
[0] = nextId
++;
269 // Initially, we use hash values to partition sections.
270 parallelForEach(chunks
, [&](SectionChunk
*sc
) {
271 sc
->eqClass
[0] = xxh3_64bits(sc
->getContents());
274 // Combine the hashes of the sections referenced by each section into its
276 for (unsigned cnt
= 0; cnt
!= 2; ++cnt
) {
277 parallelForEach(chunks
, [&](SectionChunk
*sc
) {
278 uint32_t hash
= sc
->eqClass
[cnt
% 2];
279 for (Symbol
*b
: sc
->symbols())
280 if (auto *sym
= dyn_cast_or_null
<DefinedRegular
>(b
))
281 hash
+= sym
->getChunk()->eqClass
[cnt
% 2];
282 // Set MSB to 1 to avoid collisions with non-hash classes.
283 sc
->eqClass
[(cnt
+ 1) % 2] = hash
| (1U << 31);
287 // From now on, sections in Chunks are ordered so that sections in
288 // the same group are consecutive in the vector.
289 llvm::stable_sort(chunks
, [](const SectionChunk
*a
, const SectionChunk
*b
) {
290 return a
->eqClass
[0] < b
->eqClass
[0];
293 // Compare static contents and assign unique IDs for each static content.
294 forEachClass([&](size_t begin
, size_t end
) { segregate(begin
, end
, true); });
296 // Split groups by comparing relocations until convergence is obtained.
300 [&](size_t begin
, size_t end
) { segregate(begin
, end
, false); });
303 log("ICF needed " + Twine(cnt
) + " iterations");
305 // Merge sections in the same classes.
306 forEachClass([&](size_t begin
, size_t end
) {
307 if (end
- begin
== 1)
310 log("Selected " + chunks
[begin
]->getDebugName());
311 for (size_t i
= begin
+ 1; i
< end
; ++i
) {
312 log(" Removed " + chunks
[i
]->getDebugName());
313 chunks
[begin
]->replace(chunks
[i
]);
318 // Entry point to ICF.
319 void doICF(COFFLinkerContext
&ctx
) { ICF(ctx
).run(); }
321 } // namespace lld::coff