1 //===- FunctionAttrs.cpp - Pass which marks functions attributes ----------===//
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
7 //===----------------------------------------------------------------------===//
10 /// This file implements interprocedural passes which walk the
11 /// call-graph deducing and/or propagating function attributes.
13 //===----------------------------------------------------------------------===//
15 #include "llvm/Transforms/IPO/FunctionAttrs.h"
16 #include "llvm/ADT/ArrayRef.h"
17 #include "llvm/ADT/DenseMap.h"
18 #include "llvm/ADT/SCCIterator.h"
19 #include "llvm/ADT/STLExtras.h"
20 #include "llvm/ADT/SetVector.h"
21 #include "llvm/ADT/SmallPtrSet.h"
22 #include "llvm/ADT/SmallSet.h"
23 #include "llvm/ADT/SmallVector.h"
24 #include "llvm/ADT/Statistic.h"
25 #include "llvm/Analysis/AssumptionCache.h"
26 #include "llvm/Analysis/BasicAliasAnalysis.h"
27 #include "llvm/Analysis/CFG.h"
28 #include "llvm/Analysis/CGSCCPassManager.h"
29 #include "llvm/Analysis/CallGraph.h"
30 #include "llvm/Analysis/CallGraphSCCPass.h"
31 #include "llvm/Analysis/CaptureTracking.h"
32 #include "llvm/Analysis/LazyCallGraph.h"
33 #include "llvm/Analysis/MemoryLocation.h"
34 #include "llvm/Analysis/ValueTracking.h"
35 #include "llvm/IR/Argument.h"
36 #include "llvm/IR/Attributes.h"
37 #include "llvm/IR/BasicBlock.h"
38 #include "llvm/IR/Constant.h"
39 #include "llvm/IR/Constants.h"
40 #include "llvm/IR/Function.h"
41 #include "llvm/IR/InstIterator.h"
42 #include "llvm/IR/InstrTypes.h"
43 #include "llvm/IR/Instruction.h"
44 #include "llvm/IR/Instructions.h"
45 #include "llvm/IR/IntrinsicInst.h"
46 #include "llvm/IR/Metadata.h"
47 #include "llvm/IR/ModuleSummaryIndex.h"
48 #include "llvm/IR/PassManager.h"
49 #include "llvm/IR/Type.h"
50 #include "llvm/IR/Use.h"
51 #include "llvm/IR/User.h"
52 #include "llvm/IR/Value.h"
53 #include "llvm/InitializePasses.h"
54 #include "llvm/Pass.h"
55 #include "llvm/Support/Casting.h"
56 #include "llvm/Support/CommandLine.h"
57 #include "llvm/Support/Compiler.h"
58 #include "llvm/Support/Debug.h"
59 #include "llvm/Support/ErrorHandling.h"
60 #include "llvm/Support/raw_ostream.h"
61 #include "llvm/Transforms/IPO.h"
62 #include "llvm/Transforms/Utils/Local.h"
70 #define DEBUG_TYPE "function-attrs"
72 STATISTIC(NumArgMemOnly
, "Number of functions marked argmemonly");
73 STATISTIC(NumReadNone
, "Number of functions marked readnone");
74 STATISTIC(NumReadOnly
, "Number of functions marked readonly");
75 STATISTIC(NumWriteOnly
, "Number of functions marked writeonly");
76 STATISTIC(NumNoCapture
, "Number of arguments marked nocapture");
77 STATISTIC(NumReturned
, "Number of arguments marked returned");
78 STATISTIC(NumReadNoneArg
, "Number of arguments marked readnone");
79 STATISTIC(NumReadOnlyArg
, "Number of arguments marked readonly");
80 STATISTIC(NumWriteOnlyArg
, "Number of arguments marked writeonly");
81 STATISTIC(NumNoAlias
, "Number of function returns marked noalias");
82 STATISTIC(NumNonNullReturn
, "Number of function returns marked nonnull");
83 STATISTIC(NumNoRecurse
, "Number of functions marked as norecurse");
84 STATISTIC(NumNoUnwind
, "Number of functions marked as nounwind");
85 STATISTIC(NumNoFree
, "Number of functions marked as nofree");
86 STATISTIC(NumWillReturn
, "Number of functions marked as willreturn");
87 STATISTIC(NumNoSync
, "Number of functions marked as nosync");
89 STATISTIC(NumThinLinkNoRecurse
,
90 "Number of functions marked as norecurse during thinlink");
91 STATISTIC(NumThinLinkNoUnwind
,
92 "Number of functions marked as nounwind during thinlink");
94 static cl::opt
<bool> EnableNonnullArgPropagation(
95 "enable-nonnull-arg-prop", cl::init(true), cl::Hidden
,
96 cl::desc("Try to propagate nonnull argument attributes from callsites to "
97 "caller functions."));
99 static cl::opt
<bool> DisableNoUnwindInference(
100 "disable-nounwind-inference", cl::Hidden
,
101 cl::desc("Stop inferring nounwind attribute during function-attrs pass"));
103 static cl::opt
<bool> DisableNoFreeInference(
104 "disable-nofree-inference", cl::Hidden
,
105 cl::desc("Stop inferring nofree attribute during function-attrs pass"));
107 static cl::opt
<bool> DisableThinLTOPropagation(
108 "disable-thinlto-funcattrs", cl::init(true), cl::Hidden
,
109 cl::desc("Don't propagate function-attrs in thinLTO"));
113 using SCCNodeSet
= SmallSetVector
<Function
*, 8>;
115 } // end anonymous namespace
117 /// Returns the memory access attribute for function F using AAR for AA results,
118 /// where SCCNodes is the current SCC.
120 /// If ThisBody is true, this function may examine the function body and will
121 /// return a result pertaining to this copy of the function. If it is false, the
122 /// result will be based only on AA results for the function declaration; it
123 /// will be assumed that some other (perhaps less optimized) version of the
124 /// function may be selected at link time.
125 static FunctionModRefBehavior
126 checkFunctionMemoryAccess(Function
&F
, bool ThisBody
, AAResults
&AAR
,
127 const SCCNodeSet
&SCCNodes
) {
128 FunctionModRefBehavior MRB
= AAR
.getModRefBehavior(&F
);
129 if (MRB
== FMRB_DoesNotAccessMemory
)
136 // Scan the function body for instructions that may read or write memory.
137 bool ReadsMemory
= false;
138 bool WritesMemory
= false;
139 // Track if the function accesses memory not based on pointer arguments or
141 bool AccessesNonArgsOrAlloca
= false;
142 // Returns true if Ptr is not based on a function argument.
143 auto IsArgumentOrAlloca
= [](const Value
*Ptr
) {
144 const Value
*UO
= getUnderlyingObject(Ptr
);
145 return isa
<Argument
>(UO
) || isa
<AllocaInst
>(UO
);
147 for (Instruction
&I
: instructions(F
)) {
148 // Some instructions can be ignored even if they read or write memory.
149 // Detect these now, skipping to the next instruction if one is found.
150 if (auto *Call
= dyn_cast
<CallBase
>(&I
)) {
151 // Ignore calls to functions in the same SCC, as long as the call sites
152 // don't have operand bundles. Calls with operand bundles are allowed to
153 // have memory effects not described by the memory effects of the call
155 if (!Call
->hasOperandBundles() && Call
->getCalledFunction() &&
156 SCCNodes
.count(Call
->getCalledFunction()))
158 FunctionModRefBehavior MRB
= AAR
.getModRefBehavior(Call
);
159 ModRefInfo MRI
= createModRefInfo(MRB
);
161 // If the call doesn't access memory, we're done.
165 // A pseudo probe call shouldn't change any function attribute since it
166 // doesn't translate to a real instruction. It comes with a memory access
167 // tag to prevent itself being removed by optimizations and not block
168 // other instructions being optimized.
169 if (isa
<PseudoProbeInst
>(I
))
172 if (!AliasAnalysis::onlyAccessesArgPointees(MRB
)) {
173 // The call could access any memory. If that includes writes, note it.
176 // If it reads, note it.
179 AccessesNonArgsOrAlloca
= true;
183 // Check whether all pointer arguments point to local memory, and
184 // ignore calls that only access local memory.
185 for (const Use
&U
: Call
->args()) {
186 const Value
*Arg
= U
;
187 if (!Arg
->getType()->isPtrOrPtrVectorTy())
191 MemoryLocation::getBeforeOrAfter(Arg
, I
.getAAMetadata());
192 // Skip accesses to local or constant memory as they don't impact the
193 // externally visible mod/ref behavior.
194 if (AAR
.pointsToConstantMemory(Loc
, /*OrLocal=*/true))
197 AccessesNonArgsOrAlloca
|= !IsArgumentOrAlloca(Loc
.Ptr
);
200 // Writes non-local memory.
203 // Ok, it reads non-local memory.
207 } else if (LoadInst
*LI
= dyn_cast
<LoadInst
>(&I
)) {
208 MemoryLocation Loc
= MemoryLocation::get(LI
);
209 // Ignore non-volatile loads from local memory. (Atomic is okay here.)
210 if (!LI
->isVolatile() &&
211 AAR
.pointsToConstantMemory(Loc
, /*OrLocal=*/true))
213 AccessesNonArgsOrAlloca
|= !IsArgumentOrAlloca(Loc
.Ptr
);
214 } else if (StoreInst
*SI
= dyn_cast
<StoreInst
>(&I
)) {
215 MemoryLocation Loc
= MemoryLocation::get(SI
);
216 // Ignore non-volatile stores to local memory. (Atomic is okay here.)
217 if (!SI
->isVolatile() &&
218 AAR
.pointsToConstantMemory(Loc
, /*OrLocal=*/true))
220 AccessesNonArgsOrAlloca
|= !IsArgumentOrAlloca(Loc
.Ptr
);
221 } else if (VAArgInst
*VI
= dyn_cast
<VAArgInst
>(&I
)) {
222 // Ignore vaargs on local memory.
223 MemoryLocation Loc
= MemoryLocation::get(VI
);
224 if (AAR
.pointsToConstantMemory(Loc
, /*OrLocal=*/true))
226 AccessesNonArgsOrAlloca
|= !IsArgumentOrAlloca(Loc
.Ptr
);
228 // If AccessesNonArgsOrAlloca has not been updated above, set it
230 AccessesNonArgsOrAlloca
|= I
.mayReadOrWriteMemory();
233 // Any remaining instructions need to be taken seriously! Check if they
234 // read or write memory.
236 // Writes memory, remember that.
237 WritesMemory
|= I
.mayWriteToMemory();
239 // If this instruction may read memory, remember that.
240 ReadsMemory
|= I
.mayReadFromMemory();
243 if (!WritesMemory
&& !ReadsMemory
)
244 return FMRB_DoesNotAccessMemory
;
246 FunctionModRefBehavior Result
= FunctionModRefBehavior(FMRL_Anywhere
);
247 if (!AccessesNonArgsOrAlloca
)
248 Result
= FunctionModRefBehavior(FMRL_ArgumentPointees
);
250 Result
= FunctionModRefBehavior(Result
| static_cast<int>(ModRefInfo::Mod
));
252 Result
= FunctionModRefBehavior(Result
| static_cast<int>(ModRefInfo::Ref
));
256 FunctionModRefBehavior
llvm::computeFunctionBodyMemoryAccess(Function
&F
,
258 return checkFunctionMemoryAccess(F
, /*ThisBody=*/true, AAR
, {});
261 /// Deduce readonly/readnone/writeonly attributes for the SCC.
262 template <typename AARGetterT
>
263 static void addMemoryAttrs(const SCCNodeSet
&SCCNodes
, AARGetterT
&&AARGetter
,
264 SmallSet
<Function
*, 8> &Changed
) {
265 // Check if any of the functions in the SCC read or write memory. If they
266 // write memory then they can't be marked readnone or readonly.
267 bool ReadsMemory
= false;
268 bool WritesMemory
= false;
269 // Check if all functions only access memory through their arguments.
270 bool ArgMemOnly
= true;
271 for (Function
*F
: SCCNodes
) {
272 // Call the callable parameter to look up AA results for this function.
273 AAResults
&AAR
= AARGetter(*F
);
274 // Non-exact function definitions may not be selected at link time, and an
275 // alternative version that writes to memory may be selected. See the
276 // comment on GlobalValue::isDefinitionExact for more details.
277 FunctionModRefBehavior FMRB
=
278 checkFunctionMemoryAccess(*F
, F
->hasExactDefinition(), AAR
, SCCNodes
);
279 if (FMRB
== FMRB_DoesNotAccessMemory
)
281 ModRefInfo MR
= createModRefInfo(FMRB
);
282 ReadsMemory
|= isRefSet(MR
);
283 WritesMemory
|= isModSet(MR
);
284 ArgMemOnly
&= AliasAnalysis::onlyAccessesArgPointees(FMRB
);
285 // Reached neither readnone, readonly, writeonly nor argmemonly can be
287 if (ReadsMemory
&& WritesMemory
&& !ArgMemOnly
)
291 assert((!ReadsMemory
|| !WritesMemory
|| ArgMemOnly
) &&
292 "no memory attributes can be added for this SCC, should have exited "
294 // Success! Functions in this SCC do not access memory, only read memory,
295 // only write memory, or only access memory through its arguments. Give them
296 // the appropriate attribute.
298 for (Function
*F
: SCCNodes
) {
299 // If possible add argmemonly attribute to F, if it accesses memory.
300 if (ArgMemOnly
&& !F
->onlyAccessesArgMemory() &&
301 (ReadsMemory
|| WritesMemory
)) {
303 F
->addFnAttr(Attribute::ArgMemOnly
);
307 // The SCC contains functions both writing and reading from memory. We
308 // cannot add readonly or writeonline attributes.
309 if (ReadsMemory
&& WritesMemory
)
311 if (F
->doesNotAccessMemory())
315 if (F
->onlyReadsMemory() && ReadsMemory
)
319 if (F
->onlyWritesMemory() && WritesMemory
)
324 // Clear out any existing attributes.
325 AttributeMask AttrsToRemove
;
326 AttrsToRemove
.addAttribute(Attribute::ReadOnly
);
327 AttrsToRemove
.addAttribute(Attribute::ReadNone
);
328 AttrsToRemove
.addAttribute(Attribute::WriteOnly
);
330 if (!WritesMemory
&& !ReadsMemory
) {
331 // Clear out any "access range attributes" if readnone was deduced.
332 AttrsToRemove
.addAttribute(Attribute::ArgMemOnly
);
333 AttrsToRemove
.addAttribute(Attribute::InaccessibleMemOnly
);
334 AttrsToRemove
.addAttribute(Attribute::InaccessibleMemOrArgMemOnly
);
336 F
->removeFnAttrs(AttrsToRemove
);
338 // Add in the new attribute.
339 if (WritesMemory
&& !ReadsMemory
)
340 F
->addFnAttr(Attribute::WriteOnly
);
342 F
->addFnAttr(ReadsMemory
? Attribute::ReadOnly
: Attribute::ReadNone
);
344 if (WritesMemory
&& !ReadsMemory
)
346 else if (ReadsMemory
)
353 // Compute definitive function attributes for a function taking into account
354 // prevailing definitions and linkage types
355 static FunctionSummary
*calculatePrevailingSummary(
357 DenseMap
<ValueInfo
, FunctionSummary
*> &CachedPrevailingSummary
,
358 function_ref
<bool(GlobalValue::GUID
, const GlobalValueSummary
*)>
361 if (CachedPrevailingSummary
.count(VI
))
362 return CachedPrevailingSummary
[VI
];
364 /// At this point, prevailing symbols have been resolved. The following leads
365 /// to returning a conservative result:
366 /// - Multiple instances with local linkage. Normally local linkage would be
367 /// unique per module
368 /// as the GUID includes the module path. We could have a guid alias if
369 /// there wasn't any distinguishing path when each file was compiled, but
370 /// that should be rare so we'll punt on those.
372 /// These next 2 cases should not happen and will assert:
373 /// - Multiple instances with external linkage. This should be caught in
374 /// symbol resolution
375 /// - Non-existent FunctionSummary for Aliasee. This presents a hole in our
376 /// knowledge meaning we have to go conservative.
378 /// Otherwise, we calculate attributes for a function as:
379 /// 1. If we have a local linkage, take its attributes. If there's somehow
380 /// multiple, bail and go conservative.
381 /// 2. If we have an external/WeakODR/LinkOnceODR linkage check that it is
382 /// prevailing, take its attributes.
383 /// 3. If we have a Weak/LinkOnce linkage the copies can have semantic
384 /// differences. However, if the prevailing copy is known it will be used
385 /// so take its attributes. If the prevailing copy is in a native file
386 /// all IR copies will be dead and propagation will go conservative.
387 /// 4. AvailableExternally summaries without a prevailing copy are known to
388 /// occur in a couple of circumstances:
389 /// a. An internal function gets imported due to its caller getting
390 /// imported, it becomes AvailableExternally but no prevailing
391 /// definition exists. Because it has to get imported along with its
392 /// caller the attributes will be captured by propagating on its
394 /// b. C++11 [temp.explicit]p10 can generate AvailableExternally
395 /// definitions of explicitly instanced template declarations
396 /// for inlining which are ultimately dropped from the TU. Since this
397 /// is localized to the TU the attributes will have already made it to
399 /// These are edge cases and already captured by their callers so we
400 /// ignore these for now. If they become relevant to optimize in the
401 /// future this can be revisited.
402 /// 5. Otherwise, go conservative.
404 CachedPrevailingSummary
[VI
] = nullptr;
405 FunctionSummary
*Local
= nullptr;
406 FunctionSummary
*Prevailing
= nullptr;
408 for (const auto &GVS
: VI
.getSummaryList()) {
412 FunctionSummary
*FS
= dyn_cast
<FunctionSummary
>(GVS
->getBaseObject());
413 // Virtual and Unknown (e.g. indirect) calls require going conservative
414 if (!FS
|| FS
->fflags().HasUnknownCall
)
417 const auto &Linkage
= GVS
->linkage();
418 if (GlobalValue::isLocalLinkage(Linkage
)) {
422 << "ThinLTO FunctionAttrs: Multiple Local Linkage, bailing on "
424 << VI
.name() << " from " << FS
->modulePath() << ". Previous module "
425 << Local
->modulePath() << "\n");
429 } else if (GlobalValue::isExternalLinkage(Linkage
)) {
430 assert(IsPrevailing(VI
.getGUID(), GVS
.get()));
433 } else if (GlobalValue::isWeakODRLinkage(Linkage
) ||
434 GlobalValue::isLinkOnceODRLinkage(Linkage
) ||
435 GlobalValue::isWeakAnyLinkage(Linkage
) ||
436 GlobalValue::isLinkOnceAnyLinkage(Linkage
)) {
437 if (IsPrevailing(VI
.getGUID(), GVS
.get())) {
441 } else if (GlobalValue::isAvailableExternallyLinkage(Linkage
)) {
442 // TODO: Handle these cases if they become meaningful
449 CachedPrevailingSummary
[VI
] = Local
;
450 } else if (Prevailing
) {
452 CachedPrevailingSummary
[VI
] = Prevailing
;
455 return CachedPrevailingSummary
[VI
];
458 bool llvm::thinLTOPropagateFunctionAttrs(
459 ModuleSummaryIndex
&Index
,
460 function_ref
<bool(GlobalValue::GUID
, const GlobalValueSummary
*)>
462 // TODO: implement addNoAliasAttrs once
463 // there's more information about the return type in the summary
464 if (DisableThinLTOPropagation
)
467 DenseMap
<ValueInfo
, FunctionSummary
*> CachedPrevailingSummary
;
468 bool Changed
= false;
470 auto PropagateAttributes
= [&](std::vector
<ValueInfo
> &SCCNodes
) {
471 // Assume we can propagate unless we discover otherwise
472 FunctionSummary::FFlags InferredFlags
;
473 InferredFlags
.NoRecurse
= (SCCNodes
.size() == 1);
474 InferredFlags
.NoUnwind
= true;
476 for (auto &V
: SCCNodes
) {
477 FunctionSummary
*CallerSummary
=
478 calculatePrevailingSummary(V
, CachedPrevailingSummary
, IsPrevailing
);
480 // Function summaries can fail to contain information such as declarations
484 if (CallerSummary
->fflags().MayThrow
)
485 InferredFlags
.NoUnwind
= false;
487 for (const auto &Callee
: CallerSummary
->calls()) {
488 FunctionSummary
*CalleeSummary
= calculatePrevailingSummary(
489 Callee
.first
, CachedPrevailingSummary
, IsPrevailing
);
494 if (!CalleeSummary
->fflags().NoRecurse
)
495 InferredFlags
.NoRecurse
= false;
497 if (!CalleeSummary
->fflags().NoUnwind
)
498 InferredFlags
.NoUnwind
= false;
500 if (!InferredFlags
.NoUnwind
&& !InferredFlags
.NoRecurse
)
505 if (InferredFlags
.NoUnwind
|| InferredFlags
.NoRecurse
) {
507 for (auto &V
: SCCNodes
) {
508 if (InferredFlags
.NoRecurse
) {
509 LLVM_DEBUG(dbgs() << "ThinLTO FunctionAttrs: Propagated NoRecurse to "
510 << V
.name() << "\n");
511 ++NumThinLinkNoRecurse
;
514 if (InferredFlags
.NoUnwind
) {
515 LLVM_DEBUG(dbgs() << "ThinLTO FunctionAttrs: Propagated NoUnwind to "
516 << V
.name() << "\n");
517 ++NumThinLinkNoUnwind
;
520 for (const auto &S
: V
.getSummaryList()) {
521 if (auto *FS
= dyn_cast
<FunctionSummary
>(S
.get())) {
522 if (InferredFlags
.NoRecurse
)
525 if (InferredFlags
.NoUnwind
)
533 // Call propagation functions on each SCC in the Index
534 for (scc_iterator
<ModuleSummaryIndex
*> I
= scc_begin(&Index
); !I
.isAtEnd();
536 std::vector
<ValueInfo
> Nodes(*I
);
537 PropagateAttributes(Nodes
);
544 /// For a given pointer Argument, this retains a list of Arguments of functions
545 /// in the same SCC that the pointer data flows into. We use this to build an
546 /// SCC of the arguments.
547 struct ArgumentGraphNode
{
548 Argument
*Definition
;
549 SmallVector
<ArgumentGraphNode
*, 4> Uses
;
552 class ArgumentGraph
{
553 // We store pointers to ArgumentGraphNode objects, so it's important that
554 // that they not move around upon insert.
555 using ArgumentMapTy
= std::map
<Argument
*, ArgumentGraphNode
>;
557 ArgumentMapTy ArgumentMap
;
559 // There is no root node for the argument graph, in fact:
560 // void f(int *x, int *y) { if (...) f(x, y); }
561 // is an example where the graph is disconnected. The SCCIterator requires a
562 // single entry point, so we maintain a fake ("synthetic") root node that
563 // uses every node. Because the graph is directed and nothing points into
564 // the root, it will not participate in any SCCs (except for its own).
565 ArgumentGraphNode SyntheticRoot
;
568 ArgumentGraph() { SyntheticRoot
.Definition
= nullptr; }
570 using iterator
= SmallVectorImpl
<ArgumentGraphNode
*>::iterator
;
572 iterator
begin() { return SyntheticRoot
.Uses
.begin(); }
573 iterator
end() { return SyntheticRoot
.Uses
.end(); }
574 ArgumentGraphNode
*getEntryNode() { return &SyntheticRoot
; }
576 ArgumentGraphNode
*operator[](Argument
*A
) {
577 ArgumentGraphNode
&Node
= ArgumentMap
[A
];
579 SyntheticRoot
.Uses
.push_back(&Node
);
584 /// This tracker checks whether callees are in the SCC, and if so it does not
585 /// consider that a capture, instead adding it to the "Uses" list and
586 /// continuing with the analysis.
587 struct ArgumentUsesTracker
: public CaptureTracker
{
588 ArgumentUsesTracker(const SCCNodeSet
&SCCNodes
) : SCCNodes(SCCNodes
) {}
590 void tooManyUses() override
{ Captured
= true; }
592 bool captured(const Use
*U
) override
{
593 CallBase
*CB
= dyn_cast
<CallBase
>(U
->getUser());
599 Function
*F
= CB
->getCalledFunction();
600 if (!F
|| !F
->hasExactDefinition() || !SCCNodes
.count(F
)) {
605 assert(!CB
->isCallee(U
) && "callee operand reported captured?");
606 const unsigned UseIndex
= CB
->getDataOperandNo(U
);
607 if (UseIndex
>= CB
->arg_size()) {
608 // Data operand, but not a argument operand -- must be a bundle operand
609 assert(CB
->hasOperandBundles() && "Must be!");
611 // CaptureTracking told us that we're being captured by an operand bundle
612 // use. In this case it does not matter if the callee is within our SCC
613 // or not -- we've been captured in some unknown way, and we have to be
619 if (UseIndex
>= F
->arg_size()) {
620 assert(F
->isVarArg() && "More params than args in non-varargs call");
625 Uses
.push_back(&*std::next(F
->arg_begin(), UseIndex
));
629 // True only if certainly captured (used outside our SCC).
630 bool Captured
= false;
632 // Uses within our SCC.
633 SmallVector
<Argument
*, 4> Uses
;
635 const SCCNodeSet
&SCCNodes
;
638 } // end anonymous namespace
642 template <> struct GraphTraits
<ArgumentGraphNode
*> {
643 using NodeRef
= ArgumentGraphNode
*;
644 using ChildIteratorType
= SmallVectorImpl
<ArgumentGraphNode
*>::iterator
;
646 static NodeRef
getEntryNode(NodeRef A
) { return A
; }
647 static ChildIteratorType
child_begin(NodeRef N
) { return N
->Uses
.begin(); }
648 static ChildIteratorType
child_end(NodeRef N
) { return N
->Uses
.end(); }
652 struct GraphTraits
<ArgumentGraph
*> : public GraphTraits
<ArgumentGraphNode
*> {
653 static NodeRef
getEntryNode(ArgumentGraph
*AG
) { return AG
->getEntryNode(); }
655 static ChildIteratorType
nodes_begin(ArgumentGraph
*AG
) {
659 static ChildIteratorType
nodes_end(ArgumentGraph
*AG
) { return AG
->end(); }
662 } // end namespace llvm
664 /// Returns Attribute::None, Attribute::ReadOnly or Attribute::ReadNone.
665 static Attribute::AttrKind
666 determinePointerAccessAttrs(Argument
*A
,
667 const SmallPtrSet
<Argument
*, 8> &SCCNodes
) {
668 SmallVector
<Use
*, 32> Worklist
;
669 SmallPtrSet
<Use
*, 32> Visited
;
671 // inalloca arguments are always clobbered by the call.
672 if (A
->hasInAllocaAttr() || A
->hasPreallocatedAttr())
673 return Attribute::None
;
676 bool IsWrite
= false;
678 for (Use
&U
: A
->uses()) {
680 Worklist
.push_back(&U
);
683 while (!Worklist
.empty()) {
684 if (IsWrite
&& IsRead
)
685 // No point in searching further..
686 return Attribute::None
;
688 Use
*U
= Worklist
.pop_back_val();
689 Instruction
*I
= cast
<Instruction
>(U
->getUser());
691 switch (I
->getOpcode()) {
692 case Instruction::BitCast
:
693 case Instruction::GetElementPtr
:
694 case Instruction::PHI
:
695 case Instruction::Select
:
696 case Instruction::AddrSpaceCast
:
697 // The original value is not read/written via this if the new value isn't.
698 for (Use
&UU
: I
->uses())
699 if (Visited
.insert(&UU
).second
)
700 Worklist
.push_back(&UU
);
703 case Instruction::Call
:
704 case Instruction::Invoke
: {
705 CallBase
&CB
= cast
<CallBase
>(*I
);
706 if (CB
.isCallee(U
)) {
708 // Note that indirect calls do not capture, see comment in
709 // CaptureTracking for context
713 // Given we've explictily handled the callee operand above, what's left
714 // must be a data operand (e.g. argument or operand bundle)
715 const unsigned UseIndex
= CB
.getDataOperandNo(U
);
717 if (!CB
.doesNotCapture(UseIndex
)) {
718 if (!CB
.onlyReadsMemory())
719 // If the callee can save a copy into other memory, then simply
720 // scanning uses of the call is insufficient. We have no way
721 // of tracking copies of the pointer through memory to see
722 // if a reloaded copy is written to, thus we must give up.
723 return Attribute::None
;
724 // Push users for processing once we finish this one
725 if (!I
->getType()->isVoidTy())
726 for (Use
&UU
: I
->uses())
727 if (Visited
.insert(&UU
).second
)
728 Worklist
.push_back(&UU
);
731 if (CB
.doesNotAccessMemory())
734 if (Function
*F
= CB
.getCalledFunction())
735 if (CB
.isArgOperand(U
) && UseIndex
< F
->arg_size() &&
736 SCCNodes
.count(F
->getArg(UseIndex
)))
737 // This is an argument which is part of the speculative SCC. Note
738 // that only operands corresponding to formal arguments of the callee
739 // can participate in the speculation.
742 // The accessors used on call site here do the right thing for calls and
743 // invokes with operand bundles.
744 if (CB
.doesNotAccessMemory(UseIndex
)) {
746 } else if (CB
.onlyReadsMemory() || CB
.onlyReadsMemory(UseIndex
)) {
748 } else if (CB
.hasFnAttr(Attribute::WriteOnly
) ||
749 CB
.dataOperandHasImpliedAttr(UseIndex
, Attribute::WriteOnly
)) {
752 return Attribute::None
;
757 case Instruction::Load
:
758 // A volatile load has side effects beyond what readonly can be relied
760 if (cast
<LoadInst
>(I
)->isVolatile())
761 return Attribute::None
;
766 case Instruction::Store
:
767 if (cast
<StoreInst
>(I
)->getValueOperand() == *U
)
768 // untrackable capture
769 return Attribute::None
;
771 // A volatile store has side effects beyond what writeonly can be relied
773 if (cast
<StoreInst
>(I
)->isVolatile())
774 return Attribute::None
;
779 case Instruction::ICmp
:
780 case Instruction::Ret
:
784 return Attribute::None
;
788 if (IsWrite
&& IsRead
)
789 return Attribute::None
;
791 return Attribute::ReadOnly
;
793 return Attribute::WriteOnly
;
795 return Attribute::ReadNone
;
798 /// Deduce returned attributes for the SCC.
799 static void addArgumentReturnedAttrs(const SCCNodeSet
&SCCNodes
,
800 SmallSet
<Function
*, 8> &Changed
) {
801 // Check each function in turn, determining if an argument is always returned.
802 for (Function
*F
: SCCNodes
) {
803 // We can infer and propagate function attributes only when we know that the
804 // definition we'll get at link time is *exactly* the definition we see now.
805 // For more details, see GlobalValue::mayBeDerefined.
806 if (!F
->hasExactDefinition())
809 if (F
->getReturnType()->isVoidTy())
812 // There is nothing to do if an argument is already marked as 'returned'.
813 if (llvm::any_of(F
->args(),
814 [](const Argument
&Arg
) { return Arg
.hasReturnedAttr(); }))
817 auto FindRetArg
= [&]() -> Value
* {
818 Value
*RetArg
= nullptr;
819 for (BasicBlock
&BB
: *F
)
820 if (auto *Ret
= dyn_cast
<ReturnInst
>(BB
.getTerminator())) {
821 // Note that stripPointerCasts should look through functions with
822 // returned arguments.
823 Value
*RetVal
= Ret
->getReturnValue()->stripPointerCasts();
824 if (!isa
<Argument
>(RetVal
) || RetVal
->getType() != F
->getReturnType())
829 else if (RetArg
!= RetVal
)
836 if (Value
*RetArg
= FindRetArg()) {
837 auto *A
= cast
<Argument
>(RetArg
);
838 A
->addAttr(Attribute::Returned
);
845 /// If a callsite has arguments that are also arguments to the parent function,
846 /// try to propagate attributes from the callsite's arguments to the parent's
847 /// arguments. This may be important because inlining can cause information loss
848 /// when attribute knowledge disappears with the inlined call.
849 static bool addArgumentAttrsFromCallsites(Function
&F
) {
850 if (!EnableNonnullArgPropagation
)
853 bool Changed
= false;
855 // For an argument attribute to transfer from a callsite to the parent, the
856 // call must be guaranteed to execute every time the parent is called.
857 // Conservatively, just check for calls in the entry block that are guaranteed
859 // TODO: This could be enhanced by testing if the callsite post-dominates the
860 // entry block or by doing simple forward walks or backward walks to the
862 BasicBlock
&Entry
= F
.getEntryBlock();
863 for (Instruction
&I
: Entry
) {
864 if (auto *CB
= dyn_cast
<CallBase
>(&I
)) {
865 if (auto *CalledFunc
= CB
->getCalledFunction()) {
866 for (auto &CSArg
: CalledFunc
->args()) {
867 if (!CSArg
.hasNonNullAttr(/* AllowUndefOrPoison */ false))
870 // If the non-null callsite argument operand is an argument to 'F'
871 // (the caller) and the call is guaranteed to execute, then the value
872 // must be non-null throughout 'F'.
873 auto *FArg
= dyn_cast
<Argument
>(CB
->getArgOperand(CSArg
.getArgNo()));
874 if (FArg
&& !FArg
->hasNonNullAttr()) {
875 FArg
->addAttr(Attribute::NonNull
);
881 if (!isGuaranteedToTransferExecutionToSuccessor(&I
))
888 static bool addAccessAttr(Argument
*A
, Attribute::AttrKind R
) {
889 assert((R
== Attribute::ReadOnly
|| R
== Attribute::ReadNone
||
890 R
== Attribute::WriteOnly
)
891 && "Must be an access attribute.");
892 assert(A
&& "Argument must not be null.");
894 // If the argument already has the attribute, nothing needs to be done.
895 if (A
->hasAttribute(R
))
898 // Otherwise, remove potentially conflicting attribute, add the new one,
899 // and update statistics.
900 A
->removeAttr(Attribute::WriteOnly
);
901 A
->removeAttr(Attribute::ReadOnly
);
902 A
->removeAttr(Attribute::ReadNone
);
904 if (R
== Attribute::ReadOnly
)
906 else if (R
== Attribute::WriteOnly
)
913 /// Deduce nocapture attributes for the SCC.
914 static void addArgumentAttrs(const SCCNodeSet
&SCCNodes
,
915 SmallSet
<Function
*, 8> &Changed
) {
918 // Check each function in turn, determining which pointer arguments are not
920 for (Function
*F
: SCCNodes
) {
921 // We can infer and propagate function attributes only when we know that the
922 // definition we'll get at link time is *exactly* the definition we see now.
923 // For more details, see GlobalValue::mayBeDerefined.
924 if (!F
->hasExactDefinition())
927 if (addArgumentAttrsFromCallsites(*F
))
930 // Functions that are readonly (or readnone) and nounwind and don't return
931 // a value can't capture arguments. Don't analyze them.
932 if (F
->onlyReadsMemory() && F
->doesNotThrow() &&
933 F
->getReturnType()->isVoidTy()) {
934 for (Argument
&A
: F
->args()) {
935 if (A
.getType()->isPointerTy() && !A
.hasNoCaptureAttr()) {
936 A
.addAttr(Attribute::NoCapture
);
944 for (Argument
&A
: F
->args()) {
945 if (!A
.getType()->isPointerTy())
947 bool HasNonLocalUses
= false;
948 if (!A
.hasNoCaptureAttr()) {
949 ArgumentUsesTracker
Tracker(SCCNodes
);
950 PointerMayBeCaptured(&A
, &Tracker
);
951 if (!Tracker
.Captured
) {
952 if (Tracker
.Uses
.empty()) {
953 // If it's trivially not captured, mark it nocapture now.
954 A
.addAttr(Attribute::NoCapture
);
958 // If it's not trivially captured and not trivially not captured,
959 // then it must be calling into another function in our SCC. Save
960 // its particulars for Argument-SCC analysis later.
961 ArgumentGraphNode
*Node
= AG
[&A
];
962 for (Argument
*Use
: Tracker
.Uses
) {
963 Node
->Uses
.push_back(AG
[Use
]);
965 HasNonLocalUses
= true;
969 // Otherwise, it's captured. Don't bother doing SCC analysis on it.
971 if (!HasNonLocalUses
&& !A
.onlyReadsMemory()) {
972 // Can we determine that it's readonly/readnone/writeonly without doing
973 // an SCC? Note that we don't allow any calls at all here, or else our
974 // result will be dependent on the iteration order through the
975 // functions in the SCC.
976 SmallPtrSet
<Argument
*, 8> Self
;
978 Attribute::AttrKind R
= determinePointerAccessAttrs(&A
, Self
);
979 if (R
!= Attribute::None
)
980 if (addAccessAttr(&A
, R
))
986 // The graph we've collected is partial because we stopped scanning for
987 // argument uses once we solved the argument trivially. These partial nodes
988 // show up as ArgumentGraphNode objects with an empty Uses list, and for
989 // these nodes the final decision about whether they capture has already been
990 // made. If the definition doesn't have a 'nocapture' attribute by now, it
993 for (scc_iterator
<ArgumentGraph
*> I
= scc_begin(&AG
); !I
.isAtEnd(); ++I
) {
994 const std::vector
<ArgumentGraphNode
*> &ArgumentSCC
= *I
;
995 if (ArgumentSCC
.size() == 1) {
996 if (!ArgumentSCC
[0]->Definition
)
997 continue; // synthetic root node
999 // eg. "void f(int* x) { if (...) f(x); }"
1000 if (ArgumentSCC
[0]->Uses
.size() == 1 &&
1001 ArgumentSCC
[0]->Uses
[0] == ArgumentSCC
[0]) {
1002 Argument
*A
= ArgumentSCC
[0]->Definition
;
1003 A
->addAttr(Attribute::NoCapture
);
1005 Changed
.insert(A
->getParent());
1007 // Infer the access attributes given the new nocapture one
1008 SmallPtrSet
<Argument
*, 8> Self
;
1010 Attribute::AttrKind R
= determinePointerAccessAttrs(&*A
, Self
);
1011 if (R
!= Attribute::None
)
1012 addAccessAttr(A
, R
);
1017 bool SCCCaptured
= false;
1018 for (ArgumentGraphNode
*Node
: ArgumentSCC
) {
1019 if (Node
->Uses
.empty() && !Node
->Definition
->hasNoCaptureAttr()) {
1027 SmallPtrSet
<Argument
*, 8> ArgumentSCCNodes
;
1028 // Fill ArgumentSCCNodes with the elements of the ArgumentSCC. Used for
1029 // quickly looking up whether a given Argument is in this ArgumentSCC.
1030 for (ArgumentGraphNode
*I
: ArgumentSCC
) {
1031 ArgumentSCCNodes
.insert(I
->Definition
);
1034 for (ArgumentGraphNode
*N
: ArgumentSCC
) {
1035 for (ArgumentGraphNode
*Use
: N
->Uses
) {
1036 Argument
*A
= Use
->Definition
;
1037 if (A
->hasNoCaptureAttr() || ArgumentSCCNodes
.count(A
))
1048 for (ArgumentGraphNode
*N
: ArgumentSCC
) {
1049 Argument
*A
= N
->Definition
;
1050 A
->addAttr(Attribute::NoCapture
);
1052 Changed
.insert(A
->getParent());
1055 // We also want to compute readonly/readnone/writeonly. With a small number
1056 // of false negatives, we can assume that any pointer which is captured
1057 // isn't going to be provably readonly or readnone, since by definition
1058 // we can't analyze all uses of a captured pointer.
1060 // The false negatives happen when the pointer is captured by a function
1061 // that promises readonly/readnone behaviour on the pointer, then the
1062 // pointer's lifetime ends before anything that writes to arbitrary memory.
1063 // Also, a readonly/readnone pointer may be returned, but returning a
1064 // pointer is capturing it.
1066 auto meetAccessAttr
= [](Attribute::AttrKind A
, Attribute::AttrKind B
) {
1069 if (A
== Attribute::ReadNone
)
1071 if (B
== Attribute::ReadNone
)
1073 return Attribute::None
;
1076 Attribute::AttrKind AccessAttr
= Attribute::ReadNone
;
1077 for (ArgumentGraphNode
*N
: ArgumentSCC
) {
1078 Argument
*A
= N
->Definition
;
1079 Attribute::AttrKind K
= determinePointerAccessAttrs(A
, ArgumentSCCNodes
);
1080 AccessAttr
= meetAccessAttr(AccessAttr
, K
);
1081 if (AccessAttr
== Attribute::None
)
1085 if (AccessAttr
!= Attribute::None
) {
1086 for (ArgumentGraphNode
*N
: ArgumentSCC
) {
1087 Argument
*A
= N
->Definition
;
1088 if (addAccessAttr(A
, AccessAttr
))
1089 Changed
.insert(A
->getParent());
1095 /// Tests whether a function is "malloc-like".
1097 /// A function is "malloc-like" if it returns either null or a pointer that
1098 /// doesn't alias any other pointer visible to the caller.
1099 static bool isFunctionMallocLike(Function
*F
, const SCCNodeSet
&SCCNodes
) {
1100 SmallSetVector
<Value
*, 8> FlowsToReturn
;
1101 for (BasicBlock
&BB
: *F
)
1102 if (ReturnInst
*Ret
= dyn_cast
<ReturnInst
>(BB
.getTerminator()))
1103 FlowsToReturn
.insert(Ret
->getReturnValue());
1105 for (unsigned i
= 0; i
!= FlowsToReturn
.size(); ++i
) {
1106 Value
*RetVal
= FlowsToReturn
[i
];
1108 if (Constant
*C
= dyn_cast
<Constant
>(RetVal
)) {
1109 if (!C
->isNullValue() && !isa
<UndefValue
>(C
))
1115 if (isa
<Argument
>(RetVal
))
1118 if (Instruction
*RVI
= dyn_cast
<Instruction
>(RetVal
))
1119 switch (RVI
->getOpcode()) {
1120 // Extend the analysis by looking upwards.
1121 case Instruction::BitCast
:
1122 case Instruction::GetElementPtr
:
1123 case Instruction::AddrSpaceCast
:
1124 FlowsToReturn
.insert(RVI
->getOperand(0));
1126 case Instruction::Select
: {
1127 SelectInst
*SI
= cast
<SelectInst
>(RVI
);
1128 FlowsToReturn
.insert(SI
->getTrueValue());
1129 FlowsToReturn
.insert(SI
->getFalseValue());
1132 case Instruction::PHI
: {
1133 PHINode
*PN
= cast
<PHINode
>(RVI
);
1134 for (Value
*IncValue
: PN
->incoming_values())
1135 FlowsToReturn
.insert(IncValue
);
1139 // Check whether the pointer came from an allocation.
1140 case Instruction::Alloca
:
1142 case Instruction::Call
:
1143 case Instruction::Invoke
: {
1144 CallBase
&CB
= cast
<CallBase
>(*RVI
);
1145 if (CB
.hasRetAttr(Attribute::NoAlias
))
1147 if (CB
.getCalledFunction() && SCCNodes
.count(CB
.getCalledFunction()))
1152 return false; // Did not come from an allocation.
1155 if (PointerMayBeCaptured(RetVal
, false, /*StoreCaptures=*/false))
1162 /// Deduce noalias attributes for the SCC.
1163 static void addNoAliasAttrs(const SCCNodeSet
&SCCNodes
,
1164 SmallSet
<Function
*, 8> &Changed
) {
1165 // Check each function in turn, determining which functions return noalias
1167 for (Function
*F
: SCCNodes
) {
1169 if (F
->returnDoesNotAlias())
1172 // We can infer and propagate function attributes only when we know that the
1173 // definition we'll get at link time is *exactly* the definition we see now.
1174 // For more details, see GlobalValue::mayBeDerefined.
1175 if (!F
->hasExactDefinition())
1178 // We annotate noalias return values, which are only applicable to
1180 if (!F
->getReturnType()->isPointerTy())
1183 if (!isFunctionMallocLike(F
, SCCNodes
))
1187 for (Function
*F
: SCCNodes
) {
1188 if (F
->returnDoesNotAlias() ||
1189 !F
->getReturnType()->isPointerTy())
1192 F
->setReturnDoesNotAlias();
1198 /// Tests whether this function is known to not return null.
1200 /// Requires that the function returns a pointer.
1202 /// Returns true if it believes the function will not return a null, and sets
1203 /// \p Speculative based on whether the returned conclusion is a speculative
1204 /// conclusion due to SCC calls.
1205 static bool isReturnNonNull(Function
*F
, const SCCNodeSet
&SCCNodes
,
1206 bool &Speculative
) {
1207 assert(F
->getReturnType()->isPointerTy() &&
1208 "nonnull only meaningful on pointer types");
1209 Speculative
= false;
1211 SmallSetVector
<Value
*, 8> FlowsToReturn
;
1212 for (BasicBlock
&BB
: *F
)
1213 if (auto *Ret
= dyn_cast
<ReturnInst
>(BB
.getTerminator()))
1214 FlowsToReturn
.insert(Ret
->getReturnValue());
1216 auto &DL
= F
->getParent()->getDataLayout();
1218 for (unsigned i
= 0; i
!= FlowsToReturn
.size(); ++i
) {
1219 Value
*RetVal
= FlowsToReturn
[i
];
1221 // If this value is locally known to be non-null, we're good
1222 if (isKnownNonZero(RetVal
, DL
))
1225 // Otherwise, we need to look upwards since we can't make any local
1227 Instruction
*RVI
= dyn_cast
<Instruction
>(RetVal
);
1230 switch (RVI
->getOpcode()) {
1231 // Extend the analysis by looking upwards.
1232 case Instruction::BitCast
:
1233 case Instruction::GetElementPtr
:
1234 case Instruction::AddrSpaceCast
:
1235 FlowsToReturn
.insert(RVI
->getOperand(0));
1237 case Instruction::Select
: {
1238 SelectInst
*SI
= cast
<SelectInst
>(RVI
);
1239 FlowsToReturn
.insert(SI
->getTrueValue());
1240 FlowsToReturn
.insert(SI
->getFalseValue());
1243 case Instruction::PHI
: {
1244 PHINode
*PN
= cast
<PHINode
>(RVI
);
1245 for (int i
= 0, e
= PN
->getNumIncomingValues(); i
!= e
; ++i
)
1246 FlowsToReturn
.insert(PN
->getIncomingValue(i
));
1249 case Instruction::Call
:
1250 case Instruction::Invoke
: {
1251 CallBase
&CB
= cast
<CallBase
>(*RVI
);
1252 Function
*Callee
= CB
.getCalledFunction();
1253 // A call to a node within the SCC is assumed to return null until
1255 if (Callee
&& SCCNodes
.count(Callee
)) {
1262 return false; // Unknown source, may be null
1264 llvm_unreachable("should have either continued or returned");
1270 /// Deduce nonnull attributes for the SCC.
1271 static void addNonNullAttrs(const SCCNodeSet
&SCCNodes
,
1272 SmallSet
<Function
*, 8> &Changed
) {
1273 // Speculative that all functions in the SCC return only nonnull
1274 // pointers. We may refute this as we analyze functions.
1275 bool SCCReturnsNonNull
= true;
1277 // Check each function in turn, determining which functions return nonnull
1279 for (Function
*F
: SCCNodes
) {
1281 if (F
->getAttributes().hasRetAttr(Attribute::NonNull
))
1284 // We can infer and propagate function attributes only when we know that the
1285 // definition we'll get at link time is *exactly* the definition we see now.
1286 // For more details, see GlobalValue::mayBeDerefined.
1287 if (!F
->hasExactDefinition())
1290 // We annotate nonnull return values, which are only applicable to
1292 if (!F
->getReturnType()->isPointerTy())
1295 bool Speculative
= false;
1296 if (isReturnNonNull(F
, SCCNodes
, Speculative
)) {
1298 // Mark the function eagerly since we may discover a function
1299 // which prevents us from speculating about the entire SCC
1300 LLVM_DEBUG(dbgs() << "Eagerly marking " << F
->getName()
1301 << " as nonnull\n");
1302 F
->addRetAttr(Attribute::NonNull
);
1308 // At least one function returns something which could be null, can't
1309 // speculate any more.
1310 SCCReturnsNonNull
= false;
1313 if (SCCReturnsNonNull
) {
1314 for (Function
*F
: SCCNodes
) {
1315 if (F
->getAttributes().hasRetAttr(Attribute::NonNull
) ||
1316 !F
->getReturnType()->isPointerTy())
1319 LLVM_DEBUG(dbgs() << "SCC marking " << F
->getName() << " as nonnull\n");
1320 F
->addRetAttr(Attribute::NonNull
);
1329 /// Collects a set of attribute inference requests and performs them all in one
1330 /// go on a single SCC Node. Inference involves scanning function bodies
1331 /// looking for instructions that violate attribute assumptions.
1332 /// As soon as all the bodies are fine we are free to set the attribute.
1333 /// Customization of inference for individual attributes is performed by
1334 /// providing a handful of predicates for each attribute.
1335 class AttributeInferer
{
1337 /// Describes a request for inference of a single attribute.
1338 struct InferenceDescriptor
{
1340 /// Returns true if this function does not have to be handled.
1341 /// General intent for this predicate is to provide an optimization
1342 /// for functions that do not need this attribute inference at all
1343 /// (say, for functions that already have the attribute).
1344 std::function
<bool(const Function
&)> SkipFunction
;
1346 /// Returns true if this instruction violates attribute assumptions.
1347 std::function
<bool(Instruction
&)> InstrBreaksAttribute
;
1349 /// Sets the inferred attribute for this function.
1350 std::function
<void(Function
&)> SetAttribute
;
1352 /// Attribute we derive.
1353 Attribute::AttrKind AKind
;
1355 /// If true, only "exact" definitions can be used to infer this attribute.
1356 /// See GlobalValue::isDefinitionExact.
1357 bool RequiresExactDefinition
;
1359 InferenceDescriptor(Attribute::AttrKind AK
,
1360 std::function
<bool(const Function
&)> SkipFunc
,
1361 std::function
<bool(Instruction
&)> InstrScan
,
1362 std::function
<void(Function
&)> SetAttr
,
1364 : SkipFunction(SkipFunc
), InstrBreaksAttribute(InstrScan
),
1365 SetAttribute(SetAttr
), AKind(AK
),
1366 RequiresExactDefinition(ReqExactDef
) {}
1370 SmallVector
<InferenceDescriptor
, 4> InferenceDescriptors
;
1373 void registerAttrInference(InferenceDescriptor AttrInference
) {
1374 InferenceDescriptors
.push_back(AttrInference
);
1377 void run(const SCCNodeSet
&SCCNodes
, SmallSet
<Function
*, 8> &Changed
);
1380 /// Perform all the requested attribute inference actions according to the
1381 /// attribute predicates stored before.
1382 void AttributeInferer::run(const SCCNodeSet
&SCCNodes
,
1383 SmallSet
<Function
*, 8> &Changed
) {
1384 SmallVector
<InferenceDescriptor
, 4> InferInSCC
= InferenceDescriptors
;
1385 // Go through all the functions in SCC and check corresponding attribute
1386 // assumptions for each of them. Attributes that are invalid for this SCC
1387 // will be removed from InferInSCC.
1388 for (Function
*F
: SCCNodes
) {
1390 // No attributes whose assumptions are still valid - done.
1391 if (InferInSCC
.empty())
1394 // Check if our attributes ever need scanning/can be scanned.
1395 llvm::erase_if(InferInSCC
, [F
](const InferenceDescriptor
&ID
) {
1396 if (ID
.SkipFunction(*F
))
1399 // Remove from further inference (invalidate) when visiting a function
1400 // that has no instructions to scan/has an unsuitable definition.
1401 return F
->isDeclaration() ||
1402 (ID
.RequiresExactDefinition
&& !F
->hasExactDefinition());
1405 // For each attribute still in InferInSCC that doesn't explicitly skip F,
1406 // set up the F instructions scan to verify assumptions of the attribute.
1407 SmallVector
<InferenceDescriptor
, 4> InferInThisFunc
;
1409 InferInSCC
, std::back_inserter(InferInThisFunc
),
1410 [F
](const InferenceDescriptor
&ID
) { return !ID
.SkipFunction(*F
); });
1412 if (InferInThisFunc
.empty())
1415 // Start instruction scan.
1416 for (Instruction
&I
: instructions(*F
)) {
1417 llvm::erase_if(InferInThisFunc
, [&](const InferenceDescriptor
&ID
) {
1418 if (!ID
.InstrBreaksAttribute(I
))
1420 // Remove attribute from further inference on any other functions
1421 // because attribute assumptions have just been violated.
1422 llvm::erase_if(InferInSCC
, [&ID
](const InferenceDescriptor
&D
) {
1423 return D
.AKind
== ID
.AKind
;
1425 // Remove attribute from the rest of current instruction scan.
1429 if (InferInThisFunc
.empty())
1434 if (InferInSCC
.empty())
1437 for (Function
*F
: SCCNodes
)
1438 // At this point InferInSCC contains only functions that were either:
1439 // - explicitly skipped from scan/inference, or
1440 // - verified to have no instructions that break attribute assumptions.
1441 // Hence we just go and force the attribute for all non-skipped functions.
1442 for (auto &ID
: InferInSCC
) {
1443 if (ID
.SkipFunction(*F
))
1446 ID
.SetAttribute(*F
);
1450 struct SCCNodesResult
{
1451 SCCNodeSet SCCNodes
;
1452 bool HasUnknownCall
;
1455 } // end anonymous namespace
1457 /// Helper for non-Convergent inference predicate InstrBreaksAttribute.
1458 static bool InstrBreaksNonConvergent(Instruction
&I
,
1459 const SCCNodeSet
&SCCNodes
) {
1460 const CallBase
*CB
= dyn_cast
<CallBase
>(&I
);
1461 // Breaks non-convergent assumption if CS is a convergent call to a function
1463 return CB
&& CB
->isConvergent() &&
1464 !SCCNodes
.contains(CB
->getCalledFunction());
1467 /// Helper for NoUnwind inference predicate InstrBreaksAttribute.
1468 static bool InstrBreaksNonThrowing(Instruction
&I
, const SCCNodeSet
&SCCNodes
) {
1471 if (const auto *CI
= dyn_cast
<CallInst
>(&I
)) {
1472 if (Function
*Callee
= CI
->getCalledFunction()) {
1473 // I is a may-throw call to a function inside our SCC. This doesn't
1474 // invalidate our current working assumption that the SCC is no-throw; we
1475 // just have to scan that other function.
1476 if (SCCNodes
.contains(Callee
))
1483 /// Helper for NoFree inference predicate InstrBreaksAttribute.
1484 static bool InstrBreaksNoFree(Instruction
&I
, const SCCNodeSet
&SCCNodes
) {
1485 CallBase
*CB
= dyn_cast
<CallBase
>(&I
);
1489 if (CB
->hasFnAttr(Attribute::NoFree
))
1492 // Speculatively assume in SCC.
1493 if (Function
*Callee
= CB
->getCalledFunction())
1494 if (SCCNodes
.contains(Callee
))
1500 /// Attempt to remove convergent function attribute when possible.
1502 /// Returns true if any changes to function attributes were made.
1503 static void inferConvergent(const SCCNodeSet
&SCCNodes
,
1504 SmallSet
<Function
*, 8> &Changed
) {
1505 AttributeInferer AI
;
1507 // Request to remove the convergent attribute from all functions in the SCC
1508 // if every callsite within the SCC is not convergent (except for calls
1509 // to functions within the SCC).
1510 // Note: Removal of the attr from the callsites will happen in
1511 // InstCombineCalls separately.
1512 AI
.registerAttrInference(AttributeInferer::InferenceDescriptor
{
1513 Attribute::Convergent
,
1514 // Skip non-convergent functions.
1515 [](const Function
&F
) { return !F
.isConvergent(); },
1516 // Instructions that break non-convergent assumption.
1517 [SCCNodes
](Instruction
&I
) {
1518 return InstrBreaksNonConvergent(I
, SCCNodes
);
1521 LLVM_DEBUG(dbgs() << "Removing convergent attr from fn " << F
.getName()
1523 F
.setNotConvergent();
1525 /* RequiresExactDefinition= */ false});
1526 // Perform all the requested attribute inference actions.
1527 AI
.run(SCCNodes
, Changed
);
1530 /// Infer attributes from all functions in the SCC by scanning every
1531 /// instruction for compliance to the attribute assumptions. Currently it
1533 /// - addition of NoUnwind attribute
1535 /// Returns true if any changes to function attributes were made.
1536 static void inferAttrsFromFunctionBodies(const SCCNodeSet
&SCCNodes
,
1537 SmallSet
<Function
*, 8> &Changed
) {
1538 AttributeInferer AI
;
1540 if (!DisableNoUnwindInference
)
1541 // Request to infer nounwind attribute for all the functions in the SCC if
1542 // every callsite within the SCC is not throwing (except for calls to
1543 // functions within the SCC). Note that nounwind attribute suffers from
1544 // derefinement - results may change depending on how functions are
1545 // optimized. Thus it can be inferred only from exact definitions.
1546 AI
.registerAttrInference(AttributeInferer::InferenceDescriptor
{
1547 Attribute::NoUnwind
,
1548 // Skip non-throwing functions.
1549 [](const Function
&F
) { return F
.doesNotThrow(); },
1550 // Instructions that break non-throwing assumption.
1551 [&SCCNodes
](Instruction
&I
) {
1552 return InstrBreaksNonThrowing(I
, SCCNodes
);
1556 << "Adding nounwind attr to fn " << F
.getName() << "\n");
1557 F
.setDoesNotThrow();
1560 /* RequiresExactDefinition= */ true});
1562 if (!DisableNoFreeInference
)
1563 // Request to infer nofree attribute for all the functions in the SCC if
1564 // every callsite within the SCC does not directly or indirectly free
1565 // memory (except for calls to functions within the SCC). Note that nofree
1566 // attribute suffers from derefinement - results may change depending on
1567 // how functions are optimized. Thus it can be inferred only from exact
1569 AI
.registerAttrInference(AttributeInferer::InferenceDescriptor
{
1571 // Skip functions known not to free memory.
1572 [](const Function
&F
) { return F
.doesNotFreeMemory(); },
1573 // Instructions that break non-deallocating assumption.
1574 [&SCCNodes
](Instruction
&I
) {
1575 return InstrBreaksNoFree(I
, SCCNodes
);
1579 << "Adding nofree attr to fn " << F
.getName() << "\n");
1580 F
.setDoesNotFreeMemory();
1583 /* RequiresExactDefinition= */ true});
1585 // Perform all the requested attribute inference actions.
1586 AI
.run(SCCNodes
, Changed
);
1589 static void addNoRecurseAttrs(const SCCNodeSet
&SCCNodes
,
1590 SmallSet
<Function
*, 8> &Changed
) {
1591 // Try and identify functions that do not recurse.
1593 // If the SCC contains multiple nodes we know for sure there is recursion.
1594 if (SCCNodes
.size() != 1)
1597 Function
*F
= *SCCNodes
.begin();
1598 if (!F
|| !F
->hasExactDefinition() || F
->doesNotRecurse())
1601 // If all of the calls in F are identifiable and are to norecurse functions, F
1602 // is norecurse. This check also detects self-recursion as F is not currently
1603 // marked norecurse, so any called from F to F will not be marked norecurse.
1605 for (auto &I
: BB
.instructionsWithoutDebug())
1606 if (auto *CB
= dyn_cast
<CallBase
>(&I
)) {
1607 Function
*Callee
= CB
->getCalledFunction();
1608 if (!Callee
|| Callee
== F
|| !Callee
->doesNotRecurse())
1609 // Function calls a potentially recursive function.
1613 // Every call was to a non-recursive function other than this function, and
1614 // we have no indirect recursion as the SCC size is one. This function cannot
1616 F
->setDoesNotRecurse();
1621 static bool instructionDoesNotReturn(Instruction
&I
) {
1622 if (auto *CB
= dyn_cast
<CallBase
>(&I
))
1623 return CB
->hasFnAttr(Attribute::NoReturn
);
1627 // A basic block can only return if it terminates with a ReturnInst and does not
1628 // contain calls to noreturn functions.
1629 static bool basicBlockCanReturn(BasicBlock
&BB
) {
1630 if (!isa
<ReturnInst
>(BB
.getTerminator()))
1632 return none_of(BB
, instructionDoesNotReturn
);
1635 // FIXME: this doesn't handle recursion.
1636 static bool canReturn(Function
&F
) {
1637 SmallVector
<BasicBlock
*, 16> Worklist
;
1638 SmallPtrSet
<BasicBlock
*, 16> Visited
;
1640 Visited
.insert(&F
.front());
1641 Worklist
.push_back(&F
.front());
1644 BasicBlock
*BB
= Worklist
.pop_back_val();
1645 if (basicBlockCanReturn(*BB
))
1647 for (BasicBlock
*Succ
: successors(BB
))
1648 if (Visited
.insert(Succ
).second
)
1649 Worklist
.push_back(Succ
);
1650 } while (!Worklist
.empty());
1655 // Set the noreturn function attribute if possible.
1656 static void addNoReturnAttrs(const SCCNodeSet
&SCCNodes
,
1657 SmallSet
<Function
*, 8> &Changed
) {
1658 for (Function
*F
: SCCNodes
) {
1659 if (!F
|| !F
->hasExactDefinition() || F
->hasFnAttribute(Attribute::Naked
) ||
1663 if (!canReturn(*F
)) {
1664 F
->setDoesNotReturn();
1670 static bool functionWillReturn(const Function
&F
) {
1671 // We can infer and propagate function attributes only when we know that the
1672 // definition we'll get at link time is *exactly* the definition we see now.
1673 // For more details, see GlobalValue::mayBeDerefined.
1674 if (!F
.hasExactDefinition())
1677 // Must-progress function without side-effects must return.
1678 if (F
.mustProgress() && F
.onlyReadsMemory())
1681 // Can only analyze functions with a definition.
1682 if (F
.isDeclaration())
1685 // Functions with loops require more sophisticated analysis, as the loop
1686 // may be infinite. For now, don't try to handle them.
1687 SmallVector
<std::pair
<const BasicBlock
*, const BasicBlock
*>> Backedges
;
1688 FindFunctionBackedges(F
, Backedges
);
1689 if (!Backedges
.empty())
1692 // If there are no loops, then the function is willreturn if all calls in
1693 // it are willreturn.
1694 return all_of(instructions(F
), [](const Instruction
&I
) {
1695 return I
.willReturn();
1699 // Set the willreturn function attribute if possible.
1700 static void addWillReturn(const SCCNodeSet
&SCCNodes
,
1701 SmallSet
<Function
*, 8> &Changed
) {
1702 for (Function
*F
: SCCNodes
) {
1703 if (!F
|| F
->willReturn() || !functionWillReturn(*F
))
1712 // Return true if this is an atomic which has an ordering stronger than
1713 // unordered. Note that this is different than the predicate we use in
1714 // Attributor. Here we chose to be conservative and consider monotonic
1715 // operations potentially synchronizing. We generally don't do much with
1716 // monotonic operations, so this is simply risk reduction.
1717 static bool isOrderedAtomic(Instruction
*I
) {
1721 if (auto *FI
= dyn_cast
<FenceInst
>(I
))
1722 // All legal orderings for fence are stronger than monotonic.
1723 return FI
->getSyncScopeID() != SyncScope::SingleThread
;
1724 else if (isa
<AtomicCmpXchgInst
>(I
) || isa
<AtomicRMWInst
>(I
))
1726 else if (auto *SI
= dyn_cast
<StoreInst
>(I
))
1727 return !SI
->isUnordered();
1728 else if (auto *LI
= dyn_cast
<LoadInst
>(I
))
1729 return !LI
->isUnordered();
1731 llvm_unreachable("unknown atomic instruction?");
1735 static bool InstrBreaksNoSync(Instruction
&I
, const SCCNodeSet
&SCCNodes
) {
1736 // Volatile may synchronize
1740 // An ordered atomic may synchronize. (See comment about on monotonic.)
1741 if (isOrderedAtomic(&I
))
1744 auto *CB
= dyn_cast
<CallBase
>(&I
);
1746 // Non call site cases covered by the two checks above
1749 if (CB
->hasFnAttr(Attribute::NoSync
))
1752 // Non volatile memset/memcpy/memmoves are nosync
1753 // NOTE: Only intrinsics with volatile flags should be handled here. All
1754 // others should be marked in Intrinsics.td.
1755 if (auto *MI
= dyn_cast
<MemIntrinsic
>(&I
))
1756 if (!MI
->isVolatile())
1759 // Speculatively assume in SCC.
1760 if (Function
*Callee
= CB
->getCalledFunction())
1761 if (SCCNodes
.contains(Callee
))
1767 // Infer the nosync attribute.
1768 static void addNoSyncAttr(const SCCNodeSet
&SCCNodes
,
1769 SmallSet
<Function
*, 8> &Changed
) {
1770 AttributeInferer AI
;
1771 AI
.registerAttrInference(AttributeInferer::InferenceDescriptor
{
1773 // Skip already marked functions.
1774 [](const Function
&F
) { return F
.hasNoSync(); },
1775 // Instructions that break nosync assumption.
1776 [&SCCNodes
](Instruction
&I
) {
1777 return InstrBreaksNoSync(I
, SCCNodes
);
1781 << "Adding nosync attr to fn " << F
.getName() << "\n");
1785 /* RequiresExactDefinition= */ true});
1786 AI
.run(SCCNodes
, Changed
);
1789 static SCCNodesResult
createSCCNodeSet(ArrayRef
<Function
*> Functions
) {
1791 Res
.HasUnknownCall
= false;
1792 for (Function
*F
: Functions
) {
1793 if (!F
|| F
->hasOptNone() || F
->hasFnAttribute(Attribute::Naked
) ||
1794 F
->isPresplitCoroutine()) {
1795 // Treat any function we're trying not to optimize as if it were an
1796 // indirect call and omit it from the node set used below.
1797 Res
.HasUnknownCall
= true;
1800 // Track whether any functions in this SCC have an unknown call edge.
1801 // Note: if this is ever a performance hit, we can common it with
1802 // subsequent routines which also do scans over the instructions of the
1804 if (!Res
.HasUnknownCall
) {
1805 for (Instruction
&I
: instructions(*F
)) {
1806 if (auto *CB
= dyn_cast
<CallBase
>(&I
)) {
1807 if (!CB
->getCalledFunction()) {
1808 Res
.HasUnknownCall
= true;
1814 Res
.SCCNodes
.insert(F
);
1819 template <typename AARGetterT
>
1820 static SmallSet
<Function
*, 8>
1821 deriveAttrsInPostOrder(ArrayRef
<Function
*> Functions
, AARGetterT
&&AARGetter
) {
1822 SCCNodesResult Nodes
= createSCCNodeSet(Functions
);
1824 // Bail if the SCC only contains optnone functions.
1825 if (Nodes
.SCCNodes
.empty())
1828 SmallSet
<Function
*, 8> Changed
;
1830 addArgumentReturnedAttrs(Nodes
.SCCNodes
, Changed
);
1831 addMemoryAttrs(Nodes
.SCCNodes
, AARGetter
, Changed
);
1832 addArgumentAttrs(Nodes
.SCCNodes
, Changed
);
1833 inferConvergent(Nodes
.SCCNodes
, Changed
);
1834 addNoReturnAttrs(Nodes
.SCCNodes
, Changed
);
1835 addWillReturn(Nodes
.SCCNodes
, Changed
);
1837 // If we have no external nodes participating in the SCC, we can deduce some
1838 // more precise attributes as well.
1839 if (!Nodes
.HasUnknownCall
) {
1840 addNoAliasAttrs(Nodes
.SCCNodes
, Changed
);
1841 addNonNullAttrs(Nodes
.SCCNodes
, Changed
);
1842 inferAttrsFromFunctionBodies(Nodes
.SCCNodes
, Changed
);
1843 addNoRecurseAttrs(Nodes
.SCCNodes
, Changed
);
1846 addNoSyncAttr(Nodes
.SCCNodes
, Changed
);
1848 // Finally, infer the maximal set of attributes from the ones we've inferred
1849 // above. This is handling the cases where one attribute on a signature
1850 // implies another, but for implementation reasons the inference rule for
1851 // the later is missing (or simply less sophisticated).
1852 for (Function
*F
: Nodes
.SCCNodes
)
1854 if (inferAttributesFromOthers(*F
))
1860 PreservedAnalyses
PostOrderFunctionAttrsPass::run(LazyCallGraph::SCC
&C
,
1861 CGSCCAnalysisManager
&AM
,
1863 CGSCCUpdateResult
&) {
1864 FunctionAnalysisManager
&FAM
=
1865 AM
.getResult
<FunctionAnalysisManagerCGSCCProxy
>(C
, CG
).getManager();
1867 // We pass a lambda into functions to wire them up to the analysis manager
1868 // for getting function analyses.
1869 auto AARGetter
= [&](Function
&F
) -> AAResults
& {
1870 return FAM
.getResult
<AAManager
>(F
);
1873 SmallVector
<Function
*, 8> Functions
;
1874 for (LazyCallGraph::Node
&N
: C
) {
1875 Functions
.push_back(&N
.getFunction());
1878 auto ChangedFunctions
= deriveAttrsInPostOrder(Functions
, AARGetter
);
1879 if (ChangedFunctions
.empty())
1880 return PreservedAnalyses::all();
1882 // Invalidate analyses for modified functions so that we don't have to
1883 // invalidate all analyses for all functions in this SCC.
1884 PreservedAnalyses FuncPA
;
1885 // We haven't changed the CFG for modified functions.
1886 FuncPA
.preserveSet
<CFGAnalyses
>();
1887 for (Function
*Changed
: ChangedFunctions
) {
1888 FAM
.invalidate(*Changed
, FuncPA
);
1889 // Also invalidate any direct callers of changed functions since analyses
1890 // may care about attributes of direct callees. For example, MemorySSA cares
1891 // about whether or not a call's callee modifies memory and queries that
1892 // through function attributes.
1893 for (auto *U
: Changed
->users()) {
1894 if (auto *Call
= dyn_cast
<CallBase
>(U
)) {
1895 if (Call
->getCalledFunction() == Changed
)
1896 FAM
.invalidate(*Call
->getFunction(), FuncPA
);
1901 PreservedAnalyses PA
;
1902 // We have not added or removed functions.
1903 PA
.preserve
<FunctionAnalysisManagerCGSCCProxy
>();
1904 // We already invalidated all relevant function analyses above.
1905 PA
.preserveSet
<AllAnalysesOn
<Function
>>();
1911 struct PostOrderFunctionAttrsLegacyPass
: public CallGraphSCCPass
{
1912 // Pass identification, replacement for typeid
1915 PostOrderFunctionAttrsLegacyPass() : CallGraphSCCPass(ID
) {
1916 initializePostOrderFunctionAttrsLegacyPassPass(
1917 *PassRegistry::getPassRegistry());
1920 bool runOnSCC(CallGraphSCC
&SCC
) override
;
1922 void getAnalysisUsage(AnalysisUsage
&AU
) const override
{
1923 AU
.setPreservesCFG();
1924 AU
.addRequired
<AssumptionCacheTracker
>();
1925 getAAResultsAnalysisUsage(AU
);
1926 CallGraphSCCPass::getAnalysisUsage(AU
);
1930 } // end anonymous namespace
1932 char PostOrderFunctionAttrsLegacyPass::ID
= 0;
1933 INITIALIZE_PASS_BEGIN(PostOrderFunctionAttrsLegacyPass
, "function-attrs",
1934 "Deduce function attributes", false, false)
1935 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass
)
1936 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker
)
1937 INITIALIZE_PASS_DEPENDENCY(CallGraphWrapperPass
)
1938 INITIALIZE_PASS_END(PostOrderFunctionAttrsLegacyPass
, "function-attrs",
1939 "Deduce function attributes", false, false)
1941 Pass
*llvm::createPostOrderFunctionAttrsLegacyPass() {
1942 return new PostOrderFunctionAttrsLegacyPass();
1945 template <typename AARGetterT
>
1946 static bool runImpl(CallGraphSCC
&SCC
, AARGetterT AARGetter
) {
1947 SmallVector
<Function
*, 8> Functions
;
1948 for (CallGraphNode
*I
: SCC
) {
1949 Functions
.push_back(I
->getFunction());
1952 return !deriveAttrsInPostOrder(Functions
, AARGetter
).empty();
1955 bool PostOrderFunctionAttrsLegacyPass::runOnSCC(CallGraphSCC
&SCC
) {
1958 return runImpl(SCC
, LegacyAARGetter(*this));
1963 struct ReversePostOrderFunctionAttrsLegacyPass
: public ModulePass
{
1964 // Pass identification, replacement for typeid
1967 ReversePostOrderFunctionAttrsLegacyPass() : ModulePass(ID
) {
1968 initializeReversePostOrderFunctionAttrsLegacyPassPass(
1969 *PassRegistry::getPassRegistry());
1972 bool runOnModule(Module
&M
) override
;
1974 void getAnalysisUsage(AnalysisUsage
&AU
) const override
{
1975 AU
.setPreservesCFG();
1976 AU
.addRequired
<CallGraphWrapperPass
>();
1977 AU
.addPreserved
<CallGraphWrapperPass
>();
1981 } // end anonymous namespace
1983 char ReversePostOrderFunctionAttrsLegacyPass::ID
= 0;
1985 INITIALIZE_PASS_BEGIN(ReversePostOrderFunctionAttrsLegacyPass
,
1986 "rpo-function-attrs", "Deduce function attributes in RPO",
1988 INITIALIZE_PASS_DEPENDENCY(CallGraphWrapperPass
)
1989 INITIALIZE_PASS_END(ReversePostOrderFunctionAttrsLegacyPass
,
1990 "rpo-function-attrs", "Deduce function attributes in RPO",
1993 Pass
*llvm::createReversePostOrderFunctionAttrsPass() {
1994 return new ReversePostOrderFunctionAttrsLegacyPass();
1997 static bool addNoRecurseAttrsTopDown(Function
&F
) {
1998 // We check the preconditions for the function prior to calling this to avoid
1999 // the cost of building up a reversible post-order list. We assert them here
2000 // to make sure none of the invariants this relies on were violated.
2001 assert(!F
.isDeclaration() && "Cannot deduce norecurse without a definition!");
2002 assert(!F
.doesNotRecurse() &&
2003 "This function has already been deduced as norecurs!");
2004 assert(F
.hasInternalLinkage() &&
2005 "Can only do top-down deduction for internal linkage functions!");
2007 // If F is internal and all of its uses are calls from a non-recursive
2008 // functions, then none of its calls could in fact recurse without going
2009 // through a function marked norecurse, and so we can mark this function too
2010 // as norecurse. Note that the uses must actually be calls -- otherwise
2011 // a pointer to this function could be returned from a norecurse function but
2012 // this function could be recursively (indirectly) called. Note that this
2013 // also detects if F is directly recursive as F is not yet marked as
2014 // a norecurse function.
2015 for (auto &U
: F
.uses()) {
2016 auto *I
= dyn_cast
<Instruction
>(U
.getUser());
2019 CallBase
*CB
= dyn_cast
<CallBase
>(I
);
2020 if (!CB
|| !CB
->isCallee(&U
) ||
2021 !CB
->getParent()->getParent()->doesNotRecurse())
2024 F
.setDoesNotRecurse();
2029 static bool deduceFunctionAttributeInRPO(Module
&M
, CallGraph
&CG
) {
2030 // We only have a post-order SCC traversal (because SCCs are inherently
2031 // discovered in post-order), so we accumulate them in a vector and then walk
2032 // it in reverse. This is simpler than using the RPO iterator infrastructure
2033 // because we need to combine SCC detection and the PO walk of the call
2034 // graph. We can also cheat egregiously because we're primarily interested in
2035 // synthesizing norecurse and so we can only save the singular SCCs as SCCs
2036 // with multiple functions in them will clearly be recursive.
2037 SmallVector
<Function
*, 16> Worklist
;
2038 for (scc_iterator
<CallGraph
*> I
= scc_begin(&CG
); !I
.isAtEnd(); ++I
) {
2042 Function
*F
= I
->front()->getFunction();
2043 if (F
&& !F
->isDeclaration() && !F
->doesNotRecurse() &&
2044 F
->hasInternalLinkage())
2045 Worklist
.push_back(F
);
2048 bool Changed
= false;
2049 for (auto *F
: llvm::reverse(Worklist
))
2050 Changed
|= addNoRecurseAttrsTopDown(*F
);
2055 bool ReversePostOrderFunctionAttrsLegacyPass::runOnModule(Module
&M
) {
2059 auto &CG
= getAnalysis
<CallGraphWrapperPass
>().getCallGraph();
2061 return deduceFunctionAttributeInRPO(M
, CG
);
2065 ReversePostOrderFunctionAttrsPass::run(Module
&M
, ModuleAnalysisManager
&AM
) {
2066 auto &CG
= AM
.getResult
<CallGraphAnalysis
>(M
);
2068 if (!deduceFunctionAttributeInRPO(M
, CG
))
2069 return PreservedAnalyses::all();
2071 PreservedAnalyses PA
;
2072 PA
.preserve
<CallGraphAnalysis
>();