1 /*===---- avxintrin.h - AVX intrinsics -------------------------------------===
3 * Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 * See https://llvm.org/LICENSE.txt for license information.
5 * SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
7 *===-----------------------------------------------------------------------===
11 #error "Never use <avxintrin.h> directly; include <immintrin.h> instead."
17 typedef double __v4df
__attribute__ ((__vector_size__ (32)));
18 typedef float __v8sf
__attribute__ ((__vector_size__ (32)));
19 typedef long long __v4di
__attribute__ ((__vector_size__ (32)));
20 typedef int __v8si
__attribute__ ((__vector_size__ (32)));
21 typedef short __v16hi
__attribute__ ((__vector_size__ (32)));
22 typedef char __v32qi
__attribute__ ((__vector_size__ (32)));
25 typedef unsigned long long __v4du
__attribute__ ((__vector_size__ (32)));
26 typedef unsigned int __v8su
__attribute__ ((__vector_size__ (32)));
27 typedef unsigned short __v16hu
__attribute__ ((__vector_size__ (32)));
28 typedef unsigned char __v32qu
__attribute__ ((__vector_size__ (32)));
30 /* We need an explicitly signed variant for char. Note that this shouldn't
31 * appear in the interface though. */
32 typedef signed char __v32qs
__attribute__((__vector_size__(32)));
34 typedef float __m256
__attribute__ ((__vector_size__ (32), __aligned__(32)));
35 typedef double __m256d
__attribute__((__vector_size__(32), __aligned__(32)));
36 typedef long long __m256i
__attribute__((__vector_size__(32), __aligned__(32)));
38 typedef float __m256_u
__attribute__ ((__vector_size__ (32), __aligned__(1)));
39 typedef double __m256d_u
__attribute__((__vector_size__(32), __aligned__(1)));
40 typedef long long __m256i_u
__attribute__((__vector_size__(32), __aligned__(1)));
42 /* Define the default attributes for the functions in this file. */
43 #define __DEFAULT_FN_ATTRS __attribute__((__always_inline__, __nodebug__, __target__("avx"), __min_vector_width__(256)))
44 #define __DEFAULT_FN_ATTRS128 __attribute__((__always_inline__, __nodebug__, __target__("avx"), __min_vector_width__(128)))
47 /// Adds two 256-bit vectors of [4 x double].
49 /// \headerfile <x86intrin.h>
51 /// This intrinsic corresponds to the <c> VADDPD </c> instruction.
54 /// A 256-bit vector of [4 x double] containing one of the source operands.
56 /// A 256-bit vector of [4 x double] containing one of the source operands.
57 /// \returns A 256-bit vector of [4 x double] containing the sums of both
59 static __inline __m256d __DEFAULT_FN_ATTRS
60 _mm256_add_pd(__m256d __a
, __m256d __b
)
62 return (__m256d
)((__v4df
)__a
+(__v4df
)__b
);
65 /// Adds two 256-bit vectors of [8 x float].
67 /// \headerfile <x86intrin.h>
69 /// This intrinsic corresponds to the <c> VADDPS </c> instruction.
72 /// A 256-bit vector of [8 x float] containing one of the source operands.
74 /// A 256-bit vector of [8 x float] containing one of the source operands.
75 /// \returns A 256-bit vector of [8 x float] containing the sums of both
77 static __inline __m256 __DEFAULT_FN_ATTRS
78 _mm256_add_ps(__m256 __a
, __m256 __b
)
80 return (__m256
)((__v8sf
)__a
+(__v8sf
)__b
);
83 /// Subtracts two 256-bit vectors of [4 x double].
85 /// \headerfile <x86intrin.h>
87 /// This intrinsic corresponds to the <c> VSUBPD </c> instruction.
90 /// A 256-bit vector of [4 x double] containing the minuend.
92 /// A 256-bit vector of [4 x double] containing the subtrahend.
93 /// \returns A 256-bit vector of [4 x double] containing the differences between
95 static __inline __m256d __DEFAULT_FN_ATTRS
96 _mm256_sub_pd(__m256d __a
, __m256d __b
)
98 return (__m256d
)((__v4df
)__a
-(__v4df
)__b
);
101 /// Subtracts two 256-bit vectors of [8 x float].
103 /// \headerfile <x86intrin.h>
105 /// This intrinsic corresponds to the <c> VSUBPS </c> instruction.
108 /// A 256-bit vector of [8 x float] containing the minuend.
110 /// A 256-bit vector of [8 x float] containing the subtrahend.
111 /// \returns A 256-bit vector of [8 x float] containing the differences between
113 static __inline __m256 __DEFAULT_FN_ATTRS
114 _mm256_sub_ps(__m256 __a
, __m256 __b
)
116 return (__m256
)((__v8sf
)__a
-(__v8sf
)__b
);
119 /// Adds the even-indexed values and subtracts the odd-indexed values of
120 /// two 256-bit vectors of [4 x double].
122 /// \headerfile <x86intrin.h>
124 /// This intrinsic corresponds to the <c> VADDSUBPD </c> instruction.
127 /// A 256-bit vector of [4 x double] containing the left source operand.
129 /// A 256-bit vector of [4 x double] containing the right source operand.
130 /// \returns A 256-bit vector of [4 x double] containing the alternating sums
131 /// and differences between both operands.
132 static __inline __m256d __DEFAULT_FN_ATTRS
133 _mm256_addsub_pd(__m256d __a
, __m256d __b
)
135 return (__m256d
)__builtin_ia32_addsubpd256((__v4df
)__a
, (__v4df
)__b
);
138 /// Adds the even-indexed values and subtracts the odd-indexed values of
139 /// two 256-bit vectors of [8 x float].
141 /// \headerfile <x86intrin.h>
143 /// This intrinsic corresponds to the <c> VADDSUBPS </c> instruction.
146 /// A 256-bit vector of [8 x float] containing the left source operand.
148 /// A 256-bit vector of [8 x float] containing the right source operand.
149 /// \returns A 256-bit vector of [8 x float] containing the alternating sums and
150 /// differences between both operands.
151 static __inline __m256 __DEFAULT_FN_ATTRS
152 _mm256_addsub_ps(__m256 __a
, __m256 __b
)
154 return (__m256
)__builtin_ia32_addsubps256((__v8sf
)__a
, (__v8sf
)__b
);
157 /// Divides two 256-bit vectors of [4 x double].
159 /// \headerfile <x86intrin.h>
161 /// This intrinsic corresponds to the <c> VDIVPD </c> instruction.
164 /// A 256-bit vector of [4 x double] containing the dividend.
166 /// A 256-bit vector of [4 x double] containing the divisor.
167 /// \returns A 256-bit vector of [4 x double] containing the quotients of both
169 static __inline __m256d __DEFAULT_FN_ATTRS
170 _mm256_div_pd(__m256d __a
, __m256d __b
)
172 return (__m256d
)((__v4df
)__a
/(__v4df
)__b
);
175 /// Divides two 256-bit vectors of [8 x float].
177 /// \headerfile <x86intrin.h>
179 /// This intrinsic corresponds to the <c> VDIVPS </c> instruction.
182 /// A 256-bit vector of [8 x float] containing the dividend.
184 /// A 256-bit vector of [8 x float] containing the divisor.
185 /// \returns A 256-bit vector of [8 x float] containing the quotients of both
187 static __inline __m256 __DEFAULT_FN_ATTRS
188 _mm256_div_ps(__m256 __a
, __m256 __b
)
190 return (__m256
)((__v8sf
)__a
/(__v8sf
)__b
);
193 /// Compares two 256-bit vectors of [4 x double] and returns the greater
194 /// of each pair of values.
196 /// \headerfile <x86intrin.h>
198 /// This intrinsic corresponds to the <c> VMAXPD </c> instruction.
201 /// A 256-bit vector of [4 x double] containing one of the operands.
203 /// A 256-bit vector of [4 x double] containing one of the operands.
204 /// \returns A 256-bit vector of [4 x double] containing the maximum values
205 /// between both operands.
206 static __inline __m256d __DEFAULT_FN_ATTRS
207 _mm256_max_pd(__m256d __a
, __m256d __b
)
209 return (__m256d
)__builtin_ia32_maxpd256((__v4df
)__a
, (__v4df
)__b
);
212 /// Compares two 256-bit vectors of [8 x float] and returns the greater
213 /// of each pair of values.
215 /// \headerfile <x86intrin.h>
217 /// This intrinsic corresponds to the <c> VMAXPS </c> instruction.
220 /// A 256-bit vector of [8 x float] containing one of the operands.
222 /// A 256-bit vector of [8 x float] containing one of the operands.
223 /// \returns A 256-bit vector of [8 x float] containing the maximum values
224 /// between both operands.
225 static __inline __m256 __DEFAULT_FN_ATTRS
226 _mm256_max_ps(__m256 __a
, __m256 __b
)
228 return (__m256
)__builtin_ia32_maxps256((__v8sf
)__a
, (__v8sf
)__b
);
231 /// Compares two 256-bit vectors of [4 x double] and returns the lesser
232 /// of each pair of values.
234 /// \headerfile <x86intrin.h>
236 /// This intrinsic corresponds to the <c> VMINPD </c> instruction.
239 /// A 256-bit vector of [4 x double] containing one of the operands.
241 /// A 256-bit vector of [4 x double] containing one of the operands.
242 /// \returns A 256-bit vector of [4 x double] containing the minimum values
243 /// between both operands.
244 static __inline __m256d __DEFAULT_FN_ATTRS
245 _mm256_min_pd(__m256d __a
, __m256d __b
)
247 return (__m256d
)__builtin_ia32_minpd256((__v4df
)__a
, (__v4df
)__b
);
250 /// Compares two 256-bit vectors of [8 x float] and returns the lesser
251 /// of each pair of values.
253 /// \headerfile <x86intrin.h>
255 /// This intrinsic corresponds to the <c> VMINPS </c> instruction.
258 /// A 256-bit vector of [8 x float] containing one of the operands.
260 /// A 256-bit vector of [8 x float] containing one of the operands.
261 /// \returns A 256-bit vector of [8 x float] containing the minimum values
262 /// between both operands.
263 static __inline __m256 __DEFAULT_FN_ATTRS
264 _mm256_min_ps(__m256 __a
, __m256 __b
)
266 return (__m256
)__builtin_ia32_minps256((__v8sf
)__a
, (__v8sf
)__b
);
269 /// Multiplies two 256-bit vectors of [4 x double].
271 /// \headerfile <x86intrin.h>
273 /// This intrinsic corresponds to the <c> VMULPD </c> instruction.
276 /// A 256-bit vector of [4 x double] containing one of the operands.
278 /// A 256-bit vector of [4 x double] containing one of the operands.
279 /// \returns A 256-bit vector of [4 x double] containing the products of both
281 static __inline __m256d __DEFAULT_FN_ATTRS
282 _mm256_mul_pd(__m256d __a
, __m256d __b
)
284 return (__m256d
)((__v4df
)__a
* (__v4df
)__b
);
287 /// Multiplies two 256-bit vectors of [8 x float].
289 /// \headerfile <x86intrin.h>
291 /// This intrinsic corresponds to the <c> VMULPS </c> instruction.
294 /// A 256-bit vector of [8 x float] containing one of the operands.
296 /// A 256-bit vector of [8 x float] containing one of the operands.
297 /// \returns A 256-bit vector of [8 x float] containing the products of both
299 static __inline __m256 __DEFAULT_FN_ATTRS
300 _mm256_mul_ps(__m256 __a
, __m256 __b
)
302 return (__m256
)((__v8sf
)__a
* (__v8sf
)__b
);
305 /// Calculates the square roots of the values in a 256-bit vector of
308 /// \headerfile <x86intrin.h>
310 /// This intrinsic corresponds to the <c> VSQRTPD </c> instruction.
313 /// A 256-bit vector of [4 x double].
314 /// \returns A 256-bit vector of [4 x double] containing the square roots of the
315 /// values in the operand.
316 static __inline __m256d __DEFAULT_FN_ATTRS
317 _mm256_sqrt_pd(__m256d __a
)
319 return (__m256d
)__builtin_ia32_sqrtpd256((__v4df
)__a
);
322 /// Calculates the square roots of the values in a 256-bit vector of
325 /// \headerfile <x86intrin.h>
327 /// This intrinsic corresponds to the <c> VSQRTPS </c> instruction.
330 /// A 256-bit vector of [8 x float].
331 /// \returns A 256-bit vector of [8 x float] containing the square roots of the
332 /// values in the operand.
333 static __inline __m256 __DEFAULT_FN_ATTRS
334 _mm256_sqrt_ps(__m256 __a
)
336 return (__m256
)__builtin_ia32_sqrtps256((__v8sf
)__a
);
339 /// Calculates the reciprocal square roots of the values in a 256-bit
340 /// vector of [8 x float].
342 /// \headerfile <x86intrin.h>
344 /// This intrinsic corresponds to the <c> VRSQRTPS </c> instruction.
347 /// A 256-bit vector of [8 x float].
348 /// \returns A 256-bit vector of [8 x float] containing the reciprocal square
349 /// roots of the values in the operand.
350 static __inline __m256 __DEFAULT_FN_ATTRS
351 _mm256_rsqrt_ps(__m256 __a
)
353 return (__m256
)__builtin_ia32_rsqrtps256((__v8sf
)__a
);
356 /// Calculates the reciprocals of the values in a 256-bit vector of
359 /// \headerfile <x86intrin.h>
361 /// This intrinsic corresponds to the <c> VRCPPS </c> instruction.
364 /// A 256-bit vector of [8 x float].
365 /// \returns A 256-bit vector of [8 x float] containing the reciprocals of the
366 /// values in the operand.
367 static __inline __m256 __DEFAULT_FN_ATTRS
368 _mm256_rcp_ps(__m256 __a
)
370 return (__m256
)__builtin_ia32_rcpps256((__v8sf
)__a
);
373 /// Rounds the values in a 256-bit vector of [4 x double] as specified
374 /// by the byte operand. The source values are rounded to integer values and
375 /// returned as 64-bit double-precision floating-point values.
377 /// \headerfile <x86intrin.h>
380 /// __m256d _mm256_round_pd(__m256d V, const int M);
383 /// This intrinsic corresponds to the <c> VROUNDPD </c> instruction.
386 /// A 256-bit vector of [4 x double].
388 /// An integer value that specifies the rounding operation. \n
389 /// Bits [7:4] are reserved. \n
390 /// Bit [3] is a precision exception value: \n
391 /// 0: A normal PE exception is used. \n
392 /// 1: The PE field is not updated. \n
393 /// Bit [2] is the rounding control source: \n
394 /// 0: Use bits [1:0] of \a M. \n
395 /// 1: Use the current MXCSR setting. \n
396 /// Bits [1:0] contain the rounding control definition: \n
398 /// 01: Downward (toward negative infinity). \n
399 /// 10: Upward (toward positive infinity). \n
401 /// \returns A 256-bit vector of [4 x double] containing the rounded values.
402 #define _mm256_round_pd(V, M) \
403 ((__m256d)__builtin_ia32_roundpd256((__v4df)(__m256d)(V), (M)))
405 /// Rounds the values stored in a 256-bit vector of [8 x float] as
406 /// specified by the byte operand. The source values are rounded to integer
407 /// values and returned as floating-point values.
409 /// \headerfile <x86intrin.h>
412 /// __m256 _mm256_round_ps(__m256 V, const int M);
415 /// This intrinsic corresponds to the <c> VROUNDPS </c> instruction.
418 /// A 256-bit vector of [8 x float].
420 /// An integer value that specifies the rounding operation. \n
421 /// Bits [7:4] are reserved. \n
422 /// Bit [3] is a precision exception value: \n
423 /// 0: A normal PE exception is used. \n
424 /// 1: The PE field is not updated. \n
425 /// Bit [2] is the rounding control source: \n
426 /// 0: Use bits [1:0] of \a M. \n
427 /// 1: Use the current MXCSR setting. \n
428 /// Bits [1:0] contain the rounding control definition: \n
430 /// 01: Downward (toward negative infinity). \n
431 /// 10: Upward (toward positive infinity). \n
433 /// \returns A 256-bit vector of [8 x float] containing the rounded values.
434 #define _mm256_round_ps(V, M) \
435 ((__m256)__builtin_ia32_roundps256((__v8sf)(__m256)(V), (M)))
437 /// Rounds up the values stored in a 256-bit vector of [4 x double]. The
438 /// source values are rounded up to integer values and returned as 64-bit
439 /// double-precision floating-point values.
441 /// \headerfile <x86intrin.h>
444 /// __m256d _mm256_ceil_pd(__m256d V);
447 /// This intrinsic corresponds to the <c> VROUNDPD </c> instruction.
450 /// A 256-bit vector of [4 x double].
451 /// \returns A 256-bit vector of [4 x double] containing the rounded up values.
452 #define _mm256_ceil_pd(V) _mm256_round_pd((V), _MM_FROUND_CEIL)
454 /// Rounds down the values stored in a 256-bit vector of [4 x double].
455 /// The source values are rounded down to integer values and returned as
456 /// 64-bit double-precision floating-point values.
458 /// \headerfile <x86intrin.h>
461 /// __m256d _mm256_floor_pd(__m256d V);
464 /// This intrinsic corresponds to the <c> VROUNDPD </c> instruction.
467 /// A 256-bit vector of [4 x double].
468 /// \returns A 256-bit vector of [4 x double] containing the rounded down
470 #define _mm256_floor_pd(V) _mm256_round_pd((V), _MM_FROUND_FLOOR)
472 /// Rounds up the values stored in a 256-bit vector of [8 x float]. The
473 /// source values are rounded up to integer values and returned as
474 /// floating-point values.
476 /// \headerfile <x86intrin.h>
479 /// __m256 _mm256_ceil_ps(__m256 V);
482 /// This intrinsic corresponds to the <c> VROUNDPS </c> instruction.
485 /// A 256-bit vector of [8 x float].
486 /// \returns A 256-bit vector of [8 x float] containing the rounded up values.
487 #define _mm256_ceil_ps(V) _mm256_round_ps((V), _MM_FROUND_CEIL)
489 /// Rounds down the values stored in a 256-bit vector of [8 x float]. The
490 /// source values are rounded down to integer values and returned as
491 /// floating-point values.
493 /// \headerfile <x86intrin.h>
496 /// __m256 _mm256_floor_ps(__m256 V);
499 /// This intrinsic corresponds to the <c> VROUNDPS </c> instruction.
502 /// A 256-bit vector of [8 x float].
503 /// \returns A 256-bit vector of [8 x float] containing the rounded down values.
504 #define _mm256_floor_ps(V) _mm256_round_ps((V), _MM_FROUND_FLOOR)
507 /// Performs a bitwise AND of two 256-bit vectors of [4 x double].
509 /// \headerfile <x86intrin.h>
511 /// This intrinsic corresponds to the <c> VANDPD </c> instruction.
514 /// A 256-bit vector of [4 x double] containing one of the source operands.
516 /// A 256-bit vector of [4 x double] containing one of the source operands.
517 /// \returns A 256-bit vector of [4 x double] containing the bitwise AND of the
518 /// values between both operands.
519 static __inline __m256d __DEFAULT_FN_ATTRS
520 _mm256_and_pd(__m256d __a
, __m256d __b
)
522 return (__m256d
)((__v4du
)__a
& (__v4du
)__b
);
525 /// Performs a bitwise AND of two 256-bit vectors of [8 x float].
527 /// \headerfile <x86intrin.h>
529 /// This intrinsic corresponds to the <c> VANDPS </c> instruction.
532 /// A 256-bit vector of [8 x float] containing one of the source operands.
534 /// A 256-bit vector of [8 x float] containing one of the source operands.
535 /// \returns A 256-bit vector of [8 x float] containing the bitwise AND of the
536 /// values between both operands.
537 static __inline __m256 __DEFAULT_FN_ATTRS
538 _mm256_and_ps(__m256 __a
, __m256 __b
)
540 return (__m256
)((__v8su
)__a
& (__v8su
)__b
);
543 /// Performs a bitwise AND of two 256-bit vectors of [4 x double], using
544 /// the one's complement of the values contained in the first source operand.
546 /// \headerfile <x86intrin.h>
548 /// This intrinsic corresponds to the <c> VANDNPD </c> instruction.
551 /// A 256-bit vector of [4 x double] containing the left source operand. The
552 /// one's complement of this value is used in the bitwise AND.
554 /// A 256-bit vector of [4 x double] containing the right source operand.
555 /// \returns A 256-bit vector of [4 x double] containing the bitwise AND of the
556 /// values of the second operand and the one's complement of the first
558 static __inline __m256d __DEFAULT_FN_ATTRS
559 _mm256_andnot_pd(__m256d __a
, __m256d __b
)
561 return (__m256d
)(~(__v4du
)__a
& (__v4du
)__b
);
564 /// Performs a bitwise AND of two 256-bit vectors of [8 x float], using
565 /// the one's complement of the values contained in the first source operand.
567 /// \headerfile <x86intrin.h>
569 /// This intrinsic corresponds to the <c> VANDNPS </c> instruction.
572 /// A 256-bit vector of [8 x float] containing the left source operand. The
573 /// one's complement of this value is used in the bitwise AND.
575 /// A 256-bit vector of [8 x float] containing the right source operand.
576 /// \returns A 256-bit vector of [8 x float] containing the bitwise AND of the
577 /// values of the second operand and the one's complement of the first
579 static __inline __m256 __DEFAULT_FN_ATTRS
580 _mm256_andnot_ps(__m256 __a
, __m256 __b
)
582 return (__m256
)(~(__v8su
)__a
& (__v8su
)__b
);
585 /// Performs a bitwise OR of two 256-bit vectors of [4 x double].
587 /// \headerfile <x86intrin.h>
589 /// This intrinsic corresponds to the <c> VORPD </c> instruction.
592 /// A 256-bit vector of [4 x double] containing one of the source operands.
594 /// A 256-bit vector of [4 x double] containing one of the source operands.
595 /// \returns A 256-bit vector of [4 x double] containing the bitwise OR of the
596 /// values between both operands.
597 static __inline __m256d __DEFAULT_FN_ATTRS
598 _mm256_or_pd(__m256d __a
, __m256d __b
)
600 return (__m256d
)((__v4du
)__a
| (__v4du
)__b
);
603 /// Performs a bitwise OR of two 256-bit vectors of [8 x float].
605 /// \headerfile <x86intrin.h>
607 /// This intrinsic corresponds to the <c> VORPS </c> instruction.
610 /// A 256-bit vector of [8 x float] containing one of the source operands.
612 /// A 256-bit vector of [8 x float] containing one of the source operands.
613 /// \returns A 256-bit vector of [8 x float] containing the bitwise OR of the
614 /// values between both operands.
615 static __inline __m256 __DEFAULT_FN_ATTRS
616 _mm256_or_ps(__m256 __a
, __m256 __b
)
618 return (__m256
)((__v8su
)__a
| (__v8su
)__b
);
621 /// Performs a bitwise XOR of two 256-bit vectors of [4 x double].
623 /// \headerfile <x86intrin.h>
625 /// This intrinsic corresponds to the <c> VXORPD </c> instruction.
628 /// A 256-bit vector of [4 x double] containing one of the source operands.
630 /// A 256-bit vector of [4 x double] containing one of the source operands.
631 /// \returns A 256-bit vector of [4 x double] containing the bitwise XOR of the
632 /// values between both operands.
633 static __inline __m256d __DEFAULT_FN_ATTRS
634 _mm256_xor_pd(__m256d __a
, __m256d __b
)
636 return (__m256d
)((__v4du
)__a
^ (__v4du
)__b
);
639 /// Performs a bitwise XOR of two 256-bit vectors of [8 x float].
641 /// \headerfile <x86intrin.h>
643 /// This intrinsic corresponds to the <c> VXORPS </c> instruction.
646 /// A 256-bit vector of [8 x float] containing one of the source operands.
648 /// A 256-bit vector of [8 x float] containing one of the source operands.
649 /// \returns A 256-bit vector of [8 x float] containing the bitwise XOR of the
650 /// values between both operands.
651 static __inline __m256 __DEFAULT_FN_ATTRS
652 _mm256_xor_ps(__m256 __a
, __m256 __b
)
654 return (__m256
)((__v8su
)__a
^ (__v8su
)__b
);
657 /* Horizontal arithmetic */
658 /// Horizontally adds the adjacent pairs of values contained in two
659 /// 256-bit vectors of [4 x double].
661 /// \headerfile <x86intrin.h>
663 /// This intrinsic corresponds to the <c> VHADDPD </c> instruction.
666 /// A 256-bit vector of [4 x double] containing one of the source operands.
667 /// The horizontal sums of the values are returned in the even-indexed
668 /// elements of a vector of [4 x double].
670 /// A 256-bit vector of [4 x double] containing one of the source operands.
671 /// The horizontal sums of the values are returned in the odd-indexed
672 /// elements of a vector of [4 x double].
673 /// \returns A 256-bit vector of [4 x double] containing the horizontal sums of
675 static __inline __m256d __DEFAULT_FN_ATTRS
676 _mm256_hadd_pd(__m256d __a
, __m256d __b
)
678 return (__m256d
)__builtin_ia32_haddpd256((__v4df
)__a
, (__v4df
)__b
);
681 /// Horizontally adds the adjacent pairs of values contained in two
682 /// 256-bit vectors of [8 x float].
684 /// \headerfile <x86intrin.h>
686 /// This intrinsic corresponds to the <c> VHADDPS </c> instruction.
689 /// A 256-bit vector of [8 x float] containing one of the source operands.
690 /// The horizontal sums of the values are returned in the elements with
691 /// index 0, 1, 4, 5 of a vector of [8 x float].
693 /// A 256-bit vector of [8 x float] containing one of the source operands.
694 /// The horizontal sums of the values are returned in the elements with
695 /// index 2, 3, 6, 7 of a vector of [8 x float].
696 /// \returns A 256-bit vector of [8 x float] containing the horizontal sums of
698 static __inline __m256 __DEFAULT_FN_ATTRS
699 _mm256_hadd_ps(__m256 __a
, __m256 __b
)
701 return (__m256
)__builtin_ia32_haddps256((__v8sf
)__a
, (__v8sf
)__b
);
704 /// Horizontally subtracts the adjacent pairs of values contained in two
705 /// 256-bit vectors of [4 x double].
707 /// \headerfile <x86intrin.h>
709 /// This intrinsic corresponds to the <c> VHSUBPD </c> instruction.
712 /// A 256-bit vector of [4 x double] containing one of the source operands.
713 /// The horizontal differences between the values are returned in the
714 /// even-indexed elements of a vector of [4 x double].
716 /// A 256-bit vector of [4 x double] containing one of the source operands.
717 /// The horizontal differences between the values are returned in the
718 /// odd-indexed elements of a vector of [4 x double].
719 /// \returns A 256-bit vector of [4 x double] containing the horizontal
720 /// differences of both operands.
721 static __inline __m256d __DEFAULT_FN_ATTRS
722 _mm256_hsub_pd(__m256d __a
, __m256d __b
)
724 return (__m256d
)__builtin_ia32_hsubpd256((__v4df
)__a
, (__v4df
)__b
);
727 /// Horizontally subtracts the adjacent pairs of values contained in two
728 /// 256-bit vectors of [8 x float].
730 /// \headerfile <x86intrin.h>
732 /// This intrinsic corresponds to the <c> VHSUBPS </c> instruction.
735 /// A 256-bit vector of [8 x float] containing one of the source operands.
736 /// The horizontal differences between the values are returned in the
737 /// elements with index 0, 1, 4, 5 of a vector of [8 x float].
739 /// A 256-bit vector of [8 x float] containing one of the source operands.
740 /// The horizontal differences between the values are returned in the
741 /// elements with index 2, 3, 6, 7 of a vector of [8 x float].
742 /// \returns A 256-bit vector of [8 x float] containing the horizontal
743 /// differences of both operands.
744 static __inline __m256 __DEFAULT_FN_ATTRS
745 _mm256_hsub_ps(__m256 __a
, __m256 __b
)
747 return (__m256
)__builtin_ia32_hsubps256((__v8sf
)__a
, (__v8sf
)__b
);
750 /* Vector permutations */
751 /// Copies the values in a 128-bit vector of [2 x double] as specified
752 /// by the 128-bit integer vector operand.
754 /// \headerfile <x86intrin.h>
756 /// This intrinsic corresponds to the <c> VPERMILPD </c> instruction.
759 /// A 128-bit vector of [2 x double].
761 /// A 128-bit integer vector operand specifying how the values are to be
764 /// 0: Bits [63:0] of the source are copied to bits [63:0] of the returned
766 /// 1: Bits [127:64] of the source are copied to bits [63:0] of the
767 /// returned vector. \n
769 /// 0: Bits [63:0] of the source are copied to bits [127:64] of the
770 /// returned vector. \n
771 /// 1: Bits [127:64] of the source are copied to bits [127:64] of the
773 /// \returns A 128-bit vector of [2 x double] containing the copied values.
774 static __inline __m128d __DEFAULT_FN_ATTRS128
775 _mm_permutevar_pd(__m128d __a
, __m128i __c
)
777 return (__m128d
)__builtin_ia32_vpermilvarpd((__v2df
)__a
, (__v2di
)__c
);
780 /// Copies the values in a 256-bit vector of [4 x double] as specified
781 /// by the 256-bit integer vector operand.
783 /// \headerfile <x86intrin.h>
785 /// This intrinsic corresponds to the <c> VPERMILPD </c> instruction.
788 /// A 256-bit vector of [4 x double].
790 /// A 256-bit integer vector operand specifying how the values are to be
793 /// 0: Bits [63:0] of the source are copied to bits [63:0] of the returned
795 /// 1: Bits [127:64] of the source are copied to bits [63:0] of the
796 /// returned vector. \n
798 /// 0: Bits [63:0] of the source are copied to bits [127:64] of the
799 /// returned vector. \n
800 /// 1: Bits [127:64] of the source are copied to bits [127:64] of the
801 /// returned vector. \n
803 /// 0: Bits [191:128] of the source are copied to bits [191:128] of the
804 /// returned vector. \n
805 /// 1: Bits [255:192] of the source are copied to bits [191:128] of the
806 /// returned vector. \n
808 /// 0: Bits [191:128] of the source are copied to bits [255:192] of the
809 /// returned vector. \n
810 /// 1: Bits [255:192] of the source are copied to bits [255:192] of the
812 /// \returns A 256-bit vector of [4 x double] containing the copied values.
813 static __inline __m256d __DEFAULT_FN_ATTRS
814 _mm256_permutevar_pd(__m256d __a
, __m256i __c
)
816 return (__m256d
)__builtin_ia32_vpermilvarpd256((__v4df
)__a
, (__v4di
)__c
);
819 /// Copies the values stored in a 128-bit vector of [4 x float] as
820 /// specified by the 128-bit integer vector operand.
821 /// \headerfile <x86intrin.h>
823 /// This intrinsic corresponds to the <c> VPERMILPS </c> instruction.
826 /// A 128-bit vector of [4 x float].
828 /// A 128-bit integer vector operand specifying how the values are to be
831 /// 00: Bits [31:0] of the source are copied to bits [31:0] of the
832 /// returned vector. \n
833 /// 01: Bits [63:32] of the source are copied to bits [31:0] of the
834 /// returned vector. \n
835 /// 10: Bits [95:64] of the source are copied to bits [31:0] of the
836 /// returned vector. \n
837 /// 11: Bits [127:96] of the source are copied to bits [31:0] of the
838 /// returned vector. \n
840 /// 00: Bits [31:0] of the source are copied to bits [63:32] of the
841 /// returned vector. \n
842 /// 01: Bits [63:32] of the source are copied to bits [63:32] of the
843 /// returned vector. \n
844 /// 10: Bits [95:64] of the source are copied to bits [63:32] of the
845 /// returned vector. \n
846 /// 11: Bits [127:96] of the source are copied to bits [63:32] of the
847 /// returned vector. \n
849 /// 00: Bits [31:0] of the source are copied to bits [95:64] of the
850 /// returned vector. \n
851 /// 01: Bits [63:32] of the source are copied to bits [95:64] of the
852 /// returned vector. \n
853 /// 10: Bits [95:64] of the source are copied to bits [95:64] of the
854 /// returned vector. \n
855 /// 11: Bits [127:96] of the source are copied to bits [95:64] of the
856 /// returned vector. \n
858 /// 00: Bits [31:0] of the source are copied to bits [127:96] of the
859 /// returned vector. \n
860 /// 01: Bits [63:32] of the source are copied to bits [127:96] of the
861 /// returned vector. \n
862 /// 10: Bits [95:64] of the source are copied to bits [127:96] of the
863 /// returned vector. \n
864 /// 11: Bits [127:96] of the source are copied to bits [127:96] of the
866 /// \returns A 128-bit vector of [4 x float] containing the copied values.
867 static __inline __m128 __DEFAULT_FN_ATTRS128
868 _mm_permutevar_ps(__m128 __a
, __m128i __c
)
870 return (__m128
)__builtin_ia32_vpermilvarps((__v4sf
)__a
, (__v4si
)__c
);
873 /// Copies the values stored in a 256-bit vector of [8 x float] as
874 /// specified by the 256-bit integer vector operand.
876 /// \headerfile <x86intrin.h>
878 /// This intrinsic corresponds to the <c> VPERMILPS </c> instruction.
881 /// A 256-bit vector of [8 x float].
883 /// A 256-bit integer vector operand specifying how the values are to be
886 /// 00: Bits [31:0] of the source are copied to bits [31:0] of the
887 /// returned vector. \n
888 /// 01: Bits [63:32] of the source are copied to bits [31:0] of the
889 /// returned vector. \n
890 /// 10: Bits [95:64] of the source are copied to bits [31:0] of the
891 /// returned vector. \n
892 /// 11: Bits [127:96] of the source are copied to bits [31:0] of the
893 /// returned vector. \n
895 /// 00: Bits [31:0] of the source are copied to bits [63:32] of the
896 /// returned vector. \n
897 /// 01: Bits [63:32] of the source are copied to bits [63:32] of the
898 /// returned vector. \n
899 /// 10: Bits [95:64] of the source are copied to bits [63:32] of the
900 /// returned vector. \n
901 /// 11: Bits [127:96] of the source are copied to bits [63:32] of the
902 /// returned vector. \n
904 /// 00: Bits [31:0] of the source are copied to bits [95:64] of the
905 /// returned vector. \n
906 /// 01: Bits [63:32] of the source are copied to bits [95:64] of the
907 /// returned vector. \n
908 /// 10: Bits [95:64] of the source are copied to bits [95:64] of the
909 /// returned vector. \n
910 /// 11: Bits [127:96] of the source are copied to bits [95:64] of the
911 /// returned vector. \n
913 /// 00: Bits [31:0] of the source are copied to bits [127:96] of the
914 /// returned vector. \n
915 /// 01: Bits [63:32] of the source are copied to bits [127:96] of the
916 /// returned vector. \n
917 /// 10: Bits [95:64] of the source are copied to bits [127:96] of the
918 /// returned vector. \n
919 /// 11: Bits [127:96] of the source are copied to bits [127:96] of the
920 /// returned vector. \n
921 /// Bits [129:128]: \n
922 /// 00: Bits [159:128] of the source are copied to bits [159:128] of the
923 /// returned vector. \n
924 /// 01: Bits [191:160] of the source are copied to bits [159:128] of the
925 /// returned vector. \n
926 /// 10: Bits [223:192] of the source are copied to bits [159:128] of the
927 /// returned vector. \n
928 /// 11: Bits [255:224] of the source are copied to bits [159:128] of the
929 /// returned vector. \n
930 /// Bits [161:160]: \n
931 /// 00: Bits [159:128] of the source are copied to bits [191:160] of the
932 /// returned vector. \n
933 /// 01: Bits [191:160] of the source are copied to bits [191:160] of the
934 /// returned vector. \n
935 /// 10: Bits [223:192] of the source are copied to bits [191:160] of the
936 /// returned vector. \n
937 /// 11: Bits [255:224] of the source are copied to bits [191:160] of the
938 /// returned vector. \n
939 /// Bits [193:192]: \n
940 /// 00: Bits [159:128] of the source are copied to bits [223:192] of the
941 /// returned vector. \n
942 /// 01: Bits [191:160] of the source are copied to bits [223:192] of the
943 /// returned vector. \n
944 /// 10: Bits [223:192] of the source are copied to bits [223:192] of the
945 /// returned vector. \n
946 /// 11: Bits [255:224] of the source are copied to bits [223:192] of the
947 /// returned vector. \n
948 /// Bits [225:224]: \n
949 /// 00: Bits [159:128] of the source are copied to bits [255:224] of the
950 /// returned vector. \n
951 /// 01: Bits [191:160] of the source are copied to bits [255:224] of the
952 /// returned vector. \n
953 /// 10: Bits [223:192] of the source are copied to bits [255:224] of the
954 /// returned vector. \n
955 /// 11: Bits [255:224] of the source are copied to bits [255:224] of the
957 /// \returns A 256-bit vector of [8 x float] containing the copied values.
958 static __inline __m256 __DEFAULT_FN_ATTRS
959 _mm256_permutevar_ps(__m256 __a
, __m256i __c
)
961 return (__m256
)__builtin_ia32_vpermilvarps256((__v8sf
)__a
, (__v8si
)__c
);
964 /// Copies the values in a 128-bit vector of [2 x double] as specified
965 /// by the immediate integer operand.
967 /// \headerfile <x86intrin.h>
970 /// __m128d _mm_permute_pd(__m128d A, const int C);
973 /// This intrinsic corresponds to the <c> VPERMILPD </c> instruction.
976 /// A 128-bit vector of [2 x double].
978 /// An immediate integer operand specifying how the values are to be
981 /// 0: Bits [63:0] of the source are copied to bits [63:0] of the returned
983 /// 1: Bits [127:64] of the source are copied to bits [63:0] of the
984 /// returned vector. \n
986 /// 0: Bits [63:0] of the source are copied to bits [127:64] of the
987 /// returned vector. \n
988 /// 1: Bits [127:64] of the source are copied to bits [127:64] of the
990 /// \returns A 128-bit vector of [2 x double] containing the copied values.
991 #define _mm_permute_pd(A, C) \
992 ((__m128d)__builtin_ia32_vpermilpd((__v2df)(__m128d)(A), (int)(C)))
994 /// Copies the values in a 256-bit vector of [4 x double] as specified by
995 /// the immediate integer operand.
997 /// \headerfile <x86intrin.h>
1000 /// __m256d _mm256_permute_pd(__m256d A, const int C);
1003 /// This intrinsic corresponds to the <c> VPERMILPD </c> instruction.
1006 /// A 256-bit vector of [4 x double].
1008 /// An immediate integer operand specifying how the values are to be
1011 /// 0: Bits [63:0] of the source are copied to bits [63:0] of the returned
1013 /// 1: Bits [127:64] of the source are copied to bits [63:0] of the
1014 /// returned vector. \n
1016 /// 0: Bits [63:0] of the source are copied to bits [127:64] of the
1017 /// returned vector. \n
1018 /// 1: Bits [127:64] of the source are copied to bits [127:64] of the
1019 /// returned vector. \n
1021 /// 0: Bits [191:128] of the source are copied to bits [191:128] of the
1022 /// returned vector. \n
1023 /// 1: Bits [255:192] of the source are copied to bits [191:128] of the
1024 /// returned vector. \n
1026 /// 0: Bits [191:128] of the source are copied to bits [255:192] of the
1027 /// returned vector. \n
1028 /// 1: Bits [255:192] of the source are copied to bits [255:192] of the
1029 /// returned vector.
1030 /// \returns A 256-bit vector of [4 x double] containing the copied values.
1031 #define _mm256_permute_pd(A, C) \
1032 ((__m256d)__builtin_ia32_vpermilpd256((__v4df)(__m256d)(A), (int)(C)))
1034 /// Copies the values in a 128-bit vector of [4 x float] as specified by
1035 /// the immediate integer operand.
1037 /// \headerfile <x86intrin.h>
1040 /// __m128 _mm_permute_ps(__m128 A, const int C);
1043 /// This intrinsic corresponds to the <c> VPERMILPS </c> instruction.
1046 /// A 128-bit vector of [4 x float].
1048 /// An immediate integer operand specifying how the values are to be
1051 /// 00: Bits [31:0] of the source are copied to bits [31:0] of the
1052 /// returned vector. \n
1053 /// 01: Bits [63:32] of the source are copied to bits [31:0] of the
1054 /// returned vector. \n
1055 /// 10: Bits [95:64] of the source are copied to bits [31:0] of the
1056 /// returned vector. \n
1057 /// 11: Bits [127:96] of the source are copied to bits [31:0] of the
1058 /// returned vector. \n
1060 /// 00: Bits [31:0] of the source are copied to bits [63:32] of the
1061 /// returned vector. \n
1062 /// 01: Bits [63:32] of the source are copied to bits [63:32] of the
1063 /// returned vector. \n
1064 /// 10: Bits [95:64] of the source are copied to bits [63:32] of the
1065 /// returned vector. \n
1066 /// 11: Bits [127:96] of the source are copied to bits [63:32] of the
1067 /// returned vector. \n
1069 /// 00: Bits [31:0] of the source are copied to bits [95:64] of the
1070 /// returned vector. \n
1071 /// 01: Bits [63:32] of the source are copied to bits [95:64] of the
1072 /// returned vector. \n
1073 /// 10: Bits [95:64] of the source are copied to bits [95:64] of the
1074 /// returned vector. \n
1075 /// 11: Bits [127:96] of the source are copied to bits [95:64] of the
1076 /// returned vector. \n
1078 /// 00: Bits [31:0] of the source are copied to bits [127:96] of the
1079 /// returned vector. \n
1080 /// 01: Bits [63:32] of the source are copied to bits [127:96] of the
1081 /// returned vector. \n
1082 /// 10: Bits [95:64] of the source are copied to bits [127:96] of the
1083 /// returned vector. \n
1084 /// 11: Bits [127:96] of the source are copied to bits [127:96] of the
1085 /// returned vector.
1086 /// \returns A 128-bit vector of [4 x float] containing the copied values.
1087 #define _mm_permute_ps(A, C) \
1088 ((__m128)__builtin_ia32_vpermilps((__v4sf)(__m128)(A), (int)(C)))
1090 /// Copies the values in a 256-bit vector of [8 x float] as specified by
1091 /// the immediate integer operand.
1093 /// \headerfile <x86intrin.h>
1096 /// __m256 _mm256_permute_ps(__m256 A, const int C);
1099 /// This intrinsic corresponds to the <c> VPERMILPS </c> instruction.
1102 /// A 256-bit vector of [8 x float].
1104 /// An immediate integer operand specifying how the values are to be
1107 /// 00: Bits [31:0] of the source are copied to bits [31:0] of the
1108 /// returned vector. \n
1109 /// 01: Bits [63:32] of the source are copied to bits [31:0] of the
1110 /// returned vector. \n
1111 /// 10: Bits [95:64] of the source are copied to bits [31:0] of the
1112 /// returned vector. \n
1113 /// 11: Bits [127:96] of the source are copied to bits [31:0] of the
1114 /// returned vector. \n
1116 /// 00: Bits [31:0] of the source are copied to bits [63:32] of the
1117 /// returned vector. \n
1118 /// 01: Bits [63:32] of the source are copied to bits [63:32] of the
1119 /// returned vector. \n
1120 /// 10: Bits [95:64] of the source are copied to bits [63:32] of the
1121 /// returned vector. \n
1122 /// 11: Bits [127:96] of the source are copied to bits [63:32] of the
1123 /// returned vector. \n
1125 /// 00: Bits [31:0] of the source are copied to bits [95:64] of the
1126 /// returned vector. \n
1127 /// 01: Bits [63:32] of the source are copied to bits [95:64] of the
1128 /// returned vector. \n
1129 /// 10: Bits [95:64] of the source are copied to bits [95:64] of the
1130 /// returned vector. \n
1131 /// 11: Bits [127:96] of the source are copied to bits [95:64] of the
1132 /// returned vector. \n
1134 /// 00: Bits [31:0] of the source are copied to bits [127:96] of the
1135 /// returned vector. \n
1136 /// 01: Bits [63:32] of the source are copied to bits [127:96] of the
1137 /// returned vector. \n
1138 /// 10: Bits [95:64] of the source are copied to bits [127:96] of the
1139 /// returned vector. \n
1140 /// 11: Bits [127:96] of the source are copied to bits [127:96] of the
1141 /// returned vector. \n
1143 /// 00: Bits [159:128] of the source are copied to bits [159:128] of the
1144 /// returned vector. \n
1145 /// 01: Bits [191:160] of the source are copied to bits [159:128] of the
1146 /// returned vector. \n
1147 /// 10: Bits [223:192] of the source are copied to bits [159:128] of the
1148 /// returned vector. \n
1149 /// 11: Bits [255:224] of the source are copied to bits [159:128] of the
1150 /// returned vector. \n
1152 /// 00: Bits [159:128] of the source are copied to bits [191:160] of the
1153 /// returned vector. \n
1154 /// 01: Bits [191:160] of the source are copied to bits [191:160] of the
1155 /// returned vector. \n
1156 /// 10: Bits [223:192] of the source are copied to bits [191:160] of the
1157 /// returned vector. \n
1158 /// 11: Bits [255:224] of the source are copied to bits [191:160] of the
1159 /// returned vector. \n
1161 /// 00: Bits [159:128] of the source are copied to bits [223:192] of the
1162 /// returned vector. \n
1163 /// 01: Bits [191:160] of the source are copied to bits [223:192] of the
1164 /// returned vector. \n
1165 /// 10: Bits [223:192] of the source are copied to bits [223:192] of the
1166 /// returned vector. \n
1167 /// 11: Bits [255:224] of the source are copied to bits [223:192] of the
1168 /// returned vector. \n
1170 /// 00: Bits [159:128] of the source are copied to bits [255:224] of the
1171 /// returned vector. \n
1172 /// 01: Bits [191:160] of the source are copied to bits [255:224] of the
1173 /// returned vector. \n
1174 /// 10: Bits [223:192] of the source are copied to bits [255:224] of the
1175 /// returned vector. \n
1176 /// 11: Bits [255:224] of the source are copied to bits [255:224] of the
1177 /// returned vector.
1178 /// \returns A 256-bit vector of [8 x float] containing the copied values.
1179 #define _mm256_permute_ps(A, C) \
1180 ((__m256)__builtin_ia32_vpermilps256((__v8sf)(__m256)(A), (int)(C)))
1182 /// Permutes 128-bit data values stored in two 256-bit vectors of
1183 /// [4 x double], as specified by the immediate integer operand.
1185 /// \headerfile <x86intrin.h>
1188 /// __m256d _mm256_permute2f128_pd(__m256d V1, __m256d V2, const int M);
1191 /// This intrinsic corresponds to the <c> VPERM2F128 </c> instruction.
1194 /// A 256-bit vector of [4 x double].
1196 /// A 256-bit vector of [4 x double.
1198 /// An immediate integer operand specifying how the values are to be
1201 /// 00: Bits [127:0] of operand \a V1 are copied to bits [127:0] of the
1203 /// 01: Bits [255:128] of operand \a V1 are copied to bits [127:0] of the
1205 /// 10: Bits [127:0] of operand \a V2 are copied to bits [127:0] of the
1207 /// 11: Bits [255:128] of operand \a V2 are copied to bits [127:0] of the
1210 /// 00: Bits [127:0] of operand \a V1 are copied to bits [255:128] of the
1212 /// 01: Bits [255:128] of operand \a V1 are copied to bits [255:128] of the
1214 /// 10: Bits [127:0] of operand \a V2 are copied to bits [255:128] of the
1216 /// 11: Bits [255:128] of operand \a V2 are copied to bits [255:128] of the
1218 /// \returns A 256-bit vector of [4 x double] containing the copied values.
1219 #define _mm256_permute2f128_pd(V1, V2, M) \
1220 ((__m256d)__builtin_ia32_vperm2f128_pd256((__v4df)(__m256d)(V1), \
1221 (__v4df)(__m256d)(V2), (int)(M)))
1223 /// Permutes 128-bit data values stored in two 256-bit vectors of
1224 /// [8 x float], as specified by the immediate integer operand.
1226 /// \headerfile <x86intrin.h>
1229 /// __m256 _mm256_permute2f128_ps(__m256 V1, __m256 V2, const int M);
1232 /// This intrinsic corresponds to the <c> VPERM2F128 </c> instruction.
1235 /// A 256-bit vector of [8 x float].
1237 /// A 256-bit vector of [8 x float].
1239 /// An immediate integer operand specifying how the values are to be
1242 /// 00: Bits [127:0] of operand \a V1 are copied to bits [127:0] of the
1244 /// 01: Bits [255:128] of operand \a V1 are copied to bits [127:0] of the
1246 /// 10: Bits [127:0] of operand \a V2 are copied to bits [127:0] of the
1248 /// 11: Bits [255:128] of operand \a V2 are copied to bits [127:0] of the
1251 /// 00: Bits [127:0] of operand \a V1 are copied to bits [255:128] of the
1253 /// 01: Bits [255:128] of operand \a V1 are copied to bits [255:128] of the
1255 /// 10: Bits [127:0] of operand \a V2 are copied to bits [255:128] of the
1257 /// 11: Bits [255:128] of operand \a V2 are copied to bits [255:128] of the
1259 /// \returns A 256-bit vector of [8 x float] containing the copied values.
1260 #define _mm256_permute2f128_ps(V1, V2, M) \
1261 ((__m256)__builtin_ia32_vperm2f128_ps256((__v8sf)(__m256)(V1), \
1262 (__v8sf)(__m256)(V2), (int)(M)))
1264 /// Permutes 128-bit data values stored in two 256-bit integer vectors,
1265 /// as specified by the immediate integer operand.
1267 /// \headerfile <x86intrin.h>
1270 /// __m256i _mm256_permute2f128_si256(__m256i V1, __m256i V2, const int M);
1273 /// This intrinsic corresponds to the <c> VPERM2F128 </c> instruction.
1276 /// A 256-bit integer vector.
1278 /// A 256-bit integer vector.
1280 /// An immediate integer operand specifying how the values are to be copied.
1282 /// 00: Bits [127:0] of operand \a V1 are copied to bits [127:0] of the
1284 /// 01: Bits [255:128] of operand \a V1 are copied to bits [127:0] of the
1286 /// 10: Bits [127:0] of operand \a V2 are copied to bits [127:0] of the
1288 /// 11: Bits [255:128] of operand \a V2 are copied to bits [127:0] of the
1291 /// 00: Bits [127:0] of operand \a V1 are copied to bits [255:128] of the
1293 /// 01: Bits [255:128] of operand \a V1 are copied to bits [255:128] of the
1295 /// 10: Bits [127:0] of operand \a V2 are copied to bits [255:128] of the
1297 /// 11: Bits [255:128] of operand \a V2 are copied to bits [255:128] of the
1299 /// \returns A 256-bit integer vector containing the copied values.
1300 #define _mm256_permute2f128_si256(V1, V2, M) \
1301 ((__m256i)__builtin_ia32_vperm2f128_si256((__v8si)(__m256i)(V1), \
1302 (__v8si)(__m256i)(V2), (int)(M)))
1305 /// Merges 64-bit double-precision data values stored in either of the
1306 /// two 256-bit vectors of [4 x double], as specified by the immediate
1307 /// integer operand.
1309 /// \headerfile <x86intrin.h>
1312 /// __m256d _mm256_blend_pd(__m256d V1, __m256d V2, const int M);
1315 /// This intrinsic corresponds to the <c> VBLENDPD </c> instruction.
1318 /// A 256-bit vector of [4 x double].
1320 /// A 256-bit vector of [4 x double].
1322 /// An immediate integer operand, with mask bits [3:0] specifying how the
1323 /// values are to be copied. The position of the mask bit corresponds to the
1324 /// index of a copied value. When a mask bit is 0, the corresponding 64-bit
1325 /// element in operand \a V1 is copied to the same position in the
1326 /// destination. When a mask bit is 1, the corresponding 64-bit element in
1327 /// operand \a V2 is copied to the same position in the destination.
1328 /// \returns A 256-bit vector of [4 x double] containing the copied values.
1329 #define _mm256_blend_pd(V1, V2, M) \
1330 ((__m256d)__builtin_ia32_blendpd256((__v4df)(__m256d)(V1), \
1331 (__v4df)(__m256d)(V2), (int)(M)))
1333 /// Merges 32-bit single-precision data values stored in either of the
1334 /// two 256-bit vectors of [8 x float], as specified by the immediate
1335 /// integer operand.
1337 /// \headerfile <x86intrin.h>
1340 /// __m256 _mm256_blend_ps(__m256 V1, __m256 V2, const int M);
1343 /// This intrinsic corresponds to the <c> VBLENDPS </c> instruction.
1346 /// A 256-bit vector of [8 x float].
1348 /// A 256-bit vector of [8 x float].
1350 /// An immediate integer operand, with mask bits [7:0] specifying how the
1351 /// values are to be copied. The position of the mask bit corresponds to the
1352 /// index of a copied value. When a mask bit is 0, the corresponding 32-bit
1353 /// element in operand \a V1 is copied to the same position in the
1354 /// destination. When a mask bit is 1, the corresponding 32-bit element in
1355 /// operand \a V2 is copied to the same position in the destination.
1356 /// \returns A 256-bit vector of [8 x float] containing the copied values.
1357 #define _mm256_blend_ps(V1, V2, M) \
1358 ((__m256)__builtin_ia32_blendps256((__v8sf)(__m256)(V1), \
1359 (__v8sf)(__m256)(V2), (int)(M)))
1361 /// Merges 64-bit double-precision data values stored in either of the
1362 /// two 256-bit vectors of [4 x double], as specified by the 256-bit vector
1365 /// \headerfile <x86intrin.h>
1367 /// This intrinsic corresponds to the <c> VBLENDVPD </c> instruction.
1370 /// A 256-bit vector of [4 x double].
1372 /// A 256-bit vector of [4 x double].
1374 /// A 256-bit vector operand, with mask bits 255, 191, 127, and 63 specifying
1375 /// how the values are to be copied. The position of the mask bit corresponds
1376 /// to the most significant bit of a copied value. When a mask bit is 0, the
1377 /// corresponding 64-bit element in operand \a __a is copied to the same
1378 /// position in the destination. When a mask bit is 1, the corresponding
1379 /// 64-bit element in operand \a __b is copied to the same position in the
1381 /// \returns A 256-bit vector of [4 x double] containing the copied values.
1382 static __inline __m256d __DEFAULT_FN_ATTRS
1383 _mm256_blendv_pd(__m256d __a
, __m256d __b
, __m256d __c
)
1385 return (__m256d
)__builtin_ia32_blendvpd256(
1386 (__v4df
)__a
, (__v4df
)__b
, (__v4df
)__c
);
1389 /// Merges 32-bit single-precision data values stored in either of the
1390 /// two 256-bit vectors of [8 x float], as specified by the 256-bit vector
1393 /// \headerfile <x86intrin.h>
1395 /// This intrinsic corresponds to the <c> VBLENDVPS </c> instruction.
1398 /// A 256-bit vector of [8 x float].
1400 /// A 256-bit vector of [8 x float].
1402 /// A 256-bit vector operand, with mask bits 255, 223, 191, 159, 127, 95, 63,
1403 /// and 31 specifying how the values are to be copied. The position of the
1404 /// mask bit corresponds to the most significant bit of a copied value. When
1405 /// a mask bit is 0, the corresponding 32-bit element in operand \a __a is
1406 /// copied to the same position in the destination. When a mask bit is 1, the
1407 /// corresponding 32-bit element in operand \a __b is copied to the same
1408 /// position in the destination.
1409 /// \returns A 256-bit vector of [8 x float] containing the copied values.
1410 static __inline __m256 __DEFAULT_FN_ATTRS
1411 _mm256_blendv_ps(__m256 __a
, __m256 __b
, __m256 __c
)
1413 return (__m256
)__builtin_ia32_blendvps256(
1414 (__v8sf
)__a
, (__v8sf
)__b
, (__v8sf
)__c
);
1417 /* Vector Dot Product */
1418 /// Computes two dot products in parallel, using the lower and upper
1419 /// halves of two [8 x float] vectors as input to the two computations, and
1420 /// returning the two dot products in the lower and upper halves of the
1421 /// [8 x float] result.
1423 /// The immediate integer operand controls which input elements will
1424 /// contribute to the dot product, and where the final results are returned.
1425 /// In general, for each dot product, the four corresponding elements of the
1426 /// input vectors are multiplied; the first two and second two products are
1427 /// summed, then the two sums are added to form the final result.
1429 /// \headerfile <x86intrin.h>
1432 /// __m256 _mm256_dp_ps(__m256 V1, __m256 V2, const int M);
1435 /// This intrinsic corresponds to the <c> VDPPS </c> instruction.
1438 /// A vector of [8 x float] values, treated as two [4 x float] vectors.
1440 /// A vector of [8 x float] values, treated as two [4 x float] vectors.
1442 /// An immediate integer argument. Bits [7:4] determine which elements of
1443 /// the input vectors are used, with bit [4] corresponding to the lowest
1444 /// element and bit [7] corresponding to the highest element of each [4 x
1445 /// float] subvector. If a bit is set, the corresponding elements from the
1446 /// two input vectors are used as an input for dot product; otherwise that
1447 /// input is treated as zero. Bits [3:0] determine which elements of the
1448 /// result will receive a copy of the final dot product, with bit [0]
1449 /// corresponding to the lowest element and bit [3] corresponding to the
1450 /// highest element of each [4 x float] subvector. If a bit is set, the dot
1451 /// product is returned in the corresponding element; otherwise that element
1452 /// is set to zero. The bitmask is applied in the same way to each of the
1453 /// two parallel dot product computations.
1454 /// \returns A 256-bit vector of [8 x float] containing the two dot products.
1455 #define _mm256_dp_ps(V1, V2, M) \
1456 ((__m256)__builtin_ia32_dpps256((__v8sf)(__m256)(V1), \
1457 (__v8sf)(__m256)(V2), (M)))
1459 /* Vector shuffle */
1460 /// Selects 8 float values from the 256-bit operands of [8 x float], as
1461 /// specified by the immediate value operand.
1463 /// The four selected elements in each operand are copied to the destination
1464 /// according to the bits specified in the immediate operand. The selected
1465 /// elements from the first 256-bit operand are copied to bits [63:0] and
1466 /// bits [191:128] of the destination, and the selected elements from the
1467 /// second 256-bit operand are copied to bits [127:64] and bits [255:192] of
1468 /// the destination. For example, if bits [7:0] of the immediate operand
1469 /// contain a value of 0xFF, the 256-bit destination vector would contain the
1470 /// following values: b[7], b[7], a[7], a[7], b[3], b[3], a[3], a[3].
1472 /// \headerfile <x86intrin.h>
1475 /// __m256 _mm256_shuffle_ps(__m256 a, __m256 b, const int mask);
1478 /// This intrinsic corresponds to the <c> VSHUFPS </c> instruction.
1481 /// A 256-bit vector of [8 x float]. The four selected elements in this
1482 /// operand are copied to bits [63:0] and bits [191:128] in the destination,
1483 /// according to the bits specified in the immediate operand.
1485 /// A 256-bit vector of [8 x float]. The four selected elements in this
1486 /// operand are copied to bits [127:64] and bits [255:192] in the
1487 /// destination, according to the bits specified in the immediate operand.
1489 /// An immediate value containing an 8-bit value specifying which elements to
1490 /// copy from \a a and \a b \n.
1491 /// Bits [3:0] specify the values copied from operand \a a. \n
1492 /// Bits [7:4] specify the values copied from operand \a b. \n
1493 /// The destinations within the 256-bit destination are assigned values as
1494 /// follows, according to the bit value assignments described below: \n
1495 /// Bits [1:0] are used to assign values to bits [31:0] and [159:128] in the
1497 /// Bits [3:2] are used to assign values to bits [63:32] and [191:160] in the
1499 /// Bits [5:4] are used to assign values to bits [95:64] and [223:192] in the
1501 /// Bits [7:6] are used to assign values to bits [127:96] and [255:224] in
1502 /// the destination. \n
1503 /// Bit value assignments: \n
1504 /// 00: Bits [31:0] and [159:128] are copied from the selected operand. \n
1505 /// 01: Bits [63:32] and [191:160] are copied from the selected operand. \n
1506 /// 10: Bits [95:64] and [223:192] are copied from the selected operand. \n
1507 /// 11: Bits [127:96] and [255:224] are copied from the selected operand. \n
1508 /// Note: To generate a mask, you can use the \c _MM_SHUFFLE macro.
1509 /// <c>_MM_SHUFFLE(b6, b4, b2, b0)</c> can create an 8-bit mask of the form
1510 /// <c>[b6, b4, b2, b0]</c>.
1511 /// \returns A 256-bit vector of [8 x float] containing the shuffled values.
1512 #define _mm256_shuffle_ps(a, b, mask) \
1513 ((__m256)__builtin_ia32_shufps256((__v8sf)(__m256)(a), \
1514 (__v8sf)(__m256)(b), (int)(mask)))
1516 /// Selects four double-precision values from the 256-bit operands of
1517 /// [4 x double], as specified by the immediate value operand.
1519 /// The selected elements from the first 256-bit operand are copied to bits
1520 /// [63:0] and bits [191:128] in the destination, and the selected elements
1521 /// from the second 256-bit operand are copied to bits [127:64] and bits
1522 /// [255:192] in the destination. For example, if bits [3:0] of the immediate
1523 /// operand contain a value of 0xF, the 256-bit destination vector would
1524 /// contain the following values: b[3], a[3], b[1], a[1].
1526 /// \headerfile <x86intrin.h>
1529 /// __m256d _mm256_shuffle_pd(__m256d a, __m256d b, const int mask);
1532 /// This intrinsic corresponds to the <c> VSHUFPD </c> instruction.
1535 /// A 256-bit vector of [4 x double].
1537 /// A 256-bit vector of [4 x double].
1539 /// An immediate value containing 8-bit values specifying which elements to
1540 /// copy from \a a and \a b: \n
1541 /// Bit [0]=0: Bits [63:0] are copied from \a a to bits [63:0] of the
1543 /// Bit [0]=1: Bits [127:64] are copied from \a a to bits [63:0] of the
1545 /// Bit [1]=0: Bits [63:0] are copied from \a b to bits [127:64] of the
1547 /// Bit [1]=1: Bits [127:64] are copied from \a b to bits [127:64] of the
1549 /// Bit [2]=0: Bits [191:128] are copied from \a a to bits [191:128] of the
1551 /// Bit [2]=1: Bits [255:192] are copied from \a a to bits [191:128] of the
1553 /// Bit [3]=0: Bits [191:128] are copied from \a b to bits [255:192] of the
1555 /// Bit [3]=1: Bits [255:192] are copied from \a b to bits [255:192] of the
1557 /// \returns A 256-bit vector of [4 x double] containing the shuffled values.
1558 #define _mm256_shuffle_pd(a, b, mask) \
1559 ((__m256d)__builtin_ia32_shufpd256((__v4df)(__m256d)(a), \
1560 (__v4df)(__m256d)(b), (int)(mask)))
1563 #define _CMP_EQ_OQ 0x00 /* Equal (ordered, non-signaling) */
1564 #define _CMP_LT_OS 0x01 /* Less-than (ordered, signaling) */
1565 #define _CMP_LE_OS 0x02 /* Less-than-or-equal (ordered, signaling) */
1566 #define _CMP_UNORD_Q 0x03 /* Unordered (non-signaling) */
1567 #define _CMP_NEQ_UQ 0x04 /* Not-equal (unordered, non-signaling) */
1568 #define _CMP_NLT_US 0x05 /* Not-less-than (unordered, signaling) */
1569 #define _CMP_NLE_US 0x06 /* Not-less-than-or-equal (unordered, signaling) */
1570 #define _CMP_ORD_Q 0x07 /* Ordered (non-signaling) */
1571 #define _CMP_EQ_UQ 0x08 /* Equal (unordered, non-signaling) */
1572 #define _CMP_NGE_US 0x09 /* Not-greater-than-or-equal (unordered, signaling) */
1573 #define _CMP_NGT_US 0x0a /* Not-greater-than (unordered, signaling) */
1574 #define _CMP_FALSE_OQ 0x0b /* False (ordered, non-signaling) */
1575 #define _CMP_NEQ_OQ 0x0c /* Not-equal (ordered, non-signaling) */
1576 #define _CMP_GE_OS 0x0d /* Greater-than-or-equal (ordered, signaling) */
1577 #define _CMP_GT_OS 0x0e /* Greater-than (ordered, signaling) */
1578 #define _CMP_TRUE_UQ 0x0f /* True (unordered, non-signaling) */
1579 #define _CMP_EQ_OS 0x10 /* Equal (ordered, signaling) */
1580 #define _CMP_LT_OQ 0x11 /* Less-than (ordered, non-signaling) */
1581 #define _CMP_LE_OQ 0x12 /* Less-than-or-equal (ordered, non-signaling) */
1582 #define _CMP_UNORD_S 0x13 /* Unordered (signaling) */
1583 #define _CMP_NEQ_US 0x14 /* Not-equal (unordered, signaling) */
1584 #define _CMP_NLT_UQ 0x15 /* Not-less-than (unordered, non-signaling) */
1585 #define _CMP_NLE_UQ 0x16 /* Not-less-than-or-equal (unordered, non-signaling) */
1586 #define _CMP_ORD_S 0x17 /* Ordered (signaling) */
1587 #define _CMP_EQ_US 0x18 /* Equal (unordered, signaling) */
1588 #define _CMP_NGE_UQ 0x19 /* Not-greater-than-or-equal (unordered, non-signaling) */
1589 #define _CMP_NGT_UQ 0x1a /* Not-greater-than (unordered, non-signaling) */
1590 #define _CMP_FALSE_OS 0x1b /* False (ordered, signaling) */
1591 #define _CMP_NEQ_OS 0x1c /* Not-equal (ordered, signaling) */
1592 #define _CMP_GE_OQ 0x1d /* Greater-than-or-equal (ordered, non-signaling) */
1593 #define _CMP_GT_OQ 0x1e /* Greater-than (ordered, non-signaling) */
1594 #define _CMP_TRUE_US 0x1f /* True (unordered, signaling) */
1596 /// Compares each of the corresponding double-precision values of two
1597 /// 128-bit vectors of [2 x double], using the operation specified by the
1598 /// immediate integer operand.
1600 /// Returns a [2 x double] vector consisting of two doubles corresponding to
1601 /// the two comparison results: zero if the comparison is false, and all 1's
1602 /// if the comparison is true.
1604 /// \headerfile <x86intrin.h>
1607 /// __m128d _mm_cmp_pd(__m128d a, __m128d b, const int c);
1610 /// This intrinsic corresponds to the <c> VCMPPD </c> instruction.
1613 /// A 128-bit vector of [2 x double].
1615 /// A 128-bit vector of [2 x double].
1617 /// An immediate integer operand, with bits [4:0] specifying which comparison
1618 /// operation to use: \n
1619 /// 0x00: Equal (ordered, non-signaling) \n
1620 /// 0x01: Less-than (ordered, signaling) \n
1621 /// 0x02: Less-than-or-equal (ordered, signaling) \n
1622 /// 0x03: Unordered (non-signaling) \n
1623 /// 0x04: Not-equal (unordered, non-signaling) \n
1624 /// 0x05: Not-less-than (unordered, signaling) \n
1625 /// 0x06: Not-less-than-or-equal (unordered, signaling) \n
1626 /// 0x07: Ordered (non-signaling) \n
1627 /// 0x08: Equal (unordered, non-signaling) \n
1628 /// 0x09: Not-greater-than-or-equal (unordered, signaling) \n
1629 /// 0x0A: Not-greater-than (unordered, signaling) \n
1630 /// 0x0B: False (ordered, non-signaling) \n
1631 /// 0x0C: Not-equal (ordered, non-signaling) \n
1632 /// 0x0D: Greater-than-or-equal (ordered, signaling) \n
1633 /// 0x0E: Greater-than (ordered, signaling) \n
1634 /// 0x0F: True (unordered, non-signaling) \n
1635 /// 0x10: Equal (ordered, signaling) \n
1636 /// 0x11: Less-than (ordered, non-signaling) \n
1637 /// 0x12: Less-than-or-equal (ordered, non-signaling) \n
1638 /// 0x13: Unordered (signaling) \n
1639 /// 0x14: Not-equal (unordered, signaling) \n
1640 /// 0x15: Not-less-than (unordered, non-signaling) \n
1641 /// 0x16: Not-less-than-or-equal (unordered, non-signaling) \n
1642 /// 0x17: Ordered (signaling) \n
1643 /// 0x18: Equal (unordered, signaling) \n
1644 /// 0x19: Not-greater-than-or-equal (unordered, non-signaling) \n
1645 /// 0x1A: Not-greater-than (unordered, non-signaling) \n
1646 /// 0x1B: False (ordered, signaling) \n
1647 /// 0x1C: Not-equal (ordered, signaling) \n
1648 /// 0x1D: Greater-than-or-equal (ordered, non-signaling) \n
1649 /// 0x1E: Greater-than (ordered, non-signaling) \n
1650 /// 0x1F: True (unordered, signaling)
1651 /// \returns A 128-bit vector of [2 x double] containing the comparison results.
1652 #define _mm_cmp_pd(a, b, c) \
1653 ((__m128d)__builtin_ia32_cmppd((__v2df)(__m128d)(a), \
1654 (__v2df)(__m128d)(b), (c)))
1656 /// Compares each of the corresponding values of two 128-bit vectors of
1657 /// [4 x float], using the operation specified by the immediate integer
1660 /// Returns a [4 x float] vector consisting of four floats corresponding to
1661 /// the four comparison results: zero if the comparison is false, and all 1's
1662 /// if the comparison is true.
1664 /// \headerfile <x86intrin.h>
1667 /// __m128 _mm_cmp_ps(__m128 a, __m128 b, const int c);
1670 /// This intrinsic corresponds to the <c> VCMPPS </c> instruction.
1673 /// A 128-bit vector of [4 x float].
1675 /// A 128-bit vector of [4 x float].
1677 /// An immediate integer operand, with bits [4:0] specifying which comparison
1678 /// operation to use: \n
1679 /// 0x00: Equal (ordered, non-signaling) \n
1680 /// 0x01: Less-than (ordered, signaling) \n
1681 /// 0x02: Less-than-or-equal (ordered, signaling) \n
1682 /// 0x03: Unordered (non-signaling) \n
1683 /// 0x04: Not-equal (unordered, non-signaling) \n
1684 /// 0x05: Not-less-than (unordered, signaling) \n
1685 /// 0x06: Not-less-than-or-equal (unordered, signaling) \n
1686 /// 0x07: Ordered (non-signaling) \n
1687 /// 0x08: Equal (unordered, non-signaling) \n
1688 /// 0x09: Not-greater-than-or-equal (unordered, signaling) \n
1689 /// 0x0A: Not-greater-than (unordered, signaling) \n
1690 /// 0x0B: False (ordered, non-signaling) \n
1691 /// 0x0C: Not-equal (ordered, non-signaling) \n
1692 /// 0x0D: Greater-than-or-equal (ordered, signaling) \n
1693 /// 0x0E: Greater-than (ordered, signaling) \n
1694 /// 0x0F: True (unordered, non-signaling) \n
1695 /// 0x10: Equal (ordered, signaling) \n
1696 /// 0x11: Less-than (ordered, non-signaling) \n
1697 /// 0x12: Less-than-or-equal (ordered, non-signaling) \n
1698 /// 0x13: Unordered (signaling) \n
1699 /// 0x14: Not-equal (unordered, signaling) \n
1700 /// 0x15: Not-less-than (unordered, non-signaling) \n
1701 /// 0x16: Not-less-than-or-equal (unordered, non-signaling) \n
1702 /// 0x17: Ordered (signaling) \n
1703 /// 0x18: Equal (unordered, signaling) \n
1704 /// 0x19: Not-greater-than-or-equal (unordered, non-signaling) \n
1705 /// 0x1A: Not-greater-than (unordered, non-signaling) \n
1706 /// 0x1B: False (ordered, signaling) \n
1707 /// 0x1C: Not-equal (ordered, signaling) \n
1708 /// 0x1D: Greater-than-or-equal (ordered, non-signaling) \n
1709 /// 0x1E: Greater-than (ordered, non-signaling) \n
1710 /// 0x1F: True (unordered, signaling)
1711 /// \returns A 128-bit vector of [4 x float] containing the comparison results.
1712 #define _mm_cmp_ps(a, b, c) \
1713 ((__m128)__builtin_ia32_cmpps((__v4sf)(__m128)(a), \
1714 (__v4sf)(__m128)(b), (c)))
1716 /// Compares each of the corresponding double-precision values of two
1717 /// 256-bit vectors of [4 x double], using the operation specified by the
1718 /// immediate integer operand.
1720 /// Returns a [4 x double] vector consisting of four doubles corresponding to
1721 /// the four comparison results: zero if the comparison is false, and all 1's
1722 /// if the comparison is true.
1724 /// \headerfile <x86intrin.h>
1727 /// __m256d _mm256_cmp_pd(__m256d a, __m256d b, const int c);
1730 /// This intrinsic corresponds to the <c> VCMPPD </c> instruction.
1733 /// A 256-bit vector of [4 x double].
1735 /// A 256-bit vector of [4 x double].
1737 /// An immediate integer operand, with bits [4:0] specifying which comparison
1738 /// operation to use: \n
1739 /// 0x00: Equal (ordered, non-signaling) \n
1740 /// 0x01: Less-than (ordered, signaling) \n
1741 /// 0x02: Less-than-or-equal (ordered, signaling) \n
1742 /// 0x03: Unordered (non-signaling) \n
1743 /// 0x04: Not-equal (unordered, non-signaling) \n
1744 /// 0x05: Not-less-than (unordered, signaling) \n
1745 /// 0x06: Not-less-than-or-equal (unordered, signaling) \n
1746 /// 0x07: Ordered (non-signaling) \n
1747 /// 0x08: Equal (unordered, non-signaling) \n
1748 /// 0x09: Not-greater-than-or-equal (unordered, signaling) \n
1749 /// 0x0A: Not-greater-than (unordered, signaling) \n
1750 /// 0x0B: False (ordered, non-signaling) \n
1751 /// 0x0C: Not-equal (ordered, non-signaling) \n
1752 /// 0x0D: Greater-than-or-equal (ordered, signaling) \n
1753 /// 0x0E: Greater-than (ordered, signaling) \n
1754 /// 0x0F: True (unordered, non-signaling) \n
1755 /// 0x10: Equal (ordered, signaling) \n
1756 /// 0x11: Less-than (ordered, non-signaling) \n
1757 /// 0x12: Less-than-or-equal (ordered, non-signaling) \n
1758 /// 0x13: Unordered (signaling) \n
1759 /// 0x14: Not-equal (unordered, signaling) \n
1760 /// 0x15: Not-less-than (unordered, non-signaling) \n
1761 /// 0x16: Not-less-than-or-equal (unordered, non-signaling) \n
1762 /// 0x17: Ordered (signaling) \n
1763 /// 0x18: Equal (unordered, signaling) \n
1764 /// 0x19: Not-greater-than-or-equal (unordered, non-signaling) \n
1765 /// 0x1A: Not-greater-than (unordered, non-signaling) \n
1766 /// 0x1B: False (ordered, signaling) \n
1767 /// 0x1C: Not-equal (ordered, signaling) \n
1768 /// 0x1D: Greater-than-or-equal (ordered, non-signaling) \n
1769 /// 0x1E: Greater-than (ordered, non-signaling) \n
1770 /// 0x1F: True (unordered, signaling)
1771 /// \returns A 256-bit vector of [4 x double] containing the comparison results.
1772 #define _mm256_cmp_pd(a, b, c) \
1773 ((__m256d)__builtin_ia32_cmppd256((__v4df)(__m256d)(a), \
1774 (__v4df)(__m256d)(b), (c)))
1776 /// Compares each of the corresponding values of two 256-bit vectors of
1777 /// [8 x float], using the operation specified by the immediate integer
1780 /// Returns a [8 x float] vector consisting of eight floats corresponding to
1781 /// the eight comparison results: zero if the comparison is false, and all
1782 /// 1's if the comparison is true.
1784 /// \headerfile <x86intrin.h>
1787 /// __m256 _mm256_cmp_ps(__m256 a, __m256 b, const int c);
1790 /// This intrinsic corresponds to the <c> VCMPPS </c> instruction.
1793 /// A 256-bit vector of [8 x float].
1795 /// A 256-bit vector of [8 x float].
1797 /// An immediate integer operand, with bits [4:0] specifying which comparison
1798 /// operation to use: \n
1799 /// 0x00: Equal (ordered, non-signaling) \n
1800 /// 0x01: Less-than (ordered, signaling) \n
1801 /// 0x02: Less-than-or-equal (ordered, signaling) \n
1802 /// 0x03: Unordered (non-signaling) \n
1803 /// 0x04: Not-equal (unordered, non-signaling) \n
1804 /// 0x05: Not-less-than (unordered, signaling) \n
1805 /// 0x06: Not-less-than-or-equal (unordered, signaling) \n
1806 /// 0x07: Ordered (non-signaling) \n
1807 /// 0x08: Equal (unordered, non-signaling) \n
1808 /// 0x09: Not-greater-than-or-equal (unordered, signaling) \n
1809 /// 0x0A: Not-greater-than (unordered, signaling) \n
1810 /// 0x0B: False (ordered, non-signaling) \n
1811 /// 0x0C: Not-equal (ordered, non-signaling) \n
1812 /// 0x0D: Greater-than-or-equal (ordered, signaling) \n
1813 /// 0x0E: Greater-than (ordered, signaling) \n
1814 /// 0x0F: True (unordered, non-signaling) \n
1815 /// 0x10: Equal (ordered, signaling) \n
1816 /// 0x11: Less-than (ordered, non-signaling) \n
1817 /// 0x12: Less-than-or-equal (ordered, non-signaling) \n
1818 /// 0x13: Unordered (signaling) \n
1819 /// 0x14: Not-equal (unordered, signaling) \n
1820 /// 0x15: Not-less-than (unordered, non-signaling) \n
1821 /// 0x16: Not-less-than-or-equal (unordered, non-signaling) \n
1822 /// 0x17: Ordered (signaling) \n
1823 /// 0x18: Equal (unordered, signaling) \n
1824 /// 0x19: Not-greater-than-or-equal (unordered, non-signaling) \n
1825 /// 0x1A: Not-greater-than (unordered, non-signaling) \n
1826 /// 0x1B: False (ordered, signaling) \n
1827 /// 0x1C: Not-equal (ordered, signaling) \n
1828 /// 0x1D: Greater-than-or-equal (ordered, non-signaling) \n
1829 /// 0x1E: Greater-than (ordered, non-signaling) \n
1830 /// 0x1F: True (unordered, signaling)
1831 /// \returns A 256-bit vector of [8 x float] containing the comparison results.
1832 #define _mm256_cmp_ps(a, b, c) \
1833 ((__m256)__builtin_ia32_cmpps256((__v8sf)(__m256)(a), \
1834 (__v8sf)(__m256)(b), (c)))
1836 /// Compares each of the corresponding scalar double-precision values of
1837 /// two 128-bit vectors of [2 x double], using the operation specified by the
1838 /// immediate integer operand.
1840 /// If the result is true, all 64 bits of the destination vector are set;
1841 /// otherwise they are cleared.
1843 /// \headerfile <x86intrin.h>
1846 /// __m128d _mm_cmp_sd(__m128d a, __m128d b, const int c);
1849 /// This intrinsic corresponds to the <c> VCMPSD </c> instruction.
1852 /// A 128-bit vector of [2 x double].
1854 /// A 128-bit vector of [2 x double].
1856 /// An immediate integer operand, with bits [4:0] specifying which comparison
1857 /// operation to use: \n
1858 /// 0x00: Equal (ordered, non-signaling) \n
1859 /// 0x01: Less-than (ordered, signaling) \n
1860 /// 0x02: Less-than-or-equal (ordered, signaling) \n
1861 /// 0x03: Unordered (non-signaling) \n
1862 /// 0x04: Not-equal (unordered, non-signaling) \n
1863 /// 0x05: Not-less-than (unordered, signaling) \n
1864 /// 0x06: Not-less-than-or-equal (unordered, signaling) \n
1865 /// 0x07: Ordered (non-signaling) \n
1866 /// 0x08: Equal (unordered, non-signaling) \n
1867 /// 0x09: Not-greater-than-or-equal (unordered, signaling) \n
1868 /// 0x0A: Not-greater-than (unordered, signaling) \n
1869 /// 0x0B: False (ordered, non-signaling) \n
1870 /// 0x0C: Not-equal (ordered, non-signaling) \n
1871 /// 0x0D: Greater-than-or-equal (ordered, signaling) \n
1872 /// 0x0E: Greater-than (ordered, signaling) \n
1873 /// 0x0F: True (unordered, non-signaling) \n
1874 /// 0x10: Equal (ordered, signaling) \n
1875 /// 0x11: Less-than (ordered, non-signaling) \n
1876 /// 0x12: Less-than-or-equal (ordered, non-signaling) \n
1877 /// 0x13: Unordered (signaling) \n
1878 /// 0x14: Not-equal (unordered, signaling) \n
1879 /// 0x15: Not-less-than (unordered, non-signaling) \n
1880 /// 0x16: Not-less-than-or-equal (unordered, non-signaling) \n
1881 /// 0x17: Ordered (signaling) \n
1882 /// 0x18: Equal (unordered, signaling) \n
1883 /// 0x19: Not-greater-than-or-equal (unordered, non-signaling) \n
1884 /// 0x1A: Not-greater-than (unordered, non-signaling) \n
1885 /// 0x1B: False (ordered, signaling) \n
1886 /// 0x1C: Not-equal (ordered, signaling) \n
1887 /// 0x1D: Greater-than-or-equal (ordered, non-signaling) \n
1888 /// 0x1E: Greater-than (ordered, non-signaling) \n
1889 /// 0x1F: True (unordered, signaling)
1890 /// \returns A 128-bit vector of [2 x double] containing the comparison results.
1891 #define _mm_cmp_sd(a, b, c) \
1892 ((__m128d)__builtin_ia32_cmpsd((__v2df)(__m128d)(a), \
1893 (__v2df)(__m128d)(b), (c)))
1895 /// Compares each of the corresponding scalar values of two 128-bit
1896 /// vectors of [4 x float], using the operation specified by the immediate
1897 /// integer operand.
1899 /// If the result is true, all 32 bits of the destination vector are set;
1900 /// otherwise they are cleared.
1902 /// \headerfile <x86intrin.h>
1905 /// __m128 _mm_cmp_ss(__m128 a, __m128 b, const int c);
1908 /// This intrinsic corresponds to the <c> VCMPSS </c> instruction.
1911 /// A 128-bit vector of [4 x float].
1913 /// A 128-bit vector of [4 x float].
1915 /// An immediate integer operand, with bits [4:0] specifying which comparison
1916 /// operation to use: \n
1917 /// 0x00: Equal (ordered, non-signaling) \n
1918 /// 0x01: Less-than (ordered, signaling) \n
1919 /// 0x02: Less-than-or-equal (ordered, signaling) \n
1920 /// 0x03: Unordered (non-signaling) \n
1921 /// 0x04: Not-equal (unordered, non-signaling) \n
1922 /// 0x05: Not-less-than (unordered, signaling) \n
1923 /// 0x06: Not-less-than-or-equal (unordered, signaling) \n
1924 /// 0x07: Ordered (non-signaling) \n
1925 /// 0x08: Equal (unordered, non-signaling) \n
1926 /// 0x09: Not-greater-than-or-equal (unordered, signaling) \n
1927 /// 0x0A: Not-greater-than (unordered, signaling) \n
1928 /// 0x0B: False (ordered, non-signaling) \n
1929 /// 0x0C: Not-equal (ordered, non-signaling) \n
1930 /// 0x0D: Greater-than-or-equal (ordered, signaling) \n
1931 /// 0x0E: Greater-than (ordered, signaling) \n
1932 /// 0x0F: True (unordered, non-signaling) \n
1933 /// 0x10: Equal (ordered, signaling) \n
1934 /// 0x11: Less-than (ordered, non-signaling) \n
1935 /// 0x12: Less-than-or-equal (ordered, non-signaling) \n
1936 /// 0x13: Unordered (signaling) \n
1937 /// 0x14: Not-equal (unordered, signaling) \n
1938 /// 0x15: Not-less-than (unordered, non-signaling) \n
1939 /// 0x16: Not-less-than-or-equal (unordered, non-signaling) \n
1940 /// 0x17: Ordered (signaling) \n
1941 /// 0x18: Equal (unordered, signaling) \n
1942 /// 0x19: Not-greater-than-or-equal (unordered, non-signaling) \n
1943 /// 0x1A: Not-greater-than (unordered, non-signaling) \n
1944 /// 0x1B: False (ordered, signaling) \n
1945 /// 0x1C: Not-equal (ordered, signaling) \n
1946 /// 0x1D: Greater-than-or-equal (ordered, non-signaling) \n
1947 /// 0x1E: Greater-than (ordered, non-signaling) \n
1948 /// 0x1F: True (unordered, signaling)
1949 /// \returns A 128-bit vector of [4 x float] containing the comparison results.
1950 #define _mm_cmp_ss(a, b, c) \
1951 ((__m128)__builtin_ia32_cmpss((__v4sf)(__m128)(a), \
1952 (__v4sf)(__m128)(b), (c)))
1954 /// Takes a [8 x i32] vector and returns the vector element value
1955 /// indexed by the immediate constant operand.
1957 /// \headerfile <x86intrin.h>
1960 /// int _mm256_extract_epi32(__m256i X, const int N);
1963 /// This intrinsic corresponds to the <c> VEXTRACTF128+COMPOSITE </c>
1967 /// A 256-bit vector of [8 x i32].
1969 /// An immediate integer operand with bits [2:0] determining which vector
1970 /// element is extracted and returned.
1971 /// \returns A 32-bit integer containing the extracted 32 bits of extended
1973 #define _mm256_extract_epi32(X, N) \
1974 ((int)__builtin_ia32_vec_ext_v8si((__v8si)(__m256i)(X), (int)(N)))
1976 /// Takes a [16 x i16] vector and returns the vector element value
1977 /// indexed by the immediate constant operand.
1979 /// \headerfile <x86intrin.h>
1982 /// int _mm256_extract_epi16(__m256i X, const int N);
1985 /// This intrinsic corresponds to the <c> VEXTRACTF128+COMPOSITE </c>
1989 /// A 256-bit integer vector of [16 x i16].
1991 /// An immediate integer operand with bits [3:0] determining which vector
1992 /// element is extracted and returned.
1993 /// \returns A 32-bit integer containing the extracted 16 bits of zero extended
1995 #define _mm256_extract_epi16(X, N) \
1996 ((int)(unsigned short)__builtin_ia32_vec_ext_v16hi((__v16hi)(__m256i)(X), \
1999 /// Takes a [32 x i8] vector and returns the vector element value
2000 /// indexed by the immediate constant operand.
2002 /// \headerfile <x86intrin.h>
2005 /// int _mm256_extract_epi8(__m256i X, const int N);
2008 /// This intrinsic corresponds to the <c> VEXTRACTF128+COMPOSITE </c>
2012 /// A 256-bit integer vector of [32 x i8].
2014 /// An immediate integer operand with bits [4:0] determining which vector
2015 /// element is extracted and returned.
2016 /// \returns A 32-bit integer containing the extracted 8 bits of zero extended
2018 #define _mm256_extract_epi8(X, N) \
2019 ((int)(unsigned char)__builtin_ia32_vec_ext_v32qi((__v32qi)(__m256i)(X), \
2023 /// Takes a [4 x i64] vector and returns the vector element value
2024 /// indexed by the immediate constant operand.
2026 /// \headerfile <x86intrin.h>
2029 /// long long _mm256_extract_epi64(__m256i X, const int N);
2032 /// This intrinsic corresponds to the <c> VEXTRACTF128+COMPOSITE </c>
2036 /// A 256-bit integer vector of [4 x i64].
2038 /// An immediate integer operand with bits [1:0] determining which vector
2039 /// element is extracted and returned.
2040 /// \returns A 64-bit integer containing the extracted 64 bits of extended
2042 #define _mm256_extract_epi64(X, N) \
2043 ((long long)__builtin_ia32_vec_ext_v4di((__v4di)(__m256i)(X), (int)(N)))
2046 /// Takes a [8 x i32] vector and replaces the vector element value
2047 /// indexed by the immediate constant operand by a new value. Returns the
2048 /// modified vector.
2050 /// \headerfile <x86intrin.h>
2053 /// __m256i _mm256_insert_epi32(__m256i X, int I, const int N);
2056 /// This intrinsic corresponds to the <c> VINSERTF128+COMPOSITE </c>
2060 /// A vector of [8 x i32] to be used by the insert operation.
2062 /// An integer value. The replacement value for the insert operation.
2064 /// An immediate integer specifying the index of the vector element to be
2066 /// \returns A copy of vector \a X, after replacing its element indexed by
2068 #define _mm256_insert_epi32(X, I, N) \
2069 ((__m256i)__builtin_ia32_vec_set_v8si((__v8si)(__m256i)(X), \
2070 (int)(I), (int)(N)))
2073 /// Takes a [16 x i16] vector and replaces the vector element value
2074 /// indexed by the immediate constant operand with a new value. Returns the
2075 /// modified vector.
2077 /// \headerfile <x86intrin.h>
2080 /// __m256i _mm256_insert_epi16(__m256i X, int I, const int N);
2083 /// This intrinsic corresponds to the <c> VINSERTF128+COMPOSITE </c>
2087 /// A vector of [16 x i16] to be used by the insert operation.
2089 /// An i16 integer value. The replacement value for the insert operation.
2091 /// An immediate integer specifying the index of the vector element to be
2093 /// \returns A copy of vector \a X, after replacing its element indexed by
2095 #define _mm256_insert_epi16(X, I, N) \
2096 ((__m256i)__builtin_ia32_vec_set_v16hi((__v16hi)(__m256i)(X), \
2097 (int)(I), (int)(N)))
2099 /// Takes a [32 x i8] vector and replaces the vector element value
2100 /// indexed by the immediate constant operand with a new value. Returns the
2101 /// modified vector.
2103 /// \headerfile <x86intrin.h>
2106 /// __m256i _mm256_insert_epi8(__m256i X, int I, const int N);
2109 /// This intrinsic corresponds to the <c> VINSERTF128+COMPOSITE </c>
2113 /// A vector of [32 x i8] to be used by the insert operation.
2115 /// An i8 integer value. The replacement value for the insert operation.
2117 /// An immediate integer specifying the index of the vector element to be
2119 /// \returns A copy of vector \a X, after replacing its element indexed by
2121 #define _mm256_insert_epi8(X, I, N) \
2122 ((__m256i)__builtin_ia32_vec_set_v32qi((__v32qi)(__m256i)(X), \
2123 (int)(I), (int)(N)))
2126 /// Takes a [4 x i64] vector and replaces the vector element value
2127 /// indexed by the immediate constant operand with a new value. Returns the
2128 /// modified vector.
2130 /// \headerfile <x86intrin.h>
2133 /// __m256i _mm256_insert_epi64(__m256i X, int I, const int N);
2136 /// This intrinsic corresponds to the <c> VINSERTF128+COMPOSITE </c>
2140 /// A vector of [4 x i64] to be used by the insert operation.
2142 /// A 64-bit integer value. The replacement value for the insert operation.
2144 /// An immediate integer specifying the index of the vector element to be
2146 /// \returns A copy of vector \a X, after replacing its element indexed by
2148 #define _mm256_insert_epi64(X, I, N) \
2149 ((__m256i)__builtin_ia32_vec_set_v4di((__v4di)(__m256i)(X), \
2150 (long long)(I), (int)(N)))
2154 /// Converts a vector of [4 x i32] into a vector of [4 x double].
2156 /// \headerfile <x86intrin.h>
2158 /// This intrinsic corresponds to the <c> VCVTDQ2PD </c> instruction.
2161 /// A 128-bit integer vector of [4 x i32].
2162 /// \returns A 256-bit vector of [4 x double] containing the converted values.
2163 static __inline __m256d __DEFAULT_FN_ATTRS
2164 _mm256_cvtepi32_pd(__m128i __a
)
2166 return (__m256d
)__builtin_convertvector((__v4si
)__a
, __v4df
);
2169 /// Converts a vector of [8 x i32] into a vector of [8 x float].
2171 /// \headerfile <x86intrin.h>
2173 /// This intrinsic corresponds to the <c> VCVTDQ2PS </c> instruction.
2176 /// A 256-bit integer vector.
2177 /// \returns A 256-bit vector of [8 x float] containing the converted values.
2178 static __inline __m256 __DEFAULT_FN_ATTRS
2179 _mm256_cvtepi32_ps(__m256i __a
)
2181 return (__m256
)__builtin_convertvector((__v8si
)__a
, __v8sf
);
2184 /// Converts a 256-bit vector of [4 x double] into a 128-bit vector of
2187 /// \headerfile <x86intrin.h>
2189 /// This intrinsic corresponds to the <c> VCVTPD2PS </c> instruction.
2192 /// A 256-bit vector of [4 x double].
2193 /// \returns A 128-bit vector of [4 x float] containing the converted values.
2194 static __inline __m128 __DEFAULT_FN_ATTRS
2195 _mm256_cvtpd_ps(__m256d __a
)
2197 return (__m128
)__builtin_ia32_cvtpd2ps256((__v4df
) __a
);
2200 /// Converts a vector of [8 x float] into a vector of [8 x i32].
2202 /// \headerfile <x86intrin.h>
2204 /// This intrinsic corresponds to the <c> VCVTPS2DQ </c> instruction.
2207 /// A 256-bit vector of [8 x float].
2208 /// \returns A 256-bit integer vector containing the converted values.
2209 static __inline __m256i __DEFAULT_FN_ATTRS
2210 _mm256_cvtps_epi32(__m256 __a
)
2212 return (__m256i
)__builtin_ia32_cvtps2dq256((__v8sf
) __a
);
2215 /// Converts a 128-bit vector of [4 x float] into a 256-bit vector of [4
2218 /// \headerfile <x86intrin.h>
2220 /// This intrinsic corresponds to the <c> VCVTPS2PD </c> instruction.
2223 /// A 128-bit vector of [4 x float].
2224 /// \returns A 256-bit vector of [4 x double] containing the converted values.
2225 static __inline __m256d __DEFAULT_FN_ATTRS
2226 _mm256_cvtps_pd(__m128 __a
)
2228 return (__m256d
)__builtin_convertvector((__v4sf
)__a
, __v4df
);
2231 /// Converts a 256-bit vector of [4 x double] into a 128-bit vector of [4
2232 /// x i32], truncating the result by rounding towards zero when it is
2235 /// \headerfile <x86intrin.h>
2237 /// This intrinsic corresponds to the <c> VCVTTPD2DQ </c> instruction.
2240 /// A 256-bit vector of [4 x double].
2241 /// \returns A 128-bit integer vector containing the converted values.
2242 static __inline __m128i __DEFAULT_FN_ATTRS
2243 _mm256_cvttpd_epi32(__m256d __a
)
2245 return (__m128i
)__builtin_ia32_cvttpd2dq256((__v4df
) __a
);
2248 /// Converts a 256-bit vector of [4 x double] into a 128-bit vector of [4
2249 /// x i32]. When a conversion is inexact, the value returned is rounded
2250 /// according to the rounding control bits in the MXCSR register.
2252 /// \headerfile <x86intrin.h>
2254 /// This intrinsic corresponds to the <c> VCVTPD2DQ </c> instruction.
2257 /// A 256-bit vector of [4 x double].
2258 /// \returns A 128-bit integer vector containing the converted values.
2259 static __inline __m128i __DEFAULT_FN_ATTRS
2260 _mm256_cvtpd_epi32(__m256d __a
)
2262 return (__m128i
)__builtin_ia32_cvtpd2dq256((__v4df
) __a
);
2265 /// Converts a vector of [8 x float] into a vector of [8 x i32],
2266 /// truncating the result by rounding towards zero when it is inexact.
2268 /// \headerfile <x86intrin.h>
2270 /// This intrinsic corresponds to the <c> VCVTTPS2DQ </c> instruction.
2273 /// A 256-bit vector of [8 x float].
2274 /// \returns A 256-bit integer vector containing the converted values.
2275 static __inline __m256i __DEFAULT_FN_ATTRS
2276 _mm256_cvttps_epi32(__m256 __a
)
2278 return (__m256i
)__builtin_ia32_cvttps2dq256((__v8sf
) __a
);
2281 /// Returns the first element of the input vector of [4 x double].
2283 /// \headerfile <x86intrin.h>
2285 /// This intrinsic is a utility function and does not correspond to a specific
2289 /// A 256-bit vector of [4 x double].
2290 /// \returns A 64 bit double containing the first element of the input vector.
2291 static __inline
double __DEFAULT_FN_ATTRS
2292 _mm256_cvtsd_f64(__m256d __a
)
2297 /// Returns the first element of the input vector of [8 x i32].
2299 /// \headerfile <x86intrin.h>
2301 /// This intrinsic is a utility function and does not correspond to a specific
2305 /// A 256-bit vector of [8 x i32].
2306 /// \returns A 32 bit integer containing the first element of the input vector.
2307 static __inline
int __DEFAULT_FN_ATTRS
2308 _mm256_cvtsi256_si32(__m256i __a
)
2310 __v8si __b
= (__v8si
)__a
;
2314 /// Returns the first element of the input vector of [8 x float].
2316 /// \headerfile <x86intrin.h>
2318 /// This intrinsic is a utility function and does not correspond to a specific
2322 /// A 256-bit vector of [8 x float].
2323 /// \returns A 32 bit float containing the first element of the input vector.
2324 static __inline
float __DEFAULT_FN_ATTRS
2325 _mm256_cvtss_f32(__m256 __a
)
2330 /* Vector replicate */
2331 /// Moves and duplicates odd-indexed values from a 256-bit vector of
2332 /// [8 x float] to float values in a 256-bit vector of [8 x float].
2334 /// \headerfile <x86intrin.h>
2336 /// This intrinsic corresponds to the <c> VMOVSHDUP </c> instruction.
2339 /// A 256-bit vector of [8 x float]. \n
2340 /// Bits [255:224] of \a __a are written to bits [255:224] and [223:192] of
2341 /// the return value. \n
2342 /// Bits [191:160] of \a __a are written to bits [191:160] and [159:128] of
2343 /// the return value. \n
2344 /// Bits [127:96] of \a __a are written to bits [127:96] and [95:64] of the
2345 /// return value. \n
2346 /// Bits [63:32] of \a __a are written to bits [63:32] and [31:0] of the
2348 /// \returns A 256-bit vector of [8 x float] containing the moved and duplicated
2350 static __inline __m256 __DEFAULT_FN_ATTRS
2351 _mm256_movehdup_ps(__m256 __a
)
2353 return __builtin_shufflevector((__v8sf
)__a
, (__v8sf
)__a
, 1, 1, 3, 3, 5, 5, 7, 7);
2356 /// Moves and duplicates even-indexed values from a 256-bit vector of
2357 /// [8 x float] to float values in a 256-bit vector of [8 x float].
2359 /// \headerfile <x86intrin.h>
2361 /// This intrinsic corresponds to the <c> VMOVSLDUP </c> instruction.
2364 /// A 256-bit vector of [8 x float]. \n
2365 /// Bits [223:192] of \a __a are written to bits [255:224] and [223:192] of
2366 /// the return value. \n
2367 /// Bits [159:128] of \a __a are written to bits [191:160] and [159:128] of
2368 /// the return value. \n
2369 /// Bits [95:64] of \a __a are written to bits [127:96] and [95:64] of the
2370 /// return value. \n
2371 /// Bits [31:0] of \a __a are written to bits [63:32] and [31:0] of the
2373 /// \returns A 256-bit vector of [8 x float] containing the moved and duplicated
2375 static __inline __m256 __DEFAULT_FN_ATTRS
2376 _mm256_moveldup_ps(__m256 __a
)
2378 return __builtin_shufflevector((__v8sf
)__a
, (__v8sf
)__a
, 0, 0, 2, 2, 4, 4, 6, 6);
2381 /// Moves and duplicates double-precision floating point values from a
2382 /// 256-bit vector of [4 x double] to double-precision values in a 256-bit
2383 /// vector of [4 x double].
2385 /// \headerfile <x86intrin.h>
2387 /// This intrinsic corresponds to the <c> VMOVDDUP </c> instruction.
2390 /// A 256-bit vector of [4 x double]. \n
2391 /// Bits [63:0] of \a __a are written to bits [127:64] and [63:0] of the
2392 /// return value. \n
2393 /// Bits [191:128] of \a __a are written to bits [255:192] and [191:128] of
2394 /// the return value.
2395 /// \returns A 256-bit vector of [4 x double] containing the moved and
2396 /// duplicated values.
2397 static __inline __m256d __DEFAULT_FN_ATTRS
2398 _mm256_movedup_pd(__m256d __a
)
2400 return __builtin_shufflevector((__v4df
)__a
, (__v4df
)__a
, 0, 0, 2, 2);
2403 /* Unpack and Interleave */
2404 /// Unpacks the odd-indexed vector elements from two 256-bit vectors of
2405 /// [4 x double] and interleaves them into a 256-bit vector of [4 x double].
2407 /// \headerfile <x86intrin.h>
2409 /// This intrinsic corresponds to the <c> VUNPCKHPD </c> instruction.
2412 /// A 256-bit floating-point vector of [4 x double]. \n
2413 /// Bits [127:64] are written to bits [63:0] of the return value. \n
2414 /// Bits [255:192] are written to bits [191:128] of the return value. \n
2416 /// A 256-bit floating-point vector of [4 x double]. \n
2417 /// Bits [127:64] are written to bits [127:64] of the return value. \n
2418 /// Bits [255:192] are written to bits [255:192] of the return value. \n
2419 /// \returns A 256-bit vector of [4 x double] containing the interleaved values.
2420 static __inline __m256d __DEFAULT_FN_ATTRS
2421 _mm256_unpackhi_pd(__m256d __a
, __m256d __b
)
2423 return __builtin_shufflevector((__v4df
)__a
, (__v4df
)__b
, 1, 5, 1+2, 5+2);
2426 /// Unpacks the even-indexed vector elements from two 256-bit vectors of
2427 /// [4 x double] and interleaves them into a 256-bit vector of [4 x double].
2429 /// \headerfile <x86intrin.h>
2431 /// This intrinsic corresponds to the <c> VUNPCKLPD </c> instruction.
2434 /// A 256-bit floating-point vector of [4 x double]. \n
2435 /// Bits [63:0] are written to bits [63:0] of the return value. \n
2436 /// Bits [191:128] are written to bits [191:128] of the return value.
2438 /// A 256-bit floating-point vector of [4 x double]. \n
2439 /// Bits [63:0] are written to bits [127:64] of the return value. \n
2440 /// Bits [191:128] are written to bits [255:192] of the return value. \n
2441 /// \returns A 256-bit vector of [4 x double] containing the interleaved values.
2442 static __inline __m256d __DEFAULT_FN_ATTRS
2443 _mm256_unpacklo_pd(__m256d __a
, __m256d __b
)
2445 return __builtin_shufflevector((__v4df
)__a
, (__v4df
)__b
, 0, 4, 0+2, 4+2);
2448 /// Unpacks the 32-bit vector elements 2, 3, 6 and 7 from each of the
2449 /// two 256-bit vectors of [8 x float] and interleaves them into a 256-bit
2450 /// vector of [8 x float].
2452 /// \headerfile <x86intrin.h>
2454 /// This intrinsic corresponds to the <c> VUNPCKHPS </c> instruction.
2457 /// A 256-bit vector of [8 x float]. \n
2458 /// Bits [95:64] are written to bits [31:0] of the return value. \n
2459 /// Bits [127:96] are written to bits [95:64] of the return value. \n
2460 /// Bits [223:192] are written to bits [159:128] of the return value. \n
2461 /// Bits [255:224] are written to bits [223:192] of the return value.
2463 /// A 256-bit vector of [8 x float]. \n
2464 /// Bits [95:64] are written to bits [63:32] of the return value. \n
2465 /// Bits [127:96] are written to bits [127:96] of the return value. \n
2466 /// Bits [223:192] are written to bits [191:160] of the return value. \n
2467 /// Bits [255:224] are written to bits [255:224] of the return value.
2468 /// \returns A 256-bit vector of [8 x float] containing the interleaved values.
2469 static __inline __m256 __DEFAULT_FN_ATTRS
2470 _mm256_unpackhi_ps(__m256 __a
, __m256 __b
)
2472 return __builtin_shufflevector((__v8sf
)__a
, (__v8sf
)__b
, 2, 10, 2+1, 10+1, 6, 14, 6+1, 14+1);
2475 /// Unpacks the 32-bit vector elements 0, 1, 4 and 5 from each of the
2476 /// two 256-bit vectors of [8 x float] and interleaves them into a 256-bit
2477 /// vector of [8 x float].
2479 /// \headerfile <x86intrin.h>
2481 /// This intrinsic corresponds to the <c> VUNPCKLPS </c> instruction.
2484 /// A 256-bit vector of [8 x float]. \n
2485 /// Bits [31:0] are written to bits [31:0] of the return value. \n
2486 /// Bits [63:32] are written to bits [95:64] of the return value. \n
2487 /// Bits [159:128] are written to bits [159:128] of the return value. \n
2488 /// Bits [191:160] are written to bits [223:192] of the return value.
2490 /// A 256-bit vector of [8 x float]. \n
2491 /// Bits [31:0] are written to bits [63:32] of the return value. \n
2492 /// Bits [63:32] are written to bits [127:96] of the return value. \n
2493 /// Bits [159:128] are written to bits [191:160] of the return value. \n
2494 /// Bits [191:160] are written to bits [255:224] of the return value.
2495 /// \returns A 256-bit vector of [8 x float] containing the interleaved values.
2496 static __inline __m256 __DEFAULT_FN_ATTRS
2497 _mm256_unpacklo_ps(__m256 __a
, __m256 __b
)
2499 return __builtin_shufflevector((__v8sf
)__a
, (__v8sf
)__b
, 0, 8, 0+1, 8+1, 4, 12, 4+1, 12+1);
2503 /// Given two 128-bit floating-point vectors of [2 x double], perform an
2504 /// element-by-element comparison of the double-precision element in the
2505 /// first source vector and the corresponding element in the second source
2508 /// The EFLAGS register is updated as follows: \n
2509 /// If there is at least one pair of double-precision elements where the
2510 /// sign-bits of both elements are 1, the ZF flag is set to 0. Otherwise the
2511 /// ZF flag is set to 1. \n
2512 /// If there is at least one pair of double-precision elements where the
2513 /// sign-bit of the first element is 0 and the sign-bit of the second element
2514 /// is 1, the CF flag is set to 0. Otherwise the CF flag is set to 1. \n
2515 /// This intrinsic returns the value of the ZF flag.
2517 /// \headerfile <x86intrin.h>
2519 /// This intrinsic corresponds to the <c> VTESTPD </c> instruction.
2522 /// A 128-bit vector of [2 x double].
2524 /// A 128-bit vector of [2 x double].
2525 /// \returns the ZF flag in the EFLAGS register.
2526 static __inline
int __DEFAULT_FN_ATTRS128
2527 _mm_testz_pd(__m128d __a
, __m128d __b
)
2529 return __builtin_ia32_vtestzpd((__v2df
)__a
, (__v2df
)__b
);
2532 /// Given two 128-bit floating-point vectors of [2 x double], perform an
2533 /// element-by-element comparison of the double-precision element in the
2534 /// first source vector and the corresponding element in the second source
2537 /// The EFLAGS register is updated as follows: \n
2538 /// If there is at least one pair of double-precision elements where the
2539 /// sign-bits of both elements are 1, the ZF flag is set to 0. Otherwise the
2540 /// ZF flag is set to 1. \n
2541 /// If there is at least one pair of double-precision elements where the
2542 /// sign-bit of the first element is 0 and the sign-bit of the second element
2543 /// is 1, the CF flag is set to 0. Otherwise the CF flag is set to 1. \n
2544 /// This intrinsic returns the value of the CF flag.
2546 /// \headerfile <x86intrin.h>
2548 /// This intrinsic corresponds to the <c> VTESTPD </c> instruction.
2551 /// A 128-bit vector of [2 x double].
2553 /// A 128-bit vector of [2 x double].
2554 /// \returns the CF flag in the EFLAGS register.
2555 static __inline
int __DEFAULT_FN_ATTRS128
2556 _mm_testc_pd(__m128d __a
, __m128d __b
)
2558 return __builtin_ia32_vtestcpd((__v2df
)__a
, (__v2df
)__b
);
2561 /// Given two 128-bit floating-point vectors of [2 x double], perform an
2562 /// element-by-element comparison of the double-precision element in the
2563 /// first source vector and the corresponding element in the second source
2566 /// The EFLAGS register is updated as follows: \n
2567 /// If there is at least one pair of double-precision elements where the
2568 /// sign-bits of both elements are 1, the ZF flag is set to 0. Otherwise the
2569 /// ZF flag is set to 1. \n
2570 /// If there is at least one pair of double-precision elements where the
2571 /// sign-bit of the first element is 0 and the sign-bit of the second element
2572 /// is 1, the CF flag is set to 0. Otherwise the CF flag is set to 1. \n
2573 /// This intrinsic returns 1 if both the ZF and CF flags are set to 0,
2574 /// otherwise it returns 0.
2576 /// \headerfile <x86intrin.h>
2578 /// This intrinsic corresponds to the <c> VTESTPD </c> instruction.
2581 /// A 128-bit vector of [2 x double].
2583 /// A 128-bit vector of [2 x double].
2584 /// \returns 1 if both the ZF and CF flags are set to 0, otherwise returns 0.
2585 static __inline
int __DEFAULT_FN_ATTRS128
2586 _mm_testnzc_pd(__m128d __a
, __m128d __b
)
2588 return __builtin_ia32_vtestnzcpd((__v2df
)__a
, (__v2df
)__b
);
2591 /// Given two 128-bit floating-point vectors of [4 x float], perform an
2592 /// element-by-element comparison of the single-precision element in the
2593 /// first source vector and the corresponding element in the second source
2596 /// The EFLAGS register is updated as follows: \n
2597 /// If there is at least one pair of single-precision elements where the
2598 /// sign-bits of both elements are 1, the ZF flag is set to 0. Otherwise the
2599 /// ZF flag is set to 1. \n
2600 /// If there is at least one pair of single-precision elements where the
2601 /// sign-bit of the first element is 0 and the sign-bit of the second element
2602 /// is 1, the CF flag is set to 0. Otherwise the CF flag is set to 1. \n
2603 /// This intrinsic returns the value of the ZF flag.
2605 /// \headerfile <x86intrin.h>
2607 /// This intrinsic corresponds to the <c> VTESTPS </c> instruction.
2610 /// A 128-bit vector of [4 x float].
2612 /// A 128-bit vector of [4 x float].
2613 /// \returns the ZF flag.
2614 static __inline
int __DEFAULT_FN_ATTRS128
2615 _mm_testz_ps(__m128 __a
, __m128 __b
)
2617 return __builtin_ia32_vtestzps((__v4sf
)__a
, (__v4sf
)__b
);
2620 /// Given two 128-bit floating-point vectors of [4 x float], perform an
2621 /// element-by-element comparison of the single-precision element in the
2622 /// first source vector and the corresponding element in the second source
2625 /// The EFLAGS register is updated as follows: \n
2626 /// If there is at least one pair of single-precision elements where the
2627 /// sign-bits of both elements are 1, the ZF flag is set to 0. Otherwise the
2628 /// ZF flag is set to 1. \n
2629 /// If there is at least one pair of single-precision elements where the
2630 /// sign-bit of the first element is 0 and the sign-bit of the second element
2631 /// is 1, the CF flag is set to 0. Otherwise the CF flag is set to 1. \n
2632 /// This intrinsic returns the value of the CF flag.
2634 /// \headerfile <x86intrin.h>
2636 /// This intrinsic corresponds to the <c> VTESTPS </c> instruction.
2639 /// A 128-bit vector of [4 x float].
2641 /// A 128-bit vector of [4 x float].
2642 /// \returns the CF flag.
2643 static __inline
int __DEFAULT_FN_ATTRS128
2644 _mm_testc_ps(__m128 __a
, __m128 __b
)
2646 return __builtin_ia32_vtestcps((__v4sf
)__a
, (__v4sf
)__b
);
2649 /// Given two 128-bit floating-point vectors of [4 x float], perform an
2650 /// element-by-element comparison of the single-precision element in the
2651 /// first source vector and the corresponding element in the second source
2654 /// The EFLAGS register is updated as follows: \n
2655 /// If there is at least one pair of single-precision elements where the
2656 /// sign-bits of both elements are 1, the ZF flag is set to 0. Otherwise the
2657 /// ZF flag is set to 1. \n
2658 /// If there is at least one pair of single-precision elements where the
2659 /// sign-bit of the first element is 0 and the sign-bit of the second element
2660 /// is 1, the CF flag is set to 0. Otherwise the CF flag is set to 1. \n
2661 /// This intrinsic returns 1 if both the ZF and CF flags are set to 0,
2662 /// otherwise it returns 0.
2664 /// \headerfile <x86intrin.h>
2666 /// This intrinsic corresponds to the <c> VTESTPS </c> instruction.
2669 /// A 128-bit vector of [4 x float].
2671 /// A 128-bit vector of [4 x float].
2672 /// \returns 1 if both the ZF and CF flags are set to 0, otherwise returns 0.
2673 static __inline
int __DEFAULT_FN_ATTRS128
2674 _mm_testnzc_ps(__m128 __a
, __m128 __b
)
2676 return __builtin_ia32_vtestnzcps((__v4sf
)__a
, (__v4sf
)__b
);
2679 /// Given two 256-bit floating-point vectors of [4 x double], perform an
2680 /// element-by-element comparison of the double-precision elements in the
2681 /// first source vector and the corresponding elements in the second source
2684 /// The EFLAGS register is updated as follows: \n
2685 /// If there is at least one pair of double-precision elements where the
2686 /// sign-bits of both elements are 1, the ZF flag is set to 0. Otherwise the
2687 /// ZF flag is set to 1. \n
2688 /// If there is at least one pair of double-precision elements where the
2689 /// sign-bit of the first element is 0 and the sign-bit of the second element
2690 /// is 1, the CF flag is set to 0. Otherwise the CF flag is set to 1. \n
2691 /// This intrinsic returns the value of the ZF flag.
2693 /// \headerfile <x86intrin.h>
2695 /// This intrinsic corresponds to the <c> VTESTPD </c> instruction.
2698 /// A 256-bit vector of [4 x double].
2700 /// A 256-bit vector of [4 x double].
2701 /// \returns the ZF flag.
2702 static __inline
int __DEFAULT_FN_ATTRS
2703 _mm256_testz_pd(__m256d __a
, __m256d __b
)
2705 return __builtin_ia32_vtestzpd256((__v4df
)__a
, (__v4df
)__b
);
2708 /// Given two 256-bit floating-point vectors of [4 x double], perform an
2709 /// element-by-element comparison of the double-precision elements in the
2710 /// first source vector and the corresponding elements in the second source
2713 /// The EFLAGS register is updated as follows: \n
2714 /// If there is at least one pair of double-precision elements where the
2715 /// sign-bits of both elements are 1, the ZF flag is set to 0. Otherwise the
2716 /// ZF flag is set to 1. \n
2717 /// If there is at least one pair of double-precision elements where the
2718 /// sign-bit of the first element is 0 and the sign-bit of the second element
2719 /// is 1, the CF flag is set to 0. Otherwise the CF flag is set to 1. \n
2720 /// This intrinsic returns the value of the CF flag.
2722 /// \headerfile <x86intrin.h>
2724 /// This intrinsic corresponds to the <c> VTESTPD </c> instruction.
2727 /// A 256-bit vector of [4 x double].
2729 /// A 256-bit vector of [4 x double].
2730 /// \returns the CF flag.
2731 static __inline
int __DEFAULT_FN_ATTRS
2732 _mm256_testc_pd(__m256d __a
, __m256d __b
)
2734 return __builtin_ia32_vtestcpd256((__v4df
)__a
, (__v4df
)__b
);
2737 /// Given two 256-bit floating-point vectors of [4 x double], perform an
2738 /// element-by-element comparison of the double-precision elements in the
2739 /// first source vector and the corresponding elements in the second source
2742 /// The EFLAGS register is updated as follows: \n
2743 /// If there is at least one pair of double-precision elements where the
2744 /// sign-bits of both elements are 1, the ZF flag is set to 0. Otherwise the
2745 /// ZF flag is set to 1. \n
2746 /// If there is at least one pair of double-precision elements where the
2747 /// sign-bit of the first element is 0 and the sign-bit of the second element
2748 /// is 1, the CF flag is set to 0. Otherwise the CF flag is set to 1. \n
2749 /// This intrinsic returns 1 if both the ZF and CF flags are set to 0,
2750 /// otherwise it returns 0.
2752 /// \headerfile <x86intrin.h>
2754 /// This intrinsic corresponds to the <c> VTESTPD </c> instruction.
2757 /// A 256-bit vector of [4 x double].
2759 /// A 256-bit vector of [4 x double].
2760 /// \returns 1 if both the ZF and CF flags are set to 0, otherwise returns 0.
2761 static __inline
int __DEFAULT_FN_ATTRS
2762 _mm256_testnzc_pd(__m256d __a
, __m256d __b
)
2764 return __builtin_ia32_vtestnzcpd256((__v4df
)__a
, (__v4df
)__b
);
2767 /// Given two 256-bit floating-point vectors of [8 x float], perform an
2768 /// element-by-element comparison of the single-precision element in the
2769 /// first source vector and the corresponding element in the second source
2772 /// The EFLAGS register is updated as follows: \n
2773 /// If there is at least one pair of single-precision elements where the
2774 /// sign-bits of both elements are 1, the ZF flag is set to 0. Otherwise the
2775 /// ZF flag is set to 1. \n
2776 /// If there is at least one pair of single-precision elements where the
2777 /// sign-bit of the first element is 0 and the sign-bit of the second element
2778 /// is 1, the CF flag is set to 0. Otherwise the CF flag is set to 1. \n
2779 /// This intrinsic returns the value of the ZF flag.
2781 /// \headerfile <x86intrin.h>
2783 /// This intrinsic corresponds to the <c> VTESTPS </c> instruction.
2786 /// A 256-bit vector of [8 x float].
2788 /// A 256-bit vector of [8 x float].
2789 /// \returns the ZF flag.
2790 static __inline
int __DEFAULT_FN_ATTRS
2791 _mm256_testz_ps(__m256 __a
, __m256 __b
)
2793 return __builtin_ia32_vtestzps256((__v8sf
)__a
, (__v8sf
)__b
);
2796 /// Given two 256-bit floating-point vectors of [8 x float], perform an
2797 /// element-by-element comparison of the single-precision element in the
2798 /// first source vector and the corresponding element in the second source
2801 /// The EFLAGS register is updated as follows: \n
2802 /// If there is at least one pair of single-precision elements where the
2803 /// sign-bits of both elements are 1, the ZF flag is set to 0. Otherwise the
2804 /// ZF flag is set to 1. \n
2805 /// If there is at least one pair of single-precision elements where the
2806 /// sign-bit of the first element is 0 and the sign-bit of the second element
2807 /// is 1, the CF flag is set to 0. Otherwise the CF flag is set to 1. \n
2808 /// This intrinsic returns the value of the CF flag.
2810 /// \headerfile <x86intrin.h>
2812 /// This intrinsic corresponds to the <c> VTESTPS </c> instruction.
2815 /// A 256-bit vector of [8 x float].
2817 /// A 256-bit vector of [8 x float].
2818 /// \returns the CF flag.
2819 static __inline
int __DEFAULT_FN_ATTRS
2820 _mm256_testc_ps(__m256 __a
, __m256 __b
)
2822 return __builtin_ia32_vtestcps256((__v8sf
)__a
, (__v8sf
)__b
);
2825 /// Given two 256-bit floating-point vectors of [8 x float], perform an
2826 /// element-by-element comparison of the single-precision elements in the
2827 /// first source vector and the corresponding elements in the second source
2830 /// The EFLAGS register is updated as follows: \n
2831 /// If there is at least one pair of single-precision elements where the
2832 /// sign-bits of both elements are 1, the ZF flag is set to 0. Otherwise the
2833 /// ZF flag is set to 1. \n
2834 /// If there is at least one pair of single-precision elements where the
2835 /// sign-bit of the first element is 0 and the sign-bit of the second element
2836 /// is 1, the CF flag is set to 0. Otherwise the CF flag is set to 1. \n
2837 /// This intrinsic returns 1 if both the ZF and CF flags are set to 0,
2838 /// otherwise it returns 0.
2840 /// \headerfile <x86intrin.h>
2842 /// This intrinsic corresponds to the <c> VTESTPS </c> instruction.
2845 /// A 256-bit vector of [8 x float].
2847 /// A 256-bit vector of [8 x float].
2848 /// \returns 1 if both the ZF and CF flags are set to 0, otherwise returns 0.
2849 static __inline
int __DEFAULT_FN_ATTRS
2850 _mm256_testnzc_ps(__m256 __a
, __m256 __b
)
2852 return __builtin_ia32_vtestnzcps256((__v8sf
)__a
, (__v8sf
)__b
);
2855 /// Given two 256-bit integer vectors, perform a bit-by-bit comparison
2856 /// of the two source vectors.
2858 /// The EFLAGS register is updated as follows: \n
2859 /// If there is at least one pair of bits where both bits are 1, the ZF flag
2860 /// is set to 0. Otherwise the ZF flag is set to 1. \n
2861 /// If there is at least one pair of bits where the bit from the first source
2862 /// vector is 0 and the bit from the second source vector is 1, the CF flag
2863 /// is set to 0. Otherwise the CF flag is set to 1. \n
2864 /// This intrinsic returns the value of the ZF flag.
2866 /// \headerfile <x86intrin.h>
2868 /// This intrinsic corresponds to the <c> VPTEST </c> instruction.
2871 /// A 256-bit integer vector.
2873 /// A 256-bit integer vector.
2874 /// \returns the ZF flag.
2875 static __inline
int __DEFAULT_FN_ATTRS
2876 _mm256_testz_si256(__m256i __a
, __m256i __b
)
2878 return __builtin_ia32_ptestz256((__v4di
)__a
, (__v4di
)__b
);
2881 /// Given two 256-bit integer vectors, perform a bit-by-bit comparison
2882 /// of the two source vectors.
2884 /// The EFLAGS register is updated as follows: \n
2885 /// If there is at least one pair of bits where both bits are 1, the ZF flag
2886 /// is set to 0. Otherwise the ZF flag is set to 1. \n
2887 /// If there is at least one pair of bits where the bit from the first source
2888 /// vector is 0 and the bit from the second source vector is 1, the CF flag
2889 /// is set to 0. Otherwise the CF flag is set to 1. \n
2890 /// This intrinsic returns the value of the CF flag.
2892 /// \headerfile <x86intrin.h>
2894 /// This intrinsic corresponds to the <c> VPTEST </c> instruction.
2897 /// A 256-bit integer vector.
2899 /// A 256-bit integer vector.
2900 /// \returns the CF flag.
2901 static __inline
int __DEFAULT_FN_ATTRS
2902 _mm256_testc_si256(__m256i __a
, __m256i __b
)
2904 return __builtin_ia32_ptestc256((__v4di
)__a
, (__v4di
)__b
);
2907 /// Given two 256-bit integer vectors, perform a bit-by-bit comparison
2908 /// of the two source vectors.
2910 /// The EFLAGS register is updated as follows: \n
2911 /// If there is at least one pair of bits where both bits are 1, the ZF flag
2912 /// is set to 0. Otherwise the ZF flag is set to 1. \n
2913 /// If there is at least one pair of bits where the bit from the first source
2914 /// vector is 0 and the bit from the second source vector is 1, the CF flag
2915 /// is set to 0. Otherwise the CF flag is set to 1. \n
2916 /// This intrinsic returns 1 if both the ZF and CF flags are set to 0,
2917 /// otherwise it returns 0.
2919 /// \headerfile <x86intrin.h>
2921 /// This intrinsic corresponds to the <c> VPTEST </c> instruction.
2924 /// A 256-bit integer vector.
2926 /// A 256-bit integer vector.
2927 /// \returns 1 if both the ZF and CF flags are set to 0, otherwise returns 0.
2928 static __inline
int __DEFAULT_FN_ATTRS
2929 _mm256_testnzc_si256(__m256i __a
, __m256i __b
)
2931 return __builtin_ia32_ptestnzc256((__v4di
)__a
, (__v4di
)__b
);
2934 /* Vector extract sign mask */
2935 /// Extracts the sign bits of double-precision floating point elements
2936 /// in a 256-bit vector of [4 x double] and writes them to the lower order
2937 /// bits of the return value.
2939 /// \headerfile <x86intrin.h>
2941 /// This intrinsic corresponds to the <c> VMOVMSKPD </c> instruction.
2944 /// A 256-bit vector of [4 x double] containing the double-precision
2945 /// floating point values with sign bits to be extracted.
2946 /// \returns The sign bits from the operand, written to bits [3:0].
2947 static __inline
int __DEFAULT_FN_ATTRS
2948 _mm256_movemask_pd(__m256d __a
)
2950 return __builtin_ia32_movmskpd256((__v4df
)__a
);
2953 /// Extracts the sign bits of single-precision floating point elements
2954 /// in a 256-bit vector of [8 x float] and writes them to the lower order
2955 /// bits of the return value.
2957 /// \headerfile <x86intrin.h>
2959 /// This intrinsic corresponds to the <c> VMOVMSKPS </c> instruction.
2962 /// A 256-bit vector of [8 x float] containing the single-precision floating
2963 /// point values with sign bits to be extracted.
2964 /// \returns The sign bits from the operand, written to bits [7:0].
2965 static __inline
int __DEFAULT_FN_ATTRS
2966 _mm256_movemask_ps(__m256 __a
)
2968 return __builtin_ia32_movmskps256((__v8sf
)__a
);
2972 /// Zeroes the contents of all XMM or YMM registers.
2974 /// \headerfile <x86intrin.h>
2976 /// This intrinsic corresponds to the <c> VZEROALL </c> instruction.
2977 static __inline
void __attribute__((__always_inline__
, __nodebug__
, __target__("avx")))
2978 _mm256_zeroall(void)
2980 __builtin_ia32_vzeroall();
2983 /// Zeroes the upper 128 bits (bits 255:128) of all YMM registers.
2985 /// \headerfile <x86intrin.h>
2987 /// This intrinsic corresponds to the <c> VZEROUPPER </c> instruction.
2988 static __inline
void __attribute__((__always_inline__
, __nodebug__
, __target__("avx")))
2989 _mm256_zeroupper(void)
2991 __builtin_ia32_vzeroupper();
2994 /* Vector load with broadcast */
2995 /// Loads a scalar single-precision floating point value from the
2996 /// specified address pointed to by \a __a and broadcasts it to the elements
2997 /// of a [4 x float] vector.
2999 /// \headerfile <x86intrin.h>
3001 /// This intrinsic corresponds to the <c> VBROADCASTSS </c> instruction.
3004 /// The single-precision floating point value to be broadcast.
3005 /// \returns A 128-bit vector of [4 x float] whose 32-bit elements are set
3006 /// equal to the broadcast value.
3007 static __inline __m128 __DEFAULT_FN_ATTRS128
3008 _mm_broadcast_ss(float const *__a
)
3011 return __extension__ (__m128
)(__v4sf
){ __f
, __f
, __f
, __f
};
3014 /// Loads a scalar double-precision floating point value from the
3015 /// specified address pointed to by \a __a and broadcasts it to the elements
3016 /// of a [4 x double] vector.
3018 /// \headerfile <x86intrin.h>
3020 /// This intrinsic corresponds to the <c> VBROADCASTSD </c> instruction.
3023 /// The double-precision floating point value to be broadcast.
3024 /// \returns A 256-bit vector of [4 x double] whose 64-bit elements are set
3025 /// equal to the broadcast value.
3026 static __inline __m256d __DEFAULT_FN_ATTRS
3027 _mm256_broadcast_sd(double const *__a
)
3030 return __extension__ (__m256d
)(__v4df
){ __d
, __d
, __d
, __d
};
3033 /// Loads a scalar single-precision floating point value from the
3034 /// specified address pointed to by \a __a and broadcasts it to the elements
3035 /// of a [8 x float] vector.
3037 /// \headerfile <x86intrin.h>
3039 /// This intrinsic corresponds to the <c> VBROADCASTSS </c> instruction.
3042 /// The single-precision floating point value to be broadcast.
3043 /// \returns A 256-bit vector of [8 x float] whose 32-bit elements are set
3044 /// equal to the broadcast value.
3045 static __inline __m256 __DEFAULT_FN_ATTRS
3046 _mm256_broadcast_ss(float const *__a
)
3049 return __extension__ (__m256
)(__v8sf
){ __f
, __f
, __f
, __f
, __f
, __f
, __f
, __f
};
3052 /// Loads the data from a 128-bit vector of [2 x double] from the
3053 /// specified address pointed to by \a __a and broadcasts it to 128-bit
3054 /// elements in a 256-bit vector of [4 x double].
3056 /// \headerfile <x86intrin.h>
3058 /// This intrinsic corresponds to the <c> VBROADCASTF128 </c> instruction.
3061 /// The 128-bit vector of [2 x double] to be broadcast.
3062 /// \returns A 256-bit vector of [4 x double] whose 128-bit elements are set
3063 /// equal to the broadcast value.
3064 static __inline __m256d __DEFAULT_FN_ATTRS
3065 _mm256_broadcast_pd(__m128d
const *__a
)
3067 __m128d __b
= _mm_loadu_pd((const double *)__a
);
3068 return (__m256d
)__builtin_shufflevector((__v2df
)__b
, (__v2df
)__b
,
3072 /// Loads the data from a 128-bit vector of [4 x float] from the
3073 /// specified address pointed to by \a __a and broadcasts it to 128-bit
3074 /// elements in a 256-bit vector of [8 x float].
3076 /// \headerfile <x86intrin.h>
3078 /// This intrinsic corresponds to the <c> VBROADCASTF128 </c> instruction.
3081 /// The 128-bit vector of [4 x float] to be broadcast.
3082 /// \returns A 256-bit vector of [8 x float] whose 128-bit elements are set
3083 /// equal to the broadcast value.
3084 static __inline __m256 __DEFAULT_FN_ATTRS
3085 _mm256_broadcast_ps(__m128
const *__a
)
3087 __m128 __b
= _mm_loadu_ps((const float *)__a
);
3088 return (__m256
)__builtin_shufflevector((__v4sf
)__b
, (__v4sf
)__b
,
3089 0, 1, 2, 3, 0, 1, 2, 3);
3093 /// Loads 4 double-precision floating point values from a 32-byte aligned
3094 /// memory location pointed to by \a __p into a vector of [4 x double].
3096 /// \headerfile <x86intrin.h>
3098 /// This intrinsic corresponds to the <c> VMOVAPD </c> instruction.
3101 /// A 32-byte aligned pointer to a memory location containing
3102 /// double-precision floating point values.
3103 /// \returns A 256-bit vector of [4 x double] containing the moved values.
3104 static __inline __m256d __DEFAULT_FN_ATTRS
3105 _mm256_load_pd(double const *__p
)
3107 return *(const __m256d
*)__p
;
3110 /// Loads 8 single-precision floating point values from a 32-byte aligned
3111 /// memory location pointed to by \a __p into a vector of [8 x float].
3113 /// \headerfile <x86intrin.h>
3115 /// This intrinsic corresponds to the <c> VMOVAPS </c> instruction.
3118 /// A 32-byte aligned pointer to a memory location containing float values.
3119 /// \returns A 256-bit vector of [8 x float] containing the moved values.
3120 static __inline __m256 __DEFAULT_FN_ATTRS
3121 _mm256_load_ps(float const *__p
)
3123 return *(const __m256
*)__p
;
3126 /// Loads 4 double-precision floating point values from an unaligned
3127 /// memory location pointed to by \a __p into a vector of [4 x double].
3129 /// \headerfile <x86intrin.h>
3131 /// This intrinsic corresponds to the <c> VMOVUPD </c> instruction.
3134 /// A pointer to a memory location containing double-precision floating
3136 /// \returns A 256-bit vector of [4 x double] containing the moved values.
3137 static __inline __m256d __DEFAULT_FN_ATTRS
3138 _mm256_loadu_pd(double const *__p
)
3142 } __attribute__((__packed__
, __may_alias__
));
3143 return ((const struct __loadu_pd
*)__p
)->__v
;
3146 /// Loads 8 single-precision floating point values from an unaligned
3147 /// memory location pointed to by \a __p into a vector of [8 x float].
3149 /// \headerfile <x86intrin.h>
3151 /// This intrinsic corresponds to the <c> VMOVUPS </c> instruction.
3154 /// A pointer to a memory location containing single-precision floating
3156 /// \returns A 256-bit vector of [8 x float] containing the moved values.
3157 static __inline __m256 __DEFAULT_FN_ATTRS
3158 _mm256_loadu_ps(float const *__p
)
3162 } __attribute__((__packed__
, __may_alias__
));
3163 return ((const struct __loadu_ps
*)__p
)->__v
;
3166 /// Loads 256 bits of integer data from a 32-byte aligned memory
3167 /// location pointed to by \a __p into elements of a 256-bit integer vector.
3169 /// \headerfile <x86intrin.h>
3171 /// This intrinsic corresponds to the <c> VMOVDQA </c> instruction.
3174 /// A 32-byte aligned pointer to a 256-bit integer vector containing integer
3176 /// \returns A 256-bit integer vector containing the moved values.
3177 static __inline __m256i __DEFAULT_FN_ATTRS
3178 _mm256_load_si256(__m256i
const *__p
)
3183 /// Loads 256 bits of integer data from an unaligned memory location
3184 /// pointed to by \a __p into a 256-bit integer vector.
3186 /// \headerfile <x86intrin.h>
3188 /// This intrinsic corresponds to the <c> VMOVDQU </c> instruction.
3191 /// A pointer to a 256-bit integer vector containing integer values.
3192 /// \returns A 256-bit integer vector containing the moved values.
3193 static __inline __m256i __DEFAULT_FN_ATTRS
3194 _mm256_loadu_si256(__m256i_u
const *__p
)
3196 struct __loadu_si256
{
3198 } __attribute__((__packed__
, __may_alias__
));
3199 return ((const struct __loadu_si256
*)__p
)->__v
;
3202 /// Loads 256 bits of integer data from an unaligned memory location
3203 /// pointed to by \a __p into a 256-bit integer vector. This intrinsic may
3204 /// perform better than \c _mm256_loadu_si256 when the data crosses a cache
3207 /// \headerfile <x86intrin.h>
3209 /// This intrinsic corresponds to the <c> VLDDQU </c> instruction.
3212 /// A pointer to a 256-bit integer vector containing integer values.
3213 /// \returns A 256-bit integer vector containing the moved values.
3214 static __inline __m256i __DEFAULT_FN_ATTRS
3215 _mm256_lddqu_si256(__m256i_u
const *__p
)
3217 return (__m256i
)__builtin_ia32_lddqu256((char const *)__p
);
3220 /* SIMD store ops */
3221 /// Stores double-precision floating point values from a 256-bit vector
3222 /// of [4 x double] to a 32-byte aligned memory location pointed to by
3225 /// \headerfile <x86intrin.h>
3227 /// This intrinsic corresponds to the <c> VMOVAPD </c> instruction.
3230 /// A 32-byte aligned pointer to a memory location that will receive the
3231 /// double-precision floaing point values.
3233 /// A 256-bit vector of [4 x double] containing the values to be moved.
3234 static __inline
void __DEFAULT_FN_ATTRS
3235 _mm256_store_pd(double *__p
, __m256d __a
)
3237 *(__m256d
*)__p
= __a
;
3240 /// Stores single-precision floating point values from a 256-bit vector
3241 /// of [8 x float] to a 32-byte aligned memory location pointed to by \a __p.
3243 /// \headerfile <x86intrin.h>
3245 /// This intrinsic corresponds to the <c> VMOVAPS </c> instruction.
3248 /// A 32-byte aligned pointer to a memory location that will receive the
3251 /// A 256-bit vector of [8 x float] containing the values to be moved.
3252 static __inline
void __DEFAULT_FN_ATTRS
3253 _mm256_store_ps(float *__p
, __m256 __a
)
3255 *(__m256
*)__p
= __a
;
3258 /// Stores double-precision floating point values from a 256-bit vector
3259 /// of [4 x double] to an unaligned memory location pointed to by \a __p.
3261 /// \headerfile <x86intrin.h>
3263 /// This intrinsic corresponds to the <c> VMOVUPD </c> instruction.
3266 /// A pointer to a memory location that will receive the double-precision
3267 /// floating point values.
3269 /// A 256-bit vector of [4 x double] containing the values to be moved.
3270 static __inline
void __DEFAULT_FN_ATTRS
3271 _mm256_storeu_pd(double *__p
, __m256d __a
)
3273 struct __storeu_pd
{
3275 } __attribute__((__packed__
, __may_alias__
));
3276 ((struct __storeu_pd
*)__p
)->__v
= __a
;
3279 /// Stores single-precision floating point values from a 256-bit vector
3280 /// of [8 x float] to an unaligned memory location pointed to by \a __p.
3282 /// \headerfile <x86intrin.h>
3284 /// This intrinsic corresponds to the <c> VMOVUPS </c> instruction.
3287 /// A pointer to a memory location that will receive the float values.
3289 /// A 256-bit vector of [8 x float] containing the values to be moved.
3290 static __inline
void __DEFAULT_FN_ATTRS
3291 _mm256_storeu_ps(float *__p
, __m256 __a
)
3293 struct __storeu_ps
{
3295 } __attribute__((__packed__
, __may_alias__
));
3296 ((struct __storeu_ps
*)__p
)->__v
= __a
;
3299 /// Stores integer values from a 256-bit integer vector to a 32-byte
3300 /// aligned memory location pointed to by \a __p.
3302 /// \headerfile <x86intrin.h>
3304 /// This intrinsic corresponds to the <c> VMOVDQA </c> instruction.
3307 /// A 32-byte aligned pointer to a memory location that will receive the
3310 /// A 256-bit integer vector containing the values to be moved.
3311 static __inline
void __DEFAULT_FN_ATTRS
3312 _mm256_store_si256(__m256i
*__p
, __m256i __a
)
3317 /// Stores integer values from a 256-bit integer vector to an unaligned
3318 /// memory location pointed to by \a __p.
3320 /// \headerfile <x86intrin.h>
3322 /// This intrinsic corresponds to the <c> VMOVDQU </c> instruction.
3325 /// A pointer to a memory location that will receive the integer values.
3327 /// A 256-bit integer vector containing the values to be moved.
3328 static __inline
void __DEFAULT_FN_ATTRS
3329 _mm256_storeu_si256(__m256i_u
*__p
, __m256i __a
)
3331 struct __storeu_si256
{
3333 } __attribute__((__packed__
, __may_alias__
));
3334 ((struct __storeu_si256
*)__p
)->__v
= __a
;
3337 /* Conditional load ops */
3338 /// Conditionally loads double-precision floating point elements from a
3339 /// memory location pointed to by \a __p into a 128-bit vector of
3340 /// [2 x double], depending on the mask bits associated with each data
3343 /// \headerfile <x86intrin.h>
3345 /// This intrinsic corresponds to the <c> VMASKMOVPD </c> instruction.
3348 /// A pointer to a memory location that contains the double-precision
3349 /// floating point values.
3351 /// A 128-bit integer vector containing the mask. The most significant bit of
3352 /// each data element represents the mask bits. If a mask bit is zero, the
3353 /// corresponding value in the memory location is not loaded and the
3354 /// corresponding field in the return value is set to zero.
3355 /// \returns A 128-bit vector of [2 x double] containing the loaded values.
3356 static __inline __m128d __DEFAULT_FN_ATTRS128
3357 _mm_maskload_pd(double const *__p
, __m128i __m
)
3359 return (__m128d
)__builtin_ia32_maskloadpd((const __v2df
*)__p
, (__v2di
)__m
);
3362 /// Conditionally loads double-precision floating point elements from a
3363 /// memory location pointed to by \a __p into a 256-bit vector of
3364 /// [4 x double], depending on the mask bits associated with each data
3367 /// \headerfile <x86intrin.h>
3369 /// This intrinsic corresponds to the <c> VMASKMOVPD </c> instruction.
3372 /// A pointer to a memory location that contains the double-precision
3373 /// floating point values.
3375 /// A 256-bit integer vector of [4 x quadword] containing the mask. The most
3376 /// significant bit of each quadword element represents the mask bits. If a
3377 /// mask bit is zero, the corresponding value in the memory location is not
3378 /// loaded and the corresponding field in the return value is set to zero.
3379 /// \returns A 256-bit vector of [4 x double] containing the loaded values.
3380 static __inline __m256d __DEFAULT_FN_ATTRS
3381 _mm256_maskload_pd(double const *__p
, __m256i __m
)
3383 return (__m256d
)__builtin_ia32_maskloadpd256((const __v4df
*)__p
,
3387 /// Conditionally loads single-precision floating point elements from a
3388 /// memory location pointed to by \a __p into a 128-bit vector of
3389 /// [4 x float], depending on the mask bits associated with each data
3392 /// \headerfile <x86intrin.h>
3394 /// This intrinsic corresponds to the <c> VMASKMOVPS </c> instruction.
3397 /// A pointer to a memory location that contains the single-precision
3398 /// floating point values.
3400 /// A 128-bit integer vector containing the mask. The most significant bit of
3401 /// each data element represents the mask bits. If a mask bit is zero, the
3402 /// corresponding value in the memory location is not loaded and the
3403 /// corresponding field in the return value is set to zero.
3404 /// \returns A 128-bit vector of [4 x float] containing the loaded values.
3405 static __inline __m128 __DEFAULT_FN_ATTRS128
3406 _mm_maskload_ps(float const *__p
, __m128i __m
)
3408 return (__m128
)__builtin_ia32_maskloadps((const __v4sf
*)__p
, (__v4si
)__m
);
3411 /// Conditionally loads single-precision floating point elements from a
3412 /// memory location pointed to by \a __p into a 256-bit vector of
3413 /// [8 x float], depending on the mask bits associated with each data
3416 /// \headerfile <x86intrin.h>
3418 /// This intrinsic corresponds to the <c> VMASKMOVPS </c> instruction.
3421 /// A pointer to a memory location that contains the single-precision
3422 /// floating point values.
3424 /// A 256-bit integer vector of [8 x dword] containing the mask. The most
3425 /// significant bit of each dword element represents the mask bits. If a mask
3426 /// bit is zero, the corresponding value in the memory location is not loaded
3427 /// and the corresponding field in the return value is set to zero.
3428 /// \returns A 256-bit vector of [8 x float] containing the loaded values.
3429 static __inline __m256 __DEFAULT_FN_ATTRS
3430 _mm256_maskload_ps(float const *__p
, __m256i __m
)
3432 return (__m256
)__builtin_ia32_maskloadps256((const __v8sf
*)__p
, (__v8si
)__m
);
3435 /* Conditional store ops */
3436 /// Moves single-precision floating point values from a 256-bit vector
3437 /// of [8 x float] to a memory location pointed to by \a __p, according to
3438 /// the specified mask.
3440 /// \headerfile <x86intrin.h>
3442 /// This intrinsic corresponds to the <c> VMASKMOVPS </c> instruction.
3445 /// A pointer to a memory location that will receive the float values.
3447 /// A 256-bit integer vector of [8 x dword] containing the mask. The most
3448 /// significant bit of each dword element in the mask vector represents the
3449 /// mask bits. If a mask bit is zero, the corresponding value from vector
3450 /// \a __a is not stored and the corresponding field in the memory location
3451 /// pointed to by \a __p is not changed.
3453 /// A 256-bit vector of [8 x float] containing the values to be stored.
3454 static __inline
void __DEFAULT_FN_ATTRS
3455 _mm256_maskstore_ps(float *__p
, __m256i __m
, __m256 __a
)
3457 __builtin_ia32_maskstoreps256((__v8sf
*)__p
, (__v8si
)__m
, (__v8sf
)__a
);
3460 /// Moves double-precision values from a 128-bit vector of [2 x double]
3461 /// to a memory location pointed to by \a __p, according to the specified
3464 /// \headerfile <x86intrin.h>
3466 /// This intrinsic corresponds to the <c> VMASKMOVPD </c> instruction.
3469 /// A pointer to a memory location that will receive the float values.
3471 /// A 128-bit integer vector containing the mask. The most significant bit of
3472 /// each field in the mask vector represents the mask bits. If a mask bit is
3473 /// zero, the corresponding value from vector \a __a is not stored and the
3474 /// corresponding field in the memory location pointed to by \a __p is not
3477 /// A 128-bit vector of [2 x double] containing the values to be stored.
3478 static __inline
void __DEFAULT_FN_ATTRS128
3479 _mm_maskstore_pd(double *__p
, __m128i __m
, __m128d __a
)
3481 __builtin_ia32_maskstorepd((__v2df
*)__p
, (__v2di
)__m
, (__v2df
)__a
);
3484 /// Moves double-precision values from a 256-bit vector of [4 x double]
3485 /// to a memory location pointed to by \a __p, according to the specified
3488 /// \headerfile <x86intrin.h>
3490 /// This intrinsic corresponds to the <c> VMASKMOVPD </c> instruction.
3493 /// A pointer to a memory location that will receive the float values.
3495 /// A 256-bit integer vector of [4 x quadword] containing the mask. The most
3496 /// significant bit of each quadword element in the mask vector represents
3497 /// the mask bits. If a mask bit is zero, the corresponding value from vector
3498 /// __a is not stored and the corresponding field in the memory location
3499 /// pointed to by \a __p is not changed.
3501 /// A 256-bit vector of [4 x double] containing the values to be stored.
3502 static __inline
void __DEFAULT_FN_ATTRS
3503 _mm256_maskstore_pd(double *__p
, __m256i __m
, __m256d __a
)
3505 __builtin_ia32_maskstorepd256((__v4df
*)__p
, (__v4di
)__m
, (__v4df
)__a
);
3508 /// Moves single-precision floating point values from a 128-bit vector
3509 /// of [4 x float] to a memory location pointed to by \a __p, according to
3510 /// the specified mask.
3512 /// \headerfile <x86intrin.h>
3514 /// This intrinsic corresponds to the <c> VMASKMOVPS </c> instruction.
3517 /// A pointer to a memory location that will receive the float values.
3519 /// A 128-bit integer vector containing the mask. The most significant bit of
3520 /// each field in the mask vector represents the mask bits. If a mask bit is
3521 /// zero, the corresponding value from vector __a is not stored and the
3522 /// corresponding field in the memory location pointed to by \a __p is not
3525 /// A 128-bit vector of [4 x float] containing the values to be stored.
3526 static __inline
void __DEFAULT_FN_ATTRS128
3527 _mm_maskstore_ps(float *__p
, __m128i __m
, __m128 __a
)
3529 __builtin_ia32_maskstoreps((__v4sf
*)__p
, (__v4si
)__m
, (__v4sf
)__a
);
3532 /* Cacheability support ops */
3533 /// Moves integer data from a 256-bit integer vector to a 32-byte
3534 /// aligned memory location. To minimize caching, the data is flagged as
3535 /// non-temporal (unlikely to be used again soon).
3537 /// \headerfile <x86intrin.h>
3539 /// This intrinsic corresponds to the <c> VMOVNTDQ </c> instruction.
3542 /// A pointer to a 32-byte aligned memory location that will receive the
3545 /// A 256-bit integer vector containing the values to be moved.
3546 static __inline
void __DEFAULT_FN_ATTRS
3547 _mm256_stream_si256(__m256i
*__a
, __m256i __b
)
3549 typedef __v4di __v4di_aligned
__attribute__((aligned(32)));
3550 __builtin_nontemporal_store((__v4di_aligned
)__b
, (__v4di_aligned
*)__a
);
3553 /// Moves double-precision values from a 256-bit vector of [4 x double]
3554 /// to a 32-byte aligned memory location. To minimize caching, the data is
3555 /// flagged as non-temporal (unlikely to be used again soon).
3557 /// \headerfile <x86intrin.h>
3559 /// This intrinsic corresponds to the <c> VMOVNTPD </c> instruction.
3562 /// A pointer to a 32-byte aligned memory location that will receive the
3563 /// double-precision floating-point values.
3565 /// A 256-bit vector of [4 x double] containing the values to be moved.
3566 static __inline
void __DEFAULT_FN_ATTRS
3567 _mm256_stream_pd(double *__a
, __m256d __b
)
3569 typedef __v4df __v4df_aligned
__attribute__((aligned(32)));
3570 __builtin_nontemporal_store((__v4df_aligned
)__b
, (__v4df_aligned
*)__a
);
3573 /// Moves single-precision floating point values from a 256-bit vector
3574 /// of [8 x float] to a 32-byte aligned memory location. To minimize
3575 /// caching, the data is flagged as non-temporal (unlikely to be used again
3578 /// \headerfile <x86intrin.h>
3580 /// This intrinsic corresponds to the <c> VMOVNTPS </c> instruction.
3583 /// A pointer to a 32-byte aligned memory location that will receive the
3584 /// single-precision floating point values.
3586 /// A 256-bit vector of [8 x float] containing the values to be moved.
3587 static __inline
void __DEFAULT_FN_ATTRS
3588 _mm256_stream_ps(float *__p
, __m256 __a
)
3590 typedef __v8sf __v8sf_aligned
__attribute__((aligned(32)));
3591 __builtin_nontemporal_store((__v8sf_aligned
)__a
, (__v8sf_aligned
*)__p
);
3594 /* Create vectors */
3595 /// Create a 256-bit vector of [4 x double] with undefined values.
3597 /// \headerfile <x86intrin.h>
3599 /// This intrinsic has no corresponding instruction.
3601 /// \returns A 256-bit vector of [4 x double] containing undefined values.
3602 static __inline__ __m256d __DEFAULT_FN_ATTRS
3603 _mm256_undefined_pd(void)
3605 return (__m256d
)__builtin_ia32_undef256();
3608 /// Create a 256-bit vector of [8 x float] with undefined values.
3610 /// \headerfile <x86intrin.h>
3612 /// This intrinsic has no corresponding instruction.
3614 /// \returns A 256-bit vector of [8 x float] containing undefined values.
3615 static __inline__ __m256 __DEFAULT_FN_ATTRS
3616 _mm256_undefined_ps(void)
3618 return (__m256
)__builtin_ia32_undef256();
3621 /// Create a 256-bit integer vector with undefined values.
3623 /// \headerfile <x86intrin.h>
3625 /// This intrinsic has no corresponding instruction.
3627 /// \returns A 256-bit integer vector containing undefined values.
3628 static __inline__ __m256i __DEFAULT_FN_ATTRS
3629 _mm256_undefined_si256(void)
3631 return (__m256i
)__builtin_ia32_undef256();
3634 /// Constructs a 256-bit floating-point vector of [4 x double]
3635 /// initialized with the specified double-precision floating-point values.
3637 /// \headerfile <x86intrin.h>
3639 /// This intrinsic corresponds to the <c> VUNPCKLPD+VINSERTF128 </c>
3643 /// A double-precision floating-point value used to initialize bits [255:192]
3646 /// A double-precision floating-point value used to initialize bits [191:128]
3649 /// A double-precision floating-point value used to initialize bits [127:64]
3652 /// A double-precision floating-point value used to initialize bits [63:0]
3654 /// \returns An initialized 256-bit floating-point vector of [4 x double].
3655 static __inline __m256d __DEFAULT_FN_ATTRS
3656 _mm256_set_pd(double __a
, double __b
, double __c
, double __d
)
3658 return __extension__ (__m256d
){ __d
, __c
, __b
, __a
};
3661 /// Constructs a 256-bit floating-point vector of [8 x float] initialized
3662 /// with the specified single-precision floating-point values.
3664 /// \headerfile <x86intrin.h>
3666 /// This intrinsic is a utility function and does not correspond to a specific
3670 /// A single-precision floating-point value used to initialize bits [255:224]
3673 /// A single-precision floating-point value used to initialize bits [223:192]
3676 /// A single-precision floating-point value used to initialize bits [191:160]
3679 /// A single-precision floating-point value used to initialize bits [159:128]
3682 /// A single-precision floating-point value used to initialize bits [127:96]
3685 /// A single-precision floating-point value used to initialize bits [95:64]
3688 /// A single-precision floating-point value used to initialize bits [63:32]
3691 /// A single-precision floating-point value used to initialize bits [31:0]
3693 /// \returns An initialized 256-bit floating-point vector of [8 x float].
3694 static __inline __m256 __DEFAULT_FN_ATTRS
3695 _mm256_set_ps(float __a
, float __b
, float __c
, float __d
,
3696 float __e
, float __f
, float __g
, float __h
)
3698 return __extension__ (__m256
){ __h
, __g
, __f
, __e
, __d
, __c
, __b
, __a
};
3701 /// Constructs a 256-bit integer vector initialized with the specified
3702 /// 32-bit integral values.
3704 /// \headerfile <x86intrin.h>
3706 /// This intrinsic is a utility function and does not correspond to a specific
3710 /// A 32-bit integral value used to initialize bits [255:224] of the result.
3712 /// A 32-bit integral value used to initialize bits [223:192] of the result.
3714 /// A 32-bit integral value used to initialize bits [191:160] of the result.
3716 /// A 32-bit integral value used to initialize bits [159:128] of the result.
3718 /// A 32-bit integral value used to initialize bits [127:96] of the result.
3720 /// A 32-bit integral value used to initialize bits [95:64] of the result.
3722 /// A 32-bit integral value used to initialize bits [63:32] of the result.
3724 /// A 32-bit integral value used to initialize bits [31:0] of the result.
3725 /// \returns An initialized 256-bit integer vector.
3726 static __inline __m256i __DEFAULT_FN_ATTRS
3727 _mm256_set_epi32(int __i0
, int __i1
, int __i2
, int __i3
,
3728 int __i4
, int __i5
, int __i6
, int __i7
)
3730 return __extension__ (__m256i
)(__v8si
){ __i7
, __i6
, __i5
, __i4
, __i3
, __i2
, __i1
, __i0
};
3733 /// Constructs a 256-bit integer vector initialized with the specified
3734 /// 16-bit integral values.
3736 /// \headerfile <x86intrin.h>
3738 /// This intrinsic is a utility function and does not correspond to a specific
3742 /// A 16-bit integral value used to initialize bits [255:240] of the result.
3744 /// A 16-bit integral value used to initialize bits [239:224] of the result.
3746 /// A 16-bit integral value used to initialize bits [223:208] of the result.
3748 /// A 16-bit integral value used to initialize bits [207:192] of the result.
3750 /// A 16-bit integral value used to initialize bits [191:176] of the result.
3752 /// A 16-bit integral value used to initialize bits [175:160] of the result.
3754 /// A 16-bit integral value used to initialize bits [159:144] of the result.
3756 /// A 16-bit integral value used to initialize bits [143:128] of the result.
3758 /// A 16-bit integral value used to initialize bits [127:112] of the result.
3760 /// A 16-bit integral value used to initialize bits [111:96] of the result.
3762 /// A 16-bit integral value used to initialize bits [95:80] of the result.
3764 /// A 16-bit integral value used to initialize bits [79:64] of the result.
3766 /// A 16-bit integral value used to initialize bits [63:48] of the result.
3768 /// A 16-bit integral value used to initialize bits [47:32] of the result.
3770 /// A 16-bit integral value used to initialize bits [31:16] of the result.
3772 /// A 16-bit integral value used to initialize bits [15:0] of the result.
3773 /// \returns An initialized 256-bit integer vector.
3774 static __inline __m256i __DEFAULT_FN_ATTRS
3775 _mm256_set_epi16(short __w15
, short __w14
, short __w13
, short __w12
,
3776 short __w11
, short __w10
, short __w09
, short __w08
,
3777 short __w07
, short __w06
, short __w05
, short __w04
,
3778 short __w03
, short __w02
, short __w01
, short __w00
)
3780 return __extension__ (__m256i
)(__v16hi
){ __w00
, __w01
, __w02
, __w03
, __w04
, __w05
, __w06
,
3781 __w07
, __w08
, __w09
, __w10
, __w11
, __w12
, __w13
, __w14
, __w15
};
3784 /// Constructs a 256-bit integer vector initialized with the specified
3785 /// 8-bit integral values.
3787 /// \headerfile <x86intrin.h>
3789 /// This intrinsic is a utility function and does not correspond to a specific
3793 /// An 8-bit integral value used to initialize bits [255:248] of the result.
3795 /// An 8-bit integral value used to initialize bits [247:240] of the result.
3797 /// An 8-bit integral value used to initialize bits [239:232] of the result.
3799 /// An 8-bit integral value used to initialize bits [231:224] of the result.
3801 /// An 8-bit integral value used to initialize bits [223:216] of the result.
3803 /// An 8-bit integral value used to initialize bits [215:208] of the result.
3805 /// An 8-bit integral value used to initialize bits [207:200] of the result.
3807 /// An 8-bit integral value used to initialize bits [199:192] of the result.
3809 /// An 8-bit integral value used to initialize bits [191:184] of the result.
3811 /// An 8-bit integral value used to initialize bits [183:176] of the result.
3813 /// An 8-bit integral value used to initialize bits [175:168] of the result.
3815 /// An 8-bit integral value used to initialize bits [167:160] of the result.
3817 /// An 8-bit integral value used to initialize bits [159:152] of the result.
3819 /// An 8-bit integral value used to initialize bits [151:144] of the result.
3821 /// An 8-bit integral value used to initialize bits [143:136] of the result.
3823 /// An 8-bit integral value used to initialize bits [135:128] of the result.
3825 /// An 8-bit integral value used to initialize bits [127:120] of the result.
3827 /// An 8-bit integral value used to initialize bits [119:112] of the result.
3829 /// An 8-bit integral value used to initialize bits [111:104] of the result.
3831 /// An 8-bit integral value used to initialize bits [103:96] of the result.
3833 /// An 8-bit integral value used to initialize bits [95:88] of the result.
3835 /// An 8-bit integral value used to initialize bits [87:80] of the result.
3837 /// An 8-bit integral value used to initialize bits [79:72] of the result.
3839 /// An 8-bit integral value used to initialize bits [71:64] of the result.
3841 /// An 8-bit integral value used to initialize bits [63:56] of the result.
3843 /// An 8-bit integral value used to initialize bits [55:48] of the result.
3845 /// An 8-bit integral value used to initialize bits [47:40] of the result.
3847 /// An 8-bit integral value used to initialize bits [39:32] of the result.
3849 /// An 8-bit integral value used to initialize bits [31:24] of the result.
3851 /// An 8-bit integral value used to initialize bits [23:16] of the result.
3853 /// An 8-bit integral value used to initialize bits [15:8] of the result.
3855 /// An 8-bit integral value used to initialize bits [7:0] of the result.
3856 /// \returns An initialized 256-bit integer vector.
3857 static __inline __m256i __DEFAULT_FN_ATTRS
3858 _mm256_set_epi8(char __b31
, char __b30
, char __b29
, char __b28
,
3859 char __b27
, char __b26
, char __b25
, char __b24
,
3860 char __b23
, char __b22
, char __b21
, char __b20
,
3861 char __b19
, char __b18
, char __b17
, char __b16
,
3862 char __b15
, char __b14
, char __b13
, char __b12
,
3863 char __b11
, char __b10
, char __b09
, char __b08
,
3864 char __b07
, char __b06
, char __b05
, char __b04
,
3865 char __b03
, char __b02
, char __b01
, char __b00
)
3867 return __extension__ (__m256i
)(__v32qi
){
3868 __b00
, __b01
, __b02
, __b03
, __b04
, __b05
, __b06
, __b07
,
3869 __b08
, __b09
, __b10
, __b11
, __b12
, __b13
, __b14
, __b15
,
3870 __b16
, __b17
, __b18
, __b19
, __b20
, __b21
, __b22
, __b23
,
3871 __b24
, __b25
, __b26
, __b27
, __b28
, __b29
, __b30
, __b31
3875 /// Constructs a 256-bit integer vector initialized with the specified
3876 /// 64-bit integral values.
3878 /// \headerfile <x86intrin.h>
3880 /// This intrinsic corresponds to the <c> VPUNPCKLQDQ+VINSERTF128 </c>
3884 /// A 64-bit integral value used to initialize bits [255:192] of the result.
3886 /// A 64-bit integral value used to initialize bits [191:128] of the result.
3888 /// A 64-bit integral value used to initialize bits [127:64] of the result.
3890 /// A 64-bit integral value used to initialize bits [63:0] of the result.
3891 /// \returns An initialized 256-bit integer vector.
3892 static __inline __m256i __DEFAULT_FN_ATTRS
3893 _mm256_set_epi64x(long long __a
, long long __b
, long long __c
, long long __d
)
3895 return __extension__ (__m256i
)(__v4di
){ __d
, __c
, __b
, __a
};
3898 /* Create vectors with elements in reverse order */
3899 /// Constructs a 256-bit floating-point vector of [4 x double],
3900 /// initialized in reverse order with the specified double-precision
3901 /// floating-point values.
3903 /// \headerfile <x86intrin.h>
3905 /// This intrinsic corresponds to the <c> VUNPCKLPD+VINSERTF128 </c>
3909 /// A double-precision floating-point value used to initialize bits [63:0]
3912 /// A double-precision floating-point value used to initialize bits [127:64]
3915 /// A double-precision floating-point value used to initialize bits [191:128]
3918 /// A double-precision floating-point value used to initialize bits [255:192]
3920 /// \returns An initialized 256-bit floating-point vector of [4 x double].
3921 static __inline __m256d __DEFAULT_FN_ATTRS
3922 _mm256_setr_pd(double __a
, double __b
, double __c
, double __d
)
3924 return _mm256_set_pd(__d
, __c
, __b
, __a
);
3927 /// Constructs a 256-bit floating-point vector of [8 x float],
3928 /// initialized in reverse order with the specified single-precision
3929 /// float-point values.
3931 /// \headerfile <x86intrin.h>
3933 /// This intrinsic is a utility function and does not correspond to a specific
3937 /// A single-precision floating-point value used to initialize bits [31:0]
3940 /// A single-precision floating-point value used to initialize bits [63:32]
3943 /// A single-precision floating-point value used to initialize bits [95:64]
3946 /// A single-precision floating-point value used to initialize bits [127:96]
3949 /// A single-precision floating-point value used to initialize bits [159:128]
3952 /// A single-precision floating-point value used to initialize bits [191:160]
3955 /// A single-precision floating-point value used to initialize bits [223:192]
3958 /// A single-precision floating-point value used to initialize bits [255:224]
3960 /// \returns An initialized 256-bit floating-point vector of [8 x float].
3961 static __inline __m256 __DEFAULT_FN_ATTRS
3962 _mm256_setr_ps(float __a
, float __b
, float __c
, float __d
,
3963 float __e
, float __f
, float __g
, float __h
)
3965 return _mm256_set_ps(__h
, __g
, __f
, __e
, __d
, __c
, __b
, __a
);
3968 /// Constructs a 256-bit integer vector, initialized in reverse order
3969 /// with the specified 32-bit integral values.
3971 /// \headerfile <x86intrin.h>
3973 /// This intrinsic is a utility function and does not correspond to a specific
3977 /// A 32-bit integral value used to initialize bits [31:0] of the result.
3979 /// A 32-bit integral value used to initialize bits [63:32] of the result.
3981 /// A 32-bit integral value used to initialize bits [95:64] of the result.
3983 /// A 32-bit integral value used to initialize bits [127:96] of the result.
3985 /// A 32-bit integral value used to initialize bits [159:128] of the result.
3987 /// A 32-bit integral value used to initialize bits [191:160] of the result.
3989 /// A 32-bit integral value used to initialize bits [223:192] of the result.
3991 /// A 32-bit integral value used to initialize bits [255:224] of the result.
3992 /// \returns An initialized 256-bit integer vector.
3993 static __inline __m256i __DEFAULT_FN_ATTRS
3994 _mm256_setr_epi32(int __i0
, int __i1
, int __i2
, int __i3
,
3995 int __i4
, int __i5
, int __i6
, int __i7
)
3997 return _mm256_set_epi32(__i7
, __i6
, __i5
, __i4
, __i3
, __i2
, __i1
, __i0
);
4000 /// Constructs a 256-bit integer vector, initialized in reverse order
4001 /// with the specified 16-bit integral values.
4003 /// \headerfile <x86intrin.h>
4005 /// This intrinsic is a utility function and does not correspond to a specific
4009 /// A 16-bit integral value used to initialize bits [15:0] of the result.
4011 /// A 16-bit integral value used to initialize bits [31:16] of the result.
4013 /// A 16-bit integral value used to initialize bits [47:32] of the result.
4015 /// A 16-bit integral value used to initialize bits [63:48] of the result.
4017 /// A 16-bit integral value used to initialize bits [79:64] of the result.
4019 /// A 16-bit integral value used to initialize bits [95:80] of the result.
4021 /// A 16-bit integral value used to initialize bits [111:96] of the result.
4023 /// A 16-bit integral value used to initialize bits [127:112] of the result.
4025 /// A 16-bit integral value used to initialize bits [143:128] of the result.
4027 /// A 16-bit integral value used to initialize bits [159:144] of the result.
4029 /// A 16-bit integral value used to initialize bits [175:160] of the result.
4031 /// A 16-bit integral value used to initialize bits [191:176] of the result.
4033 /// A 16-bit integral value used to initialize bits [207:192] of the result.
4035 /// A 16-bit integral value used to initialize bits [223:208] of the result.
4037 /// A 16-bit integral value used to initialize bits [239:224] of the result.
4039 /// A 16-bit integral value used to initialize bits [255:240] of the result.
4040 /// \returns An initialized 256-bit integer vector.
4041 static __inline __m256i __DEFAULT_FN_ATTRS
4042 _mm256_setr_epi16(short __w15
, short __w14
, short __w13
, short __w12
,
4043 short __w11
, short __w10
, short __w09
, short __w08
,
4044 short __w07
, short __w06
, short __w05
, short __w04
,
4045 short __w03
, short __w02
, short __w01
, short __w00
)
4047 return _mm256_set_epi16(__w00
, __w01
, __w02
, __w03
,
4048 __w04
, __w05
, __w06
, __w07
,
4049 __w08
, __w09
, __w10
, __w11
,
4050 __w12
, __w13
, __w14
, __w15
);
4053 /// Constructs a 256-bit integer vector, initialized in reverse order
4054 /// with the specified 8-bit integral values.
4056 /// \headerfile <x86intrin.h>
4058 /// This intrinsic is a utility function and does not correspond to a specific
4062 /// An 8-bit integral value used to initialize bits [7:0] of the result.
4064 /// An 8-bit integral value used to initialize bits [15:8] of the result.
4066 /// An 8-bit integral value used to initialize bits [23:16] of the result.
4068 /// An 8-bit integral value used to initialize bits [31:24] of the result.
4070 /// An 8-bit integral value used to initialize bits [39:32] of the result.
4072 /// An 8-bit integral value used to initialize bits [47:40] of the result.
4074 /// An 8-bit integral value used to initialize bits [55:48] of the result.
4076 /// An 8-bit integral value used to initialize bits [63:56] of the result.
4078 /// An 8-bit integral value used to initialize bits [71:64] of the result.
4080 /// An 8-bit integral value used to initialize bits [79:72] of the result.
4082 /// An 8-bit integral value used to initialize bits [87:80] of the result.
4084 /// An 8-bit integral value used to initialize bits [95:88] of the result.
4086 /// An 8-bit integral value used to initialize bits [103:96] of the result.
4088 /// An 8-bit integral value used to initialize bits [111:104] of the result.
4090 /// An 8-bit integral value used to initialize bits [119:112] of the result.
4092 /// An 8-bit integral value used to initialize bits [127:120] of the result.
4094 /// An 8-bit integral value used to initialize bits [135:128] of the result.
4096 /// An 8-bit integral value used to initialize bits [143:136] of the result.
4098 /// An 8-bit integral value used to initialize bits [151:144] of the result.
4100 /// An 8-bit integral value used to initialize bits [159:152] of the result.
4102 /// An 8-bit integral value used to initialize bits [167:160] of the result.
4104 /// An 8-bit integral value used to initialize bits [175:168] of the result.
4106 /// An 8-bit integral value used to initialize bits [183:176] of the result.
4108 /// An 8-bit integral value used to initialize bits [191:184] of the result.
4110 /// An 8-bit integral value used to initialize bits [199:192] of the result.
4112 /// An 8-bit integral value used to initialize bits [207:200] of the result.
4114 /// An 8-bit integral value used to initialize bits [215:208] of the result.
4116 /// An 8-bit integral value used to initialize bits [223:216] of the result.
4118 /// An 8-bit integral value used to initialize bits [231:224] of the result.
4120 /// An 8-bit integral value used to initialize bits [239:232] of the result.
4122 /// An 8-bit integral value used to initialize bits [247:240] of the result.
4124 /// An 8-bit integral value used to initialize bits [255:248] of the result.
4125 /// \returns An initialized 256-bit integer vector.
4126 static __inline __m256i __DEFAULT_FN_ATTRS
4127 _mm256_setr_epi8(char __b31
, char __b30
, char __b29
, char __b28
,
4128 char __b27
, char __b26
, char __b25
, char __b24
,
4129 char __b23
, char __b22
, char __b21
, char __b20
,
4130 char __b19
, char __b18
, char __b17
, char __b16
,
4131 char __b15
, char __b14
, char __b13
, char __b12
,
4132 char __b11
, char __b10
, char __b09
, char __b08
,
4133 char __b07
, char __b06
, char __b05
, char __b04
,
4134 char __b03
, char __b02
, char __b01
, char __b00
)
4136 return _mm256_set_epi8(__b00
, __b01
, __b02
, __b03
, __b04
, __b05
, __b06
, __b07
,
4137 __b08
, __b09
, __b10
, __b11
, __b12
, __b13
, __b14
, __b15
,
4138 __b16
, __b17
, __b18
, __b19
, __b20
, __b21
, __b22
, __b23
,
4139 __b24
, __b25
, __b26
, __b27
, __b28
, __b29
, __b30
, __b31
);
4142 /// Constructs a 256-bit integer vector, initialized in reverse order
4143 /// with the specified 64-bit integral values.
4145 /// \headerfile <x86intrin.h>
4147 /// This intrinsic corresponds to the <c> VPUNPCKLQDQ+VINSERTF128 </c>
4151 /// A 64-bit integral value used to initialize bits [63:0] of the result.
4153 /// A 64-bit integral value used to initialize bits [127:64] of the result.
4155 /// A 64-bit integral value used to initialize bits [191:128] of the result.
4157 /// A 64-bit integral value used to initialize bits [255:192] of the result.
4158 /// \returns An initialized 256-bit integer vector.
4159 static __inline __m256i __DEFAULT_FN_ATTRS
4160 _mm256_setr_epi64x(long long __a
, long long __b
, long long __c
, long long __d
)
4162 return _mm256_set_epi64x(__d
, __c
, __b
, __a
);
4165 /* Create vectors with repeated elements */
4166 /// Constructs a 256-bit floating-point vector of [4 x double], with each
4167 /// of the four double-precision floating-point vector elements set to the
4168 /// specified double-precision floating-point value.
4170 /// \headerfile <x86intrin.h>
4172 /// This intrinsic corresponds to the <c> VMOVDDUP+VINSERTF128 </c> instruction.
4175 /// A double-precision floating-point value used to initialize each vector
4176 /// element of the result.
4177 /// \returns An initialized 256-bit floating-point vector of [4 x double].
4178 static __inline __m256d __DEFAULT_FN_ATTRS
4179 _mm256_set1_pd(double __w
)
4181 return _mm256_set_pd(__w
, __w
, __w
, __w
);
4184 /// Constructs a 256-bit floating-point vector of [8 x float], with each
4185 /// of the eight single-precision floating-point vector elements set to the
4186 /// specified single-precision floating-point value.
4188 /// \headerfile <x86intrin.h>
4190 /// This intrinsic corresponds to the <c> VPERMILPS+VINSERTF128 </c>
4194 /// A single-precision floating-point value used to initialize each vector
4195 /// element of the result.
4196 /// \returns An initialized 256-bit floating-point vector of [8 x float].
4197 static __inline __m256 __DEFAULT_FN_ATTRS
4198 _mm256_set1_ps(float __w
)
4200 return _mm256_set_ps(__w
, __w
, __w
, __w
, __w
, __w
, __w
, __w
);
4203 /// Constructs a 256-bit integer vector of [8 x i32], with each of the
4204 /// 32-bit integral vector elements set to the specified 32-bit integral
4207 /// \headerfile <x86intrin.h>
4209 /// This intrinsic corresponds to the <c> VPERMILPS+VINSERTF128 </c>
4213 /// A 32-bit integral value used to initialize each vector element of the
4215 /// \returns An initialized 256-bit integer vector of [8 x i32].
4216 static __inline __m256i __DEFAULT_FN_ATTRS
4217 _mm256_set1_epi32(int __i
)
4219 return _mm256_set_epi32(__i
, __i
, __i
, __i
, __i
, __i
, __i
, __i
);
4222 /// Constructs a 256-bit integer vector of [16 x i16], with each of the
4223 /// 16-bit integral vector elements set to the specified 16-bit integral
4226 /// \headerfile <x86intrin.h>
4228 /// This intrinsic corresponds to the <c> VPSHUFB+VINSERTF128 </c> instruction.
4231 /// A 16-bit integral value used to initialize each vector element of the
4233 /// \returns An initialized 256-bit integer vector of [16 x i16].
4234 static __inline __m256i __DEFAULT_FN_ATTRS
4235 _mm256_set1_epi16(short __w
)
4237 return _mm256_set_epi16(__w
, __w
, __w
, __w
, __w
, __w
, __w
, __w
,
4238 __w
, __w
, __w
, __w
, __w
, __w
, __w
, __w
);
4241 /// Constructs a 256-bit integer vector of [32 x i8], with each of the
4242 /// 8-bit integral vector elements set to the specified 8-bit integral value.
4244 /// \headerfile <x86intrin.h>
4246 /// This intrinsic corresponds to the <c> VPSHUFB+VINSERTF128 </c> instruction.
4249 /// An 8-bit integral value used to initialize each vector element of the
4251 /// \returns An initialized 256-bit integer vector of [32 x i8].
4252 static __inline __m256i __DEFAULT_FN_ATTRS
4253 _mm256_set1_epi8(char __b
)
4255 return _mm256_set_epi8(__b
, __b
, __b
, __b
, __b
, __b
, __b
, __b
,
4256 __b
, __b
, __b
, __b
, __b
, __b
, __b
, __b
,
4257 __b
, __b
, __b
, __b
, __b
, __b
, __b
, __b
,
4258 __b
, __b
, __b
, __b
, __b
, __b
, __b
, __b
);
4261 /// Constructs a 256-bit integer vector of [4 x i64], with each of the
4262 /// 64-bit integral vector elements set to the specified 64-bit integral
4265 /// \headerfile <x86intrin.h>
4267 /// This intrinsic corresponds to the <c> VMOVDDUP+VINSERTF128 </c> instruction.
4270 /// A 64-bit integral value used to initialize each vector element of the
4272 /// \returns An initialized 256-bit integer vector of [4 x i64].
4273 static __inline __m256i __DEFAULT_FN_ATTRS
4274 _mm256_set1_epi64x(long long __q
)
4276 return _mm256_set_epi64x(__q
, __q
, __q
, __q
);
4279 /* Create __zeroed vectors */
4280 /// Constructs a 256-bit floating-point vector of [4 x double] with all
4281 /// vector elements initialized to zero.
4283 /// \headerfile <x86intrin.h>
4285 /// This intrinsic corresponds to the <c> VXORPS </c> instruction.
4287 /// \returns A 256-bit vector of [4 x double] with all elements set to zero.
4288 static __inline __m256d __DEFAULT_FN_ATTRS
4289 _mm256_setzero_pd(void)
4291 return __extension__ (__m256d
){ 0, 0, 0, 0 };
4294 /// Constructs a 256-bit floating-point vector of [8 x float] with all
4295 /// vector elements initialized to zero.
4297 /// \headerfile <x86intrin.h>
4299 /// This intrinsic corresponds to the <c> VXORPS </c> instruction.
4301 /// \returns A 256-bit vector of [8 x float] with all elements set to zero.
4302 static __inline __m256 __DEFAULT_FN_ATTRS
4303 _mm256_setzero_ps(void)
4305 return __extension__ (__m256
){ 0, 0, 0, 0, 0, 0, 0, 0 };
4308 /// Constructs a 256-bit integer vector initialized to zero.
4310 /// \headerfile <x86intrin.h>
4312 /// This intrinsic corresponds to the <c> VXORPS </c> instruction.
4314 /// \returns A 256-bit integer vector initialized to zero.
4315 static __inline __m256i __DEFAULT_FN_ATTRS
4316 _mm256_setzero_si256(void)
4318 return __extension__ (__m256i
)(__v4di
){ 0, 0, 0, 0 };
4321 /* Cast between vector types */
4322 /// Casts a 256-bit floating-point vector of [4 x double] into a 256-bit
4323 /// floating-point vector of [8 x float].
4325 /// \headerfile <x86intrin.h>
4327 /// This intrinsic has no corresponding instruction.
4330 /// A 256-bit floating-point vector of [4 x double].
4331 /// \returns A 256-bit floating-point vector of [8 x float] containing the same
4332 /// bitwise pattern as the parameter.
4333 static __inline __m256 __DEFAULT_FN_ATTRS
4334 _mm256_castpd_ps(__m256d __a
)
4339 /// Casts a 256-bit floating-point vector of [4 x double] into a 256-bit
4342 /// \headerfile <x86intrin.h>
4344 /// This intrinsic has no corresponding instruction.
4347 /// A 256-bit floating-point vector of [4 x double].
4348 /// \returns A 256-bit integer vector containing the same bitwise pattern as the
4350 static __inline __m256i __DEFAULT_FN_ATTRS
4351 _mm256_castpd_si256(__m256d __a
)
4353 return (__m256i
)__a
;
4356 /// Casts a 256-bit floating-point vector of [8 x float] into a 256-bit
4357 /// floating-point vector of [4 x double].
4359 /// \headerfile <x86intrin.h>
4361 /// This intrinsic has no corresponding instruction.
4364 /// A 256-bit floating-point vector of [8 x float].
4365 /// \returns A 256-bit floating-point vector of [4 x double] containing the same
4366 /// bitwise pattern as the parameter.
4367 static __inline __m256d __DEFAULT_FN_ATTRS
4368 _mm256_castps_pd(__m256 __a
)
4370 return (__m256d
)__a
;
4373 /// Casts a 256-bit floating-point vector of [8 x float] into a 256-bit
4376 /// \headerfile <x86intrin.h>
4378 /// This intrinsic has no corresponding instruction.
4381 /// A 256-bit floating-point vector of [8 x float].
4382 /// \returns A 256-bit integer vector containing the same bitwise pattern as the
4384 static __inline __m256i __DEFAULT_FN_ATTRS
4385 _mm256_castps_si256(__m256 __a
)
4387 return (__m256i
)__a
;
4390 /// Casts a 256-bit integer vector into a 256-bit floating-point vector
4393 /// \headerfile <x86intrin.h>
4395 /// This intrinsic has no corresponding instruction.
4398 /// A 256-bit integer vector.
4399 /// \returns A 256-bit floating-point vector of [8 x float] containing the same
4400 /// bitwise pattern as the parameter.
4401 static __inline __m256 __DEFAULT_FN_ATTRS
4402 _mm256_castsi256_ps(__m256i __a
)
4407 /// Casts a 256-bit integer vector into a 256-bit floating-point vector
4408 /// of [4 x double].
4410 /// \headerfile <x86intrin.h>
4412 /// This intrinsic has no corresponding instruction.
4415 /// A 256-bit integer vector.
4416 /// \returns A 256-bit floating-point vector of [4 x double] containing the same
4417 /// bitwise pattern as the parameter.
4418 static __inline __m256d __DEFAULT_FN_ATTRS
4419 _mm256_castsi256_pd(__m256i __a
)
4421 return (__m256d
)__a
;
4424 /// Returns the lower 128 bits of a 256-bit floating-point vector of
4425 /// [4 x double] as a 128-bit floating-point vector of [2 x double].
4427 /// \headerfile <x86intrin.h>
4429 /// This intrinsic has no corresponding instruction.
4432 /// A 256-bit floating-point vector of [4 x double].
4433 /// \returns A 128-bit floating-point vector of [2 x double] containing the
4434 /// lower 128 bits of the parameter.
4435 static __inline __m128d __DEFAULT_FN_ATTRS
4436 _mm256_castpd256_pd128(__m256d __a
)
4438 return __builtin_shufflevector((__v4df
)__a
, (__v4df
)__a
, 0, 1);
4441 /// Returns the lower 128 bits of a 256-bit floating-point vector of
4442 /// [8 x float] as a 128-bit floating-point vector of [4 x float].
4444 /// \headerfile <x86intrin.h>
4446 /// This intrinsic has no corresponding instruction.
4449 /// A 256-bit floating-point vector of [8 x float].
4450 /// \returns A 128-bit floating-point vector of [4 x float] containing the
4451 /// lower 128 bits of the parameter.
4452 static __inline __m128 __DEFAULT_FN_ATTRS
4453 _mm256_castps256_ps128(__m256 __a
)
4455 return __builtin_shufflevector((__v8sf
)__a
, (__v8sf
)__a
, 0, 1, 2, 3);
4458 /// Truncates a 256-bit integer vector into a 128-bit integer vector.
4460 /// \headerfile <x86intrin.h>
4462 /// This intrinsic has no corresponding instruction.
4465 /// A 256-bit integer vector.
4466 /// \returns A 128-bit integer vector containing the lower 128 bits of the
4468 static __inline __m128i __DEFAULT_FN_ATTRS
4469 _mm256_castsi256_si128(__m256i __a
)
4471 return __builtin_shufflevector((__v4di
)__a
, (__v4di
)__a
, 0, 1);
4474 /// Constructs a 256-bit floating-point vector of [4 x double] from a
4475 /// 128-bit floating-point vector of [2 x double].
4477 /// The lower 128 bits contain the value of the source vector. The contents
4478 /// of the upper 128 bits are undefined.
4480 /// \headerfile <x86intrin.h>
4482 /// This intrinsic has no corresponding instruction.
4485 /// A 128-bit vector of [2 x double].
4486 /// \returns A 256-bit floating-point vector of [4 x double]. The lower 128 bits
4487 /// contain the value of the parameter. The contents of the upper 128 bits
4489 static __inline __m256d __DEFAULT_FN_ATTRS
4490 _mm256_castpd128_pd256(__m128d __a
)
4492 return __builtin_shufflevector((__v2df
)__a
, (__v2df
)__a
, 0, 1, -1, -1);
4495 /// Constructs a 256-bit floating-point vector of [8 x float] from a
4496 /// 128-bit floating-point vector of [4 x float].
4498 /// The lower 128 bits contain the value of the source vector. The contents
4499 /// of the upper 128 bits are undefined.
4501 /// \headerfile <x86intrin.h>
4503 /// This intrinsic has no corresponding instruction.
4506 /// A 128-bit vector of [4 x float].
4507 /// \returns A 256-bit floating-point vector of [8 x float]. The lower 128 bits
4508 /// contain the value of the parameter. The contents of the upper 128 bits
4510 static __inline __m256 __DEFAULT_FN_ATTRS
4511 _mm256_castps128_ps256(__m128 __a
)
4513 return __builtin_shufflevector((__v4sf
)__a
, (__v4sf
)__a
, 0, 1, 2, 3, -1, -1, -1, -1);
4516 /// Constructs a 256-bit integer vector from a 128-bit integer vector.
4518 /// The lower 128 bits contain the value of the source vector. The contents
4519 /// of the upper 128 bits are undefined.
4521 /// \headerfile <x86intrin.h>
4523 /// This intrinsic has no corresponding instruction.
4526 /// A 128-bit integer vector.
4527 /// \returns A 256-bit integer vector. The lower 128 bits contain the value of
4528 /// the parameter. The contents of the upper 128 bits are undefined.
4529 static __inline __m256i __DEFAULT_FN_ATTRS
4530 _mm256_castsi128_si256(__m128i __a
)
4532 return __builtin_shufflevector((__v2di
)__a
, (__v2di
)__a
, 0, 1, -1, -1);
4535 /// Constructs a 256-bit floating-point vector of [4 x double] from a
4536 /// 128-bit floating-point vector of [2 x double]. The lower 128 bits
4537 /// contain the value of the source vector. The upper 128 bits are set
4540 /// \headerfile <x86intrin.h>
4542 /// This intrinsic has no corresponding instruction.
4545 /// A 128-bit vector of [2 x double].
4546 /// \returns A 256-bit floating-point vector of [4 x double]. The lower 128 bits
4547 /// contain the value of the parameter. The upper 128 bits are set to zero.
4548 static __inline __m256d __DEFAULT_FN_ATTRS
4549 _mm256_zextpd128_pd256(__m128d __a
)
4551 return __builtin_shufflevector((__v2df
)__a
, (__v2df
)_mm_setzero_pd(), 0, 1, 2, 3);
4554 /// Constructs a 256-bit floating-point vector of [8 x float] from a
4555 /// 128-bit floating-point vector of [4 x float]. The lower 128 bits contain
4556 /// the value of the source vector. The upper 128 bits are set to zero.
4558 /// \headerfile <x86intrin.h>
4560 /// This intrinsic has no corresponding instruction.
4563 /// A 128-bit vector of [4 x float].
4564 /// \returns A 256-bit floating-point vector of [8 x float]. The lower 128 bits
4565 /// contain the value of the parameter. The upper 128 bits are set to zero.
4566 static __inline __m256 __DEFAULT_FN_ATTRS
4567 _mm256_zextps128_ps256(__m128 __a
)
4569 return __builtin_shufflevector((__v4sf
)__a
, (__v4sf
)_mm_setzero_ps(), 0, 1, 2, 3, 4, 5, 6, 7);
4572 /// Constructs a 256-bit integer vector from a 128-bit integer vector.
4573 /// The lower 128 bits contain the value of the source vector. The upper
4574 /// 128 bits are set to zero.
4576 /// \headerfile <x86intrin.h>
4578 /// This intrinsic has no corresponding instruction.
4581 /// A 128-bit integer vector.
4582 /// \returns A 256-bit integer vector. The lower 128 bits contain the value of
4583 /// the parameter. The upper 128 bits are set to zero.
4584 static __inline __m256i __DEFAULT_FN_ATTRS
4585 _mm256_zextsi128_si256(__m128i __a
)
4587 return __builtin_shufflevector((__v2di
)__a
, (__v2di
)_mm_setzero_si128(), 0, 1, 2, 3);
4592 We use macros rather than inlines because we only want to accept
4593 invocations where the immediate M is a constant expression.
4595 /// Constructs a new 256-bit vector of [8 x float] by first duplicating
4596 /// a 256-bit vector of [8 x float] given in the first parameter, and then
4597 /// replacing either the upper or the lower 128 bits with the contents of a
4598 /// 128-bit vector of [4 x float] in the second parameter.
4600 /// The immediate integer parameter determines between the upper or the lower
4603 /// \headerfile <x86intrin.h>
4606 /// __m256 _mm256_insertf128_ps(__m256 V1, __m128 V2, const int M);
4609 /// This intrinsic corresponds to the <c> VINSERTF128 </c> instruction.
4612 /// A 256-bit vector of [8 x float]. This vector is copied to the result
4613 /// first, and then either the upper or the lower 128 bits of the result will
4614 /// be replaced by the contents of \a V2.
4616 /// A 128-bit vector of [4 x float]. The contents of this parameter are
4617 /// written to either the upper or the lower 128 bits of the result depending
4618 /// on the value of parameter \a M.
4620 /// An immediate integer. The least significant bit determines how the values
4621 /// from the two parameters are interleaved: \n
4622 /// If bit [0] of \a M is 0, \a V2 are copied to bits [127:0] of the result,
4623 /// and bits [255:128] of \a V1 are copied to bits [255:128] of the
4625 /// If bit [0] of \a M is 1, \a V2 are copied to bits [255:128] of the
4626 /// result, and bits [127:0] of \a V1 are copied to bits [127:0] of the
4628 /// \returns A 256-bit vector of [8 x float] containing the interleaved values.
4629 #define _mm256_insertf128_ps(V1, V2, M) \
4630 ((__m256)__builtin_ia32_vinsertf128_ps256((__v8sf)(__m256)(V1), \
4631 (__v4sf)(__m128)(V2), (int)(M)))
4633 /// Constructs a new 256-bit vector of [4 x double] by first duplicating
4634 /// a 256-bit vector of [4 x double] given in the first parameter, and then
4635 /// replacing either the upper or the lower 128 bits with the contents of a
4636 /// 128-bit vector of [2 x double] in the second parameter.
4638 /// The immediate integer parameter determines between the upper or the lower
4641 /// \headerfile <x86intrin.h>
4644 /// __m256d _mm256_insertf128_pd(__m256d V1, __m128d V2, const int M);
4647 /// This intrinsic corresponds to the <c> VINSERTF128 </c> instruction.
4650 /// A 256-bit vector of [4 x double]. This vector is copied to the result
4651 /// first, and then either the upper or the lower 128 bits of the result will
4652 /// be replaced by the contents of \a V2.
4654 /// A 128-bit vector of [2 x double]. The contents of this parameter are
4655 /// written to either the upper or the lower 128 bits of the result depending
4656 /// on the value of parameter \a M.
4658 /// An immediate integer. The least significant bit determines how the values
4659 /// from the two parameters are interleaved: \n
4660 /// If bit [0] of \a M is 0, \a V2 are copied to bits [127:0] of the result,
4661 /// and bits [255:128] of \a V1 are copied to bits [255:128] of the
4663 /// If bit [0] of \a M is 1, \a V2 are copied to bits [255:128] of the
4664 /// result, and bits [127:0] of \a V1 are copied to bits [127:0] of the
4666 /// \returns A 256-bit vector of [4 x double] containing the interleaved values.
4667 #define _mm256_insertf128_pd(V1, V2, M) \
4668 ((__m256d)__builtin_ia32_vinsertf128_pd256((__v4df)(__m256d)(V1), \
4669 (__v2df)(__m128d)(V2), (int)(M)))
4671 /// Constructs a new 256-bit integer vector by first duplicating a
4672 /// 256-bit integer vector given in the first parameter, and then replacing
4673 /// either the upper or the lower 128 bits with the contents of a 128-bit
4674 /// integer vector in the second parameter.
4676 /// The immediate integer parameter determines between the upper or the lower
4679 /// \headerfile <x86intrin.h>
4682 /// __m256i _mm256_insertf128_si256(__m256i V1, __m128i V2, const int M);
4685 /// This intrinsic corresponds to the <c> VINSERTF128 </c> instruction.
4688 /// A 256-bit integer vector. This vector is copied to the result first, and
4689 /// then either the upper or the lower 128 bits of the result will be
4690 /// replaced by the contents of \a V2.
4692 /// A 128-bit integer vector. The contents of this parameter are written to
4693 /// either the upper or the lower 128 bits of the result depending on the
4694 /// value of parameter \a M.
4696 /// An immediate integer. The least significant bit determines how the values
4697 /// from the two parameters are interleaved: \n
4698 /// If bit [0] of \a M is 0, \a V2 are copied to bits [127:0] of the result,
4699 /// and bits [255:128] of \a V1 are copied to bits [255:128] of the
4701 /// If bit [0] of \a M is 1, \a V2 are copied to bits [255:128] of the
4702 /// result, and bits [127:0] of \a V1 are copied to bits [127:0] of the
4704 /// \returns A 256-bit integer vector containing the interleaved values.
4705 #define _mm256_insertf128_si256(V1, V2, M) \
4706 ((__m256i)__builtin_ia32_vinsertf128_si256((__v8si)(__m256i)(V1), \
4707 (__v4si)(__m128i)(V2), (int)(M)))
4711 We use macros rather than inlines because we only want to accept
4712 invocations where the immediate M is a constant expression.
4714 /// Extracts either the upper or the lower 128 bits from a 256-bit vector
4715 /// of [8 x float], as determined by the immediate integer parameter, and
4716 /// returns the extracted bits as a 128-bit vector of [4 x float].
4718 /// \headerfile <x86intrin.h>
4721 /// __m128 _mm256_extractf128_ps(__m256 V, const int M);
4724 /// This intrinsic corresponds to the <c> VEXTRACTF128 </c> instruction.
4727 /// A 256-bit vector of [8 x float].
4729 /// An immediate integer. The least significant bit determines which bits are
4730 /// extracted from the first parameter: \n
4731 /// If bit [0] of \a M is 0, bits [127:0] of \a V are copied to the
4733 /// If bit [0] of \a M is 1, bits [255:128] of \a V are copied to the result.
4734 /// \returns A 128-bit vector of [4 x float] containing the extracted bits.
4735 #define _mm256_extractf128_ps(V, M) \
4736 ((__m128)__builtin_ia32_vextractf128_ps256((__v8sf)(__m256)(V), (int)(M)))
4738 /// Extracts either the upper or the lower 128 bits from a 256-bit vector
4739 /// of [4 x double], as determined by the immediate integer parameter, and
4740 /// returns the extracted bits as a 128-bit vector of [2 x double].
4742 /// \headerfile <x86intrin.h>
4745 /// __m128d _mm256_extractf128_pd(__m256d V, const int M);
4748 /// This intrinsic corresponds to the <c> VEXTRACTF128 </c> instruction.
4751 /// A 256-bit vector of [4 x double].
4753 /// An immediate integer. The least significant bit determines which bits are
4754 /// extracted from the first parameter: \n
4755 /// If bit [0] of \a M is 0, bits [127:0] of \a V are copied to the
4757 /// If bit [0] of \a M is 1, bits [255:128] of \a V are copied to the result.
4758 /// \returns A 128-bit vector of [2 x double] containing the extracted bits.
4759 #define _mm256_extractf128_pd(V, M) \
4760 ((__m128d)__builtin_ia32_vextractf128_pd256((__v4df)(__m256d)(V), (int)(M)))
4762 /// Extracts either the upper or the lower 128 bits from a 256-bit
4763 /// integer vector, as determined by the immediate integer parameter, and
4764 /// returns the extracted bits as a 128-bit integer vector.
4766 /// \headerfile <x86intrin.h>
4769 /// __m128i _mm256_extractf128_si256(__m256i V, const int M);
4772 /// This intrinsic corresponds to the <c> VEXTRACTF128 </c> instruction.
4775 /// A 256-bit integer vector.
4777 /// An immediate integer. The least significant bit determines which bits are
4778 /// extracted from the first parameter: \n
4779 /// If bit [0] of \a M is 0, bits [127:0] of \a V are copied to the
4781 /// If bit [0] of \a M is 1, bits [255:128] of \a V are copied to the result.
4782 /// \returns A 128-bit integer vector containing the extracted bits.
4783 #define _mm256_extractf128_si256(V, M) \
4784 ((__m128i)__builtin_ia32_vextractf128_si256((__v8si)(__m256i)(V), (int)(M)))
4786 /// Constructs a 256-bit floating-point vector of [8 x float] by
4787 /// concatenating two 128-bit floating-point vectors of [4 x float].
4789 /// \headerfile <x86intrin.h>
4791 /// This intrinsic corresponds to the <c> VINSERTF128 </c> instruction.
4794 /// A 128-bit floating-point vector of [4 x float] to be copied to the upper
4795 /// 128 bits of the result.
4797 /// A 128-bit floating-point vector of [4 x float] to be copied to the lower
4798 /// 128 bits of the result.
4799 /// \returns A 256-bit floating-point vector of [8 x float] containing the
4800 /// concatenated result.
4801 static __inline __m256 __DEFAULT_FN_ATTRS
4802 _mm256_set_m128 (__m128 __hi
, __m128 __lo
)
4804 return (__m256
) __builtin_shufflevector((__v4sf
)__lo
, (__v4sf
)__hi
, 0, 1, 2, 3, 4, 5, 6, 7);
4807 /// Constructs a 256-bit floating-point vector of [4 x double] by
4808 /// concatenating two 128-bit floating-point vectors of [2 x double].
4810 /// \headerfile <x86intrin.h>
4812 /// This intrinsic corresponds to the <c> VINSERTF128 </c> instruction.
4815 /// A 128-bit floating-point vector of [2 x double] to be copied to the upper
4816 /// 128 bits of the result.
4818 /// A 128-bit floating-point vector of [2 x double] to be copied to the lower
4819 /// 128 bits of the result.
4820 /// \returns A 256-bit floating-point vector of [4 x double] containing the
4821 /// concatenated result.
4822 static __inline __m256d __DEFAULT_FN_ATTRS
4823 _mm256_set_m128d (__m128d __hi
, __m128d __lo
)
4825 return (__m256d
) __builtin_shufflevector((__v2df
)__lo
, (__v2df
)__hi
, 0, 1, 2, 3);
4828 /// Constructs a 256-bit integer vector by concatenating two 128-bit
4829 /// integer vectors.
4831 /// \headerfile <x86intrin.h>
4833 /// This intrinsic corresponds to the <c> VINSERTF128 </c> instruction.
4836 /// A 128-bit integer vector to be copied to the upper 128 bits of the
4839 /// A 128-bit integer vector to be copied to the lower 128 bits of the
4841 /// \returns A 256-bit integer vector containing the concatenated result.
4842 static __inline __m256i __DEFAULT_FN_ATTRS
4843 _mm256_set_m128i (__m128i __hi
, __m128i __lo
)
4845 return (__m256i
) __builtin_shufflevector((__v2di
)__lo
, (__v2di
)__hi
, 0, 1, 2, 3);
4848 /// Constructs a 256-bit floating-point vector of [8 x float] by
4849 /// concatenating two 128-bit floating-point vectors of [4 x float]. This is
4850 /// similar to _mm256_set_m128, but the order of the input parameters is
4853 /// \headerfile <x86intrin.h>
4855 /// This intrinsic corresponds to the <c> VINSERTF128 </c> instruction.
4858 /// A 128-bit floating-point vector of [4 x float] to be copied to the lower
4859 /// 128 bits of the result.
4861 /// A 128-bit floating-point vector of [4 x float] to be copied to the upper
4862 /// 128 bits of the result.
4863 /// \returns A 256-bit floating-point vector of [8 x float] containing the
4864 /// concatenated result.
4865 static __inline __m256 __DEFAULT_FN_ATTRS
4866 _mm256_setr_m128 (__m128 __lo
, __m128 __hi
)
4868 return _mm256_set_m128(__hi
, __lo
);
4871 /// Constructs a 256-bit floating-point vector of [4 x double] by
4872 /// concatenating two 128-bit floating-point vectors of [2 x double]. This is
4873 /// similar to _mm256_set_m128d, but the order of the input parameters is
4876 /// \headerfile <x86intrin.h>
4878 /// This intrinsic corresponds to the <c> VINSERTF128 </c> instruction.
4881 /// A 128-bit floating-point vector of [2 x double] to be copied to the lower
4882 /// 128 bits of the result.
4884 /// A 128-bit floating-point vector of [2 x double] to be copied to the upper
4885 /// 128 bits of the result.
4886 /// \returns A 256-bit floating-point vector of [4 x double] containing the
4887 /// concatenated result.
4888 static __inline __m256d __DEFAULT_FN_ATTRS
4889 _mm256_setr_m128d (__m128d __lo
, __m128d __hi
)
4891 return (__m256d
)_mm256_set_m128d(__hi
, __lo
);
4894 /// Constructs a 256-bit integer vector by concatenating two 128-bit
4895 /// integer vectors. This is similar to _mm256_set_m128i, but the order of
4896 /// the input parameters is swapped.
4898 /// \headerfile <x86intrin.h>
4900 /// This intrinsic corresponds to the <c> VINSERTF128 </c> instruction.
4903 /// A 128-bit integer vector to be copied to the lower 128 bits of the
4906 /// A 128-bit integer vector to be copied to the upper 128 bits of the
4908 /// \returns A 256-bit integer vector containing the concatenated result.
4909 static __inline __m256i __DEFAULT_FN_ATTRS
4910 _mm256_setr_m128i (__m128i __lo
, __m128i __hi
)
4912 return (__m256i
)_mm256_set_m128i(__hi
, __lo
);
4915 /* SIMD load ops (unaligned) */
4916 /// Loads two 128-bit floating-point vectors of [4 x float] from
4917 /// unaligned memory locations and constructs a 256-bit floating-point vector
4918 /// of [8 x float] by concatenating the two 128-bit vectors.
4920 /// \headerfile <x86intrin.h>
4922 /// This intrinsic corresponds to load instructions followed by the
4923 /// <c> VINSERTF128 </c> instruction.
4925 /// \param __addr_hi
4926 /// A pointer to a 128-bit memory location containing 4 consecutive
4927 /// single-precision floating-point values. These values are to be copied to
4928 /// bits[255:128] of the result. The address of the memory location does not
4929 /// have to be aligned.
4930 /// \param __addr_lo
4931 /// A pointer to a 128-bit memory location containing 4 consecutive
4932 /// single-precision floating-point values. These values are to be copied to
4933 /// bits[127:0] of the result. The address of the memory location does not
4934 /// have to be aligned.
4935 /// \returns A 256-bit floating-point vector of [8 x float] containing the
4936 /// concatenated result.
4937 static __inline __m256 __DEFAULT_FN_ATTRS
4938 _mm256_loadu2_m128(float const *__addr_hi
, float const *__addr_lo
)
4940 return _mm256_set_m128(_mm_loadu_ps(__addr_hi
), _mm_loadu_ps(__addr_lo
));
4943 /// Loads two 128-bit floating-point vectors of [2 x double] from
4944 /// unaligned memory locations and constructs a 256-bit floating-point vector
4945 /// of [4 x double] by concatenating the two 128-bit vectors.
4947 /// \headerfile <x86intrin.h>
4949 /// This intrinsic corresponds to load instructions followed by the
4950 /// <c> VINSERTF128 </c> instruction.
4952 /// \param __addr_hi
4953 /// A pointer to a 128-bit memory location containing two consecutive
4954 /// double-precision floating-point values. These values are to be copied to
4955 /// bits[255:128] of the result. The address of the memory location does not
4956 /// have to be aligned.
4957 /// \param __addr_lo
4958 /// A pointer to a 128-bit memory location containing two consecutive
4959 /// double-precision floating-point values. These values are to be copied to
4960 /// bits[127:0] of the result. The address of the memory location does not
4961 /// have to be aligned.
4962 /// \returns A 256-bit floating-point vector of [4 x double] containing the
4963 /// concatenated result.
4964 static __inline __m256d __DEFAULT_FN_ATTRS
4965 _mm256_loadu2_m128d(double const *__addr_hi
, double const *__addr_lo
)
4967 return _mm256_set_m128d(_mm_loadu_pd(__addr_hi
), _mm_loadu_pd(__addr_lo
));
4970 /// Loads two 128-bit integer vectors from unaligned memory locations and
4971 /// constructs a 256-bit integer vector by concatenating the two 128-bit
4974 /// \headerfile <x86intrin.h>
4976 /// This intrinsic corresponds to load instructions followed by the
4977 /// <c> VINSERTF128 </c> instruction.
4979 /// \param __addr_hi
4980 /// A pointer to a 128-bit memory location containing a 128-bit integer
4981 /// vector. This vector is to be copied to bits[255:128] of the result. The
4982 /// address of the memory location does not have to be aligned.
4983 /// \param __addr_lo
4984 /// A pointer to a 128-bit memory location containing a 128-bit integer
4985 /// vector. This vector is to be copied to bits[127:0] of the result. The
4986 /// address of the memory location does not have to be aligned.
4987 /// \returns A 256-bit integer vector containing the concatenated result.
4988 static __inline __m256i __DEFAULT_FN_ATTRS
4989 _mm256_loadu2_m128i(__m128i_u
const *__addr_hi
, __m128i_u
const *__addr_lo
)
4991 return _mm256_set_m128i(_mm_loadu_si128(__addr_hi
), _mm_loadu_si128(__addr_lo
));
4994 /* SIMD store ops (unaligned) */
4995 /// Stores the upper and lower 128 bits of a 256-bit floating-point
4996 /// vector of [8 x float] into two different unaligned memory locations.
4998 /// \headerfile <x86intrin.h>
5000 /// This intrinsic corresponds to the <c> VEXTRACTF128 </c> instruction and the
5001 /// store instructions.
5003 /// \param __addr_hi
5004 /// A pointer to a 128-bit memory location. Bits[255:128] of \a __a are to be
5005 /// copied to this memory location. The address of this memory location does
5006 /// not have to be aligned.
5007 /// \param __addr_lo
5008 /// A pointer to a 128-bit memory location. Bits[127:0] of \a __a are to be
5009 /// copied to this memory location. The address of this memory location does
5010 /// not have to be aligned.
5012 /// A 256-bit floating-point vector of [8 x float].
5013 static __inline
void __DEFAULT_FN_ATTRS
5014 _mm256_storeu2_m128(float *__addr_hi
, float *__addr_lo
, __m256 __a
)
5018 __v128
= _mm256_castps256_ps128(__a
);
5019 _mm_storeu_ps(__addr_lo
, __v128
);
5020 __v128
= _mm256_extractf128_ps(__a
, 1);
5021 _mm_storeu_ps(__addr_hi
, __v128
);
5024 /// Stores the upper and lower 128 bits of a 256-bit floating-point
5025 /// vector of [4 x double] into two different unaligned memory locations.
5027 /// \headerfile <x86intrin.h>
5029 /// This intrinsic corresponds to the <c> VEXTRACTF128 </c> instruction and the
5030 /// store instructions.
5032 /// \param __addr_hi
5033 /// A pointer to a 128-bit memory location. Bits[255:128] of \a __a are to be
5034 /// copied to this memory location. The address of this memory location does
5035 /// not have to be aligned.
5036 /// \param __addr_lo
5037 /// A pointer to a 128-bit memory location. Bits[127:0] of \a __a are to be
5038 /// copied to this memory location. The address of this memory location does
5039 /// not have to be aligned.
5041 /// A 256-bit floating-point vector of [4 x double].
5042 static __inline
void __DEFAULT_FN_ATTRS
5043 _mm256_storeu2_m128d(double *__addr_hi
, double *__addr_lo
, __m256d __a
)
5047 __v128
= _mm256_castpd256_pd128(__a
);
5048 _mm_storeu_pd(__addr_lo
, __v128
);
5049 __v128
= _mm256_extractf128_pd(__a
, 1);
5050 _mm_storeu_pd(__addr_hi
, __v128
);
5053 /// Stores the upper and lower 128 bits of a 256-bit integer vector into
5054 /// two different unaligned memory locations.
5056 /// \headerfile <x86intrin.h>
5058 /// This intrinsic corresponds to the <c> VEXTRACTF128 </c> instruction and the
5059 /// store instructions.
5061 /// \param __addr_hi
5062 /// A pointer to a 128-bit memory location. Bits[255:128] of \a __a are to be
5063 /// copied to this memory location. The address of this memory location does
5064 /// not have to be aligned.
5065 /// \param __addr_lo
5066 /// A pointer to a 128-bit memory location. Bits[127:0] of \a __a are to be
5067 /// copied to this memory location. The address of this memory location does
5068 /// not have to be aligned.
5070 /// A 256-bit integer vector.
5071 static __inline
void __DEFAULT_FN_ATTRS
5072 _mm256_storeu2_m128i(__m128i_u
*__addr_hi
, __m128i_u
*__addr_lo
, __m256i __a
)
5076 __v128
= _mm256_castsi256_si128(__a
);
5077 _mm_storeu_si128(__addr_lo
, __v128
);
5078 __v128
= _mm256_extractf128_si256(__a
, 1);
5079 _mm_storeu_si128(__addr_hi
, __v128
);
5082 #undef __DEFAULT_FN_ATTRS
5083 #undef __DEFAULT_FN_ATTRS128
5085 #endif /* __AVXINTRIN_H */