1 //===- Writer.cpp ---------------------------------------------------------===//
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
7 //===----------------------------------------------------------------------===//
10 #include "COFFLinkerContext.h"
11 #include "CallGraphSort.h"
14 #include "InputFiles.h"
15 #include "LLDMapFile.h"
18 #include "SymbolTable.h"
20 #include "lld/Common/ErrorHandler.h"
21 #include "lld/Common/Memory.h"
22 #include "lld/Common/Timer.h"
23 #include "llvm/ADT/DenseMap.h"
24 #include "llvm/ADT/STLExtras.h"
25 #include "llvm/ADT/StringSet.h"
26 #include "llvm/BinaryFormat/COFF.h"
27 #include "llvm/Support/BinaryStreamReader.h"
28 #include "llvm/Support/Debug.h"
29 #include "llvm/Support/Endian.h"
30 #include "llvm/Support/FileOutputBuffer.h"
31 #include "llvm/Support/Parallel.h"
32 #include "llvm/Support/Path.h"
33 #include "llvm/Support/RandomNumberGenerator.h"
34 #include "llvm/Support/xxhash.h"
42 using namespace llvm::COFF
;
43 using namespace llvm::object
;
44 using namespace llvm::support
;
45 using namespace llvm::support::endian
;
47 using namespace lld::coff
;
49 /* To re-generate DOSProgram:
50 $ cat > /tmp/DOSProgram.asm
55 ; Point ds:dx at the $-terminated string.
57 ; Int 21/AH=09h: Write string to standard output.
60 ; Int 21/AH=4Ch: Exit with return code (in AL).
64 db 'This program cannot be run in DOS mode.$'
66 $ nasm -fbin /tmp/DOSProgram.asm -o /tmp/DOSProgram.bin
67 $ xxd -i /tmp/DOSProgram.bin
69 static unsigned char dosProgram
[] = {
70 0x0e, 0x1f, 0xba, 0x0e, 0x00, 0xb4, 0x09, 0xcd, 0x21, 0xb8, 0x01, 0x4c,
71 0xcd, 0x21, 0x54, 0x68, 0x69, 0x73, 0x20, 0x70, 0x72, 0x6f, 0x67, 0x72,
72 0x61, 0x6d, 0x20, 0x63, 0x61, 0x6e, 0x6e, 0x6f, 0x74, 0x20, 0x62, 0x65,
73 0x20, 0x72, 0x75, 0x6e, 0x20, 0x69, 0x6e, 0x20, 0x44, 0x4f, 0x53, 0x20,
74 0x6d, 0x6f, 0x64, 0x65, 0x2e, 0x24, 0x00, 0x00
76 static_assert(sizeof(dosProgram
) % 8 == 0,
77 "DOSProgram size must be multiple of 8");
79 static const int dosStubSize
= sizeof(dos_header
) + sizeof(dosProgram
);
80 static_assert(dosStubSize
% 8 == 0, "DOSStub size must be multiple of 8");
82 static const int numberOfDataDirectory
= 16;
86 class DebugDirectoryChunk
: public NonSectionChunk
{
88 DebugDirectoryChunk(const COFFLinkerContext
&c
,
89 const std::vector
<std::pair
<COFF::DebugType
, Chunk
*>> &r
,
91 : records(r
), writeRepro(writeRepro
), ctx(c
) {}
93 size_t getSize() const override
{
94 return (records
.size() + int(writeRepro
)) * sizeof(debug_directory
);
97 void writeTo(uint8_t *b
) const override
{
98 auto *d
= reinterpret_cast<debug_directory
*>(b
);
100 for (const std::pair
<COFF::DebugType
, Chunk
*>& record
: records
) {
101 Chunk
*c
= record
.second
;
102 const OutputSection
*os
= ctx
.getOutputSection(c
);
103 uint64_t offs
= os
->getFileOff() + (c
->getRVA() - os
->getRVA());
104 fillEntry(d
, record
.first
, c
->getSize(), c
->getRVA(), offs
);
109 // FIXME: The COFF spec allows either a 0-sized entry to just say
110 // "the timestamp field is really a hash", or a 4-byte size field
111 // followed by that many bytes containing a longer hash (with the
112 // lowest 4 bytes usually being the timestamp in little-endian order).
113 // Consider storing the full 8 bytes computed by xxh3_64bits here.
114 fillEntry(d
, COFF::IMAGE_DEBUG_TYPE_REPRO
, 0, 0, 0);
118 void setTimeDateStamp(uint32_t timeDateStamp
) {
119 for (support::ulittle32_t
*tds
: timeDateStamps
)
120 *tds
= timeDateStamp
;
124 void fillEntry(debug_directory
*d
, COFF::DebugType debugType
, size_t size
,
125 uint64_t rva
, uint64_t offs
) const {
126 d
->Characteristics
= 0;
127 d
->TimeDateStamp
= 0;
131 d
->SizeOfData
= size
;
132 d
->AddressOfRawData
= rva
;
133 d
->PointerToRawData
= offs
;
135 timeDateStamps
.push_back(&d
->TimeDateStamp
);
138 mutable std::vector
<support::ulittle32_t
*> timeDateStamps
;
139 const std::vector
<std::pair
<COFF::DebugType
, Chunk
*>> &records
;
141 const COFFLinkerContext
&ctx
;
144 class CVDebugRecordChunk
: public NonSectionChunk
{
146 CVDebugRecordChunk(const COFFLinkerContext
&c
) : ctx(c
) {}
148 size_t getSize() const override
{
149 return sizeof(codeview::DebugInfo
) + ctx
.config
.pdbAltPath
.size() + 1;
152 void writeTo(uint8_t *b
) const override
{
153 // Save off the DebugInfo entry to backfill the file signature (build id)
154 // in Writer::writeBuildId
155 buildId
= reinterpret_cast<codeview::DebugInfo
*>(b
);
157 // variable sized field (PDB Path)
158 char *p
= reinterpret_cast<char *>(b
+ sizeof(*buildId
));
159 if (!ctx
.config
.pdbAltPath
.empty())
160 memcpy(p
, ctx
.config
.pdbAltPath
.data(), ctx
.config
.pdbAltPath
.size());
161 p
[ctx
.config
.pdbAltPath
.size()] = '\0';
164 mutable codeview::DebugInfo
*buildId
= nullptr;
167 const COFFLinkerContext
&ctx
;
170 class ExtendedDllCharacteristicsChunk
: public NonSectionChunk
{
172 ExtendedDllCharacteristicsChunk(uint32_t c
) : characteristics(c
) {}
174 size_t getSize() const override
{ return 4; }
176 void writeTo(uint8_t *buf
) const override
{ write32le(buf
, characteristics
); }
178 uint32_t characteristics
= 0;
181 // PartialSection represents a group of chunks that contribute to an
182 // OutputSection. Collating a collection of PartialSections of same name and
183 // characteristics constitutes the OutputSection.
184 class PartialSectionKey
{
187 unsigned characteristics
;
189 bool operator<(const PartialSectionKey
&other
) const {
190 int c
= name
.compare(other
.name
);
194 return characteristics
< other
.characteristics
;
199 // The writer writes a SymbolTable result to a file.
202 Writer(COFFLinkerContext
&c
)
203 : buffer(errorHandler().outputBuffer
), delayIdata(c
), edata(c
), ctx(c
) {}
207 void createSections();
208 void createMiscChunks();
209 void createImportTables();
210 void appendImportThunks();
211 void locateImportTables();
212 void createExportTable();
213 void mergeSections();
214 void removeUnusedSections();
215 void assignAddresses();
216 bool isInRange(uint16_t relType
, uint64_t s
, uint64_t p
, int margin
);
217 std::pair
<Defined
*, bool> getThunk(DenseMap
<uint64_t, Defined
*> &lastThunks
,
218 Defined
*target
, uint64_t p
,
219 uint16_t type
, int margin
);
220 bool createThunks(OutputSection
*os
, int margin
);
221 bool verifyRanges(const std::vector
<Chunk
*> chunks
);
222 void finalizeAddresses();
223 void removeEmptySections();
224 void assignOutputSectionIndices();
225 void createSymbolAndStringTable();
226 void openFile(StringRef outputPath
);
227 template <typename PEHeaderTy
> void writeHeader();
228 void createSEHTable();
229 void createRuntimePseudoRelocs();
230 void insertCtorDtorSymbols();
231 void markSymbolsWithRelocations(ObjFile
*file
, SymbolRVASet
&usedSymbols
);
232 void createGuardCFTables();
233 void markSymbolsForRVATable(ObjFile
*file
,
234 ArrayRef
<SectionChunk
*> symIdxChunks
,
235 SymbolRVASet
&tableSymbols
);
236 void getSymbolsFromSections(ObjFile
*file
,
237 ArrayRef
<SectionChunk
*> symIdxChunks
,
238 std::vector
<Symbol
*> &symbols
);
239 void maybeAddRVATable(SymbolRVASet tableSymbols
, StringRef tableSym
,
240 StringRef countSym
, bool hasFlag
=false);
241 void setSectionPermissions();
242 void writeSections();
244 void writePEChecksum();
246 void sortExceptionTable();
247 void sortCRTSectionChunks(std::vector
<Chunk
*> &chunks
);
248 void addSyntheticIdata();
249 void sortBySectionOrder(std::vector
<Chunk
*> &chunks
);
250 void fixPartialSectionChars(StringRef name
, uint32_t chars
);
251 bool fixGnuImportChunks();
252 void fixTlsAlignment();
253 PartialSection
*createPartialSection(StringRef name
, uint32_t outChars
);
254 PartialSection
*findPartialSection(StringRef name
, uint32_t outChars
);
256 std::optional
<coff_symbol16
> createSymbol(Defined
*d
);
257 size_t addEntryToStringTable(StringRef str
);
259 OutputSection
*findSection(StringRef name
);
261 void addBaserelBlocks(std::vector
<Baserel
> &v
);
263 uint32_t getSizeOfInitializedData();
265 void checkLoadConfig();
266 template <typename T
> void checkLoadConfigGuardData(const T
*loadConfig
);
268 std::unique_ptr
<FileOutputBuffer
> &buffer
;
269 std::map
<PartialSectionKey
, PartialSection
*> partialSections
;
270 std::vector
<char> strtab
;
271 std::vector
<llvm::object::coff_symbol16
> outputSymtab
;
273 Chunk
*importTableStart
= nullptr;
274 uint64_t importTableSize
= 0;
275 Chunk
*edataStart
= nullptr;
276 Chunk
*edataEnd
= nullptr;
277 Chunk
*iatStart
= nullptr;
278 uint64_t iatSize
= 0;
279 DelayLoadContents delayIdata
;
281 bool setNoSEHCharacteristic
= false;
282 uint32_t tlsAlignment
= 0;
284 DebugDirectoryChunk
*debugDirectory
= nullptr;
285 std::vector
<std::pair
<COFF::DebugType
, Chunk
*>> debugRecords
;
286 CVDebugRecordChunk
*buildId
= nullptr;
287 ArrayRef
<uint8_t> sectionTable
;
290 uint32_t pointerToSymbolTable
= 0;
291 uint64_t sizeOfImage
;
292 uint64_t sizeOfHeaders
;
294 OutputSection
*textSec
;
295 OutputSection
*rdataSec
;
296 OutputSection
*buildidSec
;
297 OutputSection
*dataSec
;
298 OutputSection
*pdataSec
;
299 OutputSection
*idataSec
;
300 OutputSection
*edataSec
;
301 OutputSection
*didatSec
;
302 OutputSection
*rsrcSec
;
303 OutputSection
*relocSec
;
304 OutputSection
*ctorsSec
;
305 OutputSection
*dtorsSec
;
307 // The first and last .pdata sections in the output file.
309 // We need to keep track of the location of .pdata in whichever section it
310 // gets merged into so that we can sort its contents and emit a correct data
311 // directory entry for the exception table. This is also the case for some
312 // other sections (such as .edata) but because the contents of those sections
313 // are entirely linker-generated we can keep track of their locations using
314 // the chunks that the linker creates. All .pdata chunks come from input
315 // files, so we need to keep track of them separately.
316 Chunk
*firstPdata
= nullptr;
319 COFFLinkerContext
&ctx
;
321 } // anonymous namespace
323 void lld::coff::writeResult(COFFLinkerContext
&ctx
) { Writer(ctx
).run(); }
325 void OutputSection::addChunk(Chunk
*c
) {
329 void OutputSection::insertChunkAtStart(Chunk
*c
) {
330 chunks
.insert(chunks
.begin(), c
);
333 void OutputSection::setPermissions(uint32_t c
) {
334 header
.Characteristics
&= ~permMask
;
335 header
.Characteristics
|= c
;
338 void OutputSection::merge(OutputSection
*other
) {
339 chunks
.insert(chunks
.end(), other
->chunks
.begin(), other
->chunks
.end());
340 other
->chunks
.clear();
341 contribSections
.insert(contribSections
.end(), other
->contribSections
.begin(),
342 other
->contribSections
.end());
343 other
->contribSections
.clear();
346 // Write the section header to a given buffer.
347 void OutputSection::writeHeaderTo(uint8_t *buf
, bool isDebug
) {
348 auto *hdr
= reinterpret_cast<coff_section
*>(buf
);
350 if (stringTableOff
) {
351 // If name is too long, write offset into the string table as a name.
352 encodeSectionName(hdr
->Name
, stringTableOff
);
354 assert(!isDebug
|| name
.size() <= COFF::NameSize
||
355 (hdr
->Characteristics
& IMAGE_SCN_MEM_DISCARDABLE
) == 0);
356 strncpy(hdr
->Name
, name
.data(),
357 std::min(name
.size(), (size_t)COFF::NameSize
));
361 void OutputSection::addContributingPartialSection(PartialSection
*sec
) {
362 contribSections
.push_back(sec
);
365 // Check whether the target address S is in range from a relocation
366 // of type relType at address P.
367 bool Writer::isInRange(uint16_t relType
, uint64_t s
, uint64_t p
, int margin
) {
368 if (ctx
.config
.machine
== ARMNT
) {
369 int64_t diff
= AbsoluteDifference(s
, p
+ 4) + margin
;
371 case IMAGE_REL_ARM_BRANCH20T
:
372 return isInt
<21>(diff
);
373 case IMAGE_REL_ARM_BRANCH24T
:
374 case IMAGE_REL_ARM_BLX23T
:
375 return isInt
<25>(diff
);
379 } else if (ctx
.config
.machine
== ARM64
) {
380 int64_t diff
= AbsoluteDifference(s
, p
) + margin
;
382 case IMAGE_REL_ARM64_BRANCH26
:
383 return isInt
<28>(diff
);
384 case IMAGE_REL_ARM64_BRANCH19
:
385 return isInt
<21>(diff
);
386 case IMAGE_REL_ARM64_BRANCH14
:
387 return isInt
<16>(diff
);
392 llvm_unreachable("Unexpected architecture");
396 // Return the last thunk for the given target if it is in range,
397 // or create a new one.
398 std::pair
<Defined
*, bool>
399 Writer::getThunk(DenseMap
<uint64_t, Defined
*> &lastThunks
, Defined
*target
,
400 uint64_t p
, uint16_t type
, int margin
) {
401 Defined
*&lastThunk
= lastThunks
[target
->getRVA()];
402 if (lastThunk
&& isInRange(type
, lastThunk
->getRVA(), p
, margin
))
403 return {lastThunk
, false};
405 switch (ctx
.config
.machine
) {
407 c
= make
<RangeExtensionThunkARM
>(ctx
, target
);
410 c
= make
<RangeExtensionThunkARM64
>(ctx
, target
);
413 llvm_unreachable("Unexpected architecture");
415 Defined
*d
= make
<DefinedSynthetic
>("range_extension_thunk", c
);
420 // This checks all relocations, and for any relocation which isn't in range
421 // it adds a thunk after the section chunk that contains the relocation.
422 // If the latest thunk for the specific target is in range, that is used
423 // instead of creating a new thunk. All range checks are done with the
424 // specified margin, to make sure that relocations that originally are in
425 // range, but only barely, also get thunks - in case other added thunks makes
426 // the target go out of range.
428 // After adding thunks, we verify that all relocations are in range (with
429 // no extra margin requirements). If this failed, we restart (throwing away
430 // the previously created thunks) and retry with a wider margin.
431 bool Writer::createThunks(OutputSection
*os
, int margin
) {
432 bool addressesChanged
= false;
433 DenseMap
<uint64_t, Defined
*> lastThunks
;
434 DenseMap
<std::pair
<ObjFile
*, Defined
*>, uint32_t> thunkSymtabIndices
;
435 size_t thunksSize
= 0;
436 // Recheck Chunks.size() each iteration, since we can insert more
438 for (size_t i
= 0; i
!= os
->chunks
.size(); ++i
) {
439 SectionChunk
*sc
= dyn_cast_or_null
<SectionChunk
>(os
->chunks
[i
]);
442 size_t thunkInsertionSpot
= i
+ 1;
444 // Try to get a good enough estimate of where new thunks will be placed.
445 // Offset this by the size of the new thunks added so far, to make the
446 // estimate slightly better.
447 size_t thunkInsertionRVA
= sc
->getRVA() + sc
->getSize() + thunksSize
;
448 ObjFile
*file
= sc
->file
;
449 std::vector
<std::pair
<uint32_t, uint32_t>> relocReplacements
;
450 ArrayRef
<coff_relocation
> originalRelocs
=
451 file
->getCOFFObj()->getRelocations(sc
->header
);
452 for (size_t j
= 0, e
= originalRelocs
.size(); j
< e
; ++j
) {
453 const coff_relocation
&rel
= originalRelocs
[j
];
454 Symbol
*relocTarget
= file
->getSymbol(rel
.SymbolTableIndex
);
456 // The estimate of the source address P should be pretty accurate,
457 // but we don't know whether the target Symbol address should be
458 // offset by thunksSize or not (or by some of thunksSize but not all of
459 // it), giving us some uncertainty once we have added one thunk.
460 uint64_t p
= sc
->getRVA() + rel
.VirtualAddress
+ thunksSize
;
462 Defined
*sym
= dyn_cast_or_null
<Defined
>(relocTarget
);
466 uint64_t s
= sym
->getRVA();
468 if (isInRange(rel
.Type
, s
, p
, margin
))
471 // If the target isn't in range, hook it up to an existing or new thunk.
472 auto [thunk
, wasNew
] = getThunk(lastThunks
, sym
, p
, rel
.Type
, margin
);
474 Chunk
*thunkChunk
= thunk
->getChunk();
476 thunkInsertionRVA
); // Estimate of where it will be located.
477 os
->chunks
.insert(os
->chunks
.begin() + thunkInsertionSpot
, thunkChunk
);
478 thunkInsertionSpot
++;
479 thunksSize
+= thunkChunk
->getSize();
480 thunkInsertionRVA
+= thunkChunk
->getSize();
481 addressesChanged
= true;
484 // To redirect the relocation, add a symbol to the parent object file's
485 // symbol table, and replace the relocation symbol table index with the
487 auto insertion
= thunkSymtabIndices
.insert({{file
, thunk
}, ~0U});
488 uint32_t &thunkSymbolIndex
= insertion
.first
->second
;
489 if (insertion
.second
)
490 thunkSymbolIndex
= file
->addRangeThunkSymbol(thunk
);
491 relocReplacements
.emplace_back(j
, thunkSymbolIndex
);
494 // Get a writable copy of this section's relocations so they can be
495 // modified. If the relocations point into the object file, allocate new
496 // memory. Otherwise, this must be previously allocated memory that can be
497 // modified in place.
498 ArrayRef
<coff_relocation
> curRelocs
= sc
->getRelocs();
499 MutableArrayRef
<coff_relocation
> newRelocs
;
500 if (originalRelocs
.data() == curRelocs
.data()) {
501 newRelocs
= MutableArrayRef(
502 bAlloc().Allocate
<coff_relocation
>(originalRelocs
.size()),
503 originalRelocs
.size());
505 newRelocs
= MutableArrayRef(
506 const_cast<coff_relocation
*>(curRelocs
.data()), curRelocs
.size());
509 // Copy each relocation, but replace the symbol table indices which need
511 auto nextReplacement
= relocReplacements
.begin();
512 auto endReplacement
= relocReplacements
.end();
513 for (size_t i
= 0, e
= originalRelocs
.size(); i
!= e
; ++i
) {
514 newRelocs
[i
] = originalRelocs
[i
];
515 if (nextReplacement
!= endReplacement
&& nextReplacement
->first
== i
) {
516 newRelocs
[i
].SymbolTableIndex
= nextReplacement
->second
;
521 sc
->setRelocs(newRelocs
);
523 return addressesChanged
;
526 // Verify that all relocations are in range, with no extra margin requirements.
527 bool Writer::verifyRanges(const std::vector
<Chunk
*> chunks
) {
528 for (Chunk
*c
: chunks
) {
529 SectionChunk
*sc
= dyn_cast_or_null
<SectionChunk
>(c
);
533 ArrayRef
<coff_relocation
> relocs
= sc
->getRelocs();
534 for (const coff_relocation
&rel
: relocs
) {
535 Symbol
*relocTarget
= sc
->file
->getSymbol(rel
.SymbolTableIndex
);
537 Defined
*sym
= dyn_cast_or_null
<Defined
>(relocTarget
);
541 uint64_t p
= sc
->getRVA() + rel
.VirtualAddress
;
542 uint64_t s
= sym
->getRVA();
544 if (!isInRange(rel
.Type
, s
, p
, 0))
551 // Assign addresses and add thunks if necessary.
552 void Writer::finalizeAddresses() {
554 if (ctx
.config
.machine
!= ARMNT
&& ctx
.config
.machine
!= ARM64
)
557 size_t origNumChunks
= 0;
558 for (OutputSection
*sec
: ctx
.outputSections
) {
559 sec
->origChunks
= sec
->chunks
;
560 origNumChunks
+= sec
->chunks
.size();
564 int margin
= 1024 * 100;
566 // First check whether we need thunks at all, or if the previous pass of
567 // adding them turned out ok.
568 bool rangesOk
= true;
569 size_t numChunks
= 0;
570 for (OutputSection
*sec
: ctx
.outputSections
) {
571 if (!verifyRanges(sec
->chunks
)) {
575 numChunks
+= sec
->chunks
.size();
579 log("Added " + Twine(numChunks
- origNumChunks
) + " thunks with " +
580 "margin " + Twine(margin
) + " in " + Twine(pass
) + " passes");
585 fatal("adding thunks hasn't converged after " + Twine(pass
) + " passes");
588 // If the previous pass didn't work out, reset everything back to the
589 // original conditions before retrying with a wider margin. This should
590 // ideally never happen under real circumstances.
591 for (OutputSection
*sec
: ctx
.outputSections
)
592 sec
->chunks
= sec
->origChunks
;
596 // Try adding thunks everywhere where it is needed, with a margin
597 // to avoid things going out of range due to the added thunks.
598 bool addressesChanged
= false;
599 for (OutputSection
*sec
: ctx
.outputSections
)
600 addressesChanged
|= createThunks(sec
, margin
);
601 // If the verification above thought we needed thunks, we should have
603 assert(addressesChanged
);
604 (void)addressesChanged
;
606 // Recalculate the layout for the whole image (and verify the ranges at
607 // the start of the next round).
614 void Writer::writePEChecksum() {
615 if (!ctx
.config
.writeCheckSum
) {
619 // https://docs.microsoft.com/en-us/windows/win32/debug/pe-format#checksum
620 uint32_t *buf
= (uint32_t *)buffer
->getBufferStart();
621 uint32_t size
= (uint32_t)(buffer
->getBufferSize());
623 coff_file_header
*coffHeader
=
624 (coff_file_header
*)((uint8_t *)buf
+ dosStubSize
+ sizeof(PEMagic
));
625 pe32_header
*peHeader
=
626 (pe32_header
*)((uint8_t *)coffHeader
+ sizeof(coff_file_header
));
629 uint32_t count
= size
;
630 ulittle16_t
*addr
= (ulittle16_t
*)buf
;
632 // The PE checksum algorithm, implemented as suggested in RFC1071
638 // Add left-over byte, if any
640 sum
+= *(unsigned char *)addr
;
642 // Fold 32-bit sum to 16 bits
644 sum
= (sum
& 0xffff) + (sum
>> 16);
648 peHeader
->CheckSum
= sum
;
651 // The main function of the writer.
653 ScopedTimer
t1(ctx
.codeLayoutTimer
);
655 createImportTables();
657 appendImportThunks();
658 // Import thunks must be added before the Control Flow Guard tables are added.
662 removeUnusedSections();
664 removeEmptySections();
665 assignOutputSectionIndices();
666 setSectionPermissions();
667 createSymbolAndStringTable();
669 if (fileSize
> UINT32_MAX
)
670 fatal("image size (" + Twine(fileSize
) + ") " +
671 "exceeds maximum allowable size (" + Twine(UINT32_MAX
) + ")");
673 openFile(ctx
.config
.outputFile
);
674 if (ctx
.config
.is64()) {
675 writeHeader
<pe32plus_header
>();
677 writeHeader
<pe32_header
>();
681 sortExceptionTable();
683 // Fix up the alignment in the TLS Directory's characteristic field,
684 // if a specific alignment value is needed
690 if (!ctx
.config
.pdbPath
.empty() && ctx
.config
.debug
) {
692 createPDB(ctx
, sectionTable
, buildId
->buildId
);
696 writeLLDMapFile(ctx
);
704 ScopedTimer
t2(ctx
.outputCommitTimer
);
705 if (auto e
= buffer
->commit())
706 fatal("failed to write output '" + buffer
->getPath() +
707 "': " + toString(std::move(e
)));
710 static StringRef
getOutputSectionName(StringRef name
) {
711 StringRef s
= name
.split('$').first
;
713 // Treat a later period as a separator for MinGW, for sections like
715 return s
.substr(0, s
.find('.', 1));
719 void Writer::sortBySectionOrder(std::vector
<Chunk
*> &chunks
) {
720 auto getPriority
= [&ctx
= ctx
](const Chunk
*c
) {
721 if (auto *sec
= dyn_cast
<SectionChunk
>(c
))
723 return ctx
.config
.order
.lookup(sec
->sym
->getName());
727 llvm::stable_sort(chunks
, [=](const Chunk
*a
, const Chunk
*b
) {
728 return getPriority(a
) < getPriority(b
);
732 // Change the characteristics of existing PartialSections that belong to the
733 // section Name to Chars.
734 void Writer::fixPartialSectionChars(StringRef name
, uint32_t chars
) {
735 for (auto it
: partialSections
) {
736 PartialSection
*pSec
= it
.second
;
737 StringRef curName
= pSec
->name
;
738 if (!curName
.consume_front(name
) ||
739 (!curName
.empty() && !curName
.starts_with("$")))
741 if (pSec
->characteristics
== chars
)
743 PartialSection
*destSec
= createPartialSection(pSec
->name
, chars
);
744 destSec
->chunks
.insert(destSec
->chunks
.end(), pSec
->chunks
.begin(),
746 pSec
->chunks
.clear();
750 // Sort concrete section chunks from GNU import libraries.
752 // GNU binutils doesn't use short import files, but instead produces import
753 // libraries that consist of object files, with section chunks for the .idata$*
754 // sections. These are linked just as regular static libraries. Each import
755 // library consists of one header object, one object file for every imported
756 // symbol, and one trailer object. In order for the .idata tables/lists to
757 // be formed correctly, the section chunks within each .idata$* section need
758 // to be grouped by library, and sorted alphabetically within each library
759 // (which makes sure the header comes first and the trailer last).
760 bool Writer::fixGnuImportChunks() {
761 uint32_t rdata
= IMAGE_SCN_CNT_INITIALIZED_DATA
| IMAGE_SCN_MEM_READ
;
763 // Make sure all .idata$* section chunks are mapped as RDATA in order to
764 // be sorted into the same sections as our own synthesized .idata chunks.
765 fixPartialSectionChars(".idata", rdata
);
767 bool hasIdata
= false;
768 // Sort all .idata$* chunks, grouping chunks from the same library,
769 // with alphabetical ordering of the object files within a library.
770 for (auto it
: partialSections
) {
771 PartialSection
*pSec
= it
.second
;
772 if (!pSec
->name
.starts_with(".idata"))
775 if (!pSec
->chunks
.empty())
777 llvm::stable_sort(pSec
->chunks
, [&](Chunk
*s
, Chunk
*t
) {
778 SectionChunk
*sc1
= dyn_cast_or_null
<SectionChunk
>(s
);
779 SectionChunk
*sc2
= dyn_cast_or_null
<SectionChunk
>(t
);
781 // if SC1, order them ascending. If SC2 or both null,
782 // S is not less than T.
783 return sc1
!= nullptr;
785 // Make a string with "libraryname/objectfile" for sorting, achieving
786 // both grouping by library and sorting of objects within a library,
789 (sc1
->file
->parentName
+ "/" + sc1
->file
->getName()).str();
791 (sc2
->file
->parentName
+ "/" + sc2
->file
->getName()).str();
798 // Add generated idata chunks, for imported symbols and DLLs, and a
799 // terminator in .idata$2.
800 void Writer::addSyntheticIdata() {
801 uint32_t rdata
= IMAGE_SCN_CNT_INITIALIZED_DATA
| IMAGE_SCN_MEM_READ
;
804 // Add the .idata content in the right section groups, to allow
805 // chunks from other linked in object files to be grouped together.
806 // See Microsoft PE/COFF spec 5.4 for details.
807 auto add
= [&](StringRef n
, std::vector
<Chunk
*> &v
) {
808 PartialSection
*pSec
= createPartialSection(n
, rdata
);
809 pSec
->chunks
.insert(pSec
->chunks
.end(), v
.begin(), v
.end());
812 // The loader assumes a specific order of data.
813 // Add each type in the correct order.
814 add(".idata$2", idata
.dirs
);
815 add(".idata$4", idata
.lookups
);
816 add(".idata$5", idata
.addresses
);
817 if (!idata
.hints
.empty())
818 add(".idata$6", idata
.hints
);
819 add(".idata$7", idata
.dllNames
);
822 // Locate the first Chunk and size of the import directory list and the
824 void Writer::locateImportTables() {
825 uint32_t rdata
= IMAGE_SCN_CNT_INITIALIZED_DATA
| IMAGE_SCN_MEM_READ
;
827 if (PartialSection
*importDirs
= findPartialSection(".idata$2", rdata
)) {
828 if (!importDirs
->chunks
.empty())
829 importTableStart
= importDirs
->chunks
.front();
830 for (Chunk
*c
: importDirs
->chunks
)
831 importTableSize
+= c
->getSize();
834 if (PartialSection
*importAddresses
= findPartialSection(".idata$5", rdata
)) {
835 if (!importAddresses
->chunks
.empty())
836 iatStart
= importAddresses
->chunks
.front();
837 for (Chunk
*c
: importAddresses
->chunks
)
838 iatSize
+= c
->getSize();
842 // Return whether a SectionChunk's suffix (the dollar and any trailing
843 // suffix) should be removed and sorted into the main suffixless
845 static bool shouldStripSectionSuffix(SectionChunk
*sc
, StringRef name
,
847 // On MinGW, comdat groups are formed by putting the comdat group name
848 // after the '$' in the section name. For .eh_frame$<symbol>, that must
849 // still be sorted before the .eh_frame trailer from crtend.o, thus just
850 // strip the section name trailer. For other sections, such as
851 // .tls$$<symbol> (where non-comdat .tls symbols are otherwise stored in
852 // ".tls$"), they must be strictly sorted after .tls. And for the
853 // hypothetical case of comdat .CRT$XCU, we definitely need to keep the
854 // suffix for sorting. Thus, to play it safe, only strip the suffix for
855 // the standard sections.
858 if (!sc
|| !sc
->isCOMDAT())
860 return name
.starts_with(".text$") || name
.starts_with(".data$") ||
861 name
.starts_with(".rdata$") || name
.starts_with(".pdata$") ||
862 name
.starts_with(".xdata$") || name
.starts_with(".eh_frame$");
865 void Writer::sortSections() {
866 if (!ctx
.config
.callGraphProfile
.empty()) {
867 DenseMap
<const SectionChunk
*, int> order
=
868 computeCallGraphProfileOrder(ctx
);
869 for (auto it
: order
) {
870 if (DefinedRegular
*sym
= it
.first
->sym
)
871 ctx
.config
.order
[sym
->getName()] = it
.second
;
874 if (!ctx
.config
.order
.empty())
875 for (auto it
: partialSections
)
876 sortBySectionOrder(it
.second
->chunks
);
879 // Create output section objects and add them to OutputSections.
880 void Writer::createSections() {
881 // First, create the builtin sections.
882 const uint32_t data
= IMAGE_SCN_CNT_INITIALIZED_DATA
;
883 const uint32_t bss
= IMAGE_SCN_CNT_UNINITIALIZED_DATA
;
884 const uint32_t code
= IMAGE_SCN_CNT_CODE
;
885 const uint32_t discardable
= IMAGE_SCN_MEM_DISCARDABLE
;
886 const uint32_t r
= IMAGE_SCN_MEM_READ
;
887 const uint32_t w
= IMAGE_SCN_MEM_WRITE
;
888 const uint32_t x
= IMAGE_SCN_MEM_EXECUTE
;
890 SmallDenseMap
<std::pair
<StringRef
, uint32_t>, OutputSection
*> sections
;
891 auto createSection
= [&](StringRef name
, uint32_t outChars
) {
892 OutputSection
*&sec
= sections
[{name
, outChars
}];
894 sec
= make
<OutputSection
>(name
, outChars
);
895 ctx
.outputSections
.push_back(sec
);
900 // Try to match the section order used by link.exe.
901 textSec
= createSection(".text", code
| r
| x
);
902 createSection(".bss", bss
| r
| w
);
903 rdataSec
= createSection(".rdata", data
| r
);
904 buildidSec
= createSection(".buildid", data
| r
);
905 dataSec
= createSection(".data", data
| r
| w
);
906 pdataSec
= createSection(".pdata", data
| r
);
907 idataSec
= createSection(".idata", data
| r
);
908 edataSec
= createSection(".edata", data
| r
);
909 didatSec
= createSection(".didat", data
| r
);
910 rsrcSec
= createSection(".rsrc", data
| r
);
911 relocSec
= createSection(".reloc", data
| discardable
| r
);
912 ctorsSec
= createSection(".ctors", data
| r
| w
);
913 dtorsSec
= createSection(".dtors", data
| r
| w
);
915 // Then bin chunks by name and output characteristics.
916 for (Chunk
*c
: ctx
.symtab
.getChunks()) {
917 auto *sc
= dyn_cast
<SectionChunk
>(c
);
918 if (sc
&& !sc
->live
) {
919 if (ctx
.config
.verbose
)
920 sc
->printDiscardedMessage();
923 StringRef name
= c
->getSectionName();
924 if (shouldStripSectionSuffix(sc
, name
, ctx
.config
.mingw
))
925 name
= name
.split('$').first
;
927 if (name
.starts_with(".tls"))
928 tlsAlignment
= std::max(tlsAlignment
, c
->getAlignment());
930 PartialSection
*pSec
= createPartialSection(name
,
931 c
->getOutputCharacteristics());
932 pSec
->chunks
.push_back(c
);
935 fixPartialSectionChars(".rsrc", data
| r
);
936 fixPartialSectionChars(".edata", data
| r
);
937 // Even in non MinGW cases, we might need to link against GNU import
939 bool hasIdata
= fixGnuImportChunks();
949 locateImportTables();
951 // Then create an OutputSection for each section.
952 // '$' and all following characters in input section names are
953 // discarded when determining output section. So, .text$foo
954 // contributes to .text, for example. See PE/COFF spec 3.2.
955 for (auto it
: partialSections
) {
956 PartialSection
*pSec
= it
.second
;
957 StringRef name
= getOutputSectionName(pSec
->name
);
958 uint32_t outChars
= pSec
->characteristics
;
960 if (name
== ".CRT") {
961 // In link.exe, there is a special case for the I386 target where .CRT
962 // sections are treated as if they have output characteristics DATA | R if
963 // their characteristics are DATA | R | W. This implements the same
964 // special case for all architectures.
967 log("Processing section " + pSec
->name
+ " -> " + name
);
969 sortCRTSectionChunks(pSec
->chunks
);
972 OutputSection
*sec
= createSection(name
, outChars
);
973 for (Chunk
*c
: pSec
->chunks
)
976 sec
->addContributingPartialSection(pSec
);
979 // Finally, move some output sections to the end.
980 auto sectionOrder
= [&](const OutputSection
*s
) {
981 // Move DISCARDABLE (or non-memory-mapped) sections to the end of file
982 // because the loader cannot handle holes. Stripping can remove other
983 // discardable ones than .reloc, which is first of them (created early).
984 if (s
->header
.Characteristics
& IMAGE_SCN_MEM_DISCARDABLE
) {
985 // Move discardable sections named .debug_ to the end, after other
986 // discardable sections. Stripping only removes the sections named
987 // .debug_* - thus try to avoid leaving holes after stripping.
988 if (s
->name
.starts_with(".debug_"))
992 // .rsrc should come at the end of the non-discardable sections because its
993 // size may change by the Win32 UpdateResources() function, causing
994 // subsequent sections to move (see https://crbug.com/827082).
999 llvm::stable_sort(ctx
.outputSections
,
1000 [&](const OutputSection
*s
, const OutputSection
*t
) {
1001 return sectionOrder(s
) < sectionOrder(t
);
1005 void Writer::createMiscChunks() {
1006 Configuration
*config
= &ctx
.config
;
1008 for (MergeChunk
*p
: ctx
.mergeChunkInstances
) {
1010 p
->finalizeContents();
1011 rdataSec
->addChunk(p
);
1015 // Create thunks for locally-dllimported symbols.
1016 if (!ctx
.symtab
.localImportChunks
.empty()) {
1017 for (Chunk
*c
: ctx
.symtab
.localImportChunks
)
1018 rdataSec
->addChunk(c
);
1021 // Create Debug Information Chunks
1022 OutputSection
*debugInfoSec
= config
->mingw
? buildidSec
: rdataSec
;
1023 if (config
->debug
|| config
->repro
|| config
->cetCompat
) {
1025 make
<DebugDirectoryChunk
>(ctx
, debugRecords
, config
->repro
);
1026 debugDirectory
->setAlignment(4);
1027 debugInfoSec
->addChunk(debugDirectory
);
1030 if (config
->debug
) {
1031 // Make a CVDebugRecordChunk even when /DEBUG:CV is not specified. We
1032 // output a PDB no matter what, and this chunk provides the only means of
1033 // allowing a debugger to match a PDB and an executable. So we need it even
1034 // if we're ultimately not going to write CodeView data to the PDB.
1035 buildId
= make
<CVDebugRecordChunk
>(ctx
);
1036 debugRecords
.emplace_back(COFF::IMAGE_DEBUG_TYPE_CODEVIEW
, buildId
);
1039 if (config
->cetCompat
) {
1040 debugRecords
.emplace_back(COFF::IMAGE_DEBUG_TYPE_EX_DLLCHARACTERISTICS
,
1041 make
<ExtendedDllCharacteristicsChunk
>(
1042 IMAGE_DLL_CHARACTERISTICS_EX_CET_COMPAT
));
1045 // Align and add each chunk referenced by the debug data directory.
1046 for (std::pair
<COFF::DebugType
, Chunk
*> r
: debugRecords
) {
1047 r
.second
->setAlignment(4);
1048 debugInfoSec
->addChunk(r
.second
);
1051 // Create SEH table. x86-only.
1052 if (config
->safeSEH
)
1055 // Create /guard:cf tables if requested.
1056 if (config
->guardCF
!= GuardCFLevel::Off
)
1057 createGuardCFTables();
1059 if (config
->autoImport
)
1060 createRuntimePseudoRelocs();
1063 insertCtorDtorSymbols();
1066 // Create .idata section for the DLL-imported symbol table.
1067 // The format of this section is inherently Windows-specific.
1068 // IdataContents class abstracted away the details for us,
1069 // so we just let it create chunks and add them to the section.
1070 void Writer::createImportTables() {
1071 // Initialize DLLOrder so that import entries are ordered in
1072 // the same order as in the command line. (That affects DLL
1073 // initialization order, and this ordering is MSVC-compatible.)
1074 for (ImportFile
*file
: ctx
.importFileInstances
) {
1078 std::string dll
= StringRef(file
->dllName
).lower();
1079 if (ctx
.config
.dllOrder
.count(dll
) == 0)
1080 ctx
.config
.dllOrder
[dll
] = ctx
.config
.dllOrder
.size();
1082 if (file
->impSym
&& !isa
<DefinedImportData
>(file
->impSym
))
1083 fatal(toString(ctx
, *file
->impSym
) + " was replaced");
1084 DefinedImportData
*impSym
= cast_or_null
<DefinedImportData
>(file
->impSym
);
1085 if (ctx
.config
.delayLoads
.count(StringRef(file
->dllName
).lower())) {
1086 if (!file
->thunkSym
)
1087 fatal("cannot delay-load " + toString(file
) +
1088 " due to import of data: " + toString(ctx
, *impSym
));
1089 delayIdata
.add(impSym
);
1096 void Writer::appendImportThunks() {
1097 if (ctx
.importFileInstances
.empty())
1100 for (ImportFile
*file
: ctx
.importFileInstances
) {
1104 if (!file
->thunkSym
)
1107 if (!isa
<DefinedImportThunk
>(file
->thunkSym
))
1108 fatal(toString(ctx
, *file
->thunkSym
) + " was replaced");
1109 DefinedImportThunk
*thunk
= cast
<DefinedImportThunk
>(file
->thunkSym
);
1110 if (file
->thunkLive
)
1111 textSec
->addChunk(thunk
->getChunk());
1114 if (!delayIdata
.empty()) {
1115 Defined
*helper
= cast
<Defined
>(ctx
.config
.delayLoadHelper
);
1116 delayIdata
.create(helper
);
1117 for (Chunk
*c
: delayIdata
.getChunks())
1118 didatSec
->addChunk(c
);
1119 for (Chunk
*c
: delayIdata
.getDataChunks())
1120 dataSec
->addChunk(c
);
1121 for (Chunk
*c
: delayIdata
.getCodeChunks())
1122 textSec
->addChunk(c
);
1123 for (Chunk
*c
: delayIdata
.getCodePData())
1124 pdataSec
->addChunk(c
);
1125 for (Chunk
*c
: delayIdata
.getCodeUnwindInfo())
1126 rdataSec
->addChunk(c
);
1130 void Writer::createExportTable() {
1131 if (!edataSec
->chunks
.empty()) {
1132 // Allow using a custom built export table from input object files, instead
1133 // of having the linker synthesize the tables.
1134 if (ctx
.config
.hadExplicitExports
)
1135 warn("literal .edata sections override exports");
1136 } else if (!ctx
.config
.exports
.empty()) {
1137 for (Chunk
*c
: edata
.chunks
)
1138 edataSec
->addChunk(c
);
1140 if (!edataSec
->chunks
.empty()) {
1141 edataStart
= edataSec
->chunks
.front();
1142 edataEnd
= edataSec
->chunks
.back();
1144 // Warn on exported deleting destructor.
1145 for (auto e
: ctx
.config
.exports
)
1146 if (e
.sym
&& e
.sym
->getName().starts_with("??_G"))
1147 warn("export of deleting dtor: " + toString(ctx
, *e
.sym
));
1150 void Writer::removeUnusedSections() {
1151 // Remove sections that we can be sure won't get content, to avoid
1152 // allocating space for their section headers.
1153 auto isUnused
= [this](OutputSection
*s
) {
1155 return false; // This section is populated later.
1156 // MergeChunks have zero size at this point, as their size is finalized
1157 // later. Only remove sections that have no Chunks at all.
1158 return s
->chunks
.empty();
1160 llvm::erase_if(ctx
.outputSections
, isUnused
);
1163 // The Windows loader doesn't seem to like empty sections,
1164 // so we remove them if any.
1165 void Writer::removeEmptySections() {
1166 auto isEmpty
= [](OutputSection
*s
) { return s
->getVirtualSize() == 0; };
1167 llvm::erase_if(ctx
.outputSections
, isEmpty
);
1170 void Writer::assignOutputSectionIndices() {
1171 // Assign final output section indices, and assign each chunk to its output
1174 for (OutputSection
*os
: ctx
.outputSections
) {
1175 os
->sectionIndex
= idx
;
1176 for (Chunk
*c
: os
->chunks
)
1177 c
->setOutputSectionIdx(idx
);
1181 // Merge chunks are containers of chunks, so assign those an output section
1183 for (MergeChunk
*mc
: ctx
.mergeChunkInstances
)
1185 for (SectionChunk
*sc
: mc
->sections
)
1187 sc
->setOutputSectionIdx(mc
->getOutputSectionIdx());
1190 size_t Writer::addEntryToStringTable(StringRef str
) {
1191 assert(str
.size() > COFF::NameSize
);
1192 size_t offsetOfEntry
= strtab
.size() + 4; // +4 for the size field
1193 strtab
.insert(strtab
.end(), str
.begin(), str
.end());
1194 strtab
.push_back('\0');
1195 return offsetOfEntry
;
1198 std::optional
<coff_symbol16
> Writer::createSymbol(Defined
*def
) {
1200 switch (def
->kind()) {
1201 case Symbol::DefinedAbsoluteKind
: {
1202 auto *da
= dyn_cast
<DefinedAbsolute
>(def
);
1203 // Note: COFF symbol can only store 32-bit values, so 64-bit absolute
1204 // values will be truncated.
1205 sym
.Value
= da
->getVA();
1206 sym
.SectionNumber
= IMAGE_SYM_ABSOLUTE
;
1210 // Don't write symbols that won't be written to the output to the symbol
1212 // We also try to write DefinedSynthetic as a normal symbol. Some of these
1213 // symbols do point to an actual chunk, like __safe_se_handler_table. Others
1214 // like __ImageBase are outside of sections and thus cannot be represented.
1215 Chunk
*c
= def
->getChunk();
1217 return std::nullopt
;
1218 OutputSection
*os
= ctx
.getOutputSection(c
);
1220 return std::nullopt
;
1222 sym
.Value
= def
->getRVA() - os
->getRVA();
1223 sym
.SectionNumber
= os
->sectionIndex
;
1228 // Symbols that are runtime pseudo relocations don't point to the actual
1229 // symbol data itself (as they are imported), but points to the IAT entry
1230 // instead. Avoid emitting them to the symbol table, as they can confuse
1232 if (def
->isRuntimePseudoReloc
)
1233 return std::nullopt
;
1235 StringRef name
= def
->getName();
1236 if (name
.size() > COFF::NameSize
) {
1237 sym
.Name
.Offset
.Zeroes
= 0;
1238 sym
.Name
.Offset
.Offset
= addEntryToStringTable(name
);
1240 memset(sym
.Name
.ShortName
, 0, COFF::NameSize
);
1241 memcpy(sym
.Name
.ShortName
, name
.data(), name
.size());
1244 if (auto *d
= dyn_cast
<DefinedCOFF
>(def
)) {
1245 COFFSymbolRef ref
= d
->getCOFFSymbol();
1246 sym
.Type
= ref
.getType();
1247 sym
.StorageClass
= ref
.getStorageClass();
1248 } else if (def
->kind() == Symbol::DefinedImportThunkKind
) {
1249 sym
.Type
= (IMAGE_SYM_DTYPE_FUNCTION
<< SCT_COMPLEX_TYPE_SHIFT
) |
1250 IMAGE_SYM_TYPE_NULL
;
1251 sym
.StorageClass
= IMAGE_SYM_CLASS_EXTERNAL
;
1253 sym
.Type
= IMAGE_SYM_TYPE_NULL
;
1254 sym
.StorageClass
= IMAGE_SYM_CLASS_EXTERNAL
;
1256 sym
.NumberOfAuxSymbols
= 0;
1260 void Writer::createSymbolAndStringTable() {
1261 // PE/COFF images are limited to 8 byte section names. Longer names can be
1262 // supported by writing a non-standard string table, but this string table is
1263 // not mapped at runtime and the long names will therefore be inaccessible.
1264 // link.exe always truncates section names to 8 bytes, whereas binutils always
1265 // preserves long section names via the string table. LLD adopts a hybrid
1266 // solution where discardable sections have long names preserved and
1267 // non-discardable sections have their names truncated, to ensure that any
1268 // section which is mapped at runtime also has its name mapped at runtime.
1269 for (OutputSection
*sec
: ctx
.outputSections
) {
1270 if (sec
->name
.size() <= COFF::NameSize
)
1272 if ((sec
->header
.Characteristics
& IMAGE_SCN_MEM_DISCARDABLE
) == 0)
1274 if (ctx
.config
.warnLongSectionNames
) {
1275 warn("section name " + sec
->name
+
1276 " is longer than 8 characters and will use a non-standard string "
1279 sec
->setStringTableOff(addEntryToStringTable(sec
->name
));
1282 if (ctx
.config
.debugDwarf
|| ctx
.config
.debugSymtab
) {
1283 for (ObjFile
*file
: ctx
.objFileInstances
) {
1284 for (Symbol
*b
: file
->getSymbols()) {
1285 auto *d
= dyn_cast_or_null
<Defined
>(b
);
1286 if (!d
|| d
->writtenToSymtab
)
1288 d
->writtenToSymtab
= true;
1289 if (auto *dc
= dyn_cast_or_null
<DefinedCOFF
>(d
)) {
1290 COFFSymbolRef symRef
= dc
->getCOFFSymbol();
1291 if (symRef
.isSectionDefinition() ||
1292 symRef
.getStorageClass() == COFF::IMAGE_SYM_CLASS_LABEL
)
1296 if (std::optional
<coff_symbol16
> sym
= createSymbol(d
))
1297 outputSymtab
.push_back(*sym
);
1299 if (auto *dthunk
= dyn_cast
<DefinedImportThunk
>(d
)) {
1300 if (!dthunk
->wrappedSym
->writtenToSymtab
) {
1301 dthunk
->wrappedSym
->writtenToSymtab
= true;
1302 if (std::optional
<coff_symbol16
> sym
=
1303 createSymbol(dthunk
->wrappedSym
))
1304 outputSymtab
.push_back(*sym
);
1311 if (outputSymtab
.empty() && strtab
.empty())
1314 // We position the symbol table to be adjacent to the end of the last section.
1315 uint64_t fileOff
= fileSize
;
1316 pointerToSymbolTable
= fileOff
;
1317 fileOff
+= outputSymtab
.size() * sizeof(coff_symbol16
);
1318 fileOff
+= 4 + strtab
.size();
1319 fileSize
= alignTo(fileOff
, ctx
.config
.fileAlign
);
1322 void Writer::mergeSections() {
1323 if (!pdataSec
->chunks
.empty()) {
1324 firstPdata
= pdataSec
->chunks
.front();
1325 lastPdata
= pdataSec
->chunks
.back();
1328 for (auto &p
: ctx
.config
.merge
) {
1329 StringRef toName
= p
.second
;
1330 if (p
.first
== toName
)
1334 if (!names
.insert(toName
).second
)
1335 fatal("/merge: cycle found for section '" + p
.first
+ "'");
1336 auto i
= ctx
.config
.merge
.find(toName
);
1337 if (i
== ctx
.config
.merge
.end())
1341 OutputSection
*from
= findSection(p
.first
);
1342 OutputSection
*to
= findSection(toName
);
1346 from
->name
= toName
;
1353 // Visits all sections to assign incremental, non-overlapping RVAs and
1355 void Writer::assignAddresses() {
1356 Configuration
*config
= &ctx
.config
;
1358 sizeOfHeaders
= dosStubSize
+ sizeof(PEMagic
) + sizeof(coff_file_header
) +
1359 sizeof(data_directory
) * numberOfDataDirectory
+
1360 sizeof(coff_section
) * ctx
.outputSections
.size();
1362 config
->is64() ? sizeof(pe32plus_header
) : sizeof(pe32_header
);
1363 sizeOfHeaders
= alignTo(sizeOfHeaders
, config
->fileAlign
);
1364 fileSize
= sizeOfHeaders
;
1366 // The first page is kept unmapped.
1367 uint64_t rva
= alignTo(sizeOfHeaders
, config
->align
);
1369 for (OutputSection
*sec
: ctx
.outputSections
) {
1370 if (sec
== relocSec
)
1372 uint64_t rawSize
= 0, virtualSize
= 0;
1373 sec
->header
.VirtualAddress
= rva
;
1375 // If /FUNCTIONPADMIN is used, functions are padded in order to create a
1376 // hotpatchable image.
1377 const bool isCodeSection
=
1378 (sec
->header
.Characteristics
& IMAGE_SCN_CNT_CODE
) &&
1379 (sec
->header
.Characteristics
& IMAGE_SCN_MEM_READ
) &&
1380 (sec
->header
.Characteristics
& IMAGE_SCN_MEM_EXECUTE
);
1381 uint32_t padding
= isCodeSection
? config
->functionPadMin
: 0;
1383 for (Chunk
*c
: sec
->chunks
) {
1384 if (padding
&& c
->isHotPatchable())
1385 virtualSize
+= padding
;
1386 virtualSize
= alignTo(virtualSize
, c
->getAlignment());
1387 c
->setRVA(rva
+ virtualSize
);
1388 virtualSize
+= c
->getSize();
1390 rawSize
= alignTo(virtualSize
, config
->fileAlign
);
1392 if (virtualSize
> UINT32_MAX
)
1393 error("section larger than 4 GiB: " + sec
->name
);
1394 sec
->header
.VirtualSize
= virtualSize
;
1395 sec
->header
.SizeOfRawData
= rawSize
;
1397 sec
->header
.PointerToRawData
= fileSize
;
1398 rva
+= alignTo(virtualSize
, config
->align
);
1399 fileSize
+= alignTo(rawSize
, config
->fileAlign
);
1401 sizeOfImage
= alignTo(rva
, config
->align
);
1403 // Assign addresses to sections in MergeChunks.
1404 for (MergeChunk
*mc
: ctx
.mergeChunkInstances
)
1406 mc
->assignSubsectionRVAs();
1409 template <typename PEHeaderTy
> void Writer::writeHeader() {
1410 // Write DOS header. For backwards compatibility, the first part of a PE/COFF
1411 // executable consists of an MS-DOS MZ executable. If the executable is run
1412 // under DOS, that program gets run (usually to just print an error message).
1413 // When run under Windows, the loader looks at AddressOfNewExeHeader and uses
1414 // the PE header instead.
1415 Configuration
*config
= &ctx
.config
;
1416 uint8_t *buf
= buffer
->getBufferStart();
1417 auto *dos
= reinterpret_cast<dos_header
*>(buf
);
1418 buf
+= sizeof(dos_header
);
1419 dos
->Magic
[0] = 'M';
1420 dos
->Magic
[1] = 'Z';
1421 dos
->UsedBytesInTheLastPage
= dosStubSize
% 512;
1422 dos
->FileSizeInPages
= divideCeil(dosStubSize
, 512);
1423 dos
->HeaderSizeInParagraphs
= sizeof(dos_header
) / 16;
1425 dos
->AddressOfRelocationTable
= sizeof(dos_header
);
1426 dos
->AddressOfNewExeHeader
= dosStubSize
;
1428 // Write DOS program.
1429 memcpy(buf
, dosProgram
, sizeof(dosProgram
));
1430 buf
+= sizeof(dosProgram
);
1433 memcpy(buf
, PEMagic
, sizeof(PEMagic
));
1434 buf
+= sizeof(PEMagic
);
1436 // Write COFF header
1437 auto *coff
= reinterpret_cast<coff_file_header
*>(buf
);
1438 buf
+= sizeof(*coff
);
1439 switch (config
->machine
) {
1441 coff
->Machine
= AMD64
;
1444 coff
->Machine
= ARM64
;
1447 coff
->Machine
= config
->machine
;
1449 coff
->NumberOfSections
= ctx
.outputSections
.size();
1450 coff
->Characteristics
= IMAGE_FILE_EXECUTABLE_IMAGE
;
1451 if (config
->largeAddressAware
)
1452 coff
->Characteristics
|= IMAGE_FILE_LARGE_ADDRESS_AWARE
;
1453 if (!config
->is64())
1454 coff
->Characteristics
|= IMAGE_FILE_32BIT_MACHINE
;
1456 coff
->Characteristics
|= IMAGE_FILE_DLL
;
1457 if (config
->driverUponly
)
1458 coff
->Characteristics
|= IMAGE_FILE_UP_SYSTEM_ONLY
;
1459 if (!config
->relocatable
)
1460 coff
->Characteristics
|= IMAGE_FILE_RELOCS_STRIPPED
;
1461 if (config
->swaprunCD
)
1462 coff
->Characteristics
|= IMAGE_FILE_REMOVABLE_RUN_FROM_SWAP
;
1463 if (config
->swaprunNet
)
1464 coff
->Characteristics
|= IMAGE_FILE_NET_RUN_FROM_SWAP
;
1465 coff
->SizeOfOptionalHeader
=
1466 sizeof(PEHeaderTy
) + sizeof(data_directory
) * numberOfDataDirectory
;
1469 auto *pe
= reinterpret_cast<PEHeaderTy
*>(buf
);
1471 pe
->Magic
= config
->is64() ? PE32Header::PE32_PLUS
: PE32Header::PE32
;
1473 // If {Major,Minor}LinkerVersion is left at 0.0, then for some
1474 // reason signing the resulting PE file with Authenticode produces a
1475 // signature that fails to validate on Windows 7 (but is OK on 10).
1476 // Set it to 14.0, which is what VS2015 outputs, and which avoids
1478 pe
->MajorLinkerVersion
= 14;
1479 pe
->MinorLinkerVersion
= 0;
1481 pe
->ImageBase
= config
->imageBase
;
1482 pe
->SectionAlignment
= config
->align
;
1483 pe
->FileAlignment
= config
->fileAlign
;
1484 pe
->MajorImageVersion
= config
->majorImageVersion
;
1485 pe
->MinorImageVersion
= config
->minorImageVersion
;
1486 pe
->MajorOperatingSystemVersion
= config
->majorOSVersion
;
1487 pe
->MinorOperatingSystemVersion
= config
->minorOSVersion
;
1488 pe
->MajorSubsystemVersion
= config
->majorSubsystemVersion
;
1489 pe
->MinorSubsystemVersion
= config
->minorSubsystemVersion
;
1490 pe
->Subsystem
= config
->subsystem
;
1491 pe
->SizeOfImage
= sizeOfImage
;
1492 pe
->SizeOfHeaders
= sizeOfHeaders
;
1493 if (!config
->noEntry
) {
1494 Defined
*entry
= cast
<Defined
>(config
->entry
);
1495 pe
->AddressOfEntryPoint
= entry
->getRVA();
1496 // Pointer to thumb code must have the LSB set, so adjust it.
1497 if (config
->machine
== ARMNT
)
1498 pe
->AddressOfEntryPoint
|= 1;
1500 pe
->SizeOfStackReserve
= config
->stackReserve
;
1501 pe
->SizeOfStackCommit
= config
->stackCommit
;
1502 pe
->SizeOfHeapReserve
= config
->heapReserve
;
1503 pe
->SizeOfHeapCommit
= config
->heapCommit
;
1504 if (config
->appContainer
)
1505 pe
->DLLCharacteristics
|= IMAGE_DLL_CHARACTERISTICS_APPCONTAINER
;
1506 if (config
->driverWdm
)
1507 pe
->DLLCharacteristics
|= IMAGE_DLL_CHARACTERISTICS_WDM_DRIVER
;
1508 if (config
->dynamicBase
)
1509 pe
->DLLCharacteristics
|= IMAGE_DLL_CHARACTERISTICS_DYNAMIC_BASE
;
1510 if (config
->highEntropyVA
)
1511 pe
->DLLCharacteristics
|= IMAGE_DLL_CHARACTERISTICS_HIGH_ENTROPY_VA
;
1512 if (!config
->allowBind
)
1513 pe
->DLLCharacteristics
|= IMAGE_DLL_CHARACTERISTICS_NO_BIND
;
1514 if (config
->nxCompat
)
1515 pe
->DLLCharacteristics
|= IMAGE_DLL_CHARACTERISTICS_NX_COMPAT
;
1516 if (!config
->allowIsolation
)
1517 pe
->DLLCharacteristics
|= IMAGE_DLL_CHARACTERISTICS_NO_ISOLATION
;
1518 if (config
->guardCF
!= GuardCFLevel::Off
)
1519 pe
->DLLCharacteristics
|= IMAGE_DLL_CHARACTERISTICS_GUARD_CF
;
1520 if (config
->integrityCheck
)
1521 pe
->DLLCharacteristics
|= IMAGE_DLL_CHARACTERISTICS_FORCE_INTEGRITY
;
1522 if (setNoSEHCharacteristic
|| config
->noSEH
)
1523 pe
->DLLCharacteristics
|= IMAGE_DLL_CHARACTERISTICS_NO_SEH
;
1524 if (config
->terminalServerAware
)
1525 pe
->DLLCharacteristics
|= IMAGE_DLL_CHARACTERISTICS_TERMINAL_SERVER_AWARE
;
1526 pe
->NumberOfRvaAndSize
= numberOfDataDirectory
;
1527 if (textSec
->getVirtualSize()) {
1528 pe
->BaseOfCode
= textSec
->getRVA();
1529 pe
->SizeOfCode
= textSec
->getRawSize();
1531 pe
->SizeOfInitializedData
= getSizeOfInitializedData();
1533 // Write data directory
1534 auto *dir
= reinterpret_cast<data_directory
*>(buf
);
1535 buf
+= sizeof(*dir
) * numberOfDataDirectory
;
1537 dir
[EXPORT_TABLE
].RelativeVirtualAddress
= edataStart
->getRVA();
1538 dir
[EXPORT_TABLE
].Size
=
1539 edataEnd
->getRVA() + edataEnd
->getSize() - edataStart
->getRVA();
1541 if (importTableStart
) {
1542 dir
[IMPORT_TABLE
].RelativeVirtualAddress
= importTableStart
->getRVA();
1543 dir
[IMPORT_TABLE
].Size
= importTableSize
;
1546 dir
[IAT
].RelativeVirtualAddress
= iatStart
->getRVA();
1547 dir
[IAT
].Size
= iatSize
;
1549 if (rsrcSec
->getVirtualSize()) {
1550 dir
[RESOURCE_TABLE
].RelativeVirtualAddress
= rsrcSec
->getRVA();
1551 dir
[RESOURCE_TABLE
].Size
= rsrcSec
->getVirtualSize();
1554 dir
[EXCEPTION_TABLE
].RelativeVirtualAddress
= firstPdata
->getRVA();
1555 dir
[EXCEPTION_TABLE
].Size
=
1556 lastPdata
->getRVA() + lastPdata
->getSize() - firstPdata
->getRVA();
1558 if (relocSec
->getVirtualSize()) {
1559 dir
[BASE_RELOCATION_TABLE
].RelativeVirtualAddress
= relocSec
->getRVA();
1560 dir
[BASE_RELOCATION_TABLE
].Size
= relocSec
->getVirtualSize();
1562 if (Symbol
*sym
= ctx
.symtab
.findUnderscore("_tls_used")) {
1563 if (Defined
*b
= dyn_cast
<Defined
>(sym
)) {
1564 dir
[TLS_TABLE
].RelativeVirtualAddress
= b
->getRVA();
1565 dir
[TLS_TABLE
].Size
= config
->is64()
1566 ? sizeof(object::coff_tls_directory64
)
1567 : sizeof(object::coff_tls_directory32
);
1570 if (debugDirectory
) {
1571 dir
[DEBUG_DIRECTORY
].RelativeVirtualAddress
= debugDirectory
->getRVA();
1572 dir
[DEBUG_DIRECTORY
].Size
= debugDirectory
->getSize();
1574 if (Symbol
*sym
= ctx
.symtab
.findUnderscore("_load_config_used")) {
1575 if (auto *b
= dyn_cast
<DefinedRegular
>(sym
)) {
1576 SectionChunk
*sc
= b
->getChunk();
1577 assert(b
->getRVA() >= sc
->getRVA());
1578 uint64_t offsetInChunk
= b
->getRVA() - sc
->getRVA();
1579 if (!sc
->hasData
|| offsetInChunk
+ 4 > sc
->getSize())
1580 fatal("_load_config_used is malformed");
1582 ArrayRef
<uint8_t> secContents
= sc
->getContents();
1583 uint32_t loadConfigSize
=
1584 *reinterpret_cast<const ulittle32_t
*>(&secContents
[offsetInChunk
]);
1585 if (offsetInChunk
+ loadConfigSize
> sc
->getSize())
1586 fatal("_load_config_used is too large");
1587 dir
[LOAD_CONFIG_TABLE
].RelativeVirtualAddress
= b
->getRVA();
1588 dir
[LOAD_CONFIG_TABLE
].Size
= loadConfigSize
;
1591 if (!delayIdata
.empty()) {
1592 dir
[DELAY_IMPORT_DESCRIPTOR
].RelativeVirtualAddress
=
1593 delayIdata
.getDirRVA();
1594 dir
[DELAY_IMPORT_DESCRIPTOR
].Size
= delayIdata
.getDirSize();
1597 // Write section table
1598 for (OutputSection
*sec
: ctx
.outputSections
) {
1599 sec
->writeHeaderTo(buf
, config
->debug
);
1600 buf
+= sizeof(coff_section
);
1602 sectionTable
= ArrayRef
<uint8_t>(
1603 buf
- ctx
.outputSections
.size() * sizeof(coff_section
), buf
);
1605 if (outputSymtab
.empty() && strtab
.empty())
1608 coff
->PointerToSymbolTable
= pointerToSymbolTable
;
1609 uint32_t numberOfSymbols
= outputSymtab
.size();
1610 coff
->NumberOfSymbols
= numberOfSymbols
;
1611 auto *symbolTable
= reinterpret_cast<coff_symbol16
*>(
1612 buffer
->getBufferStart() + coff
->PointerToSymbolTable
);
1613 for (size_t i
= 0; i
!= numberOfSymbols
; ++i
)
1614 symbolTable
[i
] = outputSymtab
[i
];
1615 // Create the string table, it follows immediately after the symbol table.
1616 // The first 4 bytes is length including itself.
1617 buf
= reinterpret_cast<uint8_t *>(&symbolTable
[numberOfSymbols
]);
1618 write32le(buf
, strtab
.size() + 4);
1619 if (!strtab
.empty())
1620 memcpy(buf
+ 4, strtab
.data(), strtab
.size());
1623 void Writer::openFile(StringRef path
) {
1625 FileOutputBuffer::create(path
, fileSize
, FileOutputBuffer::F_executable
),
1626 "failed to open " + path
);
1629 void Writer::createSEHTable() {
1630 SymbolRVASet handlers
;
1631 for (ObjFile
*file
: ctx
.objFileInstances
) {
1632 if (!file
->hasSafeSEH())
1633 error("/safeseh: " + file
->getName() + " is not compatible with SEH");
1634 markSymbolsForRVATable(file
, file
->getSXDataChunks(), handlers
);
1637 // Set the "no SEH" characteristic if there really were no handlers, or if
1638 // there is no load config object to point to the table of handlers.
1639 setNoSEHCharacteristic
=
1640 handlers
.empty() || !ctx
.symtab
.findUnderscore("_load_config_used");
1642 maybeAddRVATable(std::move(handlers
), "__safe_se_handler_table",
1643 "__safe_se_handler_count");
1646 // Add a symbol to an RVA set. Two symbols may have the same RVA, but an RVA set
1647 // cannot contain duplicates. Therefore, the set is uniqued by Chunk and the
1648 // symbol's offset into that Chunk.
1649 static void addSymbolToRVASet(SymbolRVASet
&rvaSet
, Defined
*s
) {
1650 Chunk
*c
= s
->getChunk();
1651 if (auto *sc
= dyn_cast
<SectionChunk
>(c
))
1652 c
= sc
->repl
; // Look through ICF replacement.
1653 uint32_t off
= s
->getRVA() - (c
? c
->getRVA() : 0);
1654 rvaSet
.insert({c
, off
});
1657 // Given a symbol, add it to the GFIDs table if it is a live, defined, function
1658 // symbol in an executable section.
1659 static void maybeAddAddressTakenFunction(SymbolRVASet
&addressTakenSyms
,
1664 switch (s
->kind()) {
1665 case Symbol::DefinedLocalImportKind
:
1666 case Symbol::DefinedImportDataKind
:
1667 // Defines an __imp_ pointer, so it is data, so it is ignored.
1669 case Symbol::DefinedCommonKind
:
1670 // Common is always data, so it is ignored.
1672 case Symbol::DefinedAbsoluteKind
:
1673 case Symbol::DefinedSyntheticKind
:
1674 // Absolute is never code, synthetic generally isn't and usually isn't
1677 case Symbol::LazyArchiveKind
:
1678 case Symbol::LazyObjectKind
:
1679 case Symbol::LazyDLLSymbolKind
:
1680 case Symbol::UndefinedKind
:
1681 // Undefined symbols resolve to zero, so they don't have an RVA. Lazy
1682 // symbols shouldn't have relocations.
1685 case Symbol::DefinedImportThunkKind
:
1686 // Thunks are always code, include them.
1687 addSymbolToRVASet(addressTakenSyms
, cast
<Defined
>(s
));
1690 case Symbol::DefinedRegularKind
: {
1691 // This is a regular, defined, symbol from a COFF file. Mark the symbol as
1692 // address taken if the symbol type is function and it's in an executable
1694 auto *d
= cast
<DefinedRegular
>(s
);
1695 if (d
->getCOFFSymbol().getComplexType() == COFF::IMAGE_SYM_DTYPE_FUNCTION
) {
1696 SectionChunk
*sc
= dyn_cast
<SectionChunk
>(d
->getChunk());
1697 if (sc
&& sc
->live
&&
1698 sc
->getOutputCharacteristics() & IMAGE_SCN_MEM_EXECUTE
)
1699 addSymbolToRVASet(addressTakenSyms
, d
);
1706 // Visit all relocations from all section contributions of this object file and
1707 // mark the relocation target as address-taken.
1708 void Writer::markSymbolsWithRelocations(ObjFile
*file
,
1709 SymbolRVASet
&usedSymbols
) {
1710 for (Chunk
*c
: file
->getChunks()) {
1711 // We only care about live section chunks. Common chunks and other chunks
1712 // don't generally contain relocations.
1713 SectionChunk
*sc
= dyn_cast
<SectionChunk
>(c
);
1714 if (!sc
|| !sc
->live
)
1717 for (const coff_relocation
&reloc
: sc
->getRelocs()) {
1718 if (ctx
.config
.machine
== I386
&&
1719 reloc
.Type
== COFF::IMAGE_REL_I386_REL32
)
1720 // Ignore relative relocations on x86. On x86_64 they can't be ignored
1721 // since they're also used to compute absolute addresses.
1724 Symbol
*ref
= sc
->file
->getSymbol(reloc
.SymbolTableIndex
);
1725 maybeAddAddressTakenFunction(usedSymbols
, ref
);
1730 // Create the guard function id table. This is a table of RVAs of all
1731 // address-taken functions. It is sorted and uniqued, just like the safe SEH
1733 void Writer::createGuardCFTables() {
1734 Configuration
*config
= &ctx
.config
;
1736 SymbolRVASet addressTakenSyms
;
1737 SymbolRVASet giatsRVASet
;
1738 std::vector
<Symbol
*> giatsSymbols
;
1739 SymbolRVASet longJmpTargets
;
1740 SymbolRVASet ehContTargets
;
1741 for (ObjFile
*file
: ctx
.objFileInstances
) {
1742 // If the object was compiled with /guard:cf, the address taken symbols
1743 // are in .gfids$y sections, and the longjmp targets are in .gljmp$y
1744 // sections. If the object was not compiled with /guard:cf, we assume there
1745 // were no setjmp targets, and that all code symbols with relocations are
1746 // possibly address-taken.
1747 if (file
->hasGuardCF()) {
1748 markSymbolsForRVATable(file
, file
->getGuardFidChunks(), addressTakenSyms
);
1749 markSymbolsForRVATable(file
, file
->getGuardIATChunks(), giatsRVASet
);
1750 getSymbolsFromSections(file
, file
->getGuardIATChunks(), giatsSymbols
);
1751 markSymbolsForRVATable(file
, file
->getGuardLJmpChunks(), longJmpTargets
);
1753 markSymbolsWithRelocations(file
, addressTakenSyms
);
1755 // If the object was compiled with /guard:ehcont, the ehcont targets are in
1756 // .gehcont$y sections.
1757 if (file
->hasGuardEHCont())
1758 markSymbolsForRVATable(file
, file
->getGuardEHContChunks(), ehContTargets
);
1761 // Mark the image entry as address-taken.
1763 maybeAddAddressTakenFunction(addressTakenSyms
, config
->entry
);
1765 // Mark exported symbols in executable sections as address-taken.
1766 for (Export
&e
: config
->exports
)
1767 maybeAddAddressTakenFunction(addressTakenSyms
, e
.sym
);
1769 // For each entry in the .giats table, check if it has a corresponding load
1770 // thunk (e.g. because the DLL that defines it will be delay-loaded) and, if
1771 // so, add the load thunk to the address taken (.gfids) table.
1772 for (Symbol
*s
: giatsSymbols
) {
1773 if (auto *di
= dyn_cast
<DefinedImportData
>(s
)) {
1774 if (di
->loadThunkSym
)
1775 addSymbolToRVASet(addressTakenSyms
, di
->loadThunkSym
);
1779 // Ensure sections referenced in the gfid table are 16-byte aligned.
1780 for (const ChunkAndOffset
&c
: addressTakenSyms
)
1781 if (c
.inputChunk
->getAlignment() < 16)
1782 c
.inputChunk
->setAlignment(16);
1784 maybeAddRVATable(std::move(addressTakenSyms
), "__guard_fids_table",
1785 "__guard_fids_count");
1787 // Add the Guard Address Taken IAT Entry Table (.giats).
1788 maybeAddRVATable(std::move(giatsRVASet
), "__guard_iat_table",
1789 "__guard_iat_count");
1791 // Add the longjmp target table unless the user told us not to.
1792 if (config
->guardCF
& GuardCFLevel::LongJmp
)
1793 maybeAddRVATable(std::move(longJmpTargets
), "__guard_longjmp_table",
1794 "__guard_longjmp_count");
1796 // Add the ehcont target table unless the user told us not to.
1797 if (config
->guardCF
& GuardCFLevel::EHCont
)
1798 maybeAddRVATable(std::move(ehContTargets
), "__guard_eh_cont_table",
1799 "__guard_eh_cont_count");
1801 // Set __guard_flags, which will be used in the load config to indicate that
1802 // /guard:cf was enabled.
1803 uint32_t guardFlags
= uint32_t(GuardFlags::CF_INSTRUMENTED
) |
1804 uint32_t(GuardFlags::CF_FUNCTION_TABLE_PRESENT
);
1805 if (config
->guardCF
& GuardCFLevel::LongJmp
)
1806 guardFlags
|= uint32_t(GuardFlags::CF_LONGJUMP_TABLE_PRESENT
);
1807 if (config
->guardCF
& GuardCFLevel::EHCont
)
1808 guardFlags
|= uint32_t(GuardFlags::EH_CONTINUATION_TABLE_PRESENT
);
1809 Symbol
*flagSym
= ctx
.symtab
.findUnderscore("__guard_flags");
1810 cast
<DefinedAbsolute
>(flagSym
)->setVA(guardFlags
);
1813 // Take a list of input sections containing symbol table indices and add those
1814 // symbols to a vector. The challenge is that symbol RVAs are not known and
1815 // depend on the table size, so we can't directly build a set of integers.
1816 void Writer::getSymbolsFromSections(ObjFile
*file
,
1817 ArrayRef
<SectionChunk
*> symIdxChunks
,
1818 std::vector
<Symbol
*> &symbols
) {
1819 for (SectionChunk
*c
: symIdxChunks
) {
1820 // Skip sections discarded by linker GC. This comes up when a .gfids section
1821 // is associated with something like a vtable and the vtable is discarded.
1822 // In this case, the associated gfids section is discarded, and we don't
1823 // mark the virtual member functions as address-taken by the vtable.
1827 // Validate that the contents look like symbol table indices.
1828 ArrayRef
<uint8_t> data
= c
->getContents();
1829 if (data
.size() % 4 != 0) {
1830 warn("ignoring " + c
->getSectionName() +
1831 " symbol table index section in object " + toString(file
));
1835 // Read each symbol table index and check if that symbol was included in the
1836 // final link. If so, add it to the vector of symbols.
1837 ArrayRef
<ulittle32_t
> symIndices(
1838 reinterpret_cast<const ulittle32_t
*>(data
.data()), data
.size() / 4);
1839 ArrayRef
<Symbol
*> objSymbols
= file
->getSymbols();
1840 for (uint32_t symIndex
: symIndices
) {
1841 if (symIndex
>= objSymbols
.size()) {
1842 warn("ignoring invalid symbol table index in section " +
1843 c
->getSectionName() + " in object " + toString(file
));
1846 if (Symbol
*s
= objSymbols
[symIndex
]) {
1848 symbols
.push_back(cast
<Symbol
>(s
));
1854 // Take a list of input sections containing symbol table indices and add those
1855 // symbols to an RVA table.
1856 void Writer::markSymbolsForRVATable(ObjFile
*file
,
1857 ArrayRef
<SectionChunk
*> symIdxChunks
,
1858 SymbolRVASet
&tableSymbols
) {
1859 std::vector
<Symbol
*> syms
;
1860 getSymbolsFromSections(file
, symIdxChunks
, syms
);
1862 for (Symbol
*s
: syms
)
1863 addSymbolToRVASet(tableSymbols
, cast
<Defined
>(s
));
1866 // Replace the absolute table symbol with a synthetic symbol pointing to
1867 // tableChunk so that we can emit base relocations for it and resolve section
1868 // relative relocations.
1869 void Writer::maybeAddRVATable(SymbolRVASet tableSymbols
, StringRef tableSym
,
1870 StringRef countSym
, bool hasFlag
) {
1871 if (tableSymbols
.empty())
1874 NonSectionChunk
*tableChunk
;
1876 tableChunk
= make
<RVAFlagTableChunk
>(std::move(tableSymbols
));
1878 tableChunk
= make
<RVATableChunk
>(std::move(tableSymbols
));
1879 rdataSec
->addChunk(tableChunk
);
1881 Symbol
*t
= ctx
.symtab
.findUnderscore(tableSym
);
1882 Symbol
*c
= ctx
.symtab
.findUnderscore(countSym
);
1883 replaceSymbol
<DefinedSynthetic
>(t
, t
->getName(), tableChunk
);
1884 cast
<DefinedAbsolute
>(c
)->setVA(tableChunk
->getSize() / (hasFlag
? 5 : 4));
1887 // MinGW specific. Gather all relocations that are imported from a DLL even
1888 // though the code didn't expect it to, produce the table that the runtime
1889 // uses for fixing them up, and provide the synthetic symbols that the
1890 // runtime uses for finding the table.
1891 void Writer::createRuntimePseudoRelocs() {
1892 std::vector
<RuntimePseudoReloc
> rels
;
1894 for (Chunk
*c
: ctx
.symtab
.getChunks()) {
1895 auto *sc
= dyn_cast
<SectionChunk
>(c
);
1896 if (!sc
|| !sc
->live
)
1898 sc
->getRuntimePseudoRelocs(rels
);
1901 if (!ctx
.config
.pseudoRelocs
) {
1902 // Not writing any pseudo relocs; if some were needed, error out and
1903 // indicate what required them.
1904 for (const RuntimePseudoReloc
&rpr
: rels
)
1905 error("automatic dllimport of " + rpr
.sym
->getName() + " in " +
1906 toString(rpr
.target
->file
) + " requires pseudo relocations");
1911 log("Writing " + Twine(rels
.size()) + " runtime pseudo relocations");
1912 PseudoRelocTableChunk
*table
= make
<PseudoRelocTableChunk
>(rels
);
1913 rdataSec
->addChunk(table
);
1914 EmptyChunk
*endOfList
= make
<EmptyChunk
>();
1915 rdataSec
->addChunk(endOfList
);
1917 Symbol
*headSym
= ctx
.symtab
.findUnderscore("__RUNTIME_PSEUDO_RELOC_LIST__");
1919 ctx
.symtab
.findUnderscore("__RUNTIME_PSEUDO_RELOC_LIST_END__");
1920 replaceSymbol
<DefinedSynthetic
>(headSym
, headSym
->getName(), table
);
1921 replaceSymbol
<DefinedSynthetic
>(endSym
, endSym
->getName(), endOfList
);
1925 // The MinGW .ctors and .dtors lists have sentinels at each end;
1926 // a (uintptr_t)-1 at the start and a (uintptr_t)0 at the end.
1927 // There's a symbol pointing to the start sentinel pointer, __CTOR_LIST__
1928 // and __DTOR_LIST__ respectively.
1929 void Writer::insertCtorDtorSymbols() {
1930 AbsolutePointerChunk
*ctorListHead
= make
<AbsolutePointerChunk
>(ctx
, -1);
1931 AbsolutePointerChunk
*ctorListEnd
= make
<AbsolutePointerChunk
>(ctx
, 0);
1932 AbsolutePointerChunk
*dtorListHead
= make
<AbsolutePointerChunk
>(ctx
, -1);
1933 AbsolutePointerChunk
*dtorListEnd
= make
<AbsolutePointerChunk
>(ctx
, 0);
1934 ctorsSec
->insertChunkAtStart(ctorListHead
);
1935 ctorsSec
->addChunk(ctorListEnd
);
1936 dtorsSec
->insertChunkAtStart(dtorListHead
);
1937 dtorsSec
->addChunk(dtorListEnd
);
1939 Symbol
*ctorListSym
= ctx
.symtab
.findUnderscore("__CTOR_LIST__");
1940 Symbol
*dtorListSym
= ctx
.symtab
.findUnderscore("__DTOR_LIST__");
1941 replaceSymbol
<DefinedSynthetic
>(ctorListSym
, ctorListSym
->getName(),
1943 replaceSymbol
<DefinedSynthetic
>(dtorListSym
, dtorListSym
->getName(),
1947 // Handles /section options to allow users to overwrite
1948 // section attributes.
1949 void Writer::setSectionPermissions() {
1950 for (auto &p
: ctx
.config
.section
) {
1951 StringRef name
= p
.first
;
1952 uint32_t perm
= p
.second
;
1953 for (OutputSection
*sec
: ctx
.outputSections
)
1954 if (sec
->name
== name
)
1955 sec
->setPermissions(perm
);
1959 // Write section contents to a mmap'ed file.
1960 void Writer::writeSections() {
1961 uint8_t *buf
= buffer
->getBufferStart();
1962 for (OutputSection
*sec
: ctx
.outputSections
) {
1963 uint8_t *secBuf
= buf
+ sec
->getFileOff();
1964 // Fill gaps between functions in .text with INT3 instructions
1965 // instead of leaving as NUL bytes (which can be interpreted as
1966 // ADD instructions).
1967 if ((sec
->header
.Characteristics
& IMAGE_SCN_CNT_CODE
) &&
1968 (ctx
.config
.machine
== AMD64
|| ctx
.config
.machine
== I386
))
1969 memset(secBuf
, 0xCC, sec
->getRawSize());
1970 parallelForEach(sec
->chunks
, [&](Chunk
*c
) {
1971 c
->writeTo(secBuf
+ c
->getRVA() - sec
->getRVA());
1976 void Writer::writeBuildId() {
1977 // There are two important parts to the build ID.
1978 // 1) If building with debug info, the COFF debug directory contains a
1979 // timestamp as well as a Guid and Age of the PDB.
1980 // 2) In all cases, the PE COFF file header also contains a timestamp.
1981 // For reproducibility, instead of a timestamp we want to use a hash of the
1983 Configuration
*config
= &ctx
.config
;
1985 if (config
->debug
) {
1986 assert(buildId
&& "BuildId is not set!");
1987 // BuildId->BuildId was filled in when the PDB was written.
1990 // At this point the only fields in the COFF file which remain unset are the
1991 // "timestamp" in the COFF file header, and the ones in the coff debug
1992 // directory. Now we can hash the file and write that hash to the various
1993 // timestamp fields in the file.
1994 StringRef
outputFileData(
1995 reinterpret_cast<const char *>(buffer
->getBufferStart()),
1996 buffer
->getBufferSize());
1998 uint32_t timestamp
= config
->timestamp
;
2000 bool generateSyntheticBuildId
=
2001 config
->mingw
&& config
->debug
&& config
->pdbPath
.empty();
2003 if (config
->repro
|| generateSyntheticBuildId
)
2004 hash
= xxh3_64bits(outputFileData
);
2007 timestamp
= static_cast<uint32_t>(hash
);
2009 if (generateSyntheticBuildId
) {
2010 // For MinGW builds without a PDB file, we still generate a build id
2011 // to allow associating a crash dump to the executable.
2012 buildId
->buildId
->PDB70
.CVSignature
= OMF::Signature::PDB70
;
2013 buildId
->buildId
->PDB70
.Age
= 1;
2014 memcpy(buildId
->buildId
->PDB70
.Signature
, &hash
, 8);
2015 // xxhash only gives us 8 bytes, so put some fixed data in the other half.
2016 memcpy(&buildId
->buildId
->PDB70
.Signature
[8], "LLD PDB.", 8);
2020 debugDirectory
->setTimeDateStamp(timestamp
);
2022 uint8_t *buf
= buffer
->getBufferStart();
2023 buf
+= dosStubSize
+ sizeof(PEMagic
);
2024 object::coff_file_header
*coffHeader
=
2025 reinterpret_cast<coff_file_header
*>(buf
);
2026 coffHeader
->TimeDateStamp
= timestamp
;
2029 // Sort .pdata section contents according to PE/COFF spec 5.5.
2030 void Writer::sortExceptionTable() {
2033 // We assume .pdata contains function table entries only.
2034 auto bufAddr
= [&](Chunk
*c
) {
2035 OutputSection
*os
= ctx
.getOutputSection(c
);
2036 return buffer
->getBufferStart() + os
->getFileOff() + c
->getRVA() -
2039 uint8_t *begin
= bufAddr(firstPdata
);
2040 uint8_t *end
= bufAddr(lastPdata
) + lastPdata
->getSize();
2041 if (ctx
.config
.machine
== AMD64
) {
2042 struct Entry
{ ulittle32_t begin
, end
, unwind
; };
2043 if ((end
- begin
) % sizeof(Entry
) != 0) {
2044 fatal("unexpected .pdata size: " + Twine(end
- begin
) +
2045 " is not a multiple of " + Twine(sizeof(Entry
)));
2048 MutableArrayRef
<Entry
>((Entry
*)begin
, (Entry
*)end
),
2049 [](const Entry
&a
, const Entry
&b
) { return a
.begin
< b
.begin
; });
2052 if (ctx
.config
.machine
== ARMNT
|| ctx
.config
.machine
== ARM64
) {
2053 struct Entry
{ ulittle32_t begin
, unwind
; };
2054 if ((end
- begin
) % sizeof(Entry
) != 0) {
2055 fatal("unexpected .pdata size: " + Twine(end
- begin
) +
2056 " is not a multiple of " + Twine(sizeof(Entry
)));
2059 MutableArrayRef
<Entry
>((Entry
*)begin
, (Entry
*)end
),
2060 [](const Entry
&a
, const Entry
&b
) { return a
.begin
< b
.begin
; });
2063 lld::errs() << "warning: don't know how to handle .pdata.\n";
2066 // The CRT section contains, among other things, the array of function
2067 // pointers that initialize every global variable that is not trivially
2068 // constructed. The CRT calls them one after the other prior to invoking
2071 // As per C++ spec, 3.6.2/2.3,
2072 // "Variables with ordered initialization defined within a single
2073 // translation unit shall be initialized in the order of their definitions
2074 // in the translation unit"
2076 // It is therefore critical to sort the chunks containing the function
2077 // pointers in the order that they are listed in the object file (top to
2078 // bottom), otherwise global objects might not be initialized in the
2080 void Writer::sortCRTSectionChunks(std::vector
<Chunk
*> &chunks
) {
2081 auto sectionChunkOrder
= [](const Chunk
*a
, const Chunk
*b
) {
2082 auto sa
= dyn_cast
<SectionChunk
>(a
);
2083 auto sb
= dyn_cast
<SectionChunk
>(b
);
2084 assert(sa
&& sb
&& "Non-section chunks in CRT section!");
2086 StringRef sAObj
= sa
->file
->mb
.getBufferIdentifier();
2087 StringRef sBObj
= sb
->file
->mb
.getBufferIdentifier();
2089 return sAObj
== sBObj
&& sa
->getSectionNumber() < sb
->getSectionNumber();
2091 llvm::stable_sort(chunks
, sectionChunkOrder
);
2093 if (ctx
.config
.verbose
) {
2094 for (auto &c
: chunks
) {
2095 auto sc
= dyn_cast
<SectionChunk
>(c
);
2096 log(" " + sc
->file
->mb
.getBufferIdentifier().str() +
2097 ", SectionID: " + Twine(sc
->getSectionNumber()));
2102 OutputSection
*Writer::findSection(StringRef name
) {
2103 for (OutputSection
*sec
: ctx
.outputSections
)
2104 if (sec
->name
== name
)
2109 uint32_t Writer::getSizeOfInitializedData() {
2111 for (OutputSection
*s
: ctx
.outputSections
)
2112 if (s
->header
.Characteristics
& IMAGE_SCN_CNT_INITIALIZED_DATA
)
2113 res
+= s
->getRawSize();
2117 // Add base relocations to .reloc section.
2118 void Writer::addBaserels() {
2119 if (!ctx
.config
.relocatable
)
2121 relocSec
->chunks
.clear();
2122 std::vector
<Baserel
> v
;
2123 for (OutputSection
*sec
: ctx
.outputSections
) {
2124 if (sec
->header
.Characteristics
& IMAGE_SCN_MEM_DISCARDABLE
)
2126 // Collect all locations for base relocations.
2127 for (Chunk
*c
: sec
->chunks
)
2129 // Add the addresses to .reloc section.
2131 addBaserelBlocks(v
);
2136 // Add addresses to .reloc section. Note that addresses are grouped by page.
2137 void Writer::addBaserelBlocks(std::vector
<Baserel
> &v
) {
2138 const uint32_t mask
= ~uint32_t(pageSize
- 1);
2139 uint32_t page
= v
[0].rva
& mask
;
2140 size_t i
= 0, j
= 1;
2141 for (size_t e
= v
.size(); j
< e
; ++j
) {
2142 uint32_t p
= v
[j
].rva
& mask
;
2145 relocSec
->addChunk(make
<BaserelChunk
>(page
, &v
[i
], &v
[0] + j
));
2151 relocSec
->addChunk(make
<BaserelChunk
>(page
, &v
[i
], &v
[0] + j
));
2154 PartialSection
*Writer::createPartialSection(StringRef name
,
2155 uint32_t outChars
) {
2156 PartialSection
*&pSec
= partialSections
[{name
, outChars
}];
2159 pSec
= make
<PartialSection
>(name
, outChars
);
2163 PartialSection
*Writer::findPartialSection(StringRef name
, uint32_t outChars
) {
2164 auto it
= partialSections
.find({name
, outChars
});
2165 if (it
!= partialSections
.end())
2170 void Writer::fixTlsAlignment() {
2172 dyn_cast_or_null
<Defined
>(ctx
.symtab
.findUnderscore("_tls_used"));
2176 OutputSection
*sec
= ctx
.getOutputSection(tlsSym
->getChunk());
2177 assert(sec
&& tlsSym
->getRVA() >= sec
->getRVA() &&
2178 "no output section for _tls_used");
2180 uint8_t *secBuf
= buffer
->getBufferStart() + sec
->getFileOff();
2181 uint64_t tlsOffset
= tlsSym
->getRVA() - sec
->getRVA();
2182 uint64_t directorySize
= ctx
.config
.is64()
2183 ? sizeof(object::coff_tls_directory64
)
2184 : sizeof(object::coff_tls_directory32
);
2186 if (tlsOffset
+ directorySize
> sec
->getRawSize())
2187 fatal("_tls_used sym is malformed");
2189 if (ctx
.config
.is64()) {
2190 object::coff_tls_directory64
*tlsDir
=
2191 reinterpret_cast<object::coff_tls_directory64
*>(&secBuf
[tlsOffset
]);
2192 tlsDir
->setAlignment(tlsAlignment
);
2194 object::coff_tls_directory32
*tlsDir
=
2195 reinterpret_cast<object::coff_tls_directory32
*>(&secBuf
[tlsOffset
]);
2196 tlsDir
->setAlignment(tlsAlignment
);
2200 void Writer::checkLoadConfig() {
2201 Symbol
*sym
= ctx
.symtab
.findUnderscore("_load_config_used");
2202 auto *b
= cast_if_present
<DefinedRegular
>(sym
);
2204 if (ctx
.config
.guardCF
!= GuardCFLevel::Off
)
2205 warn("Control Flow Guard is enabled but '_load_config_used' is missing");
2209 OutputSection
*sec
= ctx
.getOutputSection(b
->getChunk());
2210 uint8_t *buf
= buffer
->getBufferStart();
2211 uint8_t *secBuf
= buf
+ sec
->getFileOff();
2212 uint8_t *symBuf
= secBuf
+ (b
->getRVA() - sec
->getRVA());
2213 uint32_t expectedAlign
= ctx
.config
.is64() ? 8 : 4;
2214 if (b
->getChunk()->getAlignment() < expectedAlign
)
2215 warn("'_load_config_used' is misaligned (expected alignment to be " +
2216 Twine(expectedAlign
) + " bytes, got " +
2217 Twine(b
->getChunk()->getAlignment()) + " instead)");
2218 else if (!isAligned(Align(expectedAlign
), b
->getRVA()))
2219 warn("'_load_config_used' is misaligned (RVA is 0x" +
2220 Twine::utohexstr(b
->getRVA()) + " not aligned to " +
2221 Twine(expectedAlign
) + " bytes)");
2223 if (ctx
.config
.is64())
2224 checkLoadConfigGuardData(
2225 reinterpret_cast<const coff_load_configuration64
*>(symBuf
));
2227 checkLoadConfigGuardData(
2228 reinterpret_cast<const coff_load_configuration32
*>(symBuf
));
2231 template <typename T
>
2232 void Writer::checkLoadConfigGuardData(const T
*loadConfig
) {
2233 size_t loadConfigSize
= loadConfig
->Size
;
2235 #define RETURN_IF_NOT_CONTAINS(field) \
2236 if (loadConfigSize < offsetof(T, field) + sizeof(T::field)) { \
2237 warn("'_load_config_used' structure too small to include " #field); \
2241 #define IF_CONTAINS(field) \
2242 if (loadConfigSize >= offsetof(T, field) + sizeof(T::field))
2244 #define CHECK_VA(field, sym) \
2245 if (auto *s = dyn_cast<DefinedSynthetic>(ctx.symtab.findUnderscore(sym))) \
2246 if (loadConfig->field != ctx.config.imageBase + s->getRVA()) \
2247 warn(#field " not set correctly in '_load_config_used'");
2249 #define CHECK_ABSOLUTE(field, sym) \
2250 if (auto *s = dyn_cast<DefinedAbsolute>(ctx.symtab.findUnderscore(sym))) \
2251 if (loadConfig->field != s->getVA()) \
2252 warn(#field " not set correctly in '_load_config_used'");
2254 if (ctx
.config
.guardCF
== GuardCFLevel::Off
)
2256 RETURN_IF_NOT_CONTAINS(GuardFlags
)
2257 CHECK_VA(GuardCFFunctionTable
, "__guard_fids_table")
2258 CHECK_ABSOLUTE(GuardCFFunctionCount
, "__guard_fids_count")
2259 CHECK_ABSOLUTE(GuardFlags
, "__guard_flags")
2260 IF_CONTAINS(GuardAddressTakenIatEntryCount
) {
2261 CHECK_VA(GuardAddressTakenIatEntryTable
, "__guard_iat_table")
2262 CHECK_ABSOLUTE(GuardAddressTakenIatEntryCount
, "__guard_iat_count")
2265 if (!(ctx
.config
.guardCF
& GuardCFLevel::LongJmp
))
2267 RETURN_IF_NOT_CONTAINS(GuardLongJumpTargetCount
)
2268 CHECK_VA(GuardLongJumpTargetTable
, "__guard_longjmp_table")
2269 CHECK_ABSOLUTE(GuardLongJumpTargetCount
, "__guard_longjmp_count")
2271 if (!(ctx
.config
.guardCF
& GuardCFLevel::EHCont
))
2273 RETURN_IF_NOT_CONTAINS(GuardEHContinuationCount
)
2274 CHECK_VA(GuardEHContinuationTable
, "__guard_eh_cont_table")
2275 CHECK_ABSOLUTE(GuardEHContinuationCount
, "__guard_eh_cont_count")
2277 #undef RETURN_IF_NOT_CONTAINS
2280 #undef CHECK_ABSOLUTE