1 //===- CodeGen/AsmPrinter/EHStreamer.cpp - Exception Directive Streamer ---===//
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
7 //===----------------------------------------------------------------------===//
9 // This file contains support for writing exception info into assembly files.
11 //===----------------------------------------------------------------------===//
13 #include "EHStreamer.h"
14 #include "llvm/ADT/SmallVector.h"
15 #include "llvm/ADT/Twine.h"
16 #include "llvm/ADT/iterator_range.h"
17 #include "llvm/BinaryFormat/Dwarf.h"
18 #include "llvm/CodeGen/AsmPrinter.h"
19 #include "llvm/CodeGen/MachineFunction.h"
20 #include "llvm/CodeGen/MachineInstr.h"
21 #include "llvm/CodeGen/MachineOperand.h"
22 #include "llvm/IR/Function.h"
23 #include "llvm/MC/MCAsmInfo.h"
24 #include "llvm/MC/MCContext.h"
25 #include "llvm/MC/MCStreamer.h"
26 #include "llvm/MC/MCSymbol.h"
27 #include "llvm/MC/MCTargetOptions.h"
28 #include "llvm/Support/Casting.h"
29 #include "llvm/Support/LEB128.h"
30 #include "llvm/Target/TargetLoweringObjectFile.h"
38 EHStreamer::EHStreamer(AsmPrinter
*A
) : Asm(A
), MMI(Asm
->MMI
) {}
40 EHStreamer::~EHStreamer() = default;
42 /// How many leading type ids two landing pads have in common.
43 unsigned EHStreamer::sharedTypeIDs(const LandingPadInfo
*L
,
44 const LandingPadInfo
*R
) {
45 const std::vector
<int> &LIds
= L
->TypeIds
, &RIds
= R
->TypeIds
;
46 return std::mismatch(LIds
.begin(), LIds
.end(), RIds
.begin(), RIds
.end())
51 /// Compute the actions table and gather the first action index for each landing
53 void EHStreamer::computeActionsTable(
54 const SmallVectorImpl
<const LandingPadInfo
*> &LandingPads
,
55 SmallVectorImpl
<ActionEntry
> &Actions
,
56 SmallVectorImpl
<unsigned> &FirstActions
) {
57 // The action table follows the call-site table in the LSDA. The individual
58 // records are of two types:
61 // * Exception specification
63 // The two record kinds have the same format, with only small differences.
64 // They are distinguished by the "switch value" field: Catch clauses
65 // (TypeInfos) have strictly positive switch values, and exception
66 // specifications (FilterIds) have strictly negative switch values. Value 0
67 // indicates a catch-all clause.
69 // Negative type IDs index into FilterIds. Positive type IDs index into
70 // TypeInfos. The value written for a positive type ID is just the type ID
71 // itself. For a negative type ID, however, the value written is the
72 // (negative) byte offset of the corresponding FilterIds entry. The byte
73 // offset is usually equal to the type ID (because the FilterIds entries are
74 // written using a variable width encoding, which outputs one byte per entry
75 // as long as the value written is not too large) but can differ. This kind
76 // of complication does not occur for positive type IDs because type infos are
77 // output using a fixed width encoding. FilterOffsets[i] holds the byte
78 // offset corresponding to FilterIds[i].
80 const std::vector
<unsigned> &FilterIds
= Asm
->MF
->getFilterIds();
81 SmallVector
<int, 16> FilterOffsets
;
82 FilterOffsets
.reserve(FilterIds
.size());
85 for (unsigned FilterId
: FilterIds
) {
86 FilterOffsets
.push_back(Offset
);
87 Offset
-= getULEB128Size(FilterId
);
90 FirstActions
.reserve(LandingPads
.size());
93 unsigned SizeActions
= 0; // Total size of all action entries for a function
94 const LandingPadInfo
*PrevLPI
= nullptr;
96 for (const LandingPadInfo
*LPI
: LandingPads
) {
97 const std::vector
<int> &TypeIds
= LPI
->TypeIds
;
98 unsigned NumShared
= PrevLPI
? sharedTypeIDs(LPI
, PrevLPI
) : 0;
99 unsigned SizeSiteActions
= 0; // Total size of all entries for a landingpad
101 if (NumShared
< TypeIds
.size()) {
102 // Size of one action entry (typeid + next action)
103 unsigned SizeActionEntry
= 0;
104 unsigned PrevAction
= (unsigned)-1;
107 unsigned SizePrevIds
= PrevLPI
->TypeIds
.size();
108 assert(Actions
.size());
109 PrevAction
= Actions
.size() - 1;
110 SizeActionEntry
= getSLEB128Size(Actions
[PrevAction
].NextAction
) +
111 getSLEB128Size(Actions
[PrevAction
].ValueForTypeID
);
113 for (unsigned j
= NumShared
; j
!= SizePrevIds
; ++j
) {
114 assert(PrevAction
!= (unsigned)-1 && "PrevAction is invalid!");
115 SizeActionEntry
-= getSLEB128Size(Actions
[PrevAction
].ValueForTypeID
);
116 SizeActionEntry
+= -Actions
[PrevAction
].NextAction
;
117 PrevAction
= Actions
[PrevAction
].Previous
;
121 // Compute the actions.
122 for (unsigned J
= NumShared
, M
= TypeIds
.size(); J
!= M
; ++J
) {
123 int TypeID
= TypeIds
[J
];
124 assert(-1 - TypeID
< (int)FilterOffsets
.size() && "Unknown filter id!");
126 isFilterEHSelector(TypeID
) ? FilterOffsets
[-1 - TypeID
] : TypeID
;
127 unsigned SizeTypeID
= getSLEB128Size(ValueForTypeID
);
129 int NextAction
= SizeActionEntry
? -(SizeActionEntry
+ SizeTypeID
) : 0;
130 SizeActionEntry
= SizeTypeID
+ getSLEB128Size(NextAction
);
131 SizeSiteActions
+= SizeActionEntry
;
133 ActionEntry Action
= { ValueForTypeID
, NextAction
, PrevAction
};
134 Actions
.push_back(Action
);
135 PrevAction
= Actions
.size() - 1;
138 // Record the first action of the landing pad site.
139 FirstAction
= SizeActions
+ SizeSiteActions
- SizeActionEntry
+ 1;
140 } // else identical - re-use previous FirstAction
142 // Information used when creating the call-site table. The action record
143 // field of the call site record is the offset of the first associated
144 // action record, relative to the start of the actions table. This value is
145 // biased by 1 (1 indicating the start of the actions table), and 0
146 // indicates that there are no actions.
147 FirstActions
.push_back(FirstAction
);
149 // Compute this sites contribution to size.
150 SizeActions
+= SizeSiteActions
;
156 /// Return `true' if this is a call to a function marked `nounwind'. Return
157 /// `false' otherwise.
158 bool EHStreamer::callToNoUnwindFunction(const MachineInstr
*MI
) {
159 assert(MI
->isCall() && "This should be a call instruction!");
161 bool MarkedNoUnwind
= false;
162 bool SawFunc
= false;
164 for (const MachineOperand
&MO
: MI
->operands()) {
165 if (!MO
.isGlobal()) continue;
167 const Function
*F
= dyn_cast
<Function
>(MO
.getGlobal());
171 // Be conservative. If we have more than one function operand for this
172 // call, then we can't make the assumption that it's the callee and
173 // not a parameter to the call.
175 // FIXME: Determine if there's a way to say that `F' is the callee or
177 MarkedNoUnwind
= false;
181 MarkedNoUnwind
= F
->doesNotThrow();
185 return MarkedNoUnwind
;
188 void EHStreamer::computePadMap(
189 const SmallVectorImpl
<const LandingPadInfo
*> &LandingPads
,
190 RangeMapType
&PadMap
) {
191 // Invokes and nounwind calls have entries in PadMap (due to being bracketed
192 // by try-range labels when lowered). Ordinary calls do not, so appropriate
193 // try-ranges for them need be deduced so we can put them in the LSDA.
194 for (unsigned i
= 0, N
= LandingPads
.size(); i
!= N
; ++i
) {
195 const LandingPadInfo
*LandingPad
= LandingPads
[i
];
196 for (unsigned j
= 0, E
= LandingPad
->BeginLabels
.size(); j
!= E
; ++j
) {
197 MCSymbol
*BeginLabel
= LandingPad
->BeginLabels
[j
];
198 assert(!PadMap
.count(BeginLabel
) && "Duplicate landing pad labels!");
199 PadRange P
= { i
, j
};
200 PadMap
[BeginLabel
] = P
;
205 /// Compute the call-site table. The entry for an invoke has a try-range
206 /// containing the call, a non-zero landing pad, and an appropriate action. The
207 /// entry for an ordinary call has a try-range containing the call and zero for
208 /// the landing pad and the action. Calls marked 'nounwind' have no entry and
209 /// must not be contained in the try-range of any entry - they form gaps in the
210 /// table. Entries must be ordered by try-range address.
212 /// Call-sites are split into one or more call-site ranges associated with
213 /// different sections of the function.
215 /// - Without -basic-block-sections, all call-sites are grouped into one
216 /// call-site-range corresponding to the function section.
218 /// - With -basic-block-sections, one call-site range is created for each
219 /// section, with its FragmentBeginLabel and FragmentEndLabel respectively
220 // set to the beginning and ending of the corresponding section and its
221 // ExceptionLabel set to the exception symbol dedicated for this section.
222 // Later, one LSDA header will be emitted for each call-site range with its
223 // call-sites following. The action table and type info table will be
224 // shared across all ranges.
225 void EHStreamer::computeCallSiteTable(
226 SmallVectorImpl
<CallSiteEntry
> &CallSites
,
227 SmallVectorImpl
<CallSiteRange
> &CallSiteRanges
,
228 const SmallVectorImpl
<const LandingPadInfo
*> &LandingPads
,
229 const SmallVectorImpl
<unsigned> &FirstActions
) {
231 computePadMap(LandingPads
, PadMap
);
233 // The end label of the previous invoke or nounwind try-range.
234 MCSymbol
*LastLabel
= Asm
->getFunctionBegin();
236 // Whether there is a potentially throwing instruction (currently this means
237 // an ordinary call) between the end of the previous try-range and now.
238 bool SawPotentiallyThrowing
= false;
240 // Whether the last CallSite entry was for an invoke.
241 bool PreviousIsInvoke
= false;
243 bool IsSJLJ
= Asm
->MAI
->getExceptionHandlingType() == ExceptionHandling::SjLj
;
245 // Visit all instructions in order of address.
246 for (const auto &MBB
: *Asm
->MF
) {
247 if (&MBB
== &Asm
->MF
->front() || MBB
.isBeginSection()) {
248 // We start a call-site range upon function entry and at the beginning of
249 // every basic block section.
250 CallSiteRanges
.push_back(
251 {Asm
->MBBSectionRanges
[MBB
.getSectionIDNum()].BeginLabel
,
252 Asm
->MBBSectionRanges
[MBB
.getSectionIDNum()].EndLabel
,
253 Asm
->getMBBExceptionSym(MBB
), CallSites
.size()});
254 PreviousIsInvoke
= false;
255 SawPotentiallyThrowing
= false;
260 CallSiteRanges
.back().IsLPRange
= true;
262 for (const auto &MI
: MBB
) {
263 if (!MI
.isEHLabel()) {
265 SawPotentiallyThrowing
|= !callToNoUnwindFunction(&MI
);
269 // End of the previous try-range?
270 MCSymbol
*BeginLabel
= MI
.getOperand(0).getMCSymbol();
271 if (BeginLabel
== LastLabel
)
272 SawPotentiallyThrowing
= false;
274 // Beginning of a new try-range?
275 RangeMapType::const_iterator L
= PadMap
.find(BeginLabel
);
276 if (L
== PadMap
.end())
277 // Nope, it was just some random label.
280 const PadRange
&P
= L
->second
;
281 const LandingPadInfo
*LandingPad
= LandingPads
[P
.PadIndex
];
282 assert(BeginLabel
== LandingPad
->BeginLabels
[P
.RangeIndex
] &&
283 "Inconsistent landing pad map!");
285 // For Dwarf and AIX exception handling (SjLj handling doesn't use this).
286 // If some instruction between the previous try-range and this one may
287 // throw, create a call-site entry with no landing pad for the region
288 // between the try-ranges.
289 if (SawPotentiallyThrowing
&&
290 (Asm
->MAI
->usesCFIForEH() ||
291 Asm
->MAI
->getExceptionHandlingType() == ExceptionHandling::AIX
)) {
292 CallSites
.push_back({LastLabel
, BeginLabel
, nullptr, 0});
293 PreviousIsInvoke
= false;
296 LastLabel
= LandingPad
->EndLabels
[P
.RangeIndex
];
297 assert(BeginLabel
&& LastLabel
&& "Invalid landing pad!");
299 if (!LandingPad
->LandingPadLabel
) {
301 PreviousIsInvoke
= false;
303 // This try-range is for an invoke.
304 CallSiteEntry Site
= {
308 FirstActions
[P
.PadIndex
]
311 // Try to merge with the previous call-site. SJLJ doesn't do this
312 if (PreviousIsInvoke
&& !IsSJLJ
) {
313 CallSiteEntry
&Prev
= CallSites
.back();
314 if (Site
.LPad
== Prev
.LPad
&& Site
.Action
== Prev
.Action
) {
315 // Extend the range of the previous entry.
316 Prev
.EndLabel
= Site
.EndLabel
;
321 // Otherwise, create a new call-site.
323 CallSites
.push_back(Site
);
325 // SjLj EH must maintain the call sites in the order assigned
326 // to them by the SjLjPrepare pass.
327 unsigned SiteNo
= Asm
->MF
->getCallSiteBeginLabel(BeginLabel
);
328 if (CallSites
.size() < SiteNo
)
329 CallSites
.resize(SiteNo
);
330 CallSites
[SiteNo
- 1] = Site
;
332 PreviousIsInvoke
= true;
336 // We end the call-site range upon function exit and at the end of every
337 // basic block section.
338 if (&MBB
== &Asm
->MF
->back() || MBB
.isEndSection()) {
339 // If some instruction between the previous try-range and the end of the
340 // function may throw, create a call-site entry with no landing pad for
341 // the region following the try-range.
342 if (SawPotentiallyThrowing
&& !IsSJLJ
) {
343 CallSiteEntry Site
= {LastLabel
, CallSiteRanges
.back().FragmentEndLabel
,
345 CallSites
.push_back(Site
);
346 SawPotentiallyThrowing
= false;
348 CallSiteRanges
.back().CallSiteEndIdx
= CallSites
.size();
353 /// Emit landing pads and actions.
355 /// The general organization of the table is complex, but the basic concepts are
356 /// easy. First there is a header which describes the location and organization
357 /// of the three components that follow.
359 /// 1. The landing pad site information describes the range of code covered by
360 /// the try. In our case it's an accumulation of the ranges covered by the
361 /// invokes in the try. There is also a reference to the landing pad that
362 /// handles the exception once processed. Finally an index into the actions
364 /// 2. The action table, in our case, is composed of pairs of type IDs and next
365 /// action offset. Starting with the action index from the landing pad
366 /// site, each type ID is checked for a match to the current exception. If
367 /// it matches then the exception and type id are passed on to the landing
368 /// pad. Otherwise the next action is looked up. This chain is terminated
369 /// with a next action of zero. If no type id is found then the frame is
370 /// unwound and handling continues.
371 /// 3. Type ID table contains references to all the C++ typeinfo for all
372 /// catches in the function. This tables is reverse indexed base 1.
374 /// Returns the starting symbol of an exception table.
375 MCSymbol
*EHStreamer::emitExceptionTable() {
376 const MachineFunction
*MF
= Asm
->MF
;
377 const std::vector
<const GlobalValue
*> &TypeInfos
= MF
->getTypeInfos();
378 const std::vector
<unsigned> &FilterIds
= MF
->getFilterIds();
379 const std::vector
<LandingPadInfo
> &PadInfos
= MF
->getLandingPads();
381 // Sort the landing pads in order of their type ids. This is used to fold
382 // duplicate actions.
383 SmallVector
<const LandingPadInfo
*, 64> LandingPads
;
384 LandingPads
.reserve(PadInfos
.size());
386 for (const LandingPadInfo
&LPI
: PadInfos
)
387 LandingPads
.push_back(&LPI
);
389 // Order landing pads lexicographically by type id.
390 llvm::sort(LandingPads
, [](const LandingPadInfo
*L
, const LandingPadInfo
*R
) {
391 return L
->TypeIds
< R
->TypeIds
;
394 // Compute the actions table and gather the first action index for each
396 SmallVector
<ActionEntry
, 32> Actions
;
397 SmallVector
<unsigned, 64> FirstActions
;
398 computeActionsTable(LandingPads
, Actions
, FirstActions
);
400 // Compute the call-site table and call-site ranges. Normally, there is only
401 // one call-site-range which covers the whole funciton. With
402 // -basic-block-sections, there is one call-site-range per basic block
404 SmallVector
<CallSiteEntry
, 64> CallSites
;
405 SmallVector
<CallSiteRange
, 4> CallSiteRanges
;
406 computeCallSiteTable(CallSites
, CallSiteRanges
, LandingPads
, FirstActions
);
408 bool IsSJLJ
= Asm
->MAI
->getExceptionHandlingType() == ExceptionHandling::SjLj
;
409 bool IsWasm
= Asm
->MAI
->getExceptionHandlingType() == ExceptionHandling::Wasm
;
410 bool HasLEB128Directives
= Asm
->MAI
->hasLEB128Directives();
411 unsigned CallSiteEncoding
=
412 IsSJLJ
? static_cast<unsigned>(dwarf::DW_EH_PE_udata4
) :
413 Asm
->getObjFileLowering().getCallSiteEncoding();
414 bool HaveTTData
= !TypeInfos
.empty() || !FilterIds
.empty();
417 MCSection
*LSDASection
= Asm
->getObjFileLowering().getSectionForLSDA(
418 MF
->getFunction(), *Asm
->CurrentFnSym
, Asm
->TM
);
419 unsigned TTypeEncoding
;
422 // If there is no TypeInfo, then we just explicitly say that we're omitting
424 TTypeEncoding
= dwarf::DW_EH_PE_omit
;
426 // Okay, we have actual filters or typeinfos to emit. As such, we need to
427 // pick a type encoding for them. We're about to emit a list of pointers to
428 // typeinfo objects at the end of the LSDA. However, unless we're in static
429 // mode, this reference will require a relocation by the dynamic linker.
431 // Because of this, we have a couple of options:
433 // 1) If we are in -static mode, we can always use an absolute reference
434 // from the LSDA, because the static linker will resolve it.
436 // 2) Otherwise, if the LSDA section is writable, we can output the direct
437 // reference to the typeinfo and allow the dynamic linker to relocate
438 // it. Since it is in a writable section, the dynamic linker won't
441 // 3) Finally, if we're in PIC mode and the LDSA section isn't writable,
442 // we need to use some form of indirection. For example, on Darwin,
443 // we can output a statically-relocatable reference to a dyld stub. The
444 // offset to the stub is constant, but the contents are in a section
445 // that is updated by the dynamic linker. This is easy enough, but we
446 // need to tell the personality function of the unwinder to indirect
447 // through the dyld stub.
449 // FIXME: When (3) is actually implemented, we'll have to emit the stubs
450 // somewhere. This predicate should be moved to a shared location that is
451 // in target-independent code.
453 TTypeEncoding
= Asm
->getObjFileLowering().getTTypeEncoding();
456 // Begin the exception table.
457 // Sometimes we want not to emit the data into separate section (e.g. ARM
458 // EHABI). In this case LSDASection will be NULL.
460 Asm
->OutStreamer
->switchSection(LSDASection
);
461 Asm
->emitAlignment(Align(4));
465 Asm
->OutContext
.getOrCreateSymbol(Twine("GCC_except_table")+
466 Twine(Asm
->getFunctionNumber()));
467 Asm
->OutStreamer
->emitLabel(GCCETSym
);
468 MCSymbol
*CstEndLabel
= Asm
->createTempSymbol(
469 CallSiteRanges
.size() > 1 ? "action_table_base" : "cst_end");
471 MCSymbol
*TTBaseLabel
= nullptr;
473 TTBaseLabel
= Asm
->createTempSymbol("ttbase");
475 const bool VerboseAsm
= Asm
->OutStreamer
->isVerboseAsm();
477 // Helper for emitting references (offsets) for type table and the end of the
478 // call-site table (which marks the beginning of the action table).
479 // * For Itanium, these references will be emitted for every callsite range.
480 // * For SJLJ and Wasm, they will be emitted only once in the LSDA header.
481 auto EmitTypeTableRefAndCallSiteTableEndRef
= [&]() {
482 Asm
->emitEncodingByte(TTypeEncoding
, "@TType");
484 // N.B.: There is a dependency loop between the size of the TTBase uleb128
485 // here and the amount of padding before the aligned type table. The
486 // assembler must sometimes pad this uleb128 or insert extra padding
487 // before the type table. See PR35809 or GNU as bug 4029.
488 MCSymbol
*TTBaseRefLabel
= Asm
->createTempSymbol("ttbaseref");
489 Asm
->emitLabelDifferenceAsULEB128(TTBaseLabel
, TTBaseRefLabel
);
490 Asm
->OutStreamer
->emitLabel(TTBaseRefLabel
);
493 // The Action table follows the call-site table. So we emit the
494 // label difference from here (start of the call-site table for SJLJ and
495 // Wasm, and start of a call-site range for Itanium) to the end of the
496 // whole call-site table (end of the last call-site range for Itanium).
497 MCSymbol
*CstBeginLabel
= Asm
->createTempSymbol("cst_begin");
498 Asm
->emitEncodingByte(CallSiteEncoding
, "Call site");
499 Asm
->emitLabelDifferenceAsULEB128(CstEndLabel
, CstBeginLabel
);
500 Asm
->OutStreamer
->emitLabel(CstBeginLabel
);
503 // An alternative path to EmitTypeTableRefAndCallSiteTableEndRef.
504 // For some platforms, the system assembler does not accept the form of
505 // `.uleb128 label2 - label1`. In those situations, we would need to calculate
506 // the size between label1 and label2 manually.
507 // In this case, we would need to calculate the LSDA size and the call
509 auto EmitTypeTableOffsetAndCallSiteTableOffset
= [&]() {
510 assert(CallSiteEncoding
== dwarf::DW_EH_PE_udata4
&& !HasLEB128Directives
&&
511 "Targets supporting .uleb128 do not need to take this path.");
512 if (CallSiteRanges
.size() > 1)
514 "-fbasic-block-sections is not yet supported on "
515 "platforms that do not have general LEB128 directive support.");
517 uint64_t CallSiteTableSize
= 0;
518 const CallSiteRange
&CSRange
= CallSiteRanges
.back();
519 for (size_t CallSiteIdx
= CSRange
.CallSiteBeginIdx
;
520 CallSiteIdx
< CSRange
.CallSiteEndIdx
; ++CallSiteIdx
) {
521 const CallSiteEntry
&S
= CallSites
[CallSiteIdx
];
522 // Each call site entry consists of 3 udata4 fields (12 bytes) and
524 CallSiteTableSize
+= 12 + getULEB128Size(S
.Action
);
525 assert(isUInt
<32>(CallSiteTableSize
) && "CallSiteTableSize overflows.");
528 Asm
->emitEncodingByte(TTypeEncoding
, "@TType");
530 const unsigned ByteSizeOfCallSiteOffset
=
531 getULEB128Size(CallSiteTableSize
);
532 uint64_t ActionTableSize
= 0;
533 for (const ActionEntry
&Action
: Actions
) {
534 // Each action entry consists of two SLEB128 fields.
535 ActionTableSize
+= getSLEB128Size(Action
.ValueForTypeID
) +
536 getSLEB128Size(Action
.NextAction
);
537 assert(isUInt
<32>(ActionTableSize
) && "ActionTableSize overflows.");
540 const unsigned TypeInfoSize
=
541 Asm
->GetSizeOfEncodedValue(TTypeEncoding
) * MF
->getTypeInfos().size();
543 const uint64_t LSDASizeBeforeAlign
=
544 1 // Call site encoding byte.
545 + ByteSizeOfCallSiteOffset
// ULEB128 encoding of CallSiteTableSize.
546 + CallSiteTableSize
// Call site table content.
547 + ActionTableSize
; // Action table content.
549 const uint64_t LSDASizeWithoutAlign
= LSDASizeBeforeAlign
+ TypeInfoSize
;
550 const unsigned ByteSizeOfLSDAWithoutAlign
=
551 getULEB128Size(LSDASizeWithoutAlign
);
552 const uint64_t DisplacementBeforeAlign
=
553 2 // LPStartEncoding and TypeTableEncoding.
554 + ByteSizeOfLSDAWithoutAlign
+ LSDASizeBeforeAlign
;
556 // The type info area starts with 4 byte alignment.
557 const unsigned NeedAlignVal
= (4 - DisplacementBeforeAlign
% 4) % 4;
558 uint64_t LSDASizeWithAlign
= LSDASizeWithoutAlign
+ NeedAlignVal
;
559 const unsigned ByteSizeOfLSDAWithAlign
=
560 getULEB128Size(LSDASizeWithAlign
);
562 // The LSDASizeWithAlign could use 1 byte less padding for alignment
563 // when the data we use to represent the LSDA Size "needs" to be 1 byte
564 // larger than the one previously calculated without alignment.
565 if (ByteSizeOfLSDAWithAlign
> ByteSizeOfLSDAWithoutAlign
)
566 LSDASizeWithAlign
-= 1;
568 Asm
->OutStreamer
->emitULEB128IntValue(LSDASizeWithAlign
,
569 ByteSizeOfLSDAWithAlign
);
572 Asm
->emitEncodingByte(CallSiteEncoding
, "Call site");
573 Asm
->OutStreamer
->emitULEB128IntValue(CallSiteTableSize
);
576 // SjLj / Wasm Exception handling
577 if (IsSJLJ
|| IsWasm
) {
578 Asm
->OutStreamer
->emitLabel(Asm
->getMBBExceptionSym(Asm
->MF
->front()));
580 // emit the LSDA header.
581 Asm
->emitEncodingByte(dwarf::DW_EH_PE_omit
, "@LPStart");
582 EmitTypeTableRefAndCallSiteTableEndRef();
585 for (SmallVectorImpl
<CallSiteEntry
>::const_iterator
586 I
= CallSites
.begin(), E
= CallSites
.end(); I
!= E
; ++I
, ++idx
) {
587 const CallSiteEntry
&S
= *I
;
589 // Index of the call site entry.
591 Asm
->OutStreamer
->AddComment(">> Call Site " + Twine(idx
) + " <<");
592 Asm
->OutStreamer
->AddComment(" On exception at call site "+Twine(idx
));
594 Asm
->emitULEB128(idx
);
596 // Offset of the first associated action record, relative to the start of
597 // the action table. This value is biased by 1 (1 indicates the start of
598 // the action table), and 0 indicates that there are no actions.
601 Asm
->OutStreamer
->AddComment(" Action: cleanup");
603 Asm
->OutStreamer
->AddComment(" Action: " +
604 Twine((S
.Action
- 1) / 2 + 1));
606 Asm
->emitULEB128(S
.Action
);
608 Asm
->OutStreamer
->emitLabel(CstEndLabel
);
610 // Itanium LSDA exception handling
612 // The call-site table is a list of all call sites that may throw an
613 // exception (including C++ 'throw' statements) in the procedure
614 // fragment. It immediately follows the LSDA header. Each entry indicates,
615 // for a given call, the first corresponding action record and corresponding
618 // The table begins with the number of bytes, stored as an LEB128
619 // compressed, unsigned integer. The records immediately follow the record
620 // count. They are sorted in increasing call-site address. Each record
623 // * The position of the call-site.
624 // * The position of the landing pad.
625 // * The first action record for that call site.
627 // A missing entry in the call-site table indicates that a call is not
628 // supposed to throw.
630 assert(CallSiteRanges
.size() != 0 && "No call-site ranges!");
632 // There should be only one call-site range which includes all the landing
633 // pads. Find that call-site range here.
634 const CallSiteRange
*LandingPadRange
= nullptr;
635 for (const CallSiteRange
&CSRange
: CallSiteRanges
) {
636 if (CSRange
.IsLPRange
) {
637 assert(LandingPadRange
== nullptr &&
638 "All landing pads must be in a single callsite range.");
639 LandingPadRange
= &CSRange
;
643 // The call-site table is split into its call-site ranges, each being
645 // [ LPStartEncoding | LPStart ]
646 // [ TypeTableEncoding | TypeTableOffset ]
647 // [ CallSiteEncoding | CallSiteTableEndOffset ]
648 // cst_begin -> { call-site entries contained in this range }
650 // and is followed by the next call-site range.
652 // For each call-site range, CallSiteTableEndOffset is computed as the
653 // difference between cst_begin of that range and the last call-site-table's
654 // end label. This offset is used to find the action table.
657 for (const CallSiteRange
&CSRange
: CallSiteRanges
) {
658 if (CSRange
.CallSiteBeginIdx
!= 0) {
659 // Align the call-site range for all ranges except the first. The
660 // first range is already aligned due to the exception table alignment.
661 Asm
->emitAlignment(Align(4));
663 Asm
->OutStreamer
->emitLabel(CSRange
.ExceptionLabel
);
665 // Emit the LSDA header.
666 // LPStart is omitted if either we have a single call-site range (in which
667 // case the function entry is treated as @LPStart) or if this function has
668 // no landing pads (in which case @LPStart is undefined).
669 if (CallSiteRanges
.size() == 1 || LandingPadRange
== nullptr) {
670 Asm
->emitEncodingByte(dwarf::DW_EH_PE_omit
, "@LPStart");
671 } else if (!Asm
->isPositionIndependent()) {
672 // For more than one call-site ranges, LPStart must be explicitly
674 // For non-PIC we can simply use the absolute value.
675 Asm
->emitEncodingByte(dwarf::DW_EH_PE_absptr
, "@LPStart");
676 Asm
->OutStreamer
->emitSymbolValue(LandingPadRange
->FragmentBeginLabel
,
677 Asm
->MAI
->getCodePointerSize());
679 // For PIC mode, we Emit a PC-relative address for LPStart.
680 Asm
->emitEncodingByte(dwarf::DW_EH_PE_pcrel
, "@LPStart");
681 MCContext
&Context
= Asm
->OutStreamer
->getContext();
682 MCSymbol
*Dot
= Context
.createTempSymbol();
683 Asm
->OutStreamer
->emitLabel(Dot
);
684 Asm
->OutStreamer
->emitValue(
685 MCBinaryExpr::createSub(
686 MCSymbolRefExpr::create(LandingPadRange
->FragmentBeginLabel
,
688 MCSymbolRefExpr::create(Dot
, Context
), Context
),
689 Asm
->MAI
->getCodePointerSize());
692 if (HasLEB128Directives
)
693 EmitTypeTableRefAndCallSiteTableEndRef();
695 EmitTypeTableOffsetAndCallSiteTableOffset();
697 for (size_t CallSiteIdx
= CSRange
.CallSiteBeginIdx
;
698 CallSiteIdx
!= CSRange
.CallSiteEndIdx
; ++CallSiteIdx
) {
699 const CallSiteEntry
&S
= CallSites
[CallSiteIdx
];
701 MCSymbol
*EHFuncBeginSym
= CSRange
.FragmentBeginLabel
;
702 MCSymbol
*EHFuncEndSym
= CSRange
.FragmentEndLabel
;
704 MCSymbol
*BeginLabel
= S
.BeginLabel
;
706 BeginLabel
= EHFuncBeginSym
;
707 MCSymbol
*EndLabel
= S
.EndLabel
;
709 EndLabel
= EHFuncEndSym
;
711 // Offset of the call site relative to the start of the procedure.
713 Asm
->OutStreamer
->AddComment(">> Call Site " + Twine(++Entry
) +
715 Asm
->emitCallSiteOffset(BeginLabel
, EHFuncBeginSym
, CallSiteEncoding
);
717 Asm
->OutStreamer
->AddComment(Twine(" Call between ") +
718 BeginLabel
->getName() + " and " +
719 EndLabel
->getName());
720 Asm
->emitCallSiteOffset(EndLabel
, BeginLabel
, CallSiteEncoding
);
722 // Offset of the landing pad relative to the start of the landing pad
726 Asm
->OutStreamer
->AddComment(" has no landing pad");
727 Asm
->emitCallSiteValue(0, CallSiteEncoding
);
730 Asm
->OutStreamer
->AddComment(Twine(" jumps to ") +
731 S
.LPad
->LandingPadLabel
->getName());
732 Asm
->emitCallSiteOffset(S
.LPad
->LandingPadLabel
,
733 LandingPadRange
->FragmentBeginLabel
,
737 // Offset of the first associated action record, relative to the start
738 // of the action table. This value is biased by 1 (1 indicates the start
739 // of the action table), and 0 indicates that there are no actions.
742 Asm
->OutStreamer
->AddComment(" On action: cleanup");
744 Asm
->OutStreamer
->AddComment(" On action: " +
745 Twine((S
.Action
- 1) / 2 + 1));
747 Asm
->emitULEB128(S
.Action
);
750 Asm
->OutStreamer
->emitLabel(CstEndLabel
);
753 // Emit the Action Table.
755 for (const ActionEntry
&Action
: Actions
) {
757 // Emit comments that decode the action table.
758 Asm
->OutStreamer
->AddComment(">> Action Record " + Twine(++Entry
) + " <<");
763 // Used by the runtime to match the type of the thrown exception to the
764 // type of the catch clauses or the types in the exception specification.
766 if (Action
.ValueForTypeID
> 0)
767 Asm
->OutStreamer
->AddComment(" Catch TypeInfo " +
768 Twine(Action
.ValueForTypeID
));
769 else if (Action
.ValueForTypeID
< 0)
770 Asm
->OutStreamer
->AddComment(" Filter TypeInfo " +
771 Twine(Action
.ValueForTypeID
));
773 Asm
->OutStreamer
->AddComment(" Cleanup");
775 Asm
->emitSLEB128(Action
.ValueForTypeID
);
779 if (Action
.Previous
== unsigned(-1)) {
780 Asm
->OutStreamer
->AddComment(" No further actions");
782 Asm
->OutStreamer
->AddComment(" Continue to action " +
783 Twine(Action
.Previous
+ 1));
786 Asm
->emitSLEB128(Action
.NextAction
);
790 Asm
->emitAlignment(Align(4));
791 emitTypeInfos(TTypeEncoding
, TTBaseLabel
);
794 Asm
->emitAlignment(Align(4));
798 void EHStreamer::emitTypeInfos(unsigned TTypeEncoding
, MCSymbol
*TTBaseLabel
) {
799 const MachineFunction
*MF
= Asm
->MF
;
800 const std::vector
<const GlobalValue
*> &TypeInfos
= MF
->getTypeInfos();
801 const std::vector
<unsigned> &FilterIds
= MF
->getFilterIds();
803 const bool VerboseAsm
= Asm
->OutStreamer
->isVerboseAsm();
806 // Emit the Catch TypeInfos.
807 if (VerboseAsm
&& !TypeInfos
.empty()) {
808 Asm
->OutStreamer
->AddComment(">> Catch TypeInfos <<");
809 Asm
->OutStreamer
->addBlankLine();
810 Entry
= TypeInfos
.size();
813 for (const GlobalValue
*GV
: llvm::reverse(TypeInfos
)) {
815 Asm
->OutStreamer
->AddComment("TypeInfo " + Twine(Entry
--));
816 Asm
->emitTTypeReference(GV
, TTypeEncoding
);
819 Asm
->OutStreamer
->emitLabel(TTBaseLabel
);
821 // Emit the Exception Specifications.
822 if (VerboseAsm
&& !FilterIds
.empty()) {
823 Asm
->OutStreamer
->AddComment(">> Filter TypeInfos <<");
824 Asm
->OutStreamer
->addBlankLine();
827 for (std::vector
<unsigned>::const_iterator
828 I
= FilterIds
.begin(), E
= FilterIds
.end(); I
< E
; ++I
) {
829 unsigned TypeID
= *I
;
832 if (isFilterEHSelector(TypeID
))
833 Asm
->OutStreamer
->AddComment("FilterInfo " + Twine(Entry
));
836 Asm
->emitULEB128(TypeID
);