1 //===- InstCombineCompares.cpp --------------------------------------------===//
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
7 //===----------------------------------------------------------------------===//
9 // This file implements the visitICmp and visitFCmp functions.
11 //===----------------------------------------------------------------------===//
13 #include "InstCombineInternal.h"
14 #include "llvm/ADT/APSInt.h"
15 #include "llvm/ADT/SetVector.h"
16 #include "llvm/ADT/Statistic.h"
17 #include "llvm/Analysis/CaptureTracking.h"
18 #include "llvm/Analysis/CmpInstAnalysis.h"
19 #include "llvm/Analysis/ConstantFolding.h"
20 #include "llvm/Analysis/InstructionSimplify.h"
21 #include "llvm/Analysis/Utils/Local.h"
22 #include "llvm/Analysis/VectorUtils.h"
23 #include "llvm/IR/ConstantRange.h"
24 #include "llvm/IR/DataLayout.h"
25 #include "llvm/IR/InstrTypes.h"
26 #include "llvm/IR/IntrinsicInst.h"
27 #include "llvm/IR/PatternMatch.h"
28 #include "llvm/Support/KnownBits.h"
29 #include "llvm/Transforms/InstCombine/InstCombiner.h"
33 using namespace PatternMatch
;
35 #define DEBUG_TYPE "instcombine"
37 // How many times is a select replaced by one of its operands?
38 STATISTIC(NumSel
, "Number of select opts");
40 /// Compute Result = In1+In2, returning true if the result overflowed for this
42 static bool addWithOverflow(APInt
&Result
, const APInt
&In1
, const APInt
&In2
,
43 bool IsSigned
= false) {
46 Result
= In1
.sadd_ov(In2
, Overflow
);
48 Result
= In1
.uadd_ov(In2
, Overflow
);
53 /// Compute Result = In1-In2, returning true if the result overflowed for this
55 static bool subWithOverflow(APInt
&Result
, const APInt
&In1
, const APInt
&In2
,
56 bool IsSigned
= false) {
59 Result
= In1
.ssub_ov(In2
, Overflow
);
61 Result
= In1
.usub_ov(In2
, Overflow
);
66 /// Given an icmp instruction, return true if any use of this comparison is a
67 /// branch on sign bit comparison.
68 static bool hasBranchUse(ICmpInst
&I
) {
69 for (auto *U
: I
.users())
70 if (isa
<BranchInst
>(U
))
75 /// Returns true if the exploded icmp can be expressed as a signed comparison
76 /// to zero and updates the predicate accordingly.
77 /// The signedness of the comparison is preserved.
78 /// TODO: Refactor with decomposeBitTestICmp()?
79 static bool isSignTest(ICmpInst::Predicate
&Pred
, const APInt
&C
) {
80 if (!ICmpInst::isSigned(Pred
))
84 return ICmpInst::isRelational(Pred
);
87 if (Pred
== ICmpInst::ICMP_SLT
) {
88 Pred
= ICmpInst::ICMP_SLE
;
91 } else if (C
.isAllOnes()) {
92 if (Pred
== ICmpInst::ICMP_SGT
) {
93 Pred
= ICmpInst::ICMP_SGE
;
101 /// This is called when we see this pattern:
102 /// cmp pred (load (gep GV, ...)), cmpcst
103 /// where GV is a global variable with a constant initializer. Try to simplify
104 /// this into some simple computation that does not need the load. For example
105 /// we can optimize "icmp eq (load (gep "foo", 0, i)), 0" into "icmp eq i, 3".
107 /// If AndCst is non-null, then the loaded value is masked with that constant
108 /// before doing the comparison. This handles cases like "A[i]&4 == 0".
109 Instruction
*InstCombinerImpl::foldCmpLoadFromIndexedGlobal(
110 LoadInst
*LI
, GetElementPtrInst
*GEP
, GlobalVariable
*GV
, CmpInst
&ICI
,
111 ConstantInt
*AndCst
) {
112 if (LI
->isVolatile() || LI
->getType() != GEP
->getResultElementType() ||
113 GV
->getValueType() != GEP
->getSourceElementType() || !GV
->isConstant() ||
114 !GV
->hasDefinitiveInitializer())
117 Constant
*Init
= GV
->getInitializer();
118 if (!isa
<ConstantArray
>(Init
) && !isa
<ConstantDataArray
>(Init
))
121 uint64_t ArrayElementCount
= Init
->getType()->getArrayNumElements();
122 // Don't blow up on huge arrays.
123 if (ArrayElementCount
> MaxArraySizeForCombine
)
126 // There are many forms of this optimization we can handle, for now, just do
127 // the simple index into a single-dimensional array.
129 // Require: GEP GV, 0, i {{, constant indices}}
130 if (GEP
->getNumOperands() < 3 || !isa
<ConstantInt
>(GEP
->getOperand(1)) ||
131 !cast
<ConstantInt
>(GEP
->getOperand(1))->isZero() ||
132 isa
<Constant
>(GEP
->getOperand(2)))
135 // Check that indices after the variable are constants and in-range for the
136 // type they index. Collect the indices. This is typically for arrays of
138 SmallVector
<unsigned, 4> LaterIndices
;
140 Type
*EltTy
= Init
->getType()->getArrayElementType();
141 for (unsigned i
= 3, e
= GEP
->getNumOperands(); i
!= e
; ++i
) {
142 ConstantInt
*Idx
= dyn_cast
<ConstantInt
>(GEP
->getOperand(i
));
144 return nullptr; // Variable index.
146 uint64_t IdxVal
= Idx
->getZExtValue();
147 if ((unsigned)IdxVal
!= IdxVal
)
148 return nullptr; // Too large array index.
150 if (StructType
*STy
= dyn_cast
<StructType
>(EltTy
))
151 EltTy
= STy
->getElementType(IdxVal
);
152 else if (ArrayType
*ATy
= dyn_cast
<ArrayType
>(EltTy
)) {
153 if (IdxVal
>= ATy
->getNumElements())
155 EltTy
= ATy
->getElementType();
157 return nullptr; // Unknown type.
160 LaterIndices
.push_back(IdxVal
);
163 enum { Overdefined
= -3, Undefined
= -2 };
165 // Variables for our state machines.
167 // FirstTrueElement/SecondTrueElement - Used to emit a comparison of the form
168 // "i == 47 | i == 87", where 47 is the first index the condition is true for,
169 // and 87 is the second (and last) index. FirstTrueElement is -2 when
170 // undefined, otherwise set to the first true element. SecondTrueElement is
171 // -2 when undefined, -3 when overdefined and >= 0 when that index is true.
172 int FirstTrueElement
= Undefined
, SecondTrueElement
= Undefined
;
174 // FirstFalseElement/SecondFalseElement - Used to emit a comparison of the
175 // form "i != 47 & i != 87". Same state transitions as for true elements.
176 int FirstFalseElement
= Undefined
, SecondFalseElement
= Undefined
;
178 /// TrueRangeEnd/FalseRangeEnd - In conjunction with First*Element, these
179 /// define a state machine that triggers for ranges of values that the index
180 /// is true or false for. This triggers on things like "abbbbc"[i] == 'b'.
181 /// This is -2 when undefined, -3 when overdefined, and otherwise the last
182 /// index in the range (inclusive). We use -2 for undefined here because we
183 /// use relative comparisons and don't want 0-1 to match -1.
184 int TrueRangeEnd
= Undefined
, FalseRangeEnd
= Undefined
;
186 // MagicBitvector - This is a magic bitvector where we set a bit if the
187 // comparison is true for element 'i'. If there are 64 elements or less in
188 // the array, this will fully represent all the comparison results.
189 uint64_t MagicBitvector
= 0;
191 // Scan the array and see if one of our patterns matches.
192 Constant
*CompareRHS
= cast
<Constant
>(ICI
.getOperand(1));
193 for (unsigned i
= 0, e
= ArrayElementCount
; i
!= e
; ++i
) {
194 Constant
*Elt
= Init
->getAggregateElement(i
);
198 // If this is indexing an array of structures, get the structure element.
199 if (!LaterIndices
.empty()) {
200 Elt
= ConstantFoldExtractValueInstruction(Elt
, LaterIndices
);
205 // If the element is masked, handle it.
207 Elt
= ConstantFoldBinaryOpOperands(Instruction::And
, Elt
, AndCst
, DL
);
212 // Find out if the comparison would be true or false for the i'th element.
213 Constant
*C
= ConstantFoldCompareInstOperands(ICI
.getPredicate(), Elt
,
214 CompareRHS
, DL
, &TLI
);
218 // If the result is undef for this element, ignore it.
219 if (isa
<UndefValue
>(C
)) {
220 // Extend range state machines to cover this element in case there is an
221 // undef in the middle of the range.
222 if (TrueRangeEnd
== (int)i
- 1)
224 if (FalseRangeEnd
== (int)i
- 1)
229 // If we can't compute the result for any of the elements, we have to give
230 // up evaluating the entire conditional.
231 if (!isa
<ConstantInt
>(C
))
234 // Otherwise, we know if the comparison is true or false for this element,
235 // update our state machines.
236 bool IsTrueForElt
= !cast
<ConstantInt
>(C
)->isZero();
238 // State machine for single/double/range index comparison.
240 // Update the TrueElement state machine.
241 if (FirstTrueElement
== Undefined
)
242 FirstTrueElement
= TrueRangeEnd
= i
; // First true element.
244 // Update double-compare state machine.
245 if (SecondTrueElement
== Undefined
)
246 SecondTrueElement
= i
;
248 SecondTrueElement
= Overdefined
;
250 // Update range state machine.
251 if (TrueRangeEnd
== (int)i
- 1)
254 TrueRangeEnd
= Overdefined
;
257 // Update the FalseElement state machine.
258 if (FirstFalseElement
== Undefined
)
259 FirstFalseElement
= FalseRangeEnd
= i
; // First false element.
261 // Update double-compare state machine.
262 if (SecondFalseElement
== Undefined
)
263 SecondFalseElement
= i
;
265 SecondFalseElement
= Overdefined
;
267 // Update range state machine.
268 if (FalseRangeEnd
== (int)i
- 1)
271 FalseRangeEnd
= Overdefined
;
275 // If this element is in range, update our magic bitvector.
276 if (i
< 64 && IsTrueForElt
)
277 MagicBitvector
|= 1ULL << i
;
279 // If all of our states become overdefined, bail out early. Since the
280 // predicate is expensive, only check it every 8 elements. This is only
281 // really useful for really huge arrays.
282 if ((i
& 8) == 0 && i
>= 64 && SecondTrueElement
== Overdefined
&&
283 SecondFalseElement
== Overdefined
&& TrueRangeEnd
== Overdefined
&&
284 FalseRangeEnd
== Overdefined
)
288 // Now that we've scanned the entire array, emit our new comparison(s). We
289 // order the state machines in complexity of the generated code.
290 Value
*Idx
= GEP
->getOperand(2);
292 // If the index is larger than the pointer offset size of the target, truncate
293 // the index down like the GEP would do implicitly. We don't have to do this
294 // for an inbounds GEP because the index can't be out of range.
295 if (!GEP
->isInBounds()) {
296 Type
*PtrIdxTy
= DL
.getIndexType(GEP
->getType());
297 unsigned OffsetSize
= PtrIdxTy
->getIntegerBitWidth();
298 if (Idx
->getType()->getPrimitiveSizeInBits().getFixedValue() > OffsetSize
)
299 Idx
= Builder
.CreateTrunc(Idx
, PtrIdxTy
);
302 // If inbounds keyword is not present, Idx * ElementSize can overflow.
303 // Let's assume that ElementSize is 2 and the wanted value is at offset 0.
304 // Then, there are two possible values for Idx to match offset 0:
305 // 0x00..00, 0x80..00.
306 // Emitting 'icmp eq Idx, 0' isn't correct in this case because the
307 // comparison is false if Idx was 0x80..00.
308 // We need to erase the highest countTrailingZeros(ElementSize) bits of Idx.
309 unsigned ElementSize
=
310 DL
.getTypeAllocSize(Init
->getType()->getArrayElementType());
311 auto MaskIdx
= [&](Value
*Idx
) {
312 if (!GEP
->isInBounds() && llvm::countr_zero(ElementSize
) != 0) {
313 Value
*Mask
= Constant::getAllOnesValue(Idx
->getType());
314 Mask
= Builder
.CreateLShr(Mask
, llvm::countr_zero(ElementSize
));
315 Idx
= Builder
.CreateAnd(Idx
, Mask
);
320 // If the comparison is only true for one or two elements, emit direct
322 if (SecondTrueElement
!= Overdefined
) {
324 // None true -> false.
325 if (FirstTrueElement
== Undefined
)
326 return replaceInstUsesWith(ICI
, Builder
.getFalse());
328 Value
*FirstTrueIdx
= ConstantInt::get(Idx
->getType(), FirstTrueElement
);
330 // True for one element -> 'i == 47'.
331 if (SecondTrueElement
== Undefined
)
332 return new ICmpInst(ICmpInst::ICMP_EQ
, Idx
, FirstTrueIdx
);
334 // True for two elements -> 'i == 47 | i == 72'.
335 Value
*C1
= Builder
.CreateICmpEQ(Idx
, FirstTrueIdx
);
336 Value
*SecondTrueIdx
= ConstantInt::get(Idx
->getType(), SecondTrueElement
);
337 Value
*C2
= Builder
.CreateICmpEQ(Idx
, SecondTrueIdx
);
338 return BinaryOperator::CreateOr(C1
, C2
);
341 // If the comparison is only false for one or two elements, emit direct
343 if (SecondFalseElement
!= Overdefined
) {
345 // None false -> true.
346 if (FirstFalseElement
== Undefined
)
347 return replaceInstUsesWith(ICI
, Builder
.getTrue());
349 Value
*FirstFalseIdx
= ConstantInt::get(Idx
->getType(), FirstFalseElement
);
351 // False for one element -> 'i != 47'.
352 if (SecondFalseElement
== Undefined
)
353 return new ICmpInst(ICmpInst::ICMP_NE
, Idx
, FirstFalseIdx
);
355 // False for two elements -> 'i != 47 & i != 72'.
356 Value
*C1
= Builder
.CreateICmpNE(Idx
, FirstFalseIdx
);
357 Value
*SecondFalseIdx
=
358 ConstantInt::get(Idx
->getType(), SecondFalseElement
);
359 Value
*C2
= Builder
.CreateICmpNE(Idx
, SecondFalseIdx
);
360 return BinaryOperator::CreateAnd(C1
, C2
);
363 // If the comparison can be replaced with a range comparison for the elements
364 // where it is true, emit the range check.
365 if (TrueRangeEnd
!= Overdefined
) {
366 assert(TrueRangeEnd
!= FirstTrueElement
&& "Should emit single compare");
369 // Generate (i-FirstTrue) <u (TrueRangeEnd-FirstTrue+1).
370 if (FirstTrueElement
) {
371 Value
*Offs
= ConstantInt::get(Idx
->getType(), -FirstTrueElement
);
372 Idx
= Builder
.CreateAdd(Idx
, Offs
);
376 ConstantInt::get(Idx
->getType(), TrueRangeEnd
- FirstTrueElement
+ 1);
377 return new ICmpInst(ICmpInst::ICMP_ULT
, Idx
, End
);
380 // False range check.
381 if (FalseRangeEnd
!= Overdefined
) {
382 assert(FalseRangeEnd
!= FirstFalseElement
&& "Should emit single compare");
384 // Generate (i-FirstFalse) >u (FalseRangeEnd-FirstFalse).
385 if (FirstFalseElement
) {
386 Value
*Offs
= ConstantInt::get(Idx
->getType(), -FirstFalseElement
);
387 Idx
= Builder
.CreateAdd(Idx
, Offs
);
391 ConstantInt::get(Idx
->getType(), FalseRangeEnd
- FirstFalseElement
);
392 return new ICmpInst(ICmpInst::ICMP_UGT
, Idx
, End
);
395 // If a magic bitvector captures the entire comparison state
396 // of this load, replace it with computation that does:
397 // ((magic_cst >> i) & 1) != 0
401 // Look for an appropriate type:
402 // - The type of Idx if the magic fits
403 // - The smallest fitting legal type
404 if (ArrayElementCount
<= Idx
->getType()->getIntegerBitWidth())
407 Ty
= DL
.getSmallestLegalIntType(Init
->getContext(), ArrayElementCount
);
411 Value
*V
= Builder
.CreateIntCast(Idx
, Ty
, false);
412 V
= Builder
.CreateLShr(ConstantInt::get(Ty
, MagicBitvector
), V
);
413 V
= Builder
.CreateAnd(ConstantInt::get(Ty
, 1), V
);
414 return new ICmpInst(ICmpInst::ICMP_NE
, V
, ConstantInt::get(Ty
, 0));
421 /// Returns true if we can rewrite Start as a GEP with pointer Base
422 /// and some integer offset. The nodes that need to be re-written
423 /// for this transformation will be added to Explored.
424 static bool canRewriteGEPAsOffset(Value
*Start
, Value
*Base
, GEPNoWrapFlags
&NW
,
425 const DataLayout
&DL
,
426 SetVector
<Value
*> &Explored
) {
427 SmallVector
<Value
*, 16> WorkList(1, Start
);
428 Explored
.insert(Base
);
430 // The following traversal gives us an order which can be used
431 // when doing the final transformation. Since in the final
432 // transformation we create the PHI replacement instructions first,
433 // we don't have to get them in any particular order.
435 // However, for other instructions we will have to traverse the
436 // operands of an instruction first, which means that we have to
437 // do a post-order traversal.
438 while (!WorkList
.empty()) {
439 SetVector
<PHINode
*> PHIs
;
441 while (!WorkList
.empty()) {
442 if (Explored
.size() >= 100)
445 Value
*V
= WorkList
.back();
447 if (Explored
.contains(V
)) {
452 if (!isa
<GetElementPtrInst
>(V
) && !isa
<PHINode
>(V
))
453 // We've found some value that we can't explore which is different from
454 // the base. Therefore we can't do this transformation.
457 if (auto *GEP
= dyn_cast
<GEPOperator
>(V
)) {
458 // Only allow inbounds GEPs with at most one variable offset.
459 auto IsNonConst
= [](Value
*V
) { return !isa
<ConstantInt
>(V
); };
460 if (!GEP
->isInBounds() || count_if(GEP
->indices(), IsNonConst
) > 1)
463 NW
= NW
.intersectForOffsetAdd(GEP
->getNoWrapFlags());
464 if (!Explored
.contains(GEP
->getOperand(0)))
465 WorkList
.push_back(GEP
->getOperand(0));
468 if (WorkList
.back() == V
) {
470 // We've finished visiting this node, mark it as such.
474 if (auto *PN
= dyn_cast
<PHINode
>(V
)) {
475 // We cannot transform PHIs on unsplittable basic blocks.
476 if (isa
<CatchSwitchInst
>(PN
->getParent()->getTerminator()))
483 // Explore the PHI nodes further.
484 for (auto *PN
: PHIs
)
485 for (Value
*Op
: PN
->incoming_values())
486 if (!Explored
.contains(Op
))
487 WorkList
.push_back(Op
);
490 // Make sure that we can do this. Since we can't insert GEPs in a basic
491 // block before a PHI node, we can't easily do this transformation if
492 // we have PHI node users of transformed instructions.
493 for (Value
*Val
: Explored
) {
494 for (Value
*Use
: Val
->uses()) {
496 auto *PHI
= dyn_cast
<PHINode
>(Use
);
497 auto *Inst
= dyn_cast
<Instruction
>(Val
);
499 if (Inst
== Base
|| Inst
== PHI
|| !Inst
|| !PHI
||
500 !Explored
.contains(PHI
))
503 if (PHI
->getParent() == Inst
->getParent())
510 // Sets the appropriate insert point on Builder where we can add
511 // a replacement Instruction for V (if that is possible).
512 static void setInsertionPoint(IRBuilder
<> &Builder
, Value
*V
,
513 bool Before
= true) {
514 if (auto *PHI
= dyn_cast
<PHINode
>(V
)) {
515 BasicBlock
*Parent
= PHI
->getParent();
516 Builder
.SetInsertPoint(Parent
, Parent
->getFirstInsertionPt());
519 if (auto *I
= dyn_cast
<Instruction
>(V
)) {
521 I
= &*std::next(I
->getIterator());
522 Builder
.SetInsertPoint(I
);
525 if (auto *A
= dyn_cast
<Argument
>(V
)) {
526 // Set the insertion point in the entry block.
527 BasicBlock
&Entry
= A
->getParent()->getEntryBlock();
528 Builder
.SetInsertPoint(&Entry
, Entry
.getFirstInsertionPt());
531 // Otherwise, this is a constant and we don't need to set a new
533 assert(isa
<Constant
>(V
) && "Setting insertion point for unknown value!");
536 /// Returns a re-written value of Start as an indexed GEP using Base as a
538 static Value
*rewriteGEPAsOffset(Value
*Start
, Value
*Base
, GEPNoWrapFlags NW
,
539 const DataLayout
&DL
,
540 SetVector
<Value
*> &Explored
,
542 // Perform all the substitutions. This is a bit tricky because we can
543 // have cycles in our use-def chains.
544 // 1. Create the PHI nodes without any incoming values.
545 // 2. Create all the other values.
546 // 3. Add the edges for the PHI nodes.
547 // 4. Emit GEPs to get the original pointers.
548 // 5. Remove the original instructions.
549 Type
*IndexType
= IntegerType::get(
550 Base
->getContext(), DL
.getIndexTypeSizeInBits(Start
->getType()));
552 DenseMap
<Value
*, Value
*> NewInsts
;
553 NewInsts
[Base
] = ConstantInt::getNullValue(IndexType
);
555 // Create the new PHI nodes, without adding any incoming values.
556 for (Value
*Val
: Explored
) {
559 // Create empty phi nodes. This avoids cyclic dependencies when creating
560 // the remaining instructions.
561 if (auto *PHI
= dyn_cast
<PHINode
>(Val
))
563 PHINode::Create(IndexType
, PHI
->getNumIncomingValues(),
564 PHI
->getName() + ".idx", PHI
->getIterator());
566 IRBuilder
<> Builder(Base
->getContext());
568 // Create all the other instructions.
569 for (Value
*Val
: Explored
) {
570 if (NewInsts
.contains(Val
))
573 if (auto *GEP
= dyn_cast
<GEPOperator
>(Val
)) {
574 setInsertionPoint(Builder
, GEP
);
575 Value
*Op
= NewInsts
[GEP
->getOperand(0)];
576 Value
*OffsetV
= emitGEPOffset(&Builder
, DL
, GEP
);
577 if (isa
<ConstantInt
>(Op
) && cast
<ConstantInt
>(Op
)->isZero())
578 NewInsts
[GEP
] = OffsetV
;
580 NewInsts
[GEP
] = Builder
.CreateAdd(
581 Op
, OffsetV
, GEP
->getOperand(0)->getName() + ".add",
582 /*NUW=*/NW
.hasNoUnsignedWrap(),
583 /*NSW=*/NW
.hasNoUnsignedSignedWrap());
586 if (isa
<PHINode
>(Val
))
589 llvm_unreachable("Unexpected instruction type");
592 // Add the incoming values to the PHI nodes.
593 for (Value
*Val
: Explored
) {
596 // All the instructions have been created, we can now add edges to the
598 if (auto *PHI
= dyn_cast
<PHINode
>(Val
)) {
599 PHINode
*NewPhi
= static_cast<PHINode
*>(NewInsts
[PHI
]);
600 for (unsigned I
= 0, E
= PHI
->getNumIncomingValues(); I
< E
; ++I
) {
601 Value
*NewIncoming
= PHI
->getIncomingValue(I
);
603 auto It
= NewInsts
.find(NewIncoming
);
604 if (It
!= NewInsts
.end())
605 NewIncoming
= It
->second
;
607 NewPhi
->addIncoming(NewIncoming
, PHI
->getIncomingBlock(I
));
612 for (Value
*Val
: Explored
) {
616 setInsertionPoint(Builder
, Val
, false);
617 // Create GEP for external users.
618 Value
*NewVal
= Builder
.CreateGEP(Builder
.getInt8Ty(), Base
, NewInsts
[Val
],
619 Val
->getName() + ".ptr", NW
);
620 IC
.replaceInstUsesWith(*cast
<Instruction
>(Val
), NewVal
);
621 // Add old instruction to worklist for DCE. We don't directly remove it
622 // here because the original compare is one of the users.
623 IC
.addToWorklist(cast
<Instruction
>(Val
));
626 return NewInsts
[Start
];
629 /// Converts (CMP GEPLHS, RHS) if this change would make RHS a constant.
630 /// We can look through PHIs, GEPs and casts in order to determine a common base
631 /// between GEPLHS and RHS.
632 static Instruction
*transformToIndexedCompare(GEPOperator
*GEPLHS
, Value
*RHS
,
634 const DataLayout
&DL
,
636 // FIXME: Support vector of pointers.
637 if (GEPLHS
->getType()->isVectorTy())
640 if (!GEPLHS
->hasAllConstantIndices())
643 APInt
Offset(DL
.getIndexTypeSizeInBits(GEPLHS
->getType()), 0);
645 GEPLHS
->stripAndAccumulateConstantOffsets(DL
, Offset
,
646 /*AllowNonInbounds*/ false);
648 // Bail if we looked through addrspacecast.
649 if (PtrBase
->getType() != GEPLHS
->getType())
652 // The set of nodes that will take part in this transformation.
653 SetVector
<Value
*> Nodes
;
654 GEPNoWrapFlags NW
= GEPLHS
->getNoWrapFlags();
655 if (!canRewriteGEPAsOffset(RHS
, PtrBase
, NW
, DL
, Nodes
))
658 // We know we can re-write this as
659 // ((gep Ptr, OFFSET1) cmp (gep Ptr, OFFSET2)
660 // Since we've only looked through inbouds GEPs we know that we
661 // can't have overflow on either side. We can therefore re-write
663 // OFFSET1 cmp OFFSET2
664 Value
*NewRHS
= rewriteGEPAsOffset(RHS
, PtrBase
, NW
, DL
, Nodes
, IC
);
666 // RewriteGEPAsOffset has replaced RHS and all of its uses with a re-written
667 // GEP having PtrBase as the pointer base, and has returned in NewRHS the
668 // offset. Since Index is the offset of LHS to the base pointer, we will now
669 // compare the offsets instead of comparing the pointers.
670 return new ICmpInst(ICmpInst::getSignedPredicate(Cond
),
671 IC
.Builder
.getInt(Offset
), NewRHS
);
674 /// Fold comparisons between a GEP instruction and something else. At this point
675 /// we know that the GEP is on the LHS of the comparison.
676 Instruction
*InstCombinerImpl::foldGEPICmp(GEPOperator
*GEPLHS
, Value
*RHS
,
677 CmpPredicate Cond
, Instruction
&I
) {
678 // Don't transform signed compares of GEPs into index compares. Even if the
679 // GEP is inbounds, the final add of the base pointer can have signed overflow
680 // and would change the result of the icmp.
681 // e.g. "&foo[0] <s &foo[1]" can't be folded to "true" because "foo" could be
682 // the maximum signed value for the pointer type.
683 if (ICmpInst::isSigned(Cond
))
686 // Look through bitcasts and addrspacecasts. We do not however want to remove
688 if (!isa
<GetElementPtrInst
>(RHS
))
689 RHS
= RHS
->stripPointerCasts();
691 auto CanFold
= [Cond
](GEPNoWrapFlags NW
) {
692 if (ICmpInst::isEquality(Cond
))
695 // Unsigned predicates can be folded if the GEPs have *any* nowrap flags.
696 assert(ICmpInst::isUnsigned(Cond
));
697 return NW
!= GEPNoWrapFlags::none();
700 auto NewICmp
= [Cond
](GEPNoWrapFlags NW
, Value
*Op1
, Value
*Op2
) {
701 if (!NW
.hasNoUnsignedWrap()) {
702 // Convert signed to unsigned comparison.
703 return new ICmpInst(ICmpInst::getSignedPredicate(Cond
), Op1
, Op2
);
706 auto *I
= new ICmpInst(Cond
, Op1
, Op2
);
707 I
->setSameSign(NW
.hasNoUnsignedSignedWrap());
711 Value
*PtrBase
= GEPLHS
->getOperand(0);
712 if (PtrBase
== RHS
&& CanFold(GEPLHS
->getNoWrapFlags())) {
713 // ((gep Ptr, OFFSET) cmp Ptr) ---> (OFFSET cmp 0).
714 Value
*Offset
= EmitGEPOffset(GEPLHS
);
715 return NewICmp(GEPLHS
->getNoWrapFlags(), Offset
,
716 Constant::getNullValue(Offset
->getType()));
719 if (GEPLHS
->isInBounds() && ICmpInst::isEquality(Cond
) &&
720 isa
<Constant
>(RHS
) && cast
<Constant
>(RHS
)->isNullValue() &&
721 !NullPointerIsDefined(I
.getFunction(),
722 RHS
->getType()->getPointerAddressSpace())) {
723 // For most address spaces, an allocation can't be placed at null, but null
724 // itself is treated as a 0 size allocation in the in bounds rules. Thus,
725 // the only valid inbounds address derived from null, is null itself.
726 // Thus, we have four cases to consider:
727 // 1) Base == nullptr, Offset == 0 -> inbounds, null
728 // 2) Base == nullptr, Offset != 0 -> poison as the result is out of bounds
729 // 3) Base != nullptr, Offset == (-base) -> poison (crossing allocations)
730 // 4) Base != nullptr, Offset != (-base) -> nonnull (and possibly poison)
732 // (Note if we're indexing a type of size 0, that simply collapses into one
733 // of the buckets above.)
735 // In general, we're allowed to make values less poison (i.e. remove
736 // sources of full UB), so in this case, we just select between the two
737 // non-poison cases (1 and 4 above).
739 // For vectors, we apply the same reasoning on a per-lane basis.
740 auto *Base
= GEPLHS
->getPointerOperand();
741 if (GEPLHS
->getType()->isVectorTy() && Base
->getType()->isPointerTy()) {
742 auto EC
= cast
<VectorType
>(GEPLHS
->getType())->getElementCount();
743 Base
= Builder
.CreateVectorSplat(EC
, Base
);
745 return new ICmpInst(Cond
, Base
,
746 ConstantExpr::getPointerBitCastOrAddrSpaceCast(
747 cast
<Constant
>(RHS
), Base
->getType()));
748 } else if (GEPOperator
*GEPRHS
= dyn_cast
<GEPOperator
>(RHS
)) {
749 GEPNoWrapFlags NW
= GEPLHS
->getNoWrapFlags() & GEPRHS
->getNoWrapFlags();
751 // If the base pointers are different, but the indices are the same, just
752 // compare the base pointer.
753 if (PtrBase
!= GEPRHS
->getOperand(0)) {
754 bool IndicesTheSame
=
755 GEPLHS
->getNumOperands() == GEPRHS
->getNumOperands() &&
756 GEPLHS
->getPointerOperand()->getType() ==
757 GEPRHS
->getPointerOperand()->getType() &&
758 GEPLHS
->getSourceElementType() == GEPRHS
->getSourceElementType();
760 for (unsigned i
= 1, e
= GEPLHS
->getNumOperands(); i
!= e
; ++i
)
761 if (GEPLHS
->getOperand(i
) != GEPRHS
->getOperand(i
)) {
762 IndicesTheSame
= false;
766 // If all indices are the same, just compare the base pointers.
767 Type
*BaseType
= GEPLHS
->getOperand(0)->getType();
768 if (IndicesTheSame
&&
769 CmpInst::makeCmpResultType(BaseType
) == I
.getType() && CanFold(NW
))
770 return new ICmpInst(Cond
, GEPLHS
->getOperand(0), GEPRHS
->getOperand(0));
772 // If we're comparing GEPs with two base pointers that only differ in type
773 // and both GEPs have only constant indices or just one use, then fold
774 // the compare with the adjusted indices.
775 // FIXME: Support vector of pointers.
776 if (GEPLHS
->isInBounds() && GEPRHS
->isInBounds() &&
777 (GEPLHS
->hasAllConstantIndices() || GEPLHS
->hasOneUse()) &&
778 (GEPRHS
->hasAllConstantIndices() || GEPRHS
->hasOneUse()) &&
779 PtrBase
->stripPointerCasts() ==
780 GEPRHS
->getOperand(0)->stripPointerCasts() &&
781 !GEPLHS
->getType()->isVectorTy()) {
782 Value
*LOffset
= EmitGEPOffset(GEPLHS
);
783 Value
*ROffset
= EmitGEPOffset(GEPRHS
);
785 // If we looked through an addrspacecast between different sized address
786 // spaces, the LHS and RHS pointers are different sized
787 // integers. Truncate to the smaller one.
788 Type
*LHSIndexTy
= LOffset
->getType();
789 Type
*RHSIndexTy
= ROffset
->getType();
790 if (LHSIndexTy
!= RHSIndexTy
) {
791 if (LHSIndexTy
->getPrimitiveSizeInBits().getFixedValue() <
792 RHSIndexTy
->getPrimitiveSizeInBits().getFixedValue()) {
793 ROffset
= Builder
.CreateTrunc(ROffset
, LHSIndexTy
);
795 LOffset
= Builder
.CreateTrunc(LOffset
, RHSIndexTy
);
798 Value
*Cmp
= Builder
.CreateICmp(ICmpInst::getSignedPredicate(Cond
),
800 return replaceInstUsesWith(I
, Cmp
);
803 // Otherwise, the base pointers are different and the indices are
804 // different. Try convert this to an indexed compare by looking through
806 return transformToIndexedCompare(GEPLHS
, RHS
, Cond
, DL
, *this);
809 if (GEPLHS
->getNumOperands() == GEPRHS
->getNumOperands() &&
810 GEPLHS
->getSourceElementType() == GEPRHS
->getSourceElementType()) {
811 // If the GEPs only differ by one index, compare it.
812 unsigned NumDifferences
= 0; // Keep track of # differences.
813 unsigned DiffOperand
= 0; // The operand that differs.
814 for (unsigned i
= 1, e
= GEPRHS
->getNumOperands(); i
!= e
; ++i
)
815 if (GEPLHS
->getOperand(i
) != GEPRHS
->getOperand(i
)) {
816 Type
*LHSType
= GEPLHS
->getOperand(i
)->getType();
817 Type
*RHSType
= GEPRHS
->getOperand(i
)->getType();
818 // FIXME: Better support for vector of pointers.
819 if (LHSType
->getPrimitiveSizeInBits() !=
820 RHSType
->getPrimitiveSizeInBits() ||
821 (GEPLHS
->getType()->isVectorTy() &&
822 (!LHSType
->isVectorTy() || !RHSType
->isVectorTy()))) {
823 // Irreconcilable differences.
828 if (NumDifferences
++)
833 if (NumDifferences
== 0) // SAME GEP?
834 return replaceInstUsesWith(
835 I
, // No comparison is needed here.
836 ConstantInt::get(I
.getType(), ICmpInst::isTrueWhenEqual(Cond
)));
837 // If two GEPs only differ by an index, compare them.
838 // Note that nowrap flags are always needed when comparing two indices.
839 else if (NumDifferences
== 1 && NW
!= GEPNoWrapFlags::none()) {
840 Value
*LHSV
= GEPLHS
->getOperand(DiffOperand
);
841 Value
*RHSV
= GEPRHS
->getOperand(DiffOperand
);
842 return NewICmp(NW
, LHSV
, RHSV
);
847 // ((gep Ptr, OFFSET1) cmp (gep Ptr, OFFSET2) ---> (OFFSET1 cmp OFFSET2)
848 Value
*L
= EmitGEPOffset(GEPLHS
, /*RewriteGEP=*/true);
849 Value
*R
= EmitGEPOffset(GEPRHS
, /*RewriteGEP=*/true);
850 return NewICmp(NW
, L
, R
);
854 // Try convert this to an indexed compare by looking through PHIs/casts as a
856 return transformToIndexedCompare(GEPLHS
, RHS
, Cond
, DL
, *this);
859 bool InstCombinerImpl::foldAllocaCmp(AllocaInst
*Alloca
) {
860 // It would be tempting to fold away comparisons between allocas and any
861 // pointer not based on that alloca (e.g. an argument). However, even
862 // though such pointers cannot alias, they can still compare equal.
864 // But LLVM doesn't specify where allocas get their memory, so if the alloca
865 // doesn't escape we can argue that it's impossible to guess its value, and we
866 // can therefore act as if any such guesses are wrong.
868 // However, we need to ensure that this folding is consistent: We can't fold
869 // one comparison to false, and then leave a different comparison against the
870 // same value alone (as it might evaluate to true at runtime, leading to a
871 // contradiction). As such, this code ensures that all comparisons are folded
872 // at the same time, and there are no other escapes.
874 struct CmpCaptureTracker
: public CaptureTracker
{
876 bool Captured
= false;
877 /// The value of the map is a bit mask of which icmp operands the alloca is
879 SmallMapVector
<ICmpInst
*, unsigned, 4> ICmps
;
881 CmpCaptureTracker(AllocaInst
*Alloca
) : Alloca(Alloca
) {}
883 void tooManyUses() override
{ Captured
= true; }
885 bool captured(const Use
*U
) override
{
886 auto *ICmp
= dyn_cast
<ICmpInst
>(U
->getUser());
887 // We need to check that U is based *only* on the alloca, and doesn't
888 // have other contributions from a select/phi operand.
889 // TODO: We could check whether getUnderlyingObjects() reduces to one
890 // object, which would allow looking through phi nodes.
891 if (ICmp
&& ICmp
->isEquality() && getUnderlyingObject(*U
) == Alloca
) {
892 // Collect equality icmps of the alloca, and don't treat them as
894 ICmps
[ICmp
] |= 1u << U
->getOperandNo();
903 CmpCaptureTracker
Tracker(Alloca
);
904 PointerMayBeCaptured(Alloca
, &Tracker
);
905 if (Tracker
.Captured
)
908 bool Changed
= false;
909 for (auto [ICmp
, Operands
] : Tracker
.ICmps
) {
913 // The alloca is only used in one icmp operand. Assume that the
914 // equality is false.
915 auto *Res
= ConstantInt::get(ICmp
->getType(),
916 ICmp
->getPredicate() == ICmpInst::ICMP_NE
);
917 replaceInstUsesWith(*ICmp
, Res
);
918 eraseInstFromFunction(*ICmp
);
923 // Both icmp operands are based on the alloca, so this is comparing
924 // pointer offsets, without leaking any information about the address
925 // of the alloca. Ignore such comparisons.
928 llvm_unreachable("Cannot happen");
935 /// Fold "icmp pred (X+C), X".
936 Instruction
*InstCombinerImpl::foldICmpAddOpConst(Value
*X
, const APInt
&C
,
938 // From this point on, we know that (X+C <= X) --> (X+C < X) because C != 0,
939 // so the values can never be equal. Similarly for all other "or equals"
941 assert(!!C
&& "C should not be zero!");
943 // (X+1) <u X --> X >u (MAXUINT-1) --> X == 255
944 // (X+2) <u X --> X >u (MAXUINT-2) --> X > 253
945 // (X+MAXUINT) <u X --> X >u (MAXUINT-MAXUINT) --> X != 0
946 if (Pred
== ICmpInst::ICMP_ULT
|| Pred
== ICmpInst::ICMP_ULE
) {
948 ConstantInt::get(X
->getType(), APInt::getMaxValue(C
.getBitWidth()) - C
);
949 return new ICmpInst(ICmpInst::ICMP_UGT
, X
, R
);
952 // (X+1) >u X --> X <u (0-1) --> X != 255
953 // (X+2) >u X --> X <u (0-2) --> X <u 254
954 // (X+MAXUINT) >u X --> X <u (0-MAXUINT) --> X <u 1 --> X == 0
955 if (Pred
== ICmpInst::ICMP_UGT
|| Pred
== ICmpInst::ICMP_UGE
)
956 return new ICmpInst(ICmpInst::ICMP_ULT
, X
,
957 ConstantInt::get(X
->getType(), -C
));
959 APInt SMax
= APInt::getSignedMaxValue(C
.getBitWidth());
961 // (X+ 1) <s X --> X >s (MAXSINT-1) --> X == 127
962 // (X+ 2) <s X --> X >s (MAXSINT-2) --> X >s 125
963 // (X+MAXSINT) <s X --> X >s (MAXSINT-MAXSINT) --> X >s 0
964 // (X+MINSINT) <s X --> X >s (MAXSINT-MINSINT) --> X >s -1
965 // (X+ -2) <s X --> X >s (MAXSINT- -2) --> X >s 126
966 // (X+ -1) <s X --> X >s (MAXSINT- -1) --> X != 127
967 if (Pred
== ICmpInst::ICMP_SLT
|| Pred
== ICmpInst::ICMP_SLE
)
968 return new ICmpInst(ICmpInst::ICMP_SGT
, X
,
969 ConstantInt::get(X
->getType(), SMax
- C
));
971 // (X+ 1) >s X --> X <s (MAXSINT-(1-1)) --> X != 127
972 // (X+ 2) >s X --> X <s (MAXSINT-(2-1)) --> X <s 126
973 // (X+MAXSINT) >s X --> X <s (MAXSINT-(MAXSINT-1)) --> X <s 1
974 // (X+MINSINT) >s X --> X <s (MAXSINT-(MINSINT-1)) --> X <s -2
975 // (X+ -2) >s X --> X <s (MAXSINT-(-2-1)) --> X <s -126
976 // (X+ -1) >s X --> X <s (MAXSINT-(-1-1)) --> X == -128
978 assert(Pred
== ICmpInst::ICMP_SGT
|| Pred
== ICmpInst::ICMP_SGE
);
979 return new ICmpInst(ICmpInst::ICMP_SLT
, X
,
980 ConstantInt::get(X
->getType(), SMax
- (C
- 1)));
983 /// Handle "(icmp eq/ne (ashr/lshr AP2, A), AP1)" ->
984 /// (icmp eq/ne A, Log2(AP2/AP1)) ->
985 /// (icmp eq/ne A, Log2(AP2) - Log2(AP1)).
986 Instruction
*InstCombinerImpl::foldICmpShrConstConst(ICmpInst
&I
, Value
*A
,
989 assert(I
.isEquality() && "Cannot fold icmp gt/lt");
991 auto getICmp
= [&I
](CmpInst::Predicate Pred
, Value
*LHS
, Value
*RHS
) {
992 if (I
.getPredicate() == I
.ICMP_NE
)
993 Pred
= CmpInst::getInversePredicate(Pred
);
994 return new ICmpInst(Pred
, LHS
, RHS
);
997 // Don't bother doing any work for cases which InstSimplify handles.
1001 bool IsAShr
= isa
<AShrOperator
>(I
.getOperand(0));
1003 if (AP2
.isAllOnes())
1005 if (AP2
.isNegative() != AP1
.isNegative())
1012 // 'A' must be large enough to shift out the highest set bit.
1013 return getICmp(I
.ICMP_UGT
, A
,
1014 ConstantInt::get(A
->getType(), AP2
.logBase2()));
1017 return getICmp(I
.ICMP_EQ
, A
, ConstantInt::getNullValue(A
->getType()));
1020 if (IsAShr
&& AP1
.isNegative())
1021 Shift
= AP1
.countl_one() - AP2
.countl_one();
1023 Shift
= AP1
.countl_zero() - AP2
.countl_zero();
1026 if (IsAShr
&& AP1
== AP2
.ashr(Shift
)) {
1027 // There are multiple solutions if we are comparing against -1 and the LHS
1028 // of the ashr is not a power of two.
1029 if (AP1
.isAllOnes() && !AP2
.isPowerOf2())
1030 return getICmp(I
.ICMP_UGE
, A
, ConstantInt::get(A
->getType(), Shift
));
1031 return getICmp(I
.ICMP_EQ
, A
, ConstantInt::get(A
->getType(), Shift
));
1032 } else if (AP1
== AP2
.lshr(Shift
)) {
1033 return getICmp(I
.ICMP_EQ
, A
, ConstantInt::get(A
->getType(), Shift
));
1037 // Shifting const2 will never be equal to const1.
1038 // FIXME: This should always be handled by InstSimplify?
1039 auto *TorF
= ConstantInt::get(I
.getType(), I
.getPredicate() == I
.ICMP_NE
);
1040 return replaceInstUsesWith(I
, TorF
);
1043 /// Handle "(icmp eq/ne (shl AP2, A), AP1)" ->
1044 /// (icmp eq/ne A, TrailingZeros(AP1) - TrailingZeros(AP2)).
1045 Instruction
*InstCombinerImpl::foldICmpShlConstConst(ICmpInst
&I
, Value
*A
,
1048 assert(I
.isEquality() && "Cannot fold icmp gt/lt");
1050 auto getICmp
= [&I
](CmpInst::Predicate Pred
, Value
*LHS
, Value
*RHS
) {
1051 if (I
.getPredicate() == I
.ICMP_NE
)
1052 Pred
= CmpInst::getInversePredicate(Pred
);
1053 return new ICmpInst(Pred
, LHS
, RHS
);
1056 // Don't bother doing any work for cases which InstSimplify handles.
1060 unsigned AP2TrailingZeros
= AP2
.countr_zero();
1062 if (!AP1
&& AP2TrailingZeros
!= 0)
1065 ConstantInt::get(A
->getType(), AP2
.getBitWidth() - AP2TrailingZeros
));
1068 return getICmp(I
.ICMP_EQ
, A
, ConstantInt::getNullValue(A
->getType()));
1070 // Get the distance between the lowest bits that are set.
1071 int Shift
= AP1
.countr_zero() - AP2TrailingZeros
;
1073 if (Shift
> 0 && AP2
.shl(Shift
) == AP1
)
1074 return getICmp(I
.ICMP_EQ
, A
, ConstantInt::get(A
->getType(), Shift
));
1076 // Shifting const2 will never be equal to const1.
1077 // FIXME: This should always be handled by InstSimplify?
1078 auto *TorF
= ConstantInt::get(I
.getType(), I
.getPredicate() == I
.ICMP_NE
);
1079 return replaceInstUsesWith(I
, TorF
);
1082 /// The caller has matched a pattern of the form:
1083 /// I = icmp ugt (add (add A, B), CI2), CI1
1084 /// If this is of the form:
1086 /// if (sum+128 >u 255)
1087 /// Then replace it with llvm.sadd.with.overflow.i8.
1089 static Instruction
*processUGT_ADDCST_ADD(ICmpInst
&I
, Value
*A
, Value
*B
,
1090 ConstantInt
*CI2
, ConstantInt
*CI1
,
1091 InstCombinerImpl
&IC
) {
1092 // The transformation we're trying to do here is to transform this into an
1093 // llvm.sadd.with.overflow. To do this, we have to replace the original add
1094 // with a narrower add, and discard the add-with-constant that is part of the
1095 // range check (if we can't eliminate it, this isn't profitable).
1097 // In order to eliminate the add-with-constant, the compare can be its only
1099 Instruction
*AddWithCst
= cast
<Instruction
>(I
.getOperand(0));
1100 if (!AddWithCst
->hasOneUse())
1103 // If CI2 is 2^7, 2^15, 2^31, then it might be an sadd.with.overflow.
1104 if (!CI2
->getValue().isPowerOf2())
1106 unsigned NewWidth
= CI2
->getValue().countr_zero();
1107 if (NewWidth
!= 7 && NewWidth
!= 15 && NewWidth
!= 31)
1110 // The width of the new add formed is 1 more than the bias.
1113 // Check to see that CI1 is an all-ones value with NewWidth bits.
1114 if (CI1
->getBitWidth() == NewWidth
||
1115 CI1
->getValue() != APInt::getLowBitsSet(CI1
->getBitWidth(), NewWidth
))
1118 // This is only really a signed overflow check if the inputs have been
1119 // sign-extended; check for that condition. For example, if CI2 is 2^31 and
1120 // the operands of the add are 64 bits wide, we need at least 33 sign bits.
1121 if (IC
.ComputeMaxSignificantBits(A
, 0, &I
) > NewWidth
||
1122 IC
.ComputeMaxSignificantBits(B
, 0, &I
) > NewWidth
)
1125 // In order to replace the original add with a narrower
1126 // llvm.sadd.with.overflow, the only uses allowed are the add-with-constant
1127 // and truncates that discard the high bits of the add. Verify that this is
1129 Instruction
*OrigAdd
= cast
<Instruction
>(AddWithCst
->getOperand(0));
1130 for (User
*U
: OrigAdd
->users()) {
1131 if (U
== AddWithCst
)
1134 // Only accept truncates for now. We would really like a nice recursive
1135 // predicate like SimplifyDemandedBits, but which goes downwards the use-def
1136 // chain to see which bits of a value are actually demanded. If the
1137 // original add had another add which was then immediately truncated, we
1138 // could still do the transformation.
1139 TruncInst
*TI
= dyn_cast
<TruncInst
>(U
);
1140 if (!TI
|| TI
->getType()->getPrimitiveSizeInBits() > NewWidth
)
1144 // If the pattern matches, truncate the inputs to the narrower type and
1145 // use the sadd_with_overflow intrinsic to efficiently compute both the
1146 // result and the overflow bit.
1147 Type
*NewType
= IntegerType::get(OrigAdd
->getContext(), NewWidth
);
1148 Function
*F
= Intrinsic::getOrInsertDeclaration(
1149 I
.getModule(), Intrinsic::sadd_with_overflow
, NewType
);
1151 InstCombiner::BuilderTy
&Builder
= IC
.Builder
;
1153 // Put the new code above the original add, in case there are any uses of the
1154 // add between the add and the compare.
1155 Builder
.SetInsertPoint(OrigAdd
);
1157 Value
*TruncA
= Builder
.CreateTrunc(A
, NewType
, A
->getName() + ".trunc");
1158 Value
*TruncB
= Builder
.CreateTrunc(B
, NewType
, B
->getName() + ".trunc");
1159 CallInst
*Call
= Builder
.CreateCall(F
, {TruncA
, TruncB
}, "sadd");
1160 Value
*Add
= Builder
.CreateExtractValue(Call
, 0, "sadd.result");
1161 Value
*ZExt
= Builder
.CreateZExt(Add
, OrigAdd
->getType());
1163 // The inner add was the result of the narrow add, zero extended to the
1164 // wider type. Replace it with the result computed by the intrinsic.
1165 IC
.replaceInstUsesWith(*OrigAdd
, ZExt
);
1166 IC
.eraseInstFromFunction(*OrigAdd
);
1168 // The original icmp gets replaced with the overflow value.
1169 return ExtractValueInst::Create(Call
, 1, "sadd.overflow");
1173 /// icmp eq/ne (urem/srem %x, %y), 0
1174 /// iff %y is a power-of-two, we can replace this with a bit test:
1175 /// icmp eq/ne (and %x, (add %y, -1)), 0
1176 Instruction
*InstCombinerImpl::foldIRemByPowerOfTwoToBitTest(ICmpInst
&I
) {
1177 // This fold is only valid for equality predicates.
1178 if (!I
.isEquality())
1181 Value
*X
, *Y
, *Zero
;
1182 if (!match(&I
, m_ICmp(Pred
, m_OneUse(m_IRem(m_Value(X
), m_Value(Y
))),
1183 m_CombineAnd(m_Zero(), m_Value(Zero
)))))
1185 if (!isKnownToBeAPowerOfTwo(Y
, /*OrZero*/ true, 0, &I
))
1187 // This may increase instruction count, we don't enforce that Y is a constant.
1188 Value
*Mask
= Builder
.CreateAdd(Y
, Constant::getAllOnesValue(Y
->getType()));
1189 Value
*Masked
= Builder
.CreateAnd(X
, Mask
);
1190 return ICmpInst::Create(Instruction::ICmp
, Pred
, Masked
, Zero
);
1193 /// Fold equality-comparison between zero and any (maybe truncated) right-shift
1194 /// by one-less-than-bitwidth into a sign test on the original value.
1195 Instruction
*InstCombinerImpl::foldSignBitTest(ICmpInst
&I
) {
1198 if (!I
.isEquality() || !match(&I
, m_ICmp(Pred
, m_Instruction(Val
), m_Zero())))
1205 if (match(Val
, m_TruncOrSelf(m_Shr(m_Value(X
), m_Constant(C
))))) {
1207 unsigned XBitWidth
= XTy
->getScalarSizeInBits();
1208 if (!match(C
, m_SpecificInt_ICMP(ICmpInst::Predicate::ICMP_EQ
,
1209 APInt(XBitWidth
, XBitWidth
- 1))))
1211 } else if (isa
<BinaryOperator
>(Val
) &&
1212 (X
= reassociateShiftAmtsOfTwoSameDirectionShifts(
1213 cast
<BinaryOperator
>(Val
), SQ
.getWithInstruction(Val
),
1214 /*AnalyzeForSignBitExtraction=*/true))) {
1219 return ICmpInst::Create(Instruction::ICmp
,
1220 Pred
== ICmpInst::ICMP_EQ
? ICmpInst::ICMP_SGE
1221 : ICmpInst::ICMP_SLT
,
1222 X
, ConstantInt::getNullValue(XTy
));
1225 // Handle icmp pred X, 0
1226 Instruction
*InstCombinerImpl::foldICmpWithZero(ICmpInst
&Cmp
) {
1227 CmpInst::Predicate Pred
= Cmp
.getPredicate();
1228 if (!match(Cmp
.getOperand(1), m_Zero()))
1231 // (icmp sgt smin(PosA, B) 0) -> (icmp sgt B 0)
1232 if (Pred
== ICmpInst::ICMP_SGT
) {
1234 if (match(Cmp
.getOperand(0), m_SMin(m_Value(A
), m_Value(B
)))) {
1235 if (isKnownPositive(A
, SQ
.getWithInstruction(&Cmp
)))
1236 return new ICmpInst(Pred
, B
, Cmp
.getOperand(1));
1237 if (isKnownPositive(B
, SQ
.getWithInstruction(&Cmp
)))
1238 return new ICmpInst(Pred
, A
, Cmp
.getOperand(1));
1242 if (Instruction
*New
= foldIRemByPowerOfTwoToBitTest(Cmp
))
1246 // icmp eq/ne (urem %x, %y), 0
1247 // Iff %x has 0 or 1 bits set, and %y has at least 2 bits set, omit 'urem':
1250 if (match(Cmp
.getOperand(0), m_URem(m_Value(X
), m_Value(Y
))) &&
1251 ICmpInst::isEquality(Pred
)) {
1252 KnownBits XKnown
= computeKnownBits(X
, 0, &Cmp
);
1253 KnownBits YKnown
= computeKnownBits(Y
, 0, &Cmp
);
1254 if (XKnown
.countMaxPopulation() == 1 && YKnown
.countMinPopulation() >= 2)
1255 return new ICmpInst(Pred
, X
, Cmp
.getOperand(1));
1258 // (icmp eq/ne (mul X Y)) -> (icmp eq/ne X/Y) if we know about whether X/Y are
1259 // odd/non-zero/there is no overflow.
1260 if (match(Cmp
.getOperand(0), m_Mul(m_Value(X
), m_Value(Y
))) &&
1261 ICmpInst::isEquality(Pred
)) {
1263 KnownBits XKnown
= computeKnownBits(X
, 0, &Cmp
);
1266 if (XKnown
.countMaxTrailingZeros() == 0)
1267 return new ICmpInst(Pred
, Y
, Cmp
.getOperand(1));
1269 KnownBits YKnown
= computeKnownBits(Y
, 0, &Cmp
);
1272 if (YKnown
.countMaxTrailingZeros() == 0)
1273 return new ICmpInst(Pred
, X
, Cmp
.getOperand(1));
1275 auto *BO0
= cast
<OverflowingBinaryOperator
>(Cmp
.getOperand(0));
1276 if (BO0
->hasNoUnsignedWrap() || BO0
->hasNoSignedWrap()) {
1277 const SimplifyQuery Q
= SQ
.getWithInstruction(&Cmp
);
1278 // `isKnownNonZero` does more analysis than just `!KnownBits.One.isZero()`
1279 // but to avoid unnecessary work, first just if this is an obvious case.
1281 // if X non-zero and NoOverflow(X * Y)
1283 if (!XKnown
.One
.isZero() || isKnownNonZero(X
, Q
))
1284 return new ICmpInst(Pred
, Y
, Cmp
.getOperand(1));
1286 // if Y non-zero and NoOverflow(X * Y)
1288 if (!YKnown
.One
.isZero() || isKnownNonZero(Y
, Q
))
1289 return new ICmpInst(Pred
, X
, Cmp
.getOperand(1));
1291 // Note, we are skipping cases:
1292 // if Y % 2 != 0 AND X % 2 != 0
1294 // if X non-zero and Y non-zero and NoOverflow(X * Y)
1296 // Those can be simplified later as we would have already replaced the (icmp
1297 // eq/ne (mul X, Y)) with (icmp eq/ne X/Y) and if X/Y is known non-zero that
1298 // will fold to a constant elsewhere.
1303 /// Fold icmp Pred X, C.
1304 /// TODO: This code structure does not make sense. The saturating add fold
1305 /// should be moved to some other helper and extended as noted below (it is also
1306 /// possible that code has been made unnecessary - do we canonicalize IR to
1307 /// overflow/saturating intrinsics or not?).
1308 Instruction
*InstCombinerImpl::foldICmpWithConstant(ICmpInst
&Cmp
) {
1309 // Match the following pattern, which is a common idiom when writing
1310 // overflow-safe integer arithmetic functions. The source performs an addition
1311 // in wider type and explicitly checks for overflow using comparisons against
1312 // INT_MIN and INT_MAX. Simplify by using the sadd_with_overflow intrinsic.
1314 // TODO: This could probably be generalized to handle other overflow-safe
1315 // operations if we worked out the formulas to compute the appropriate magic
1319 // if (sum+128 >u 255) ... -> llvm.sadd.with.overflow.i8
1320 CmpInst::Predicate Pred
= Cmp
.getPredicate();
1321 Value
*Op0
= Cmp
.getOperand(0), *Op1
= Cmp
.getOperand(1);
1323 ConstantInt
*CI
, *CI2
; // I = icmp ugt (add (add A, B), CI2), CI
1324 if (Pred
== ICmpInst::ICMP_UGT
&& match(Op1
, m_ConstantInt(CI
)) &&
1325 match(Op0
, m_Add(m_Add(m_Value(A
), m_Value(B
)), m_ConstantInt(CI2
))))
1326 if (Instruction
*Res
= processUGT_ADDCST_ADD(Cmp
, A
, B
, CI2
, CI
, *this))
1329 // icmp(phi(C1, C2, ...), C) -> phi(icmp(C1, C), icmp(C2, C), ...).
1330 Constant
*C
= dyn_cast
<Constant
>(Op1
);
1334 if (auto *Phi
= dyn_cast
<PHINode
>(Op0
))
1335 if (all_of(Phi
->operands(), [](Value
*V
) { return isa
<Constant
>(V
); })) {
1336 SmallVector
<Constant
*> Ops
;
1337 for (Value
*V
: Phi
->incoming_values()) {
1339 ConstantFoldCompareInstOperands(Pred
, cast
<Constant
>(V
), C
, DL
);
1344 Builder
.SetInsertPoint(Phi
);
1345 PHINode
*NewPhi
= Builder
.CreatePHI(Cmp
.getType(), Phi
->getNumOperands());
1346 for (auto [V
, Pred
] : zip(Ops
, Phi
->blocks()))
1347 NewPhi
->addIncoming(V
, Pred
);
1348 return replaceInstUsesWith(Cmp
, NewPhi
);
1351 if (Instruction
*R
= tryFoldInstWithCtpopWithNot(&Cmp
))
1357 /// Canonicalize icmp instructions based on dominating conditions.
1358 Instruction
*InstCombinerImpl::foldICmpWithDominatingICmp(ICmpInst
&Cmp
) {
1359 // We already checked simple implication in InstSimplify, only handle complex
1361 Value
*X
= Cmp
.getOperand(0), *Y
= Cmp
.getOperand(1);
1363 if (!match(Y
, m_APInt(C
)))
1366 CmpInst::Predicate Pred
= Cmp
.getPredicate();
1367 ConstantRange CR
= ConstantRange::makeExactICmpRegion(Pred
, *C
);
1369 auto handleDomCond
= [&](ICmpInst::Predicate DomPred
,
1370 const APInt
*DomC
) -> Instruction
* {
1371 // We have 2 compares of a variable with constants. Calculate the constant
1372 // ranges of those compares to see if we can transform the 2nd compare:
1374 // DomCond = icmp DomPred X, DomC
1375 // br DomCond, CmpBB, FalseBB
1377 // Cmp = icmp Pred X, C
1378 ConstantRange DominatingCR
=
1379 ConstantRange::makeExactICmpRegion(DomPred
, *DomC
);
1380 ConstantRange Intersection
= DominatingCR
.intersectWith(CR
);
1381 ConstantRange Difference
= DominatingCR
.difference(CR
);
1382 if (Intersection
.isEmptySet())
1383 return replaceInstUsesWith(Cmp
, Builder
.getFalse());
1384 if (Difference
.isEmptySet())
1385 return replaceInstUsesWith(Cmp
, Builder
.getTrue());
1387 // Canonicalizing a sign bit comparison that gets used in a branch,
1388 // pessimizes codegen by generating branch on zero instruction instead
1389 // of a test and branch. So we avoid canonicalizing in such situations
1390 // because test and branch instruction has better branch displacement
1391 // than compare and branch instruction.
1393 bool IsSignBit
= isSignBitCheck(Pred
, *C
, UnusedBit
);
1394 if (Cmp
.isEquality() || (IsSignBit
&& hasBranchUse(Cmp
)))
1397 // Avoid an infinite loop with min/max canonicalization.
1398 // TODO: This will be unnecessary if we canonicalize to min/max intrinsics.
1399 if (Cmp
.hasOneUse() &&
1400 match(Cmp
.user_back(), m_MaxOrMin(m_Value(), m_Value())))
1403 if (const APInt
*EqC
= Intersection
.getSingleElement())
1404 return new ICmpInst(ICmpInst::ICMP_EQ
, X
, Builder
.getInt(*EqC
));
1405 if (const APInt
*NeC
= Difference
.getSingleElement())
1406 return new ICmpInst(ICmpInst::ICMP_NE
, X
, Builder
.getInt(*NeC
));
1410 for (BranchInst
*BI
: DC
.conditionsFor(X
)) {
1411 CmpPredicate DomPred
;
1413 if (!match(BI
->getCondition(),
1414 m_ICmp(DomPred
, m_Specific(X
), m_APInt(DomC
))))
1417 BasicBlockEdge
Edge0(BI
->getParent(), BI
->getSuccessor(0));
1418 if (DT
.dominates(Edge0
, Cmp
.getParent())) {
1419 if (auto *V
= handleDomCond(DomPred
, DomC
))
1422 BasicBlockEdge
Edge1(BI
->getParent(), BI
->getSuccessor(1));
1423 if (DT
.dominates(Edge1
, Cmp
.getParent()))
1425 handleDomCond(CmpInst::getInversePredicate(DomPred
), DomC
))
1433 /// Fold icmp (trunc X), C.
1434 Instruction
*InstCombinerImpl::foldICmpTruncConstant(ICmpInst
&Cmp
,
1437 ICmpInst::Predicate Pred
= Cmp
.getPredicate();
1438 Value
*X
= Trunc
->getOperand(0);
1439 Type
*SrcTy
= X
->getType();
1440 unsigned DstBits
= Trunc
->getType()->getScalarSizeInBits(),
1441 SrcBits
= SrcTy
->getScalarSizeInBits();
1443 // Match (icmp pred (trunc nuw/nsw X), C)
1444 // Which we can convert to (icmp pred X, (sext/zext C))
1445 if (shouldChangeType(Trunc
->getType(), SrcTy
)) {
1446 if (Trunc
->hasNoSignedWrap())
1447 return new ICmpInst(Pred
, X
, ConstantInt::get(SrcTy
, C
.sext(SrcBits
)));
1448 if (!Cmp
.isSigned() && Trunc
->hasNoUnsignedWrap())
1449 return new ICmpInst(Pred
, X
, ConstantInt::get(SrcTy
, C
.zext(SrcBits
)));
1452 if (C
.isOne() && C
.getBitWidth() > 1) {
1453 // icmp slt trunc(signum(V)) 1 --> icmp slt V, 1
1455 if (Pred
== ICmpInst::ICMP_SLT
&& match(X
, m_Signum(m_Value(V
))))
1456 return new ICmpInst(ICmpInst::ICMP_SLT
, V
,
1457 ConstantInt::get(V
->getType(), 1));
1460 // TODO: Handle any shifted constant by subtracting trailing zeros.
1461 // TODO: Handle non-equality predicates.
1463 if (Cmp
.isEquality() && match(X
, m_Shl(m_One(), m_Value(Y
)))) {
1464 // (trunc (1 << Y) to iN) == 0 --> Y u>= N
1465 // (trunc (1 << Y) to iN) != 0 --> Y u< N
1467 auto NewPred
= (Pred
== Cmp
.ICMP_EQ
) ? Cmp
.ICMP_UGE
: Cmp
.ICMP_ULT
;
1468 return new ICmpInst(NewPred
, Y
, ConstantInt::get(SrcTy
, DstBits
));
1470 // (trunc (1 << Y) to iN) == 2**C --> Y == C
1471 // (trunc (1 << Y) to iN) != 2**C --> Y != C
1473 return new ICmpInst(Pred
, Y
, ConstantInt::get(SrcTy
, C
.logBase2()));
1476 if (Cmp
.isEquality() && Trunc
->hasOneUse()) {
1477 // Canonicalize to a mask and wider compare if the wide type is suitable:
1478 // (trunc X to i8) == C --> (X & 0xff) == (zext C)
1479 if (!SrcTy
->isVectorTy() && shouldChangeType(DstBits
, SrcBits
)) {
1481 ConstantInt::get(SrcTy
, APInt::getLowBitsSet(SrcBits
, DstBits
));
1482 Value
*And
= Builder
.CreateAnd(X
, Mask
);
1483 Constant
*WideC
= ConstantInt::get(SrcTy
, C
.zext(SrcBits
));
1484 return new ICmpInst(Pred
, And
, WideC
);
1487 // Simplify icmp eq (trunc x to i8), 42 -> icmp eq x, 42|highbits if all
1488 // of the high bits truncated out of x are known.
1489 KnownBits Known
= computeKnownBits(X
, 0, &Cmp
);
1491 // If all the high bits are known, we can do this xform.
1492 if ((Known
.Zero
| Known
.One
).countl_one() >= SrcBits
- DstBits
) {
1493 // Pull in the high bits from known-ones set.
1494 APInt NewRHS
= C
.zext(SrcBits
);
1495 NewRHS
|= Known
.One
& APInt::getHighBitsSet(SrcBits
, SrcBits
- DstBits
);
1496 return new ICmpInst(Pred
, X
, ConstantInt::get(SrcTy
, NewRHS
));
1500 // Look through truncated right-shift of the sign-bit for a sign-bit check:
1501 // trunc iN (ShOp >> ShAmtC) to i[N - ShAmtC] < 0 --> ShOp < 0
1502 // trunc iN (ShOp >> ShAmtC) to i[N - ShAmtC] > -1 --> ShOp > -1
1504 const APInt
*ShAmtC
;
1506 if (isSignBitCheck(Pred
, C
, TrueIfSigned
) &&
1507 match(X
, m_Shr(m_Value(ShOp
), m_APInt(ShAmtC
))) &&
1508 DstBits
== SrcBits
- ShAmtC
->getZExtValue()) {
1509 return TrueIfSigned
? new ICmpInst(ICmpInst::ICMP_SLT
, ShOp
,
1510 ConstantInt::getNullValue(SrcTy
))
1511 : new ICmpInst(ICmpInst::ICMP_SGT
, ShOp
,
1512 ConstantInt::getAllOnesValue(SrcTy
));
1518 /// Fold icmp (trunc nuw/nsw X), (trunc nuw/nsw Y).
1519 /// Fold icmp (trunc nuw/nsw X), (zext/sext Y).
1521 InstCombinerImpl::foldICmpTruncWithTruncOrExt(ICmpInst
&Cmp
,
1522 const SimplifyQuery
&Q
) {
1525 bool YIsSExt
= false;
1526 // Try to match icmp (trunc X), (trunc Y)
1527 if (match(&Cmp
, m_ICmp(Pred
, m_Trunc(m_Value(X
)), m_Trunc(m_Value(Y
))))) {
1528 unsigned NoWrapFlags
= cast
<TruncInst
>(Cmp
.getOperand(0))->getNoWrapKind() &
1529 cast
<TruncInst
>(Cmp
.getOperand(1))->getNoWrapKind();
1530 if (Cmp
.isSigned()) {
1531 // For signed comparisons, both truncs must be nsw.
1532 if (!(NoWrapFlags
& TruncInst::NoSignedWrap
))
1535 // For unsigned and equality comparisons, either both must be nuw or
1536 // both must be nsw, we don't care which.
1541 if (X
->getType() != Y
->getType() &&
1542 (!Cmp
.getOperand(0)->hasOneUse() || !Cmp
.getOperand(1)->hasOneUse()))
1544 if (!isDesirableIntType(X
->getType()->getScalarSizeInBits()) &&
1545 isDesirableIntType(Y
->getType()->getScalarSizeInBits())) {
1547 Pred
= Cmp
.getSwappedPredicate(Pred
);
1549 YIsSExt
= !(NoWrapFlags
& TruncInst::NoUnsignedWrap
);
1551 // Try to match icmp (trunc nuw X), (zext Y)
1552 else if (!Cmp
.isSigned() &&
1553 match(&Cmp
, m_c_ICmp(Pred
, m_NUWTrunc(m_Value(X
)),
1554 m_OneUse(m_ZExt(m_Value(Y
)))))) {
1555 // Can fold trunc nuw + zext for unsigned and equality predicates.
1557 // Try to match icmp (trunc nsw X), (sext Y)
1558 else if (match(&Cmp
, m_c_ICmp(Pred
, m_NSWTrunc(m_Value(X
)),
1559 m_OneUse(m_ZExtOrSExt(m_Value(Y
)))))) {
1560 // Can fold trunc nsw + zext/sext for all predicates.
1562 isa
<SExtInst
>(Cmp
.getOperand(0)) || isa
<SExtInst
>(Cmp
.getOperand(1));
1566 Type
*TruncTy
= Cmp
.getOperand(0)->getType();
1567 unsigned TruncBits
= TruncTy
->getScalarSizeInBits();
1569 // If this transform will end up changing from desirable types -> undesirable
1571 if (isDesirableIntType(TruncBits
) &&
1572 !isDesirableIntType(X
->getType()->getScalarSizeInBits()))
1575 Value
*NewY
= Builder
.CreateIntCast(Y
, X
->getType(), YIsSExt
);
1576 return new ICmpInst(Pred
, X
, NewY
);
1579 /// Fold icmp (xor X, Y), C.
1580 Instruction
*InstCombinerImpl::foldICmpXorConstant(ICmpInst
&Cmp
,
1581 BinaryOperator
*Xor
,
1583 if (Instruction
*I
= foldICmpXorShiftConst(Cmp
, Xor
, C
))
1586 Value
*X
= Xor
->getOperand(0);
1587 Value
*Y
= Xor
->getOperand(1);
1589 if (!match(Y
, m_APInt(XorC
)))
1592 // If this is a comparison that tests the signbit (X < 0) or (x > -1),
1594 ICmpInst::Predicate Pred
= Cmp
.getPredicate();
1595 bool TrueIfSigned
= false;
1596 if (isSignBitCheck(Cmp
.getPredicate(), C
, TrueIfSigned
)) {
1598 // If the sign bit of the XorCst is not set, there is no change to
1599 // the operation, just stop using the Xor.
1600 if (!XorC
->isNegative())
1601 return replaceOperand(Cmp
, 0, X
);
1603 // Emit the opposite comparison.
1605 return new ICmpInst(ICmpInst::ICMP_SGT
, X
,
1606 ConstantInt::getAllOnesValue(X
->getType()));
1608 return new ICmpInst(ICmpInst::ICMP_SLT
, X
,
1609 ConstantInt::getNullValue(X
->getType()));
1612 if (Xor
->hasOneUse()) {
1613 // (icmp u/s (xor X SignMask), C) -> (icmp s/u X, (xor C SignMask))
1614 if (!Cmp
.isEquality() && XorC
->isSignMask()) {
1615 Pred
= Cmp
.getFlippedSignednessPredicate();
1616 return new ICmpInst(Pred
, X
, ConstantInt::get(X
->getType(), C
^ *XorC
));
1619 // (icmp u/s (xor X ~SignMask), C) -> (icmp s/u X, (xor C ~SignMask))
1620 if (!Cmp
.isEquality() && XorC
->isMaxSignedValue()) {
1621 Pred
= Cmp
.getFlippedSignednessPredicate();
1622 Pred
= Cmp
.getSwappedPredicate(Pred
);
1623 return new ICmpInst(Pred
, X
, ConstantInt::get(X
->getType(), C
^ *XorC
));
1627 // Mask constant magic can eliminate an 'xor' with unsigned compares.
1628 if (Pred
== ICmpInst::ICMP_UGT
) {
1629 // (xor X, ~C) >u C --> X <u ~C (when C+1 is a power of 2)
1630 if (*XorC
== ~C
&& (C
+ 1).isPowerOf2())
1631 return new ICmpInst(ICmpInst::ICMP_ULT
, X
, Y
);
1632 // (xor X, C) >u C --> X >u C (when C+1 is a power of 2)
1633 if (*XorC
== C
&& (C
+ 1).isPowerOf2())
1634 return new ICmpInst(ICmpInst::ICMP_UGT
, X
, Y
);
1636 if (Pred
== ICmpInst::ICMP_ULT
) {
1637 // (xor X, -C) <u C --> X >u ~C (when C is a power of 2)
1638 if (*XorC
== -C
&& C
.isPowerOf2())
1639 return new ICmpInst(ICmpInst::ICMP_UGT
, X
,
1640 ConstantInt::get(X
->getType(), ~C
));
1641 // (xor X, C) <u C --> X >u ~C (when -C is a power of 2)
1642 if (*XorC
== C
&& (-C
).isPowerOf2())
1643 return new ICmpInst(ICmpInst::ICMP_UGT
, X
,
1644 ConstantInt::get(X
->getType(), ~C
));
1649 /// For power-of-2 C:
1650 /// ((X s>> ShiftC) ^ X) u< C --> (X + C) u< (C << 1)
1651 /// ((X s>> ShiftC) ^ X) u> (C - 1) --> (X + C) u> ((C << 1) - 1)
1652 Instruction
*InstCombinerImpl::foldICmpXorShiftConst(ICmpInst
&Cmp
,
1653 BinaryOperator
*Xor
,
1655 CmpInst::Predicate Pred
= Cmp
.getPredicate();
1657 if (Pred
== ICmpInst::ICMP_ULT
)
1659 else if (Pred
== ICmpInst::ICMP_UGT
&& !C
.isMaxValue())
1663 if (!PowerOf2
.isPowerOf2())
1666 const APInt
*ShiftC
;
1667 if (!match(Xor
, m_OneUse(m_c_Xor(m_Value(X
),
1668 m_AShr(m_Deferred(X
), m_APInt(ShiftC
))))))
1670 uint64_t Shift
= ShiftC
->getLimitedValue();
1671 Type
*XType
= X
->getType();
1672 if (Shift
== 0 || PowerOf2
.isMinSignedValue())
1674 Value
*Add
= Builder
.CreateAdd(X
, ConstantInt::get(XType
, PowerOf2
));
1676 Pred
== ICmpInst::ICMP_ULT
? PowerOf2
<< 1 : ((PowerOf2
<< 1) - 1);
1677 return new ICmpInst(Pred
, Add
, ConstantInt::get(XType
, Bound
));
1680 /// Fold icmp (and (sh X, Y), C2), C1.
1681 Instruction
*InstCombinerImpl::foldICmpAndShift(ICmpInst
&Cmp
,
1682 BinaryOperator
*And
,
1685 BinaryOperator
*Shift
= dyn_cast
<BinaryOperator
>(And
->getOperand(0));
1686 if (!Shift
|| !Shift
->isShift())
1689 // If this is: (X >> C3) & C2 != C1 (where any shift and any compare could
1690 // exist), turn it into (X & (C2 << C3)) != (C1 << C3). This happens a LOT in
1691 // code produced by the clang front-end, for bitfield access.
1692 // This seemingly simple opportunity to fold away a shift turns out to be
1693 // rather complicated. See PR17827 for details.
1694 unsigned ShiftOpcode
= Shift
->getOpcode();
1695 bool IsShl
= ShiftOpcode
== Instruction::Shl
;
1697 if (match(Shift
->getOperand(1), m_APInt(C3
))) {
1698 APInt NewAndCst
, NewCmpCst
;
1699 bool AnyCmpCstBitsShiftedOut
;
1700 if (ShiftOpcode
== Instruction::Shl
) {
1701 // For a left shift, we can fold if the comparison is not signed. We can
1702 // also fold a signed comparison if the mask value and comparison value
1703 // are not negative. These constraints may not be obvious, but we can
1704 // prove that they are correct using an SMT solver.
1705 if (Cmp
.isSigned() && (C2
.isNegative() || C1
.isNegative()))
1708 NewCmpCst
= C1
.lshr(*C3
);
1709 NewAndCst
= C2
.lshr(*C3
);
1710 AnyCmpCstBitsShiftedOut
= NewCmpCst
.shl(*C3
) != C1
;
1711 } else if (ShiftOpcode
== Instruction::LShr
) {
1712 // For a logical right shift, we can fold if the comparison is not signed.
1713 // We can also fold a signed comparison if the shifted mask value and the
1714 // shifted comparison value are not negative. These constraints may not be
1715 // obvious, but we can prove that they are correct using an SMT solver.
1716 NewCmpCst
= C1
.shl(*C3
);
1717 NewAndCst
= C2
.shl(*C3
);
1718 AnyCmpCstBitsShiftedOut
= NewCmpCst
.lshr(*C3
) != C1
;
1719 if (Cmp
.isSigned() && (NewAndCst
.isNegative() || NewCmpCst
.isNegative()))
1722 // For an arithmetic shift, check that both constants don't use (in a
1723 // signed sense) the top bits being shifted out.
1724 assert(ShiftOpcode
== Instruction::AShr
&& "Unknown shift opcode");
1725 NewCmpCst
= C1
.shl(*C3
);
1726 NewAndCst
= C2
.shl(*C3
);
1727 AnyCmpCstBitsShiftedOut
= NewCmpCst
.ashr(*C3
) != C1
;
1728 if (NewAndCst
.ashr(*C3
) != C2
)
1732 if (AnyCmpCstBitsShiftedOut
) {
1733 // If we shifted bits out, the fold is not going to work out. As a
1734 // special case, check to see if this means that the result is always
1735 // true or false now.
1736 if (Cmp
.getPredicate() == ICmpInst::ICMP_EQ
)
1737 return replaceInstUsesWith(Cmp
, ConstantInt::getFalse(Cmp
.getType()));
1738 if (Cmp
.getPredicate() == ICmpInst::ICMP_NE
)
1739 return replaceInstUsesWith(Cmp
, ConstantInt::getTrue(Cmp
.getType()));
1741 Value
*NewAnd
= Builder
.CreateAnd(
1742 Shift
->getOperand(0), ConstantInt::get(And
->getType(), NewAndCst
));
1743 return new ICmpInst(Cmp
.getPredicate(), NewAnd
,
1744 ConstantInt::get(And
->getType(), NewCmpCst
));
1748 // Turn ((X >> Y) & C2) == 0 into (X & (C2 << Y)) == 0. The latter is
1749 // preferable because it allows the C2 << Y expression to be hoisted out of a
1750 // loop if Y is invariant and X is not.
1751 if (Shift
->hasOneUse() && C1
.isZero() && Cmp
.isEquality() &&
1752 !Shift
->isArithmeticShift() &&
1753 ((!IsShl
&& C2
.isOne()) || !isa
<Constant
>(Shift
->getOperand(0)))) {
1756 IsShl
? Builder
.CreateLShr(And
->getOperand(1), Shift
->getOperand(1))
1757 : Builder
.CreateShl(And
->getOperand(1), Shift
->getOperand(1));
1759 // Compute X & (C2 << Y).
1760 Value
*NewAnd
= Builder
.CreateAnd(Shift
->getOperand(0), NewShift
);
1761 return new ICmpInst(Cmp
.getPredicate(), NewAnd
, Cmp
.getOperand(1));
1767 /// Fold icmp (and X, C2), C1.
1768 Instruction
*InstCombinerImpl::foldICmpAndConstConst(ICmpInst
&Cmp
,
1769 BinaryOperator
*And
,
1771 bool isICMP_NE
= Cmp
.getPredicate() == ICmpInst::ICMP_NE
;
1773 // For vectors: icmp ne (and X, 1), 0 --> trunc X to N x i1
1774 // TODO: We canonicalize to the longer form for scalars because we have
1775 // better analysis/folds for icmp, and codegen may be better with icmp.
1776 if (isICMP_NE
&& Cmp
.getType()->isVectorTy() && C1
.isZero() &&
1777 match(And
->getOperand(1), m_One()))
1778 return new TruncInst(And
->getOperand(0), Cmp
.getType());
1782 if (!match(And
, m_And(m_Value(X
), m_APInt(C2
))))
1785 // (and X, highmask) s> [0, ~highmask] --> X s> ~highmask
1786 if (Cmp
.getPredicate() == ICmpInst::ICMP_SGT
&& C1
.ule(~*C2
) &&
1787 C2
->isNegatedPowerOf2())
1788 return new ICmpInst(ICmpInst::ICMP_SGT
, X
,
1789 ConstantInt::get(X
->getType(), ~*C2
));
1790 // (and X, highmask) s< [1, -highmask] --> X s< -highmask
1791 if (Cmp
.getPredicate() == ICmpInst::ICMP_SLT
&& !C1
.isSignMask() &&
1792 (C1
- 1).ule(~*C2
) && C2
->isNegatedPowerOf2() && !C2
->isSignMask())
1793 return new ICmpInst(ICmpInst::ICMP_SLT
, X
,
1794 ConstantInt::get(X
->getType(), -*C2
));
1796 // Don't perform the following transforms if the AND has multiple uses
1797 if (!And
->hasOneUse())
1800 if (Cmp
.isEquality() && C1
.isZero()) {
1801 // Restrict this fold to single-use 'and' (PR10267).
1802 // Replace (and X, (1 << size(X)-1) != 0) with X s< 0
1803 if (C2
->isSignMask()) {
1804 Constant
*Zero
= Constant::getNullValue(X
->getType());
1805 auto NewPred
= isICMP_NE
? ICmpInst::ICMP_SLT
: ICmpInst::ICMP_SGE
;
1806 return new ICmpInst(NewPred
, X
, Zero
);
1810 KnownBits Know
= computeKnownBits(And
->getOperand(0), 0, And
);
1811 // Set high zeros of C2 to allow matching negated power-of-2.
1812 NewC2
= *C2
| APInt::getHighBitsSet(C2
->getBitWidth(),
1813 Know
.countMinLeadingZeros());
1815 // Restrict this fold only for single-use 'and' (PR10267).
1816 // ((%x & C) == 0) --> %x u< (-C) iff (-C) is power of two.
1817 if (NewC2
.isNegatedPowerOf2()) {
1818 Constant
*NegBOC
= ConstantInt::get(And
->getType(), -NewC2
);
1819 auto NewPred
= isICMP_NE
? ICmpInst::ICMP_UGE
: ICmpInst::ICMP_ULT
;
1820 return new ICmpInst(NewPred
, X
, NegBOC
);
1824 // If the LHS is an 'and' of a truncate and we can widen the and/compare to
1825 // the input width without changing the value produced, eliminate the cast:
1827 // icmp (and (trunc W), C2), C1 -> icmp (and W, C2'), C1'
1829 // We can do this transformation if the constants do not have their sign bits
1830 // set or if it is an equality comparison. Extending a relational comparison
1831 // when we're checking the sign bit would not work.
1833 if (match(And
->getOperand(0), m_OneUse(m_Trunc(m_Value(W
)))) &&
1834 (Cmp
.isEquality() || (!C1
.isNegative() && !C2
->isNegative()))) {
1835 // TODO: Is this a good transform for vectors? Wider types may reduce
1836 // throughput. Should this transform be limited (even for scalars) by using
1837 // shouldChangeType()?
1838 if (!Cmp
.getType()->isVectorTy()) {
1839 Type
*WideType
= W
->getType();
1840 unsigned WideScalarBits
= WideType
->getScalarSizeInBits();
1841 Constant
*ZextC1
= ConstantInt::get(WideType
, C1
.zext(WideScalarBits
));
1842 Constant
*ZextC2
= ConstantInt::get(WideType
, C2
->zext(WideScalarBits
));
1843 Value
*NewAnd
= Builder
.CreateAnd(W
, ZextC2
, And
->getName());
1844 return new ICmpInst(Cmp
.getPredicate(), NewAnd
, ZextC1
);
1848 if (Instruction
*I
= foldICmpAndShift(Cmp
, And
, C1
, *C2
))
1851 // (icmp pred (and (or (lshr A, B), A), 1), 0) -->
1852 // (icmp pred (and A, (or (shl 1, B), 1), 0))
1854 // iff pred isn't signed
1855 if (!Cmp
.isSigned() && C1
.isZero() && And
->getOperand(0)->hasOneUse() &&
1856 match(And
->getOperand(1), m_One())) {
1857 Constant
*One
= cast
<Constant
>(And
->getOperand(1));
1858 Value
*Or
= And
->getOperand(0);
1859 Value
*A
, *B
, *LShr
;
1860 if (match(Or
, m_Or(m_Value(LShr
), m_Value(A
))) &&
1861 match(LShr
, m_LShr(m_Specific(A
), m_Value(B
)))) {
1862 unsigned UsesRemoved
= 0;
1863 if (And
->hasOneUse())
1865 if (Or
->hasOneUse())
1867 if (LShr
->hasOneUse())
1870 // Compute A & ((1 << B) | 1)
1871 unsigned RequireUsesRemoved
= match(B
, m_ImmConstant()) ? 1 : 3;
1872 if (UsesRemoved
>= RequireUsesRemoved
) {
1874 Builder
.CreateOr(Builder
.CreateShl(One
, B
, LShr
->getName(),
1876 One
, Or
->getName());
1877 Value
*NewAnd
= Builder
.CreateAnd(A
, NewOr
, And
->getName());
1878 return new ICmpInst(Cmp
.getPredicate(), NewAnd
, Cmp
.getOperand(1));
1883 // (icmp eq (and (bitcast X to int), ExponentMask), ExponentMask) -->
1884 // llvm.is.fpclass(X, fcInf|fcNan)
1885 // (icmp ne (and (bitcast X to int), ExponentMask), ExponentMask) -->
1886 // llvm.is.fpclass(X, ~(fcInf|fcNan))
1888 if (!Cmp
.getParent()->getParent()->hasFnAttribute(
1889 Attribute::NoImplicitFloat
) &&
1891 match(X
, m_OneUse(m_ElementWiseBitCast(m_Value(V
))))) {
1892 Type
*FPType
= V
->getType()->getScalarType();
1893 if (FPType
->isIEEELikeFPTy() && C1
== *C2
) {
1894 APInt ExponentMask
=
1895 APFloat::getInf(FPType
->getFltSemantics()).bitcastToAPInt();
1896 if (C1
== ExponentMask
) {
1897 unsigned Mask
= FPClassTest::fcNan
| FPClassTest::fcInf
;
1899 Mask
= ~Mask
& fcAllFlags
;
1900 return replaceInstUsesWith(Cmp
, Builder
.createIsFPClass(V
, Mask
));
1908 /// Fold icmp (and X, Y), C.
1909 Instruction
*InstCombinerImpl::foldICmpAndConstant(ICmpInst
&Cmp
,
1910 BinaryOperator
*And
,
1912 if (Instruction
*I
= foldICmpAndConstConst(Cmp
, And
, C
))
1915 const ICmpInst::Predicate Pred
= Cmp
.getPredicate();
1917 if (isSignBitCheck(Pred
, C
, TrueIfNeg
)) {
1918 // ((X - 1) & ~X) < 0 --> X == 0
1919 // ((X - 1) & ~X) >= 0 --> X != 0
1921 if (match(And
->getOperand(0), m_Add(m_Value(X
), m_AllOnes())) &&
1922 match(And
->getOperand(1), m_Not(m_Specific(X
)))) {
1923 auto NewPred
= TrueIfNeg
? CmpInst::ICMP_EQ
: CmpInst::ICMP_NE
;
1924 return new ICmpInst(NewPred
, X
, ConstantInt::getNullValue(X
->getType()));
1926 // (X & -X) < 0 --> X == MinSignedC
1927 // (X & -X) > -1 --> X != MinSignedC
1928 if (match(And
, m_c_And(m_Neg(m_Value(X
)), m_Deferred(X
)))) {
1929 Constant
*MinSignedC
= ConstantInt::get(
1931 APInt::getSignedMinValue(X
->getType()->getScalarSizeInBits()));
1932 auto NewPred
= TrueIfNeg
? CmpInst::ICMP_EQ
: CmpInst::ICMP_NE
;
1933 return new ICmpInst(NewPred
, X
, MinSignedC
);
1937 // TODO: These all require that Y is constant too, so refactor with the above.
1939 // Try to optimize things like "A[i] & 42 == 0" to index computations.
1940 Value
*X
= And
->getOperand(0);
1941 Value
*Y
= And
->getOperand(1);
1942 if (auto *C2
= dyn_cast
<ConstantInt
>(Y
))
1943 if (auto *LI
= dyn_cast
<LoadInst
>(X
))
1944 if (auto *GEP
= dyn_cast
<GetElementPtrInst
>(LI
->getOperand(0)))
1945 if (auto *GV
= dyn_cast
<GlobalVariable
>(GEP
->getOperand(0)))
1946 if (Instruction
*Res
=
1947 foldCmpLoadFromIndexedGlobal(LI
, GEP
, GV
, Cmp
, C2
))
1950 if (!Cmp
.isEquality())
1953 // X & -C == -C -> X > u ~C
1954 // X & -C != -C -> X <= u ~C
1955 // iff C is a power of 2
1956 if (Cmp
.getOperand(1) == Y
&& C
.isNegatedPowerOf2()) {
1958 Pred
== CmpInst::ICMP_EQ
? CmpInst::ICMP_UGT
: CmpInst::ICMP_ULE
;
1959 return new ICmpInst(NewPred
, X
, SubOne(cast
<Constant
>(Cmp
.getOperand(1))));
1962 // If we are testing the intersection of 2 select-of-nonzero-constants with no
1963 // common bits set, it's the same as checking if exactly one select condition
1965 // ((A ? TC : FC) & (B ? TC : FC)) == 0 --> xor A, B
1966 // ((A ? TC : FC) & (B ? TC : FC)) != 0 --> not(xor A, B)
1967 // TODO: Generalize for non-constant values.
1968 // TODO: Handle signed/unsigned predicates.
1969 // TODO: Handle other bitwise logic connectors.
1970 // TODO: Extend to handle a non-zero compare constant.
1971 if (C
.isZero() && (Pred
== CmpInst::ICMP_EQ
|| And
->hasOneUse())) {
1972 assert(Cmp
.isEquality() && "Not expecting non-equality predicates");
1974 const APInt
*TC
, *FC
;
1975 if (match(X
, m_Select(m_Value(A
), m_APInt(TC
), m_APInt(FC
))) &&
1977 m_Select(m_Value(B
), m_SpecificInt(*TC
), m_SpecificInt(*FC
))) &&
1978 !TC
->isZero() && !FC
->isZero() && !TC
->intersects(*FC
)) {
1979 Value
*R
= Builder
.CreateXor(A
, B
);
1980 if (Pred
== CmpInst::ICMP_NE
)
1981 R
= Builder
.CreateNot(R
);
1982 return replaceInstUsesWith(Cmp
, R
);
1986 // ((zext i1 X) & Y) == 0 --> !((trunc Y) & X)
1987 // ((zext i1 X) & Y) != 0 --> ((trunc Y) & X)
1988 // ((zext i1 X) & Y) == 1 --> ((trunc Y) & X)
1989 // ((zext i1 X) & Y) != 1 --> !((trunc Y) & X)
1990 if (match(And
, m_OneUse(m_c_And(m_OneUse(m_ZExt(m_Value(X
))), m_Value(Y
)))) &&
1991 X
->getType()->isIntOrIntVectorTy(1) && (C
.isZero() || C
.isOne())) {
1992 Value
*TruncY
= Builder
.CreateTrunc(Y
, X
->getType());
1993 if (C
.isZero() ^ (Pred
== CmpInst::ICMP_NE
)) {
1994 Value
*And
= Builder
.CreateAnd(TruncY
, X
);
1995 return BinaryOperator::CreateNot(And
);
1997 return BinaryOperator::CreateAnd(TruncY
, X
);
2000 // (icmp eq/ne (and (shl -1, X), Y), 0)
2001 // -> (icmp eq/ne (lshr Y, X), 0)
2002 // We could technically handle any C == 0 or (C < 0 && isOdd(C)) but it seems
2003 // highly unlikely the non-zero case will ever show up in code.
2005 match(And
, m_OneUse(m_c_And(m_OneUse(m_Shl(m_AllOnes(), m_Value(X
))),
2007 Value
*LShr
= Builder
.CreateLShr(Y
, X
);
2008 return new ICmpInst(Pred
, LShr
, Constant::getNullValue(LShr
->getType()));
2011 // (icmp eq/ne (and (add A, Addend), Msk), C)
2012 // -> (icmp eq/ne (and A, Msk), (and (sub C, Addend), Msk))
2015 const APInt
*Addend
, *Msk
;
2016 if (match(And
, m_And(m_OneUse(m_Add(m_Value(A
), m_APInt(Addend
))),
2017 m_LowBitMask(Msk
))) &&
2019 APInt NewComperand
= (C
- *Addend
) & *Msk
;
2020 Value
*MaskA
= Builder
.CreateAnd(A
, ConstantInt::get(A
->getType(), *Msk
));
2021 return new ICmpInst(Pred
, MaskA
,
2022 ConstantInt::get(MaskA
->getType(), NewComperand
));
2029 /// Fold icmp eq/ne (or (xor/sub (X1, X2), xor/sub (X3, X4))), 0.
2030 static Value
*foldICmpOrXorSubChain(ICmpInst
&Cmp
, BinaryOperator
*Or
,
2031 InstCombiner::BuilderTy
&Builder
) {
2032 // Are we using xors or subs to bitwise check for a pair or pairs of
2033 // (in)equalities? Convert to a shorter form that has more potential to be
2034 // folded even further.
2035 // ((X1 ^/- X2) || (X3 ^/- X4)) == 0 --> (X1 == X2) && (X3 == X4)
2036 // ((X1 ^/- X2) || (X3 ^/- X4)) != 0 --> (X1 != X2) || (X3 != X4)
2037 // ((X1 ^/- X2) || (X3 ^/- X4) || (X5 ^/- X6)) == 0 -->
2038 // (X1 == X2) && (X3 == X4) && (X5 == X6)
2039 // ((X1 ^/- X2) || (X3 ^/- X4) || (X5 ^/- X6)) != 0 -->
2040 // (X1 != X2) || (X3 != X4) || (X5 != X6)
2041 SmallVector
<std::pair
<Value
*, Value
*>, 2> CmpValues
;
2042 SmallVector
<Value
*, 16> WorkList(1, Or
);
2044 while (!WorkList
.empty()) {
2045 auto MatchOrOperatorArgument
= [&](Value
*OrOperatorArgument
) {
2048 if (match(OrOperatorArgument
,
2049 m_OneUse(m_Xor(m_Value(Lhs
), m_Value(Rhs
))))) {
2050 CmpValues
.emplace_back(Lhs
, Rhs
);
2054 if (match(OrOperatorArgument
,
2055 m_OneUse(m_Sub(m_Value(Lhs
), m_Value(Rhs
))))) {
2056 CmpValues
.emplace_back(Lhs
, Rhs
);
2060 WorkList
.push_back(OrOperatorArgument
);
2063 Value
*CurrentValue
= WorkList
.pop_back_val();
2064 Value
*OrOperatorLhs
, *OrOperatorRhs
;
2066 if (!match(CurrentValue
,
2067 m_Or(m_Value(OrOperatorLhs
), m_Value(OrOperatorRhs
)))) {
2071 MatchOrOperatorArgument(OrOperatorRhs
);
2072 MatchOrOperatorArgument(OrOperatorLhs
);
2075 ICmpInst::Predicate Pred
= Cmp
.getPredicate();
2076 auto BOpc
= Pred
== CmpInst::ICMP_EQ
? Instruction::And
: Instruction::Or
;
2077 Value
*LhsCmp
= Builder
.CreateICmp(Pred
, CmpValues
.rbegin()->first
,
2078 CmpValues
.rbegin()->second
);
2080 for (auto It
= CmpValues
.rbegin() + 1; It
!= CmpValues
.rend(); ++It
) {
2081 Value
*RhsCmp
= Builder
.CreateICmp(Pred
, It
->first
, It
->second
);
2082 LhsCmp
= Builder
.CreateBinOp(BOpc
, LhsCmp
, RhsCmp
);
2088 /// Fold icmp (or X, Y), C.
2089 Instruction
*InstCombinerImpl::foldICmpOrConstant(ICmpInst
&Cmp
,
2092 ICmpInst::Predicate Pred
= Cmp
.getPredicate();
2094 // icmp slt signum(V) 1 --> icmp slt V, 1
2096 if (Pred
== ICmpInst::ICMP_SLT
&& match(Or
, m_Signum(m_Value(V
))))
2097 return new ICmpInst(ICmpInst::ICMP_SLT
, V
,
2098 ConstantInt::get(V
->getType(), 1));
2101 Value
*OrOp0
= Or
->getOperand(0), *OrOp1
= Or
->getOperand(1);
2103 // (icmp eq/ne (or disjoint x, C0), C1)
2104 // -> (icmp eq/ne x, C0^C1)
2105 if (Cmp
.isEquality() && match(OrOp1
, m_ImmConstant()) &&
2106 cast
<PossiblyDisjointInst
>(Or
)->isDisjoint()) {
2108 Builder
.CreateXor(OrOp1
, ConstantInt::get(OrOp1
->getType(), C
));
2109 return new ICmpInst(Pred
, OrOp0
, NewC
);
2113 if (match(OrOp1
, m_APInt(MaskC
)) && Cmp
.isEquality()) {
2114 if (*MaskC
== C
&& (C
+ 1).isPowerOf2()) {
2115 // X | C == C --> X <=u C
2116 // X | C != C --> X >u C
2117 // iff C+1 is a power of 2 (C is a bitmask of the low bits)
2118 Pred
= (Pred
== CmpInst::ICMP_EQ
) ? CmpInst::ICMP_ULE
: CmpInst::ICMP_UGT
;
2119 return new ICmpInst(Pred
, OrOp0
, OrOp1
);
2122 // More general: canonicalize 'equality with set bits mask' to
2123 // 'equality with clear bits mask'.
2124 // (X | MaskC) == C --> (X & ~MaskC) == C ^ MaskC
2125 // (X | MaskC) != C --> (X & ~MaskC) != C ^ MaskC
2126 if (Or
->hasOneUse()) {
2127 Value
*And
= Builder
.CreateAnd(OrOp0
, ~(*MaskC
));
2128 Constant
*NewC
= ConstantInt::get(Or
->getType(), C
^ (*MaskC
));
2129 return new ICmpInst(Pred
, And
, NewC
);
2133 // (X | (X-1)) s< 0 --> X s< 1
2134 // (X | (X-1)) s> -1 --> X s> 0
2137 if (isSignBitCheck(Pred
, C
, TrueIfSigned
) &&
2138 match(Or
, m_c_Or(m_Add(m_Value(X
), m_AllOnes()), m_Deferred(X
)))) {
2139 auto NewPred
= TrueIfSigned
? ICmpInst::ICMP_SLT
: ICmpInst::ICMP_SGT
;
2140 Constant
*NewC
= ConstantInt::get(X
->getType(), TrueIfSigned
? 1 : 0);
2141 return new ICmpInst(NewPred
, X
, NewC
);
2145 // icmp(X | OrC, C) --> icmp(X, 0)
2146 if (C
.isNonNegative() && match(Or
, m_Or(m_Value(X
), m_APInt(OrC
)))) {
2148 // X | OrC s< C --> X s< 0 iff OrC s>= C s>= 0
2149 case ICmpInst::ICMP_SLT
:
2150 // X | OrC s>= C --> X s>= 0 iff OrC s>= C s>= 0
2151 case ICmpInst::ICMP_SGE
:
2153 return new ICmpInst(Pred
, X
, ConstantInt::getNullValue(X
->getType()));
2155 // X | OrC s<= C --> X s< 0 iff OrC s> C s>= 0
2156 case ICmpInst::ICMP_SLE
:
2157 // X | OrC s> C --> X s>= 0 iff OrC s> C s>= 0
2158 case ICmpInst::ICMP_SGT
:
2160 return new ICmpInst(ICmpInst::getFlippedStrictnessPredicate(Pred
), X
,
2161 ConstantInt::getNullValue(X
->getType()));
2168 if (!Cmp
.isEquality() || !C
.isZero() || !Or
->hasOneUse())
2172 if (match(Or
, m_Or(m_PtrToInt(m_Value(P
)), m_PtrToInt(m_Value(Q
))))) {
2173 // Simplify icmp eq (or (ptrtoint P), (ptrtoint Q)), 0
2174 // -> and (icmp eq P, null), (icmp eq Q, null).
2176 Builder
.CreateICmp(Pred
, P
, ConstantInt::getNullValue(P
->getType()));
2178 Builder
.CreateICmp(Pred
, Q
, ConstantInt::getNullValue(Q
->getType()));
2179 auto BOpc
= Pred
== CmpInst::ICMP_EQ
? Instruction::And
: Instruction::Or
;
2180 return BinaryOperator::Create(BOpc
, CmpP
, CmpQ
);
2183 if (Value
*V
= foldICmpOrXorSubChain(Cmp
, Or
, Builder
))
2184 return replaceInstUsesWith(Cmp
, V
);
2189 /// Fold icmp (mul X, Y), C.
2190 Instruction
*InstCombinerImpl::foldICmpMulConstant(ICmpInst
&Cmp
,
2191 BinaryOperator
*Mul
,
2193 ICmpInst::Predicate Pred
= Cmp
.getPredicate();
2194 Type
*MulTy
= Mul
->getType();
2195 Value
*X
= Mul
->getOperand(0);
2197 // If there's no overflow:
2198 // X * X == 0 --> X == 0
2199 // X * X != 0 --> X != 0
2200 if (Cmp
.isEquality() && C
.isZero() && X
== Mul
->getOperand(1) &&
2201 (Mul
->hasNoUnsignedWrap() || Mul
->hasNoSignedWrap()))
2202 return new ICmpInst(Pred
, X
, ConstantInt::getNullValue(MulTy
));
2205 if (!match(Mul
->getOperand(1), m_APInt(MulC
)))
2208 // If this is a test of the sign bit and the multiply is sign-preserving with
2209 // a constant operand, use the multiply LHS operand instead:
2210 // (X * +MulC) < 0 --> X < 0
2211 // (X * -MulC) < 0 --> X > 0
2212 if (isSignTest(Pred
, C
) && Mul
->hasNoSignedWrap()) {
2213 if (MulC
->isNegative())
2214 Pred
= ICmpInst::getSwappedPredicate(Pred
);
2215 return new ICmpInst(Pred
, X
, ConstantInt::getNullValue(MulTy
));
2221 // If the multiply does not wrap or the constant is odd, try to divide the
2222 // compare constant by the multiplication factor.
2223 if (Cmp
.isEquality()) {
2224 // (mul nsw X, MulC) eq/ne C --> X eq/ne C /s MulC
2225 if (Mul
->hasNoSignedWrap() && C
.srem(*MulC
).isZero()) {
2226 Constant
*NewC
= ConstantInt::get(MulTy
, C
.sdiv(*MulC
));
2227 return new ICmpInst(Pred
, X
, NewC
);
2230 // C % MulC == 0 is weaker than we could use if MulC is odd because it
2231 // correct to transform if MulC * N == C including overflow. I.e with i8
2232 // (icmp eq (mul X, 5), 101) -> (icmp eq X, 225) but since 101 % 5 != 0, we
2234 if (C
.urem(*MulC
).isZero()) {
2235 // (mul nuw X, MulC) eq/ne C --> X eq/ne C /u MulC
2236 // (mul X, OddC) eq/ne N * C --> X eq/ne N
2237 if ((*MulC
& 1).isOne() || Mul
->hasNoUnsignedWrap()) {
2238 Constant
*NewC
= ConstantInt::get(MulTy
, C
.udiv(*MulC
));
2239 return new ICmpInst(Pred
, X
, NewC
);
2244 // With a matching no-overflow guarantee, fold the constants:
2245 // (X * MulC) < C --> X < (C / MulC)
2246 // (X * MulC) > C --> X > (C / MulC)
2247 // TODO: Assert that Pred is not equal to SGE, SLE, UGE, ULE?
2248 Constant
*NewC
= nullptr;
2249 if (Mul
->hasNoSignedWrap() && ICmpInst::isSigned(Pred
)) {
2250 // MININT / -1 --> overflow.
2251 if (C
.isMinSignedValue() && MulC
->isAllOnes())
2253 if (MulC
->isNegative())
2254 Pred
= ICmpInst::getSwappedPredicate(Pred
);
2256 if (Pred
== ICmpInst::ICMP_SLT
|| Pred
== ICmpInst::ICMP_SGE
) {
2257 NewC
= ConstantInt::get(
2258 MulTy
, APIntOps::RoundingSDiv(C
, *MulC
, APInt::Rounding::UP
));
2260 assert((Pred
== ICmpInst::ICMP_SLE
|| Pred
== ICmpInst::ICMP_SGT
) &&
2261 "Unexpected predicate");
2262 NewC
= ConstantInt::get(
2263 MulTy
, APIntOps::RoundingSDiv(C
, *MulC
, APInt::Rounding::DOWN
));
2265 } else if (Mul
->hasNoUnsignedWrap() && ICmpInst::isUnsigned(Pred
)) {
2266 if (Pred
== ICmpInst::ICMP_ULT
|| Pred
== ICmpInst::ICMP_UGE
) {
2267 NewC
= ConstantInt::get(
2268 MulTy
, APIntOps::RoundingUDiv(C
, *MulC
, APInt::Rounding::UP
));
2270 assert((Pred
== ICmpInst::ICMP_ULE
|| Pred
== ICmpInst::ICMP_UGT
) &&
2271 "Unexpected predicate");
2272 NewC
= ConstantInt::get(
2273 MulTy
, APIntOps::RoundingUDiv(C
, *MulC
, APInt::Rounding::DOWN
));
2277 return NewC
? new ICmpInst(Pred
, X
, NewC
) : nullptr;
2280 /// Fold icmp (shl nuw C2, Y), C.
2281 static Instruction
*foldICmpShlLHSC(ICmpInst
&Cmp
, Instruction
*Shl
,
2285 if (!match(Shl
, m_NUWShl(m_APInt(C2
), m_Value(Y
))))
2288 Type
*ShiftType
= Shl
->getType();
2289 unsigned TypeBits
= C
.getBitWidth();
2290 ICmpInst::Predicate Pred
= Cmp
.getPredicate();
2291 if (Cmp
.isUnsigned()) {
2292 if (C2
->isZero() || C2
->ugt(C
))
2295 APInt::udivrem(C
, *C2
, Div
, Rem
);
2296 bool CIsPowerOf2
= Rem
.isZero() && Div
.isPowerOf2();
2298 // (1 << Y) pred C -> Y pred Log2(C)
2300 // (1 << Y) < 30 -> Y <= 4
2301 // (1 << Y) <= 30 -> Y <= 4
2302 // (1 << Y) >= 30 -> Y > 4
2303 // (1 << Y) > 30 -> Y > 4
2304 if (Pred
== ICmpInst::ICMP_ULT
)
2305 Pred
= ICmpInst::ICMP_ULE
;
2306 else if (Pred
== ICmpInst::ICMP_UGE
)
2307 Pred
= ICmpInst::ICMP_UGT
;
2310 unsigned CLog2
= Div
.logBase2();
2311 return new ICmpInst(Pred
, Y
, ConstantInt::get(ShiftType
, CLog2
));
2312 } else if (Cmp
.isSigned() && C2
->isOne()) {
2313 Constant
*BitWidthMinusOne
= ConstantInt::get(ShiftType
, TypeBits
- 1);
2314 // (1 << Y) > 0 -> Y != 31
2315 // (1 << Y) > C -> Y != 31 if C is negative.
2316 if (Pred
== ICmpInst::ICMP_SGT
&& C
.sle(0))
2317 return new ICmpInst(ICmpInst::ICMP_NE
, Y
, BitWidthMinusOne
);
2319 // (1 << Y) < 0 -> Y == 31
2320 // (1 << Y) < 1 -> Y == 31
2321 // (1 << Y) < C -> Y == 31 if C is negative and not signed min.
2322 // Exclude signed min by subtracting 1 and lower the upper bound to 0.
2323 if (Pred
== ICmpInst::ICMP_SLT
&& (C
- 1).sle(0))
2324 return new ICmpInst(ICmpInst::ICMP_EQ
, Y
, BitWidthMinusOne
);
2330 /// Fold icmp (shl X, Y), C.
2331 Instruction
*InstCombinerImpl::foldICmpShlConstant(ICmpInst
&Cmp
,
2332 BinaryOperator
*Shl
,
2334 const APInt
*ShiftVal
;
2335 if (Cmp
.isEquality() && match(Shl
->getOperand(0), m_APInt(ShiftVal
)))
2336 return foldICmpShlConstConst(Cmp
, Shl
->getOperand(1), C
, *ShiftVal
);
2338 ICmpInst::Predicate Pred
= Cmp
.getPredicate();
2339 // (icmp pred (shl nuw&nsw X, Y), Csle0)
2340 // -> (icmp pred X, Csle0)
2342 // The idea is the nuw/nsw essentially freeze the sign bit for the shift op
2343 // so X's must be what is used.
2344 if (C
.sle(0) && Shl
->hasNoUnsignedWrap() && Shl
->hasNoSignedWrap())
2345 return new ICmpInst(Pred
, Shl
->getOperand(0), Cmp
.getOperand(1));
2347 // (icmp eq/ne (shl nuw|nsw X, Y), 0)
2348 // -> (icmp eq/ne X, 0)
2349 if (ICmpInst::isEquality(Pred
) && C
.isZero() &&
2350 (Shl
->hasNoUnsignedWrap() || Shl
->hasNoSignedWrap()))
2351 return new ICmpInst(Pred
, Shl
->getOperand(0), Cmp
.getOperand(1));
2353 // (icmp slt (shl nsw X, Y), 0/1)
2354 // -> (icmp slt X, 0/1)
2355 // (icmp sgt (shl nsw X, Y), 0/-1)
2356 // -> (icmp sgt X, 0/-1)
2358 // NB: sge/sle with a constant will canonicalize to sgt/slt.
2359 if (Shl
->hasNoSignedWrap() &&
2360 (Pred
== ICmpInst::ICMP_SGT
|| Pred
== ICmpInst::ICMP_SLT
))
2361 if (C
.isZero() || (Pred
== ICmpInst::ICMP_SGT
? C
.isAllOnes() : C
.isOne()))
2362 return new ICmpInst(Pred
, Shl
->getOperand(0), Cmp
.getOperand(1));
2364 const APInt
*ShiftAmt
;
2365 if (!match(Shl
->getOperand(1), m_APInt(ShiftAmt
)))
2366 return foldICmpShlLHSC(Cmp
, Shl
, C
);
2368 // Check that the shift amount is in range. If not, don't perform undefined
2369 // shifts. When the shift is visited, it will be simplified.
2370 unsigned TypeBits
= C
.getBitWidth();
2371 if (ShiftAmt
->uge(TypeBits
))
2374 Value
*X
= Shl
->getOperand(0);
2375 Type
*ShType
= Shl
->getType();
2377 // NSW guarantees that we are only shifting out sign bits from the high bits,
2378 // so we can ASHR the compare constant without needing a mask and eliminate
2380 if (Shl
->hasNoSignedWrap()) {
2381 if (Pred
== ICmpInst::ICMP_SGT
) {
2382 // icmp Pred (shl nsw X, ShiftAmt), C --> icmp Pred X, (C >>s ShiftAmt)
2383 APInt ShiftedC
= C
.ashr(*ShiftAmt
);
2384 return new ICmpInst(Pred
, X
, ConstantInt::get(ShType
, ShiftedC
));
2386 if ((Pred
== ICmpInst::ICMP_EQ
|| Pred
== ICmpInst::ICMP_NE
) &&
2387 C
.ashr(*ShiftAmt
).shl(*ShiftAmt
) == C
) {
2388 APInt ShiftedC
= C
.ashr(*ShiftAmt
);
2389 return new ICmpInst(Pred
, X
, ConstantInt::get(ShType
, ShiftedC
));
2391 if (Pred
== ICmpInst::ICMP_SLT
) {
2392 // SLE is the same as above, but SLE is canonicalized to SLT, so convert:
2393 // (X << S) <=s C is equiv to X <=s (C >> S) for all C
2394 // (X << S) <s (C + 1) is equiv to X <s (C >> S) + 1 if C <s SMAX
2395 // (X << S) <s C is equiv to X <s ((C - 1) >> S) + 1 if C >s SMIN
2396 assert(!C
.isMinSignedValue() && "Unexpected icmp slt");
2397 APInt ShiftedC
= (C
- 1).ashr(*ShiftAmt
) + 1;
2398 return new ICmpInst(Pred
, X
, ConstantInt::get(ShType
, ShiftedC
));
2402 // NUW guarantees that we are only shifting out zero bits from the high bits,
2403 // so we can LSHR the compare constant without needing a mask and eliminate
2405 if (Shl
->hasNoUnsignedWrap()) {
2406 if (Pred
== ICmpInst::ICMP_UGT
) {
2407 // icmp Pred (shl nuw X, ShiftAmt), C --> icmp Pred X, (C >>u ShiftAmt)
2408 APInt ShiftedC
= C
.lshr(*ShiftAmt
);
2409 return new ICmpInst(Pred
, X
, ConstantInt::get(ShType
, ShiftedC
));
2411 if ((Pred
== ICmpInst::ICMP_EQ
|| Pred
== ICmpInst::ICMP_NE
) &&
2412 C
.lshr(*ShiftAmt
).shl(*ShiftAmt
) == C
) {
2413 APInt ShiftedC
= C
.lshr(*ShiftAmt
);
2414 return new ICmpInst(Pred
, X
, ConstantInt::get(ShType
, ShiftedC
));
2416 if (Pred
== ICmpInst::ICMP_ULT
) {
2417 // ULE is the same as above, but ULE is canonicalized to ULT, so convert:
2418 // (X << S) <=u C is equiv to X <=u (C >> S) for all C
2419 // (X << S) <u (C + 1) is equiv to X <u (C >> S) + 1 if C <u ~0u
2420 // (X << S) <u C is equiv to X <u ((C - 1) >> S) + 1 if C >u 0
2421 assert(C
.ugt(0) && "ult 0 should have been eliminated");
2422 APInt ShiftedC
= (C
- 1).lshr(*ShiftAmt
) + 1;
2423 return new ICmpInst(Pred
, X
, ConstantInt::get(ShType
, ShiftedC
));
2427 if (Cmp
.isEquality() && Shl
->hasOneUse()) {
2428 // Strength-reduce the shift into an 'and'.
2429 Constant
*Mask
= ConstantInt::get(
2431 APInt::getLowBitsSet(TypeBits
, TypeBits
- ShiftAmt
->getZExtValue()));
2432 Value
*And
= Builder
.CreateAnd(X
, Mask
, Shl
->getName() + ".mask");
2433 Constant
*LShrC
= ConstantInt::get(ShType
, C
.lshr(*ShiftAmt
));
2434 return new ICmpInst(Pred
, And
, LShrC
);
2437 // Otherwise, if this is a comparison of the sign bit, simplify to and/test.
2438 bool TrueIfSigned
= false;
2439 if (Shl
->hasOneUse() && isSignBitCheck(Pred
, C
, TrueIfSigned
)) {
2440 // (X << 31) <s 0 --> (X & 1) != 0
2441 Constant
*Mask
= ConstantInt::get(
2443 APInt::getOneBitSet(TypeBits
, TypeBits
- ShiftAmt
->getZExtValue() - 1));
2444 Value
*And
= Builder
.CreateAnd(X
, Mask
, Shl
->getName() + ".mask");
2445 return new ICmpInst(TrueIfSigned
? ICmpInst::ICMP_NE
: ICmpInst::ICMP_EQ
,
2446 And
, Constant::getNullValue(ShType
));
2449 // Simplify 'shl' inequality test into 'and' equality test.
2450 if (Cmp
.isUnsigned() && Shl
->hasOneUse()) {
2451 // (X l<< C2) u<=/u> C1 iff C1+1 is power of two -> X & (~C1 l>> C2) ==/!= 0
2452 if ((C
+ 1).isPowerOf2() &&
2453 (Pred
== ICmpInst::ICMP_ULE
|| Pred
== ICmpInst::ICMP_UGT
)) {
2454 Value
*And
= Builder
.CreateAnd(X
, (~C
).lshr(ShiftAmt
->getZExtValue()));
2455 return new ICmpInst(Pred
== ICmpInst::ICMP_ULE
? ICmpInst::ICMP_EQ
2456 : ICmpInst::ICMP_NE
,
2457 And
, Constant::getNullValue(ShType
));
2459 // (X l<< C2) u</u>= C1 iff C1 is power of two -> X & (-C1 l>> C2) ==/!= 0
2460 if (C
.isPowerOf2() &&
2461 (Pred
== ICmpInst::ICMP_ULT
|| Pred
== ICmpInst::ICMP_UGE
)) {
2463 Builder
.CreateAnd(X
, (~(C
- 1)).lshr(ShiftAmt
->getZExtValue()));
2464 return new ICmpInst(Pred
== ICmpInst::ICMP_ULT
? ICmpInst::ICMP_EQ
2465 : ICmpInst::ICMP_NE
,
2466 And
, Constant::getNullValue(ShType
));
2470 // Transform (icmp pred iM (shl iM %v, N), C)
2471 // -> (icmp pred i(M-N) (trunc %v iM to i(M-N)), (trunc (C>>N))
2472 // Transform the shl to a trunc if (trunc (C>>N)) has no loss and M-N.
2473 // This enables us to get rid of the shift in favor of a trunc that may be
2474 // free on the target. It has the additional benefit of comparing to a
2475 // smaller constant that may be more target-friendly.
2476 unsigned Amt
= ShiftAmt
->getLimitedValue(TypeBits
- 1);
2477 if (Shl
->hasOneUse() && Amt
!= 0 &&
2478 shouldChangeType(ShType
->getScalarSizeInBits(), TypeBits
- Amt
)) {
2479 ICmpInst::Predicate CmpPred
= Pred
;
2482 if (RHSC
.countr_zero() < Amt
&& ICmpInst::isStrictPredicate(CmpPred
)) {
2483 // Try the flipped strictness predicate.
2485 // icmp ult i64 (shl X, 32), 8589934593 ->
2486 // icmp ule i64 (shl X, 32), 8589934592 ->
2487 // icmp ule i32 (trunc X, i32), 2 ->
2488 // icmp ult i32 (trunc X, i32), 3
2489 if (auto FlippedStrictness
= getFlippedStrictnessPredicateAndConstant(
2490 Pred
, ConstantInt::get(ShType
->getContext(), C
))) {
2491 CmpPred
= FlippedStrictness
->first
;
2492 RHSC
= cast
<ConstantInt
>(FlippedStrictness
->second
)->getValue();
2496 if (RHSC
.countr_zero() >= Amt
) {
2497 Type
*TruncTy
= ShType
->getWithNewBitWidth(TypeBits
- Amt
);
2499 ConstantInt::get(TruncTy
, RHSC
.ashr(*ShiftAmt
).trunc(TypeBits
- Amt
));
2500 return new ICmpInst(CmpPred
,
2501 Builder
.CreateTrunc(X
, TruncTy
, "", /*IsNUW=*/false,
2502 Shl
->hasNoSignedWrap()),
2510 /// Fold icmp ({al}shr X, Y), C.
2511 Instruction
*InstCombinerImpl::foldICmpShrConstant(ICmpInst
&Cmp
,
2512 BinaryOperator
*Shr
,
2514 // An exact shr only shifts out zero bits, so:
2515 // icmp eq/ne (shr X, Y), 0 --> icmp eq/ne X, 0
2516 Value
*X
= Shr
->getOperand(0);
2517 CmpInst::Predicate Pred
= Cmp
.getPredicate();
2518 if (Cmp
.isEquality() && Shr
->isExact() && C
.isZero())
2519 return new ICmpInst(Pred
, X
, Cmp
.getOperand(1));
2521 bool IsAShr
= Shr
->getOpcode() == Instruction::AShr
;
2522 const APInt
*ShiftValC
;
2523 if (match(X
, m_APInt(ShiftValC
))) {
2524 if (Cmp
.isEquality())
2525 return foldICmpShrConstConst(Cmp
, Shr
->getOperand(1), C
, *ShiftValC
);
2527 // (ShiftValC >> Y) >s -1 --> Y != 0 with ShiftValC < 0
2528 // (ShiftValC >> Y) <s 0 --> Y == 0 with ShiftValC < 0
2530 if (!IsAShr
&& ShiftValC
->isNegative() &&
2531 isSignBitCheck(Pred
, C
, TrueIfSigned
))
2532 return new ICmpInst(TrueIfSigned
? CmpInst::ICMP_EQ
: CmpInst::ICMP_NE
,
2534 ConstantInt::getNullValue(X
->getType()));
2536 // If the shifted constant is a power-of-2, test the shift amount directly:
2537 // (ShiftValC >> Y) >u C --> X <u (LZ(C) - LZ(ShiftValC))
2538 // (ShiftValC >> Y) <u C --> X >=u (LZ(C-1) - LZ(ShiftValC))
2539 if (!IsAShr
&& ShiftValC
->isPowerOf2() &&
2540 (Pred
== CmpInst::ICMP_UGT
|| Pred
== CmpInst::ICMP_ULT
)) {
2541 bool IsUGT
= Pred
== CmpInst::ICMP_UGT
;
2542 assert(ShiftValC
->uge(C
) && "Expected simplify of compare");
2543 assert((IsUGT
|| !C
.isZero()) && "Expected X u< 0 to simplify");
2545 unsigned CmpLZ
= IsUGT
? C
.countl_zero() : (C
- 1).countl_zero();
2546 unsigned ShiftLZ
= ShiftValC
->countl_zero();
2547 Constant
*NewC
= ConstantInt::get(Shr
->getType(), CmpLZ
- ShiftLZ
);
2548 auto NewPred
= IsUGT
? CmpInst::ICMP_ULT
: CmpInst::ICMP_UGE
;
2549 return new ICmpInst(NewPred
, Shr
->getOperand(1), NewC
);
2553 const APInt
*ShiftAmtC
;
2554 if (!match(Shr
->getOperand(1), m_APInt(ShiftAmtC
)))
2557 // Check that the shift amount is in range. If not, don't perform undefined
2558 // shifts. When the shift is visited it will be simplified.
2559 unsigned TypeBits
= C
.getBitWidth();
2560 unsigned ShAmtVal
= ShiftAmtC
->getLimitedValue(TypeBits
);
2561 if (ShAmtVal
>= TypeBits
|| ShAmtVal
== 0)
2564 bool IsExact
= Shr
->isExact();
2565 Type
*ShrTy
= Shr
->getType();
2566 // TODO: If we could guarantee that InstSimplify would handle all of the
2567 // constant-value-based preconditions in the folds below, then we could assert
2568 // those conditions rather than checking them. This is difficult because of
2569 // undef/poison (PR34838).
2570 if (IsAShr
&& Shr
->hasOneUse()) {
2571 if (IsExact
&& (Pred
== CmpInst::ICMP_SLT
|| Pred
== CmpInst::ICMP_ULT
) &&
2572 (C
- 1).isPowerOf2() && C
.countLeadingZeros() > ShAmtVal
) {
2573 // When C - 1 is a power of two and the transform can be legally
2574 // performed, prefer this form so the produced constant is close to a
2576 // icmp slt/ult (ashr exact X, ShAmtC), C
2577 // --> icmp slt/ult X, (C - 1) << ShAmtC) + 1
2578 APInt ShiftedC
= (C
- 1).shl(ShAmtVal
) + 1;
2579 return new ICmpInst(Pred
, X
, ConstantInt::get(ShrTy
, ShiftedC
));
2581 if (IsExact
|| Pred
== CmpInst::ICMP_SLT
|| Pred
== CmpInst::ICMP_ULT
) {
2582 // When ShAmtC can be shifted losslessly:
2583 // icmp PRED (ashr exact X, ShAmtC), C --> icmp PRED X, (C << ShAmtC)
2584 // icmp slt/ult (ashr X, ShAmtC), C --> icmp slt/ult X, (C << ShAmtC)
2585 APInt ShiftedC
= C
.shl(ShAmtVal
);
2586 if (ShiftedC
.ashr(ShAmtVal
) == C
)
2587 return new ICmpInst(Pred
, X
, ConstantInt::get(ShrTy
, ShiftedC
));
2589 if (Pred
== CmpInst::ICMP_SGT
) {
2590 // icmp sgt (ashr X, ShAmtC), C --> icmp sgt X, ((C + 1) << ShAmtC) - 1
2591 APInt ShiftedC
= (C
+ 1).shl(ShAmtVal
) - 1;
2592 if (!C
.isMaxSignedValue() && !(C
+ 1).shl(ShAmtVal
).isMinSignedValue() &&
2593 (ShiftedC
+ 1).ashr(ShAmtVal
) == (C
+ 1))
2594 return new ICmpInst(Pred
, X
, ConstantInt::get(ShrTy
, ShiftedC
));
2596 if (Pred
== CmpInst::ICMP_UGT
) {
2597 // icmp ugt (ashr X, ShAmtC), C --> icmp ugt X, ((C + 1) << ShAmtC) - 1
2598 // 'C + 1 << ShAmtC' can overflow as a signed number, so the 2nd
2599 // clause accounts for that pattern.
2600 APInt ShiftedC
= (C
+ 1).shl(ShAmtVal
) - 1;
2601 if ((ShiftedC
+ 1).ashr(ShAmtVal
) == (C
+ 1) ||
2602 (C
+ 1).shl(ShAmtVal
).isMinSignedValue())
2603 return new ICmpInst(Pred
, X
, ConstantInt::get(ShrTy
, ShiftedC
));
2606 // If the compare constant has significant bits above the lowest sign-bit,
2607 // then convert an unsigned cmp to a test of the sign-bit:
2608 // (ashr X, ShiftC) u> C --> X s< 0
2609 // (ashr X, ShiftC) u< C --> X s> -1
2610 if (C
.getBitWidth() > 2 && C
.getNumSignBits() <= ShAmtVal
) {
2611 if (Pred
== CmpInst::ICMP_UGT
) {
2612 return new ICmpInst(CmpInst::ICMP_SLT
, X
,
2613 ConstantInt::getNullValue(ShrTy
));
2615 if (Pred
== CmpInst::ICMP_ULT
) {
2616 return new ICmpInst(CmpInst::ICMP_SGT
, X
,
2617 ConstantInt::getAllOnesValue(ShrTy
));
2620 } else if (!IsAShr
) {
2621 if (Pred
== CmpInst::ICMP_ULT
|| (Pred
== CmpInst::ICMP_UGT
&& IsExact
)) {
2622 // icmp ult (lshr X, ShAmtC), C --> icmp ult X, (C << ShAmtC)
2623 // icmp ugt (lshr exact X, ShAmtC), C --> icmp ugt X, (C << ShAmtC)
2624 APInt ShiftedC
= C
.shl(ShAmtVal
);
2625 if (ShiftedC
.lshr(ShAmtVal
) == C
)
2626 return new ICmpInst(Pred
, X
, ConstantInt::get(ShrTy
, ShiftedC
));
2628 if (Pred
== CmpInst::ICMP_UGT
) {
2629 // icmp ugt (lshr X, ShAmtC), C --> icmp ugt X, ((C + 1) << ShAmtC) - 1
2630 APInt ShiftedC
= (C
+ 1).shl(ShAmtVal
) - 1;
2631 if ((ShiftedC
+ 1).lshr(ShAmtVal
) == (C
+ 1))
2632 return new ICmpInst(Pred
, X
, ConstantInt::get(ShrTy
, ShiftedC
));
2636 if (!Cmp
.isEquality())
2639 // Handle equality comparisons of shift-by-constant.
2641 // If the comparison constant changes with the shift, the comparison cannot
2642 // succeed (bits of the comparison constant cannot match the shifted value).
2643 // This should be known by InstSimplify and already be folded to true/false.
2644 assert(((IsAShr
&& C
.shl(ShAmtVal
).ashr(ShAmtVal
) == C
) ||
2645 (!IsAShr
&& C
.shl(ShAmtVal
).lshr(ShAmtVal
) == C
)) &&
2646 "Expected icmp+shr simplify did not occur.");
2648 // If the bits shifted out are known zero, compare the unshifted value:
2649 // (X & 4) >> 1 == 2 --> (X & 4) == 4.
2651 return new ICmpInst(Pred
, X
, ConstantInt::get(ShrTy
, C
<< ShAmtVal
));
2655 if (Pred
== CmpInst::ICMP_EQ
)
2656 return new ICmpInst(CmpInst::ICMP_ULT
, X
,
2657 ConstantInt::get(ShrTy
, (C
+ 1).shl(ShAmtVal
)));
2659 return new ICmpInst(CmpInst::ICMP_UGT
, X
,
2660 ConstantInt::get(ShrTy
, (C
+ 1).shl(ShAmtVal
) - 1));
2663 if (Shr
->hasOneUse()) {
2664 // Canonicalize the shift into an 'and':
2665 // icmp eq/ne (shr X, ShAmt), C --> icmp eq/ne (and X, HiMask), (C << ShAmt)
2666 APInt
Val(APInt::getHighBitsSet(TypeBits
, TypeBits
- ShAmtVal
));
2667 Constant
*Mask
= ConstantInt::get(ShrTy
, Val
);
2668 Value
*And
= Builder
.CreateAnd(X
, Mask
, Shr
->getName() + ".mask");
2669 return new ICmpInst(Pred
, And
, ConstantInt::get(ShrTy
, C
<< ShAmtVal
));
2675 Instruction
*InstCombinerImpl::foldICmpSRemConstant(ICmpInst
&Cmp
,
2676 BinaryOperator
*SRem
,
2678 const ICmpInst::Predicate Pred
= Cmp
.getPredicate();
2679 if (Pred
== ICmpInst::ICMP_UGT
|| Pred
== ICmpInst::ICMP_ULT
) {
2680 // Canonicalize unsigned predicates to signed:
2681 // (X s% DivisorC) u> C -> (X s% DivisorC) s< 0
2682 // iff (C s< 0 ? ~C : C) u>= abs(DivisorC)-1
2683 // (X s% DivisorC) u< C+1 -> (X s% DivisorC) s> -1
2684 // iff (C+1 s< 0 ? ~C : C) u>= abs(DivisorC)-1
2686 const APInt
*DivisorC
;
2687 if (!match(SRem
->getOperand(1), m_APInt(DivisorC
)))
2690 APInt NormalizedC
= C
;
2691 if (Pred
== ICmpInst::ICMP_ULT
) {
2692 assert(!NormalizedC
.isZero() &&
2693 "ult X, 0 should have been simplified already.");
2697 NormalizedC
.flipAllBits();
2698 assert(!DivisorC
->isZero() &&
2699 "srem X, 0 should have been simplified already.");
2700 if (!NormalizedC
.uge(DivisorC
->abs() - 1))
2703 Type
*Ty
= SRem
->getType();
2704 if (Pred
== ICmpInst::ICMP_UGT
)
2705 return new ICmpInst(ICmpInst::ICMP_SLT
, SRem
,
2706 ConstantInt::getNullValue(Ty
));
2707 return new ICmpInst(ICmpInst::ICMP_SGT
, SRem
,
2708 ConstantInt::getAllOnesValue(Ty
));
2710 // Match an 'is positive' or 'is negative' comparison of remainder by a
2711 // constant power-of-2 value:
2712 // (X % pow2C) sgt/slt 0
2713 if (Pred
!= ICmpInst::ICMP_SGT
&& Pred
!= ICmpInst::ICMP_SLT
&&
2714 Pred
!= ICmpInst::ICMP_EQ
&& Pred
!= ICmpInst::ICMP_NE
)
2717 // TODO: The one-use check is standard because we do not typically want to
2718 // create longer instruction sequences, but this might be a special-case
2719 // because srem is not good for analysis or codegen.
2720 if (!SRem
->hasOneUse())
2723 const APInt
*DivisorC
;
2724 if (!match(SRem
->getOperand(1), m_Power2(DivisorC
)))
2727 // For cmp_sgt/cmp_slt only zero valued C is handled.
2728 // For cmp_eq/cmp_ne only positive valued C is handled.
2729 if (((Pred
== ICmpInst::ICMP_SGT
|| Pred
== ICmpInst::ICMP_SLT
) &&
2731 ((Pred
== ICmpInst::ICMP_EQ
|| Pred
== ICmpInst::ICMP_NE
) &&
2732 !C
.isStrictlyPositive()))
2735 // Mask off the sign bit and the modulo bits (low-bits).
2736 Type
*Ty
= SRem
->getType();
2737 APInt SignMask
= APInt::getSignMask(Ty
->getScalarSizeInBits());
2738 Constant
*MaskC
= ConstantInt::get(Ty
, SignMask
| (*DivisorC
- 1));
2739 Value
*And
= Builder
.CreateAnd(SRem
->getOperand(0), MaskC
);
2741 if (Pred
== ICmpInst::ICMP_EQ
|| Pred
== ICmpInst::ICMP_NE
)
2742 return new ICmpInst(Pred
, And
, ConstantInt::get(Ty
, C
));
2744 // For 'is positive?' check that the sign-bit is clear and at least 1 masked
2745 // bit is set. Example:
2746 // (i8 X % 32) s> 0 --> (X & 159) s> 0
2747 if (Pred
== ICmpInst::ICMP_SGT
)
2748 return new ICmpInst(ICmpInst::ICMP_SGT
, And
, ConstantInt::getNullValue(Ty
));
2750 // For 'is negative?' check that the sign-bit is set and at least 1 masked
2751 // bit is set. Example:
2752 // (i16 X % 4) s< 0 --> (X & 32771) u> 32768
2753 return new ICmpInst(ICmpInst::ICMP_UGT
, And
, ConstantInt::get(Ty
, SignMask
));
2756 /// Fold icmp (udiv X, Y), C.
2757 Instruction
*InstCombinerImpl::foldICmpUDivConstant(ICmpInst
&Cmp
,
2758 BinaryOperator
*UDiv
,
2760 ICmpInst::Predicate Pred
= Cmp
.getPredicate();
2761 Value
*X
= UDiv
->getOperand(0);
2762 Value
*Y
= UDiv
->getOperand(1);
2763 Type
*Ty
= UDiv
->getType();
2766 if (!match(X
, m_APInt(C2
)))
2769 assert(*C2
!= 0 && "udiv 0, X should have been simplified already.");
2771 // (icmp ugt (udiv C2, Y), C) -> (icmp ule Y, C2/(C+1))
2772 if (Pred
== ICmpInst::ICMP_UGT
) {
2773 assert(!C
.isMaxValue() &&
2774 "icmp ugt X, UINT_MAX should have been simplified already.");
2775 return new ICmpInst(ICmpInst::ICMP_ULE
, Y
,
2776 ConstantInt::get(Ty
, C2
->udiv(C
+ 1)));
2779 // (icmp ult (udiv C2, Y), C) -> (icmp ugt Y, C2/C)
2780 if (Pred
== ICmpInst::ICMP_ULT
) {
2781 assert(C
!= 0 && "icmp ult X, 0 should have been simplified already.");
2782 return new ICmpInst(ICmpInst::ICMP_UGT
, Y
,
2783 ConstantInt::get(Ty
, C2
->udiv(C
)));
2789 /// Fold icmp ({su}div X, Y), C.
2790 Instruction
*InstCombinerImpl::foldICmpDivConstant(ICmpInst
&Cmp
,
2791 BinaryOperator
*Div
,
2793 ICmpInst::Predicate Pred
= Cmp
.getPredicate();
2794 Value
*X
= Div
->getOperand(0);
2795 Value
*Y
= Div
->getOperand(1);
2796 Type
*Ty
= Div
->getType();
2797 bool DivIsSigned
= Div
->getOpcode() == Instruction::SDiv
;
2799 // If unsigned division and the compare constant is bigger than
2800 // UMAX/2 (negative), there's only one pair of values that satisfies an
2801 // equality check, so eliminate the division:
2802 // (X u/ Y) == C --> (X == C) && (Y == 1)
2803 // (X u/ Y) != C --> (X != C) || (Y != 1)
2804 // Similarly, if signed division and the compare constant is exactly SMIN:
2805 // (X s/ Y) == SMIN --> (X == SMIN) && (Y == 1)
2806 // (X s/ Y) != SMIN --> (X != SMIN) || (Y != 1)
2807 if (Cmp
.isEquality() && Div
->hasOneUse() && C
.isSignBitSet() &&
2808 (!DivIsSigned
|| C
.isMinSignedValue())) {
2809 Value
*XBig
= Builder
.CreateICmp(Pred
, X
, ConstantInt::get(Ty
, C
));
2810 Value
*YOne
= Builder
.CreateICmp(Pred
, Y
, ConstantInt::get(Ty
, 1));
2811 auto Logic
= Pred
== ICmpInst::ICMP_EQ
? Instruction::And
: Instruction::Or
;
2812 return BinaryOperator::Create(Logic
, XBig
, YOne
);
2815 // Fold: icmp pred ([us]div X, C2), C -> range test
2816 // Fold this div into the comparison, producing a range check.
2817 // Determine, based on the divide type, what the range is being
2818 // checked. If there is an overflow on the low or high side, remember
2819 // it, otherwise compute the range [low, hi) bounding the new value.
2820 // See: InsertRangeTest above for the kinds of replacements possible.
2822 if (!match(Y
, m_APInt(C2
)))
2825 // FIXME: If the operand types don't match the type of the divide
2826 // then don't attempt this transform. The code below doesn't have the
2827 // logic to deal with a signed divide and an unsigned compare (and
2828 // vice versa). This is because (x /s C2) <s C produces different
2829 // results than (x /s C2) <u C or (x /u C2) <s C or even
2830 // (x /u C2) <u C. Simply casting the operands and result won't
2831 // work. :( The if statement below tests that condition and bails
2833 if (!Cmp
.isEquality() && DivIsSigned
!= Cmp
.isSigned())
2836 // The ProdOV computation fails on divide by 0 and divide by -1. Cases with
2837 // INT_MIN will also fail if the divisor is 1. Although folds of all these
2838 // division-by-constant cases should be present, we can not assert that they
2839 // have happened before we reach this icmp instruction.
2840 if (C2
->isZero() || C2
->isOne() || (DivIsSigned
&& C2
->isAllOnes()))
2843 // Compute Prod = C * C2. We are essentially solving an equation of
2844 // form X / C2 = C. We solve for X by multiplying C2 and C.
2845 // By solving for X, we can turn this into a range check instead of computing
2847 APInt Prod
= C
* *C2
;
2849 // Determine if the product overflows by seeing if the product is not equal to
2850 // the divide. Make sure we do the same kind of divide as in the LHS
2851 // instruction that we're folding.
2852 bool ProdOV
= (DivIsSigned
? Prod
.sdiv(*C2
) : Prod
.udiv(*C2
)) != C
;
2854 // If the division is known to be exact, then there is no remainder from the
2855 // divide, so the covered range size is unit, otherwise it is the divisor.
2856 APInt RangeSize
= Div
->isExact() ? APInt(C2
->getBitWidth(), 1) : *C2
;
2858 // Figure out the interval that is being checked. For example, a comparison
2859 // like "X /u 5 == 0" is really checking that X is in the interval [0, 5).
2860 // Compute this interval based on the constants involved and the signedness of
2861 // the compare/divide. This computes a half-open interval, keeping track of
2862 // whether either value in the interval overflows. After analysis each
2863 // overflow variable is set to 0 if it's corresponding bound variable is valid
2864 // -1 if overflowed off the bottom end, or +1 if overflowed off the top end.
2865 int LoOverflow
= 0, HiOverflow
= 0;
2866 APInt LoBound
, HiBound
;
2868 if (!DivIsSigned
) { // udiv
2869 // e.g. X/5 op 3 --> [15, 20)
2871 HiOverflow
= LoOverflow
= ProdOV
;
2873 // If this is not an exact divide, then many values in the range collapse
2874 // to the same result value.
2875 HiOverflow
= addWithOverflow(HiBound
, LoBound
, RangeSize
, false);
2877 } else if (C2
->isStrictlyPositive()) { // Divisor is > 0.
2878 if (C
.isZero()) { // (X / pos) op 0
2879 // Can't overflow. e.g. X/2 op 0 --> [-1, 2)
2880 LoBound
= -(RangeSize
- 1);
2881 HiBound
= RangeSize
;
2882 } else if (C
.isStrictlyPositive()) { // (X / pos) op pos
2883 LoBound
= Prod
; // e.g. X/5 op 3 --> [15, 20)
2884 HiOverflow
= LoOverflow
= ProdOV
;
2886 HiOverflow
= addWithOverflow(HiBound
, Prod
, RangeSize
, true);
2887 } else { // (X / pos) op neg
2888 // e.g. X/5 op -3 --> [-15-4, -15+1) --> [-19, -14)
2890 LoOverflow
= HiOverflow
= ProdOV
? -1 : 0;
2892 APInt DivNeg
= -RangeSize
;
2893 LoOverflow
= addWithOverflow(LoBound
, HiBound
, DivNeg
, true) ? -1 : 0;
2896 } else if (C2
->isNegative()) { // Divisor is < 0.
2899 if (C
.isZero()) { // (X / neg) op 0
2900 // e.g. X/-5 op 0 --> [-4, 5)
2901 LoBound
= RangeSize
+ 1;
2902 HiBound
= -RangeSize
;
2903 if (HiBound
== *C2
) { // -INTMIN = INTMIN
2904 HiOverflow
= 1; // [INTMIN+1, overflow)
2905 HiBound
= APInt(); // e.g. X/INTMIN = 0 --> X > INTMIN
2907 } else if (C
.isStrictlyPositive()) { // (X / neg) op pos
2908 // e.g. X/-5 op 3 --> [-19, -14)
2910 HiOverflow
= LoOverflow
= ProdOV
? -1 : 0;
2913 addWithOverflow(LoBound
, HiBound
, RangeSize
, true) ? -1 : 0;
2914 } else { // (X / neg) op neg
2915 LoBound
= Prod
; // e.g. X/-5 op -3 --> [15, 20)
2916 LoOverflow
= HiOverflow
= ProdOV
;
2918 HiOverflow
= subWithOverflow(HiBound
, Prod
, RangeSize
, true);
2921 // Dividing by a negative swaps the condition. LT <-> GT
2922 Pred
= ICmpInst::getSwappedPredicate(Pred
);
2927 llvm_unreachable("Unhandled icmp predicate!");
2928 case ICmpInst::ICMP_EQ
:
2929 if (LoOverflow
&& HiOverflow
)
2930 return replaceInstUsesWith(Cmp
, Builder
.getFalse());
2932 return new ICmpInst(DivIsSigned
? ICmpInst::ICMP_SGE
: ICmpInst::ICMP_UGE
,
2933 X
, ConstantInt::get(Ty
, LoBound
));
2935 return new ICmpInst(DivIsSigned
? ICmpInst::ICMP_SLT
: ICmpInst::ICMP_ULT
,
2936 X
, ConstantInt::get(Ty
, HiBound
));
2937 return replaceInstUsesWith(
2938 Cmp
, insertRangeTest(X
, LoBound
, HiBound
, DivIsSigned
, true));
2939 case ICmpInst::ICMP_NE
:
2940 if (LoOverflow
&& HiOverflow
)
2941 return replaceInstUsesWith(Cmp
, Builder
.getTrue());
2943 return new ICmpInst(DivIsSigned
? ICmpInst::ICMP_SLT
: ICmpInst::ICMP_ULT
,
2944 X
, ConstantInt::get(Ty
, LoBound
));
2946 return new ICmpInst(DivIsSigned
? ICmpInst::ICMP_SGE
: ICmpInst::ICMP_UGE
,
2947 X
, ConstantInt::get(Ty
, HiBound
));
2948 return replaceInstUsesWith(
2949 Cmp
, insertRangeTest(X
, LoBound
, HiBound
, DivIsSigned
, false));
2950 case ICmpInst::ICMP_ULT
:
2951 case ICmpInst::ICMP_SLT
:
2952 if (LoOverflow
== +1) // Low bound is greater than input range.
2953 return replaceInstUsesWith(Cmp
, Builder
.getTrue());
2954 if (LoOverflow
== -1) // Low bound is less than input range.
2955 return replaceInstUsesWith(Cmp
, Builder
.getFalse());
2956 return new ICmpInst(Pred
, X
, ConstantInt::get(Ty
, LoBound
));
2957 case ICmpInst::ICMP_UGT
:
2958 case ICmpInst::ICMP_SGT
:
2959 if (HiOverflow
== +1) // High bound greater than input range.
2960 return replaceInstUsesWith(Cmp
, Builder
.getFalse());
2961 if (HiOverflow
== -1) // High bound less than input range.
2962 return replaceInstUsesWith(Cmp
, Builder
.getTrue());
2963 if (Pred
== ICmpInst::ICMP_UGT
)
2964 return new ICmpInst(ICmpInst::ICMP_UGE
, X
, ConstantInt::get(Ty
, HiBound
));
2965 return new ICmpInst(ICmpInst::ICMP_SGE
, X
, ConstantInt::get(Ty
, HiBound
));
2971 /// Fold icmp (sub X, Y), C.
2972 Instruction
*InstCombinerImpl::foldICmpSubConstant(ICmpInst
&Cmp
,
2973 BinaryOperator
*Sub
,
2975 Value
*X
= Sub
->getOperand(0), *Y
= Sub
->getOperand(1);
2976 ICmpInst::Predicate Pred
= Cmp
.getPredicate();
2977 Type
*Ty
= Sub
->getType();
2979 // (SubC - Y) == C) --> Y == (SubC - C)
2980 // (SubC - Y) != C) --> Y != (SubC - C)
2982 if (Cmp
.isEquality() && match(X
, m_ImmConstant(SubC
))) {
2983 return new ICmpInst(Pred
, Y
,
2984 ConstantExpr::getSub(SubC
, ConstantInt::get(Ty
, C
)));
2987 // (icmp P (sub nuw|nsw C2, Y), C) -> (icmp swap(P) Y, C2-C)
2990 ICmpInst::Predicate SwappedPred
= Cmp
.getSwappedPredicate();
2991 bool HasNSW
= Sub
->hasNoSignedWrap();
2992 bool HasNUW
= Sub
->hasNoUnsignedWrap();
2993 if (match(X
, m_APInt(C2
)) &&
2994 ((Cmp
.isUnsigned() && HasNUW
) || (Cmp
.isSigned() && HasNSW
)) &&
2995 !subWithOverflow(SubResult
, *C2
, C
, Cmp
.isSigned()))
2996 return new ICmpInst(SwappedPred
, Y
, ConstantInt::get(Ty
, SubResult
));
2998 // X - Y == 0 --> X == Y.
2999 // X - Y != 0 --> X != Y.
3000 // TODO: We allow this with multiple uses as long as the other uses are not
3001 // in phis. The phi use check is guarding against a codegen regression
3002 // for a loop test. If the backend could undo this (and possibly
3003 // subsequent transforms), we would not need this hack.
3004 if (Cmp
.isEquality() && C
.isZero() &&
3005 none_of((Sub
->users()), [](const User
*U
) { return isa
<PHINode
>(U
); }))
3006 return new ICmpInst(Pred
, X
, Y
);
3008 // The following transforms are only worth it if the only user of the subtract
3010 // TODO: This is an artificial restriction for all of the transforms below
3011 // that only need a single replacement icmp. Can these use the phi test
3012 // like the transform above here?
3013 if (!Sub
->hasOneUse())
3016 if (Sub
->hasNoSignedWrap()) {
3017 // (icmp sgt (sub nsw X, Y), -1) -> (icmp sge X, Y)
3018 if (Pred
== ICmpInst::ICMP_SGT
&& C
.isAllOnes())
3019 return new ICmpInst(ICmpInst::ICMP_SGE
, X
, Y
);
3021 // (icmp sgt (sub nsw X, Y), 0) -> (icmp sgt X, Y)
3022 if (Pred
== ICmpInst::ICMP_SGT
&& C
.isZero())
3023 return new ICmpInst(ICmpInst::ICMP_SGT
, X
, Y
);
3025 // (icmp slt (sub nsw X, Y), 0) -> (icmp slt X, Y)
3026 if (Pred
== ICmpInst::ICMP_SLT
&& C
.isZero())
3027 return new ICmpInst(ICmpInst::ICMP_SLT
, X
, Y
);
3029 // (icmp slt (sub nsw X, Y), 1) -> (icmp sle X, Y)
3030 if (Pred
== ICmpInst::ICMP_SLT
&& C
.isOne())
3031 return new ICmpInst(ICmpInst::ICMP_SLE
, X
, Y
);
3034 if (!match(X
, m_APInt(C2
)))
3037 // C2 - Y <u C -> (Y | (C - 1)) == C2
3038 // iff (C2 & (C - 1)) == C - 1 and C is a power of 2
3039 if (Pred
== ICmpInst::ICMP_ULT
&& C
.isPowerOf2() &&
3040 (*C2
& (C
- 1)) == (C
- 1))
3041 return new ICmpInst(ICmpInst::ICMP_EQ
, Builder
.CreateOr(Y
, C
- 1), X
);
3043 // C2 - Y >u C -> (Y | C) != C2
3044 // iff C2 & C == C and C + 1 is a power of 2
3045 if (Pred
== ICmpInst::ICMP_UGT
&& (C
+ 1).isPowerOf2() && (*C2
& C
) == C
)
3046 return new ICmpInst(ICmpInst::ICMP_NE
, Builder
.CreateOr(Y
, C
), X
);
3048 // We have handled special cases that reduce.
3049 // Canonicalize any remaining sub to add as:
3050 // (C2 - Y) > C --> (Y + ~C2) < ~C
3051 Value
*Add
= Builder
.CreateAdd(Y
, ConstantInt::get(Ty
, ~(*C2
)), "notsub",
3053 return new ICmpInst(SwappedPred
, Add
, ConstantInt::get(Ty
, ~C
));
3056 static Value
*createLogicFromTable(const std::bitset
<4> &Table
, Value
*Op0
,
3057 Value
*Op1
, IRBuilderBase
&Builder
,
3059 auto FoldConstant
= [&](bool Val
) {
3060 Constant
*Res
= Val
? Builder
.getTrue() : Builder
.getFalse();
3061 if (Op0
->getType()->isVectorTy())
3062 Res
= ConstantVector::getSplat(
3063 cast
<VectorType
>(Op0
->getType())->getElementCount(), Res
);
3067 switch (Table
.to_ulong()) {
3069 return FoldConstant(false);
3071 return HasOneUse
? Builder
.CreateNot(Builder
.CreateOr(Op0
, Op1
)) : nullptr;
3073 return HasOneUse
? Builder
.CreateAnd(Builder
.CreateNot(Op0
), Op1
) : nullptr;
3075 return Builder
.CreateNot(Op0
);
3077 return HasOneUse
? Builder
.CreateAnd(Op0
, Builder
.CreateNot(Op1
)) : nullptr;
3079 return Builder
.CreateNot(Op1
);
3081 return Builder
.CreateXor(Op0
, Op1
);
3083 return HasOneUse
? Builder
.CreateNot(Builder
.CreateAnd(Op0
, Op1
)) : nullptr;
3085 return Builder
.CreateAnd(Op0
, Op1
);
3087 return HasOneUse
? Builder
.CreateNot(Builder
.CreateXor(Op0
, Op1
)) : nullptr;
3091 return HasOneUse
? Builder
.CreateOr(Builder
.CreateNot(Op0
), Op1
) : nullptr;
3095 return HasOneUse
? Builder
.CreateOr(Op0
, Builder
.CreateNot(Op1
)) : nullptr;
3097 return Builder
.CreateOr(Op0
, Op1
);
3099 return FoldConstant(true);
3101 llvm_unreachable("Invalid Operation");
3106 /// Fold icmp (add X, Y), C.
3107 Instruction
*InstCombinerImpl::foldICmpAddConstant(ICmpInst
&Cmp
,
3108 BinaryOperator
*Add
,
3110 Value
*Y
= Add
->getOperand(1);
3111 Value
*X
= Add
->getOperand(0);
3114 Instruction
*Ext0
, *Ext1
;
3115 const CmpInst::Predicate Pred
= Cmp
.getPredicate();
3117 m_Add(m_CombineAnd(m_Instruction(Ext0
), m_ZExtOrSExt(m_Value(Op0
))),
3118 m_CombineAnd(m_Instruction(Ext1
),
3119 m_ZExtOrSExt(m_Value(Op1
))))) &&
3120 Op0
->getType()->isIntOrIntVectorTy(1) &&
3121 Op1
->getType()->isIntOrIntVectorTy(1)) {
3122 unsigned BW
= C
.getBitWidth();
3123 std::bitset
<4> Table
;
3124 auto ComputeTable
= [&](bool Op0Val
, bool Op1Val
) {
3127 Res
+= APInt(BW
, isa
<ZExtInst
>(Ext0
) ? 1 : -1, /*isSigned=*/true);
3129 Res
+= APInt(BW
, isa
<ZExtInst
>(Ext1
) ? 1 : -1, /*isSigned=*/true);
3130 return ICmpInst::compare(Res
, C
, Pred
);
3133 Table
[0] = ComputeTable(false, false);
3134 Table
[1] = ComputeTable(false, true);
3135 Table
[2] = ComputeTable(true, false);
3136 Table
[3] = ComputeTable(true, true);
3138 createLogicFromTable(Table
, Op0
, Op1
, Builder
, Add
->hasOneUse()))
3139 return replaceInstUsesWith(Cmp
, Cond
);
3142 if (Cmp
.isEquality() || !match(Y
, m_APInt(C2
)))
3145 // Fold icmp pred (add X, C2), C.
3146 Type
*Ty
= Add
->getType();
3148 // If the add does not wrap, we can always adjust the compare by subtracting
3149 // the constants. Equality comparisons are handled elsewhere. SGE/SLE/UGE/ULE
3150 // are canonicalized to SGT/SLT/UGT/ULT.
3151 if ((Add
->hasNoSignedWrap() &&
3152 (Pred
== ICmpInst::ICMP_SGT
|| Pred
== ICmpInst::ICMP_SLT
)) ||
3153 (Add
->hasNoUnsignedWrap() &&
3154 (Pred
== ICmpInst::ICMP_UGT
|| Pred
== ICmpInst::ICMP_ULT
))) {
3157 Cmp
.isSigned() ? C
.ssub_ov(*C2
, Overflow
) : C
.usub_ov(*C2
, Overflow
);
3158 // If there is overflow, the result must be true or false.
3159 // TODO: Can we assert there is no overflow because InstSimplify always
3160 // handles those cases?
3162 // icmp Pred (add nsw X, C2), C --> icmp Pred X, (C - C2)
3163 return new ICmpInst(Pred
, X
, ConstantInt::get(Ty
, NewC
));
3166 if (ICmpInst::isUnsigned(Pred
) && Add
->hasNoSignedWrap() &&
3167 C
.isNonNegative() && (C
- *C2
).isNonNegative() &&
3168 computeConstantRange(X
, /*ForSigned=*/true).add(*C2
).isAllNonNegative())
3169 return new ICmpInst(ICmpInst::getSignedPredicate(Pred
), X
,
3170 ConstantInt::get(Ty
, C
- *C2
));
3172 auto CR
= ConstantRange::makeExactICmpRegion(Pred
, C
).subtract(*C2
);
3173 const APInt
&Upper
= CR
.getUpper();
3174 const APInt
&Lower
= CR
.getLower();
3175 if (Cmp
.isSigned()) {
3176 if (Lower
.isSignMask())
3177 return new ICmpInst(ICmpInst::ICMP_SLT
, X
, ConstantInt::get(Ty
, Upper
));
3178 if (Upper
.isSignMask())
3179 return new ICmpInst(ICmpInst::ICMP_SGE
, X
, ConstantInt::get(Ty
, Lower
));
3181 if (Lower
.isMinValue())
3182 return new ICmpInst(ICmpInst::ICMP_ULT
, X
, ConstantInt::get(Ty
, Upper
));
3183 if (Upper
.isMinValue())
3184 return new ICmpInst(ICmpInst::ICMP_UGE
, X
, ConstantInt::get(Ty
, Lower
));
3187 // This set of folds is intentionally placed after folds that use no-wrapping
3188 // flags because those folds are likely better for later analysis/codegen.
3189 const APInt SMax
= APInt::getSignedMaxValue(Ty
->getScalarSizeInBits());
3190 const APInt SMin
= APInt::getSignedMinValue(Ty
->getScalarSizeInBits());
3192 // Fold compare with offset to opposite sign compare if it eliminates offset:
3193 // (X + C2) >u C --> X <s -C2 (if C == C2 + SMAX)
3194 if (Pred
== CmpInst::ICMP_UGT
&& C
== *C2
+ SMax
)
3195 return new ICmpInst(ICmpInst::ICMP_SLT
, X
, ConstantInt::get(Ty
, -(*C2
)));
3197 // (X + C2) <u C --> X >s ~C2 (if C == C2 + SMIN)
3198 if (Pred
== CmpInst::ICMP_ULT
&& C
== *C2
+ SMin
)
3199 return new ICmpInst(ICmpInst::ICMP_SGT
, X
, ConstantInt::get(Ty
, ~(*C2
)));
3201 // (X + C2) >s C --> X <u (SMAX - C) (if C == C2 - 1)
3202 if (Pred
== CmpInst::ICMP_SGT
&& C
== *C2
- 1)
3203 return new ICmpInst(ICmpInst::ICMP_ULT
, X
, ConstantInt::get(Ty
, SMax
- C
));
3205 // (X + C2) <s C --> X >u (C ^ SMAX) (if C == C2)
3206 if (Pred
== CmpInst::ICMP_SLT
&& C
== *C2
)
3207 return new ICmpInst(ICmpInst::ICMP_UGT
, X
, ConstantInt::get(Ty
, C
^ SMax
));
3209 // (X + -1) <u C --> X <=u C (if X is never null)
3210 if (Pred
== CmpInst::ICMP_ULT
&& C2
->isAllOnes()) {
3211 const SimplifyQuery Q
= SQ
.getWithInstruction(&Cmp
);
3212 if (llvm::isKnownNonZero(X
, Q
))
3213 return new ICmpInst(ICmpInst::ICMP_ULE
, X
, ConstantInt::get(Ty
, C
));
3216 if (!Add
->hasOneUse())
3219 // X+C <u C2 -> (X & -C2) == C
3220 // iff C & (C2-1) == 0
3221 // C2 is a power of 2
3222 if (Pred
== ICmpInst::ICMP_ULT
&& C
.isPowerOf2() && (*C2
& (C
- 1)) == 0)
3223 return new ICmpInst(ICmpInst::ICMP_EQ
, Builder
.CreateAnd(X
, -C
),
3224 ConstantExpr::getNeg(cast
<Constant
>(Y
)));
3226 // X+C2 <u C -> (X & C) == 2C
3228 // C2 is a power of 2
3229 if (Pred
== ICmpInst::ICMP_ULT
&& C2
->isPowerOf2() && C
== -*C2
)
3230 return new ICmpInst(ICmpInst::ICMP_NE
, Builder
.CreateAnd(X
, C
),
3231 ConstantInt::get(Ty
, C
* 2));
3233 // X+C >u C2 -> (X & ~C2) != C
3235 // C2+1 is a power of 2
3236 if (Pred
== ICmpInst::ICMP_UGT
&& (C
+ 1).isPowerOf2() && (*C2
& C
) == 0)
3237 return new ICmpInst(ICmpInst::ICMP_NE
, Builder
.CreateAnd(X
, ~C
),
3238 ConstantExpr::getNeg(cast
<Constant
>(Y
)));
3240 // The range test idiom can use either ult or ugt. Arbitrarily canonicalize
3242 // X+C2 >u C -> X+(C2-C-1) <u ~C
3243 if (Pred
== ICmpInst::ICMP_UGT
)
3244 return new ICmpInst(ICmpInst::ICMP_ULT
,
3245 Builder
.CreateAdd(X
, ConstantInt::get(Ty
, *C2
- C
- 1)),
3246 ConstantInt::get(Ty
, ~C
));
3248 // zext(V) + C2 pred C -> V + C3 pred' C4
3250 if (match(X
, m_ZExt(m_Value(V
)))) {
3251 Type
*NewCmpTy
= V
->getType();
3252 unsigned NewCmpBW
= NewCmpTy
->getScalarSizeInBits();
3253 if (shouldChangeType(Ty
, NewCmpTy
)) {
3254 if (CR
.getActiveBits() <= NewCmpBW
) {
3255 ConstantRange SrcCR
= CR
.truncate(NewCmpBW
);
3256 CmpInst::Predicate EquivPred
;
3260 SrcCR
.getEquivalentICmp(EquivPred
, EquivInt
, EquivOffset
);
3261 return new ICmpInst(
3263 EquivOffset
.isZero()
3265 : Builder
.CreateAdd(V
, ConstantInt::get(NewCmpTy
, EquivOffset
)),
3266 ConstantInt::get(NewCmpTy
, EquivInt
));
3274 bool InstCombinerImpl::matchThreeWayIntCompare(SelectInst
*SI
, Value
*&LHS
,
3275 Value
*&RHS
, ConstantInt
*&Less
,
3276 ConstantInt
*&Equal
,
3277 ConstantInt
*&Greater
) {
3278 // TODO: Generalize this to work with other comparison idioms or ensure
3279 // they get canonicalized into this form.
3281 // select i1 (a == b),
3283 // i32 (select i1 (a < b), i32 Less, i32 Greater)
3284 // where Equal, Less and Greater are placeholders for any three constants.
3286 if (!match(SI
->getCondition(), m_ICmp(PredA
, m_Value(LHS
), m_Value(RHS
))) ||
3287 !ICmpInst::isEquality(PredA
))
3289 Value
*EqualVal
= SI
->getTrueValue();
3290 Value
*UnequalVal
= SI
->getFalseValue();
3291 // We still can get non-canonical predicate here, so canonicalize.
3292 if (PredA
== ICmpInst::ICMP_NE
)
3293 std::swap(EqualVal
, UnequalVal
);
3294 if (!match(EqualVal
, m_ConstantInt(Equal
)))
3298 if (!match(UnequalVal
, m_Select(m_ICmp(PredB
, m_Value(LHS2
), m_Value(RHS2
)),
3299 m_ConstantInt(Less
), m_ConstantInt(Greater
))))
3301 // We can get predicate mismatch here, so canonicalize if possible:
3302 // First, ensure that 'LHS' match.
3304 // x sgt y <--> y slt x
3305 std::swap(LHS2
, RHS2
);
3306 PredB
= ICmpInst::getSwappedPredicate(PredB
);
3310 // We also need to canonicalize 'RHS'.
3311 if (PredB
== ICmpInst::ICMP_SGT
&& isa
<Constant
>(RHS2
)) {
3312 // x sgt C-1 <--> x sge C <--> not(x slt C)
3313 auto FlippedStrictness
=
3314 getFlippedStrictnessPredicateAndConstant(PredB
, cast
<Constant
>(RHS2
));
3315 if (!FlippedStrictness
)
3317 assert(FlippedStrictness
->first
== ICmpInst::ICMP_SGE
&&
3318 "basic correctness failure");
3319 RHS2
= FlippedStrictness
->second
;
3320 // And kind-of perform the result swap.
3321 std::swap(Less
, Greater
);
3322 PredB
= ICmpInst::ICMP_SLT
;
3324 return PredB
== ICmpInst::ICMP_SLT
&& RHS
== RHS2
;
3327 Instruction
*InstCombinerImpl::foldICmpSelectConstant(ICmpInst
&Cmp
,
3331 assert(C
&& "Cmp RHS should be a constant int!");
3332 // If we're testing a constant value against the result of a three way
3333 // comparison, the result can be expressed directly in terms of the
3334 // original values being compared. Note: We could possibly be more
3335 // aggressive here and remove the hasOneUse test. The original select is
3336 // really likely to simplify or sink when we remove a test of the result.
3337 Value
*OrigLHS
, *OrigRHS
;
3338 ConstantInt
*C1LessThan
, *C2Equal
, *C3GreaterThan
;
3339 if (Cmp
.hasOneUse() &&
3340 matchThreeWayIntCompare(Select
, OrigLHS
, OrigRHS
, C1LessThan
, C2Equal
,
3342 assert(C1LessThan
&& C2Equal
&& C3GreaterThan
);
3344 bool TrueWhenLessThan
= ICmpInst::compare(
3345 C1LessThan
->getValue(), C
->getValue(), Cmp
.getPredicate());
3346 bool TrueWhenEqual
= ICmpInst::compare(C2Equal
->getValue(), C
->getValue(),
3347 Cmp
.getPredicate());
3348 bool TrueWhenGreaterThan
= ICmpInst::compare(
3349 C3GreaterThan
->getValue(), C
->getValue(), Cmp
.getPredicate());
3351 // This generates the new instruction that will replace the original Cmp
3352 // Instruction. Instead of enumerating the various combinations when
3353 // TrueWhenLessThan, TrueWhenEqual and TrueWhenGreaterThan are true versus
3354 // false, we rely on chaining of ORs and future passes of InstCombine to
3355 // simplify the OR further (i.e. a s< b || a == b becomes a s<= b).
3357 // When none of the three constants satisfy the predicate for the RHS (C),
3358 // the entire original Cmp can be simplified to a false.
3359 Value
*Cond
= Builder
.getFalse();
3360 if (TrueWhenLessThan
)
3361 Cond
= Builder
.CreateOr(
3362 Cond
, Builder
.CreateICmp(ICmpInst::ICMP_SLT
, OrigLHS
, OrigRHS
));
3364 Cond
= Builder
.CreateOr(
3365 Cond
, Builder
.CreateICmp(ICmpInst::ICMP_EQ
, OrigLHS
, OrigRHS
));
3366 if (TrueWhenGreaterThan
)
3367 Cond
= Builder
.CreateOr(
3368 Cond
, Builder
.CreateICmp(ICmpInst::ICMP_SGT
, OrigLHS
, OrigRHS
));
3370 return replaceInstUsesWith(Cmp
, Cond
);
3375 Instruction
*InstCombinerImpl::foldICmpBitCast(ICmpInst
&Cmp
) {
3376 auto *Bitcast
= dyn_cast
<BitCastInst
>(Cmp
.getOperand(0));
3380 ICmpInst::Predicate Pred
= Cmp
.getPredicate();
3381 Value
*Op1
= Cmp
.getOperand(1);
3382 Value
*BCSrcOp
= Bitcast
->getOperand(0);
3383 Type
*SrcType
= Bitcast
->getSrcTy();
3384 Type
*DstType
= Bitcast
->getType();
3386 // Make sure the bitcast doesn't change between scalar and vector and
3387 // doesn't change the number of vector elements.
3388 if (SrcType
->isVectorTy() == DstType
->isVectorTy() &&
3389 SrcType
->getScalarSizeInBits() == DstType
->getScalarSizeInBits()) {
3390 // Zero-equality and sign-bit checks are preserved through sitofp + bitcast.
3392 if (match(BCSrcOp
, m_SIToFP(m_Value(X
)))) {
3393 // icmp eq (bitcast (sitofp X)), 0 --> icmp eq X, 0
3394 // icmp ne (bitcast (sitofp X)), 0 --> icmp ne X, 0
3395 // icmp slt (bitcast (sitofp X)), 0 --> icmp slt X, 0
3396 // icmp sgt (bitcast (sitofp X)), 0 --> icmp sgt X, 0
3397 if ((Pred
== ICmpInst::ICMP_EQ
|| Pred
== ICmpInst::ICMP_SLT
||
3398 Pred
== ICmpInst::ICMP_NE
|| Pred
== ICmpInst::ICMP_SGT
) &&
3399 match(Op1
, m_Zero()))
3400 return new ICmpInst(Pred
, X
, ConstantInt::getNullValue(X
->getType()));
3402 // icmp slt (bitcast (sitofp X)), 1 --> icmp slt X, 1
3403 if (Pred
== ICmpInst::ICMP_SLT
&& match(Op1
, m_One()))
3404 return new ICmpInst(Pred
, X
, ConstantInt::get(X
->getType(), 1));
3406 // icmp sgt (bitcast (sitofp X)), -1 --> icmp sgt X, -1
3407 if (Pred
== ICmpInst::ICMP_SGT
&& match(Op1
, m_AllOnes()))
3408 return new ICmpInst(Pred
, X
,
3409 ConstantInt::getAllOnesValue(X
->getType()));
3412 // Zero-equality checks are preserved through unsigned floating-point casts:
3413 // icmp eq (bitcast (uitofp X)), 0 --> icmp eq X, 0
3414 // icmp ne (bitcast (uitofp X)), 0 --> icmp ne X, 0
3415 if (match(BCSrcOp
, m_UIToFP(m_Value(X
))))
3416 if (Cmp
.isEquality() && match(Op1
, m_Zero()))
3417 return new ICmpInst(Pred
, X
, ConstantInt::getNullValue(X
->getType()));
3421 if (match(Op1
, m_APInt(C
)) && Bitcast
->hasOneUse()) {
3422 // If this is a sign-bit test of a bitcast of a casted FP value, eliminate
3423 // the FP extend/truncate because that cast does not change the sign-bit.
3424 // This is true for all standard IEEE-754 types and the X86 80-bit type.
3425 // The sign-bit is always the most significant bit in those types.
3426 if (isSignBitCheck(Pred
, *C
, TrueIfSigned
) &&
3427 (match(BCSrcOp
, m_FPExt(m_Value(X
))) ||
3428 match(BCSrcOp
, m_FPTrunc(m_Value(X
))))) {
3429 // (bitcast (fpext/fptrunc X)) to iX) < 0 --> (bitcast X to iY) < 0
3430 // (bitcast (fpext/fptrunc X)) to iX) > -1 --> (bitcast X to iY) > -1
3431 Type
*XType
= X
->getType();
3433 // We can't currently handle Power style floating point operations here.
3434 if (!(XType
->isPPC_FP128Ty() || SrcType
->isPPC_FP128Ty())) {
3435 Type
*NewType
= Builder
.getIntNTy(XType
->getScalarSizeInBits());
3436 if (auto *XVTy
= dyn_cast
<VectorType
>(XType
))
3437 NewType
= VectorType::get(NewType
, XVTy
->getElementCount());
3438 Value
*NewBitcast
= Builder
.CreateBitCast(X
, NewType
);
3440 return new ICmpInst(ICmpInst::ICMP_SLT
, NewBitcast
,
3441 ConstantInt::getNullValue(NewType
));
3443 return new ICmpInst(ICmpInst::ICMP_SGT
, NewBitcast
,
3444 ConstantInt::getAllOnesValue(NewType
));
3448 // icmp eq/ne (bitcast X to int), special fp -> llvm.is.fpclass(X, class)
3449 Type
*FPType
= SrcType
->getScalarType();
3450 if (!Cmp
.getParent()->getParent()->hasFnAttribute(
3451 Attribute::NoImplicitFloat
) &&
3452 Cmp
.isEquality() && FPType
->isIEEELikeFPTy()) {
3453 FPClassTest Mask
= APFloat(FPType
->getFltSemantics(), *C
).classify();
3454 if (Mask
& (fcInf
| fcZero
)) {
3455 if (Pred
== ICmpInst::ICMP_NE
)
3457 return replaceInstUsesWith(Cmp
,
3458 Builder
.createIsFPClass(BCSrcOp
, Mask
));
3465 if (!match(Cmp
.getOperand(1), m_APInt(C
)) || !DstType
->isIntegerTy() ||
3466 !SrcType
->isIntOrIntVectorTy())
3469 // If this is checking if all elements of a vector compare are set or not,
3470 // invert the casted vector equality compare and test if all compare
3471 // elements are clear or not. Compare against zero is generally easier for
3472 // analysis and codegen.
3473 // icmp eq/ne (bitcast (not X) to iN), -1 --> icmp eq/ne (bitcast X to iN), 0
3474 // Example: are all elements equal? --> are zero elements not equal?
3475 // TODO: Try harder to reduce compare of 2 freely invertible operands?
3476 if (Cmp
.isEquality() && C
->isAllOnes() && Bitcast
->hasOneUse()) {
3477 if (Value
*NotBCSrcOp
=
3478 getFreelyInverted(BCSrcOp
, BCSrcOp
->hasOneUse(), &Builder
)) {
3479 Value
*Cast
= Builder
.CreateBitCast(NotBCSrcOp
, DstType
);
3480 return new ICmpInst(Pred
, Cast
, ConstantInt::getNullValue(DstType
));
3484 // If this is checking if all elements of an extended vector are clear or not,
3485 // compare in a narrow type to eliminate the extend:
3486 // icmp eq/ne (bitcast (ext X) to iN), 0 --> icmp eq/ne (bitcast X to iM), 0
3488 if (Cmp
.isEquality() && C
->isZero() && Bitcast
->hasOneUse() &&
3489 match(BCSrcOp
, m_ZExtOrSExt(m_Value(X
)))) {
3490 if (auto *VecTy
= dyn_cast
<FixedVectorType
>(X
->getType())) {
3491 Type
*NewType
= Builder
.getIntNTy(VecTy
->getPrimitiveSizeInBits());
3492 Value
*NewCast
= Builder
.CreateBitCast(X
, NewType
);
3493 return new ICmpInst(Pred
, NewCast
, ConstantInt::getNullValue(NewType
));
3497 // Folding: icmp <pred> iN X, C
3498 // where X = bitcast <M x iK> (shufflevector <M x iK> %vec, undef, SC)) to iN
3499 // and C is a splat of a K-bit pattern
3500 // and SC is a constant vector = <C', C', C', ..., C'>
3502 // %E = extractelement <M x iK> %vec, i32 C'
3503 // icmp <pred> iK %E, trunc(C)
3506 if (match(BCSrcOp
, m_Shuffle(m_Value(Vec
), m_Undef(), m_Mask(Mask
)))) {
3507 // Check whether every element of Mask is the same constant
3508 if (all_equal(Mask
)) {
3509 auto *VecTy
= cast
<VectorType
>(SrcType
);
3510 auto *EltTy
= cast
<IntegerType
>(VecTy
->getElementType());
3511 if (C
->isSplat(EltTy
->getBitWidth())) {
3512 // Fold the icmp based on the value of C
3513 // If C is M copies of an iK sized bit pattern,
3515 // => %E = extractelement <N x iK> %vec, i32 Elem
3516 // icmp <pred> iK %SplatVal, <pattern>
3517 Value
*Elem
= Builder
.getInt32(Mask
[0]);
3518 Value
*Extract
= Builder
.CreateExtractElement(Vec
, Elem
);
3519 Value
*NewC
= ConstantInt::get(EltTy
, C
->trunc(EltTy
->getBitWidth()));
3520 return new ICmpInst(Pred
, Extract
, NewC
);
3527 /// Try to fold integer comparisons with a constant operand: icmp Pred X, C
3528 /// where X is some kind of instruction.
3529 Instruction
*InstCombinerImpl::foldICmpInstWithConstant(ICmpInst
&Cmp
) {
3532 if (match(Cmp
.getOperand(1), m_APInt(C
))) {
3533 if (auto *BO
= dyn_cast
<BinaryOperator
>(Cmp
.getOperand(0)))
3534 if (Instruction
*I
= foldICmpBinOpWithConstant(Cmp
, BO
, *C
))
3537 if (auto *SI
= dyn_cast
<SelectInst
>(Cmp
.getOperand(0)))
3538 // For now, we only support constant integers while folding the
3539 // ICMP(SELECT)) pattern. We can extend this to support vector of integers
3540 // similar to the cases handled by binary ops above.
3541 if (auto *ConstRHS
= dyn_cast
<ConstantInt
>(Cmp
.getOperand(1)))
3542 if (Instruction
*I
= foldICmpSelectConstant(Cmp
, SI
, ConstRHS
))
3545 if (auto *TI
= dyn_cast
<TruncInst
>(Cmp
.getOperand(0)))
3546 if (Instruction
*I
= foldICmpTruncConstant(Cmp
, TI
, *C
))
3549 if (auto *II
= dyn_cast
<IntrinsicInst
>(Cmp
.getOperand(0)))
3550 if (Instruction
*I
= foldICmpIntrinsicWithConstant(Cmp
, II
, *C
))
3553 // (extractval ([s/u]subo X, Y), 0) == 0 --> X == Y
3554 // (extractval ([s/u]subo X, Y), 0) != 0 --> X != Y
3555 // TODO: This checks one-use, but that is not strictly necessary.
3556 Value
*Cmp0
= Cmp
.getOperand(0);
3558 if (C
->isZero() && Cmp
.isEquality() && Cmp0
->hasOneUse() &&
3560 m_ExtractValue
<0>(m_Intrinsic
<Intrinsic::ssub_with_overflow
>(
3561 m_Value(X
), m_Value(Y
)))) ||
3563 m_ExtractValue
<0>(m_Intrinsic
<Intrinsic::usub_with_overflow
>(
3564 m_Value(X
), m_Value(Y
))))))
3565 return new ICmpInst(Cmp
.getPredicate(), X
, Y
);
3568 if (match(Cmp
.getOperand(1), m_APIntAllowPoison(C
)))
3569 return foldICmpInstWithConstantAllowPoison(Cmp
, *C
);
3574 /// Fold an icmp equality instruction with binary operator LHS and constant RHS:
3575 /// icmp eq/ne BO, C.
3576 Instruction
*InstCombinerImpl::foldICmpBinOpEqualityWithConstant(
3577 ICmpInst
&Cmp
, BinaryOperator
*BO
, const APInt
&C
) {
3578 // TODO: Some of these folds could work with arbitrary constants, but this
3579 // function is limited to scalar and vector splat constants.
3580 if (!Cmp
.isEquality())
3583 ICmpInst::Predicate Pred
= Cmp
.getPredicate();
3584 bool isICMP_NE
= Pred
== ICmpInst::ICMP_NE
;
3585 Constant
*RHS
= cast
<Constant
>(Cmp
.getOperand(1));
3586 Value
*BOp0
= BO
->getOperand(0), *BOp1
= BO
->getOperand(1);
3588 switch (BO
->getOpcode()) {
3589 case Instruction::SRem
:
3590 // If we have a signed (X % (2^c)) == 0, turn it into an unsigned one.
3591 if (C
.isZero() && BO
->hasOneUse()) {
3593 if (match(BOp1
, m_APInt(BOC
)) && BOC
->sgt(1) && BOC
->isPowerOf2()) {
3594 Value
*NewRem
= Builder
.CreateURem(BOp0
, BOp1
, BO
->getName());
3595 return new ICmpInst(Pred
, NewRem
,
3596 Constant::getNullValue(BO
->getType()));
3600 case Instruction::Add
: {
3601 // (A + C2) == C --> A == (C - C2)
3602 // (A + C2) != C --> A != (C - C2)
3603 // TODO: Remove the one-use limitation? See discussion in D58633.
3604 if (Constant
*C2
= dyn_cast
<Constant
>(BOp1
)) {
3605 if (BO
->hasOneUse())
3606 return new ICmpInst(Pred
, BOp0
, ConstantExpr::getSub(RHS
, C2
));
3607 } else if (C
.isZero()) {
3608 // Replace ((add A, B) != 0) with (A != -B) if A or B is
3609 // efficiently invertible, or if the add has just this one use.
3610 if (Value
*NegVal
= dyn_castNegVal(BOp1
))
3611 return new ICmpInst(Pred
, BOp0
, NegVal
);
3612 if (Value
*NegVal
= dyn_castNegVal(BOp0
))
3613 return new ICmpInst(Pred
, NegVal
, BOp1
);
3614 if (BO
->hasOneUse()) {
3615 // (add nuw A, B) != 0 -> (or A, B) != 0
3616 if (match(BO
, m_NUWAdd(m_Value(), m_Value()))) {
3617 Value
*Or
= Builder
.CreateOr(BOp0
, BOp1
);
3618 return new ICmpInst(Pred
, Or
, Constant::getNullValue(BO
->getType()));
3620 Value
*Neg
= Builder
.CreateNeg(BOp1
);
3622 return new ICmpInst(Pred
, BOp0
, Neg
);
3627 case Instruction::Xor
:
3628 if (Constant
*BOC
= dyn_cast
<Constant
>(BOp1
)) {
3629 // For the xor case, we can xor two constants together, eliminating
3630 // the explicit xor.
3631 return new ICmpInst(Pred
, BOp0
, ConstantExpr::getXor(RHS
, BOC
));
3632 } else if (C
.isZero()) {
3633 // Replace ((xor A, B) != 0) with (A != B)
3634 return new ICmpInst(Pred
, BOp0
, BOp1
);
3637 case Instruction::Or
: {
3639 if (match(BOp1
, m_APInt(BOC
)) && BO
->hasOneUse() && RHS
->isAllOnesValue()) {
3640 // Comparing if all bits outside of a constant mask are set?
3641 // Replace (X | C) == -1 with (X & ~C) == ~C.
3642 // This removes the -1 constant.
3643 Constant
*NotBOC
= ConstantExpr::getNot(cast
<Constant
>(BOp1
));
3644 Value
*And
= Builder
.CreateAnd(BOp0
, NotBOC
);
3645 return new ICmpInst(Pred
, And
, NotBOC
);
3647 // (icmp eq (or (select cond, 0, NonZero), Other), 0)
3648 // -> (and cond, (icmp eq Other, 0))
3649 // (icmp ne (or (select cond, NonZero, 0), Other), 0)
3650 // -> (or cond, (icmp ne Other, 0))
3651 Value
*Cond
, *TV
, *FV
, *Other
, *Sel
;
3654 m_OneUse(m_c_Or(m_CombineAnd(m_Value(Sel
),
3655 m_Select(m_Value(Cond
), m_Value(TV
),
3657 m_Value(Other
)))) &&
3658 Cond
->getType() == Cmp
.getType()) {
3659 const SimplifyQuery Q
= SQ
.getWithInstruction(&Cmp
);
3660 // Easy case is if eq/ne matches whether 0 is trueval/falseval.
3661 if (Pred
== ICmpInst::ICMP_EQ
3662 ? (match(TV
, m_Zero()) && isKnownNonZero(FV
, Q
))
3663 : (match(FV
, m_Zero()) && isKnownNonZero(TV
, Q
))) {
3664 Value
*Cmp
= Builder
.CreateICmp(
3665 Pred
, Other
, Constant::getNullValue(Other
->getType()));
3666 return BinaryOperator::Create(
3667 Pred
== ICmpInst::ICMP_EQ
? Instruction::And
: Instruction::Or
, Cmp
,
3670 // Harder case is if eq/ne matches whether 0 is falseval/trueval. In this
3671 // case we need to invert the select condition so we need to be careful to
3672 // avoid creating extra instructions.
3673 // (icmp ne (or (select cond, 0, NonZero), Other), 0)
3674 // -> (or (not cond), (icmp ne Other, 0))
3675 // (icmp eq (or (select cond, NonZero, 0), Other), 0)
3676 // -> (and (not cond), (icmp eq Other, 0))
3678 // Only do this if the inner select has one use, in which case we are
3679 // replacing `select` with `(not cond)`. Otherwise, we will create more
3680 // uses. NB: Trying to freely invert cond doesn't make sense here, as if
3681 // cond was freely invertable, the select arms would have been inverted.
3682 if (Sel
->hasOneUse() &&
3683 (Pred
== ICmpInst::ICMP_EQ
3684 ? (match(FV
, m_Zero()) && isKnownNonZero(TV
, Q
))
3685 : (match(TV
, m_Zero()) && isKnownNonZero(FV
, Q
)))) {
3686 Value
*NotCond
= Builder
.CreateNot(Cond
);
3687 Value
*Cmp
= Builder
.CreateICmp(
3688 Pred
, Other
, Constant::getNullValue(Other
->getType()));
3689 return BinaryOperator::Create(
3690 Pred
== ICmpInst::ICMP_EQ
? Instruction::And
: Instruction::Or
, Cmp
,
3696 case Instruction::UDiv
:
3697 case Instruction::SDiv
:
3698 if (BO
->isExact()) {
3699 // div exact X, Y eq/ne 0 -> X eq/ne 0
3700 // div exact X, Y eq/ne 1 -> X eq/ne Y
3701 // div exact X, Y eq/ne C ->
3702 // if Y * C never-overflow && OneUse:
3705 return new ICmpInst(Pred
, BOp0
, Constant::getNullValue(BO
->getType()));
3707 return new ICmpInst(Pred
, BOp0
, BOp1
);
3708 else if (BO
->hasOneUse()) {
3709 OverflowResult OR
= computeOverflow(
3710 Instruction::Mul
, BO
->getOpcode() == Instruction::SDiv
, BOp1
,
3711 Cmp
.getOperand(1), BO
);
3712 if (OR
== OverflowResult::NeverOverflows
) {
3714 Builder
.CreateMul(BOp1
, ConstantInt::get(BO
->getType(), C
));
3715 return new ICmpInst(Pred
, YC
, BOp0
);
3719 if (BO
->getOpcode() == Instruction::UDiv
&& C
.isZero()) {
3720 // (icmp eq/ne (udiv A, B), 0) -> (icmp ugt/ule i32 B, A)
3721 auto NewPred
= isICMP_NE
? ICmpInst::ICMP_ULE
: ICmpInst::ICMP_UGT
;
3722 return new ICmpInst(NewPred
, BOp1
, BOp0
);
3731 static Instruction
*foldCtpopPow2Test(ICmpInst
&I
, IntrinsicInst
*CtpopLhs
,
3733 InstCombiner::BuilderTy
&Builder
,
3734 const SimplifyQuery
&Q
) {
3735 assert(CtpopLhs
->getIntrinsicID() == Intrinsic::ctpop
&&
3736 "Non-ctpop intrin in ctpop fold");
3737 if (!CtpopLhs
->hasOneUse())
3741 // isPow2OrZero : ctpop(X) u< 2
3742 // isPow2 : ctpop(X) == 1
3743 // NotPow2OrZero: ctpop(X) u> 1
3744 // NotPow2 : ctpop(X) != 1
3745 // If we know any bit of X can be folded to:
3746 // IsPow2 : X & (~Bit) == 0
3747 // NotPow2 : X & (~Bit) != 0
3748 const ICmpInst::Predicate Pred
= I
.getPredicate();
3749 if (((I
.isEquality() || Pred
== ICmpInst::ICMP_UGT
) && CRhs
== 1) ||
3750 (Pred
== ICmpInst::ICMP_ULT
&& CRhs
== 2)) {
3751 Value
*Op
= CtpopLhs
->getArgOperand(0);
3752 KnownBits OpKnown
= computeKnownBits(Op
, Q
.DL
,
3753 /*Depth*/ 0, Q
.AC
, Q
.CxtI
, Q
.DT
);
3754 // No need to check for count > 1, that should be already constant folded.
3755 if (OpKnown
.countMinPopulation() == 1) {
3756 Value
*And
= Builder
.CreateAnd(
3757 Op
, Constant::getIntegerValue(Op
->getType(), ~(OpKnown
.One
)));
3758 return new ICmpInst(
3759 (Pred
== ICmpInst::ICMP_EQ
|| Pred
== ICmpInst::ICMP_ULT
)
3761 : ICmpInst::ICMP_NE
,
3762 And
, Constant::getNullValue(Op
->getType()));
3769 /// Fold an equality icmp with LLVM intrinsic and constant operand.
3770 Instruction
*InstCombinerImpl::foldICmpEqIntrinsicWithConstant(
3771 ICmpInst
&Cmp
, IntrinsicInst
*II
, const APInt
&C
) {
3772 Type
*Ty
= II
->getType();
3773 unsigned BitWidth
= C
.getBitWidth();
3774 const ICmpInst::Predicate Pred
= Cmp
.getPredicate();
3776 switch (II
->getIntrinsicID()) {
3777 case Intrinsic::abs
:
3778 // abs(A) == 0 -> A == 0
3779 // abs(A) == INT_MIN -> A == INT_MIN
3780 if (C
.isZero() || C
.isMinSignedValue())
3781 return new ICmpInst(Pred
, II
->getArgOperand(0), ConstantInt::get(Ty
, C
));
3784 case Intrinsic::bswap
:
3785 // bswap(A) == C -> A == bswap(C)
3786 return new ICmpInst(Pred
, II
->getArgOperand(0),
3787 ConstantInt::get(Ty
, C
.byteSwap()));
3789 case Intrinsic::bitreverse
:
3790 // bitreverse(A) == C -> A == bitreverse(C)
3791 return new ICmpInst(Pred
, II
->getArgOperand(0),
3792 ConstantInt::get(Ty
, C
.reverseBits()));
3794 case Intrinsic::ctlz
:
3795 case Intrinsic::cttz
: {
3796 // ctz(A) == bitwidth(A) -> A == 0 and likewise for !=
3798 return new ICmpInst(Pred
, II
->getArgOperand(0),
3799 ConstantInt::getNullValue(Ty
));
3801 // ctz(A) == C -> A & Mask1 == Mask2, where Mask2 only has bit C set
3802 // and Mask1 has bits 0..C+1 set. Similar for ctl, but for high bits.
3803 // Limit to one use to ensure we don't increase instruction count.
3804 unsigned Num
= C
.getLimitedValue(BitWidth
);
3805 if (Num
!= BitWidth
&& II
->hasOneUse()) {
3806 bool IsTrailing
= II
->getIntrinsicID() == Intrinsic::cttz
;
3807 APInt Mask1
= IsTrailing
? APInt::getLowBitsSet(BitWidth
, Num
+ 1)
3808 : APInt::getHighBitsSet(BitWidth
, Num
+ 1);
3809 APInt Mask2
= IsTrailing
3810 ? APInt::getOneBitSet(BitWidth
, Num
)
3811 : APInt::getOneBitSet(BitWidth
, BitWidth
- Num
- 1);
3812 return new ICmpInst(Pred
, Builder
.CreateAnd(II
->getArgOperand(0), Mask1
),
3813 ConstantInt::get(Ty
, Mask2
));
3818 case Intrinsic::ctpop
: {
3819 // popcount(A) == 0 -> A == 0 and likewise for !=
3820 // popcount(A) == bitwidth(A) -> A == -1 and likewise for !=
3821 bool IsZero
= C
.isZero();
3822 if (IsZero
|| C
== BitWidth
)
3823 return new ICmpInst(Pred
, II
->getArgOperand(0),
3824 IsZero
? Constant::getNullValue(Ty
)
3825 : Constant::getAllOnesValue(Ty
));
3830 case Intrinsic::fshl
:
3831 case Intrinsic::fshr
:
3832 if (II
->getArgOperand(0) == II
->getArgOperand(1)) {
3833 const APInt
*RotAmtC
;
3834 // ror(X, RotAmtC) == C --> X == rol(C, RotAmtC)
3835 // rol(X, RotAmtC) == C --> X == ror(C, RotAmtC)
3836 if (match(II
->getArgOperand(2), m_APInt(RotAmtC
)))
3837 return new ICmpInst(Pred
, II
->getArgOperand(0),
3838 II
->getIntrinsicID() == Intrinsic::fshl
3839 ? ConstantInt::get(Ty
, C
.rotr(*RotAmtC
))
3840 : ConstantInt::get(Ty
, C
.rotl(*RotAmtC
)));
3844 case Intrinsic::umax
:
3845 case Intrinsic::uadd_sat
: {
3846 // uadd.sat(a, b) == 0 -> (a | b) == 0
3847 // umax(a, b) == 0 -> (a | b) == 0
3848 if (C
.isZero() && II
->hasOneUse()) {
3849 Value
*Or
= Builder
.CreateOr(II
->getArgOperand(0), II
->getArgOperand(1));
3850 return new ICmpInst(Pred
, Or
, Constant::getNullValue(Ty
));
3855 case Intrinsic::ssub_sat
:
3856 // ssub.sat(a, b) == 0 -> a == b
3858 return new ICmpInst(Pred
, II
->getArgOperand(0), II
->getArgOperand(1));
3860 case Intrinsic::usub_sat
: {
3861 // usub.sat(a, b) == 0 -> a <= b
3863 ICmpInst::Predicate NewPred
=
3864 Pred
== ICmpInst::ICMP_EQ
? ICmpInst::ICMP_ULE
: ICmpInst::ICMP_UGT
;
3865 return new ICmpInst(NewPred
, II
->getArgOperand(0), II
->getArgOperand(1));
3876 /// Fold an icmp with LLVM intrinsics
3877 static Instruction
*
3878 foldICmpIntrinsicWithIntrinsic(ICmpInst
&Cmp
,
3879 InstCombiner::BuilderTy
&Builder
) {
3880 assert(Cmp
.isEquality());
3882 ICmpInst::Predicate Pred
= Cmp
.getPredicate();
3883 Value
*Op0
= Cmp
.getOperand(0);
3884 Value
*Op1
= Cmp
.getOperand(1);
3885 const auto *IIOp0
= dyn_cast
<IntrinsicInst
>(Op0
);
3886 const auto *IIOp1
= dyn_cast
<IntrinsicInst
>(Op1
);
3887 if (!IIOp0
|| !IIOp1
|| IIOp0
->getIntrinsicID() != IIOp1
->getIntrinsicID())
3890 switch (IIOp0
->getIntrinsicID()) {
3891 case Intrinsic::bswap
:
3892 case Intrinsic::bitreverse
:
3893 // If both operands are byte-swapped or bit-reversed, just compare the
3895 return new ICmpInst(Pred
, IIOp0
->getOperand(0), IIOp1
->getOperand(0));
3896 case Intrinsic::fshl
:
3897 case Intrinsic::fshr
: {
3898 // If both operands are rotated by same amount, just compare the
3900 if (IIOp0
->getOperand(0) != IIOp0
->getOperand(1))
3902 if (IIOp1
->getOperand(0) != IIOp1
->getOperand(1))
3904 if (IIOp0
->getOperand(2) == IIOp1
->getOperand(2))
3905 return new ICmpInst(Pred
, IIOp0
->getOperand(0), IIOp1
->getOperand(0));
3907 // rotate(X, AmtX) == rotate(Y, AmtY)
3908 // -> rotate(X, AmtX - AmtY) == Y
3909 // Do this if either both rotates have one use or if only one has one use
3910 // and AmtX/AmtY are constants.
3911 unsigned OneUses
= IIOp0
->hasOneUse() + IIOp1
->hasOneUse();
3913 (OneUses
== 1 && match(IIOp0
->getOperand(2), m_ImmConstant()) &&
3914 match(IIOp1
->getOperand(2), m_ImmConstant()))) {
3916 Builder
.CreateSub(IIOp0
->getOperand(2), IIOp1
->getOperand(2));
3917 Value
*CombinedRotate
= Builder
.CreateIntrinsic(
3918 Op0
->getType(), IIOp0
->getIntrinsicID(),
3919 {IIOp0
->getOperand(0), IIOp0
->getOperand(0), SubAmt
});
3920 return new ICmpInst(Pred
, IIOp1
->getOperand(0), CombinedRotate
);
3930 /// Try to fold integer comparisons with a constant operand: icmp Pred X, C
3931 /// where X is some kind of instruction and C is AllowPoison.
3932 /// TODO: Move more folds which allow poison to this function.
3934 InstCombinerImpl::foldICmpInstWithConstantAllowPoison(ICmpInst
&Cmp
,
3936 const ICmpInst::Predicate Pred
= Cmp
.getPredicate();
3937 if (auto *II
= dyn_cast
<IntrinsicInst
>(Cmp
.getOperand(0))) {
3938 switch (II
->getIntrinsicID()) {
3941 case Intrinsic::fshl
:
3942 case Intrinsic::fshr
:
3943 if (Cmp
.isEquality() && II
->getArgOperand(0) == II
->getArgOperand(1)) {
3944 // (rot X, ?) == 0/-1 --> X == 0/-1
3945 if (C
.isZero() || C
.isAllOnes())
3946 return new ICmpInst(Pred
, II
->getArgOperand(0), Cmp
.getOperand(1));
3955 /// Fold an icmp with BinaryOp and constant operand: icmp Pred BO, C.
3956 Instruction
*InstCombinerImpl::foldICmpBinOpWithConstant(ICmpInst
&Cmp
,
3959 switch (BO
->getOpcode()) {
3960 case Instruction::Xor
:
3961 if (Instruction
*I
= foldICmpXorConstant(Cmp
, BO
, C
))
3964 case Instruction::And
:
3965 if (Instruction
*I
= foldICmpAndConstant(Cmp
, BO
, C
))
3968 case Instruction::Or
:
3969 if (Instruction
*I
= foldICmpOrConstant(Cmp
, BO
, C
))
3972 case Instruction::Mul
:
3973 if (Instruction
*I
= foldICmpMulConstant(Cmp
, BO
, C
))
3976 case Instruction::Shl
:
3977 if (Instruction
*I
= foldICmpShlConstant(Cmp
, BO
, C
))
3980 case Instruction::LShr
:
3981 case Instruction::AShr
:
3982 if (Instruction
*I
= foldICmpShrConstant(Cmp
, BO
, C
))
3985 case Instruction::SRem
:
3986 if (Instruction
*I
= foldICmpSRemConstant(Cmp
, BO
, C
))
3989 case Instruction::UDiv
:
3990 if (Instruction
*I
= foldICmpUDivConstant(Cmp
, BO
, C
))
3993 case Instruction::SDiv
:
3994 if (Instruction
*I
= foldICmpDivConstant(Cmp
, BO
, C
))
3997 case Instruction::Sub
:
3998 if (Instruction
*I
= foldICmpSubConstant(Cmp
, BO
, C
))
4001 case Instruction::Add
:
4002 if (Instruction
*I
= foldICmpAddConstant(Cmp
, BO
, C
))
4009 // TODO: These folds could be refactored to be part of the above calls.
4010 return foldICmpBinOpEqualityWithConstant(Cmp
, BO
, C
);
4013 static Instruction
*
4014 foldICmpUSubSatOrUAddSatWithConstant(CmpPredicate Pred
, SaturatingInst
*II
,
4016 InstCombiner::BuilderTy
&Builder
) {
4017 // This transform may end up producing more than one instruction for the
4018 // intrinsic, so limit it to one user of the intrinsic.
4019 if (!II
->hasOneUse())
4022 // Let Y = [add/sub]_sat(X, C) pred C2
4023 // SatVal = The saturating value for the operation
4024 // WillWrap = Whether or not the operation will underflow / overflow
4025 // => Y = (WillWrap ? SatVal : (X binop C)) pred C2
4026 // => Y = WillWrap ? (SatVal pred C2) : ((X binop C) pred C2)
4028 // When (SatVal pred C2) is true, then
4029 // Y = WillWrap ? true : ((X binop C) pred C2)
4030 // => Y = WillWrap || ((X binop C) pred C2)
4032 // Y = WillWrap ? false : ((X binop C) pred C2)
4033 // => Y = !WillWrap ? ((X binop C) pred C2) : false
4034 // => Y = !WillWrap && ((X binop C) pred C2)
4035 Value
*Op0
= II
->getOperand(0);
4036 Value
*Op1
= II
->getOperand(1);
4039 // This transform only works when the intrinsic has an integral constant or
4040 // splat vector as the second operand.
4041 if (!match(Op1
, m_APInt(COp1
)))
4045 switch (II
->getIntrinsicID()) {
4048 "This function only works with usub_sat and uadd_sat for now!");
4049 case Intrinsic::uadd_sat
:
4050 SatVal
= APInt::getAllOnes(C
.getBitWidth());
4052 case Intrinsic::usub_sat
:
4053 SatVal
= APInt::getZero(C
.getBitWidth());
4057 // Check (SatVal pred C2)
4058 bool SatValCheck
= ICmpInst::compare(SatVal
, C
, Pred
);
4061 ConstantRange C1
= ConstantRange::makeExactNoWrapRegion(
4062 II
->getBinaryOp(), *COp1
, II
->getNoWrapKind());
4068 ConstantRange C2
= ConstantRange::makeExactICmpRegion(Pred
, C
);
4069 if (II
->getBinaryOp() == Instruction::Add
)
4074 Instruction::BinaryOps CombiningOp
=
4075 SatValCheck
? Instruction::BinaryOps::Or
: Instruction::BinaryOps::And
;
4077 std::optional
<ConstantRange
> Combination
;
4078 if (CombiningOp
== Instruction::BinaryOps::Or
)
4079 Combination
= C1
.exactUnionWith(C2
);
4080 else /* CombiningOp == Instruction::BinaryOps::And */
4081 Combination
= C1
.exactIntersectWith(C2
);
4086 CmpInst::Predicate EquivPred
;
4090 Combination
->getEquivalentICmp(EquivPred
, EquivInt
, EquivOffset
);
4092 return new ICmpInst(
4094 Builder
.CreateAdd(Op0
, ConstantInt::get(Op1
->getType(), EquivOffset
)),
4095 ConstantInt::get(Op1
->getType(), EquivInt
));
4098 static Instruction
*
4099 foldICmpOfCmpIntrinsicWithConstant(CmpPredicate Pred
, IntrinsicInst
*I
,
4101 InstCombiner::BuilderTy
&Builder
) {
4102 std::optional
<ICmpInst::Predicate
> NewPredicate
= std::nullopt
;
4104 case ICmpInst::ICMP_EQ
:
4105 case ICmpInst::ICMP_NE
:
4107 NewPredicate
= Pred
;
4110 Pred
== ICmpInst::ICMP_EQ
? ICmpInst::ICMP_UGT
: ICmpInst::ICMP_ULE
;
4111 else if (C
.isAllOnes())
4113 Pred
== ICmpInst::ICMP_EQ
? ICmpInst::ICMP_ULT
: ICmpInst::ICMP_UGE
;
4116 case ICmpInst::ICMP_SGT
:
4118 NewPredicate
= ICmpInst::ICMP_UGE
;
4119 else if (C
.isZero())
4120 NewPredicate
= ICmpInst::ICMP_UGT
;
4123 case ICmpInst::ICMP_SLT
:
4125 NewPredicate
= ICmpInst::ICMP_ULT
;
4127 NewPredicate
= ICmpInst::ICMP_ULE
;
4130 case ICmpInst::ICMP_ULT
:
4132 NewPredicate
= ICmpInst::ICMP_UGE
;
4135 case ICmpInst::ICMP_UGT
:
4136 if (!C
.isZero() && !C
.isAllOnes())
4137 NewPredicate
= ICmpInst::ICMP_ULT
;
4147 if (I
->getIntrinsicID() == Intrinsic::scmp
)
4148 NewPredicate
= ICmpInst::getSignedPredicate(*NewPredicate
);
4149 Value
*LHS
= I
->getOperand(0);
4150 Value
*RHS
= I
->getOperand(1);
4151 return new ICmpInst(*NewPredicate
, LHS
, RHS
);
4154 /// Fold an icmp with LLVM intrinsic and constant operand: icmp Pred II, C.
4155 Instruction
*InstCombinerImpl::foldICmpIntrinsicWithConstant(ICmpInst
&Cmp
,
4158 ICmpInst::Predicate Pred
= Cmp
.getPredicate();
4160 // Handle folds that apply for any kind of icmp.
4161 switch (II
->getIntrinsicID()) {
4164 case Intrinsic::uadd_sat
:
4165 case Intrinsic::usub_sat
:
4166 if (auto *Folded
= foldICmpUSubSatOrUAddSatWithConstant(
4167 Pred
, cast
<SaturatingInst
>(II
), C
, Builder
))
4170 case Intrinsic::ctpop
: {
4171 const SimplifyQuery Q
= SQ
.getWithInstruction(&Cmp
);
4172 if (Instruction
*R
= foldCtpopPow2Test(Cmp
, II
, C
, Builder
, Q
))
4175 case Intrinsic::scmp
:
4176 case Intrinsic::ucmp
:
4177 if (auto *Folded
= foldICmpOfCmpIntrinsicWithConstant(Pred
, II
, C
, Builder
))
4182 if (Cmp
.isEquality())
4183 return foldICmpEqIntrinsicWithConstant(Cmp
, II
, C
);
4185 Type
*Ty
= II
->getType();
4186 unsigned BitWidth
= C
.getBitWidth();
4187 switch (II
->getIntrinsicID()) {
4188 case Intrinsic::ctpop
: {
4189 // (ctpop X > BitWidth - 1) --> X == -1
4190 Value
*X
= II
->getArgOperand(0);
4191 if (C
== BitWidth
- 1 && Pred
== ICmpInst::ICMP_UGT
)
4192 return CmpInst::Create(Instruction::ICmp
, ICmpInst::ICMP_EQ
, X
,
4193 ConstantInt::getAllOnesValue(Ty
));
4194 // (ctpop X < BitWidth) --> X != -1
4195 if (C
== BitWidth
&& Pred
== ICmpInst::ICMP_ULT
)
4196 return CmpInst::Create(Instruction::ICmp
, ICmpInst::ICMP_NE
, X
,
4197 ConstantInt::getAllOnesValue(Ty
));
4200 case Intrinsic::ctlz
: {
4201 // ctlz(0bXXXXXXXX) > 3 -> 0bXXXXXXXX < 0b00010000
4202 if (Pred
== ICmpInst::ICMP_UGT
&& C
.ult(BitWidth
)) {
4203 unsigned Num
= C
.getLimitedValue();
4204 APInt Limit
= APInt::getOneBitSet(BitWidth
, BitWidth
- Num
- 1);
4205 return CmpInst::Create(Instruction::ICmp
, ICmpInst::ICMP_ULT
,
4206 II
->getArgOperand(0), ConstantInt::get(Ty
, Limit
));
4209 // ctlz(0bXXXXXXXX) < 3 -> 0bXXXXXXXX > 0b00011111
4210 if (Pred
== ICmpInst::ICMP_ULT
&& C
.uge(1) && C
.ule(BitWidth
)) {
4211 unsigned Num
= C
.getLimitedValue();
4212 APInt Limit
= APInt::getLowBitsSet(BitWidth
, BitWidth
- Num
);
4213 return CmpInst::Create(Instruction::ICmp
, ICmpInst::ICMP_UGT
,
4214 II
->getArgOperand(0), ConstantInt::get(Ty
, Limit
));
4218 case Intrinsic::cttz
: {
4219 // Limit to one use to ensure we don't increase instruction count.
4220 if (!II
->hasOneUse())
4223 // cttz(0bXXXXXXXX) > 3 -> 0bXXXXXXXX & 0b00001111 == 0
4224 if (Pred
== ICmpInst::ICMP_UGT
&& C
.ult(BitWidth
)) {
4225 APInt Mask
= APInt::getLowBitsSet(BitWidth
, C
.getLimitedValue() + 1);
4226 return CmpInst::Create(Instruction::ICmp
, ICmpInst::ICMP_EQ
,
4227 Builder
.CreateAnd(II
->getArgOperand(0), Mask
),
4228 ConstantInt::getNullValue(Ty
));
4231 // cttz(0bXXXXXXXX) < 3 -> 0bXXXXXXXX & 0b00000111 != 0
4232 if (Pred
== ICmpInst::ICMP_ULT
&& C
.uge(1) && C
.ule(BitWidth
)) {
4233 APInt Mask
= APInt::getLowBitsSet(BitWidth
, C
.getLimitedValue());
4234 return CmpInst::Create(Instruction::ICmp
, ICmpInst::ICMP_NE
,
4235 Builder
.CreateAnd(II
->getArgOperand(0), Mask
),
4236 ConstantInt::getNullValue(Ty
));
4240 case Intrinsic::ssub_sat
:
4241 // ssub.sat(a, b) spred 0 -> a spred b
4242 if (ICmpInst::isSigned(Pred
)) {
4244 return new ICmpInst(Pred
, II
->getArgOperand(0), II
->getArgOperand(1));
4245 // X s<= 0 is cannonicalized to X s< 1
4246 if (Pred
== ICmpInst::ICMP_SLT
&& C
.isOne())
4247 return new ICmpInst(ICmpInst::ICMP_SLE
, II
->getArgOperand(0),
4248 II
->getArgOperand(1));
4249 // X s>= 0 is cannonicalized to X s> -1
4250 if (Pred
== ICmpInst::ICMP_SGT
&& C
.isAllOnes())
4251 return new ICmpInst(ICmpInst::ICMP_SGE
, II
->getArgOperand(0),
4252 II
->getArgOperand(1));
4262 /// Handle icmp with constant (but not simple integer constant) RHS.
4263 Instruction
*InstCombinerImpl::foldICmpInstWithConstantNotInt(ICmpInst
&I
) {
4264 Value
*Op0
= I
.getOperand(0), *Op1
= I
.getOperand(1);
4265 Constant
*RHSC
= dyn_cast
<Constant
>(Op1
);
4266 Instruction
*LHSI
= dyn_cast
<Instruction
>(Op0
);
4270 switch (LHSI
->getOpcode()) {
4271 case Instruction::PHI
:
4272 if (Instruction
*NV
= foldOpIntoPhi(I
, cast
<PHINode
>(LHSI
)))
4275 case Instruction::IntToPtr
:
4276 // icmp pred inttoptr(X), null -> icmp pred X, 0
4277 if (RHSC
->isNullValue() &&
4278 DL
.getIntPtrType(RHSC
->getType()) == LHSI
->getOperand(0)->getType())
4279 return new ICmpInst(
4280 I
.getPredicate(), LHSI
->getOperand(0),
4281 Constant::getNullValue(LHSI
->getOperand(0)->getType()));
4284 case Instruction::Load
:
4285 // Try to optimize things like "A[i] > 4" to index computations.
4286 if (GetElementPtrInst
*GEP
=
4287 dyn_cast
<GetElementPtrInst
>(LHSI
->getOperand(0)))
4288 if (GlobalVariable
*GV
= dyn_cast
<GlobalVariable
>(GEP
->getOperand(0)))
4289 if (Instruction
*Res
=
4290 foldCmpLoadFromIndexedGlobal(cast
<LoadInst
>(LHSI
), GEP
, GV
, I
))
4298 Instruction
*InstCombinerImpl::foldSelectICmp(CmpPredicate Pred
, SelectInst
*SI
,
4299 Value
*RHS
, const ICmpInst
&I
) {
4300 // Try to fold the comparison into the select arms, which will cause the
4301 // select to be converted into a logical and/or.
4302 auto SimplifyOp
= [&](Value
*Op
, bool SelectCondIsTrue
) -> Value
* {
4303 if (Value
*Res
= simplifyICmpInst(Pred
, Op
, RHS
, SQ
))
4305 if (std::optional
<bool> Impl
= isImpliedCondition(
4306 SI
->getCondition(), Pred
, Op
, RHS
, DL
, SelectCondIsTrue
))
4307 return ConstantInt::get(I
.getType(), *Impl
);
4311 ConstantInt
*CI
= nullptr;
4312 Value
*Op1
= SimplifyOp(SI
->getOperand(1), true);
4314 CI
= dyn_cast
<ConstantInt
>(Op1
);
4316 Value
*Op2
= SimplifyOp(SI
->getOperand(2), false);
4318 CI
= dyn_cast
<ConstantInt
>(Op2
);
4320 auto Simplifies
= [&](Value
*Op
, unsigned Idx
) {
4321 // A comparison of ucmp/scmp with a constant will fold into an icmp.
4324 (isa
<CmpIntrinsic
>(SI
->getOperand(Idx
)) &&
4325 SI
->getOperand(Idx
)->hasOneUse() && match(RHS
, m_APInt(Dummy
)));
4328 // We only want to perform this transformation if it will not lead to
4329 // additional code. This is true if either both sides of the select
4330 // fold to a constant (in which case the icmp is replaced with a select
4331 // which will usually simplify) or this is the only user of the
4332 // select (in which case we are trading a select+icmp for a simpler
4333 // select+icmp) or all uses of the select can be replaced based on
4334 // dominance information ("Global cases").
4335 bool Transform
= false;
4338 else if (Simplifies(Op1
, 1) || Simplifies(Op2
, 2)) {
4340 if (SI
->hasOneUse())
4343 else if (CI
&& !CI
->isZero())
4344 // When Op1 is constant try replacing select with second operand.
4345 // Otherwise Op2 is constant and try replacing select with first
4347 Transform
= replacedSelectWithOperand(SI
, &I
, Op1
? 2 : 1);
4351 Op1
= Builder
.CreateICmp(Pred
, SI
->getOperand(1), RHS
, I
.getName());
4353 Op2
= Builder
.CreateICmp(Pred
, SI
->getOperand(2), RHS
, I
.getName());
4354 return SelectInst::Create(SI
->getOperand(0), Op1
, Op2
);
4360 // Returns whether V is a Mask ((X + 1) & X == 0) or ~Mask (-Pow2OrZero)
4361 static bool isMaskOrZero(const Value
*V
, bool Not
, const SimplifyQuery
&Q
,
4362 unsigned Depth
= 0) {
4363 if (Not
? match(V
, m_NegatedPower2OrZero()) : match(V
, m_LowBitMaskOrZero()))
4365 if (V
->getType()->getScalarSizeInBits() == 1)
4367 if (Depth
++ >= MaxAnalysisRecursionDepth
)
4370 const Instruction
*I
= dyn_cast
<Instruction
>(V
);
4373 switch (I
->getOpcode()) {
4374 case Instruction::ZExt
:
4375 // ZExt(Mask) is a Mask.
4376 return !Not
&& isMaskOrZero(I
->getOperand(0), Not
, Q
, Depth
);
4377 case Instruction::SExt
:
4378 // SExt(Mask) is a Mask.
4379 // SExt(~Mask) is a ~Mask.
4380 return isMaskOrZero(I
->getOperand(0), Not
, Q
, Depth
);
4381 case Instruction::And
:
4382 case Instruction::Or
:
4383 // Mask0 | Mask1 is a Mask.
4384 // Mask0 & Mask1 is a Mask.
4385 // ~Mask0 | ~Mask1 is a ~Mask.
4386 // ~Mask0 & ~Mask1 is a ~Mask.
4387 return isMaskOrZero(I
->getOperand(1), Not
, Q
, Depth
) &&
4388 isMaskOrZero(I
->getOperand(0), Not
, Q
, Depth
);
4389 case Instruction::Xor
:
4390 if (match(V
, m_Not(m_Value(X
))))
4391 return isMaskOrZero(X
, !Not
, Q
, Depth
);
4393 // (X ^ -X) is a ~Mask
4395 return match(V
, m_c_Xor(m_Value(X
), m_Neg(m_Deferred(X
))));
4396 // (X ^ (X - 1)) is a Mask
4398 return match(V
, m_c_Xor(m_Value(X
), m_Add(m_Deferred(X
), m_AllOnes())));
4399 case Instruction::Select
:
4400 // c ? Mask0 : Mask1 is a Mask.
4401 return isMaskOrZero(I
->getOperand(1), Not
, Q
, Depth
) &&
4402 isMaskOrZero(I
->getOperand(2), Not
, Q
, Depth
);
4403 case Instruction::Shl
:
4404 // (~Mask) << X is a ~Mask.
4405 return Not
&& isMaskOrZero(I
->getOperand(0), Not
, Q
, Depth
);
4406 case Instruction::LShr
:
4407 // Mask >> X is a Mask.
4408 return !Not
&& isMaskOrZero(I
->getOperand(0), Not
, Q
, Depth
);
4409 case Instruction::AShr
:
4410 // Mask s>> X is a Mask.
4411 // ~Mask s>> X is a ~Mask.
4412 return isMaskOrZero(I
->getOperand(0), Not
, Q
, Depth
);
4413 case Instruction::Add
:
4414 // Pow2 - 1 is a Mask.
4415 if (!Not
&& match(I
->getOperand(1), m_AllOnes()))
4416 return isKnownToBeAPowerOfTwo(I
->getOperand(0), Q
.DL
, /*OrZero*/ true,
4417 Depth
, Q
.AC
, Q
.CxtI
, Q
.DT
);
4419 case Instruction::Sub
:
4420 // -Pow2 is a ~Mask.
4421 if (Not
&& match(I
->getOperand(0), m_Zero()))
4422 return isKnownToBeAPowerOfTwo(I
->getOperand(1), Q
.DL
, /*OrZero*/ true,
4423 Depth
, Q
.AC
, Q
.CxtI
, Q
.DT
);
4425 case Instruction::Call
: {
4426 if (auto *II
= dyn_cast
<IntrinsicInst
>(I
)) {
4427 switch (II
->getIntrinsicID()) {
4428 // min/max(Mask0, Mask1) is a Mask.
4429 // min/max(~Mask0, ~Mask1) is a ~Mask.
4430 case Intrinsic::umax
:
4431 case Intrinsic::smax
:
4432 case Intrinsic::umin
:
4433 case Intrinsic::smin
:
4434 return isMaskOrZero(II
->getArgOperand(1), Not
, Q
, Depth
) &&
4435 isMaskOrZero(II
->getArgOperand(0), Not
, Q
, Depth
);
4437 // In the context of masks, bitreverse(Mask) == ~Mask
4438 case Intrinsic::bitreverse
:
4439 return isMaskOrZero(II
->getArgOperand(0), !Not
, Q
, Depth
);
4452 /// Some comparisons can be simplified.
4453 /// In this case, we are looking for comparisons that look like
4454 /// a check for a lossy truncation.
4456 /// icmp SrcPred (x & Mask), x to icmp DstPred x, Mask
4457 /// icmp SrcPred (x & ~Mask), ~Mask to icmp DstPred x, ~Mask
4458 /// icmp eq/ne (x & ~Mask), 0 to icmp DstPred x, Mask
4459 /// icmp eq/ne (~x | Mask), -1 to icmp DstPred x, Mask
4460 /// Where Mask is some pattern that produces all-ones in low bits:
4462 /// ((-1 << y) >> y) <- non-canonical, has extra uses
4464 /// ((1 << y) + (-1)) <- non-canonical, has extra uses
4465 /// The Mask can be a constant, too.
4466 /// For some predicates, the operands are commutative.
4467 /// For others, x can only be on a specific side.
4468 static Value
*foldICmpWithLowBitMaskedVal(CmpPredicate Pred
, Value
*Op0
,
4469 Value
*Op1
, const SimplifyQuery
&Q
,
4472 ICmpInst::Predicate DstPred
;
4474 case ICmpInst::Predicate::ICMP_EQ
:
4479 // x & ~Mask == ~Mask
4481 DstPred
= ICmpInst::Predicate::ICMP_ULE
;
4483 case ICmpInst::Predicate::ICMP_NE
:
4488 // x & ~Mask != ~Mask
4490 DstPred
= ICmpInst::Predicate::ICMP_UGT
;
4492 case ICmpInst::Predicate::ICMP_ULT
:
4495 // x & ~Mask u< ~Mask
4497 DstPred
= ICmpInst::Predicate::ICMP_UGT
;
4499 case ICmpInst::Predicate::ICMP_UGE
:
4502 // x & ~Mask u>= ~Mask
4504 DstPred
= ICmpInst::Predicate::ICMP_ULE
;
4506 case ICmpInst::Predicate::ICMP_SLT
:
4507 // x & Mask s< x [iff Mask s>= 0]
4509 // x & ~Mask s< ~Mask [iff ~Mask != 0]
4511 DstPred
= ICmpInst::Predicate::ICMP_SGT
;
4513 case ICmpInst::Predicate::ICMP_SGE
:
4514 // x & Mask s>= x [iff Mask s>= 0]
4516 // x & ~Mask s>= ~Mask [iff ~Mask != 0]
4518 DstPred
= ICmpInst::Predicate::ICMP_SLE
;
4521 // We don't support sgt,sle
4522 // ult/ugt are simplified to true/false respectively.
4527 // Put search code in lambda for early positive returns.
4528 auto IsLowBitMask
= [&]() {
4529 if (match(Op0
, m_c_And(m_Specific(Op1
), m_Value(M
)))) {
4531 // Look for: x & Mask pred x
4532 if (isMaskOrZero(M
, /*Not=*/false, Q
)) {
4533 return !ICmpInst::isSigned(Pred
) ||
4534 (match(M
, m_NonNegative()) || isKnownNonNegative(M
, Q
));
4537 // Look for: x & ~Mask pred ~Mask
4538 if (isMaskOrZero(X
, /*Not=*/true, Q
)) {
4539 return !ICmpInst::isSigned(Pred
) || isKnownNonZero(X
, Q
);
4543 if (ICmpInst::isEquality(Pred
) && match(Op1
, m_AllOnes()) &&
4544 match(Op0
, m_OneUse(m_Or(m_Value(X
), m_Value(M
))))) {
4546 auto Check
= [&]() {
4547 // Look for: ~x | Mask == -1
4548 if (isMaskOrZero(M
, /*Not=*/false, Q
)) {
4550 IC
.getFreelyInverted(X
, X
->hasOneUse(), &IC
.Builder
)) {
4562 if (ICmpInst::isEquality(Pred
) && match(Op1
, m_Zero()) &&
4563 match(Op0
, m_OneUse(m_And(m_Value(X
), m_Value(M
))))) {
4564 auto Check
= [&]() {
4565 // Look for: x & ~Mask == 0
4566 if (isMaskOrZero(M
, /*Not=*/true, Q
)) {
4568 IC
.getFreelyInverted(M
, M
->hasOneUse(), &IC
.Builder
)) {
4583 if (!IsLowBitMask())
4586 return IC
.Builder
.CreateICmp(DstPred
, X
, M
);
4589 /// Some comparisons can be simplified.
4590 /// In this case, we are looking for comparisons that look like
4591 /// a check for a lossy signed truncation.
4592 /// Folds: (MaskedBits is a constant.)
4593 /// ((%x << MaskedBits) a>> MaskedBits) SrcPred %x
4595 /// (add %x, (1 << (KeptBits-1))) DstPred (1 << KeptBits)
4596 /// Where KeptBits = bitwidth(%x) - MaskedBits
4598 foldICmpWithTruncSignExtendedVal(ICmpInst
&I
,
4599 InstCombiner::BuilderTy
&Builder
) {
4600 CmpPredicate SrcPred
;
4602 const APInt
*C0
, *C1
; // FIXME: non-splats, potentially with undef.
4603 // We are ok with 'shl' having multiple uses, but 'ashr' must be one-use.
4604 if (!match(&I
, m_c_ICmp(SrcPred
,
4605 m_OneUse(m_AShr(m_Shl(m_Value(X
), m_APInt(C0
)),
4610 // Potential handling of non-splats: for each element:
4611 // * if both are undef, replace with constant 0.
4612 // Because (1<<0) is OK and is 1, and ((1<<0)>>1) is also OK and is 0.
4613 // * if both are not undef, and are different, bailout.
4614 // * else, only one is undef, then pick the non-undef one.
4616 // The shift amount must be equal.
4619 const APInt
&MaskedBits
= *C0
;
4620 assert(MaskedBits
!= 0 && "shift by zero should be folded away already.");
4622 ICmpInst::Predicate DstPred
;
4624 case ICmpInst::Predicate::ICMP_EQ
:
4625 // ((%x << MaskedBits) a>> MaskedBits) == %x
4627 // (add %x, (1 << (KeptBits-1))) u< (1 << KeptBits)
4628 DstPred
= ICmpInst::Predicate::ICMP_ULT
;
4630 case ICmpInst::Predicate::ICMP_NE
:
4631 // ((%x << MaskedBits) a>> MaskedBits) != %x
4633 // (add %x, (1 << (KeptBits-1))) u>= (1 << KeptBits)
4634 DstPred
= ICmpInst::Predicate::ICMP_UGE
;
4636 // FIXME: are more folds possible?
4641 auto *XType
= X
->getType();
4642 const unsigned XBitWidth
= XType
->getScalarSizeInBits();
4643 const APInt BitWidth
= APInt(XBitWidth
, XBitWidth
);
4644 assert(BitWidth
.ugt(MaskedBits
) && "shifts should leave some bits untouched");
4646 // KeptBits = bitwidth(%x) - MaskedBits
4647 const APInt KeptBits
= BitWidth
- MaskedBits
;
4648 assert(KeptBits
.ugt(0) && KeptBits
.ult(BitWidth
) && "unreachable");
4649 // ICmpCst = (1 << KeptBits)
4650 const APInt ICmpCst
= APInt(XBitWidth
, 1).shl(KeptBits
);
4651 assert(ICmpCst
.isPowerOf2());
4652 // AddCst = (1 << (KeptBits-1))
4653 const APInt AddCst
= ICmpCst
.lshr(1);
4654 assert(AddCst
.ult(ICmpCst
) && AddCst
.isPowerOf2());
4656 // T0 = add %x, AddCst
4657 Value
*T0
= Builder
.CreateAdd(X
, ConstantInt::get(XType
, AddCst
));
4658 // T1 = T0 DstPred ICmpCst
4659 Value
*T1
= Builder
.CreateICmp(DstPred
, T0
, ConstantInt::get(XType
, ICmpCst
));
4665 // icmp eq/ne (and ((x shift Q), (y oppositeshift K))), 0
4666 // we should move shifts to the same hand of 'and', i.e. rewrite as
4667 // icmp eq/ne (and (x shift (Q+K)), y), 0 iff (Q+K) u< bitwidth(x)
4668 // We are only interested in opposite logical shifts here.
4669 // One of the shifts can be truncated.
4670 // If we can, we want to end up creating 'lshr' shift.
4672 foldShiftIntoShiftInAnotherHandOfAndInICmp(ICmpInst
&I
, const SimplifyQuery SQ
,
4673 InstCombiner::BuilderTy
&Builder
) {
4674 if (!I
.isEquality() || !match(I
.getOperand(1), m_Zero()) ||
4675 !I
.getOperand(0)->hasOneUse())
4678 auto m_AnyLogicalShift
= m_LogicalShift(m_Value(), m_Value());
4680 // Look for an 'and' of two logical shifts, one of which may be truncated.
4681 // We use m_TruncOrSelf() on the RHS to correctly handle commutative case.
4682 Instruction
*XShift
, *MaybeTruncation
, *YShift
;
4685 m_c_And(m_CombineAnd(m_AnyLogicalShift
, m_Instruction(XShift
)),
4686 m_CombineAnd(m_TruncOrSelf(m_CombineAnd(
4687 m_AnyLogicalShift
, m_Instruction(YShift
))),
4688 m_Instruction(MaybeTruncation
)))))
4691 // We potentially looked past 'trunc', but only when matching YShift,
4692 // therefore YShift must have the widest type.
4693 Instruction
*WidestShift
= YShift
;
4694 // Therefore XShift must have the shallowest type.
4695 // Or they both have identical types if there was no truncation.
4696 Instruction
*NarrowestShift
= XShift
;
4698 Type
*WidestTy
= WidestShift
->getType();
4699 Type
*NarrowestTy
= NarrowestShift
->getType();
4700 assert(NarrowestTy
== I
.getOperand(0)->getType() &&
4701 "We did not look past any shifts while matching XShift though.");
4702 bool HadTrunc
= WidestTy
!= I
.getOperand(0)->getType();
4704 // If YShift is a 'lshr', swap the shifts around.
4705 if (match(YShift
, m_LShr(m_Value(), m_Value())))
4706 std::swap(XShift
, YShift
);
4708 // The shifts must be in opposite directions.
4709 auto XShiftOpcode
= XShift
->getOpcode();
4710 if (XShiftOpcode
== YShift
->getOpcode())
4711 return nullptr; // Do not care about same-direction shifts here.
4713 Value
*X
, *XShAmt
, *Y
, *YShAmt
;
4714 match(XShift
, m_BinOp(m_Value(X
), m_ZExtOrSelf(m_Value(XShAmt
))));
4715 match(YShift
, m_BinOp(m_Value(Y
), m_ZExtOrSelf(m_Value(YShAmt
))));
4717 // If one of the values being shifted is a constant, then we will end with
4718 // and+icmp, and [zext+]shift instrs will be constant-folded. If they are not,
4719 // however, we will need to ensure that we won't increase instruction count.
4720 if (!isa
<Constant
>(X
) && !isa
<Constant
>(Y
)) {
4721 // At least one of the hands of the 'and' should be one-use shift.
4722 if (!match(I
.getOperand(0),
4723 m_c_And(m_OneUse(m_AnyLogicalShift
), m_Value())))
4726 // Due to the 'trunc', we will need to widen X. For that either the old
4727 // 'trunc' or the shift amt in the non-truncated shift should be one-use.
4728 if (!MaybeTruncation
->hasOneUse() &&
4729 !NarrowestShift
->getOperand(1)->hasOneUse())
4734 // We have two shift amounts from two different shifts. The types of those
4735 // shift amounts may not match. If that's the case let's bailout now.
4736 if (XShAmt
->getType() != YShAmt
->getType())
4739 // As input, we have the following pattern:
4740 // icmp eq/ne (and ((x shift Q), (y oppositeshift K))), 0
4741 // We want to rewrite that as:
4742 // icmp eq/ne (and (x shift (Q+K)), y), 0 iff (Q+K) u< bitwidth(x)
4743 // While we know that originally (Q+K) would not overflow
4744 // (because 2 * (N-1) u<= iN -1), we have looked past extensions of
4745 // shift amounts. so it may now overflow in smaller bitwidth.
4746 // To ensure that does not happen, we need to ensure that the total maximal
4747 // shift amount is still representable in that smaller bit width.
4748 unsigned MaximalPossibleTotalShiftAmount
=
4749 (WidestTy
->getScalarSizeInBits() - 1) +
4750 (NarrowestTy
->getScalarSizeInBits() - 1);
4751 APInt MaximalRepresentableShiftAmount
=
4752 APInt::getAllOnes(XShAmt
->getType()->getScalarSizeInBits());
4753 if (MaximalRepresentableShiftAmount
.ult(MaximalPossibleTotalShiftAmount
))
4756 // Can we fold (XShAmt+YShAmt) ?
4757 auto *NewShAmt
= dyn_cast_or_null
<Constant
>(
4758 simplifyAddInst(XShAmt
, YShAmt
, /*isNSW=*/false,
4759 /*isNUW=*/false, SQ
.getWithInstruction(&I
)));
4762 if (NewShAmt
->getType() != WidestTy
) {
4764 ConstantFoldCastOperand(Instruction::ZExt
, NewShAmt
, WidestTy
, SQ
.DL
);
4768 unsigned WidestBitWidth
= WidestTy
->getScalarSizeInBits();
4770 // Is the new shift amount smaller than the bit width?
4771 // FIXME: could also rely on ConstantRange.
4772 if (!match(NewShAmt
,
4773 m_SpecificInt_ICMP(ICmpInst::Predicate::ICMP_ULT
,
4774 APInt(WidestBitWidth
, WidestBitWidth
))))
4777 // An extra legality check is needed if we had trunc-of-lshr.
4778 if (HadTrunc
&& match(WidestShift
, m_LShr(m_Value(), m_Value()))) {
4779 auto CanFold
= [NewShAmt
, WidestBitWidth
, NarrowestShift
, SQ
,
4781 // It isn't obvious whether it's worth it to analyze non-constants here.
4782 // Also, let's basically give up on non-splat cases, pessimizing vectors.
4783 // If *any* of these preconditions matches we can perform the fold.
4784 Constant
*NewShAmtSplat
= NewShAmt
->getType()->isVectorTy()
4785 ? NewShAmt
->getSplatValue()
4787 // If it's edge-case shift (by 0 or by WidestBitWidth-1) we can fold.
4788 if (NewShAmtSplat
&&
4789 (NewShAmtSplat
->isNullValue() ||
4790 NewShAmtSplat
->getUniqueInteger() == WidestBitWidth
- 1))
4792 // We consider *min* leading zeros so a single outlier
4793 // blocks the transform as opposed to allowing it.
4794 if (auto *C
= dyn_cast
<Constant
>(NarrowestShift
->getOperand(0))) {
4795 KnownBits Known
= computeKnownBits(C
, SQ
.DL
);
4796 unsigned MinLeadZero
= Known
.countMinLeadingZeros();
4797 // If the value being shifted has at most lowest bit set we can fold.
4798 unsigned MaxActiveBits
= Known
.getBitWidth() - MinLeadZero
;
4799 if (MaxActiveBits
<= 1)
4801 // Precondition: NewShAmt u<= countLeadingZeros(C)
4802 if (NewShAmtSplat
&& NewShAmtSplat
->getUniqueInteger().ule(MinLeadZero
))
4805 if (auto *C
= dyn_cast
<Constant
>(WidestShift
->getOperand(0))) {
4806 KnownBits Known
= computeKnownBits(C
, SQ
.DL
);
4807 unsigned MinLeadZero
= Known
.countMinLeadingZeros();
4808 // If the value being shifted has at most lowest bit set we can fold.
4809 unsigned MaxActiveBits
= Known
.getBitWidth() - MinLeadZero
;
4810 if (MaxActiveBits
<= 1)
4812 // Precondition: ((WidestBitWidth-1)-NewShAmt) u<= countLeadingZeros(C)
4813 if (NewShAmtSplat
) {
4815 (WidestBitWidth
- 1) - NewShAmtSplat
->getUniqueInteger();
4816 if (AdjNewShAmt
.ule(MinLeadZero
))
4820 return false; // Can't tell if it's ok.
4826 // All good, we can do this fold.
4827 X
= Builder
.CreateZExt(X
, WidestTy
);
4828 Y
= Builder
.CreateZExt(Y
, WidestTy
);
4829 // The shift is the same that was for X.
4830 Value
*T0
= XShiftOpcode
== Instruction::BinaryOps::LShr
4831 ? Builder
.CreateLShr(X
, NewShAmt
)
4832 : Builder
.CreateShl(X
, NewShAmt
);
4833 Value
*T1
= Builder
.CreateAnd(T0
, Y
);
4834 return Builder
.CreateICmp(I
.getPredicate(), T1
,
4835 Constant::getNullValue(WidestTy
));
4840 /// ((x * y) ?/ x) != y
4842 /// @llvm.?mul.with.overflow(x, y) plus extraction of overflow bit
4843 /// Note that the comparison is commutative, while inverted (u>=, ==) predicate
4844 /// will mean that we are looking for the opposite answer.
4845 Value
*InstCombinerImpl::foldMultiplicationOverflowCheck(ICmpInst
&I
) {
4851 // Look for: (-1 u/ x) u</u>= y
4852 if (!I
.isEquality() &&
4853 match(&I
, m_c_ICmp(Pred
,
4854 m_CombineAnd(m_OneUse(m_UDiv(m_AllOnes(), m_Value(X
))),
4855 m_Instruction(Div
)),
4859 // Are we checking that overflow does not happen, or does happen?
4861 case ICmpInst::Predicate::ICMP_ULT
:
4862 NeedNegation
= false;
4864 case ICmpInst::Predicate::ICMP_UGE
:
4865 NeedNegation
= true;
4868 return nullptr; // Wrong predicate.
4870 } else // Look for: ((x * y) / x) !=/== y
4871 if (I
.isEquality() &&
4872 match(&I
, m_c_ICmp(Pred
, m_Value(Y
),
4873 m_CombineAnd(m_OneUse(m_IDiv(
4874 m_CombineAnd(m_c_Mul(m_Deferred(Y
),
4876 m_Instruction(Mul
)),
4878 m_Instruction(Div
))))) {
4879 NeedNegation
= Pred
== ICmpInst::Predicate::ICMP_EQ
;
4883 BuilderTy::InsertPointGuard
Guard(Builder
);
4884 // If the pattern included (x * y), we'll want to insert new instructions
4885 // right before that original multiplication so that we can replace it.
4886 bool MulHadOtherUses
= Mul
&& !Mul
->hasOneUse();
4887 if (MulHadOtherUses
)
4888 Builder
.SetInsertPoint(Mul
);
4890 CallInst
*Call
= Builder
.CreateIntrinsic(
4891 Div
->getOpcode() == Instruction::UDiv
? Intrinsic::umul_with_overflow
4892 : Intrinsic::smul_with_overflow
,
4893 X
->getType(), {X
, Y
}, /*FMFSource=*/nullptr, "mul");
4895 // If the multiplication was used elsewhere, to ensure that we don't leave
4896 // "duplicate" instructions, replace uses of that original multiplication
4897 // with the multiplication result from the with.overflow intrinsic.
4898 if (MulHadOtherUses
)
4899 replaceInstUsesWith(*Mul
, Builder
.CreateExtractValue(Call
, 0, "mul.val"));
4901 Value
*Res
= Builder
.CreateExtractValue(Call
, 1, "mul.ov");
4902 if (NeedNegation
) // This technically increases instruction count.
4903 Res
= Builder
.CreateNot(Res
, "mul.not.ov");
4905 // If we replaced the mul, erase it. Do this after all uses of Builder,
4906 // as the mul is used as insertion point.
4907 if (MulHadOtherUses
)
4908 eraseInstFromFunction(*Mul
);
4913 static Instruction
*foldICmpXNegX(ICmpInst
&I
,
4914 InstCombiner::BuilderTy
&Builder
) {
4917 if (match(&I
, m_c_ICmp(Pred
, m_NSWNeg(m_Value(X
)), m_Deferred(X
)))) {
4919 if (ICmpInst::isSigned(Pred
))
4920 Pred
= ICmpInst::getSwappedPredicate(Pred
);
4921 else if (ICmpInst::isUnsigned(Pred
))
4922 Pred
= ICmpInst::getSignedPredicate(Pred
);
4923 // else for equality-comparisons just keep the predicate.
4925 return ICmpInst::Create(Instruction::ICmp
, Pred
, X
,
4926 Constant::getNullValue(X
->getType()), I
.getName());
4929 // A value is not equal to its negation unless that value is 0 or
4930 // MinSignedValue, ie: a != -a --> (a & MaxSignedVal) != 0
4931 if (match(&I
, m_c_ICmp(Pred
, m_OneUse(m_Neg(m_Value(X
))), m_Deferred(X
))) &&
4932 ICmpInst::isEquality(Pred
)) {
4933 Type
*Ty
= X
->getType();
4934 uint32_t BitWidth
= Ty
->getScalarSizeInBits();
4935 Constant
*MaxSignedVal
=
4936 ConstantInt::get(Ty
, APInt::getSignedMaxValue(BitWidth
));
4937 Value
*And
= Builder
.CreateAnd(X
, MaxSignedVal
);
4938 Constant
*Zero
= Constant::getNullValue(Ty
);
4939 return CmpInst::Create(Instruction::ICmp
, Pred
, And
, Zero
);
4945 static Instruction
*foldICmpAndXX(ICmpInst
&I
, const SimplifyQuery
&Q
,
4946 InstCombinerImpl
&IC
) {
4947 Value
*Op0
= I
.getOperand(0), *Op1
= I
.getOperand(1), *A
;
4948 // Normalize and operand as operand 0.
4949 CmpInst::Predicate Pred
= I
.getPredicate();
4950 if (match(Op1
, m_c_And(m_Specific(Op0
), m_Value()))) {
4951 std::swap(Op0
, Op1
);
4952 Pred
= ICmpInst::getSwappedPredicate(Pred
);
4955 if (!match(Op0
, m_c_And(m_Specific(Op1
), m_Value(A
))))
4958 // (icmp (X & Y) u< X --> (X & Y) != X
4959 if (Pred
== ICmpInst::ICMP_ULT
)
4960 return new ICmpInst(ICmpInst::ICMP_NE
, Op0
, Op1
);
4962 // (icmp (X & Y) u>= X --> (X & Y) == X
4963 if (Pred
== ICmpInst::ICMP_UGE
)
4964 return new ICmpInst(ICmpInst::ICMP_EQ
, Op0
, Op1
);
4966 if (ICmpInst::isEquality(Pred
) && Op0
->hasOneUse()) {
4967 // icmp (X & Y) eq/ne Y --> (X | ~Y) eq/ne -1 if Y is freely invertible and
4968 // Y is non-constant. If Y is constant the `X & C == C` form is preferable
4969 // so don't do this fold.
4970 if (!match(Op1
, m_ImmConstant()))
4972 IC
.getFreelyInverted(Op1
, !Op1
->hasNUsesOrMore(3), &IC
.Builder
))
4973 return new ICmpInst(Pred
, IC
.Builder
.CreateOr(A
, NotOp1
),
4974 Constant::getAllOnesValue(Op1
->getType()));
4975 // icmp (X & Y) eq/ne Y --> (~X & Y) eq/ne 0 if X is freely invertible.
4976 if (auto *NotA
= IC
.getFreelyInverted(A
, A
->hasOneUse(), &IC
.Builder
))
4977 return new ICmpInst(Pred
, IC
.Builder
.CreateAnd(Op1
, NotA
),
4978 Constant::getNullValue(Op1
->getType()));
4981 if (!ICmpInst::isSigned(Pred
))
4984 KnownBits KnownY
= IC
.computeKnownBits(A
, /*Depth=*/0, &I
);
4985 // (X & NegY) spred X --> (X & NegY) upred X
4986 if (KnownY
.isNegative())
4987 return new ICmpInst(ICmpInst::getUnsignedPredicate(Pred
), Op0
, Op1
);
4989 if (Pred
!= ICmpInst::ICMP_SLE
&& Pred
!= ICmpInst::ICMP_SGT
)
4992 if (KnownY
.isNonNegative())
4993 // (X & PosY) s<= X --> X s>= 0
4994 // (X & PosY) s> X --> X s< 0
4995 return new ICmpInst(ICmpInst::getSwappedPredicate(Pred
), Op1
,
4996 Constant::getNullValue(Op1
->getType()));
4998 if (isKnownNegative(Op1
, IC
.getSimplifyQuery().getWithInstruction(&I
)))
4999 // (NegX & Y) s<= NegX --> Y s< 0
5000 // (NegX & Y) s> NegX --> Y s>= 0
5001 return new ICmpInst(ICmpInst::getFlippedStrictnessPredicate(Pred
), A
,
5002 Constant::getNullValue(A
->getType()));
5007 static Instruction
*foldICmpOrXX(ICmpInst
&I
, const SimplifyQuery
&Q
,
5008 InstCombinerImpl
&IC
) {
5009 Value
*Op0
= I
.getOperand(0), *Op1
= I
.getOperand(1), *A
;
5011 // Normalize or operand as operand 0.
5012 CmpInst::Predicate Pred
= I
.getPredicate();
5013 if (match(Op1
, m_c_Or(m_Specific(Op0
), m_Value(A
)))) {
5014 std::swap(Op0
, Op1
);
5015 Pred
= ICmpInst::getSwappedPredicate(Pred
);
5016 } else if (!match(Op0
, m_c_Or(m_Specific(Op1
), m_Value(A
)))) {
5020 // icmp (X | Y) u<= X --> (X | Y) == X
5021 if (Pred
== ICmpInst::ICMP_ULE
)
5022 return new ICmpInst(ICmpInst::ICMP_EQ
, Op0
, Op1
);
5024 // icmp (X | Y) u> X --> (X | Y) != X
5025 if (Pred
== ICmpInst::ICMP_UGT
)
5026 return new ICmpInst(ICmpInst::ICMP_NE
, Op0
, Op1
);
5028 if (ICmpInst::isEquality(Pred
) && Op0
->hasOneUse()) {
5029 // icmp (X | Y) eq/ne Y --> (X & ~Y) eq/ne 0 if Y is freely invertible
5031 IC
.getFreelyInverted(Op1
, !Op1
->hasNUsesOrMore(3), &IC
.Builder
))
5032 return new ICmpInst(Pred
, IC
.Builder
.CreateAnd(A
, NotOp1
),
5033 Constant::getNullValue(Op1
->getType()));
5034 // icmp (X | Y) eq/ne Y --> (~X | Y) eq/ne -1 if X is freely invertible.
5035 if (Value
*NotA
= IC
.getFreelyInverted(A
, A
->hasOneUse(), &IC
.Builder
))
5036 return new ICmpInst(Pred
, IC
.Builder
.CreateOr(Op1
, NotA
),
5037 Constant::getAllOnesValue(Op1
->getType()));
5042 static Instruction
*foldICmpXorXX(ICmpInst
&I
, const SimplifyQuery
&Q
,
5043 InstCombinerImpl
&IC
) {
5044 Value
*Op0
= I
.getOperand(0), *Op1
= I
.getOperand(1), *A
;
5045 // Normalize xor operand as operand 0.
5046 CmpInst::Predicate Pred
= I
.getPredicate();
5047 if (match(Op1
, m_c_Xor(m_Specific(Op0
), m_Value()))) {
5048 std::swap(Op0
, Op1
);
5049 Pred
= ICmpInst::getSwappedPredicate(Pred
);
5051 if (!match(Op0
, m_c_Xor(m_Specific(Op1
), m_Value(A
))))
5054 // icmp (X ^ Y_NonZero) u>= X --> icmp (X ^ Y_NonZero) u> X
5055 // icmp (X ^ Y_NonZero) u<= X --> icmp (X ^ Y_NonZero) u< X
5056 // icmp (X ^ Y_NonZero) s>= X --> icmp (X ^ Y_NonZero) s> X
5057 // icmp (X ^ Y_NonZero) s<= X --> icmp (X ^ Y_NonZero) s< X
5058 CmpInst::Predicate PredOut
= CmpInst::getStrictPredicate(Pred
);
5059 if (PredOut
!= Pred
&& isKnownNonZero(A
, Q
))
5060 return new ICmpInst(PredOut
, Op0
, Op1
);
5065 /// Try to fold icmp (binop), X or icmp X, (binop).
5066 /// TODO: A large part of this logic is duplicated in InstSimplify's
5067 /// simplifyICmpWithBinOp(). We should be able to share that and avoid the code
5069 Instruction
*InstCombinerImpl::foldICmpBinOp(ICmpInst
&I
,
5070 const SimplifyQuery
&SQ
) {
5071 const SimplifyQuery Q
= SQ
.getWithInstruction(&I
);
5072 Value
*Op0
= I
.getOperand(0), *Op1
= I
.getOperand(1);
5074 // Special logic for binary operators.
5075 BinaryOperator
*BO0
= dyn_cast
<BinaryOperator
>(Op0
);
5076 BinaryOperator
*BO1
= dyn_cast
<BinaryOperator
>(Op1
);
5080 if (Instruction
*NewICmp
= foldICmpXNegX(I
, Builder
))
5083 const CmpInst::Predicate Pred
= I
.getPredicate();
5086 // Convert add-with-unsigned-overflow comparisons into a 'not' with compare.
5087 // (Op1 + X) u</u>= Op1 --> ~Op1 u</u>= X
5088 if (match(Op0
, m_OneUse(m_c_Add(m_Specific(Op1
), m_Value(X
)))) &&
5089 (Pred
== ICmpInst::ICMP_ULT
|| Pred
== ICmpInst::ICMP_UGE
))
5090 return new ICmpInst(Pred
, Builder
.CreateNot(Op1
), X
);
5091 // Op0 u>/u<= (Op0 + X) --> X u>/u<= ~Op0
5092 if (match(Op1
, m_OneUse(m_c_Add(m_Specific(Op0
), m_Value(X
)))) &&
5093 (Pred
== ICmpInst::ICMP_UGT
|| Pred
== ICmpInst::ICMP_ULE
))
5094 return new ICmpInst(Pred
, X
, Builder
.CreateNot(Op0
));
5097 // (Op1 + X) + C u</u>= Op1 --> ~C - X u</u>= Op1
5099 if (match(Op0
, m_OneUse(m_Add(m_c_Add(m_Specific(Op1
), m_Value(X
)),
5100 m_ImmConstant(C
)))) &&
5101 (Pred
== ICmpInst::ICMP_ULT
|| Pred
== ICmpInst::ICMP_UGE
)) {
5102 Constant
*C2
= ConstantExpr::getNot(C
);
5103 return new ICmpInst(Pred
, Builder
.CreateSub(C2
, X
), Op1
);
5105 // Op0 u>/u<= (Op0 + X) + C --> Op0 u>/u<= ~C - X
5106 if (match(Op1
, m_OneUse(m_Add(m_c_Add(m_Specific(Op0
), m_Value(X
)),
5107 m_ImmConstant(C
)))) &&
5108 (Pred
== ICmpInst::ICMP_UGT
|| Pred
== ICmpInst::ICMP_ULE
)) {
5109 Constant
*C2
= ConstantExpr::getNot(C
);
5110 return new ICmpInst(Pred
, Op0
, Builder
.CreateSub(C2
, X
));
5114 // (icmp eq/ne (X, -P2), INT_MIN)
5115 // -> (icmp slt/sge X, INT_MIN + P2)
5116 if (ICmpInst::isEquality(Pred
) && BO0
&&
5117 match(I
.getOperand(1), m_SignMask()) &&
5118 match(BO0
, m_And(m_Value(), m_NegatedPower2OrZero()))) {
5119 // Will Constant fold.
5120 Value
*NewC
= Builder
.CreateSub(I
.getOperand(1), BO0
->getOperand(1));
5121 return new ICmpInst(Pred
== ICmpInst::ICMP_EQ
? ICmpInst::ICMP_SLT
5122 : ICmpInst::ICMP_SGE
,
5123 BO0
->getOperand(0), NewC
);
5127 // Similar to above: an unsigned overflow comparison may use offset + mask:
5128 // ((Op1 + C) & C) u< Op1 --> Op1 != 0
5129 // ((Op1 + C) & C) u>= Op1 --> Op1 == 0
5130 // Op0 u> ((Op0 + C) & C) --> Op0 != 0
5131 // Op0 u<= ((Op0 + C) & C) --> Op0 == 0
5134 if ((Pred
== ICmpInst::ICMP_ULT
|| Pred
== ICmpInst::ICMP_UGE
) &&
5135 match(Op0
, m_And(m_BinOp(BO
), m_LowBitMask(C
))) &&
5136 match(BO
, m_Add(m_Specific(Op1
), m_SpecificIntAllowPoison(*C
)))) {
5137 CmpInst::Predicate NewPred
=
5138 Pred
== ICmpInst::ICMP_ULT
? ICmpInst::ICMP_NE
: ICmpInst::ICMP_EQ
;
5139 Constant
*Zero
= ConstantInt::getNullValue(Op1
->getType());
5140 return new ICmpInst(NewPred
, Op1
, Zero
);
5143 if ((Pred
== ICmpInst::ICMP_UGT
|| Pred
== ICmpInst::ICMP_ULE
) &&
5144 match(Op1
, m_And(m_BinOp(BO
), m_LowBitMask(C
))) &&
5145 match(BO
, m_Add(m_Specific(Op0
), m_SpecificIntAllowPoison(*C
)))) {
5146 CmpInst::Predicate NewPred
=
5147 Pred
== ICmpInst::ICMP_UGT
? ICmpInst::ICMP_NE
: ICmpInst::ICMP_EQ
;
5148 Constant
*Zero
= ConstantInt::getNullValue(Op1
->getType());
5149 return new ICmpInst(NewPred
, Op0
, Zero
);
5153 bool NoOp0WrapProblem
= false, NoOp1WrapProblem
= false;
5154 bool Op0HasNUW
= false, Op1HasNUW
= false;
5155 bool Op0HasNSW
= false, Op1HasNSW
= false;
5156 // Analyze the case when either Op0 or Op1 is an add instruction.
5157 // Op0 = A + B (or A and B are null); Op1 = C + D (or C and D are null).
5158 auto hasNoWrapProblem
= [](const BinaryOperator
&BO
, CmpInst::Predicate Pred
,
5159 bool &HasNSW
, bool &HasNUW
) -> bool {
5160 if (isa
<OverflowingBinaryOperator
>(BO
)) {
5161 HasNUW
= BO
.hasNoUnsignedWrap();
5162 HasNSW
= BO
.hasNoSignedWrap();
5163 return ICmpInst::isEquality(Pred
) ||
5164 (CmpInst::isUnsigned(Pred
) && HasNUW
) ||
5165 (CmpInst::isSigned(Pred
) && HasNSW
);
5166 } else if (BO
.getOpcode() == Instruction::Or
) {
5174 Value
*A
= nullptr, *B
= nullptr, *C
= nullptr, *D
= nullptr;
5177 match(BO0
, m_AddLike(m_Value(A
), m_Value(B
)));
5178 NoOp0WrapProblem
= hasNoWrapProblem(*BO0
, Pred
, Op0HasNSW
, Op0HasNUW
);
5181 match(BO1
, m_AddLike(m_Value(C
), m_Value(D
)));
5182 NoOp1WrapProblem
= hasNoWrapProblem(*BO1
, Pred
, Op1HasNSW
, Op1HasNUW
);
5185 // icmp (A+B), A -> icmp B, 0 for equalities or if there is no overflow.
5186 // icmp (A+B), B -> icmp A, 0 for equalities or if there is no overflow.
5187 if ((A
== Op1
|| B
== Op1
) && NoOp0WrapProblem
)
5188 return new ICmpInst(Pred
, A
== Op1
? B
: A
,
5189 Constant::getNullValue(Op1
->getType()));
5191 // icmp C, (C+D) -> icmp 0, D for equalities or if there is no overflow.
5192 // icmp D, (C+D) -> icmp 0, C for equalities or if there is no overflow.
5193 if ((C
== Op0
|| D
== Op0
) && NoOp1WrapProblem
)
5194 return new ICmpInst(Pred
, Constant::getNullValue(Op0
->getType()),
5197 // icmp (A+B), (A+D) -> icmp B, D for equalities or if there is no overflow.
5198 if (A
&& C
&& (A
== C
|| A
== D
|| B
== C
|| B
== D
) && NoOp0WrapProblem
&&
5200 // Determine Y and Z in the form icmp (X+Y), (X+Z).
5203 // C + B == C + D -> B == D
5206 } else if (A
== D
) {
5207 // D + B == C + D -> B == C
5210 } else if (B
== C
) {
5211 // A + C == C + D -> A == D
5216 // A + D == C + D -> A == C
5220 return new ICmpInst(Pred
, Y
, Z
);
5223 // icmp slt (A + -1), Op1 -> icmp sle A, Op1
5224 if (A
&& NoOp0WrapProblem
&& Pred
== CmpInst::ICMP_SLT
&&
5225 match(B
, m_AllOnes()))
5226 return new ICmpInst(CmpInst::ICMP_SLE
, A
, Op1
);
5228 // icmp sge (A + -1), Op1 -> icmp sgt A, Op1
5229 if (A
&& NoOp0WrapProblem
&& Pred
== CmpInst::ICMP_SGE
&&
5230 match(B
, m_AllOnes()))
5231 return new ICmpInst(CmpInst::ICMP_SGT
, A
, Op1
);
5233 // icmp sle (A + 1), Op1 -> icmp slt A, Op1
5234 if (A
&& NoOp0WrapProblem
&& Pred
== CmpInst::ICMP_SLE
&& match(B
, m_One()))
5235 return new ICmpInst(CmpInst::ICMP_SLT
, A
, Op1
);
5237 // icmp sgt (A + 1), Op1 -> icmp sge A, Op1
5238 if (A
&& NoOp0WrapProblem
&& Pred
== CmpInst::ICMP_SGT
&& match(B
, m_One()))
5239 return new ICmpInst(CmpInst::ICMP_SGE
, A
, Op1
);
5241 // icmp sgt Op0, (C + -1) -> icmp sge Op0, C
5242 if (C
&& NoOp1WrapProblem
&& Pred
== CmpInst::ICMP_SGT
&&
5243 match(D
, m_AllOnes()))
5244 return new ICmpInst(CmpInst::ICMP_SGE
, Op0
, C
);
5246 // icmp sle Op0, (C + -1) -> icmp slt Op0, C
5247 if (C
&& NoOp1WrapProblem
&& Pred
== CmpInst::ICMP_SLE
&&
5248 match(D
, m_AllOnes()))
5249 return new ICmpInst(CmpInst::ICMP_SLT
, Op0
, C
);
5251 // icmp sge Op0, (C + 1) -> icmp sgt Op0, C
5252 if (C
&& NoOp1WrapProblem
&& Pred
== CmpInst::ICMP_SGE
&& match(D
, m_One()))
5253 return new ICmpInst(CmpInst::ICMP_SGT
, Op0
, C
);
5255 // icmp slt Op0, (C + 1) -> icmp sle Op0, C
5256 if (C
&& NoOp1WrapProblem
&& Pred
== CmpInst::ICMP_SLT
&& match(D
, m_One()))
5257 return new ICmpInst(CmpInst::ICMP_SLE
, Op0
, C
);
5259 // TODO: The subtraction-related identities shown below also hold, but
5260 // canonicalization from (X -nuw 1) to (X + -1) means that the combinations
5261 // wouldn't happen even if they were implemented.
5263 // icmp ult (A - 1), Op1 -> icmp ule A, Op1
5264 // icmp uge (A - 1), Op1 -> icmp ugt A, Op1
5265 // icmp ugt Op0, (C - 1) -> icmp uge Op0, C
5266 // icmp ule Op0, (C - 1) -> icmp ult Op0, C
5268 // icmp ule (A + 1), Op0 -> icmp ult A, Op1
5269 if (A
&& NoOp0WrapProblem
&& Pred
== CmpInst::ICMP_ULE
&& match(B
, m_One()))
5270 return new ICmpInst(CmpInst::ICMP_ULT
, A
, Op1
);
5272 // icmp ugt (A + 1), Op0 -> icmp uge A, Op1
5273 if (A
&& NoOp0WrapProblem
&& Pred
== CmpInst::ICMP_UGT
&& match(B
, m_One()))
5274 return new ICmpInst(CmpInst::ICMP_UGE
, A
, Op1
);
5276 // icmp uge Op0, (C + 1) -> icmp ugt Op0, C
5277 if (C
&& NoOp1WrapProblem
&& Pred
== CmpInst::ICMP_UGE
&& match(D
, m_One()))
5278 return new ICmpInst(CmpInst::ICMP_UGT
, Op0
, C
);
5280 // icmp ult Op0, (C + 1) -> icmp ule Op0, C
5281 if (C
&& NoOp1WrapProblem
&& Pred
== CmpInst::ICMP_ULT
&& match(D
, m_One()))
5282 return new ICmpInst(CmpInst::ICMP_ULE
, Op0
, C
);
5284 // if C1 has greater magnitude than C2:
5285 // icmp (A + C1), (C + C2) -> icmp (A + C3), C
5286 // s.t. C3 = C1 - C2
5288 // if C2 has greater magnitude than C1:
5289 // icmp (A + C1), (C + C2) -> icmp A, (C + C3)
5290 // s.t. C3 = C2 - C1
5291 if (A
&& C
&& NoOp0WrapProblem
&& NoOp1WrapProblem
&&
5292 (BO0
->hasOneUse() || BO1
->hasOneUse()) && !I
.isUnsigned()) {
5293 const APInt
*AP1
, *AP2
;
5294 // TODO: Support non-uniform vectors.
5295 // TODO: Allow poison passthrough if B or D's element is poison.
5296 if (match(B
, m_APIntAllowPoison(AP1
)) &&
5297 match(D
, m_APIntAllowPoison(AP2
)) &&
5298 AP1
->isNegative() == AP2
->isNegative()) {
5299 APInt AP1Abs
= AP1
->abs();
5300 APInt AP2Abs
= AP2
->abs();
5301 if (AP1Abs
.uge(AP2Abs
)) {
5302 APInt Diff
= *AP1
- *AP2
;
5303 Constant
*C3
= Constant::getIntegerValue(BO0
->getType(), Diff
);
5304 Value
*NewAdd
= Builder
.CreateAdd(
5305 A
, C3
, "", Op0HasNUW
&& Diff
.ule(*AP1
), Op0HasNSW
);
5306 return new ICmpInst(Pred
, NewAdd
, C
);
5308 APInt Diff
= *AP2
- *AP1
;
5309 Constant
*C3
= Constant::getIntegerValue(BO0
->getType(), Diff
);
5310 Value
*NewAdd
= Builder
.CreateAdd(
5311 C
, C3
, "", Op1HasNUW
&& Diff
.ule(*AP2
), Op1HasNSW
);
5312 return new ICmpInst(Pred
, A
, NewAdd
);
5315 Constant
*Cst1
, *Cst2
;
5316 if (match(B
, m_ImmConstant(Cst1
)) && match(D
, m_ImmConstant(Cst2
)) &&
5317 ICmpInst::isEquality(Pred
)) {
5318 Constant
*Diff
= ConstantExpr::getSub(Cst2
, Cst1
);
5319 Value
*NewAdd
= Builder
.CreateAdd(C
, Diff
);
5320 return new ICmpInst(Pred
, A
, NewAdd
);
5324 // Analyze the case when either Op0 or Op1 is a sub instruction.
5325 // Op0 = A - B (or A and B are null); Op1 = C - D (or C and D are null).
5330 if (BO0
&& BO0
->getOpcode() == Instruction::Sub
) {
5331 A
= BO0
->getOperand(0);
5332 B
= BO0
->getOperand(1);
5334 if (BO1
&& BO1
->getOpcode() == Instruction::Sub
) {
5335 C
= BO1
->getOperand(0);
5336 D
= BO1
->getOperand(1);
5339 // icmp (A-B), A -> icmp 0, B for equalities or if there is no overflow.
5340 if (A
== Op1
&& NoOp0WrapProblem
)
5341 return new ICmpInst(Pred
, Constant::getNullValue(Op1
->getType()), B
);
5342 // icmp C, (C-D) -> icmp D, 0 for equalities or if there is no overflow.
5343 if (C
== Op0
&& NoOp1WrapProblem
)
5344 return new ICmpInst(Pred
, D
, Constant::getNullValue(Op0
->getType()));
5346 // Convert sub-with-unsigned-overflow comparisons into a comparison of args.
5347 // (A - B) u>/u<= A --> B u>/u<= A
5348 if (A
== Op1
&& (Pred
== ICmpInst::ICMP_UGT
|| Pred
== ICmpInst::ICMP_ULE
))
5349 return new ICmpInst(Pred
, B
, A
);
5350 // C u</u>= (C - D) --> C u</u>= D
5351 if (C
== Op0
&& (Pred
== ICmpInst::ICMP_ULT
|| Pred
== ICmpInst::ICMP_UGE
))
5352 return new ICmpInst(Pred
, C
, D
);
5353 // (A - B) u>=/u< A --> B u>/u<= A iff B != 0
5354 if (A
== Op1
&& (Pred
== ICmpInst::ICMP_UGE
|| Pred
== ICmpInst::ICMP_ULT
) &&
5355 isKnownNonZero(B
, Q
))
5356 return new ICmpInst(CmpInst::getFlippedStrictnessPredicate(Pred
), B
, A
);
5357 // C u<=/u> (C - D) --> C u</u>= D iff B != 0
5358 if (C
== Op0
&& (Pred
== ICmpInst::ICMP_ULE
|| Pred
== ICmpInst::ICMP_UGT
) &&
5359 isKnownNonZero(D
, Q
))
5360 return new ICmpInst(CmpInst::getFlippedStrictnessPredicate(Pred
), C
, D
);
5362 // icmp (A-B), (C-B) -> icmp A, C for equalities or if there is no overflow.
5363 if (B
&& D
&& B
== D
&& NoOp0WrapProblem
&& NoOp1WrapProblem
)
5364 return new ICmpInst(Pred
, A
, C
);
5366 // icmp (A-B), (A-D) -> icmp D, B for equalities or if there is no overflow.
5367 if (A
&& C
&& A
== C
&& NoOp0WrapProblem
&& NoOp1WrapProblem
)
5368 return new ICmpInst(Pred
, D
, B
);
5370 // icmp (0-X) < cst --> x > -cst
5371 if (NoOp0WrapProblem
&& ICmpInst::isSigned(Pred
)) {
5373 if (match(BO0
, m_Neg(m_Value(X
))))
5374 if (Constant
*RHSC
= dyn_cast
<Constant
>(Op1
))
5375 if (RHSC
->isNotMinSignedValue())
5376 return new ICmpInst(I
.getSwappedPredicate(), X
,
5377 ConstantExpr::getNeg(RHSC
));
5380 if (Instruction
*R
= foldICmpXorXX(I
, Q
, *this))
5382 if (Instruction
*R
= foldICmpOrXX(I
, Q
, *this))
5386 // Try to remove shared multiplier from comparison:
5389 if ((match(Op0
, m_Mul(m_Value(X
), m_Value(Z
))) &&
5390 match(Op1
, m_c_Mul(m_Specific(Z
), m_Value(Y
)))) ||
5391 (match(Op0
, m_Mul(m_Value(Z
), m_Value(X
))) &&
5392 match(Op1
, m_c_Mul(m_Specific(Z
), m_Value(Y
))))) {
5393 if (ICmpInst::isSigned(Pred
)) {
5394 if (Op0HasNSW
&& Op1HasNSW
) {
5395 KnownBits ZKnown
= computeKnownBits(Z
, 0, &I
);
5396 if (ZKnown
.isStrictlyPositive())
5397 return new ICmpInst(Pred
, X
, Y
);
5398 if (ZKnown
.isNegative())
5399 return new ICmpInst(ICmpInst::getSwappedPredicate(Pred
), X
, Y
);
5400 Value
*LessThan
= simplifyICmpInst(ICmpInst::ICMP_SLT
, X
, Y
,
5401 SQ
.getWithInstruction(&I
));
5402 if (LessThan
&& match(LessThan
, m_One()))
5403 return new ICmpInst(ICmpInst::getSwappedPredicate(Pred
), Z
,
5404 Constant::getNullValue(Z
->getType()));
5405 Value
*GreaterThan
= simplifyICmpInst(ICmpInst::ICMP_SGT
, X
, Y
,
5406 SQ
.getWithInstruction(&I
));
5407 if (GreaterThan
&& match(GreaterThan
, m_One()))
5408 return new ICmpInst(Pred
, Z
, Constant::getNullValue(Z
->getType()));
5412 if (ICmpInst::isEquality(Pred
)) {
5413 // If X != Y, fold (X *nw Z) eq/ne (Y *nw Z) -> Z eq/ne 0
5414 if (((Op0HasNSW
&& Op1HasNSW
) || (Op0HasNUW
&& Op1HasNUW
)) &&
5415 isKnownNonEqual(X
, Y
, SQ
))
5416 return new ICmpInst(Pred
, Z
, Constant::getNullValue(Z
->getType()));
5418 KnownBits ZKnown
= computeKnownBits(Z
, 0, &I
);
5420 // X * Z eq/ne Y * Z -> X eq/ne Y
5421 if (ZKnown
.countMaxTrailingZeros() == 0)
5422 return new ICmpInst(Pred
, X
, Y
);
5423 NonZero
= !ZKnown
.One
.isZero() || isKnownNonZero(Z
, Q
);
5424 // if Z != 0 and nsw(X * Z) and nsw(Y * Z)
5425 // X * Z eq/ne Y * Z -> X eq/ne Y
5426 if (NonZero
&& BO0
&& BO1
&& Op0HasNSW
&& Op1HasNSW
)
5427 return new ICmpInst(Pred
, X
, Y
);
5429 NonZero
= isKnownNonZero(Z
, Q
);
5431 // If Z != 0 and nuw(X * Z) and nuw(Y * Z)
5432 // X * Z u{lt/le/gt/ge}/eq/ne Y * Z -> X u{lt/le/gt/ge}/eq/ne Y
5433 if (NonZero
&& BO0
&& BO1
&& Op0HasNUW
&& Op1HasNUW
)
5434 return new ICmpInst(Pred
, X
, Y
);
5439 BinaryOperator
*SRem
= nullptr;
5440 // icmp (srem X, Y), Y
5441 if (BO0
&& BO0
->getOpcode() == Instruction::SRem
&& Op1
== BO0
->getOperand(1))
5443 // icmp Y, (srem X, Y)
5444 else if (BO1
&& BO1
->getOpcode() == Instruction::SRem
&&
5445 Op0
== BO1
->getOperand(1))
5448 // We don't check hasOneUse to avoid increasing register pressure because
5449 // the value we use is the same value this instruction was already using.
5450 switch (SRem
== BO0
? ICmpInst::getSwappedPredicate(Pred
) : Pred
) {
5453 case ICmpInst::ICMP_EQ
:
5454 return replaceInstUsesWith(I
, ConstantInt::getFalse(I
.getType()));
5455 case ICmpInst::ICMP_NE
:
5456 return replaceInstUsesWith(I
, ConstantInt::getTrue(I
.getType()));
5457 case ICmpInst::ICMP_SGT
:
5458 case ICmpInst::ICMP_SGE
:
5459 return new ICmpInst(ICmpInst::ICMP_SGT
, SRem
->getOperand(1),
5460 Constant::getAllOnesValue(SRem
->getType()));
5461 case ICmpInst::ICMP_SLT
:
5462 case ICmpInst::ICMP_SLE
:
5463 return new ICmpInst(ICmpInst::ICMP_SLT
, SRem
->getOperand(1),
5464 Constant::getNullValue(SRem
->getType()));
5468 if (BO0
&& BO1
&& BO0
->getOpcode() == BO1
->getOpcode() &&
5469 (BO0
->hasOneUse() || BO1
->hasOneUse()) &&
5470 BO0
->getOperand(1) == BO1
->getOperand(1)) {
5471 switch (BO0
->getOpcode()) {
5474 case Instruction::Add
:
5475 case Instruction::Sub
:
5476 case Instruction::Xor
: {
5477 if (I
.isEquality()) // a+x icmp eq/ne b+x --> a icmp b
5478 return new ICmpInst(Pred
, BO0
->getOperand(0), BO1
->getOperand(0));
5481 if (match(BO0
->getOperand(1), m_APInt(C
))) {
5482 // icmp u/s (a ^ signmask), (b ^ signmask) --> icmp s/u a, b
5483 if (C
->isSignMask()) {
5484 ICmpInst::Predicate NewPred
= I
.getFlippedSignednessPredicate();
5485 return new ICmpInst(NewPred
, BO0
->getOperand(0), BO1
->getOperand(0));
5488 // icmp u/s (a ^ maxsignval), (b ^ maxsignval) --> icmp s/u' a, b
5489 if (BO0
->getOpcode() == Instruction::Xor
&& C
->isMaxSignedValue()) {
5490 ICmpInst::Predicate NewPred
= I
.getFlippedSignednessPredicate();
5491 NewPred
= I
.getSwappedPredicate(NewPred
);
5492 return new ICmpInst(NewPred
, BO0
->getOperand(0), BO1
->getOperand(0));
5497 case Instruction::Mul
: {
5498 if (!I
.isEquality())
5502 if (match(BO0
->getOperand(1), m_APInt(C
)) && !C
->isZero() &&
5504 // icmp eq/ne (X * C), (Y * C) --> icmp (X & Mask), (Y & Mask)
5505 // Mask = -1 >> count-trailing-zeros(C).
5506 if (unsigned TZs
= C
->countr_zero()) {
5507 Constant
*Mask
= ConstantInt::get(
5509 APInt::getLowBitsSet(C
->getBitWidth(), C
->getBitWidth() - TZs
));
5510 Value
*And1
= Builder
.CreateAnd(BO0
->getOperand(0), Mask
);
5511 Value
*And2
= Builder
.CreateAnd(BO1
->getOperand(0), Mask
);
5512 return new ICmpInst(Pred
, And1
, And2
);
5517 case Instruction::UDiv
:
5518 case Instruction::LShr
:
5519 if (I
.isSigned() || !BO0
->isExact() || !BO1
->isExact())
5521 return new ICmpInst(Pred
, BO0
->getOperand(0), BO1
->getOperand(0));
5523 case Instruction::SDiv
:
5524 if (!(I
.isEquality() || match(BO0
->getOperand(1), m_NonNegative())) ||
5525 !BO0
->isExact() || !BO1
->isExact())
5527 return new ICmpInst(Pred
, BO0
->getOperand(0), BO1
->getOperand(0));
5529 case Instruction::AShr
:
5530 if (!BO0
->isExact() || !BO1
->isExact())
5532 return new ICmpInst(Pred
, BO0
->getOperand(0), BO1
->getOperand(0));
5534 case Instruction::Shl
: {
5535 bool NUW
= Op0HasNUW
&& Op1HasNUW
;
5536 bool NSW
= Op0HasNSW
&& Op1HasNSW
;
5539 if (!NSW
&& I
.isSigned())
5541 return new ICmpInst(Pred
, BO0
->getOperand(0), BO1
->getOperand(0));
5547 // Transform A & (L - 1) `ult` L --> L != 0
5548 auto LSubOne
= m_Add(m_Specific(Op1
), m_AllOnes());
5549 auto BitwiseAnd
= m_c_And(m_Value(), LSubOne
);
5551 if (match(BO0
, BitwiseAnd
) && Pred
== ICmpInst::ICMP_ULT
) {
5552 auto *Zero
= Constant::getNullValue(BO0
->getType());
5553 return new ICmpInst(ICmpInst::ICMP_NE
, Op1
, Zero
);
5557 // For unsigned predicates / eq / ne:
5558 // icmp pred (x << 1), x --> icmp getSignedPredicate(pred) x, 0
5559 // icmp pred x, (x << 1) --> icmp getSignedPredicate(pred) 0, x
5560 if (!ICmpInst::isSigned(Pred
)) {
5561 if (match(Op0
, m_Shl(m_Specific(Op1
), m_One())))
5562 return new ICmpInst(ICmpInst::getSignedPredicate(Pred
), Op1
,
5563 Constant::getNullValue(Op1
->getType()));
5564 else if (match(Op1
, m_Shl(m_Specific(Op0
), m_One())))
5565 return new ICmpInst(ICmpInst::getSignedPredicate(Pred
),
5566 Constant::getNullValue(Op0
->getType()), Op0
);
5569 if (Value
*V
= foldMultiplicationOverflowCheck(I
))
5570 return replaceInstUsesWith(I
, V
);
5572 if (Instruction
*R
= foldICmpAndXX(I
, Q
, *this))
5575 if (Value
*V
= foldICmpWithTruncSignExtendedVal(I
, Builder
))
5576 return replaceInstUsesWith(I
, V
);
5578 if (Value
*V
= foldShiftIntoShiftInAnotherHandOfAndInICmp(I
, SQ
, Builder
))
5579 return replaceInstUsesWith(I
, V
);
5584 /// Fold icmp Pred min|max(X, Y), Z.
5585 Instruction
*InstCombinerImpl::foldICmpWithMinMax(Instruction
&I
,
5586 MinMaxIntrinsic
*MinMax
,
5587 Value
*Z
, CmpPredicate Pred
) {
5588 Value
*X
= MinMax
->getLHS();
5589 Value
*Y
= MinMax
->getRHS();
5590 if (ICmpInst::isSigned(Pred
) && !MinMax
->isSigned())
5592 if (ICmpInst::isUnsigned(Pred
) && MinMax
->isSigned()) {
5593 // Revert the transform signed pred -> unsigned pred
5594 // TODO: We can flip the signedness of predicate if both operands of icmp
5596 if (isKnownNonNegative(Z
, SQ
.getWithInstruction(&I
)) &&
5597 isKnownNonNegative(MinMax
, SQ
.getWithInstruction(&I
))) {
5598 Pred
= ICmpInst::getFlippedSignednessPredicate(Pred
);
5602 SimplifyQuery Q
= SQ
.getWithInstruction(&I
);
5603 auto IsCondKnownTrue
= [](Value
*Val
) -> std::optional
<bool> {
5605 return std::nullopt
;
5606 if (match(Val
, m_One()))
5608 if (match(Val
, m_Zero()))
5610 return std::nullopt
;
5612 auto CmpXZ
= IsCondKnownTrue(simplifyICmpInst(Pred
, X
, Z
, Q
));
5613 auto CmpYZ
= IsCondKnownTrue(simplifyICmpInst(Pred
, Y
, Z
, Q
));
5614 if (!CmpXZ
.has_value() && !CmpYZ
.has_value())
5616 if (!CmpXZ
.has_value()) {
5618 std::swap(CmpXZ
, CmpYZ
);
5621 auto FoldIntoCmpYZ
= [&]() -> Instruction
* {
5622 if (CmpYZ
.has_value())
5623 return replaceInstUsesWith(I
, ConstantInt::getBool(I
.getType(), *CmpYZ
));
5624 return ICmpInst::Create(Instruction::ICmp
, Pred
, Y
, Z
);
5628 case ICmpInst::ICMP_EQ
:
5629 case ICmpInst::ICMP_NE
: {
5632 // min(X, Y) == Z X <= Y
5633 // max(X, Y) == Z X >= Y
5634 // min(X, Y) != Z X > Y
5635 // max(X, Y) != Z X < Y
5636 if ((Pred
== ICmpInst::ICMP_EQ
) == *CmpXZ
) {
5637 ICmpInst::Predicate NewPred
=
5638 ICmpInst::getNonStrictPredicate(MinMax
->getPredicate());
5639 if (Pred
== ICmpInst::ICMP_NE
)
5640 NewPred
= ICmpInst::getInversePredicate(NewPred
);
5641 return ICmpInst::Create(Instruction::ICmp
, NewPred
, X
, Y
);
5643 // Otherwise (X != Z):
5644 ICmpInst::Predicate NewPred
= MinMax
->getPredicate();
5645 auto MinMaxCmpXZ
= IsCondKnownTrue(simplifyICmpInst(NewPred
, X
, Z
, Q
));
5646 if (!MinMaxCmpXZ
.has_value()) {
5648 std::swap(CmpXZ
, CmpYZ
);
5649 // Re-check pre-condition X != Z
5650 if (!CmpXZ
.has_value() || (Pred
== ICmpInst::ICMP_EQ
) == *CmpXZ
)
5652 MinMaxCmpXZ
= IsCondKnownTrue(simplifyICmpInst(NewPred
, X
, Z
, Q
));
5654 if (!MinMaxCmpXZ
.has_value())
5658 // min(X, Y) == Z X < Z false
5659 // max(X, Y) == Z X > Z false
5660 // min(X, Y) != Z X < Z true
5661 // max(X, Y) != Z X > Z true
5662 return replaceInstUsesWith(
5663 I
, ConstantInt::getBool(I
.getType(), Pred
== ICmpInst::ICMP_NE
));
5666 // min(X, Y) == Z X > Z Y == Z
5667 // max(X, Y) == Z X < Z Y == Z
5668 // min(X, Y) != Z X > Z Y != Z
5669 // max(X, Y) != Z X < Z Y != Z
5670 return FoldIntoCmpYZ();
5674 case ICmpInst::ICMP_SLT
:
5675 case ICmpInst::ICMP_ULT
:
5676 case ICmpInst::ICMP_SLE
:
5677 case ICmpInst::ICMP_ULE
:
5678 case ICmpInst::ICMP_SGT
:
5679 case ICmpInst::ICMP_UGT
:
5680 case ICmpInst::ICMP_SGE
:
5681 case ICmpInst::ICMP_UGE
: {
5682 bool IsSame
= MinMax
->getPredicate() == ICmpInst::getStrictPredicate(Pred
);
5686 // min(X, Y) < Z X < Z true
5687 // min(X, Y) <= Z X <= Z true
5688 // max(X, Y) > Z X > Z true
5689 // max(X, Y) >= Z X >= Z true
5690 return replaceInstUsesWith(I
, ConstantInt::getTrue(I
.getType()));
5693 // max(X, Y) < Z X < Z Y < Z
5694 // max(X, Y) <= Z X <= Z Y <= Z
5695 // min(X, Y) > Z X > Z Y > Z
5696 // min(X, Y) >= Z X >= Z Y >= Z
5697 return FoldIntoCmpYZ();
5702 // min(X, Y) < Z X >= Z Y < Z
5703 // min(X, Y) <= Z X > Z Y <= Z
5704 // max(X, Y) > Z X <= Z Y > Z
5705 // max(X, Y) >= Z X < Z Y >= Z
5706 return FoldIntoCmpYZ();
5709 // max(X, Y) < Z X >= Z false
5710 // max(X, Y) <= Z X > Z false
5711 // min(X, Y) > Z X <= Z false
5712 // min(X, Y) >= Z X < Z false
5713 return replaceInstUsesWith(I
, ConstantInt::getFalse(I
.getType()));
5725 // Canonicalize checking for a power-of-2-or-zero value:
5726 static Instruction
*foldICmpPow2Test(ICmpInst
&I
,
5727 InstCombiner::BuilderTy
&Builder
) {
5728 Value
*Op0
= I
.getOperand(0), *Op1
= I
.getOperand(1);
5729 const CmpInst::Predicate Pred
= I
.getPredicate();
5732 if (I
.isEquality()) {
5733 // (A & (A-1)) == 0 --> ctpop(A) < 2 (two commuted variants)
5734 // ((A-1) & A) != 0 --> ctpop(A) > 1 (two commuted variants)
5735 if (!match(Op0
, m_OneUse(m_c_And(m_Add(m_Value(A
), m_AllOnes()),
5737 !match(Op1
, m_ZeroInt()))
5740 // (A & -A) == A --> ctpop(A) < 2 (four commuted variants)
5741 // (-A & A) != A --> ctpop(A) > 1 (four commuted variants)
5742 if (match(Op0
, m_OneUse(m_c_And(m_Neg(m_Specific(Op1
)), m_Specific(Op1
)))))
5745 m_OneUse(m_c_And(m_Neg(m_Specific(Op0
)), m_Specific(Op0
)))))
5748 CheckIs
= Pred
== ICmpInst::ICMP_EQ
;
5749 } else if (ICmpInst::isUnsigned(Pred
)) {
5750 // (A ^ (A-1)) u>= A --> ctpop(A) < 2 (two commuted variants)
5751 // ((A-1) ^ A) u< A --> ctpop(A) > 1 (two commuted variants)
5753 if ((Pred
== ICmpInst::ICMP_UGE
|| Pred
== ICmpInst::ICMP_ULT
) &&
5754 match(Op0
, m_OneUse(m_c_Xor(m_Add(m_Specific(Op1
), m_AllOnes()),
5755 m_Specific(Op1
))))) {
5757 CheckIs
= Pred
== ICmpInst::ICMP_UGE
;
5758 } else if ((Pred
== ICmpInst::ICMP_UGT
|| Pred
== ICmpInst::ICMP_ULE
) &&
5759 match(Op1
, m_OneUse(m_c_Xor(m_Add(m_Specific(Op0
), m_AllOnes()),
5760 m_Specific(Op0
))))) {
5762 CheckIs
= Pred
== ICmpInst::ICMP_ULE
;
5767 Type
*Ty
= A
->getType();
5768 CallInst
*CtPop
= Builder
.CreateUnaryIntrinsic(Intrinsic::ctpop
, A
);
5769 return CheckIs
? new ICmpInst(ICmpInst::ICMP_ULT
, CtPop
,
5770 ConstantInt::get(Ty
, 2))
5771 : new ICmpInst(ICmpInst::ICMP_UGT
, CtPop
,
5772 ConstantInt::get(Ty
, 1));
5778 Instruction
*InstCombinerImpl::foldICmpEquality(ICmpInst
&I
) {
5779 if (!I
.isEquality())
5782 Value
*Op0
= I
.getOperand(0), *Op1
= I
.getOperand(1);
5783 const CmpInst::Predicate Pred
= I
.getPredicate();
5784 Value
*A
, *B
, *C
, *D
;
5785 if (match(Op0
, m_Xor(m_Value(A
), m_Value(B
)))) {
5786 if (A
== Op1
|| B
== Op1
) { // (A^B) == A -> B == 0
5787 Value
*OtherVal
= A
== Op1
? B
: A
;
5788 return new ICmpInst(Pred
, OtherVal
, Constant::getNullValue(A
->getType()));
5791 if (match(Op1
, m_Xor(m_Value(C
), m_Value(D
)))) {
5792 // A^c1 == C^c2 --> A == C^(c1^c2)
5793 ConstantInt
*C1
, *C2
;
5794 if (match(B
, m_ConstantInt(C1
)) && match(D
, m_ConstantInt(C2
)) &&
5796 Constant
*NC
= Builder
.getInt(C1
->getValue() ^ C2
->getValue());
5797 Value
*Xor
= Builder
.CreateXor(C
, NC
);
5798 return new ICmpInst(Pred
, A
, Xor
);
5801 // A^B == A^D -> B == D
5803 return new ICmpInst(Pred
, B
, D
);
5805 return new ICmpInst(Pred
, B
, C
);
5807 return new ICmpInst(Pred
, A
, D
);
5809 return new ICmpInst(Pred
, A
, C
);
5813 if (match(Op1
, m_Xor(m_Value(A
), m_Value(B
))) && (A
== Op0
|| B
== Op0
)) {
5814 // A == (A^B) -> B == 0
5815 Value
*OtherVal
= A
== Op0
? B
: A
;
5816 return new ICmpInst(Pred
, OtherVal
, Constant::getNullValue(A
->getType()));
5819 // (X&Z) == (Y&Z) -> (X^Y) & Z == 0
5820 if (match(Op0
, m_And(m_Value(A
), m_Value(B
))) &&
5821 match(Op1
, m_And(m_Value(C
), m_Value(D
)))) {
5822 Value
*X
= nullptr, *Y
= nullptr, *Z
= nullptr;
5828 } else if (A
== D
) {
5832 } else if (B
== C
) {
5836 } else if (B
== D
) {
5843 // If X^Y is a negative power of two, then `icmp eq/ne (Z & NegP2), 0`
5844 // will fold to `icmp ult/uge Z, -NegP2` incurringb no additional
5846 const APInt
*C0
, *C1
;
5847 bool XorIsNegP2
= match(X
, m_APInt(C0
)) && match(Y
, m_APInt(C1
)) &&
5848 (*C0
^ *C1
).isNegatedPowerOf2();
5850 // If either Op0/Op1 are both one use or X^Y will constant fold and one of
5851 // Op0/Op1 are one use, proceed. In those cases we are instruction neutral
5852 // but `icmp eq/ne A, 0` is easier to analyze than `icmp eq/ne A, B`.
5854 int(Op0
->hasOneUse()) + int(Op1
->hasOneUse()) +
5855 (int(match(X
, m_ImmConstant()) && match(Y
, m_ImmConstant())));
5856 if (XorIsNegP2
|| UseCnt
>= 2) {
5858 Op1
= Builder
.CreateXor(X
, Y
);
5859 Op1
= Builder
.CreateAnd(Op1
, Z
);
5860 return new ICmpInst(Pred
, Op1
, Constant::getNullValue(Op1
->getType()));
5866 // Similar to above, but specialized for constant because invert is needed:
5867 // (X | C) == (Y | C) --> (X ^ Y) & ~C == 0
5870 if (match(Op0
, m_OneUse(m_Or(m_Value(X
), m_Constant(C
)))) &&
5871 match(Op1
, m_OneUse(m_Or(m_Value(Y
), m_Specific(C
))))) {
5872 Value
*Xor
= Builder
.CreateXor(X
, Y
);
5873 Value
*And
= Builder
.CreateAnd(Xor
, ConstantExpr::getNot(C
));
5874 return new ICmpInst(Pred
, And
, Constant::getNullValue(And
->getType()));
5878 if (match(Op1
, m_ZExt(m_Value(A
))) &&
5879 (Op0
->hasOneUse() || Op1
->hasOneUse())) {
5880 // (B & (Pow2C-1)) == zext A --> A == trunc B
5881 // (B & (Pow2C-1)) != zext A --> A != trunc B
5883 if (match(Op0
, m_And(m_Value(B
), m_LowBitMask(MaskC
))) &&
5884 MaskC
->countr_one() == A
->getType()->getScalarSizeInBits())
5885 return new ICmpInst(Pred
, A
, Builder
.CreateTrunc(B
, A
->getType()));
5888 // (A >> C) == (B >> C) --> (A^B) u< (1 << C)
5889 // For lshr and ashr pairs.
5890 const APInt
*AP1
, *AP2
;
5891 if ((match(Op0
, m_OneUse(m_LShr(m_Value(A
), m_APIntAllowPoison(AP1
)))) &&
5892 match(Op1
, m_OneUse(m_LShr(m_Value(B
), m_APIntAllowPoison(AP2
))))) ||
5893 (match(Op0
, m_OneUse(m_AShr(m_Value(A
), m_APIntAllowPoison(AP1
)))) &&
5894 match(Op1
, m_OneUse(m_AShr(m_Value(B
), m_APIntAllowPoison(AP2
)))))) {
5897 unsigned TypeBits
= AP1
->getBitWidth();
5898 unsigned ShAmt
= AP1
->getLimitedValue(TypeBits
);
5899 if (ShAmt
< TypeBits
&& ShAmt
!= 0) {
5900 ICmpInst::Predicate NewPred
=
5901 Pred
== ICmpInst::ICMP_NE
? ICmpInst::ICMP_UGE
: ICmpInst::ICMP_ULT
;
5902 Value
*Xor
= Builder
.CreateXor(A
, B
, I
.getName() + ".unshifted");
5903 APInt CmpVal
= APInt::getOneBitSet(TypeBits
, ShAmt
);
5904 return new ICmpInst(NewPred
, Xor
, ConstantInt::get(A
->getType(), CmpVal
));
5908 // (A << C) == (B << C) --> ((A^B) & (~0U >> C)) == 0
5910 if (match(Op0
, m_OneUse(m_Shl(m_Value(A
), m_ConstantInt(Cst1
)))) &&
5911 match(Op1
, m_OneUse(m_Shl(m_Value(B
), m_Specific(Cst1
))))) {
5912 unsigned TypeBits
= Cst1
->getBitWidth();
5913 unsigned ShAmt
= (unsigned)Cst1
->getLimitedValue(TypeBits
);
5914 if (ShAmt
< TypeBits
&& ShAmt
!= 0) {
5915 Value
*Xor
= Builder
.CreateXor(A
, B
, I
.getName() + ".unshifted");
5916 APInt AndVal
= APInt::getLowBitsSet(TypeBits
, TypeBits
- ShAmt
);
5918 Builder
.CreateAnd(Xor
, Builder
.getInt(AndVal
), I
.getName() + ".mask");
5919 return new ICmpInst(Pred
, And
, Constant::getNullValue(Cst1
->getType()));
5923 // Transform "icmp eq (trunc (lshr(X, cst1)), cst" to
5924 // "icmp (and X, mask), cst"
5926 if (Op0
->hasOneUse() &&
5927 match(Op0
, m_Trunc(m_OneUse(m_LShr(m_Value(A
), m_ConstantInt(ShAmt
))))) &&
5928 match(Op1
, m_ConstantInt(Cst1
)) &&
5929 // Only do this when A has multiple uses. This is most important to do
5930 // when it exposes other optimizations.
5932 unsigned ASize
= cast
<IntegerType
>(A
->getType())->getPrimitiveSizeInBits();
5934 if (ShAmt
< ASize
) {
5936 APInt::getLowBitsSet(ASize
, Op0
->getType()->getPrimitiveSizeInBits());
5939 APInt CmpV
= Cst1
->getValue().zext(ASize
);
5942 Value
*Mask
= Builder
.CreateAnd(A
, Builder
.getInt(MaskV
));
5943 return new ICmpInst(Pred
, Mask
, Builder
.getInt(CmpV
));
5947 if (Instruction
*ICmp
= foldICmpIntrinsicWithIntrinsic(I
, Builder
))
5950 // Match icmp eq (trunc (lshr A, BW), (ashr (trunc A), BW-1)), which checks
5951 // the top BW/2 + 1 bits are all the same. Create "A >=s INT_MIN && A <=s
5952 // INT_MAX", which we generate as "icmp ult (add A, 2^(BW-1)), 2^BW" to skip a
5953 // few steps of instcombine.
5954 unsigned BitWidth
= Op0
->getType()->getScalarSizeInBits();
5955 if (match(Op0
, m_AShr(m_Trunc(m_Value(A
)), m_SpecificInt(BitWidth
- 1))) &&
5956 match(Op1
, m_Trunc(m_LShr(m_Specific(A
), m_SpecificInt(BitWidth
)))) &&
5957 A
->getType()->getScalarSizeInBits() == BitWidth
* 2 &&
5958 (I
.getOperand(0)->hasOneUse() || I
.getOperand(1)->hasOneUse())) {
5959 APInt C
= APInt::getOneBitSet(BitWidth
* 2, BitWidth
- 1);
5960 Value
*Add
= Builder
.CreateAdd(A
, ConstantInt::get(A
->getType(), C
));
5961 return new ICmpInst(Pred
== ICmpInst::ICMP_EQ
? ICmpInst::ICMP_ULT
5962 : ICmpInst::ICMP_UGE
,
5963 Add
, ConstantInt::get(A
->getType(), C
.shl(1)));
5967 // Assume B_Pow2 != 0
5968 // 1. A & B_Pow2 != B_Pow2 -> A & B_Pow2 == 0
5969 // 2. A & B_Pow2 == B_Pow2 -> A & B_Pow2 != 0
5970 if (match(Op0
, m_c_And(m_Specific(Op1
), m_Value())) &&
5971 isKnownToBeAPowerOfTwo(Op1
, /* OrZero */ false, 0, &I
))
5972 return new ICmpInst(CmpInst::getInversePredicate(Pred
), Op0
,
5973 ConstantInt::getNullValue(Op0
->getType()));
5975 if (match(Op1
, m_c_And(m_Specific(Op0
), m_Value())) &&
5976 isKnownToBeAPowerOfTwo(Op0
, /* OrZero */ false, 0, &I
))
5977 return new ICmpInst(CmpInst::getInversePredicate(Pred
), Op1
,
5978 ConstantInt::getNullValue(Op1
->getType()));
5981 // icmp eq/ne X, OneUse(rotate-right(X))
5982 // -> icmp eq/ne X, rotate-left(X)
5983 // We generally try to convert rotate-right -> rotate-left, this just
5984 // canonicalizes another case.
5985 if (match(&I
, m_c_ICmp(m_Value(A
),
5986 m_OneUse(m_Intrinsic
<Intrinsic::fshr
>(
5987 m_Deferred(A
), m_Deferred(A
), m_Value(B
))))))
5988 return new ICmpInst(
5990 Builder
.CreateIntrinsic(Op0
->getType(), Intrinsic::fshl
, {A
, A
, B
}));
5993 // icmp eq/ne OneUse(A ^ Cst), B --> icmp eq/ne (A ^ B), Cst
5995 if (match(&I
, m_c_ICmp(m_OneUse(m_Xor(m_Value(A
), m_ImmConstant(Cst
))),
5996 m_CombineAnd(m_Value(B
), m_Unless(m_ImmConstant())))))
5997 return new ICmpInst(Pred
, Builder
.CreateXor(A
, B
), Cst
);
6000 // (icmp eq/ne (and (add/sub/xor X, P2), P2), P2)
6002 m_CombineOr(m_CombineOr(m_c_Add(m_Value(B
), m_Deferred(A
)),
6003 m_c_Xor(m_Value(B
), m_Deferred(A
))),
6004 m_Sub(m_Value(B
), m_Deferred(A
)));
6005 std::optional
<bool> IsZero
= std::nullopt
;
6006 if (match(&I
, m_c_ICmp(m_OneUse(m_c_And(m_Value(A
), m_Matcher
)),
6009 // (icmp eq/ne (and (add/sub/xor X, P2), P2), 0)
6011 m_ICmp(m_OneUse(m_c_And(m_Value(A
), m_Matcher
)), m_Zero())))
6014 if (IsZero
&& isKnownToBeAPowerOfTwo(A
, /* OrZero */ true, /*Depth*/ 0, &I
))
6015 // (icmp eq/ne (and (add/sub/xor X, P2), P2), P2)
6016 // -> (icmp eq/ne (and X, P2), 0)
6017 // (icmp eq/ne (and (add/sub/xor X, P2), P2), 0)
6018 // -> (icmp eq/ne (and X, P2), P2)
6019 return new ICmpInst(Pred
, Builder
.CreateAnd(B
, A
),
6021 : ConstantInt::getNullValue(A
->getType()));
6027 Instruction
*InstCombinerImpl::foldICmpWithTrunc(ICmpInst
&ICmp
) {
6028 ICmpInst::Predicate Pred
= ICmp
.getPredicate();
6029 Value
*Op0
= ICmp
.getOperand(0), *Op1
= ICmp
.getOperand(1);
6031 // Try to canonicalize trunc + compare-to-constant into a mask + cmp.
6032 // The trunc masks high bits while the compare may effectively mask low bits.
6035 if (!match(Op0
, m_OneUse(m_Trunc(m_Value(X
)))) || !match(Op1
, m_APInt(C
)))
6038 // This matches patterns corresponding to tests of the signbit as well as:
6039 // (trunc X) pred C2 --> (X & Mask) == C
6040 if (auto Res
= decomposeBitTestICmp(Op0
, Op1
, Pred
, /*WithTrunc=*/true,
6041 /*AllowNonZeroC=*/true)) {
6042 Value
*And
= Builder
.CreateAnd(Res
->X
, Res
->Mask
);
6043 Constant
*C
= ConstantInt::get(Res
->X
->getType(), Res
->C
);
6044 return new ICmpInst(Res
->Pred
, And
, C
);
6047 unsigned SrcBits
= X
->getType()->getScalarSizeInBits();
6048 if (auto *II
= dyn_cast
<IntrinsicInst
>(X
)) {
6049 if (II
->getIntrinsicID() == Intrinsic::cttz
||
6050 II
->getIntrinsicID() == Intrinsic::ctlz
) {
6051 unsigned MaxRet
= SrcBits
;
6052 // If the "is_zero_poison" argument is set, then we know at least
6053 // one bit is set in the input, so the result is always at least one
6054 // less than the full bitwidth of that input.
6055 if (match(II
->getArgOperand(1), m_One()))
6058 // Make sure the destination is wide enough to hold the largest output of
6060 if (llvm::Log2_32(MaxRet
) + 1 <= Op0
->getType()->getScalarSizeInBits())
6061 if (Instruction
*I
=
6062 foldICmpIntrinsicWithConstant(ICmp
, II
, C
->zext(SrcBits
)))
6070 Instruction
*InstCombinerImpl::foldICmpWithZextOrSext(ICmpInst
&ICmp
) {
6071 assert(isa
<CastInst
>(ICmp
.getOperand(0)) && "Expected cast for operand 0");
6072 auto *CastOp0
= cast
<CastInst
>(ICmp
.getOperand(0));
6074 if (!match(CastOp0
, m_ZExtOrSExt(m_Value(X
))))
6077 bool IsSignedExt
= CastOp0
->getOpcode() == Instruction::SExt
;
6078 bool IsSignedCmp
= ICmp
.isSigned();
6080 // icmp Pred (ext X), (ext Y)
6082 if (match(ICmp
.getOperand(1), m_ZExtOrSExt(m_Value(Y
)))) {
6083 bool IsZext0
= isa
<ZExtInst
>(ICmp
.getOperand(0));
6084 bool IsZext1
= isa
<ZExtInst
>(ICmp
.getOperand(1));
6086 if (IsZext0
!= IsZext1
) {
6087 // If X and Y and both i1
6088 // (icmp eq/ne (zext X) (sext Y))
6089 // eq -> (icmp eq (or X, Y), 0)
6090 // ne -> (icmp ne (or X, Y), 0)
6091 if (ICmp
.isEquality() && X
->getType()->isIntOrIntVectorTy(1) &&
6092 Y
->getType()->isIntOrIntVectorTy(1))
6093 return new ICmpInst(ICmp
.getPredicate(), Builder
.CreateOr(X
, Y
),
6094 Constant::getNullValue(X
->getType()));
6096 // If we have mismatched casts and zext has the nneg flag, we can
6097 // treat the "zext nneg" as "sext". Otherwise, we cannot fold and quit.
6099 auto *NonNegInst0
= dyn_cast
<PossiblyNonNegInst
>(ICmp
.getOperand(0));
6100 auto *NonNegInst1
= dyn_cast
<PossiblyNonNegInst
>(ICmp
.getOperand(1));
6102 bool IsNonNeg0
= NonNegInst0
&& NonNegInst0
->hasNonNeg();
6103 bool IsNonNeg1
= NonNegInst1
&& NonNegInst1
->hasNonNeg();
6105 if ((IsZext0
&& IsNonNeg0
) || (IsZext1
&& IsNonNeg1
))
6111 // Not an extension from the same type?
6112 Type
*XTy
= X
->getType(), *YTy
= Y
->getType();
6114 // One of the casts must have one use because we are creating a new cast.
6115 if (!ICmp
.getOperand(0)->hasOneUse() && !ICmp
.getOperand(1)->hasOneUse())
6117 // Extend the narrower operand to the type of the wider operand.
6118 CastInst::CastOps CastOpcode
=
6119 IsSignedExt
? Instruction::SExt
: Instruction::ZExt
;
6120 if (XTy
->getScalarSizeInBits() < YTy
->getScalarSizeInBits())
6121 X
= Builder
.CreateCast(CastOpcode
, X
, YTy
);
6122 else if (YTy
->getScalarSizeInBits() < XTy
->getScalarSizeInBits())
6123 Y
= Builder
.CreateCast(CastOpcode
, Y
, XTy
);
6128 // (zext X) == (zext Y) --> X == Y
6129 // (sext X) == (sext Y) --> X == Y
6130 if (ICmp
.isEquality())
6131 return new ICmpInst(ICmp
.getPredicate(), X
, Y
);
6133 // A signed comparison of sign extended values simplifies into a
6134 // signed comparison.
6135 if (IsSignedCmp
&& IsSignedExt
)
6136 return new ICmpInst(ICmp
.getPredicate(), X
, Y
);
6138 // The other three cases all fold into an unsigned comparison.
6139 return new ICmpInst(ICmp
.getUnsignedPredicate(), X
, Y
);
6142 // Below here, we are only folding a compare with constant.
6143 auto *C
= dyn_cast
<Constant
>(ICmp
.getOperand(1));
6147 // If a lossless truncate is possible...
6148 Type
*SrcTy
= CastOp0
->getSrcTy();
6149 Constant
*Res
= getLosslessTrunc(C
, SrcTy
, CastOp0
->getOpcode());
6151 if (ICmp
.isEquality())
6152 return new ICmpInst(ICmp
.getPredicate(), X
, Res
);
6154 // A signed comparison of sign extended values simplifies into a
6155 // signed comparison.
6156 if (IsSignedExt
&& IsSignedCmp
)
6157 return new ICmpInst(ICmp
.getPredicate(), X
, Res
);
6159 // The other three cases all fold into an unsigned comparison.
6160 return new ICmpInst(ICmp
.getUnsignedPredicate(), X
, Res
);
6163 // The re-extended constant changed, partly changed (in the case of a vector),
6164 // or could not be determined to be equal (in the case of a constant
6165 // expression), so the constant cannot be represented in the shorter type.
6166 // All the cases that fold to true or false will have already been handled
6167 // by simplifyICmpInst, so only deal with the tricky case.
6168 if (IsSignedCmp
|| !IsSignedExt
|| !isa
<ConstantInt
>(C
))
6171 // Is source op positive?
6172 // icmp ult (sext X), C --> icmp sgt X, -1
6173 if (ICmp
.getPredicate() == ICmpInst::ICMP_ULT
)
6174 return new ICmpInst(CmpInst::ICMP_SGT
, X
, Constant::getAllOnesValue(SrcTy
));
6176 // Is source op negative?
6177 // icmp ugt (sext X), C --> icmp slt X, 0
6178 assert(ICmp
.getPredicate() == ICmpInst::ICMP_UGT
&& "ICmp should be folded!");
6179 return new ICmpInst(CmpInst::ICMP_SLT
, X
, Constant::getNullValue(SrcTy
));
6182 /// Handle icmp (cast x), (cast or constant).
6183 Instruction
*InstCombinerImpl::foldICmpWithCastOp(ICmpInst
&ICmp
) {
6184 // If any operand of ICmp is a inttoptr roundtrip cast then remove it as
6185 // icmp compares only pointer's value.
6186 // icmp (inttoptr (ptrtoint p1)), p2 --> icmp p1, p2.
6187 Value
*SimplifiedOp0
= simplifyIntToPtrRoundTripCast(ICmp
.getOperand(0));
6188 Value
*SimplifiedOp1
= simplifyIntToPtrRoundTripCast(ICmp
.getOperand(1));
6189 if (SimplifiedOp0
|| SimplifiedOp1
)
6190 return new ICmpInst(ICmp
.getPredicate(),
6191 SimplifiedOp0
? SimplifiedOp0
: ICmp
.getOperand(0),
6192 SimplifiedOp1
? SimplifiedOp1
: ICmp
.getOperand(1));
6194 auto *CastOp0
= dyn_cast
<CastInst
>(ICmp
.getOperand(0));
6197 if (!isa
<Constant
>(ICmp
.getOperand(1)) && !isa
<CastInst
>(ICmp
.getOperand(1)))
6200 Value
*Op0Src
= CastOp0
->getOperand(0);
6201 Type
*SrcTy
= CastOp0
->getSrcTy();
6202 Type
*DestTy
= CastOp0
->getDestTy();
6204 // Turn icmp (ptrtoint x), (ptrtoint/c) into a compare of the input if the
6205 // integer type is the same size as the pointer type.
6206 auto CompatibleSizes
= [&](Type
*PtrTy
, Type
*IntTy
) {
6207 if (isa
<VectorType
>(PtrTy
)) {
6208 PtrTy
= cast
<VectorType
>(PtrTy
)->getElementType();
6209 IntTy
= cast
<VectorType
>(IntTy
)->getElementType();
6211 return DL
.getPointerTypeSizeInBits(PtrTy
) == IntTy
->getIntegerBitWidth();
6213 if (CastOp0
->getOpcode() == Instruction::PtrToInt
&&
6214 CompatibleSizes(SrcTy
, DestTy
)) {
6215 Value
*NewOp1
= nullptr;
6216 if (auto *PtrToIntOp1
= dyn_cast
<PtrToIntOperator
>(ICmp
.getOperand(1))) {
6217 Value
*PtrSrc
= PtrToIntOp1
->getOperand(0);
6218 if (PtrSrc
->getType() == Op0Src
->getType())
6219 NewOp1
= PtrToIntOp1
->getOperand(0);
6220 } else if (auto *RHSC
= dyn_cast
<Constant
>(ICmp
.getOperand(1))) {
6221 NewOp1
= ConstantExpr::getIntToPtr(RHSC
, SrcTy
);
6225 return new ICmpInst(ICmp
.getPredicate(), Op0Src
, NewOp1
);
6228 // Do the same in the other direction for icmp (inttoptr x), (inttoptr/c).
6229 if (CastOp0
->getOpcode() == Instruction::IntToPtr
&&
6230 CompatibleSizes(DestTy
, SrcTy
)) {
6231 Value
*NewOp1
= nullptr;
6232 if (auto *IntToPtrOp1
= dyn_cast
<IntToPtrInst
>(ICmp
.getOperand(1))) {
6233 Value
*IntSrc
= IntToPtrOp1
->getOperand(0);
6234 if (IntSrc
->getType() == Op0Src
->getType())
6235 NewOp1
= IntToPtrOp1
->getOperand(0);
6236 } else if (auto *RHSC
= dyn_cast
<Constant
>(ICmp
.getOperand(1))) {
6237 NewOp1
= ConstantFoldConstant(ConstantExpr::getPtrToInt(RHSC
, SrcTy
), DL
);
6241 return new ICmpInst(ICmp
.getPredicate(), Op0Src
, NewOp1
);
6244 if (Instruction
*R
= foldICmpWithTrunc(ICmp
))
6247 return foldICmpWithZextOrSext(ICmp
);
6250 static bool isNeutralValue(Instruction::BinaryOps BinaryOp
, Value
*RHS
,
6254 llvm_unreachable("Unsupported binary op");
6255 case Instruction::Add
:
6256 case Instruction::Sub
:
6257 return match(RHS
, m_Zero());
6258 case Instruction::Mul
:
6259 return !(RHS
->getType()->isIntOrIntVectorTy(1) && IsSigned
) &&
6260 match(RHS
, m_One());
6265 InstCombinerImpl::computeOverflow(Instruction::BinaryOps BinaryOp
,
6266 bool IsSigned
, Value
*LHS
, Value
*RHS
,
6267 Instruction
*CxtI
) const {
6270 llvm_unreachable("Unsupported binary op");
6271 case Instruction::Add
:
6273 return computeOverflowForSignedAdd(LHS
, RHS
, CxtI
);
6275 return computeOverflowForUnsignedAdd(LHS
, RHS
, CxtI
);
6276 case Instruction::Sub
:
6278 return computeOverflowForSignedSub(LHS
, RHS
, CxtI
);
6280 return computeOverflowForUnsignedSub(LHS
, RHS
, CxtI
);
6281 case Instruction::Mul
:
6283 return computeOverflowForSignedMul(LHS
, RHS
, CxtI
);
6285 return computeOverflowForUnsignedMul(LHS
, RHS
, CxtI
);
6289 bool InstCombinerImpl::OptimizeOverflowCheck(Instruction::BinaryOps BinaryOp
,
6290 bool IsSigned
, Value
*LHS
,
6291 Value
*RHS
, Instruction
&OrigI
,
6293 Constant
*&Overflow
) {
6294 if (OrigI
.isCommutative() && isa
<Constant
>(LHS
) && !isa
<Constant
>(RHS
))
6295 std::swap(LHS
, RHS
);
6297 // If the overflow check was an add followed by a compare, the insertion point
6298 // may be pointing to the compare. We want to insert the new instructions
6299 // before the add in case there are uses of the add between the add and the
6301 Builder
.SetInsertPoint(&OrigI
);
6303 Type
*OverflowTy
= Type::getInt1Ty(LHS
->getContext());
6304 if (auto *LHSTy
= dyn_cast
<VectorType
>(LHS
->getType()))
6305 OverflowTy
= VectorType::get(OverflowTy
, LHSTy
->getElementCount());
6307 if (isNeutralValue(BinaryOp
, RHS
, IsSigned
)) {
6309 Overflow
= ConstantInt::getFalse(OverflowTy
);
6313 switch (computeOverflow(BinaryOp
, IsSigned
, LHS
, RHS
, &OrigI
)) {
6314 case OverflowResult::MayOverflow
:
6316 case OverflowResult::AlwaysOverflowsLow
:
6317 case OverflowResult::AlwaysOverflowsHigh
:
6318 Result
= Builder
.CreateBinOp(BinaryOp
, LHS
, RHS
);
6319 Result
->takeName(&OrigI
);
6320 Overflow
= ConstantInt::getTrue(OverflowTy
);
6322 case OverflowResult::NeverOverflows
:
6323 Result
= Builder
.CreateBinOp(BinaryOp
, LHS
, RHS
);
6324 Result
->takeName(&OrigI
);
6325 Overflow
= ConstantInt::getFalse(OverflowTy
);
6326 if (auto *Inst
= dyn_cast
<Instruction
>(Result
)) {
6328 Inst
->setHasNoSignedWrap();
6330 Inst
->setHasNoUnsignedWrap();
6335 llvm_unreachable("Unexpected overflow result");
6338 /// Recognize and process idiom involving test for multiplication
6341 /// The caller has matched a pattern of the form:
6342 /// I = cmp u (mul(zext A, zext B), V
6343 /// The function checks if this is a test for overflow and if so replaces
6344 /// multiplication with call to 'mul.with.overflow' intrinsic.
6346 /// \param I Compare instruction.
6347 /// \param MulVal Result of 'mult' instruction. It is one of the arguments of
6348 /// the compare instruction. Must be of integer type.
6349 /// \param OtherVal The other argument of compare instruction.
6350 /// \returns Instruction which must replace the compare instruction, NULL if no
6351 /// replacement required.
6352 static Instruction
*processUMulZExtIdiom(ICmpInst
&I
, Value
*MulVal
,
6353 const APInt
*OtherVal
,
6354 InstCombinerImpl
&IC
) {
6355 // Don't bother doing this transformation for pointers, don't do it for
6357 if (!isa
<IntegerType
>(MulVal
->getType()))
6360 auto *MulInstr
= dyn_cast
<Instruction
>(MulVal
);
6363 assert(MulInstr
->getOpcode() == Instruction::Mul
);
6365 auto *LHS
= cast
<ZExtInst
>(MulInstr
->getOperand(0)),
6366 *RHS
= cast
<ZExtInst
>(MulInstr
->getOperand(1));
6367 assert(LHS
->getOpcode() == Instruction::ZExt
);
6368 assert(RHS
->getOpcode() == Instruction::ZExt
);
6369 Value
*A
= LHS
->getOperand(0), *B
= RHS
->getOperand(0);
6371 // Calculate type and width of the result produced by mul.with.overflow.
6372 Type
*TyA
= A
->getType(), *TyB
= B
->getType();
6373 unsigned WidthA
= TyA
->getPrimitiveSizeInBits(),
6374 WidthB
= TyB
->getPrimitiveSizeInBits();
6377 if (WidthB
> WidthA
) {
6385 // In order to replace the original mul with a narrower mul.with.overflow,
6386 // all uses must ignore upper bits of the product. The number of used low
6387 // bits must be not greater than the width of mul.with.overflow.
6388 if (MulVal
->hasNUsesOrMore(2))
6389 for (User
*U
: MulVal
->users()) {
6392 if (TruncInst
*TI
= dyn_cast
<TruncInst
>(U
)) {
6393 // Check if truncation ignores bits above MulWidth.
6394 unsigned TruncWidth
= TI
->getType()->getPrimitiveSizeInBits();
6395 if (TruncWidth
> MulWidth
)
6397 } else if (BinaryOperator
*BO
= dyn_cast
<BinaryOperator
>(U
)) {
6398 // Check if AND ignores bits above MulWidth.
6399 if (BO
->getOpcode() != Instruction::And
)
6401 if (ConstantInt
*CI
= dyn_cast
<ConstantInt
>(BO
->getOperand(1))) {
6402 const APInt
&CVal
= CI
->getValue();
6403 if (CVal
.getBitWidth() - CVal
.countl_zero() > MulWidth
)
6406 // In this case we could have the operand of the binary operation
6407 // being defined in another block, and performing the replacement
6408 // could break the dominance relation.
6412 // Other uses prohibit this transformation.
6417 // Recognize patterns
6418 switch (I
.getPredicate()) {
6419 case ICmpInst::ICMP_UGT
: {
6420 // Recognize pattern:
6421 // mulval = mul(zext A, zext B)
6422 // cmp ugt mulval, max
6423 APInt MaxVal
= APInt::getMaxValue(MulWidth
);
6424 MaxVal
= MaxVal
.zext(OtherVal
->getBitWidth());
6425 if (MaxVal
.eq(*OtherVal
))
6426 break; // Recognized
6430 case ICmpInst::ICMP_ULT
: {
6431 // Recognize pattern:
6432 // mulval = mul(zext A, zext B)
6433 // cmp ule mulval, max + 1
6434 APInt MaxVal
= APInt::getOneBitSet(OtherVal
->getBitWidth(), MulWidth
);
6435 if (MaxVal
.eq(*OtherVal
))
6436 break; // Recognized
6444 InstCombiner::BuilderTy
&Builder
= IC
.Builder
;
6445 Builder
.SetInsertPoint(MulInstr
);
6447 // Replace: mul(zext A, zext B) --> mul.with.overflow(A, B)
6448 Value
*MulA
= A
, *MulB
= B
;
6449 if (WidthA
< MulWidth
)
6450 MulA
= Builder
.CreateZExt(A
, MulType
);
6451 if (WidthB
< MulWidth
)
6452 MulB
= Builder
.CreateZExt(B
, MulType
);
6454 Builder
.CreateIntrinsic(Intrinsic::umul_with_overflow
, MulType
,
6455 {MulA
, MulB
}, /*FMFSource=*/nullptr, "umul");
6456 IC
.addToWorklist(MulInstr
);
6458 // If there are uses of mul result other than the comparison, we know that
6459 // they are truncation or binary AND. Change them to use result of
6460 // mul.with.overflow and adjust properly mask/size.
6461 if (MulVal
->hasNUsesOrMore(2)) {
6462 Value
*Mul
= Builder
.CreateExtractValue(Call
, 0, "umul.value");
6463 for (User
*U
: make_early_inc_range(MulVal
->users())) {
6466 if (TruncInst
*TI
= dyn_cast
<TruncInst
>(U
)) {
6467 if (TI
->getType()->getPrimitiveSizeInBits() == MulWidth
)
6468 IC
.replaceInstUsesWith(*TI
, Mul
);
6470 TI
->setOperand(0, Mul
);
6471 } else if (BinaryOperator
*BO
= dyn_cast
<BinaryOperator
>(U
)) {
6472 assert(BO
->getOpcode() == Instruction::And
);
6473 // Replace (mul & mask) --> zext (mul.with.overflow & short_mask)
6474 ConstantInt
*CI
= cast
<ConstantInt
>(BO
->getOperand(1));
6475 APInt ShortMask
= CI
->getValue().trunc(MulWidth
);
6476 Value
*ShortAnd
= Builder
.CreateAnd(Mul
, ShortMask
);
6477 Value
*Zext
= Builder
.CreateZExt(ShortAnd
, BO
->getType());
6478 IC
.replaceInstUsesWith(*BO
, Zext
);
6480 llvm_unreachable("Unexpected Binary operation");
6482 IC
.addToWorklist(cast
<Instruction
>(U
));
6486 // The original icmp gets replaced with the overflow value, maybe inverted
6487 // depending on predicate.
6488 if (I
.getPredicate() == ICmpInst::ICMP_ULT
) {
6489 Value
*Res
= Builder
.CreateExtractValue(Call
, 1);
6490 return BinaryOperator::CreateNot(Res
);
6493 return ExtractValueInst::Create(Call
, 1);
6496 /// When performing a comparison against a constant, it is possible that not all
6497 /// the bits in the LHS are demanded. This helper method computes the mask that
6499 static APInt
getDemandedBitsLHSMask(ICmpInst
&I
, unsigned BitWidth
) {
6501 if (!match(I
.getOperand(1), m_APInt(RHS
)))
6502 return APInt::getAllOnes(BitWidth
);
6504 // If this is a normal comparison, it demands all bits. If it is a sign bit
6505 // comparison, it only demands the sign bit.
6507 if (isSignBitCheck(I
.getPredicate(), *RHS
, UnusedBit
))
6508 return APInt::getSignMask(BitWidth
);
6510 switch (I
.getPredicate()) {
6511 // For a UGT comparison, we don't care about any bits that
6512 // correspond to the trailing ones of the comparand. The value of these
6513 // bits doesn't impact the outcome of the comparison, because any value
6514 // greater than the RHS must differ in a bit higher than these due to carry.
6515 case ICmpInst::ICMP_UGT
:
6516 return APInt::getBitsSetFrom(BitWidth
, RHS
->countr_one());
6518 // Similarly, for a ULT comparison, we don't care about the trailing zeros.
6519 // Any value less than the RHS must differ in a higher bit because of carries.
6520 case ICmpInst::ICMP_ULT
:
6521 return APInt::getBitsSetFrom(BitWidth
, RHS
->countr_zero());
6524 return APInt::getAllOnes(BitWidth
);
6528 /// Check that one use is in the same block as the definition and all
6529 /// other uses are in blocks dominated by a given block.
6531 /// \param DI Definition
6533 /// \param DB Block that must dominate all uses of \p DI outside
6534 /// the parent block
6535 /// \return true when \p UI is the only use of \p DI in the parent block
6536 /// and all other uses of \p DI are in blocks dominated by \p DB.
6538 bool InstCombinerImpl::dominatesAllUses(const Instruction
*DI
,
6539 const Instruction
*UI
,
6540 const BasicBlock
*DB
) const {
6541 assert(DI
&& UI
&& "Instruction not defined\n");
6542 // Ignore incomplete definitions.
6543 if (!DI
->getParent())
6545 // DI and UI must be in the same block.
6546 if (DI
->getParent() != UI
->getParent())
6548 // Protect from self-referencing blocks.
6549 if (DI
->getParent() == DB
)
6551 for (const User
*U
: DI
->users()) {
6552 auto *Usr
= cast
<Instruction
>(U
);
6553 if (Usr
!= UI
&& !DT
.dominates(DB
, Usr
->getParent()))
6559 /// Return true when the instruction sequence within a block is select-cmp-br.
6560 static bool isChainSelectCmpBranch(const SelectInst
*SI
) {
6561 const BasicBlock
*BB
= SI
->getParent();
6564 auto *BI
= dyn_cast_or_null
<BranchInst
>(BB
->getTerminator());
6565 if (!BI
|| BI
->getNumSuccessors() != 2)
6567 auto *IC
= dyn_cast
<ICmpInst
>(BI
->getCondition());
6568 if (!IC
|| (IC
->getOperand(0) != SI
&& IC
->getOperand(1) != SI
))
6573 /// True when a select result is replaced by one of its operands
6574 /// in select-icmp sequence. This will eventually result in the elimination
6577 /// \param SI Select instruction
6578 /// \param Icmp Compare instruction
6579 /// \param SIOpd Operand that replaces the select
6582 /// - The replacement is global and requires dominator information
6583 /// - The caller is responsible for the actual replacement
6588 /// %4 = select i1 %3, %C* %0, %C* null
6589 /// %5 = icmp eq %C* %4, null
6590 /// br i1 %5, label %9, label %7
6592 /// ; <label>:7 ; preds = %entry
6593 /// %8 = getelementptr inbounds %C* %4, i64 0, i32 0
6596 /// can be transformed to
6598 /// %5 = icmp eq %C* %0, null
6599 /// %6 = select i1 %3, i1 %5, i1 true
6600 /// br i1 %6, label %9, label %7
6602 /// ; <label>:7 ; preds = %entry
6603 /// %8 = getelementptr inbounds %C* %0, i64 0, i32 0 // replace by %0!
6605 /// Similar when the first operand of the select is a constant or/and
6606 /// the compare is for not equal rather than equal.
6608 /// NOTE: The function is only called when the select and compare constants
6609 /// are equal, the optimization can work only for EQ predicates. This is not a
6610 /// major restriction since a NE compare should be 'normalized' to an equal
6611 /// compare, which usually happens in the combiner and test case
6612 /// select-cmp-br.ll checks for it.
6613 bool InstCombinerImpl::replacedSelectWithOperand(SelectInst
*SI
,
6614 const ICmpInst
*Icmp
,
6615 const unsigned SIOpd
) {
6616 assert((SIOpd
== 1 || SIOpd
== 2) && "Invalid select operand!");
6617 if (isChainSelectCmpBranch(SI
) && Icmp
->getPredicate() == ICmpInst::ICMP_EQ
) {
6618 BasicBlock
*Succ
= SI
->getParent()->getTerminator()->getSuccessor(1);
6619 // The check for the single predecessor is not the best that can be
6620 // done. But it protects efficiently against cases like when SI's
6621 // home block has two successors, Succ and Succ1, and Succ1 predecessor
6622 // of Succ. Then SI can't be replaced by SIOpd because the use that gets
6623 // replaced can be reached on either path. So the uniqueness check
6624 // guarantees that the path all uses of SI (outside SI's parent) are on
6625 // is disjoint from all other paths out of SI. But that information
6626 // is more expensive to compute, and the trade-off here is in favor
6627 // of compile-time. It should also be noticed that we check for a single
6628 // predecessor and not only uniqueness. This to handle the situation when
6629 // Succ and Succ1 points to the same basic block.
6630 if (Succ
->getSinglePredecessor() && dominatesAllUses(SI
, Icmp
, Succ
)) {
6632 SI
->replaceUsesOutsideBlock(SI
->getOperand(SIOpd
), SI
->getParent());
6639 /// Try to fold the comparison based on range information we can get by checking
6640 /// whether bits are known to be zero or one in the inputs.
6641 Instruction
*InstCombinerImpl::foldICmpUsingKnownBits(ICmpInst
&I
) {
6642 Value
*Op0
= I
.getOperand(0), *Op1
= I
.getOperand(1);
6643 Type
*Ty
= Op0
->getType();
6644 ICmpInst::Predicate Pred
= I
.getPredicate();
6646 // Get scalar or pointer size.
6647 unsigned BitWidth
= Ty
->isIntOrIntVectorTy()
6648 ? Ty
->getScalarSizeInBits()
6649 : DL
.getPointerTypeSizeInBits(Ty
->getScalarType());
6654 KnownBits
Op0Known(BitWidth
);
6655 KnownBits
Op1Known(BitWidth
);
6658 // Don't use dominating conditions when folding icmp using known bits. This
6659 // may convert signed into unsigned predicates in ways that other passes
6660 // (especially IndVarSimplify) may not be able to reliably undo.
6661 SimplifyQuery Q
= SQ
.getWithoutDomCondCache().getWithInstruction(&I
);
6662 if (SimplifyDemandedBits(&I
, 0, getDemandedBitsLHSMask(I
, BitWidth
),
6663 Op0Known
, /*Depth=*/0, Q
))
6666 if (SimplifyDemandedBits(&I
, 1, APInt::getAllOnes(BitWidth
), Op1Known
,
6671 if (!isa
<Constant
>(Op0
) && Op0Known
.isConstant())
6672 return new ICmpInst(
6673 Pred
, ConstantExpr::getIntegerValue(Ty
, Op0Known
.getConstant()), Op1
);
6674 if (!isa
<Constant
>(Op1
) && Op1Known
.isConstant())
6675 return new ICmpInst(
6676 Pred
, Op0
, ConstantExpr::getIntegerValue(Ty
, Op1Known
.getConstant()));
6678 if (std::optional
<bool> Res
= ICmpInst::compare(Op0Known
, Op1Known
, Pred
))
6679 return replaceInstUsesWith(I
, ConstantInt::getBool(I
.getType(), *Res
));
6681 // Given the known and unknown bits, compute a range that the LHS could be
6682 // in. Compute the Min, Max and RHS values based on the known bits. For the
6683 // EQ and NE we use unsigned values.
6684 APInt
Op0Min(BitWidth
, 0), Op0Max(BitWidth
, 0);
6685 APInt
Op1Min(BitWidth
, 0), Op1Max(BitWidth
, 0);
6687 Op0Min
= Op0Known
.getSignedMinValue();
6688 Op0Max
= Op0Known
.getSignedMaxValue();
6689 Op1Min
= Op1Known
.getSignedMinValue();
6690 Op1Max
= Op1Known
.getSignedMaxValue();
6692 Op0Min
= Op0Known
.getMinValue();
6693 Op0Max
= Op0Known
.getMaxValue();
6694 Op1Min
= Op1Known
.getMinValue();
6695 Op1Max
= Op1Known
.getMaxValue();
6698 // Don't break up a clamp pattern -- (min(max X, Y), Z) -- by replacing a
6699 // min/max canonical compare with some other compare. That could lead to
6700 // conflict with select canonicalization and infinite looping.
6701 // FIXME: This constraint may go away if min/max intrinsics are canonical.
6702 auto isMinMaxCmp
= [&](Instruction
&Cmp
) {
6703 if (!Cmp
.hasOneUse())
6706 SelectPatternFlavor SPF
= matchSelectPattern(Cmp
.user_back(), A
, B
).Flavor
;
6707 if (!SelectPatternResult::isMinOrMax(SPF
))
6709 return match(Op0
, m_MaxOrMin(m_Value(), m_Value())) ||
6710 match(Op1
, m_MaxOrMin(m_Value(), m_Value()));
6712 if (!isMinMaxCmp(I
)) {
6716 case ICmpInst::ICMP_ULT
: {
6717 if (Op1Min
== Op0Max
) // A <u B -> A != B if max(A) == min(B)
6718 return new ICmpInst(ICmpInst::ICMP_NE
, Op0
, Op1
);
6720 if (match(Op1
, m_APInt(CmpC
))) {
6721 // A <u C -> A == C-1 if min(A)+1 == C
6722 if (*CmpC
== Op0Min
+ 1)
6723 return new ICmpInst(ICmpInst::ICMP_EQ
, Op0
,
6724 ConstantInt::get(Op1
->getType(), *CmpC
- 1));
6725 // X <u C --> X == 0, if the number of zero bits in the bottom of X
6726 // exceeds the log2 of C.
6727 if (Op0Known
.countMinTrailingZeros() >= CmpC
->ceilLogBase2())
6728 return new ICmpInst(ICmpInst::ICMP_EQ
, Op0
,
6729 Constant::getNullValue(Op1
->getType()));
6733 case ICmpInst::ICMP_UGT
: {
6734 if (Op1Max
== Op0Min
) // A >u B -> A != B if min(A) == max(B)
6735 return new ICmpInst(ICmpInst::ICMP_NE
, Op0
, Op1
);
6737 if (match(Op1
, m_APInt(CmpC
))) {
6738 // A >u C -> A == C+1 if max(a)-1 == C
6739 if (*CmpC
== Op0Max
- 1)
6740 return new ICmpInst(ICmpInst::ICMP_EQ
, Op0
,
6741 ConstantInt::get(Op1
->getType(), *CmpC
+ 1));
6742 // X >u C --> X != 0, if the number of zero bits in the bottom of X
6743 // exceeds the log2 of C.
6744 if (Op0Known
.countMinTrailingZeros() >= CmpC
->getActiveBits())
6745 return new ICmpInst(ICmpInst::ICMP_NE
, Op0
,
6746 Constant::getNullValue(Op1
->getType()));
6750 case ICmpInst::ICMP_SLT
: {
6751 if (Op1Min
== Op0Max
) // A <s B -> A != B if max(A) == min(B)
6752 return new ICmpInst(ICmpInst::ICMP_NE
, Op0
, Op1
);
6754 if (match(Op1
, m_APInt(CmpC
))) {
6755 if (*CmpC
== Op0Min
+ 1) // A <s C -> A == C-1 if min(A)+1 == C
6756 return new ICmpInst(ICmpInst::ICMP_EQ
, Op0
,
6757 ConstantInt::get(Op1
->getType(), *CmpC
- 1));
6761 case ICmpInst::ICMP_SGT
: {
6762 if (Op1Max
== Op0Min
) // A >s B -> A != B if min(A) == max(B)
6763 return new ICmpInst(ICmpInst::ICMP_NE
, Op0
, Op1
);
6765 if (match(Op1
, m_APInt(CmpC
))) {
6766 if (*CmpC
== Op0Max
- 1) // A >s C -> A == C+1 if max(A)-1 == C
6767 return new ICmpInst(ICmpInst::ICMP_EQ
, Op0
,
6768 ConstantInt::get(Op1
->getType(), *CmpC
+ 1));
6775 // Based on the range information we know about the LHS, see if we can
6776 // simplify this comparison. For example, (x&4) < 8 is always true.
6780 case ICmpInst::ICMP_EQ
:
6781 case ICmpInst::ICMP_NE
: {
6782 // If all bits are known zero except for one, then we know at most one bit
6783 // is set. If the comparison is against zero, then this is a check to see if
6784 // *that* bit is set.
6785 APInt Op0KnownZeroInverted
= ~Op0Known
.Zero
;
6786 if (Op1Known
.isZero()) {
6787 // If the LHS is an AND with the same constant, look through it.
6788 Value
*LHS
= nullptr;
6790 if (!match(Op0
, m_And(m_Value(LHS
), m_APInt(LHSC
))) ||
6791 *LHSC
!= Op0KnownZeroInverted
)
6796 if (match(LHS
, m_Shl(m_Power2(C1
), m_Value(X
)))) {
6797 Type
*XTy
= X
->getType();
6798 unsigned Log2C1
= C1
->countr_zero();
6799 APInt C2
= Op0KnownZeroInverted
;
6800 APInt C2Pow2
= (C2
& ~(*C1
- 1)) + *C1
;
6801 if (C2Pow2
.isPowerOf2()) {
6802 // iff (C1 is pow2) & ((C2 & ~(C1-1)) + C1) is pow2):
6803 // ((C1 << X) & C2) == 0 -> X >= (Log2(C2+C1) - Log2(C1))
6804 // ((C1 << X) & C2) != 0 -> X < (Log2(C2+C1) - Log2(C1))
6805 unsigned Log2C2
= C2Pow2
.countr_zero();
6806 auto *CmpC
= ConstantInt::get(XTy
, Log2C2
- Log2C1
);
6808 Pred
== CmpInst::ICMP_EQ
? CmpInst::ICMP_UGE
: CmpInst::ICMP_ULT
;
6809 return new ICmpInst(NewPred
, X
, CmpC
);
6814 // Op0 eq C_Pow2 -> Op0 ne 0 if Op0 is known to be C_Pow2 or zero.
6815 if (Op1Known
.isConstant() && Op1Known
.getConstant().isPowerOf2() &&
6816 (Op0Known
& Op1Known
) == Op0Known
)
6817 return new ICmpInst(CmpInst::getInversePredicate(Pred
), Op0
,
6818 ConstantInt::getNullValue(Op1
->getType()));
6821 case ICmpInst::ICMP_SGE
:
6822 if (Op1Min
== Op0Max
) // A >=s B -> A == B if max(A) == min(B)
6823 return new ICmpInst(ICmpInst::ICMP_EQ
, Op0
, Op1
);
6825 case ICmpInst::ICMP_SLE
:
6826 if (Op1Max
== Op0Min
) // A <=s B -> A == B if min(A) == max(B)
6827 return new ICmpInst(ICmpInst::ICMP_EQ
, Op0
, Op1
);
6829 case ICmpInst::ICMP_UGE
:
6830 if (Op1Min
== Op0Max
) // A >=u B -> A == B if max(A) == min(B)
6831 return new ICmpInst(ICmpInst::ICMP_EQ
, Op0
, Op1
);
6833 case ICmpInst::ICMP_ULE
:
6834 if (Op1Max
== Op0Min
) // A <=u B -> A == B if min(A) == max(B)
6835 return new ICmpInst(ICmpInst::ICMP_EQ
, Op0
, Op1
);
6839 // Turn a signed comparison into an unsigned one if both operands are known to
6840 // have the same sign. Set samesign if possible (except for equality
6842 if ((I
.isSigned() || (I
.isUnsigned() && !I
.hasSameSign())) &&
6843 ((Op0Known
.Zero
.isNegative() && Op1Known
.Zero
.isNegative()) ||
6844 (Op0Known
.One
.isNegative() && Op1Known
.One
.isNegative()))) {
6845 I
.setPredicate(I
.getUnsignedPredicate());
6853 /// If one operand of an icmp is effectively a bool (value range of {0,1}),
6854 /// then try to reduce patterns based on that limit.
6855 Instruction
*InstCombinerImpl::foldICmpUsingBoolRange(ICmpInst
&I
) {
6859 // X must be 0 and bool must be true for "ULT":
6860 // X <u (zext i1 Y) --> (X == 0) & Y
6861 if (match(&I
, m_c_ICmp(Pred
, m_Value(X
), m_OneUse(m_ZExt(m_Value(Y
))))) &&
6862 Y
->getType()->isIntOrIntVectorTy(1) && Pred
== ICmpInst::ICMP_ULT
)
6863 return BinaryOperator::CreateAnd(Builder
.CreateIsNull(X
), Y
);
6865 // X must be 0 or bool must be true for "ULE":
6866 // X <=u (sext i1 Y) --> (X == 0) | Y
6867 if (match(&I
, m_c_ICmp(Pred
, m_Value(X
), m_OneUse(m_SExt(m_Value(Y
))))) &&
6868 Y
->getType()->isIntOrIntVectorTy(1) && Pred
== ICmpInst::ICMP_ULE
)
6869 return BinaryOperator::CreateOr(Builder
.CreateIsNull(X
), Y
);
6871 // icmp eq/ne X, (zext/sext (icmp eq/ne X, C))
6872 CmpPredicate Pred1
, Pred2
;
6875 if (match(&I
, m_c_ICmp(Pred1
, m_Value(X
),
6876 m_CombineAnd(m_Instruction(ExtI
),
6877 m_ZExtOrSExt(m_ICmp(Pred2
, m_Deferred(X
),
6879 ICmpInst::isEquality(Pred1
) && ICmpInst::isEquality(Pred2
)) {
6880 bool IsSExt
= ExtI
->getOpcode() == Instruction::SExt
;
6881 bool HasOneUse
= ExtI
->hasOneUse() && ExtI
->getOperand(0)->hasOneUse();
6882 auto CreateRangeCheck
= [&] {
6884 Builder
.CreateICmp(Pred1
, X
, Constant::getNullValue(X
->getType()));
6885 Value
*CmpV2
= Builder
.CreateICmp(
6886 Pred1
, X
, ConstantInt::getSigned(X
->getType(), IsSExt
? -1 : 1));
6887 return BinaryOperator::Create(
6888 Pred1
== ICmpInst::ICMP_EQ
? Instruction::Or
: Instruction::And
,
6892 if (Pred2
== ICmpInst::ICMP_EQ
) {
6893 // icmp eq X, (zext/sext (icmp eq X, 0)) --> false
6894 // icmp ne X, (zext/sext (icmp eq X, 0)) --> true
6895 return replaceInstUsesWith(
6896 I
, ConstantInt::getBool(I
.getType(), Pred1
== ICmpInst::ICMP_NE
));
6897 } else if (!IsSExt
|| HasOneUse
) {
6898 // icmp eq X, (zext (icmp ne X, 0)) --> X == 0 || X == 1
6899 // icmp ne X, (zext (icmp ne X, 0)) --> X != 0 && X != 1
6900 // icmp eq X, (sext (icmp ne X, 0)) --> X == 0 || X == -1
6901 // icmp ne X, (sext (icmp ne X, 0)) --> X != 0 && X == -1
6902 return CreateRangeCheck();
6904 } else if (IsSExt
? C
->isAllOnes() : C
->isOne()) {
6905 if (Pred2
== ICmpInst::ICMP_NE
) {
6906 // icmp eq X, (zext (icmp ne X, 1)) --> false
6907 // icmp ne X, (zext (icmp ne X, 1)) --> true
6908 // icmp eq X, (sext (icmp ne X, -1)) --> false
6909 // icmp ne X, (sext (icmp ne X, -1)) --> true
6910 return replaceInstUsesWith(
6911 I
, ConstantInt::getBool(I
.getType(), Pred1
== ICmpInst::ICMP_NE
));
6912 } else if (!IsSExt
|| HasOneUse
) {
6913 // icmp eq X, (zext (icmp eq X, 1)) --> X == 0 || X == 1
6914 // icmp ne X, (zext (icmp eq X, 1)) --> X != 0 && X != 1
6915 // icmp eq X, (sext (icmp eq X, -1)) --> X == 0 || X == -1
6916 // icmp ne X, (sext (icmp eq X, -1)) --> X != 0 && X == -1
6917 return CreateRangeCheck();
6920 // when C != 0 && C != 1:
6921 // icmp eq X, (zext (icmp eq X, C)) --> icmp eq X, 0
6922 // icmp eq X, (zext (icmp ne X, C)) --> icmp eq X, 1
6923 // icmp ne X, (zext (icmp eq X, C)) --> icmp ne X, 0
6924 // icmp ne X, (zext (icmp ne X, C)) --> icmp ne X, 1
6925 // when C != 0 && C != -1:
6926 // icmp eq X, (sext (icmp eq X, C)) --> icmp eq X, 0
6927 // icmp eq X, (sext (icmp ne X, C)) --> icmp eq X, -1
6928 // icmp ne X, (sext (icmp eq X, C)) --> icmp ne X, 0
6929 // icmp ne X, (sext (icmp ne X, C)) --> icmp ne X, -1
6930 return ICmpInst::Create(
6931 Instruction::ICmp
, Pred1
, X
,
6932 ConstantInt::getSigned(X
->getType(), Pred2
== ICmpInst::ICMP_NE
6941 /// If we have an icmp le or icmp ge instruction with a constant operand, turn
6942 /// it into the appropriate icmp lt or icmp gt instruction. This transform
6943 /// allows them to be folded in visitICmpInst.
6944 static ICmpInst
*canonicalizeCmpWithConstant(ICmpInst
&I
) {
6945 ICmpInst::Predicate Pred
= I
.getPredicate();
6946 if (ICmpInst::isEquality(Pred
) || !ICmpInst::isIntPredicate(Pred
) ||
6947 InstCombiner::isCanonicalPredicate(Pred
))
6950 Value
*Op0
= I
.getOperand(0);
6951 Value
*Op1
= I
.getOperand(1);
6952 auto *Op1C
= dyn_cast
<Constant
>(Op1
);
6956 auto FlippedStrictness
= getFlippedStrictnessPredicateAndConstant(Pred
, Op1C
);
6957 if (!FlippedStrictness
)
6960 return new ICmpInst(FlippedStrictness
->first
, Op0
, FlippedStrictness
->second
);
6963 /// If we have a comparison with a non-canonical predicate, if we can update
6964 /// all the users, invert the predicate and adjust all the users.
6965 CmpInst
*InstCombinerImpl::canonicalizeICmpPredicate(CmpInst
&I
) {
6966 // Is the predicate already canonical?
6967 CmpInst::Predicate Pred
= I
.getPredicate();
6968 if (InstCombiner::isCanonicalPredicate(Pred
))
6971 // Can all users be adjusted to predicate inversion?
6972 if (!InstCombiner::canFreelyInvertAllUsersOf(&I
, /*IgnoredUser=*/nullptr))
6975 // Ok, we can canonicalize comparison!
6976 // Let's first invert the comparison's predicate.
6977 I
.setPredicate(CmpInst::getInversePredicate(Pred
));
6978 I
.setName(I
.getName() + ".not");
6980 // And, adapt users.
6981 freelyInvertAllUsersOf(&I
);
6986 /// Integer compare with boolean values can always be turned into bitwise ops.
6987 static Instruction
*canonicalizeICmpBool(ICmpInst
&I
,
6988 InstCombiner::BuilderTy
&Builder
) {
6989 Value
*A
= I
.getOperand(0), *B
= I
.getOperand(1);
6990 assert(A
->getType()->isIntOrIntVectorTy(1) && "Bools only");
6992 // A boolean compared to true/false can be simplified to Op0/true/false in
6993 // 14 out of the 20 (10 predicates * 2 constants) possible combinations.
6994 // Cases not handled by InstSimplify are always 'not' of Op0.
6995 if (match(B
, m_Zero())) {
6996 switch (I
.getPredicate()) {
6997 case CmpInst::ICMP_EQ
: // A == 0 -> !A
6998 case CmpInst::ICMP_ULE
: // A <=u 0 -> !A
6999 case CmpInst::ICMP_SGE
: // A >=s 0 -> !A
7000 return BinaryOperator::CreateNot(A
);
7002 llvm_unreachable("ICmp i1 X, C not simplified as expected.");
7004 } else if (match(B
, m_One())) {
7005 switch (I
.getPredicate()) {
7006 case CmpInst::ICMP_NE
: // A != 1 -> !A
7007 case CmpInst::ICMP_ULT
: // A <u 1 -> !A
7008 case CmpInst::ICMP_SGT
: // A >s -1 -> !A
7009 return BinaryOperator::CreateNot(A
);
7011 llvm_unreachable("ICmp i1 X, C not simplified as expected.");
7015 switch (I
.getPredicate()) {
7017 llvm_unreachable("Invalid icmp instruction!");
7018 case ICmpInst::ICMP_EQ
:
7019 // icmp eq i1 A, B -> ~(A ^ B)
7020 return BinaryOperator::CreateNot(Builder
.CreateXor(A
, B
));
7022 case ICmpInst::ICMP_NE
:
7023 // icmp ne i1 A, B -> A ^ B
7024 return BinaryOperator::CreateXor(A
, B
);
7026 case ICmpInst::ICMP_UGT
:
7027 // icmp ugt -> icmp ult
7030 case ICmpInst::ICMP_ULT
:
7031 // icmp ult i1 A, B -> ~A & B
7032 return BinaryOperator::CreateAnd(Builder
.CreateNot(A
), B
);
7034 case ICmpInst::ICMP_SGT
:
7035 // icmp sgt -> icmp slt
7038 case ICmpInst::ICMP_SLT
:
7039 // icmp slt i1 A, B -> A & ~B
7040 return BinaryOperator::CreateAnd(Builder
.CreateNot(B
), A
);
7042 case ICmpInst::ICMP_UGE
:
7043 // icmp uge -> icmp ule
7046 case ICmpInst::ICMP_ULE
:
7047 // icmp ule i1 A, B -> ~A | B
7048 return BinaryOperator::CreateOr(Builder
.CreateNot(A
), B
);
7050 case ICmpInst::ICMP_SGE
:
7051 // icmp sge -> icmp sle
7054 case ICmpInst::ICMP_SLE
:
7055 // icmp sle i1 A, B -> A | ~B
7056 return BinaryOperator::CreateOr(Builder
.CreateNot(B
), A
);
7060 // Transform pattern like:
7061 // (1 << Y) u<= X or ~(-1 << Y) u< X or ((1 << Y)+(-1)) u< X
7062 // (1 << Y) u> X or ~(-1 << Y) u>= X or ((1 << Y)+(-1)) u>= X
7066 static Instruction
*foldICmpWithHighBitMask(ICmpInst
&Cmp
,
7067 InstCombiner::BuilderTy
&Builder
) {
7068 CmpPredicate Pred
, NewPred
;
7071 m_c_ICmp(Pred
, m_OneUse(m_Shl(m_One(), m_Value(Y
))), m_Value(X
)))) {
7073 case ICmpInst::ICMP_ULE
:
7074 NewPred
= ICmpInst::ICMP_NE
;
7076 case ICmpInst::ICMP_UGT
:
7077 NewPred
= ICmpInst::ICMP_EQ
;
7082 } else if (match(&Cmp
, m_c_ICmp(Pred
,
7083 m_OneUse(m_CombineOr(
7084 m_Not(m_Shl(m_AllOnes(), m_Value(Y
))),
7085 m_Add(m_Shl(m_One(), m_Value(Y
)),
7088 // The variant with 'add' is not canonical, (the variant with 'not' is)
7089 // we only get it because it has extra uses, and can't be canonicalized,
7092 case ICmpInst::ICMP_ULT
:
7093 NewPred
= ICmpInst::ICMP_NE
;
7095 case ICmpInst::ICMP_UGE
:
7096 NewPred
= ICmpInst::ICMP_EQ
;
7104 Value
*NewX
= Builder
.CreateLShr(X
, Y
, X
->getName() + ".highbits");
7105 Constant
*Zero
= Constant::getNullValue(NewX
->getType());
7106 return CmpInst::Create(Instruction::ICmp
, NewPred
, NewX
, Zero
);
7109 static Instruction
*foldVectorCmp(CmpInst
&Cmp
,
7110 InstCombiner::BuilderTy
&Builder
) {
7111 const CmpInst::Predicate Pred
= Cmp
.getPredicate();
7112 Value
*LHS
= Cmp
.getOperand(0), *RHS
= Cmp
.getOperand(1);
7115 auto createCmpReverse
= [&](CmpInst::Predicate Pred
, Value
*X
, Value
*Y
) {
7116 Value
*V
= Builder
.CreateCmp(Pred
, X
, Y
, Cmp
.getName());
7117 if (auto *I
= dyn_cast
<Instruction
>(V
))
7118 I
->copyIRFlags(&Cmp
);
7119 Module
*M
= Cmp
.getModule();
7120 Function
*F
= Intrinsic::getOrInsertDeclaration(
7121 M
, Intrinsic::vector_reverse
, V
->getType());
7122 return CallInst::Create(F
, V
);
7125 if (match(LHS
, m_VecReverse(m_Value(V1
)))) {
7126 // cmp Pred, rev(V1), rev(V2) --> rev(cmp Pred, V1, V2)
7127 if (match(RHS
, m_VecReverse(m_Value(V2
))) &&
7128 (LHS
->hasOneUse() || RHS
->hasOneUse()))
7129 return createCmpReverse(Pred
, V1
, V2
);
7131 // cmp Pred, rev(V1), RHSSplat --> rev(cmp Pred, V1, RHSSplat)
7132 if (LHS
->hasOneUse() && isSplatValue(RHS
))
7133 return createCmpReverse(Pred
, V1
, RHS
);
7135 // cmp Pred, LHSSplat, rev(V2) --> rev(cmp Pred, LHSSplat, V2)
7136 else if (isSplatValue(LHS
) && match(RHS
, m_OneUse(m_VecReverse(m_Value(V2
)))))
7137 return createCmpReverse(Pred
, LHS
, V2
);
7140 if (!match(LHS
, m_Shuffle(m_Value(V1
), m_Undef(), m_Mask(M
))))
7143 // If both arguments of the cmp are shuffles that use the same mask and
7144 // shuffle within a single vector, move the shuffle after the cmp:
7145 // cmp (shuffle V1, M), (shuffle V2, M) --> shuffle (cmp V1, V2), M
7146 Type
*V1Ty
= V1
->getType();
7147 if (match(RHS
, m_Shuffle(m_Value(V2
), m_Undef(), m_SpecificMask(M
))) &&
7148 V1Ty
== V2
->getType() && (LHS
->hasOneUse() || RHS
->hasOneUse())) {
7149 Value
*NewCmp
= Builder
.CreateCmp(Pred
, V1
, V2
);
7150 return new ShuffleVectorInst(NewCmp
, M
);
7153 // Try to canonicalize compare with splatted operand and splat constant.
7154 // TODO: We could generalize this for more than splats. See/use the code in
7155 // InstCombiner::foldVectorBinop().
7157 if (!LHS
->hasOneUse() || !match(RHS
, m_Constant(C
)))
7160 // Length-changing splats are ok, so adjust the constants as needed:
7161 // cmp (shuffle V1, M), C --> shuffle (cmp V1, C'), M
7162 Constant
*ScalarC
= C
->getSplatValue(/* AllowPoison */ true);
7164 if (ScalarC
&& match(M
, m_SplatOrPoisonMask(MaskSplatIndex
))) {
7165 // We allow poison in matching, but this transform removes it for safety.
7166 // Demanded elements analysis should be able to recover some/all of that.
7167 C
= ConstantVector::getSplat(cast
<VectorType
>(V1Ty
)->getElementCount(),
7169 SmallVector
<int, 8> NewM(M
.size(), MaskSplatIndex
);
7170 Value
*NewCmp
= Builder
.CreateCmp(Pred
, V1
, C
);
7171 return new ShuffleVectorInst(NewCmp
, NewM
);
7177 // extract(uadd.with.overflow(A, B), 0) ult A
7178 // -> extract(uadd.with.overflow(A, B), 1)
7179 static Instruction
*foldICmpOfUAddOv(ICmpInst
&I
) {
7180 CmpInst::Predicate Pred
= I
.getPredicate();
7181 Value
*Op0
= I
.getOperand(0), *Op1
= I
.getOperand(1);
7185 auto UAddOvResultPat
= m_ExtractValue
<0>(
7186 m_Intrinsic
<Intrinsic::uadd_with_overflow
>(m_Value(A
), m_Value(B
)));
7187 if (match(Op0
, UAddOvResultPat
) &&
7188 ((Pred
== ICmpInst::ICMP_ULT
&& (Op1
== A
|| Op1
== B
)) ||
7189 (Pred
== ICmpInst::ICMP_EQ
&& match(Op1
, m_ZeroInt()) &&
7190 (match(A
, m_One()) || match(B
, m_One()))) ||
7191 (Pred
== ICmpInst::ICMP_NE
&& match(Op1
, m_AllOnes()) &&
7192 (match(A
, m_AllOnes()) || match(B
, m_AllOnes())))))
7193 // extract(uadd.with.overflow(A, B), 0) < A
7194 // extract(uadd.with.overflow(A, 1), 0) == 0
7195 // extract(uadd.with.overflow(A, -1), 0) != -1
7196 UAddOv
= cast
<ExtractValueInst
>(Op0
)->getAggregateOperand();
7197 else if (match(Op1
, UAddOvResultPat
) && Pred
== ICmpInst::ICMP_UGT
&&
7198 (Op0
== A
|| Op0
== B
))
7199 // A > extract(uadd.with.overflow(A, B), 0)
7200 UAddOv
= cast
<ExtractValueInst
>(Op1
)->getAggregateOperand();
7204 return ExtractValueInst::Create(UAddOv
, 1);
7207 static Instruction
*foldICmpInvariantGroup(ICmpInst
&I
) {
7208 if (!I
.getOperand(0)->getType()->isPointerTy() ||
7209 NullPointerIsDefined(
7210 I
.getParent()->getParent(),
7211 I
.getOperand(0)->getType()->getPointerAddressSpace())) {
7215 if (match(I
.getOperand(0), m_Instruction(Op
)) &&
7216 match(I
.getOperand(1), m_Zero()) &&
7217 Op
->isLaunderOrStripInvariantGroup()) {
7218 return ICmpInst::Create(Instruction::ICmp
, I
.getPredicate(),
7219 Op
->getOperand(0), I
.getOperand(1));
7224 /// This function folds patterns produced by lowering of reduce idioms, such as
7225 /// llvm.vector.reduce.and which are lowered into instruction chains. This code
7226 /// attempts to generate fewer number of scalar comparisons instead of vector
7227 /// comparisons when possible.
7228 static Instruction
*foldReductionIdiom(ICmpInst
&I
,
7229 InstCombiner::BuilderTy
&Builder
,
7230 const DataLayout
&DL
) {
7231 if (I
.getType()->isVectorTy())
7233 CmpPredicate OuterPred
, InnerPred
;
7236 // Match lowering of @llvm.vector.reduce.and. Turn
7237 /// %vec_ne = icmp ne <8 x i8> %lhs, %rhs
7238 /// %scalar_ne = bitcast <8 x i1> %vec_ne to i8
7239 /// %res = icmp <pred> i8 %scalar_ne, 0
7243 /// %lhs.scalar = bitcast <8 x i8> %lhs to i64
7244 /// %rhs.scalar = bitcast <8 x i8> %rhs to i64
7245 /// %res = icmp <pred> i64 %lhs.scalar, %rhs.scalar
7247 /// for <pred> in {ne, eq}.
7248 if (!match(&I
, m_ICmp(OuterPred
,
7249 m_OneUse(m_BitCast(m_OneUse(
7250 m_ICmp(InnerPred
, m_Value(LHS
), m_Value(RHS
))))),
7253 auto *LHSTy
= dyn_cast
<FixedVectorType
>(LHS
->getType());
7254 if (!LHSTy
|| !LHSTy
->getElementType()->isIntegerTy())
7257 LHSTy
->getNumElements() * LHSTy
->getElementType()->getIntegerBitWidth();
7258 // TODO: Relax this to "not wider than max legal integer type"?
7259 if (!DL
.isLegalInteger(NumBits
))
7262 if (ICmpInst::isEquality(OuterPred
) && InnerPred
== ICmpInst::ICMP_NE
) {
7263 auto *ScalarTy
= Builder
.getIntNTy(NumBits
);
7264 LHS
= Builder
.CreateBitCast(LHS
, ScalarTy
, LHS
->getName() + ".scalar");
7265 RHS
= Builder
.CreateBitCast(RHS
, ScalarTy
, RHS
->getName() + ".scalar");
7266 return ICmpInst::Create(Instruction::ICmp
, OuterPred
, LHS
, RHS
,
7273 // This helper will be called with icmp operands in both orders.
7274 Instruction
*InstCombinerImpl::foldICmpCommutative(CmpPredicate Pred
,
7275 Value
*Op0
, Value
*Op1
,
7277 // Try to optimize 'icmp GEP, P' or 'icmp P, GEP'.
7278 if (auto *GEP
= dyn_cast
<GEPOperator
>(Op0
))
7279 if (Instruction
*NI
= foldGEPICmp(GEP
, Op1
, Pred
, CxtI
))
7282 if (auto *SI
= dyn_cast
<SelectInst
>(Op0
))
7283 if (Instruction
*NI
= foldSelectICmp(Pred
, SI
, Op1
, CxtI
))
7286 if (auto *MinMax
= dyn_cast
<MinMaxIntrinsic
>(Op0
))
7287 if (Instruction
*Res
= foldICmpWithMinMax(CxtI
, MinMax
, Op1
, Pred
))
7294 if (match(Op0
, m_Add(m_Value(X
), m_APInt(C
))) && Op1
== X
)
7295 return foldICmpAddOpConst(X
, *C
, Pred
);
7298 // abs(X) >= X --> true
7299 // abs(X) u<= X --> true
7300 // abs(X) < X --> false
7301 // abs(X) u> X --> false
7302 // abs(X) u>= X --> IsIntMinPosion ? `X > -1`: `X u<= INTMIN`
7303 // abs(X) <= X --> IsIntMinPosion ? `X > -1`: `X u<= INTMIN`
7304 // abs(X) == X --> IsIntMinPosion ? `X > -1`: `X u<= INTMIN`
7305 // abs(X) u< X --> IsIntMinPosion ? `X < 0` : `X > INTMIN`
7306 // abs(X) > X --> IsIntMinPosion ? `X < 0` : `X > INTMIN`
7307 // abs(X) != X --> IsIntMinPosion ? `X < 0` : `X > INTMIN`
7311 if (match(Op0
, m_Intrinsic
<Intrinsic::abs
>(m_Value(X
), m_Constant(C
))) &&
7312 match(Op1
, m_Specific(X
))) {
7313 Value
*NullValue
= Constant::getNullValue(X
->getType());
7314 Value
*AllOnesValue
= Constant::getAllOnesValue(X
->getType());
7316 APInt::getSignedMinValue(X
->getType()->getScalarSizeInBits());
7317 bool IsIntMinPosion
= C
->isAllOnesValue();
7319 case CmpInst::ICMP_ULE
:
7320 case CmpInst::ICMP_SGE
:
7321 return replaceInstUsesWith(CxtI
, ConstantInt::getTrue(CxtI
.getType()));
7322 case CmpInst::ICMP_UGT
:
7323 case CmpInst::ICMP_SLT
:
7324 return replaceInstUsesWith(CxtI
, ConstantInt::getFalse(CxtI
.getType()));
7325 case CmpInst::ICMP_UGE
:
7326 case CmpInst::ICMP_SLE
:
7327 case CmpInst::ICMP_EQ
: {
7328 return replaceInstUsesWith(
7329 CxtI
, IsIntMinPosion
7330 ? Builder
.CreateICmpSGT(X
, AllOnesValue
)
7331 : Builder
.CreateICmpULT(
7332 X
, ConstantInt::get(X
->getType(), SMin
+ 1)));
7334 case CmpInst::ICMP_ULT
:
7335 case CmpInst::ICMP_SGT
:
7336 case CmpInst::ICMP_NE
: {
7337 return replaceInstUsesWith(
7338 CxtI
, IsIntMinPosion
7339 ? Builder
.CreateICmpSLT(X
, NullValue
)
7340 : Builder
.CreateICmpUGT(
7341 X
, ConstantInt::get(X
->getType(), SMin
)));
7344 llvm_unreachable("Invalid predicate!");
7349 const SimplifyQuery Q
= SQ
.getWithInstruction(&CxtI
);
7350 if (Value
*V
= foldICmpWithLowBitMaskedVal(Pred
, Op0
, Op1
, Q
, *this))
7351 return replaceInstUsesWith(CxtI
, V
);
7353 // Folding (X / Y) pred X => X swap(pred) 0 for constant Y other than 0 or 1
7354 auto CheckUGT1
= [](const APInt
&Divisor
) { return Divisor
.ugt(1); };
7356 if (match(Op0
, m_UDiv(m_Specific(Op1
), m_CheckedInt(CheckUGT1
)))) {
7357 return new ICmpInst(ICmpInst::getSwappedPredicate(Pred
), Op1
,
7358 Constant::getNullValue(Op1
->getType()));
7361 if (!ICmpInst::isUnsigned(Pred
) &&
7362 match(Op0
, m_SDiv(m_Specific(Op1
), m_CheckedInt(CheckUGT1
)))) {
7363 return new ICmpInst(ICmpInst::getSwappedPredicate(Pred
), Op1
,
7364 Constant::getNullValue(Op1
->getType()));
7368 // Another case of this fold is (X >> Y) pred X => X swap(pred) 0 if Y != 0
7369 auto CheckNE0
= [](const APInt
&Shift
) { return !Shift
.isZero(); };
7371 if (match(Op0
, m_LShr(m_Specific(Op1
), m_CheckedInt(CheckNE0
)))) {
7372 return new ICmpInst(ICmpInst::getSwappedPredicate(Pred
), Op1
,
7373 Constant::getNullValue(Op1
->getType()));
7376 if ((Pred
== CmpInst::ICMP_SLT
|| Pred
== CmpInst::ICMP_SGE
) &&
7377 match(Op0
, m_AShr(m_Specific(Op1
), m_CheckedInt(CheckNE0
)))) {
7378 return new ICmpInst(ICmpInst::getSwappedPredicate(Pred
), Op1
,
7379 Constant::getNullValue(Op1
->getType()));
7386 Instruction
*InstCombinerImpl::visitICmpInst(ICmpInst
&I
) {
7387 bool Changed
= false;
7388 const SimplifyQuery Q
= SQ
.getWithInstruction(&I
);
7389 Value
*Op0
= I
.getOperand(0), *Op1
= I
.getOperand(1);
7390 unsigned Op0Cplxity
= getComplexity(Op0
);
7391 unsigned Op1Cplxity
= getComplexity(Op1
);
7393 /// Orders the operands of the compare so that they are listed from most
7394 /// complex to least complex. This puts constants before unary operators,
7395 /// before binary operators.
7396 if (Op0Cplxity
< Op1Cplxity
) {
7398 std::swap(Op0
, Op1
);
7402 if (Value
*V
= simplifyICmpInst(I
.getCmpPredicate(), Op0
, Op1
, Q
))
7403 return replaceInstUsesWith(I
, V
);
7405 // Comparing -val or val with non-zero is the same as just comparing val
7406 // ie, abs(val) != 0 -> val != 0
7407 if (I
.getPredicate() == ICmpInst::ICMP_NE
&& match(Op1
, m_Zero())) {
7408 Value
*Cond
, *SelectTrue
, *SelectFalse
;
7409 if (match(Op0
, m_Select(m_Value(Cond
), m_Value(SelectTrue
),
7410 m_Value(SelectFalse
)))) {
7411 if (Value
*V
= dyn_castNegVal(SelectTrue
)) {
7412 if (V
== SelectFalse
)
7413 return CmpInst::Create(Instruction::ICmp
, I
.getPredicate(), V
, Op1
);
7414 } else if (Value
*V
= dyn_castNegVal(SelectFalse
)) {
7415 if (V
== SelectTrue
)
7416 return CmpInst::Create(Instruction::ICmp
, I
.getPredicate(), V
, Op1
);
7421 if (Op0
->getType()->isIntOrIntVectorTy(1))
7422 if (Instruction
*Res
= canonicalizeICmpBool(I
, Builder
))
7425 if (Instruction
*Res
= canonicalizeCmpWithConstant(I
))
7428 if (Instruction
*Res
= canonicalizeICmpPredicate(I
))
7431 if (Instruction
*Res
= foldICmpWithConstant(I
))
7434 if (Instruction
*Res
= foldICmpWithDominatingICmp(I
))
7437 if (Instruction
*Res
= foldICmpUsingBoolRange(I
))
7440 if (Instruction
*Res
= foldICmpUsingKnownBits(I
))
7443 if (Instruction
*Res
= foldICmpTruncWithTruncOrExt(I
, Q
))
7446 // Test if the ICmpInst instruction is used exclusively by a select as
7447 // part of a minimum or maximum operation. If so, refrain from doing
7448 // any other folding. This helps out other analyses which understand
7449 // non-obfuscated minimum and maximum idioms, such as ScalarEvolution
7450 // and CodeGen. And in this case, at least one of the comparison
7451 // operands has at least one user besides the compare (the select),
7452 // which would often largely negate the benefit of folding anyway.
7454 // Do the same for the other patterns recognized by matchSelectPattern.
7456 if (SelectInst
*SI
= dyn_cast
<SelectInst
>(I
.user_back())) {
7458 SelectPatternResult SPR
= matchSelectPattern(SI
, A
, B
);
7459 if (SPR
.Flavor
!= SPF_UNKNOWN
)
7463 // Do this after checking for min/max to prevent infinite looping.
7464 if (Instruction
*Res
= foldICmpWithZero(I
))
7467 // FIXME: We only do this after checking for min/max to prevent infinite
7468 // looping caused by a reverse canonicalization of these patterns for min/max.
7469 // FIXME: The organization of folds is a mess. These would naturally go into
7470 // canonicalizeCmpWithConstant(), but we can't move all of the above folds
7471 // down here after the min/max restriction.
7472 ICmpInst::Predicate Pred
= I
.getPredicate();
7474 if (match(Op1
, m_APInt(C
))) {
7475 // For i32: x >u 2147483647 -> x <s 0 -> true if sign bit set
7476 if (Pred
== ICmpInst::ICMP_UGT
&& C
->isMaxSignedValue()) {
7477 Constant
*Zero
= Constant::getNullValue(Op0
->getType());
7478 return new ICmpInst(ICmpInst::ICMP_SLT
, Op0
, Zero
);
7481 // For i32: x <u 2147483648 -> x >s -1 -> true if sign bit clear
7482 if (Pred
== ICmpInst::ICMP_ULT
&& C
->isMinSignedValue()) {
7483 Constant
*AllOnes
= Constant::getAllOnesValue(Op0
->getType());
7484 return new ICmpInst(ICmpInst::ICMP_SGT
, Op0
, AllOnes
);
7488 // The folds in here may rely on wrapping flags and special constants, so
7489 // they can break up min/max idioms in some cases but not seemingly similar
7491 // FIXME: It may be possible to enhance select folding to make this
7492 // unnecessary. It may also be moot if we canonicalize to min/max
7494 if (Instruction
*Res
= foldICmpBinOp(I
, Q
))
7497 if (Instruction
*Res
= foldICmpInstWithConstant(I
))
7500 // Try to match comparison as a sign bit test. Intentionally do this after
7501 // foldICmpInstWithConstant() to potentially let other folds to happen first.
7502 if (Instruction
*New
= foldSignBitTest(I
))
7505 if (Instruction
*Res
= foldICmpInstWithConstantNotInt(I
))
7508 if (Instruction
*Res
= foldICmpCommutative(I
.getCmpPredicate(), Op0
, Op1
, I
))
7510 if (Instruction
*Res
=
7511 foldICmpCommutative(I
.getSwappedCmpPredicate(), Op1
, Op0
, I
))
7514 if (I
.isCommutative()) {
7515 if (auto Pair
= matchSymmetricPair(I
.getOperand(0), I
.getOperand(1))) {
7516 replaceOperand(I
, 0, Pair
->first
);
7517 replaceOperand(I
, 1, Pair
->second
);
7522 // In case of a comparison with two select instructions having the same
7523 // condition, check whether one of the resulting branches can be simplified.
7524 // If so, just compare the other branch and select the appropriate result.
7526 // %tmp1 = select i1 %cmp, i32 %y, i32 %x
7527 // %tmp2 = select i1 %cmp, i32 %z, i32 %x
7528 // %cmp2 = icmp slt i32 %tmp2, %tmp1
7529 // The icmp will result false for the false value of selects and the result
7530 // will depend upon the comparison of true values of selects if %cmp is
7531 // true. Thus, transform this into:
7532 // %cmp = icmp slt i32 %y, %z
7533 // %sel = select i1 %cond, i1 %cmp, i1 false
7534 // This handles similar cases to transform.
7536 Value
*Cond
, *A
, *B
, *C
, *D
;
7537 if (match(Op0
, m_Select(m_Value(Cond
), m_Value(A
), m_Value(B
))) &&
7538 match(Op1
, m_Select(m_Specific(Cond
), m_Value(C
), m_Value(D
))) &&
7539 (Op0
->hasOneUse() || Op1
->hasOneUse())) {
7540 // Check whether comparison of TrueValues can be simplified
7541 if (Value
*Res
= simplifyICmpInst(Pred
, A
, C
, SQ
)) {
7542 Value
*NewICMP
= Builder
.CreateICmp(Pred
, B
, D
);
7543 return SelectInst::Create(Cond
, Res
, NewICMP
);
7545 // Check whether comparison of FalseValues can be simplified
7546 if (Value
*Res
= simplifyICmpInst(Pred
, B
, D
, SQ
)) {
7547 Value
*NewICMP
= Builder
.CreateICmp(Pred
, A
, C
);
7548 return SelectInst::Create(Cond
, NewICMP
, Res
);
7553 // Try to optimize equality comparisons against alloca-based pointers.
7554 if (Op0
->getType()->isPointerTy() && I
.isEquality()) {
7555 assert(Op1
->getType()->isPointerTy() &&
7556 "Comparing pointer with non-pointer?");
7557 if (auto *Alloca
= dyn_cast
<AllocaInst
>(getUnderlyingObject(Op0
)))
7558 if (foldAllocaCmp(Alloca
))
7560 if (auto *Alloca
= dyn_cast
<AllocaInst
>(getUnderlyingObject(Op1
)))
7561 if (foldAllocaCmp(Alloca
))
7565 if (Instruction
*Res
= foldICmpBitCast(I
))
7568 // TODO: Hoist this above the min/max bailout.
7569 if (Instruction
*R
= foldICmpWithCastOp(I
))
7574 // Transform (X & ~Y) == 0 --> (X & Y) != 0
7575 // and (X & ~Y) != 0 --> (X & Y) == 0
7576 // if A is a power of 2.
7577 if (match(Op0
, m_And(m_Value(X
), m_Not(m_Value(Y
)))) &&
7578 match(Op1
, m_Zero()) && isKnownToBeAPowerOfTwo(X
, false, 0, &I
) &&
7580 return new ICmpInst(I
.getInversePredicate(), Builder
.CreateAnd(X
, Y
),
7583 // Op0 pred Op1 -> ~Op1 pred ~Op0, if this allows us to drop an instruction.
7584 if (Op0
->getType()->isIntOrIntVectorTy()) {
7585 bool ConsumesOp0
, ConsumesOp1
;
7586 if (isFreeToInvert(Op0
, Op0
->hasOneUse(), ConsumesOp0
) &&
7587 isFreeToInvert(Op1
, Op1
->hasOneUse(), ConsumesOp1
) &&
7588 (ConsumesOp0
|| ConsumesOp1
)) {
7589 Value
*InvOp0
= getFreelyInverted(Op0
, Op0
->hasOneUse(), &Builder
);
7590 Value
*InvOp1
= getFreelyInverted(Op1
, Op1
->hasOneUse(), &Builder
);
7591 assert(InvOp0
&& InvOp1
&&
7592 "Mismatch between isFreeToInvert and getFreelyInverted");
7593 return new ICmpInst(I
.getSwappedPredicate(), InvOp0
, InvOp1
);
7597 Instruction
*AddI
= nullptr;
7598 if (match(&I
, m_UAddWithOverflow(m_Value(X
), m_Value(Y
),
7599 m_Instruction(AddI
))) &&
7600 isa
<IntegerType
>(X
->getType())) {
7603 // m_UAddWithOverflow can match patterns that do not include an explicit
7604 // "add" instruction, so check the opcode of the matched op.
7605 if (AddI
->getOpcode() == Instruction::Add
&&
7606 OptimizeOverflowCheck(Instruction::Add
, /*Signed*/ false, X
, Y
, *AddI
,
7607 Result
, Overflow
)) {
7608 replaceInstUsesWith(*AddI
, Result
);
7609 eraseInstFromFunction(*AddI
);
7610 return replaceInstUsesWith(I
, Overflow
);
7614 // (zext X) * (zext Y) --> llvm.umul.with.overflow.
7615 if (match(Op0
, m_NUWMul(m_ZExt(m_Value(X
)), m_ZExt(m_Value(Y
)))) &&
7616 match(Op1
, m_APInt(C
))) {
7617 if (Instruction
*R
= processUMulZExtIdiom(I
, Op0
, C
, *this))
7621 // Signbit test folds
7622 // Fold (X u>> BitWidth - 1 Pred ZExt(i1)) --> X s< 0 Pred i1
7623 // Fold (X s>> BitWidth - 1 Pred SExt(i1)) --> X s< 0 Pred i1
7625 if ((I
.isUnsigned() || I
.isEquality()) &&
7627 m_CombineAnd(m_Instruction(ExtI
), m_ZExtOrSExt(m_Value(Y
)))) &&
7628 Y
->getType()->getScalarSizeInBits() == 1 &&
7629 (Op0
->hasOneUse() || Op1
->hasOneUse())) {
7630 unsigned OpWidth
= Op0
->getType()->getScalarSizeInBits();
7631 Instruction
*ShiftI
;
7632 if (match(Op0
, m_CombineAnd(m_Instruction(ShiftI
),
7633 m_Shr(m_Value(X
), m_SpecificIntAllowPoison(
7635 unsigned ExtOpc
= ExtI
->getOpcode();
7636 unsigned ShiftOpc
= ShiftI
->getOpcode();
7637 if ((ExtOpc
== Instruction::ZExt
&& ShiftOpc
== Instruction::LShr
) ||
7638 (ExtOpc
== Instruction::SExt
&& ShiftOpc
== Instruction::AShr
)) {
7640 Builder
.CreateICmpSLT(X
, Constant::getNullValue(X
->getType()));
7641 Value
*Cmp
= Builder
.CreateICmp(Pred
, SLTZero
, Y
, I
.getName());
7642 return replaceInstUsesWith(I
, Cmp
);
7648 if (Instruction
*Res
= foldICmpEquality(I
))
7651 if (Instruction
*Res
= foldICmpPow2Test(I
, Builder
))
7654 if (Instruction
*Res
= foldICmpOfUAddOv(I
))
7657 // The 'cmpxchg' instruction returns an aggregate containing the old value and
7658 // an i1 which indicates whether or not we successfully did the swap.
7660 // Replace comparisons between the old value and the expected value with the
7661 // indicator that 'cmpxchg' returns.
7663 // N.B. This transform is only valid when the 'cmpxchg' is not permitted to
7664 // spuriously fail. In those cases, the old value may equal the expected
7665 // value but it is possible for the swap to not occur.
7666 if (I
.getPredicate() == ICmpInst::ICMP_EQ
)
7667 if (auto *EVI
= dyn_cast
<ExtractValueInst
>(Op0
))
7668 if (auto *ACXI
= dyn_cast
<AtomicCmpXchgInst
>(EVI
->getAggregateOperand()))
7669 if (EVI
->getIndices()[0] == 0 && ACXI
->getCompareOperand() == Op1
&&
7671 return ExtractValueInst::Create(ACXI
, 1);
7673 if (Instruction
*Res
= foldICmpWithHighBitMask(I
, Builder
))
7676 if (I
.getType()->isVectorTy())
7677 if (Instruction
*Res
= foldVectorCmp(I
, Builder
))
7680 if (Instruction
*Res
= foldICmpInvariantGroup(I
))
7683 if (Instruction
*Res
= foldReductionIdiom(I
, Builder
, DL
))
7688 const APInt
*C1
, *C2
;
7689 ICmpInst::Predicate Pred
= I
.getPredicate();
7690 if (ICmpInst::isEquality(Pred
)) {
7691 // sext(a) & c1 == c2 --> a & c3 == trunc(c2)
7692 // sext(a) & c1 != c2 --> a & c3 != trunc(c2)
7693 if (match(Op0
, m_And(m_SExt(m_Value(A
)), m_APInt(C1
))) &&
7694 match(Op1
, m_APInt(C2
))) {
7695 Type
*InputTy
= A
->getType();
7696 unsigned InputBitWidth
= InputTy
->getScalarSizeInBits();
7697 // c2 must be non-negative at the bitwidth of a.
7698 if (C2
->getActiveBits() < InputBitWidth
) {
7699 APInt TruncC1
= C1
->trunc(InputBitWidth
);
7700 // Check if there are 1s in C1 high bits of size InputBitWidth.
7701 if (C1
->uge(APInt::getOneBitSet(C1
->getBitWidth(), InputBitWidth
)))
7702 TruncC1
.setBit(InputBitWidth
- 1);
7703 Value
*AndInst
= Builder
.CreateAnd(A
, TruncC1
);
7704 return new ICmpInst(
7706 ConstantInt::get(InputTy
, C2
->trunc(InputBitWidth
)));
7712 return Changed
? &I
: nullptr;
7715 /// Fold fcmp ([us]itofp x, cst) if possible.
7716 Instruction
*InstCombinerImpl::foldFCmpIntToFPConst(FCmpInst
&I
,
7720 if (!match(RHSC
, m_APFloat(RHS
)))
7723 // Get the width of the mantissa. We don't want to hack on conversions that
7724 // might lose information from the integer, e.g. "i64 -> float"
7725 int MantissaWidth
= LHSI
->getType()->getFPMantissaWidth();
7726 if (MantissaWidth
== -1)
7727 return nullptr; // Unknown.
7729 Type
*IntTy
= LHSI
->getOperand(0)->getType();
7730 unsigned IntWidth
= IntTy
->getScalarSizeInBits();
7731 bool LHSUnsigned
= isa
<UIToFPInst
>(LHSI
);
7733 if (I
.isEquality()) {
7734 FCmpInst::Predicate P
= I
.getPredicate();
7735 bool IsExact
= false;
7736 APSInt
RHSCvt(IntWidth
, LHSUnsigned
);
7737 RHS
->convertToInteger(RHSCvt
, APFloat::rmNearestTiesToEven
, &IsExact
);
7739 // If the floating point constant isn't an integer value, we know if we will
7740 // ever compare equal / not equal to it.
7742 // TODO: Can never be -0.0 and other non-representable values
7743 APFloat
RHSRoundInt(*RHS
);
7744 RHSRoundInt
.roundToIntegral(APFloat::rmNearestTiesToEven
);
7745 if (*RHS
!= RHSRoundInt
) {
7746 if (P
== FCmpInst::FCMP_OEQ
|| P
== FCmpInst::FCMP_UEQ
)
7747 return replaceInstUsesWith(I
, ConstantInt::getFalse(I
.getType()));
7749 assert(P
== FCmpInst::FCMP_ONE
|| P
== FCmpInst::FCMP_UNE
);
7750 return replaceInstUsesWith(I
, ConstantInt::getTrue(I
.getType()));
7754 // TODO: If the constant is exactly representable, is it always OK to do
7755 // equality compares as integer?
7758 // Check to see that the input is converted from an integer type that is small
7759 // enough that preserves all bits. TODO: check here for "known" sign bits.
7760 // This would allow us to handle (fptosi (x >>s 62) to float) if x is i64 f.e.
7762 // Following test does NOT adjust IntWidth downwards for signed inputs,
7763 // because the most negative value still requires all the mantissa bits
7764 // to distinguish it from one less than that value.
7765 if ((int)IntWidth
> MantissaWidth
) {
7766 // Conversion would lose accuracy. Check if loss can impact comparison.
7767 int Exp
= ilogb(*RHS
);
7768 if (Exp
== APFloat::IEK_Inf
) {
7769 int MaxExponent
= ilogb(APFloat::getLargest(RHS
->getSemantics()));
7770 if (MaxExponent
< (int)IntWidth
- !LHSUnsigned
)
7771 // Conversion could create infinity.
7774 // Note that if RHS is zero or NaN, then Exp is negative
7775 // and first condition is trivially false.
7776 if (MantissaWidth
<= Exp
&& Exp
<= (int)IntWidth
- !LHSUnsigned
)
7777 // Conversion could affect comparison.
7782 // Otherwise, we can potentially simplify the comparison. We know that it
7783 // will always come through as an integer value and we know the constant is
7784 // not a NAN (it would have been previously simplified).
7785 assert(!RHS
->isNaN() && "NaN comparison not already folded!");
7787 ICmpInst::Predicate Pred
;
7788 switch (I
.getPredicate()) {
7790 llvm_unreachable("Unexpected predicate!");
7791 case FCmpInst::FCMP_UEQ
:
7792 case FCmpInst::FCMP_OEQ
:
7793 Pred
= ICmpInst::ICMP_EQ
;
7795 case FCmpInst::FCMP_UGT
:
7796 case FCmpInst::FCMP_OGT
:
7797 Pred
= LHSUnsigned
? ICmpInst::ICMP_UGT
: ICmpInst::ICMP_SGT
;
7799 case FCmpInst::FCMP_UGE
:
7800 case FCmpInst::FCMP_OGE
:
7801 Pred
= LHSUnsigned
? ICmpInst::ICMP_UGE
: ICmpInst::ICMP_SGE
;
7803 case FCmpInst::FCMP_ULT
:
7804 case FCmpInst::FCMP_OLT
:
7805 Pred
= LHSUnsigned
? ICmpInst::ICMP_ULT
: ICmpInst::ICMP_SLT
;
7807 case FCmpInst::FCMP_ULE
:
7808 case FCmpInst::FCMP_OLE
:
7809 Pred
= LHSUnsigned
? ICmpInst::ICMP_ULE
: ICmpInst::ICMP_SLE
;
7811 case FCmpInst::FCMP_UNE
:
7812 case FCmpInst::FCMP_ONE
:
7813 Pred
= ICmpInst::ICMP_NE
;
7815 case FCmpInst::FCMP_ORD
:
7816 return replaceInstUsesWith(I
, ConstantInt::getTrue(I
.getType()));
7817 case FCmpInst::FCMP_UNO
:
7818 return replaceInstUsesWith(I
, ConstantInt::getFalse(I
.getType()));
7821 // Now we know that the APFloat is a normal number, zero or inf.
7823 // See if the FP constant is too large for the integer. For example,
7824 // comparing an i8 to 300.0.
7826 // If the RHS value is > SignedMax, fold the comparison. This handles +INF
7827 // and large values.
7828 APFloat
SMax(RHS
->getSemantics());
7829 SMax
.convertFromAPInt(APInt::getSignedMaxValue(IntWidth
), true,
7830 APFloat::rmNearestTiesToEven
);
7831 if (SMax
< *RHS
) { // smax < 13123.0
7832 if (Pred
== ICmpInst::ICMP_NE
|| Pred
== ICmpInst::ICMP_SLT
||
7833 Pred
== ICmpInst::ICMP_SLE
)
7834 return replaceInstUsesWith(I
, ConstantInt::getTrue(I
.getType()));
7835 return replaceInstUsesWith(I
, ConstantInt::getFalse(I
.getType()));
7838 // If the RHS value is > UnsignedMax, fold the comparison. This handles
7839 // +INF and large values.
7840 APFloat
UMax(RHS
->getSemantics());
7841 UMax
.convertFromAPInt(APInt::getMaxValue(IntWidth
), false,
7842 APFloat::rmNearestTiesToEven
);
7843 if (UMax
< *RHS
) { // umax < 13123.0
7844 if (Pred
== ICmpInst::ICMP_NE
|| Pred
== ICmpInst::ICMP_ULT
||
7845 Pred
== ICmpInst::ICMP_ULE
)
7846 return replaceInstUsesWith(I
, ConstantInt::getTrue(I
.getType()));
7847 return replaceInstUsesWith(I
, ConstantInt::getFalse(I
.getType()));
7852 // See if the RHS value is < SignedMin.
7853 APFloat
SMin(RHS
->getSemantics());
7854 SMin
.convertFromAPInt(APInt::getSignedMinValue(IntWidth
), true,
7855 APFloat::rmNearestTiesToEven
);
7856 if (SMin
> *RHS
) { // smin > 12312.0
7857 if (Pred
== ICmpInst::ICMP_NE
|| Pred
== ICmpInst::ICMP_SGT
||
7858 Pred
== ICmpInst::ICMP_SGE
)
7859 return replaceInstUsesWith(I
, ConstantInt::getTrue(I
.getType()));
7860 return replaceInstUsesWith(I
, ConstantInt::getFalse(I
.getType()));
7863 // See if the RHS value is < UnsignedMin.
7864 APFloat
UMin(RHS
->getSemantics());
7865 UMin
.convertFromAPInt(APInt::getMinValue(IntWidth
), false,
7866 APFloat::rmNearestTiesToEven
);
7867 if (UMin
> *RHS
) { // umin > 12312.0
7868 if (Pred
== ICmpInst::ICMP_NE
|| Pred
== ICmpInst::ICMP_UGT
||
7869 Pred
== ICmpInst::ICMP_UGE
)
7870 return replaceInstUsesWith(I
, ConstantInt::getTrue(I
.getType()));
7871 return replaceInstUsesWith(I
, ConstantInt::getFalse(I
.getType()));
7875 // Okay, now we know that the FP constant fits in the range [SMIN, SMAX] or
7876 // [0, UMAX], but it may still be fractional. Check whether this is the case
7877 // using the IsExact flag.
7878 // Don't do this for zero, because -0.0 is not fractional.
7879 APSInt
RHSInt(IntWidth
, LHSUnsigned
);
7881 RHS
->convertToInteger(RHSInt
, APFloat::rmTowardZero
, &IsExact
);
7882 if (!RHS
->isZero()) {
7884 // If we had a comparison against a fractional value, we have to adjust
7885 // the compare predicate and sometimes the value. RHSC is rounded towards
7886 // zero at this point.
7889 llvm_unreachable("Unexpected integer comparison!");
7890 case ICmpInst::ICMP_NE
: // (float)int != 4.4 --> true
7891 return replaceInstUsesWith(I
, ConstantInt::getTrue(I
.getType()));
7892 case ICmpInst::ICMP_EQ
: // (float)int == 4.4 --> false
7893 return replaceInstUsesWith(I
, ConstantInt::getFalse(I
.getType()));
7894 case ICmpInst::ICMP_ULE
:
7895 // (float)int <= 4.4 --> int <= 4
7896 // (float)int <= -4.4 --> false
7897 if (RHS
->isNegative())
7898 return replaceInstUsesWith(I
, ConstantInt::getFalse(I
.getType()));
7900 case ICmpInst::ICMP_SLE
:
7901 // (float)int <= 4.4 --> int <= 4
7902 // (float)int <= -4.4 --> int < -4
7903 if (RHS
->isNegative())
7904 Pred
= ICmpInst::ICMP_SLT
;
7906 case ICmpInst::ICMP_ULT
:
7907 // (float)int < -4.4 --> false
7908 // (float)int < 4.4 --> int <= 4
7909 if (RHS
->isNegative())
7910 return replaceInstUsesWith(I
, ConstantInt::getFalse(I
.getType()));
7911 Pred
= ICmpInst::ICMP_ULE
;
7913 case ICmpInst::ICMP_SLT
:
7914 // (float)int < -4.4 --> int < -4
7915 // (float)int < 4.4 --> int <= 4
7916 if (!RHS
->isNegative())
7917 Pred
= ICmpInst::ICMP_SLE
;
7919 case ICmpInst::ICMP_UGT
:
7920 // (float)int > 4.4 --> int > 4
7921 // (float)int > -4.4 --> true
7922 if (RHS
->isNegative())
7923 return replaceInstUsesWith(I
, ConstantInt::getTrue(I
.getType()));
7925 case ICmpInst::ICMP_SGT
:
7926 // (float)int > 4.4 --> int > 4
7927 // (float)int > -4.4 --> int >= -4
7928 if (RHS
->isNegative())
7929 Pred
= ICmpInst::ICMP_SGE
;
7931 case ICmpInst::ICMP_UGE
:
7932 // (float)int >= -4.4 --> true
7933 // (float)int >= 4.4 --> int > 4
7934 if (RHS
->isNegative())
7935 return replaceInstUsesWith(I
, ConstantInt::getTrue(I
.getType()));
7936 Pred
= ICmpInst::ICMP_UGT
;
7938 case ICmpInst::ICMP_SGE
:
7939 // (float)int >= -4.4 --> int >= -4
7940 // (float)int >= 4.4 --> int > 4
7941 if (!RHS
->isNegative())
7942 Pred
= ICmpInst::ICMP_SGT
;
7948 // Lower this FP comparison into an appropriate integer version of the
7950 return new ICmpInst(Pred
, LHSI
->getOperand(0),
7951 ConstantInt::get(LHSI
->getOperand(0)->getType(), RHSInt
));
7954 /// Fold (C / X) < 0.0 --> X < 0.0 if possible. Swap predicate if necessary.
7955 static Instruction
*foldFCmpReciprocalAndZero(FCmpInst
&I
, Instruction
*LHSI
,
7957 // When C is not 0.0 and infinities are not allowed:
7958 // (C / X) < 0.0 is a sign-bit test of X
7959 // (C / X) < 0.0 --> X < 0.0 (if C is positive)
7960 // (C / X) < 0.0 --> X > 0.0 (if C is negative, swap the predicate)
7963 // Multiply (C / X) < 0.0 by X * X / C.
7964 // - X is non zero, if it is the flag 'ninf' is violated.
7965 // - C defines the sign of X * X * C. Thus it also defines whether to swap
7966 // the predicate. C is also non zero by definition.
7968 // Thus X * X / C is non zero and the transformation is valid. [qed]
7970 FCmpInst::Predicate Pred
= I
.getPredicate();
7972 // Check that predicates are valid.
7973 if ((Pred
!= FCmpInst::FCMP_OGT
) && (Pred
!= FCmpInst::FCMP_OLT
) &&
7974 (Pred
!= FCmpInst::FCMP_OGE
) && (Pred
!= FCmpInst::FCMP_OLE
))
7977 // Check that RHS operand is zero.
7978 if (!match(RHSC
, m_AnyZeroFP()))
7981 // Check fastmath flags ('ninf').
7982 if (!LHSI
->hasNoInfs() || !I
.hasNoInfs())
7985 // Check the properties of the dividend. It must not be zero to avoid a
7986 // division by zero (see Proof).
7988 if (!match(LHSI
->getOperand(0), m_APFloat(C
)))
7994 // Get swapped predicate if necessary.
7995 if (C
->isNegative())
7996 Pred
= I
.getSwappedPredicate();
7998 return new FCmpInst(Pred
, LHSI
->getOperand(1), RHSC
, "", &I
);
8001 /// Optimize fabs(X) compared with zero.
8002 static Instruction
*foldFabsWithFcmpZero(FCmpInst
&I
, InstCombinerImpl
&IC
) {
8004 if (!match(I
.getOperand(0), m_FAbs(m_Value(X
))))
8008 if (!match(I
.getOperand(1), m_APFloat(C
)))
8011 if (!C
->isPosZero()) {
8012 if (!C
->isSmallestNormalized())
8015 const Function
*F
= I
.getFunction();
8016 DenormalMode Mode
= F
->getDenormalMode(C
->getSemantics());
8017 if (Mode
.Input
== DenormalMode::PreserveSign
||
8018 Mode
.Input
== DenormalMode::PositiveZero
) {
8020 auto replaceFCmp
= [](FCmpInst
*I
, FCmpInst::Predicate P
, Value
*X
) {
8021 Constant
*Zero
= ConstantFP::getZero(X
->getType());
8022 return new FCmpInst(P
, X
, Zero
, "", I
);
8025 switch (I
.getPredicate()) {
8026 case FCmpInst::FCMP_OLT
:
8027 // fcmp olt fabs(x), smallest_normalized_number -> fcmp oeq x, 0.0
8028 return replaceFCmp(&I
, FCmpInst::FCMP_OEQ
, X
);
8029 case FCmpInst::FCMP_UGE
:
8030 // fcmp uge fabs(x), smallest_normalized_number -> fcmp une x, 0.0
8031 return replaceFCmp(&I
, FCmpInst::FCMP_UNE
, X
);
8032 case FCmpInst::FCMP_OGE
:
8033 // fcmp oge fabs(x), smallest_normalized_number -> fcmp one x, 0.0
8034 return replaceFCmp(&I
, FCmpInst::FCMP_ONE
, X
);
8035 case FCmpInst::FCMP_ULT
:
8036 // fcmp ult fabs(x), smallest_normalized_number -> fcmp ueq x, 0.0
8037 return replaceFCmp(&I
, FCmpInst::FCMP_UEQ
, X
);
8046 auto replacePredAndOp0
= [&IC
](FCmpInst
*I
, FCmpInst::Predicate P
, Value
*X
) {
8048 return IC
.replaceOperand(*I
, 0, X
);
8051 switch (I
.getPredicate()) {
8052 case FCmpInst::FCMP_UGE
:
8053 case FCmpInst::FCMP_OLT
:
8054 // fabs(X) >= 0.0 --> true
8055 // fabs(X) < 0.0 --> false
8056 llvm_unreachable("fcmp should have simplified");
8058 case FCmpInst::FCMP_OGT
:
8059 // fabs(X) > 0.0 --> X != 0.0
8060 return replacePredAndOp0(&I
, FCmpInst::FCMP_ONE
, X
);
8062 case FCmpInst::FCMP_UGT
:
8063 // fabs(X) u> 0.0 --> X u!= 0.0
8064 return replacePredAndOp0(&I
, FCmpInst::FCMP_UNE
, X
);
8066 case FCmpInst::FCMP_OLE
:
8067 // fabs(X) <= 0.0 --> X == 0.0
8068 return replacePredAndOp0(&I
, FCmpInst::FCMP_OEQ
, X
);
8070 case FCmpInst::FCMP_ULE
:
8071 // fabs(X) u<= 0.0 --> X u== 0.0
8072 return replacePredAndOp0(&I
, FCmpInst::FCMP_UEQ
, X
);
8074 case FCmpInst::FCMP_OGE
:
8075 // fabs(X) >= 0.0 --> !isnan(X)
8076 assert(!I
.hasNoNaNs() && "fcmp should have simplified");
8077 return replacePredAndOp0(&I
, FCmpInst::FCMP_ORD
, X
);
8079 case FCmpInst::FCMP_ULT
:
8080 // fabs(X) u< 0.0 --> isnan(X)
8081 assert(!I
.hasNoNaNs() && "fcmp should have simplified");
8082 return replacePredAndOp0(&I
, FCmpInst::FCMP_UNO
, X
);
8084 case FCmpInst::FCMP_OEQ
:
8085 case FCmpInst::FCMP_UEQ
:
8086 case FCmpInst::FCMP_ONE
:
8087 case FCmpInst::FCMP_UNE
:
8088 case FCmpInst::FCMP_ORD
:
8089 case FCmpInst::FCMP_UNO
:
8090 // Look through the fabs() because it doesn't change anything but the sign.
8091 // fabs(X) == 0.0 --> X == 0.0,
8092 // fabs(X) != 0.0 --> X != 0.0
8093 // isnan(fabs(X)) --> isnan(X)
8094 // !isnan(fabs(X) --> !isnan(X)
8095 return replacePredAndOp0(&I
, I
.getPredicate(), X
);
8102 /// Optimize sqrt(X) compared with zero.
8103 static Instruction
*foldSqrtWithFcmpZero(FCmpInst
&I
, InstCombinerImpl
&IC
) {
8105 if (!match(I
.getOperand(0), m_Sqrt(m_Value(X
))))
8108 if (!match(I
.getOperand(1), m_PosZeroFP()))
8111 auto ReplacePredAndOp0
= [&](FCmpInst::Predicate P
) {
8113 return IC
.replaceOperand(I
, 0, X
);
8116 // Clear ninf flag if sqrt doesn't have it.
8117 if (!cast
<Instruction
>(I
.getOperand(0))->hasNoInfs())
8118 I
.setHasNoInfs(false);
8120 switch (I
.getPredicate()) {
8121 case FCmpInst::FCMP_OLT
:
8122 case FCmpInst::FCMP_UGE
:
8123 // sqrt(X) < 0.0 --> false
8124 // sqrt(X) u>= 0.0 --> true
8125 llvm_unreachable("fcmp should have simplified");
8126 case FCmpInst::FCMP_ULT
:
8127 case FCmpInst::FCMP_ULE
:
8128 case FCmpInst::FCMP_OGT
:
8129 case FCmpInst::FCMP_OGE
:
8130 case FCmpInst::FCMP_OEQ
:
8131 case FCmpInst::FCMP_UNE
:
8132 // sqrt(X) u< 0.0 --> X u< 0.0
8133 // sqrt(X) u<= 0.0 --> X u<= 0.0
8134 // sqrt(X) > 0.0 --> X > 0.0
8135 // sqrt(X) >= 0.0 --> X >= 0.0
8136 // sqrt(X) == 0.0 --> X == 0.0
8137 // sqrt(X) u!= 0.0 --> X u!= 0.0
8138 return IC
.replaceOperand(I
, 0, X
);
8140 case FCmpInst::FCMP_OLE
:
8141 // sqrt(X) <= 0.0 --> X == 0.0
8142 return ReplacePredAndOp0(FCmpInst::FCMP_OEQ
);
8143 case FCmpInst::FCMP_UGT
:
8144 // sqrt(X) u> 0.0 --> X u!= 0.0
8145 return ReplacePredAndOp0(FCmpInst::FCMP_UNE
);
8146 case FCmpInst::FCMP_UEQ
:
8147 // sqrt(X) u== 0.0 --> X u<= 0.0
8148 return ReplacePredAndOp0(FCmpInst::FCMP_ULE
);
8149 case FCmpInst::FCMP_ONE
:
8150 // sqrt(X) != 0.0 --> X > 0.0
8151 return ReplacePredAndOp0(FCmpInst::FCMP_OGT
);
8152 case FCmpInst::FCMP_ORD
:
8153 // !isnan(sqrt(X)) --> X >= 0.0
8154 return ReplacePredAndOp0(FCmpInst::FCMP_OGE
);
8155 case FCmpInst::FCMP_UNO
:
8156 // isnan(sqrt(X)) --> X u< 0.0
8157 return ReplacePredAndOp0(FCmpInst::FCMP_ULT
);
8159 llvm_unreachable("Unexpected predicate!");
8163 static Instruction
*foldFCmpFNegCommonOp(FCmpInst
&I
) {
8164 CmpInst::Predicate Pred
= I
.getPredicate();
8165 Value
*Op0
= I
.getOperand(0), *Op1
= I
.getOperand(1);
8167 // Canonicalize fneg as Op1.
8168 if (match(Op0
, m_FNeg(m_Value())) && !match(Op1
, m_FNeg(m_Value()))) {
8169 std::swap(Op0
, Op1
);
8170 Pred
= I
.getSwappedPredicate();
8173 if (!match(Op1
, m_FNeg(m_Specific(Op0
))))
8176 // Replace the negated operand with 0.0:
8177 // fcmp Pred Op0, -Op0 --> fcmp Pred Op0, 0.0
8178 Constant
*Zero
= ConstantFP::getZero(Op0
->getType());
8179 return new FCmpInst(Pred
, Op0
, Zero
, "", &I
);
8182 static Instruction
*foldFCmpFSubIntoFCmp(FCmpInst
&I
, Instruction
*LHSI
,
8183 Constant
*RHSC
, InstCombinerImpl
&CI
) {
8184 const CmpInst::Predicate Pred
= I
.getPredicate();
8185 Value
*X
= LHSI
->getOperand(0);
8186 Value
*Y
= LHSI
->getOperand(1);
8190 case FCmpInst::FCMP_UGT
:
8191 case FCmpInst::FCMP_ULT
:
8192 case FCmpInst::FCMP_UNE
:
8193 case FCmpInst::FCMP_OEQ
:
8194 case FCmpInst::FCMP_OGE
:
8195 case FCmpInst::FCMP_OLE
:
8196 // The optimization is not valid if X and Y are infinities of the same
8197 // sign, i.e. the inf - inf = nan case. If the fsub has the ninf or nnan
8198 // flag then we can assume we do not have that case. Otherwise we might be
8199 // able to prove that either X or Y is not infinity.
8200 if (!LHSI
->hasNoNaNs() && !LHSI
->hasNoInfs() &&
8201 !isKnownNeverInfinity(Y
, /*Depth=*/0,
8202 CI
.getSimplifyQuery().getWithInstruction(&I
)) &&
8203 !isKnownNeverInfinity(X
, /*Depth=*/0,
8204 CI
.getSimplifyQuery().getWithInstruction(&I
)))
8208 case FCmpInst::FCMP_OGT
:
8209 case FCmpInst::FCMP_OLT
:
8210 case FCmpInst::FCMP_ONE
:
8211 case FCmpInst::FCMP_UEQ
:
8212 case FCmpInst::FCMP_UGE
:
8213 case FCmpInst::FCMP_ULE
:
8214 // fcmp pred (x - y), 0 --> fcmp pred x, y
8215 if (match(RHSC
, m_AnyZeroFP()) &&
8216 I
.getFunction()->getDenormalMode(
8217 LHSI
->getType()->getScalarType()->getFltSemantics()) ==
8218 DenormalMode::getIEEE()) {
8219 CI
.replaceOperand(I
, 0, X
);
8220 CI
.replaceOperand(I
, 1, Y
);
8229 static Instruction
*foldFCmpWithFloorAndCeil(FCmpInst
&I
,
8230 InstCombinerImpl
&IC
) {
8231 Value
*LHS
= I
.getOperand(0), *RHS
= I
.getOperand(1);
8232 Type
*OpType
= LHS
->getType();
8233 CmpInst::Predicate Pred
= I
.getPredicate();
8235 bool FloorX
= match(LHS
, m_Intrinsic
<Intrinsic::floor
>(m_Specific(RHS
)));
8236 bool CeilX
= match(LHS
, m_Intrinsic
<Intrinsic::ceil
>(m_Specific(RHS
)));
8238 if (!FloorX
&& !CeilX
) {
8239 if ((FloorX
= match(RHS
, m_Intrinsic
<Intrinsic::floor
>(m_Specific(LHS
)))) ||
8240 (CeilX
= match(RHS
, m_Intrinsic
<Intrinsic::ceil
>(m_Specific(LHS
))))) {
8241 std::swap(LHS
, RHS
);
8242 Pred
= I
.getSwappedPredicate();
8247 case FCmpInst::FCMP_OLE
:
8248 // fcmp ole floor(x), x => fcmp ord x, 0
8250 return new FCmpInst(FCmpInst::FCMP_ORD
, RHS
, ConstantFP::getZero(OpType
),
8253 case FCmpInst::FCMP_OGT
:
8254 // fcmp ogt floor(x), x => false
8256 return IC
.replaceInstUsesWith(I
, ConstantInt::getFalse(I
.getType()));
8258 case FCmpInst::FCMP_OGE
:
8259 // fcmp oge ceil(x), x => fcmp ord x, 0
8261 return new FCmpInst(FCmpInst::FCMP_ORD
, RHS
, ConstantFP::getZero(OpType
),
8264 case FCmpInst::FCMP_OLT
:
8265 // fcmp olt ceil(x), x => false
8267 return IC
.replaceInstUsesWith(I
, ConstantInt::getFalse(I
.getType()));
8269 case FCmpInst::FCMP_ULE
:
8270 // fcmp ule floor(x), x => true
8272 return IC
.replaceInstUsesWith(I
, ConstantInt::getTrue(I
.getType()));
8274 case FCmpInst::FCMP_UGT
:
8275 // fcmp ugt floor(x), x => fcmp uno x, 0
8277 return new FCmpInst(FCmpInst::FCMP_UNO
, RHS
, ConstantFP::getZero(OpType
),
8280 case FCmpInst::FCMP_UGE
:
8281 // fcmp uge ceil(x), x => true
8283 return IC
.replaceInstUsesWith(I
, ConstantInt::getTrue(I
.getType()));
8285 case FCmpInst::FCMP_ULT
:
8286 // fcmp ult ceil(x), x => fcmp uno x, 0
8288 return new FCmpInst(FCmpInst::FCMP_UNO
, RHS
, ConstantFP::getZero(OpType
),
8298 Instruction
*InstCombinerImpl::visitFCmpInst(FCmpInst
&I
) {
8299 bool Changed
= false;
8301 /// Orders the operands of the compare so that they are listed from most
8302 /// complex to least complex. This puts constants before unary operators,
8303 /// before binary operators.
8304 if (getComplexity(I
.getOperand(0)) < getComplexity(I
.getOperand(1))) {
8309 const CmpInst::Predicate Pred
= I
.getPredicate();
8310 Value
*Op0
= I
.getOperand(0), *Op1
= I
.getOperand(1);
8311 if (Value
*V
= simplifyFCmpInst(Pred
, Op0
, Op1
, I
.getFastMathFlags(),
8312 SQ
.getWithInstruction(&I
)))
8313 return replaceInstUsesWith(I
, V
);
8315 // Simplify 'fcmp pred X, X'
8316 Type
*OpType
= Op0
->getType();
8317 assert(OpType
== Op1
->getType() && "fcmp with different-typed operands?");
8322 case FCmpInst::FCMP_UNO
: // True if unordered: isnan(X) | isnan(Y)
8323 case FCmpInst::FCMP_ULT
: // True if unordered or less than
8324 case FCmpInst::FCMP_UGT
: // True if unordered or greater than
8325 case FCmpInst::FCMP_UNE
: // True if unordered or not equal
8326 // Canonicalize these to be 'fcmp uno %X, 0.0'.
8327 I
.setPredicate(FCmpInst::FCMP_UNO
);
8328 I
.setOperand(1, Constant::getNullValue(OpType
));
8331 case FCmpInst::FCMP_ORD
: // True if ordered (no nans)
8332 case FCmpInst::FCMP_OEQ
: // True if ordered and equal
8333 case FCmpInst::FCMP_OGE
: // True if ordered and greater than or equal
8334 case FCmpInst::FCMP_OLE
: // True if ordered and less than or equal
8335 // Canonicalize these to be 'fcmp ord %X, 0.0'.
8336 I
.setPredicate(FCmpInst::FCMP_ORD
);
8337 I
.setOperand(1, Constant::getNullValue(OpType
));
8342 if (I
.isCommutative()) {
8343 if (auto Pair
= matchSymmetricPair(I
.getOperand(0), I
.getOperand(1))) {
8344 replaceOperand(I
, 0, Pair
->first
);
8345 replaceOperand(I
, 1, Pair
->second
);
8350 // If we're just checking for a NaN (ORD/UNO) and have a non-NaN operand,
8351 // then canonicalize the operand to 0.0.
8352 if (Pred
== CmpInst::FCMP_ORD
|| Pred
== CmpInst::FCMP_UNO
) {
8353 if (!match(Op0
, m_PosZeroFP()) &&
8354 isKnownNeverNaN(Op0
, 0, getSimplifyQuery().getWithInstruction(&I
)))
8355 return replaceOperand(I
, 0, ConstantFP::getZero(OpType
));
8357 if (!match(Op1
, m_PosZeroFP()) &&
8358 isKnownNeverNaN(Op1
, 0, getSimplifyQuery().getWithInstruction(&I
)))
8359 return replaceOperand(I
, 1, ConstantFP::getZero(OpType
));
8362 // fcmp pred (fneg X), (fneg Y) -> fcmp swap(pred) X, Y
8364 if (match(Op0
, m_FNeg(m_Value(X
))) && match(Op1
, m_FNeg(m_Value(Y
))))
8365 return new FCmpInst(I
.getSwappedPredicate(), X
, Y
, "", &I
);
8367 if (Instruction
*R
= foldFCmpFNegCommonOp(I
))
8370 // Test if the FCmpInst instruction is used exclusively by a select as
8371 // part of a minimum or maximum operation. If so, refrain from doing
8372 // any other folding. This helps out other analyses which understand
8373 // non-obfuscated minimum and maximum idioms, such as ScalarEvolution
8374 // and CodeGen. And in this case, at least one of the comparison
8375 // operands has at least one user besides the compare (the select),
8376 // which would often largely negate the benefit of folding anyway.
8378 if (SelectInst
*SI
= dyn_cast
<SelectInst
>(I
.user_back())) {
8380 SelectPatternResult SPR
= matchSelectPattern(SI
, A
, B
);
8381 if (SPR
.Flavor
!= SPF_UNKNOWN
)
8385 // The sign of 0.0 is ignored by fcmp, so canonicalize to +0.0:
8386 // fcmp Pred X, -0.0 --> fcmp Pred X, 0.0
8387 if (match(Op1
, m_AnyZeroFP()) && !match(Op1
, m_PosZeroFP()))
8388 return replaceOperand(I
, 1, ConstantFP::getZero(OpType
));
8391 // fcmp olt X, +inf -> fcmp one X, +inf
8392 // fcmp ole X, +inf -> fcmp ord X, 0
8393 // fcmp ogt X, +inf -> false
8394 // fcmp oge X, +inf -> fcmp oeq X, +inf
8395 // fcmp ult X, +inf -> fcmp une X, +inf
8396 // fcmp ule X, +inf -> true
8397 // fcmp ugt X, +inf -> fcmp uno X, 0
8398 // fcmp uge X, +inf -> fcmp ueq X, +inf
8399 // fcmp olt X, -inf -> false
8400 // fcmp ole X, -inf -> fcmp oeq X, -inf
8401 // fcmp ogt X, -inf -> fcmp one X, -inf
8402 // fcmp oge X, -inf -> fcmp ord X, 0
8403 // fcmp ult X, -inf -> fcmp uno X, 0
8404 // fcmp ule X, -inf -> fcmp ueq X, -inf
8405 // fcmp ugt X, -inf -> fcmp une X, -inf
8406 // fcmp uge X, -inf -> true
8408 if (match(Op1
, m_APFloat(C
)) && C
->isInfinity()) {
8409 switch (C
->isNegative() ? FCmpInst::getSwappedPredicate(Pred
) : Pred
) {
8412 case FCmpInst::FCMP_ORD
:
8413 case FCmpInst::FCMP_UNO
:
8414 case FCmpInst::FCMP_TRUE
:
8415 case FCmpInst::FCMP_FALSE
:
8416 case FCmpInst::FCMP_OGT
:
8417 case FCmpInst::FCMP_ULE
:
8418 llvm_unreachable("Should be simplified by InstSimplify");
8419 case FCmpInst::FCMP_OLT
:
8420 return new FCmpInst(FCmpInst::FCMP_ONE
, Op0
, Op1
, "", &I
);
8421 case FCmpInst::FCMP_OLE
:
8422 return new FCmpInst(FCmpInst::FCMP_ORD
, Op0
, ConstantFP::getZero(OpType
),
8424 case FCmpInst::FCMP_OGE
:
8425 return new FCmpInst(FCmpInst::FCMP_OEQ
, Op0
, Op1
, "", &I
);
8426 case FCmpInst::FCMP_ULT
:
8427 return new FCmpInst(FCmpInst::FCMP_UNE
, Op0
, Op1
, "", &I
);
8428 case FCmpInst::FCMP_UGT
:
8429 return new FCmpInst(FCmpInst::FCMP_UNO
, Op0
, ConstantFP::getZero(OpType
),
8431 case FCmpInst::FCMP_UGE
:
8432 return new FCmpInst(FCmpInst::FCMP_UEQ
, Op0
, Op1
, "", &I
);
8436 // Ignore signbit of bitcasted int when comparing equality to FP 0.0:
8437 // fcmp oeq/une (bitcast X), 0.0 --> (and X, SignMaskC) ==/!= 0
8438 if (match(Op1
, m_PosZeroFP()) &&
8439 match(Op0
, m_OneUse(m_ElementWiseBitCast(m_Value(X
))))) {
8440 ICmpInst::Predicate IntPred
= ICmpInst::BAD_ICMP_PREDICATE
;
8441 if (Pred
== FCmpInst::FCMP_OEQ
)
8442 IntPred
= ICmpInst::ICMP_EQ
;
8443 else if (Pred
== FCmpInst::FCMP_UNE
)
8444 IntPred
= ICmpInst::ICMP_NE
;
8446 if (IntPred
!= ICmpInst::BAD_ICMP_PREDICATE
) {
8447 Type
*IntTy
= X
->getType();
8448 const APInt
&SignMask
= ~APInt::getSignMask(IntTy
->getScalarSizeInBits());
8449 Value
*MaskX
= Builder
.CreateAnd(X
, ConstantInt::get(IntTy
, SignMask
));
8450 return new ICmpInst(IntPred
, MaskX
, ConstantInt::getNullValue(IntTy
));
8454 // Handle fcmp with instruction LHS and constant RHS.
8457 if (match(Op0
, m_Instruction(LHSI
)) && match(Op1
, m_Constant(RHSC
))) {
8458 switch (LHSI
->getOpcode()) {
8459 case Instruction::Select
:
8460 // fcmp eq (cond ? x : -x), 0 --> fcmp eq x, 0
8461 if (FCmpInst::isEquality(Pred
) && match(RHSC
, m_AnyZeroFP()) &&
8462 match(LHSI
, m_c_Select(m_FNeg(m_Value(X
)), m_Deferred(X
))))
8463 return replaceOperand(I
, 0, X
);
8464 if (Instruction
*NV
= FoldOpIntoSelect(I
, cast
<SelectInst
>(LHSI
)))
8467 case Instruction::FSub
:
8468 if (LHSI
->hasOneUse())
8469 if (Instruction
*NV
= foldFCmpFSubIntoFCmp(I
, LHSI
, RHSC
, *this))
8472 case Instruction::PHI
:
8473 if (Instruction
*NV
= foldOpIntoPhi(I
, cast
<PHINode
>(LHSI
)))
8476 case Instruction::SIToFP
:
8477 case Instruction::UIToFP
:
8478 if (Instruction
*NV
= foldFCmpIntToFPConst(I
, LHSI
, RHSC
))
8481 case Instruction::FDiv
:
8482 if (Instruction
*NV
= foldFCmpReciprocalAndZero(I
, LHSI
, RHSC
))
8485 case Instruction::Load
:
8486 if (auto *GEP
= dyn_cast
<GetElementPtrInst
>(LHSI
->getOperand(0)))
8487 if (auto *GV
= dyn_cast
<GlobalVariable
>(GEP
->getOperand(0)))
8488 if (Instruction
*Res
= foldCmpLoadFromIndexedGlobal(
8489 cast
<LoadInst
>(LHSI
), GEP
, GV
, I
))
8495 if (Instruction
*R
= foldFabsWithFcmpZero(I
, *this))
8498 if (Instruction
*R
= foldSqrtWithFcmpZero(I
, *this))
8501 if (Instruction
*R
= foldFCmpWithFloorAndCeil(I
, *this))
8504 if (match(Op0
, m_FNeg(m_Value(X
)))) {
8505 // fcmp pred (fneg X), C --> fcmp swap(pred) X, -C
8507 if (match(Op1
, m_Constant(C
)))
8508 if (Constant
*NegC
= ConstantFoldUnaryOpOperand(Instruction::FNeg
, C
, DL
))
8509 return new FCmpInst(I
.getSwappedPredicate(), X
, NegC
, "", &I
);
8512 // fcmp (fadd X, 0.0), Y --> fcmp X, Y
8513 if (match(Op0
, m_FAdd(m_Value(X
), m_AnyZeroFP())))
8514 return new FCmpInst(Pred
, X
, Op1
, "", &I
);
8516 // fcmp X, (fadd Y, 0.0) --> fcmp X, Y
8517 if (match(Op1
, m_FAdd(m_Value(Y
), m_AnyZeroFP())))
8518 return new FCmpInst(Pred
, Op0
, Y
, "", &I
);
8520 if (match(Op0
, m_FPExt(m_Value(X
)))) {
8521 // fcmp (fpext X), (fpext Y) -> fcmp X, Y
8522 if (match(Op1
, m_FPExt(m_Value(Y
))) && X
->getType() == Y
->getType())
8523 return new FCmpInst(Pred
, X
, Y
, "", &I
);
8526 if (match(Op1
, m_APFloat(C
))) {
8527 const fltSemantics
&FPSem
=
8528 X
->getType()->getScalarType()->getFltSemantics();
8530 APFloat TruncC
= *C
;
8531 TruncC
.convert(FPSem
, APFloat::rmNearestTiesToEven
, &Lossy
);
8534 // X can't possibly equal the higher-precision constant, so reduce any
8535 // equality comparison.
8536 // TODO: Other predicates can be handled via getFCmpCode().
8538 case FCmpInst::FCMP_OEQ
:
8539 // X is ordered and equal to an impossible constant --> false
8540 return replaceInstUsesWith(I
, ConstantInt::getFalse(I
.getType()));
8541 case FCmpInst::FCMP_ONE
:
8542 // X is ordered and not equal to an impossible constant --> ordered
8543 return new FCmpInst(FCmpInst::FCMP_ORD
, X
,
8544 ConstantFP::getZero(X
->getType()));
8545 case FCmpInst::FCMP_UEQ
:
8546 // X is unordered or equal to an impossible constant --> unordered
8547 return new FCmpInst(FCmpInst::FCMP_UNO
, X
,
8548 ConstantFP::getZero(X
->getType()));
8549 case FCmpInst::FCMP_UNE
:
8550 // X is unordered or not equal to an impossible constant --> true
8551 return replaceInstUsesWith(I
, ConstantInt::getTrue(I
.getType()));
8557 // fcmp (fpext X), C -> fcmp X, (fptrunc C) if fptrunc is lossless
8558 // Avoid lossy conversions and denormals.
8559 // Zero is a special case that's OK to convert.
8560 APFloat Fabs
= TruncC
;
8563 (Fabs
.isZero() || !(Fabs
< APFloat::getSmallestNormalized(FPSem
)))) {
8564 Constant
*NewC
= ConstantFP::get(X
->getType(), TruncC
);
8565 return new FCmpInst(Pred
, X
, NewC
, "", &I
);
8570 // Convert a sign-bit test of an FP value into a cast and integer compare.
8571 // TODO: Simplify if the copysign constant is 0.0 or NaN.
8572 // TODO: Handle non-zero compare constants.
8573 // TODO: Handle other predicates.
8574 if (match(Op0
, m_OneUse(m_Intrinsic
<Intrinsic::copysign
>(m_APFloat(C
),
8576 match(Op1
, m_AnyZeroFP()) && !C
->isZero() && !C
->isNaN()) {
8577 Type
*IntType
= Builder
.getIntNTy(X
->getType()->getScalarSizeInBits());
8578 if (auto *VecTy
= dyn_cast
<VectorType
>(OpType
))
8579 IntType
= VectorType::get(IntType
, VecTy
->getElementCount());
8581 // copysign(non-zero constant, X) < 0.0 --> (bitcast X) < 0
8582 if (Pred
== FCmpInst::FCMP_OLT
) {
8583 Value
*IntX
= Builder
.CreateBitCast(X
, IntType
);
8584 return new ICmpInst(ICmpInst::ICMP_SLT
, IntX
,
8585 ConstantInt::getNullValue(IntType
));
8590 Value
*CanonLHS
= nullptr, *CanonRHS
= nullptr;
8591 match(Op0
, m_Intrinsic
<Intrinsic::canonicalize
>(m_Value(CanonLHS
)));
8592 match(Op1
, m_Intrinsic
<Intrinsic::canonicalize
>(m_Value(CanonRHS
)));
8594 // (canonicalize(x) == x) => (x == x)
8595 if (CanonLHS
== Op1
)
8596 return new FCmpInst(Pred
, Op1
, Op1
, "", &I
);
8598 // (x == canonicalize(x)) => (x == x)
8599 if (CanonRHS
== Op0
)
8600 return new FCmpInst(Pred
, Op0
, Op0
, "", &I
);
8602 // (canonicalize(x) == canonicalize(y)) => (x == y)
8603 if (CanonLHS
&& CanonRHS
)
8604 return new FCmpInst(Pred
, CanonLHS
, CanonRHS
, "", &I
);
8607 if (I
.getType()->isVectorTy())
8608 if (Instruction
*Res
= foldVectorCmp(I
, Builder
))
8611 return Changed
? &I
: nullptr;