[docs] Add LICENSE.txt to the root of the mono-repo
[llvm-project.git] / llvm / lib / CodeGen / AsmPrinter / EHStreamer.cpp
blob07a2efaf9383a5a6659807940da441f5e25099cd
1 //===- CodeGen/AsmPrinter/EHStreamer.cpp - Exception Directive Streamer ---===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file contains support for writing exception info into assembly files.
11 //===----------------------------------------------------------------------===//
13 #include "EHStreamer.h"
14 #include "llvm/ADT/SmallVector.h"
15 #include "llvm/ADT/Twine.h"
16 #include "llvm/ADT/iterator_range.h"
17 #include "llvm/BinaryFormat/Dwarf.h"
18 #include "llvm/CodeGen/AsmPrinter.h"
19 #include "llvm/CodeGen/MachineFunction.h"
20 #include "llvm/CodeGen/MachineInstr.h"
21 #include "llvm/CodeGen/MachineOperand.h"
22 #include "llvm/IR/Function.h"
23 #include "llvm/MC/MCAsmInfo.h"
24 #include "llvm/MC/MCContext.h"
25 #include "llvm/MC/MCStreamer.h"
26 #include "llvm/MC/MCSymbol.h"
27 #include "llvm/MC/MCTargetOptions.h"
28 #include "llvm/Support/Casting.h"
29 #include "llvm/Support/LEB128.h"
30 #include "llvm/Target/TargetLoweringObjectFile.h"
31 #include <algorithm>
32 #include <cassert>
33 #include <cstdint>
34 #include <vector>
36 using namespace llvm;
38 EHStreamer::EHStreamer(AsmPrinter *A) : Asm(A), MMI(Asm->MMI) {}
40 EHStreamer::~EHStreamer() = default;
42 /// How many leading type ids two landing pads have in common.
43 unsigned EHStreamer::sharedTypeIDs(const LandingPadInfo *L,
44 const LandingPadInfo *R) {
45 const std::vector<int> &LIds = L->TypeIds, &RIds = R->TypeIds;
46 return std::mismatch(LIds.begin(), LIds.end(), RIds.begin(), RIds.end())
47 .first -
48 LIds.begin();
51 /// Compute the actions table and gather the first action index for each landing
52 /// pad site.
53 void EHStreamer::computeActionsTable(
54 const SmallVectorImpl<const LandingPadInfo *> &LandingPads,
55 SmallVectorImpl<ActionEntry> &Actions,
56 SmallVectorImpl<unsigned> &FirstActions) {
57 // The action table follows the call-site table in the LSDA. The individual
58 // records are of two types:
60 // * Catch clause
61 // * Exception specification
63 // The two record kinds have the same format, with only small differences.
64 // They are distinguished by the "switch value" field: Catch clauses
65 // (TypeInfos) have strictly positive switch values, and exception
66 // specifications (FilterIds) have strictly negative switch values. Value 0
67 // indicates a catch-all clause.
69 // Negative type IDs index into FilterIds. Positive type IDs index into
70 // TypeInfos. The value written for a positive type ID is just the type ID
71 // itself. For a negative type ID, however, the value written is the
72 // (negative) byte offset of the corresponding FilterIds entry. The byte
73 // offset is usually equal to the type ID (because the FilterIds entries are
74 // written using a variable width encoding, which outputs one byte per entry
75 // as long as the value written is not too large) but can differ. This kind
76 // of complication does not occur for positive type IDs because type infos are
77 // output using a fixed width encoding. FilterOffsets[i] holds the byte
78 // offset corresponding to FilterIds[i].
80 const std::vector<unsigned> &FilterIds = Asm->MF->getFilterIds();
81 SmallVector<int, 16> FilterOffsets;
82 FilterOffsets.reserve(FilterIds.size());
83 int Offset = -1;
85 for (unsigned FilterId : FilterIds) {
86 FilterOffsets.push_back(Offset);
87 Offset -= getULEB128Size(FilterId);
90 FirstActions.reserve(LandingPads.size());
92 int FirstAction = 0;
93 unsigned SizeActions = 0; // Total size of all action entries for a function
94 const LandingPadInfo *PrevLPI = nullptr;
96 for (const LandingPadInfo *LPI : LandingPads) {
97 const std::vector<int> &TypeIds = LPI->TypeIds;
98 unsigned NumShared = PrevLPI ? sharedTypeIDs(LPI, PrevLPI) : 0;
99 unsigned SizeSiteActions = 0; // Total size of all entries for a landingpad
101 if (NumShared < TypeIds.size()) {
102 // Size of one action entry (typeid + next action)
103 unsigned SizeActionEntry = 0;
104 unsigned PrevAction = (unsigned)-1;
106 if (NumShared) {
107 unsigned SizePrevIds = PrevLPI->TypeIds.size();
108 assert(Actions.size());
109 PrevAction = Actions.size() - 1;
110 SizeActionEntry = getSLEB128Size(Actions[PrevAction].NextAction) +
111 getSLEB128Size(Actions[PrevAction].ValueForTypeID);
113 for (unsigned j = NumShared; j != SizePrevIds; ++j) {
114 assert(PrevAction != (unsigned)-1 && "PrevAction is invalid!");
115 SizeActionEntry -= getSLEB128Size(Actions[PrevAction].ValueForTypeID);
116 SizeActionEntry += -Actions[PrevAction].NextAction;
117 PrevAction = Actions[PrevAction].Previous;
121 // Compute the actions.
122 for (unsigned J = NumShared, M = TypeIds.size(); J != M; ++J) {
123 int TypeID = TypeIds[J];
124 assert(-1 - TypeID < (int)FilterOffsets.size() && "Unknown filter id!");
125 int ValueForTypeID =
126 isFilterEHSelector(TypeID) ? FilterOffsets[-1 - TypeID] : TypeID;
127 unsigned SizeTypeID = getSLEB128Size(ValueForTypeID);
129 int NextAction = SizeActionEntry ? -(SizeActionEntry + SizeTypeID) : 0;
130 SizeActionEntry = SizeTypeID + getSLEB128Size(NextAction);
131 SizeSiteActions += SizeActionEntry;
133 ActionEntry Action = { ValueForTypeID, NextAction, PrevAction };
134 Actions.push_back(Action);
135 PrevAction = Actions.size() - 1;
138 // Record the first action of the landing pad site.
139 FirstAction = SizeActions + SizeSiteActions - SizeActionEntry + 1;
140 } // else identical - re-use previous FirstAction
142 // Information used when creating the call-site table. The action record
143 // field of the call site record is the offset of the first associated
144 // action record, relative to the start of the actions table. This value is
145 // biased by 1 (1 indicating the start of the actions table), and 0
146 // indicates that there are no actions.
147 FirstActions.push_back(FirstAction);
149 // Compute this sites contribution to size.
150 SizeActions += SizeSiteActions;
152 PrevLPI = LPI;
156 /// Return `true' if this is a call to a function marked `nounwind'. Return
157 /// `false' otherwise.
158 bool EHStreamer::callToNoUnwindFunction(const MachineInstr *MI) {
159 assert(MI->isCall() && "This should be a call instruction!");
161 bool MarkedNoUnwind = false;
162 bool SawFunc = false;
164 for (const MachineOperand &MO : MI->operands()) {
165 if (!MO.isGlobal()) continue;
167 const Function *F = dyn_cast<Function>(MO.getGlobal());
168 if (!F) continue;
170 if (SawFunc) {
171 // Be conservative. If we have more than one function operand for this
172 // call, then we can't make the assumption that it's the callee and
173 // not a parameter to the call.
175 // FIXME: Determine if there's a way to say that `F' is the callee or
176 // parameter.
177 MarkedNoUnwind = false;
178 break;
181 MarkedNoUnwind = F->doesNotThrow();
182 SawFunc = true;
185 return MarkedNoUnwind;
188 void EHStreamer::computePadMap(
189 const SmallVectorImpl<const LandingPadInfo *> &LandingPads,
190 RangeMapType &PadMap) {
191 // Invokes and nounwind calls have entries in PadMap (due to being bracketed
192 // by try-range labels when lowered). Ordinary calls do not, so appropriate
193 // try-ranges for them need be deduced so we can put them in the LSDA.
194 for (unsigned i = 0, N = LandingPads.size(); i != N; ++i) {
195 const LandingPadInfo *LandingPad = LandingPads[i];
196 for (unsigned j = 0, E = LandingPad->BeginLabels.size(); j != E; ++j) {
197 MCSymbol *BeginLabel = LandingPad->BeginLabels[j];
198 assert(!PadMap.count(BeginLabel) && "Duplicate landing pad labels!");
199 PadRange P = { i, j };
200 PadMap[BeginLabel] = P;
205 /// Compute the call-site table. The entry for an invoke has a try-range
206 /// containing the call, a non-zero landing pad, and an appropriate action. The
207 /// entry for an ordinary call has a try-range containing the call and zero for
208 /// the landing pad and the action. Calls marked 'nounwind' have no entry and
209 /// must not be contained in the try-range of any entry - they form gaps in the
210 /// table. Entries must be ordered by try-range address.
212 /// Call-sites are split into one or more call-site ranges associated with
213 /// different sections of the function.
215 /// - Without -basic-block-sections, all call-sites are grouped into one
216 /// call-site-range corresponding to the function section.
218 /// - With -basic-block-sections, one call-site range is created for each
219 /// section, with its FragmentBeginLabel and FragmentEndLabel respectively
220 // set to the beginning and ending of the corresponding section and its
221 // ExceptionLabel set to the exception symbol dedicated for this section.
222 // Later, one LSDA header will be emitted for each call-site range with its
223 // call-sites following. The action table and type info table will be
224 // shared across all ranges.
225 void EHStreamer::computeCallSiteTable(
226 SmallVectorImpl<CallSiteEntry> &CallSites,
227 SmallVectorImpl<CallSiteRange> &CallSiteRanges,
228 const SmallVectorImpl<const LandingPadInfo *> &LandingPads,
229 const SmallVectorImpl<unsigned> &FirstActions) {
230 RangeMapType PadMap;
231 computePadMap(LandingPads, PadMap);
233 // The end label of the previous invoke or nounwind try-range.
234 MCSymbol *LastLabel = Asm->getFunctionBegin();
236 // Whether there is a potentially throwing instruction (currently this means
237 // an ordinary call) between the end of the previous try-range and now.
238 bool SawPotentiallyThrowing = false;
240 // Whether the last CallSite entry was for an invoke.
241 bool PreviousIsInvoke = false;
243 bool IsSJLJ = Asm->MAI->getExceptionHandlingType() == ExceptionHandling::SjLj;
245 // Visit all instructions in order of address.
246 for (const auto &MBB : *Asm->MF) {
247 if (&MBB == &Asm->MF->front() || MBB.isBeginSection()) {
248 // We start a call-site range upon function entry and at the beginning of
249 // every basic block section.
250 CallSiteRanges.push_back(
251 {Asm->MBBSectionRanges[MBB.getSectionIDNum()].BeginLabel,
252 Asm->MBBSectionRanges[MBB.getSectionIDNum()].EndLabel,
253 Asm->getMBBExceptionSym(MBB), CallSites.size()});
254 PreviousIsInvoke = false;
255 SawPotentiallyThrowing = false;
256 LastLabel = nullptr;
259 if (MBB.isEHPad())
260 CallSiteRanges.back().IsLPRange = true;
262 for (const auto &MI : MBB) {
263 if (!MI.isEHLabel()) {
264 if (MI.isCall())
265 SawPotentiallyThrowing |= !callToNoUnwindFunction(&MI);
266 continue;
269 // End of the previous try-range?
270 MCSymbol *BeginLabel = MI.getOperand(0).getMCSymbol();
271 if (BeginLabel == LastLabel)
272 SawPotentiallyThrowing = false;
274 // Beginning of a new try-range?
275 RangeMapType::const_iterator L = PadMap.find(BeginLabel);
276 if (L == PadMap.end())
277 // Nope, it was just some random label.
278 continue;
280 const PadRange &P = L->second;
281 const LandingPadInfo *LandingPad = LandingPads[P.PadIndex];
282 assert(BeginLabel == LandingPad->BeginLabels[P.RangeIndex] &&
283 "Inconsistent landing pad map!");
285 // For Dwarf and AIX exception handling (SjLj handling doesn't use this).
286 // If some instruction between the previous try-range and this one may
287 // throw, create a call-site entry with no landing pad for the region
288 // between the try-ranges.
289 if (SawPotentiallyThrowing &&
290 (Asm->MAI->usesCFIForEH() ||
291 Asm->MAI->getExceptionHandlingType() == ExceptionHandling::AIX)) {
292 CallSites.push_back({LastLabel, BeginLabel, nullptr, 0});
293 PreviousIsInvoke = false;
296 LastLabel = LandingPad->EndLabels[P.RangeIndex];
297 assert(BeginLabel && LastLabel && "Invalid landing pad!");
299 if (!LandingPad->LandingPadLabel) {
300 // Create a gap.
301 PreviousIsInvoke = false;
302 } else {
303 // This try-range is for an invoke.
304 CallSiteEntry Site = {
305 BeginLabel,
306 LastLabel,
307 LandingPad,
308 FirstActions[P.PadIndex]
311 // Try to merge with the previous call-site. SJLJ doesn't do this
312 if (PreviousIsInvoke && !IsSJLJ) {
313 CallSiteEntry &Prev = CallSites.back();
314 if (Site.LPad == Prev.LPad && Site.Action == Prev.Action) {
315 // Extend the range of the previous entry.
316 Prev.EndLabel = Site.EndLabel;
317 continue;
321 // Otherwise, create a new call-site.
322 if (!IsSJLJ)
323 CallSites.push_back(Site);
324 else {
325 // SjLj EH must maintain the call sites in the order assigned
326 // to them by the SjLjPrepare pass.
327 unsigned SiteNo = Asm->MF->getCallSiteBeginLabel(BeginLabel);
328 if (CallSites.size() < SiteNo)
329 CallSites.resize(SiteNo);
330 CallSites[SiteNo - 1] = Site;
332 PreviousIsInvoke = true;
336 // We end the call-site range upon function exit and at the end of every
337 // basic block section.
338 if (&MBB == &Asm->MF->back() || MBB.isEndSection()) {
339 // If some instruction between the previous try-range and the end of the
340 // function may throw, create a call-site entry with no landing pad for
341 // the region following the try-range.
342 if (SawPotentiallyThrowing && !IsSJLJ) {
343 CallSiteEntry Site = {LastLabel, CallSiteRanges.back().FragmentEndLabel,
344 nullptr, 0};
345 CallSites.push_back(Site);
346 SawPotentiallyThrowing = false;
348 CallSiteRanges.back().CallSiteEndIdx = CallSites.size();
353 /// Emit landing pads and actions.
355 /// The general organization of the table is complex, but the basic concepts are
356 /// easy. First there is a header which describes the location and organization
357 /// of the three components that follow.
359 /// 1. The landing pad site information describes the range of code covered by
360 /// the try. In our case it's an accumulation of the ranges covered by the
361 /// invokes in the try. There is also a reference to the landing pad that
362 /// handles the exception once processed. Finally an index into the actions
363 /// table.
364 /// 2. The action table, in our case, is composed of pairs of type IDs and next
365 /// action offset. Starting with the action index from the landing pad
366 /// site, each type ID is checked for a match to the current exception. If
367 /// it matches then the exception and type id are passed on to the landing
368 /// pad. Otherwise the next action is looked up. This chain is terminated
369 /// with a next action of zero. If no type id is found then the frame is
370 /// unwound and handling continues.
371 /// 3. Type ID table contains references to all the C++ typeinfo for all
372 /// catches in the function. This tables is reverse indexed base 1.
374 /// Returns the starting symbol of an exception table.
375 MCSymbol *EHStreamer::emitExceptionTable() {
376 const MachineFunction *MF = Asm->MF;
377 const std::vector<const GlobalValue *> &TypeInfos = MF->getTypeInfos();
378 const std::vector<unsigned> &FilterIds = MF->getFilterIds();
379 const std::vector<LandingPadInfo> &PadInfos = MF->getLandingPads();
381 // Sort the landing pads in order of their type ids. This is used to fold
382 // duplicate actions.
383 SmallVector<const LandingPadInfo *, 64> LandingPads;
384 LandingPads.reserve(PadInfos.size());
386 for (const LandingPadInfo &LPI : PadInfos)
387 LandingPads.push_back(&LPI);
389 // Order landing pads lexicographically by type id.
390 llvm::sort(LandingPads, [](const LandingPadInfo *L, const LandingPadInfo *R) {
391 return L->TypeIds < R->TypeIds;
394 // Compute the actions table and gather the first action index for each
395 // landing pad site.
396 SmallVector<ActionEntry, 32> Actions;
397 SmallVector<unsigned, 64> FirstActions;
398 computeActionsTable(LandingPads, Actions, FirstActions);
400 // Compute the call-site table and call-site ranges. Normally, there is only
401 // one call-site-range which covers the whole funciton. With
402 // -basic-block-sections, there is one call-site-range per basic block
403 // section.
404 SmallVector<CallSiteEntry, 64> CallSites;
405 SmallVector<CallSiteRange, 4> CallSiteRanges;
406 computeCallSiteTable(CallSites, CallSiteRanges, LandingPads, FirstActions);
408 bool IsSJLJ = Asm->MAI->getExceptionHandlingType() == ExceptionHandling::SjLj;
409 bool IsWasm = Asm->MAI->getExceptionHandlingType() == ExceptionHandling::Wasm;
410 bool HasLEB128Directives = Asm->MAI->hasLEB128Directives();
411 unsigned CallSiteEncoding =
412 IsSJLJ ? static_cast<unsigned>(dwarf::DW_EH_PE_udata4) :
413 Asm->getObjFileLowering().getCallSiteEncoding();
414 bool HaveTTData = !TypeInfos.empty() || !FilterIds.empty();
416 // Type infos.
417 MCSection *LSDASection = Asm->getObjFileLowering().getSectionForLSDA(
418 MF->getFunction(), *Asm->CurrentFnSym, Asm->TM);
419 unsigned TTypeEncoding;
421 if (!HaveTTData) {
422 // If there is no TypeInfo, then we just explicitly say that we're omitting
423 // that bit.
424 TTypeEncoding = dwarf::DW_EH_PE_omit;
425 } else {
426 // Okay, we have actual filters or typeinfos to emit. As such, we need to
427 // pick a type encoding for them. We're about to emit a list of pointers to
428 // typeinfo objects at the end of the LSDA. However, unless we're in static
429 // mode, this reference will require a relocation by the dynamic linker.
431 // Because of this, we have a couple of options:
433 // 1) If we are in -static mode, we can always use an absolute reference
434 // from the LSDA, because the static linker will resolve it.
436 // 2) Otherwise, if the LSDA section is writable, we can output the direct
437 // reference to the typeinfo and allow the dynamic linker to relocate
438 // it. Since it is in a writable section, the dynamic linker won't
439 // have a problem.
441 // 3) Finally, if we're in PIC mode and the LDSA section isn't writable,
442 // we need to use some form of indirection. For example, on Darwin,
443 // we can output a statically-relocatable reference to a dyld stub. The
444 // offset to the stub is constant, but the contents are in a section
445 // that is updated by the dynamic linker. This is easy enough, but we
446 // need to tell the personality function of the unwinder to indirect
447 // through the dyld stub.
449 // FIXME: When (3) is actually implemented, we'll have to emit the stubs
450 // somewhere. This predicate should be moved to a shared location that is
451 // in target-independent code.
453 TTypeEncoding = Asm->getObjFileLowering().getTTypeEncoding();
456 // Begin the exception table.
457 // Sometimes we want not to emit the data into separate section (e.g. ARM
458 // EHABI). In this case LSDASection will be NULL.
459 if (LSDASection)
460 Asm->OutStreamer->switchSection(LSDASection);
461 Asm->emitAlignment(Align(4));
463 // Emit the LSDA.
464 MCSymbol *GCCETSym =
465 Asm->OutContext.getOrCreateSymbol(Twine("GCC_except_table")+
466 Twine(Asm->getFunctionNumber()));
467 Asm->OutStreamer->emitLabel(GCCETSym);
468 MCSymbol *CstEndLabel = Asm->createTempSymbol(
469 CallSiteRanges.size() > 1 ? "action_table_base" : "cst_end");
471 MCSymbol *TTBaseLabel = nullptr;
472 if (HaveTTData)
473 TTBaseLabel = Asm->createTempSymbol("ttbase");
475 const bool VerboseAsm = Asm->OutStreamer->isVerboseAsm();
477 // Helper for emitting references (offsets) for type table and the end of the
478 // call-site table (which marks the beginning of the action table).
479 // * For Itanium, these references will be emitted for every callsite range.
480 // * For SJLJ and Wasm, they will be emitted only once in the LSDA header.
481 auto EmitTypeTableRefAndCallSiteTableEndRef = [&]() {
482 Asm->emitEncodingByte(TTypeEncoding, "@TType");
483 if (HaveTTData) {
484 // N.B.: There is a dependency loop between the size of the TTBase uleb128
485 // here and the amount of padding before the aligned type table. The
486 // assembler must sometimes pad this uleb128 or insert extra padding
487 // before the type table. See PR35809 or GNU as bug 4029.
488 MCSymbol *TTBaseRefLabel = Asm->createTempSymbol("ttbaseref");
489 Asm->emitLabelDifferenceAsULEB128(TTBaseLabel, TTBaseRefLabel);
490 Asm->OutStreamer->emitLabel(TTBaseRefLabel);
493 // The Action table follows the call-site table. So we emit the
494 // label difference from here (start of the call-site table for SJLJ and
495 // Wasm, and start of a call-site range for Itanium) to the end of the
496 // whole call-site table (end of the last call-site range for Itanium).
497 MCSymbol *CstBeginLabel = Asm->createTempSymbol("cst_begin");
498 Asm->emitEncodingByte(CallSiteEncoding, "Call site");
499 Asm->emitLabelDifferenceAsULEB128(CstEndLabel, CstBeginLabel);
500 Asm->OutStreamer->emitLabel(CstBeginLabel);
503 // An alternative path to EmitTypeTableRefAndCallSiteTableEndRef.
504 // For some platforms, the system assembler does not accept the form of
505 // `.uleb128 label2 - label1`. In those situations, we would need to calculate
506 // the size between label1 and label2 manually.
507 // In this case, we would need to calculate the LSDA size and the call
508 // site table size.
509 auto EmitTypeTableOffsetAndCallSiteTableOffset = [&]() {
510 assert(CallSiteEncoding == dwarf::DW_EH_PE_udata4 && !HasLEB128Directives &&
511 "Targets supporting .uleb128 do not need to take this path.");
512 if (CallSiteRanges.size() > 1)
513 report_fatal_error(
514 "-fbasic-block-sections is not yet supported on "
515 "platforms that do not have general LEB128 directive support.");
517 uint64_t CallSiteTableSize = 0;
518 const CallSiteRange &CSRange = CallSiteRanges.back();
519 for (size_t CallSiteIdx = CSRange.CallSiteBeginIdx;
520 CallSiteIdx < CSRange.CallSiteEndIdx; ++CallSiteIdx) {
521 const CallSiteEntry &S = CallSites[CallSiteIdx];
522 // Each call site entry consists of 3 udata4 fields (12 bytes) and
523 // 1 ULEB128 field.
524 CallSiteTableSize += 12 + getULEB128Size(S.Action);
525 assert(isUInt<32>(CallSiteTableSize) && "CallSiteTableSize overflows.");
528 Asm->emitEncodingByte(TTypeEncoding, "@TType");
529 if (HaveTTData) {
530 const unsigned ByteSizeOfCallSiteOffset =
531 getULEB128Size(CallSiteTableSize);
532 uint64_t ActionTableSize = 0;
533 for (const ActionEntry &Action : Actions) {
534 // Each action entry consists of two SLEB128 fields.
535 ActionTableSize += getSLEB128Size(Action.ValueForTypeID) +
536 getSLEB128Size(Action.NextAction);
537 assert(isUInt<32>(ActionTableSize) && "ActionTableSize overflows.");
540 const unsigned TypeInfoSize =
541 Asm->GetSizeOfEncodedValue(TTypeEncoding) * MF->getTypeInfos().size();
543 const uint64_t LSDASizeBeforeAlign =
544 1 // Call site encoding byte.
545 + ByteSizeOfCallSiteOffset // ULEB128 encoding of CallSiteTableSize.
546 + CallSiteTableSize // Call site table content.
547 + ActionTableSize; // Action table content.
549 const uint64_t LSDASizeWithoutAlign = LSDASizeBeforeAlign + TypeInfoSize;
550 const unsigned ByteSizeOfLSDAWithoutAlign =
551 getULEB128Size(LSDASizeWithoutAlign);
552 const uint64_t DisplacementBeforeAlign =
553 2 // LPStartEncoding and TypeTableEncoding.
554 + ByteSizeOfLSDAWithoutAlign + LSDASizeBeforeAlign;
556 // The type info area starts with 4 byte alignment.
557 const unsigned NeedAlignVal = (4 - DisplacementBeforeAlign % 4) % 4;
558 uint64_t LSDASizeWithAlign = LSDASizeWithoutAlign + NeedAlignVal;
559 const unsigned ByteSizeOfLSDAWithAlign =
560 getULEB128Size(LSDASizeWithAlign);
562 // The LSDASizeWithAlign could use 1 byte less padding for alignment
563 // when the data we use to represent the LSDA Size "needs" to be 1 byte
564 // larger than the one previously calculated without alignment.
565 if (ByteSizeOfLSDAWithAlign > ByteSizeOfLSDAWithoutAlign)
566 LSDASizeWithAlign -= 1;
568 Asm->OutStreamer->emitULEB128IntValue(LSDASizeWithAlign,
569 ByteSizeOfLSDAWithAlign);
572 Asm->emitEncodingByte(CallSiteEncoding, "Call site");
573 Asm->OutStreamer->emitULEB128IntValue(CallSiteTableSize);
576 // SjLj / Wasm Exception handling
577 if (IsSJLJ || IsWasm) {
578 Asm->OutStreamer->emitLabel(Asm->getMBBExceptionSym(Asm->MF->front()));
580 // emit the LSDA header.
581 Asm->emitEncodingByte(dwarf::DW_EH_PE_omit, "@LPStart");
582 EmitTypeTableRefAndCallSiteTableEndRef();
584 unsigned idx = 0;
585 for (SmallVectorImpl<CallSiteEntry>::const_iterator
586 I = CallSites.begin(), E = CallSites.end(); I != E; ++I, ++idx) {
587 const CallSiteEntry &S = *I;
589 // Index of the call site entry.
590 if (VerboseAsm) {
591 Asm->OutStreamer->AddComment(">> Call Site " + Twine(idx) + " <<");
592 Asm->OutStreamer->AddComment(" On exception at call site "+Twine(idx));
594 Asm->emitULEB128(idx);
596 // Offset of the first associated action record, relative to the start of
597 // the action table. This value is biased by 1 (1 indicates the start of
598 // the action table), and 0 indicates that there are no actions.
599 if (VerboseAsm) {
600 if (S.Action == 0)
601 Asm->OutStreamer->AddComment(" Action: cleanup");
602 else
603 Asm->OutStreamer->AddComment(" Action: " +
604 Twine((S.Action - 1) / 2 + 1));
606 Asm->emitULEB128(S.Action);
608 Asm->OutStreamer->emitLabel(CstEndLabel);
609 } else {
610 // Itanium LSDA exception handling
612 // The call-site table is a list of all call sites that may throw an
613 // exception (including C++ 'throw' statements) in the procedure
614 // fragment. It immediately follows the LSDA header. Each entry indicates,
615 // for a given call, the first corresponding action record and corresponding
616 // landing pad.
618 // The table begins with the number of bytes, stored as an LEB128
619 // compressed, unsigned integer. The records immediately follow the record
620 // count. They are sorted in increasing call-site address. Each record
621 // indicates:
623 // * The position of the call-site.
624 // * The position of the landing pad.
625 // * The first action record for that call site.
627 // A missing entry in the call-site table indicates that a call is not
628 // supposed to throw.
630 assert(CallSiteRanges.size() != 0 && "No call-site ranges!");
632 // There should be only one call-site range which includes all the landing
633 // pads. Find that call-site range here.
634 const CallSiteRange *LandingPadRange = nullptr;
635 for (const CallSiteRange &CSRange : CallSiteRanges) {
636 if (CSRange.IsLPRange) {
637 assert(LandingPadRange == nullptr &&
638 "All landing pads must be in a single callsite range.");
639 LandingPadRange = &CSRange;
643 // The call-site table is split into its call-site ranges, each being
644 // emitted as:
645 // [ LPStartEncoding | LPStart ]
646 // [ TypeTableEncoding | TypeTableOffset ]
647 // [ CallSiteEncoding | CallSiteTableEndOffset ]
648 // cst_begin -> { call-site entries contained in this range }
650 // and is followed by the next call-site range.
652 // For each call-site range, CallSiteTableEndOffset is computed as the
653 // difference between cst_begin of that range and the last call-site-table's
654 // end label. This offset is used to find the action table.
656 unsigned Entry = 0;
657 for (const CallSiteRange &CSRange : CallSiteRanges) {
658 if (CSRange.CallSiteBeginIdx != 0) {
659 // Align the call-site range for all ranges except the first. The
660 // first range is already aligned due to the exception table alignment.
661 Asm->emitAlignment(Align(4));
663 Asm->OutStreamer->emitLabel(CSRange.ExceptionLabel);
665 // Emit the LSDA header.
666 // LPStart is omitted if either we have a single call-site range (in which
667 // case the function entry is treated as @LPStart) or if this function has
668 // no landing pads (in which case @LPStart is undefined).
669 if (CallSiteRanges.size() == 1 || LandingPadRange == nullptr) {
670 Asm->emitEncodingByte(dwarf::DW_EH_PE_omit, "@LPStart");
671 } else if (!Asm->isPositionIndependent()) {
672 // For more than one call-site ranges, LPStart must be explicitly
673 // specified.
674 // For non-PIC we can simply use the absolute value.
675 Asm->emitEncodingByte(dwarf::DW_EH_PE_absptr, "@LPStart");
676 Asm->OutStreamer->emitSymbolValue(LandingPadRange->FragmentBeginLabel,
677 Asm->MAI->getCodePointerSize());
678 } else {
679 // For PIC mode, we Emit a PC-relative address for LPStart.
680 Asm->emitEncodingByte(dwarf::DW_EH_PE_pcrel, "@LPStart");
681 MCContext &Context = Asm->OutStreamer->getContext();
682 MCSymbol *Dot = Context.createTempSymbol();
683 Asm->OutStreamer->emitLabel(Dot);
684 Asm->OutStreamer->emitValue(
685 MCBinaryExpr::createSub(
686 MCSymbolRefExpr::create(LandingPadRange->FragmentBeginLabel,
687 Context),
688 MCSymbolRefExpr::create(Dot, Context), Context),
689 Asm->MAI->getCodePointerSize());
692 if (HasLEB128Directives)
693 EmitTypeTableRefAndCallSiteTableEndRef();
694 else
695 EmitTypeTableOffsetAndCallSiteTableOffset();
697 for (size_t CallSiteIdx = CSRange.CallSiteBeginIdx;
698 CallSiteIdx != CSRange.CallSiteEndIdx; ++CallSiteIdx) {
699 const CallSiteEntry &S = CallSites[CallSiteIdx];
701 MCSymbol *EHFuncBeginSym = CSRange.FragmentBeginLabel;
702 MCSymbol *EHFuncEndSym = CSRange.FragmentEndLabel;
704 MCSymbol *BeginLabel = S.BeginLabel;
705 if (!BeginLabel)
706 BeginLabel = EHFuncBeginSym;
707 MCSymbol *EndLabel = S.EndLabel;
708 if (!EndLabel)
709 EndLabel = EHFuncEndSym;
711 // Offset of the call site relative to the start of the procedure.
712 if (VerboseAsm)
713 Asm->OutStreamer->AddComment(">> Call Site " + Twine(++Entry) +
714 " <<");
715 Asm->emitCallSiteOffset(BeginLabel, EHFuncBeginSym, CallSiteEncoding);
716 if (VerboseAsm)
717 Asm->OutStreamer->AddComment(Twine(" Call between ") +
718 BeginLabel->getName() + " and " +
719 EndLabel->getName());
720 Asm->emitCallSiteOffset(EndLabel, BeginLabel, CallSiteEncoding);
722 // Offset of the landing pad relative to the start of the landing pad
723 // fragment.
724 if (!S.LPad) {
725 if (VerboseAsm)
726 Asm->OutStreamer->AddComment(" has no landing pad");
727 Asm->emitCallSiteValue(0, CallSiteEncoding);
728 } else {
729 if (VerboseAsm)
730 Asm->OutStreamer->AddComment(Twine(" jumps to ") +
731 S.LPad->LandingPadLabel->getName());
732 Asm->emitCallSiteOffset(S.LPad->LandingPadLabel,
733 LandingPadRange->FragmentBeginLabel,
734 CallSiteEncoding);
737 // Offset of the first associated action record, relative to the start
738 // of the action table. This value is biased by 1 (1 indicates the start
739 // of the action table), and 0 indicates that there are no actions.
740 if (VerboseAsm) {
741 if (S.Action == 0)
742 Asm->OutStreamer->AddComment(" On action: cleanup");
743 else
744 Asm->OutStreamer->AddComment(" On action: " +
745 Twine((S.Action - 1) / 2 + 1));
747 Asm->emitULEB128(S.Action);
750 Asm->OutStreamer->emitLabel(CstEndLabel);
753 // Emit the Action Table.
754 int Entry = 0;
755 for (const ActionEntry &Action : Actions) {
756 if (VerboseAsm) {
757 // Emit comments that decode the action table.
758 Asm->OutStreamer->AddComment(">> Action Record " + Twine(++Entry) + " <<");
761 // Type Filter
763 // Used by the runtime to match the type of the thrown exception to the
764 // type of the catch clauses or the types in the exception specification.
765 if (VerboseAsm) {
766 if (Action.ValueForTypeID > 0)
767 Asm->OutStreamer->AddComment(" Catch TypeInfo " +
768 Twine(Action.ValueForTypeID));
769 else if (Action.ValueForTypeID < 0)
770 Asm->OutStreamer->AddComment(" Filter TypeInfo " +
771 Twine(Action.ValueForTypeID));
772 else
773 Asm->OutStreamer->AddComment(" Cleanup");
775 Asm->emitSLEB128(Action.ValueForTypeID);
777 // Action Record
778 if (VerboseAsm) {
779 if (Action.Previous == unsigned(-1)) {
780 Asm->OutStreamer->AddComment(" No further actions");
781 } else {
782 Asm->OutStreamer->AddComment(" Continue to action " +
783 Twine(Action.Previous + 1));
786 Asm->emitSLEB128(Action.NextAction);
789 if (HaveTTData) {
790 Asm->emitAlignment(Align(4));
791 emitTypeInfos(TTypeEncoding, TTBaseLabel);
794 Asm->emitAlignment(Align(4));
795 return GCCETSym;
798 void EHStreamer::emitTypeInfos(unsigned TTypeEncoding, MCSymbol *TTBaseLabel) {
799 const MachineFunction *MF = Asm->MF;
800 const std::vector<const GlobalValue *> &TypeInfos = MF->getTypeInfos();
801 const std::vector<unsigned> &FilterIds = MF->getFilterIds();
803 const bool VerboseAsm = Asm->OutStreamer->isVerboseAsm();
805 int Entry = 0;
806 // Emit the Catch TypeInfos.
807 if (VerboseAsm && !TypeInfos.empty()) {
808 Asm->OutStreamer->AddComment(">> Catch TypeInfos <<");
809 Asm->OutStreamer->addBlankLine();
810 Entry = TypeInfos.size();
813 for (const GlobalValue *GV : llvm::reverse(TypeInfos)) {
814 if (VerboseAsm)
815 Asm->OutStreamer->AddComment("TypeInfo " + Twine(Entry--));
816 Asm->emitTTypeReference(GV, TTypeEncoding);
819 Asm->OutStreamer->emitLabel(TTBaseLabel);
821 // Emit the Exception Specifications.
822 if (VerboseAsm && !FilterIds.empty()) {
823 Asm->OutStreamer->AddComment(">> Filter TypeInfos <<");
824 Asm->OutStreamer->addBlankLine();
825 Entry = 0;
827 for (std::vector<unsigned>::const_iterator
828 I = FilterIds.begin(), E = FilterIds.end(); I < E; ++I) {
829 unsigned TypeID = *I;
830 if (VerboseAsm) {
831 --Entry;
832 if (isFilterEHSelector(TypeID))
833 Asm->OutStreamer->AddComment("FilterInfo " + Twine(Entry));
836 Asm->emitULEB128(TypeID);