1 =======================================
2 The Often Misunderstood GEP Instruction
3 =======================================
11 This document seeks to dispel the mystery and confusion surrounding LLVM's
12 `GetElementPtr <LangRef.html#getelementptr-instruction>`_ (GEP) instruction.
13 Questions about the wily GEP instruction are probably the most frequently
14 occurring questions once a developer gets down to coding with LLVM. Here we lay
15 out the sources of confusion and show that the GEP instruction is really quite
21 When people are first confronted with the GEP instruction, they tend to relate
22 it to known concepts from other programming paradigms, most notably C array
23 indexing and field selection. GEP closely resembles C array indexing and field
24 selection, however it is a little different and this leads to the following
27 What is the first index of the GEP instruction?
28 -----------------------------------------------
30 Quick answer: The index stepping through the second operand.
32 The confusion with the first index usually arises from thinking about the
33 GetElementPtr instruction as if it was a C index operator. They aren't the
34 same. For example, when we write, in "C":
42 it is natural to think that there is only one index, the selection of the field
43 ``F``. However, in this example, ``Foo`` is a pointer. That pointer
44 must be indexed explicitly in LLVM. C, on the other hand, indices through it
45 transparently. To arrive at the same address location as the C code, you would
46 provide the GEP instruction with two index operands. The first operand indexes
47 through the pointer; the second operand indexes the field ``F`` of the
48 structure, just as if you wrote:
54 Sometimes this question gets rephrased as:
56 .. _GEP index through first pointer:
58 *Why is it okay to index through the first pointer, but subsequent pointers
59 won't be dereferenced?*
61 The answer is simply because memory does not have to be accessed to perform the
62 computation. The second operand to the GEP instruction must be a value of a
63 pointer type. The value of the pointer is provided directly to the GEP
64 instruction as an operand without any need for accessing memory. It must,
65 therefore be indexed and requires an index operand. Consider this example:
69 struct munger_struct {
73 void munge(struct munger_struct *P) {
74 P[0].f1 = P[1].f1 + P[2].f2;
77 struct munger_struct Array[3];
81 In this "C" example, the front end compiler (Clang) will generate three GEP
82 instructions for the three indices through "P" in the assignment statement. The
83 function argument ``P`` will be the second operand of each of these GEP
84 instructions. The third operand indexes through that pointer. The fourth
85 operand will be the field offset into the ``struct munger_struct`` type, for
86 either the ``f1`` or ``f2`` field. So, in LLVM assembly the ``munge`` function
91 define void @munge(ptr %P) {
93 %tmp = getelementptr %struct.munger_struct, ptr %P, i32 1, i32 0
94 %tmp1 = load i32, ptr %tmp
95 %tmp2 = getelementptr %struct.munger_struct, ptr %P, i32 2, i32 1
96 %tmp3 = load i32, ptr %tmp2
97 %tmp4 = add i32 %tmp3, %tmp1
98 %tmp5 = getelementptr %struct.munger_struct, ptr %P, i32 0, i32 0
99 store i32 %tmp4, ptr %tmp5
103 In each case the second operand is the pointer through which the GEP instruction
104 starts. The same is true whether the second operand is an argument, allocated
105 memory, or a global variable.
107 To make this clear, let's consider a more obtuse example:
111 @MyVar = external global i32
113 %idx1 = getelementptr i32, ptr @MyVar, i64 0
114 %idx2 = getelementptr i32, ptr @MyVar, i64 1
115 %idx3 = getelementptr i32, ptr @MyVar, i64 2
117 These GEP instructions are simply making address computations from the base
118 address of ``MyVar``. They compute, as follows (using C syntax):
122 idx1 = (char*) &MyVar + 0
123 idx2 = (char*) &MyVar + 4
124 idx3 = (char*) &MyVar + 8
126 Since the type ``i32`` is known to be four bytes long, the indices 0, 1 and 2
127 translate into memory offsets of 0, 4, and 8, respectively. No memory is
128 accessed to make these computations because the address of ``@MyVar`` is passed
129 directly to the GEP instructions.
131 The obtuse part of this example is in the cases of ``%idx2`` and ``%idx3``. They
132 result in the computation of addresses that point to memory past the end of the
133 ``@MyVar`` global, which is only one ``i32`` long, not three ``i32``\s long.
134 While this is legal in LLVM, it is inadvisable because any load or store with
135 the pointer that results from these GEP instructions would produce undefined
138 Why is the extra 0 index required?
139 ----------------------------------
141 Quick answer: there are no superfluous indices.
143 This question arises most often when the GEP instruction is applied to a global
144 variable which is always a pointer type. For example, consider this:
148 %MyStruct = external global { ptr, i32 }
150 %idx = getelementptr { ptr, i32 }, ptr %MyStruct, i64 0, i32 1
152 The GEP above yields a ``ptr`` by indexing the ``i32`` typed field of the
153 structure ``%MyStruct``. When people first look at it, they wonder why the ``i64
154 0`` index is needed. However, a closer inspection of how globals and GEPs work
155 reveals the need. Becoming aware of the following facts will dispel the
158 #. The type of ``%MyStruct`` is *not* ``{ ptr, i32 }`` but rather ``ptr``.
159 That is, ``%MyStruct`` is a pointer (to a structure), not a structure itself.
161 #. Point #1 is evidenced by noticing the type of the second operand of the GEP
162 instruction (``%MyStruct``) which is ``ptr``.
164 #. The first index, ``i64 0`` is required to step over the global variable
165 ``%MyStruct``. Since the second argument to the GEP instruction must always
166 be a value of pointer type, the first index steps through that pointer. A
167 value of 0 means 0 elements offset from that pointer.
169 #. The second index, ``i32 1`` selects the second field of the structure (the
172 What is dereferenced by GEP?
173 ----------------------------
175 Quick answer: nothing.
177 The GetElementPtr instruction dereferences nothing. That is, it doesn't access
178 memory in any way. That's what the Load and Store instructions are for. GEP is
179 only involved in the computation of addresses. For example, consider this:
183 @MyVar = external global { i32, ptr }
185 %idx = getelementptr { i32, ptr }, ptr @MyVar, i64 0, i32 1
186 %arr = load ptr, ptr %idx
187 %idx = getelementptr [40 x i32], ptr %arr, i64 0, i64 17
189 In this example, we have a global variable, ``@MyVar``, which is a pointer to
190 a structure containing a pointer. Let's assume that this inner pointer points
191 to an array of type ``[40 x i32]``. The above IR will first compute the address
192 of the inner pointer, then load the pointer, and then compute the address of
193 the 18th array element.
195 This cannot be expressed in a single GEP instruction, because it requires
196 a memory dereference in between. However, the following example would work
201 @MyVar = external global { i32, [40 x i32 ] }
203 %idx = getelementptr { [40 x i32] }, ptr @MyVal, i64 0, i32 1, i64 17
205 In this case, the structure does not contain a pointer and the GEP instruction
206 can index through the global variable, into the second field of the structure
207 and access the 18th ``i32`` in the array there.
209 Why don't GEP x,0,0,1 and GEP x,1 alias?
210 ----------------------------------------
212 Quick Answer: They compute different address locations.
214 If you look at the first indices in these GEP instructions you find that they
215 are different (0 and 1), therefore the address computation diverges with that
216 index. Consider this example:
220 @MyVar = external global { [10 x i32] }
221 %idx1 = getelementptr { [10 x i32] }, ptr @MyVar, i64 0, i32 0, i64 1
222 %idx2 = getelementptr { [10 x i32] }, ptr @MyVar, i64 1
224 In this example, ``idx1`` computes the address of the second integer in the
225 array that is in the structure in ``@MyVar``, that is ``MyVar+4``. However,
226 ``idx2`` computes the address of *the next* structure after ``@MyVar``, that is
227 ``MyVar+40``, because it indexes past the ten 4-byte integers in ``MyVar``.
228 Obviously, in such a situation, the pointers don't alias.
230 Why do GEP x,1,0,0 and GEP x,1 alias?
231 -------------------------------------
233 Quick Answer: They compute the same address location.
235 These two GEP instructions will compute the same address because indexing
236 through the 0th element does not change the address. Consider this example:
240 @MyVar = global { [10 x i32] }
241 %idx1 = getelementptr { [10 x i32] }, ptr @MyVar, i64 1, i32 0, i64 0
242 %idx2 = getelementptr { [10 x i32] }, ptr @MyVar, i64 1
244 In this example, the value of ``%idx1`` is ``MyVar+40``, and the value of
245 ``%idx2`` is also ``MyVar+40``.
247 Can GEP index into vector elements?
248 -----------------------------------
250 This hasn't always been forcefully disallowed, though it's not recommended. It
251 leads to awkward special cases in the optimizers, and fundamental inconsistency
252 in the IR. In the future, it will probably be outright disallowed.
254 What effect do address spaces have on GEPs?
255 -------------------------------------------
257 None, except that the address space qualifier on the second operand pointer type
258 always matches the address space qualifier on the result type.
260 How is GEP different from ``ptrtoint``, arithmetic, and ``inttoptr``?
261 ---------------------------------------------------------------------
263 It's very similar; there are only subtle differences.
265 With ptrtoint, you have to pick an integer type. One approach is to pick i64;
266 this is safe on everything LLVM supports (LLVM internally assumes pointers are
267 never wider than 64 bits in many places), and the optimizer will actually narrow
268 the i64 arithmetic down to the actual pointer size on targets which don't
269 support 64-bit arithmetic in most cases. However, there are some cases where it
270 doesn't do this. With GEP you can avoid this problem.
272 Also, GEP carries additional pointer aliasing rules. It's invalid to take a GEP
273 from one object, address into a different separately allocated object, and
274 dereference it. IR producers (front-ends) must follow this rule, and consumers
275 (optimizers, specifically alias analysis) benefit from being able to rely on
276 it. See the `Rules`_ section for more information.
278 And, GEP is more concise in common cases.
280 However, for the underlying integer computation implied, there is no
284 I'm writing a backend for a target which needs custom lowering for GEP. How do I do this?
285 -----------------------------------------------------------------------------------------
287 You don't. The integer computation implied by a GEP is target-independent.
288 Typically what you'll need to do is make your backend pattern-match expressions
289 trees involving ADD, MUL, etc., which are what GEP is lowered into. This has the
290 advantage of letting your code work correctly in more cases.
292 GEP does use target-dependent parameters for the size and layout of data types,
293 which targets can customize.
295 If you require support for addressing units which are not 8 bits, you'll need to
296 fix a lot of code in the backend, with GEP lowering being only a small piece of
299 How does VLA addressing work with GEPs?
300 ---------------------------------------
302 GEPs don't natively support VLAs. LLVM's type system is entirely static, and GEP
303 address computations are guided by an LLVM type.
305 VLA indices can be implemented as linearized indices. For example, an expression
306 like ``X[a][b][c]``, must be effectively lowered into a form like
307 ``X[a*m+b*n+c]``, so that it appears to the GEP as a single-dimensional array
310 This means if you want to write an analysis which understands array indices and
311 you want to support VLAs, your code will have to be prepared to reverse-engineer
312 the linearization. One way to solve this problem is to use the ScalarEvolution
313 library, which always presents VLA and non-VLA indexing in the same manner.
320 What happens if an array index is out of bounds?
321 ------------------------------------------------
323 There are two senses in which an array index can be out of bounds.
325 First, there's the array type which comes from the (static) type of the first
326 operand to the GEP. Indices greater than the number of elements in the
327 corresponding static array type are valid. There is no problem with out of
328 bounds indices in this sense. Indexing into an array only depends on the size of
329 the array element, not the number of elements.
331 A common example of how this is used is arrays where the size is not known.
332 It's common to use array types with zero length to represent these. The fact
333 that the static type says there are zero elements is irrelevant; it's perfectly
334 valid to compute arbitrary element indices, as the computation only depends on
335 the size of the array element, not the number of elements. Note that zero-sized
336 arrays are not a special case here.
338 This sense is unconnected with ``inbounds`` keyword. The ``inbounds`` keyword is
339 designed to describe low-level pointer arithmetic overflow conditions, rather
340 than high-level array indexing rules.
342 Analysis passes which wish to understand array indexing should not assume that
343 the static array type bounds are respected.
345 The second sense of being out of bounds is computing an address that's beyond
346 the actual underlying allocated object.
348 With the ``inbounds`` keyword, the result value of the GEP is undefined if the
349 address is outside the actual underlying allocated object and not the address
352 Without the ``inbounds`` keyword, there are no restrictions on computing
353 out-of-bounds addresses. Obviously, performing a load or a store requires an
354 address of allocated and sufficiently aligned memory. But the GEP itself is only
355 concerned with computing addresses.
357 Can array indices be negative?
358 ------------------------------
360 Yes. This is basically a special case of array indices being out of bounds.
362 Can I compare two values computed with GEPs?
363 --------------------------------------------
365 Yes. If both addresses are within the same allocated object, or
366 one-past-the-end, you'll get the comparison result you expect. If either is
367 outside of it, integer arithmetic wrapping may occur, so the comparison may not
370 Can I do GEP with a different pointer type than the type of the underlying object?
371 ----------------------------------------------------------------------------------
373 Yes. There are no restrictions on bitcasting a pointer value to an arbitrary
374 pointer type. The types in a GEP serve only to define the parameters for the
375 underlying integer computation. They need not correspond with the actual type of
376 the underlying object.
378 Furthermore, loads and stores don't have to use the same types as the type of
379 the underlying object. Types in this context serve only to specify memory size
380 and alignment. Beyond that there are merely a hint to the optimizer indicating
381 how the value will likely be used.
383 Can I cast an object's address to integer and add it to null?
384 -------------------------------------------------------------
386 You can compute an address that way, but if you use GEP to do the add, you can't
387 use that pointer to actually access the object, unless the object is managed
390 The underlying integer computation is sufficiently defined; null has a defined
391 value --- zero --- and you can add whatever value you want to it.
393 However, it's invalid to access (load from or store to) an LLVM-aware object
394 with such a pointer. This includes ``GlobalVariables``, ``Allocas``, and objects
395 pointed to by noalias pointers.
397 If you really need this functionality, you can do the arithmetic with explicit
398 integer instructions, and use inttoptr to convert the result to an address. Most
399 of GEP's special aliasing rules do not apply to pointers computed from ptrtoint,
400 arithmetic, and inttoptr sequences.
402 Can I compute the distance between two objects, and add that value to one address to compute the other address?
403 ---------------------------------------------------------------------------------------------------------------
405 As with arithmetic on null, you can use GEP to compute an address that way, but
406 you can't use that pointer to actually access the object if you do, unless the
407 object is managed outside of LLVM.
409 Also as above, ptrtoint and inttoptr provide an alternative way to do this which
410 do not have this restriction.
412 Can I do type-based alias analysis on LLVM IR?
413 ----------------------------------------------
415 You can't do type-based alias analysis using LLVM's built-in type system,
416 because LLVM has no restrictions on mixing types in addressing, loads or stores.
418 LLVM's type-based alias analysis pass uses metadata to describe a different type
419 system (such as the C type system), and performs type-based aliasing on top of
420 that. Further details are in the
421 `language reference <LangRef.html#tbaa-metadata>`_.
423 What happens if a GEP computation overflows?
424 --------------------------------------------
426 If the GEP lacks the ``inbounds`` keyword, the value is the result from
427 evaluating the implied two's complement integer computation. However, since
428 there's no guarantee of where an object will be allocated in the address space,
429 such values have limited meaning.
431 If the GEP has the ``inbounds`` keyword, the result value is undefined (a "trap
432 value") if the GEP overflows (i.e. wraps around the end of the address space).
434 As such, there are some ramifications of this for inbounds GEPs: scales implied
435 by array/vector/pointer indices are always known to be "nsw" since they are
436 signed values that are scaled by the element size. These values are also
437 allowed to be negative (e.g. "``gep i32, ptr %P, i32 -1``") but the pointer
438 itself is logically treated as an unsigned value. This means that GEPs have an
439 asymmetric relation between the pointer base (which is treated as unsigned) and
440 the offset applied to it (which is treated as signed). The result of the
441 additions within the offset calculation cannot have signed overflow, but when
442 applied to the base pointer, there can be signed overflow.
444 How can I tell if my front-end is following the rules?
445 ------------------------------------------------------
447 There is currently no checker for the getelementptr rules. Currently, the only
448 way to do this is to manually check each place in your front-end where
449 GetElementPtr operators are created.
451 It's not possible to write a checker which could find all rule violations
452 statically. It would be possible to write a checker which works by instrumenting
453 the code with dynamic checks though. Alternatively, it would be possible to
454 write a static checker which catches a subset of possible problems. However, no
455 such checker exists today.
460 Why is GEP designed this way?
461 -----------------------------
463 The design of GEP has the following goals, in rough unofficial order of
466 * Support C, C-like languages, and languages which can be conceptually lowered
467 into C (this covers a lot).
469 * Support optimizations such as those that are common in C compilers. In
470 particular, GEP is a cornerstone of LLVM's `pointer aliasing
471 model <LangRef.html#pointeraliasing>`_.
473 * Provide a consistent method for computing addresses so that address
474 computations don't need to be a part of load and store instructions in the IR.
476 * Support non-C-like languages, to the extent that it doesn't interfere with
479 * Minimize target-specific information in the IR.
481 Why do struct member indices always use ``i32``?
482 ------------------------------------------------
484 The specific type i32 is probably just a historical artifact, however it's wide
485 enough for all practical purposes, so there's been no need to change it. It
486 doesn't necessarily imply i32 address arithmetic; it's just an identifier which
487 identifies a field in a struct. Requiring that all struct indices be the same
488 reduces the range of possibilities for cases where two GEPs are effectively the
489 same but have distinct operand types.
494 Some LLVM optimizers operate on GEPs by internally lowering them into more
495 primitive integer expressions, which allows them to be combined with other
496 integer expressions and/or split into multiple separate integer expressions. If
497 they've made non-trivial changes, translating back into LLVM IR can involve
498 reverse-engineering the structure of the addressing in order to fit it into the
499 static type of the original first operand. It isn't always possibly to fully
500 reconstruct this structure; sometimes the underlying addressing doesn't
501 correspond with the static type at all. In such cases the optimizer instead will
502 emit a GEP with the base pointer casted to a simple address-unit pointer, using
503 the name "uglygep". This isn't pretty, but it's just as valid, and it's
504 sufficient to preserve the pointer aliasing guarantees that GEP provides.
509 In summary, here's some things to always remember about the GetElementPtr
513 #. The GEP instruction never accesses memory, it only provides pointer
516 #. The second operand to the GEP instruction is always a pointer and it must be
519 #. There are no superfluous indices for the GEP instruction.
521 #. Trailing zero indices are superfluous for pointer aliasing, but not for the
522 types of the pointers.
524 #. Leading zero indices are not superfluous for pointer aliasing nor the types