[lld][WebAssembly] Add `--table-base` setting
[llvm-project.git] / lld / COFF / Symbols.h
blob750269fd0bbba741d61c7cae4f246e96aed7f74f
1 //===- Symbols.h ------------------------------------------------*- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
9 #ifndef LLD_COFF_SYMBOLS_H
10 #define LLD_COFF_SYMBOLS_H
12 #include "Chunks.h"
13 #include "Config.h"
14 #include "lld/Common/LLVM.h"
15 #include "lld/Common/Memory.h"
16 #include "llvm/ADT/ArrayRef.h"
17 #include "llvm/Object/Archive.h"
18 #include "llvm/Object/COFF.h"
19 #include <atomic>
20 #include <memory>
21 #include <vector>
23 namespace lld {
25 namespace coff {
27 using llvm::object::Archive;
28 using llvm::object::COFFSymbolRef;
29 using llvm::object::coff_import_header;
30 using llvm::object::coff_symbol_generic;
32 class ArchiveFile;
33 class COFFLinkerContext;
34 class InputFile;
35 class ObjFile;
36 class SymbolTable;
38 // The base class for real symbol classes.
39 class Symbol {
40 public:
41 enum Kind {
42 // The order of these is significant. We start with the regular defined
43 // symbols as those are the most prevalent and the zero tag is the cheapest
44 // to set. Among the defined kinds, the lower the kind is preferred over
45 // the higher kind when testing whether one symbol should take precedence
46 // over another.
47 DefinedRegularKind = 0,
48 DefinedCommonKind,
49 DefinedLocalImportKind,
50 DefinedImportThunkKind,
51 DefinedImportDataKind,
52 DefinedAbsoluteKind,
53 DefinedSyntheticKind,
55 UndefinedKind,
56 LazyArchiveKind,
57 LazyObjectKind,
58 LazyDLLSymbolKind,
60 LastDefinedCOFFKind = DefinedCommonKind,
61 LastDefinedKind = DefinedSyntheticKind,
64 Kind kind() const { return static_cast<Kind>(symbolKind); }
66 // Returns the symbol name.
67 StringRef getName() {
68 // COFF symbol names are read lazily for a performance reason.
69 // Non-external symbol names are never used by the linker except for logging
70 // or debugging. Their internal references are resolved not by name but by
71 // symbol index. And because they are not external, no one can refer them by
72 // name. Object files contain lots of non-external symbols, and creating
73 // StringRefs for them (which involves lots of strlen() on the string table)
74 // is a waste of time.
75 if (nameData == nullptr)
76 computeName();
77 return StringRef(nameData, nameSize);
80 void replaceKeepingName(Symbol *other, size_t size);
82 // Returns the file from which this symbol was created.
83 InputFile *getFile();
85 // Indicates that this symbol will be included in the final image. Only valid
86 // after calling markLive.
87 bool isLive() const;
89 bool isLazy() const {
90 return symbolKind == LazyArchiveKind || symbolKind == LazyObjectKind ||
91 symbolKind == LazyDLLSymbolKind;
94 private:
95 void computeName();
97 protected:
98 friend SymbolTable;
99 explicit Symbol(Kind k, StringRef n = "")
100 : symbolKind(k), isExternal(true), isCOMDAT(false),
101 writtenToSymtab(false), pendingArchiveLoad(false), isGCRoot(false),
102 isRuntimePseudoReloc(false), deferUndefined(false), canInline(true),
103 isWeak(false), nameSize(n.size()),
104 nameData(n.empty() ? nullptr : n.data()) {
105 assert((!n.empty() || k <= LastDefinedCOFFKind) &&
106 "If the name is empty, the Symbol must be a DefinedCOFF.");
109 const unsigned symbolKind : 8;
110 unsigned isExternal : 1;
112 public:
113 // This bit is used by the \c DefinedRegular subclass.
114 unsigned isCOMDAT : 1;
116 // This bit is used by Writer::createSymbolAndStringTable() to prevent
117 // symbols from being written to the symbol table more than once.
118 unsigned writtenToSymtab : 1;
120 // True if this symbol was referenced by a regular (non-bitcode) object.
121 unsigned isUsedInRegularObj : 1;
123 // True if we've seen both a lazy and an undefined symbol with this symbol
124 // name, which means that we have enqueued an archive member load and should
125 // not load any more archive members to resolve the same symbol.
126 unsigned pendingArchiveLoad : 1;
128 /// True if we've already added this symbol to the list of GC roots.
129 unsigned isGCRoot : 1;
131 unsigned isRuntimePseudoReloc : 1;
133 // True if we want to allow this symbol to be undefined in the early
134 // undefined check pass in SymbolTable::reportUnresolvable(), as it
135 // might be fixed up later.
136 unsigned deferUndefined : 1;
138 // False if LTO shouldn't inline whatever this symbol points to. If a symbol
139 // is overwritten after LTO, LTO shouldn't inline the symbol because it
140 // doesn't know the final contents of the symbol.
141 unsigned canInline : 1;
143 // True if the symbol is weak. This is only tracked for bitcode/LTO symbols.
144 // This information isn't written to the output; rather, it's used for
145 // managing weak symbol overrides.
146 unsigned isWeak : 1;
148 protected:
149 // Symbol name length. Assume symbol lengths fit in a 32-bit integer.
150 uint32_t nameSize;
152 const char *nameData;
155 // The base class for any defined symbols, including absolute symbols,
156 // etc.
157 class Defined : public Symbol {
158 public:
159 Defined(Kind k, StringRef n) : Symbol(k, n) {}
161 static bool classof(const Symbol *s) { return s->kind() <= LastDefinedKind; }
163 // Returns the RVA (relative virtual address) of this symbol. The
164 // writer sets and uses RVAs.
165 uint64_t getRVA();
167 // Returns the chunk containing this symbol. Absolute symbols and __ImageBase
168 // do not have chunks, so this may return null.
169 Chunk *getChunk();
172 // Symbols defined via a COFF object file or bitcode file. For COFF files, this
173 // stores a coff_symbol_generic*, and names of internal symbols are lazily
174 // loaded through that. For bitcode files, Sym is nullptr and the name is stored
175 // as a decomposed StringRef.
176 class DefinedCOFF : public Defined {
177 friend Symbol;
179 public:
180 DefinedCOFF(Kind k, InputFile *f, StringRef n, const coff_symbol_generic *s)
181 : Defined(k, n), file(f), sym(s) {}
183 static bool classof(const Symbol *s) {
184 return s->kind() <= LastDefinedCOFFKind;
187 InputFile *getFile() { return file; }
189 COFFSymbolRef getCOFFSymbol();
191 InputFile *file;
193 protected:
194 const coff_symbol_generic *sym;
197 // Regular defined symbols read from object file symbol tables.
198 class DefinedRegular : public DefinedCOFF {
199 public:
200 DefinedRegular(InputFile *f, StringRef n, bool isCOMDAT,
201 bool isExternal = false,
202 const coff_symbol_generic *s = nullptr,
203 SectionChunk *c = nullptr, bool isWeak = false)
204 : DefinedCOFF(DefinedRegularKind, f, n, s), data(c ? &c->repl : nullptr) {
205 this->isExternal = isExternal;
206 this->isCOMDAT = isCOMDAT;
207 this->isWeak = isWeak;
210 static bool classof(const Symbol *s) {
211 return s->kind() == DefinedRegularKind;
214 uint64_t getRVA() const { return (*data)->getRVA() + sym->Value; }
215 SectionChunk *getChunk() const { return *data; }
216 uint32_t getValue() const { return sym->Value; }
218 SectionChunk **data;
221 class DefinedCommon : public DefinedCOFF {
222 public:
223 DefinedCommon(InputFile *f, StringRef n, uint64_t size,
224 const coff_symbol_generic *s = nullptr,
225 CommonChunk *c = nullptr)
226 : DefinedCOFF(DefinedCommonKind, f, n, s), data(c), size(size) {
227 this->isExternal = true;
230 static bool classof(const Symbol *s) {
231 return s->kind() == DefinedCommonKind;
234 uint64_t getRVA() { return data->getRVA(); }
235 CommonChunk *getChunk() { return data; }
237 private:
238 friend SymbolTable;
239 uint64_t getSize() const { return size; }
240 CommonChunk *data;
241 uint64_t size;
244 // Absolute symbols.
245 class DefinedAbsolute : public Defined {
246 public:
247 DefinedAbsolute(const COFFLinkerContext &c, StringRef n, COFFSymbolRef s)
248 : Defined(DefinedAbsoluteKind, n), va(s.getValue()), ctx(c) {
249 isExternal = s.isExternal();
252 DefinedAbsolute(const COFFLinkerContext &c, StringRef n, uint64_t v)
253 : Defined(DefinedAbsoluteKind, n), va(v), ctx(c) {}
255 static bool classof(const Symbol *s) {
256 return s->kind() == DefinedAbsoluteKind;
259 uint64_t getRVA();
260 void setVA(uint64_t v) { va = v; }
261 uint64_t getVA() const { return va; }
263 private:
264 uint64_t va;
265 const COFFLinkerContext &ctx;
268 // This symbol is used for linker-synthesized symbols like __ImageBase and
269 // __safe_se_handler_table.
270 class DefinedSynthetic : public Defined {
271 public:
272 explicit DefinedSynthetic(StringRef name, Chunk *c)
273 : Defined(DefinedSyntheticKind, name), c(c) {}
275 static bool classof(const Symbol *s) {
276 return s->kind() == DefinedSyntheticKind;
279 // A null chunk indicates that this is __ImageBase. Otherwise, this is some
280 // other synthesized chunk, like SEHTableChunk.
281 uint32_t getRVA() { return c ? c->getRVA() : 0; }
282 Chunk *getChunk() { return c; }
284 private:
285 Chunk *c;
288 // This class represents a symbol defined in an archive file. It is
289 // created from an archive file header, and it knows how to load an
290 // object file from an archive to replace itself with a defined
291 // symbol. If the resolver finds both Undefined and LazyArchive for
292 // the same name, it will ask the LazyArchive to load a file.
293 class LazyArchive : public Symbol {
294 public:
295 LazyArchive(ArchiveFile *f, const Archive::Symbol s)
296 : Symbol(LazyArchiveKind, s.getName()), file(f), sym(s) {}
298 static bool classof(const Symbol *s) { return s->kind() == LazyArchiveKind; }
300 MemoryBufferRef getMemberBuffer();
302 ArchiveFile *file;
303 const Archive::Symbol sym;
306 class LazyObject : public Symbol {
307 public:
308 LazyObject(InputFile *f, StringRef n) : Symbol(LazyObjectKind, n), file(f) {}
309 static bool classof(const Symbol *s) { return s->kind() == LazyObjectKind; }
310 InputFile *file;
313 // MinGW only.
314 class LazyDLLSymbol : public Symbol {
315 public:
316 LazyDLLSymbol(DLLFile *f, DLLFile::Symbol *s, StringRef n)
317 : Symbol(LazyDLLSymbolKind, n), file(f), sym(s) {}
318 static bool classof(const Symbol *s) {
319 return s->kind() == LazyDLLSymbolKind;
322 DLLFile *file;
323 DLLFile::Symbol *sym;
326 // Undefined symbols.
327 class Undefined : public Symbol {
328 public:
329 explicit Undefined(StringRef n) : Symbol(UndefinedKind, n) {}
331 static bool classof(const Symbol *s) { return s->kind() == UndefinedKind; }
333 // An undefined symbol can have a fallback symbol which gives an
334 // undefined symbol a second chance if it would remain undefined.
335 // If it remains undefined, it'll be replaced with whatever the
336 // Alias pointer points to.
337 Symbol *weakAlias = nullptr;
339 // If this symbol is external weak, try to resolve it to a defined
340 // symbol by searching the chain of fallback symbols. Returns the symbol if
341 // successful, otherwise returns null.
342 Defined *getWeakAlias();
345 // Windows-specific classes.
347 // This class represents a symbol imported from a DLL. This has two
348 // names for internal use and external use. The former is used for
349 // name resolution, and the latter is used for the import descriptor
350 // table in an output. The former has "__imp_" prefix.
351 class DefinedImportData : public Defined {
352 public:
353 DefinedImportData(StringRef n, ImportFile *f)
354 : Defined(DefinedImportDataKind, n), file(f) {
357 static bool classof(const Symbol *s) {
358 return s->kind() == DefinedImportDataKind;
361 uint64_t getRVA() { return file->location->getRVA(); }
362 Chunk *getChunk() { return file->location; }
363 void setLocation(Chunk *addressTable) { file->location = addressTable; }
365 StringRef getDLLName() { return file->dllName; }
366 StringRef getExternalName() { return file->externalName; }
367 uint16_t getOrdinal() { return file->hdr->OrdinalHint; }
369 ImportFile *file;
371 // This is a pointer to the synthetic symbol associated with the load thunk
372 // for this symbol that will be called if the DLL is delay-loaded. This is
373 // needed for Control Flow Guard because if this DefinedImportData symbol is a
374 // valid call target, the corresponding load thunk must also be marked as a
375 // valid call target.
376 DefinedSynthetic *loadThunkSym = nullptr;
379 // This class represents a symbol for a jump table entry which jumps
380 // to a function in a DLL. Linker are supposed to create such symbols
381 // without "__imp_" prefix for all function symbols exported from
382 // DLLs, so that you can call DLL functions as regular functions with
383 // a regular name. A function pointer is given as a DefinedImportData.
384 class DefinedImportThunk : public Defined {
385 public:
386 DefinedImportThunk(COFFLinkerContext &ctx, StringRef name,
387 DefinedImportData *s, uint16_t machine);
389 static bool classof(const Symbol *s) {
390 return s->kind() == DefinedImportThunkKind;
393 uint64_t getRVA() { return data->getRVA(); }
394 Chunk *getChunk() { return data; }
396 DefinedImportData *wrappedSym;
398 private:
399 Chunk *data;
402 // If you have a symbol "foo" in your object file, a symbol name
403 // "__imp_foo" becomes automatically available as a pointer to "foo".
404 // This class is for such automatically-created symbols.
405 // Yes, this is an odd feature. We didn't intend to implement that.
406 // This is here just for compatibility with MSVC.
407 class DefinedLocalImport : public Defined {
408 public:
409 DefinedLocalImport(COFFLinkerContext &ctx, StringRef n, Defined *s)
410 : Defined(DefinedLocalImportKind, n),
411 data(make<LocalImportChunk>(ctx, s)) {}
413 static bool classof(const Symbol *s) {
414 return s->kind() == DefinedLocalImportKind;
417 uint64_t getRVA() { return data->getRVA(); }
418 Chunk *getChunk() { return data; }
420 private:
421 LocalImportChunk *data;
424 inline uint64_t Defined::getRVA() {
425 switch (kind()) {
426 case DefinedAbsoluteKind:
427 return cast<DefinedAbsolute>(this)->getRVA();
428 case DefinedSyntheticKind:
429 return cast<DefinedSynthetic>(this)->getRVA();
430 case DefinedImportDataKind:
431 return cast<DefinedImportData>(this)->getRVA();
432 case DefinedImportThunkKind:
433 return cast<DefinedImportThunk>(this)->getRVA();
434 case DefinedLocalImportKind:
435 return cast<DefinedLocalImport>(this)->getRVA();
436 case DefinedCommonKind:
437 return cast<DefinedCommon>(this)->getRVA();
438 case DefinedRegularKind:
439 return cast<DefinedRegular>(this)->getRVA();
440 case LazyArchiveKind:
441 case LazyObjectKind:
442 case LazyDLLSymbolKind:
443 case UndefinedKind:
444 llvm_unreachable("Cannot get the address for an undefined symbol.");
446 llvm_unreachable("unknown symbol kind");
449 inline Chunk *Defined::getChunk() {
450 switch (kind()) {
451 case DefinedRegularKind:
452 return cast<DefinedRegular>(this)->getChunk();
453 case DefinedAbsoluteKind:
454 return nullptr;
455 case DefinedSyntheticKind:
456 return cast<DefinedSynthetic>(this)->getChunk();
457 case DefinedImportDataKind:
458 return cast<DefinedImportData>(this)->getChunk();
459 case DefinedImportThunkKind:
460 return cast<DefinedImportThunk>(this)->getChunk();
461 case DefinedLocalImportKind:
462 return cast<DefinedLocalImport>(this)->getChunk();
463 case DefinedCommonKind:
464 return cast<DefinedCommon>(this)->getChunk();
465 case LazyArchiveKind:
466 case LazyObjectKind:
467 case LazyDLLSymbolKind:
468 case UndefinedKind:
469 llvm_unreachable("Cannot get the chunk of an undefined symbol.");
471 llvm_unreachable("unknown symbol kind");
474 // A buffer class that is large enough to hold any Symbol-derived
475 // object. We allocate memory using this class and instantiate a symbol
476 // using the placement new.
477 union SymbolUnion {
478 alignas(DefinedRegular) char a[sizeof(DefinedRegular)];
479 alignas(DefinedCommon) char b[sizeof(DefinedCommon)];
480 alignas(DefinedAbsolute) char c[sizeof(DefinedAbsolute)];
481 alignas(DefinedSynthetic) char d[sizeof(DefinedSynthetic)];
482 alignas(LazyArchive) char e[sizeof(LazyArchive)];
483 alignas(Undefined) char f[sizeof(Undefined)];
484 alignas(DefinedImportData) char g[sizeof(DefinedImportData)];
485 alignas(DefinedImportThunk) char h[sizeof(DefinedImportThunk)];
486 alignas(DefinedLocalImport) char i[sizeof(DefinedLocalImport)];
487 alignas(LazyObject) char j[sizeof(LazyObject)];
488 alignas(LazyDLLSymbol) char k[sizeof(LazyDLLSymbol)];
491 template <typename T, typename... ArgT>
492 void replaceSymbol(Symbol *s, ArgT &&... arg) {
493 static_assert(std::is_trivially_destructible<T>(),
494 "Symbol types must be trivially destructible");
495 static_assert(sizeof(T) <= sizeof(SymbolUnion), "Symbol too small");
496 static_assert(alignof(T) <= alignof(SymbolUnion),
497 "SymbolUnion not aligned enough");
498 assert(static_cast<Symbol *>(static_cast<T *>(nullptr)) == nullptr &&
499 "Not a Symbol");
500 bool canInline = s->canInline;
501 new (s) T(std::forward<ArgT>(arg)...);
502 s->canInline = canInline;
504 } // namespace coff
506 std::string toString(const coff::COFFLinkerContext &ctx, coff::Symbol &b);
507 std::string toCOFFString(const coff::COFFLinkerContext &ctx,
508 const llvm::object::Archive::Symbol &b);
510 } // namespace lld
512 #endif