1 //===- WholeProgramDevirt.cpp - Whole program virtual call optimization ---===//
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
7 //===----------------------------------------------------------------------===//
9 // This pass implements whole program optimization of virtual calls in cases
10 // where we know (via !type metadata) that the list of callees is fixed. This
11 // includes the following:
12 // - Single implementation devirtualization: if a virtual call has a single
13 // possible callee, replace all calls with a direct call to that callee.
14 // - Virtual constant propagation: if the virtual function's return type is an
15 // integer <=64 bits and all possible callees are readnone, for each class and
16 // each list of constant arguments: evaluate the function, store the return
17 // value alongside the virtual table, and rewrite each virtual call as a load
18 // from the virtual table.
19 // - Uniform return value optimization: if the conditions for virtual constant
20 // propagation hold and each function returns the same constant value, replace
21 // each virtual call with that constant.
22 // - Unique return value optimization for i1 return values: if the conditions
23 // for virtual constant propagation hold and a single vtable's function
24 // returns 0, or a single vtable's function returns 1, replace each virtual
25 // call with a comparison of the vptr against that vtable's address.
27 // This pass is intended to be used during the regular and thin LTO pipelines:
29 // During regular LTO, the pass determines the best optimization for each
30 // virtual call and applies the resolutions directly to virtual calls that are
31 // eligible for virtual call optimization (i.e. calls that use either of the
32 // llvm.assume(llvm.type.test) or llvm.type.checked.load intrinsics).
34 // During hybrid Regular/ThinLTO, the pass operates in two phases:
35 // - Export phase: this is run during the thin link over a single merged module
36 // that contains all vtables with !type metadata that participate in the link.
37 // The pass computes a resolution for each virtual call and stores it in the
38 // type identifier summary.
39 // - Import phase: this is run during the thin backends over the individual
40 // modules. The pass applies the resolutions previously computed during the
41 // import phase to each eligible virtual call.
43 // During ThinLTO, the pass operates in two phases:
44 // - Export phase: this is run during the thin link over the index which
45 // contains a summary of all vtables with !type metadata that participate in
46 // the link. It computes a resolution for each virtual call and stores it in
47 // the type identifier summary. Only single implementation devirtualization
49 // - Import phase: (same as with hybrid case above).
51 //===----------------------------------------------------------------------===//
53 #include "llvm/Transforms/IPO/WholeProgramDevirt.h"
54 #include "llvm/ADT/ArrayRef.h"
55 #include "llvm/ADT/DenseMap.h"
56 #include "llvm/ADT/DenseMapInfo.h"
57 #include "llvm/ADT/DenseSet.h"
58 #include "llvm/ADT/MapVector.h"
59 #include "llvm/ADT/SmallVector.h"
60 #include "llvm/ADT/Statistic.h"
61 #include "llvm/ADT/Triple.h"
62 #include "llvm/ADT/iterator_range.h"
63 #include "llvm/Analysis/AssumptionCache.h"
64 #include "llvm/Analysis/BasicAliasAnalysis.h"
65 #include "llvm/Analysis/OptimizationRemarkEmitter.h"
66 #include "llvm/Analysis/TypeMetadataUtils.h"
67 #include "llvm/Bitcode/BitcodeReader.h"
68 #include "llvm/Bitcode/BitcodeWriter.h"
69 #include "llvm/IR/Constants.h"
70 #include "llvm/IR/DataLayout.h"
71 #include "llvm/IR/DebugLoc.h"
72 #include "llvm/IR/DerivedTypes.h"
73 #include "llvm/IR/Dominators.h"
74 #include "llvm/IR/Function.h"
75 #include "llvm/IR/GlobalAlias.h"
76 #include "llvm/IR/GlobalVariable.h"
77 #include "llvm/IR/IRBuilder.h"
78 #include "llvm/IR/InstrTypes.h"
79 #include "llvm/IR/Instruction.h"
80 #include "llvm/IR/Instructions.h"
81 #include "llvm/IR/Intrinsics.h"
82 #include "llvm/IR/LLVMContext.h"
83 #include "llvm/IR/MDBuilder.h"
84 #include "llvm/IR/Metadata.h"
85 #include "llvm/IR/Module.h"
86 #include "llvm/IR/ModuleSummaryIndexYAML.h"
87 #include "llvm/InitializePasses.h"
88 #include "llvm/Pass.h"
89 #include "llvm/PassRegistry.h"
90 #include "llvm/Support/Casting.h"
91 #include "llvm/Support/CommandLine.h"
92 #include "llvm/Support/Errc.h"
93 #include "llvm/Support/Error.h"
94 #include "llvm/Support/FileSystem.h"
95 #include "llvm/Support/GlobPattern.h"
96 #include "llvm/Support/MathExtras.h"
97 #include "llvm/Transforms/IPO.h"
98 #include "llvm/Transforms/IPO/FunctionAttrs.h"
99 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
100 #include "llvm/Transforms/Utils/CallPromotionUtils.h"
101 #include "llvm/Transforms/Utils/Evaluator.h"
108 using namespace llvm
;
109 using namespace wholeprogramdevirt
;
111 #define DEBUG_TYPE "wholeprogramdevirt"
113 STATISTIC(NumDevirtTargets
, "Number of whole program devirtualization targets");
114 STATISTIC(NumSingleImpl
, "Number of single implementation devirtualizations");
115 STATISTIC(NumBranchFunnel
, "Number of branch funnels");
116 STATISTIC(NumUniformRetVal
, "Number of uniform return value optimizations");
117 STATISTIC(NumUniqueRetVal
, "Number of unique return value optimizations");
118 STATISTIC(NumVirtConstProp1Bit
,
119 "Number of 1 bit virtual constant propagations");
120 STATISTIC(NumVirtConstProp
, "Number of virtual constant propagations");
122 static cl::opt
<PassSummaryAction
> ClSummaryAction(
123 "wholeprogramdevirt-summary-action",
124 cl::desc("What to do with the summary when running this pass"),
125 cl::values(clEnumValN(PassSummaryAction::None
, "none", "Do nothing"),
126 clEnumValN(PassSummaryAction::Import
, "import",
127 "Import typeid resolutions from summary and globals"),
128 clEnumValN(PassSummaryAction::Export
, "export",
129 "Export typeid resolutions to summary and globals")),
132 static cl::opt
<std::string
> ClReadSummary(
133 "wholeprogramdevirt-read-summary",
135 "Read summary from given bitcode or YAML file before running pass"),
138 static cl::opt
<std::string
> ClWriteSummary(
139 "wholeprogramdevirt-write-summary",
140 cl::desc("Write summary to given bitcode or YAML file after running pass. "
141 "Output file format is deduced from extension: *.bc means writing "
142 "bitcode, otherwise YAML"),
145 static cl::opt
<unsigned>
146 ClThreshold("wholeprogramdevirt-branch-funnel-threshold", cl::Hidden
,
148 cl::desc("Maximum number of call targets per "
149 "call site to enable branch funnels"));
152 PrintSummaryDevirt("wholeprogramdevirt-print-index-based", cl::Hidden
,
153 cl::desc("Print index-based devirtualization messages"));
155 /// Provide a way to force enable whole program visibility in tests.
156 /// This is needed to support legacy tests that don't contain
157 /// !vcall_visibility metadata (the mere presense of type tests
158 /// previously implied hidden visibility).
160 WholeProgramVisibility("whole-program-visibility", cl::Hidden
,
161 cl::desc("Enable whole program visibility"));
163 /// Provide a way to force disable whole program for debugging or workarounds,
164 /// when enabled via the linker.
165 static cl::opt
<bool> DisableWholeProgramVisibility(
166 "disable-whole-program-visibility", cl::Hidden
,
167 cl::desc("Disable whole program visibility (overrides enabling options)"));
169 /// Provide way to prevent certain function from being devirtualized
170 static cl::list
<std::string
>
171 SkipFunctionNames("wholeprogramdevirt-skip",
172 cl::desc("Prevent function(s) from being devirtualized"),
173 cl::Hidden
, cl::CommaSeparated
);
175 /// Mechanism to add runtime checking of devirtualization decisions, optionally
176 /// trapping or falling back to indirect call on any that are not correct.
177 /// Trapping mode is useful for debugging undefined behavior leading to failures
178 /// with WPD. Fallback mode is useful for ensuring safety when whole program
179 /// visibility may be compromised.
180 enum WPDCheckMode
{ None
, Trap
, Fallback
};
181 static cl::opt
<WPDCheckMode
> DevirtCheckMode(
182 "wholeprogramdevirt-check", cl::Hidden
,
183 cl::desc("Type of checking for incorrect devirtualizations"),
184 cl::values(clEnumValN(WPDCheckMode::None
, "none", "No checking"),
185 clEnumValN(WPDCheckMode::Trap
, "trap", "Trap when incorrect"),
186 clEnumValN(WPDCheckMode::Fallback
, "fallback",
187 "Fallback to indirect when incorrect")));
191 std::vector
<GlobPattern
> Patterns
;
192 template <class T
> void init(const T
&StringList
) {
193 for (const auto &S
: StringList
)
194 if (Expected
<GlobPattern
> Pat
= GlobPattern::create(S
))
195 Patterns
.push_back(std::move(*Pat
));
197 bool match(StringRef S
) {
198 for (const GlobPattern
&P
: Patterns
)
206 // Find the minimum offset that we may store a value of size Size bits at. If
207 // IsAfter is set, look for an offset before the object, otherwise look for an
208 // offset after the object.
210 wholeprogramdevirt::findLowestOffset(ArrayRef
<VirtualCallTarget
> Targets
,
211 bool IsAfter
, uint64_t Size
) {
212 // Find a minimum offset taking into account only vtable sizes.
213 uint64_t MinByte
= 0;
214 for (const VirtualCallTarget
&Target
: Targets
) {
216 MinByte
= std::max(MinByte
, Target
.minAfterBytes());
218 MinByte
= std::max(MinByte
, Target
.minBeforeBytes());
221 // Build a vector of arrays of bytes covering, for each target, a slice of the
222 // used region (see AccumBitVector::BytesUsed in
223 // llvm/Transforms/IPO/WholeProgramDevirt.h) starting at MinByte. Effectively,
224 // this aligns the used regions to start at MinByte.
226 // In this example, A, B and C are vtables, # is a byte already allocated for
227 // a virtual function pointer, AAAA... (etc.) are the used regions for the
228 // vtables and Offset(X) is the value computed for the Offset variable below
234 // A: ################AAAAAAAA|AAAAAAAA
235 // B: ########BBBBBBBBBBBBBBBB|BBBB
236 // C: ########################|CCCCCCCCCCCCCCCC
239 // This code produces the slices of A, B and C that appear after the divider
241 std::vector
<ArrayRef
<uint8_t>> Used
;
242 for (const VirtualCallTarget
&Target
: Targets
) {
243 ArrayRef
<uint8_t> VTUsed
= IsAfter
? Target
.TM
->Bits
->After
.BytesUsed
244 : Target
.TM
->Bits
->Before
.BytesUsed
;
245 uint64_t Offset
= IsAfter
? MinByte
- Target
.minAfterBytes()
246 : MinByte
- Target
.minBeforeBytes();
248 // Disregard used regions that are smaller than Offset. These are
249 // effectively all-free regions that do not need to be checked.
250 if (VTUsed
.size() > Offset
)
251 Used
.push_back(VTUsed
.slice(Offset
));
255 // Find a free bit in each member of Used.
256 for (unsigned I
= 0;; ++I
) {
257 uint8_t BitsUsed
= 0;
258 for (auto &&B
: Used
)
261 if (BitsUsed
!= 0xff)
262 return (MinByte
+ I
) * 8 +
263 countTrailingZeros(uint8_t(~BitsUsed
), ZB_Undefined
);
266 // Find a free (Size/8) byte region in each member of Used.
267 // FIXME: see if alignment helps.
268 for (unsigned I
= 0;; ++I
) {
269 for (auto &&B
: Used
) {
271 while ((I
+ Byte
) < B
.size() && Byte
< (Size
/ 8)) {
277 return (MinByte
+ I
) * 8;
283 void wholeprogramdevirt::setBeforeReturnValues(
284 MutableArrayRef
<VirtualCallTarget
> Targets
, uint64_t AllocBefore
,
285 unsigned BitWidth
, int64_t &OffsetByte
, uint64_t &OffsetBit
) {
287 OffsetByte
= -(AllocBefore
/ 8 + 1);
289 OffsetByte
= -((AllocBefore
+ 7) / 8 + (BitWidth
+ 7) / 8);
290 OffsetBit
= AllocBefore
% 8;
292 for (VirtualCallTarget
&Target
: Targets
) {
294 Target
.setBeforeBit(AllocBefore
);
296 Target
.setBeforeBytes(AllocBefore
, (BitWidth
+ 7) / 8);
300 void wholeprogramdevirt::setAfterReturnValues(
301 MutableArrayRef
<VirtualCallTarget
> Targets
, uint64_t AllocAfter
,
302 unsigned BitWidth
, int64_t &OffsetByte
, uint64_t &OffsetBit
) {
304 OffsetByte
= AllocAfter
/ 8;
306 OffsetByte
= (AllocAfter
+ 7) / 8;
307 OffsetBit
= AllocAfter
% 8;
309 for (VirtualCallTarget
&Target
: Targets
) {
311 Target
.setAfterBit(AllocAfter
);
313 Target
.setAfterBytes(AllocAfter
, (BitWidth
+ 7) / 8);
317 VirtualCallTarget::VirtualCallTarget(Function
*Fn
, const TypeMemberInfo
*TM
)
319 IsBigEndian(Fn
->getParent()->getDataLayout().isBigEndian()), WasDevirt(false) {}
323 // A slot in a set of virtual tables. The TypeID identifies the set of virtual
324 // tables, and the ByteOffset is the offset in bytes from the address point to
325 // the virtual function pointer.
331 } // end anonymous namespace
335 template <> struct DenseMapInfo
<VTableSlot
> {
336 static VTableSlot
getEmptyKey() {
337 return {DenseMapInfo
<Metadata
*>::getEmptyKey(),
338 DenseMapInfo
<uint64_t>::getEmptyKey()};
340 static VTableSlot
getTombstoneKey() {
341 return {DenseMapInfo
<Metadata
*>::getTombstoneKey(),
342 DenseMapInfo
<uint64_t>::getTombstoneKey()};
344 static unsigned getHashValue(const VTableSlot
&I
) {
345 return DenseMapInfo
<Metadata
*>::getHashValue(I
.TypeID
) ^
346 DenseMapInfo
<uint64_t>::getHashValue(I
.ByteOffset
);
348 static bool isEqual(const VTableSlot
&LHS
,
349 const VTableSlot
&RHS
) {
350 return LHS
.TypeID
== RHS
.TypeID
&& LHS
.ByteOffset
== RHS
.ByteOffset
;
354 template <> struct DenseMapInfo
<VTableSlotSummary
> {
355 static VTableSlotSummary
getEmptyKey() {
356 return {DenseMapInfo
<StringRef
>::getEmptyKey(),
357 DenseMapInfo
<uint64_t>::getEmptyKey()};
359 static VTableSlotSummary
getTombstoneKey() {
360 return {DenseMapInfo
<StringRef
>::getTombstoneKey(),
361 DenseMapInfo
<uint64_t>::getTombstoneKey()};
363 static unsigned getHashValue(const VTableSlotSummary
&I
) {
364 return DenseMapInfo
<StringRef
>::getHashValue(I
.TypeID
) ^
365 DenseMapInfo
<uint64_t>::getHashValue(I
.ByteOffset
);
367 static bool isEqual(const VTableSlotSummary
&LHS
,
368 const VTableSlotSummary
&RHS
) {
369 return LHS
.TypeID
== RHS
.TypeID
&& LHS
.ByteOffset
== RHS
.ByteOffset
;
373 } // end namespace llvm
377 // Returns true if the function must be unreachable based on ValueInfo.
379 // In particular, identifies a function as unreachable in the following
381 // 1) All summaries are live.
382 // 2) All function summaries indicate it's unreachable
383 bool mustBeUnreachableFunction(ValueInfo TheFnVI
) {
384 if ((!TheFnVI
) || TheFnVI
.getSummaryList().empty()) {
385 // Returns false if ValueInfo is absent, or the summary list is empty
386 // (e.g., function declarations).
390 for (const auto &Summary
: TheFnVI
.getSummaryList()) {
391 // Conservatively returns false if any non-live functions are seen.
392 // In general either all summaries should be live or all should be dead.
393 if (!Summary
->isLive())
395 if (auto *FS
= dyn_cast
<FunctionSummary
>(Summary
.get())) {
396 if (!FS
->fflags().MustBeUnreachable
)
399 // Do nothing if a non-function has the same GUID (which is rare).
400 // This is correct since non-function summaries are not relevant.
402 // All function summaries are live and all of them agree that the function is
407 // A virtual call site. VTable is the loaded virtual table pointer, and CS is
408 // the indirect virtual call.
409 struct VirtualCallSite
{
410 Value
*VTable
= nullptr;
413 // If non-null, this field points to the associated unsafe use count stored in
414 // the DevirtModule::NumUnsafeUsesForTypeTest map below. See the description
415 // of that field for details.
416 unsigned *NumUnsafeUses
= nullptr;
419 emitRemark(const StringRef OptName
, const StringRef TargetName
,
420 function_ref
<OptimizationRemarkEmitter
&(Function
*)> OREGetter
) {
421 Function
*F
= CB
.getCaller();
422 DebugLoc DLoc
= CB
.getDebugLoc();
423 BasicBlock
*Block
= CB
.getParent();
426 OREGetter(F
).emit(OptimizationRemark(DEBUG_TYPE
, OptName
, DLoc
, Block
)
427 << NV("Optimization", OptName
)
428 << ": devirtualized a call to "
429 << NV("FunctionName", TargetName
));
432 void replaceAndErase(
433 const StringRef OptName
, const StringRef TargetName
, bool RemarksEnabled
,
434 function_ref
<OptimizationRemarkEmitter
&(Function
*)> OREGetter
,
437 emitRemark(OptName
, TargetName
, OREGetter
);
438 CB
.replaceAllUsesWith(New
);
439 if (auto *II
= dyn_cast
<InvokeInst
>(&CB
)) {
440 BranchInst::Create(II
->getNormalDest(), &CB
);
441 II
->getUnwindDest()->removePredecessor(II
->getParent());
443 CB
.eraseFromParent();
444 // This use is no longer unsafe.
450 // Call site information collected for a specific VTableSlot and possibly a list
451 // of constant integer arguments. The grouping by arguments is handled by the
452 // VTableSlotInfo class.
453 struct CallSiteInfo
{
454 /// The set of call sites for this slot. Used during regular LTO and the
455 /// import phase of ThinLTO (as well as the export phase of ThinLTO for any
456 /// call sites that appear in the merged module itself); in each of these
457 /// cases we are directly operating on the call sites at the IR level.
458 std::vector
<VirtualCallSite
> CallSites
;
460 /// Whether all call sites represented by this CallSiteInfo, including those
461 /// in summaries, have been devirtualized. This starts off as true because a
462 /// default constructed CallSiteInfo represents no call sites.
463 bool AllCallSitesDevirted
= true;
465 // These fields are used during the export phase of ThinLTO and reflect
466 // information collected from function summaries.
468 /// Whether any function summary contains an llvm.assume(llvm.type.test) for
470 bool SummaryHasTypeTestAssumeUsers
= false;
472 /// CFI-specific: a vector containing the list of function summaries that use
473 /// the llvm.type.checked.load intrinsic and therefore will require
474 /// resolutions for llvm.type.test in order to implement CFI checks if
475 /// devirtualization was unsuccessful. If devirtualization was successful, the
476 /// pass will clear this vector by calling markDevirt(). If at the end of the
477 /// pass the vector is non-empty, we will need to add a use of llvm.type.test
478 /// to each of the function summaries in the vector.
479 std::vector
<FunctionSummary
*> SummaryTypeCheckedLoadUsers
;
480 std::vector
<FunctionSummary
*> SummaryTypeTestAssumeUsers
;
482 bool isExported() const {
483 return SummaryHasTypeTestAssumeUsers
||
484 !SummaryTypeCheckedLoadUsers
.empty();
487 void addSummaryTypeCheckedLoadUser(FunctionSummary
*FS
) {
488 SummaryTypeCheckedLoadUsers
.push_back(FS
);
489 AllCallSitesDevirted
= false;
492 void addSummaryTypeTestAssumeUser(FunctionSummary
*FS
) {
493 SummaryTypeTestAssumeUsers
.push_back(FS
);
494 SummaryHasTypeTestAssumeUsers
= true;
495 AllCallSitesDevirted
= false;
499 AllCallSitesDevirted
= true;
501 // As explained in the comment for SummaryTypeCheckedLoadUsers.
502 SummaryTypeCheckedLoadUsers
.clear();
506 // Call site information collected for a specific VTableSlot.
507 struct VTableSlotInfo
{
508 // The set of call sites which do not have all constant integer arguments
509 // (excluding "this").
512 // The set of call sites with all constant integer arguments (excluding
513 // "this"), grouped by argument list.
514 std::map
<std::vector
<uint64_t>, CallSiteInfo
> ConstCSInfo
;
516 void addCallSite(Value
*VTable
, CallBase
&CB
, unsigned *NumUnsafeUses
);
519 CallSiteInfo
&findCallSiteInfo(CallBase
&CB
);
522 CallSiteInfo
&VTableSlotInfo::findCallSiteInfo(CallBase
&CB
) {
523 std::vector
<uint64_t> Args
;
524 auto *CBType
= dyn_cast
<IntegerType
>(CB
.getType());
525 if (!CBType
|| CBType
->getBitWidth() > 64 || CB
.arg_empty())
527 for (auto &&Arg
: drop_begin(CB
.args())) {
528 auto *CI
= dyn_cast
<ConstantInt
>(Arg
);
529 if (!CI
|| CI
->getBitWidth() > 64)
531 Args
.push_back(CI
->getZExtValue());
533 return ConstCSInfo
[Args
];
536 void VTableSlotInfo::addCallSite(Value
*VTable
, CallBase
&CB
,
537 unsigned *NumUnsafeUses
) {
538 auto &CSI
= findCallSiteInfo(CB
);
539 CSI
.AllCallSitesDevirted
= false;
540 CSI
.CallSites
.push_back({VTable
, CB
, NumUnsafeUses
});
543 struct DevirtModule
{
545 function_ref
<AAResults
&(Function
&)> AARGetter
;
546 function_ref
<DominatorTree
&(Function
&)> LookupDomTree
;
548 ModuleSummaryIndex
*ExportSummary
;
549 const ModuleSummaryIndex
*ImportSummary
;
552 PointerType
*Int8PtrTy
;
553 IntegerType
*Int32Ty
;
554 IntegerType
*Int64Ty
;
555 IntegerType
*IntPtrTy
;
556 /// Sizeless array type, used for imported vtables. This provides a signal
557 /// to analyzers that these imports may alias, as they do for example
558 /// when multiple unique return values occur in the same vtable.
559 ArrayType
*Int8Arr0Ty
;
562 function_ref
<OptimizationRemarkEmitter
&(Function
*)> OREGetter
;
564 MapVector
<VTableSlot
, VTableSlotInfo
> CallSlots
;
566 // Calls that have already been optimized. We may add a call to multiple
567 // VTableSlotInfos if vtable loads are coalesced and need to make sure not to
568 // optimize a call more than once.
569 SmallPtrSet
<CallBase
*, 8> OptimizedCalls
;
571 // This map keeps track of the number of "unsafe" uses of a loaded function
572 // pointer. The key is the associated llvm.type.test intrinsic call generated
573 // by this pass. An unsafe use is one that calls the loaded function pointer
574 // directly. Every time we eliminate an unsafe use (for example, by
575 // devirtualizing it or by applying virtual constant propagation), we
576 // decrement the value stored in this map. If a value reaches zero, we can
577 // eliminate the type check by RAUWing the associated llvm.type.test call with
579 std::map
<CallInst
*, unsigned> NumUnsafeUsesForTypeTest
;
580 PatternList FunctionsToSkip
;
582 DevirtModule(Module
&M
, function_ref
<AAResults
&(Function
&)> AARGetter
,
583 function_ref
<OptimizationRemarkEmitter
&(Function
*)> OREGetter
,
584 function_ref
<DominatorTree
&(Function
&)> LookupDomTree
,
585 ModuleSummaryIndex
*ExportSummary
,
586 const ModuleSummaryIndex
*ImportSummary
)
587 : M(M
), AARGetter(AARGetter
), LookupDomTree(LookupDomTree
),
588 ExportSummary(ExportSummary
), ImportSummary(ImportSummary
),
589 Int8Ty(Type::getInt8Ty(M
.getContext())),
590 Int8PtrTy(Type::getInt8PtrTy(M
.getContext())),
591 Int32Ty(Type::getInt32Ty(M
.getContext())),
592 Int64Ty(Type::getInt64Ty(M
.getContext())),
593 IntPtrTy(M
.getDataLayout().getIntPtrType(M
.getContext(), 0)),
594 Int8Arr0Ty(ArrayType::get(Type::getInt8Ty(M
.getContext()), 0)),
595 RemarksEnabled(areRemarksEnabled()), OREGetter(OREGetter
) {
596 assert(!(ExportSummary
&& ImportSummary
));
597 FunctionsToSkip
.init(SkipFunctionNames
);
600 bool areRemarksEnabled();
603 scanTypeTestUsers(Function
*TypeTestFunc
,
604 DenseMap
<Metadata
*, std::set
<TypeMemberInfo
>> &TypeIdMap
);
605 void scanTypeCheckedLoadUsers(Function
*TypeCheckedLoadFunc
);
607 void buildTypeIdentifierMap(
608 std::vector
<VTableBits
> &Bits
,
609 DenseMap
<Metadata
*, std::set
<TypeMemberInfo
>> &TypeIdMap
);
612 tryFindVirtualCallTargets(std::vector
<VirtualCallTarget
> &TargetsForSlot
,
613 const std::set
<TypeMemberInfo
> &TypeMemberInfos
,
615 ModuleSummaryIndex
*ExportSummary
);
617 void applySingleImplDevirt(VTableSlotInfo
&SlotInfo
, Constant
*TheFn
,
619 bool trySingleImplDevirt(ModuleSummaryIndex
*ExportSummary
,
620 MutableArrayRef
<VirtualCallTarget
> TargetsForSlot
,
621 VTableSlotInfo
&SlotInfo
,
622 WholeProgramDevirtResolution
*Res
);
624 void applyICallBranchFunnel(VTableSlotInfo
&SlotInfo
, Constant
*JT
,
626 void tryICallBranchFunnel(MutableArrayRef
<VirtualCallTarget
> TargetsForSlot
,
627 VTableSlotInfo
&SlotInfo
,
628 WholeProgramDevirtResolution
*Res
, VTableSlot Slot
);
630 bool tryEvaluateFunctionsWithArgs(
631 MutableArrayRef
<VirtualCallTarget
> TargetsForSlot
,
632 ArrayRef
<uint64_t> Args
);
634 void applyUniformRetValOpt(CallSiteInfo
&CSInfo
, StringRef FnName
,
636 bool tryUniformRetValOpt(MutableArrayRef
<VirtualCallTarget
> TargetsForSlot
,
637 CallSiteInfo
&CSInfo
,
638 WholeProgramDevirtResolution::ByArg
*Res
);
640 // Returns the global symbol name that is used to export information about the
641 // given vtable slot and list of arguments.
642 std::string
getGlobalName(VTableSlot Slot
, ArrayRef
<uint64_t> Args
,
645 bool shouldExportConstantsAsAbsoluteSymbols();
647 // This function is called during the export phase to create a symbol
648 // definition containing information about the given vtable slot and list of
650 void exportGlobal(VTableSlot Slot
, ArrayRef
<uint64_t> Args
, StringRef Name
,
652 void exportConstant(VTableSlot Slot
, ArrayRef
<uint64_t> Args
, StringRef Name
,
653 uint32_t Const
, uint32_t &Storage
);
655 // This function is called during the import phase to create a reference to
656 // the symbol definition created during the export phase.
657 Constant
*importGlobal(VTableSlot Slot
, ArrayRef
<uint64_t> Args
,
659 Constant
*importConstant(VTableSlot Slot
, ArrayRef
<uint64_t> Args
,
660 StringRef Name
, IntegerType
*IntTy
,
663 Constant
*getMemberAddr(const TypeMemberInfo
*M
);
665 void applyUniqueRetValOpt(CallSiteInfo
&CSInfo
, StringRef FnName
, bool IsOne
,
666 Constant
*UniqueMemberAddr
);
667 bool tryUniqueRetValOpt(unsigned BitWidth
,
668 MutableArrayRef
<VirtualCallTarget
> TargetsForSlot
,
669 CallSiteInfo
&CSInfo
,
670 WholeProgramDevirtResolution::ByArg
*Res
,
671 VTableSlot Slot
, ArrayRef
<uint64_t> Args
);
673 void applyVirtualConstProp(CallSiteInfo
&CSInfo
, StringRef FnName
,
674 Constant
*Byte
, Constant
*Bit
);
675 bool tryVirtualConstProp(MutableArrayRef
<VirtualCallTarget
> TargetsForSlot
,
676 VTableSlotInfo
&SlotInfo
,
677 WholeProgramDevirtResolution
*Res
, VTableSlot Slot
);
679 void rebuildGlobal(VTableBits
&B
);
681 // Apply the summary resolution for Slot to all virtual calls in SlotInfo.
682 void importResolution(VTableSlot Slot
, VTableSlotInfo
&SlotInfo
);
684 // If we were able to eliminate all unsafe uses for a type checked load,
685 // eliminate the associated type tests by replacing them with true.
686 void removeRedundantTypeTests();
690 // Look up the corresponding ValueInfo entry of `TheFn` in `ExportSummary`.
692 // Caller guarantees that `ExportSummary` is not nullptr.
693 static ValueInfo
lookUpFunctionValueInfo(Function
*TheFn
,
694 ModuleSummaryIndex
*ExportSummary
);
696 // Returns true if the function definition must be unreachable.
698 // Note if this helper function returns true, `F` is guaranteed
699 // to be unreachable; if it returns false, `F` might still
700 // be unreachable but not covered by this helper function.
702 // Implementation-wise, if function definition is present, IR is analyzed; if
703 // not, look up function flags from ExportSummary as a fallback.
704 static bool mustBeUnreachableFunction(Function
*const F
,
705 ModuleSummaryIndex
*ExportSummary
);
707 // Lower the module using the action and summary passed as command line
708 // arguments. For testing purposes only.
710 runForTesting(Module
&M
, function_ref
<AAResults
&(Function
&)> AARGetter
,
711 function_ref
<OptimizationRemarkEmitter
&(Function
*)> OREGetter
,
712 function_ref
<DominatorTree
&(Function
&)> LookupDomTree
);
716 ModuleSummaryIndex
&ExportSummary
;
717 // The set in which to record GUIDs exported from their module by
718 // devirtualization, used by client to ensure they are not internalized.
719 std::set
<GlobalValue::GUID
> &ExportedGUIDs
;
720 // A map in which to record the information necessary to locate the WPD
721 // resolution for local targets in case they are exported by cross module
723 std::map
<ValueInfo
, std::vector
<VTableSlotSummary
>> &LocalWPDTargetsMap
;
725 MapVector
<VTableSlotSummary
, VTableSlotInfo
> CallSlots
;
727 PatternList FunctionsToSkip
;
730 ModuleSummaryIndex
&ExportSummary
,
731 std::set
<GlobalValue::GUID
> &ExportedGUIDs
,
732 std::map
<ValueInfo
, std::vector
<VTableSlotSummary
>> &LocalWPDTargetsMap
)
733 : ExportSummary(ExportSummary
), ExportedGUIDs(ExportedGUIDs
),
734 LocalWPDTargetsMap(LocalWPDTargetsMap
) {
735 FunctionsToSkip
.init(SkipFunctionNames
);
738 bool tryFindVirtualCallTargets(std::vector
<ValueInfo
> &TargetsForSlot
,
739 const TypeIdCompatibleVtableInfo TIdInfo
,
740 uint64_t ByteOffset
);
742 bool trySingleImplDevirt(MutableArrayRef
<ValueInfo
> TargetsForSlot
,
743 VTableSlotSummary
&SlotSummary
,
744 VTableSlotInfo
&SlotInfo
,
745 WholeProgramDevirtResolution
*Res
,
746 std::set
<ValueInfo
> &DevirtTargets
);
750 } // end anonymous namespace
752 PreservedAnalyses
WholeProgramDevirtPass::run(Module
&M
,
753 ModuleAnalysisManager
&AM
) {
754 auto &FAM
= AM
.getResult
<FunctionAnalysisManagerModuleProxy
>(M
).getManager();
755 auto AARGetter
= [&](Function
&F
) -> AAResults
& {
756 return FAM
.getResult
<AAManager
>(F
);
758 auto OREGetter
= [&](Function
*F
) -> OptimizationRemarkEmitter
& {
759 return FAM
.getResult
<OptimizationRemarkEmitterAnalysis
>(*F
);
761 auto LookupDomTree
= [&FAM
](Function
&F
) -> DominatorTree
& {
762 return FAM
.getResult
<DominatorTreeAnalysis
>(F
);
764 if (UseCommandLine
) {
765 if (DevirtModule::runForTesting(M
, AARGetter
, OREGetter
, LookupDomTree
))
766 return PreservedAnalyses::all();
767 return PreservedAnalyses::none();
769 if (!DevirtModule(M
, AARGetter
, OREGetter
, LookupDomTree
, ExportSummary
,
772 return PreservedAnalyses::all();
773 return PreservedAnalyses::none();
777 // Enable whole program visibility if enabled by client (e.g. linker) or
778 // internal option, and not force disabled.
779 bool hasWholeProgramVisibility(bool WholeProgramVisibilityEnabledInLTO
) {
780 return (WholeProgramVisibilityEnabledInLTO
|| WholeProgramVisibility
) &&
781 !DisableWholeProgramVisibility
;
784 /// If whole program visibility asserted, then upgrade all public vcall
785 /// visibility metadata on vtable definitions to linkage unit visibility in
786 /// Module IR (for regular or hybrid LTO).
787 void updateVCallVisibilityInModule(
788 Module
&M
, bool WholeProgramVisibilityEnabledInLTO
,
789 const DenseSet
<GlobalValue::GUID
> &DynamicExportSymbols
) {
790 if (!hasWholeProgramVisibility(WholeProgramVisibilityEnabledInLTO
))
792 for (GlobalVariable
&GV
: M
.globals()) {
793 // Add linkage unit visibility to any variable with type metadata, which are
794 // the vtable definitions. We won't have an existing vcall_visibility
795 // metadata on vtable definitions with public visibility.
796 if (GV
.hasMetadata(LLVMContext::MD_type
) &&
797 GV
.getVCallVisibility() == GlobalObject::VCallVisibilityPublic
&&
798 // Don't upgrade the visibility for symbols exported to the dynamic
799 // linker, as we have no information on their eventual use.
800 !DynamicExportSymbols
.count(GV
.getGUID()))
801 GV
.setVCallVisibilityMetadata(GlobalObject::VCallVisibilityLinkageUnit
);
805 void updatePublicTypeTestCalls(Module
&M
,
806 bool WholeProgramVisibilityEnabledInLTO
) {
807 Function
*PublicTypeTestFunc
=
808 M
.getFunction(Intrinsic::getName(Intrinsic::public_type_test
));
809 if (!PublicTypeTestFunc
)
811 if (hasWholeProgramVisibility(WholeProgramVisibilityEnabledInLTO
)) {
812 Function
*TypeTestFunc
=
813 Intrinsic::getDeclaration(&M
, Intrinsic::type_test
);
814 for (Use
&U
: make_early_inc_range(PublicTypeTestFunc
->uses())) {
815 auto *CI
= cast
<CallInst
>(U
.getUser());
816 auto *NewCI
= CallInst::Create(
817 TypeTestFunc
, {CI
->getArgOperand(0), CI
->getArgOperand(1)}, None
, "",
819 CI
->replaceAllUsesWith(NewCI
);
820 CI
->eraseFromParent();
823 auto *True
= ConstantInt::getTrue(M
.getContext());
824 for (Use
&U
: make_early_inc_range(PublicTypeTestFunc
->uses())) {
825 auto *CI
= cast
<CallInst
>(U
.getUser());
826 CI
->replaceAllUsesWith(True
);
827 CI
->eraseFromParent();
832 /// If whole program visibility asserted, then upgrade all public vcall
833 /// visibility metadata on vtable definition summaries to linkage unit
834 /// visibility in Module summary index (for ThinLTO).
835 void updateVCallVisibilityInIndex(
836 ModuleSummaryIndex
&Index
, bool WholeProgramVisibilityEnabledInLTO
,
837 const DenseSet
<GlobalValue::GUID
> &DynamicExportSymbols
) {
838 if (!hasWholeProgramVisibility(WholeProgramVisibilityEnabledInLTO
))
840 for (auto &P
: Index
) {
841 // Don't upgrade the visibility for symbols exported to the dynamic
842 // linker, as we have no information on their eventual use.
843 if (DynamicExportSymbols
.count(P
.first
))
845 for (auto &S
: P
.second
.SummaryList
) {
846 auto *GVar
= dyn_cast
<GlobalVarSummary
>(S
.get());
848 GVar
->getVCallVisibility() != GlobalObject::VCallVisibilityPublic
)
850 GVar
->setVCallVisibility(GlobalObject::VCallVisibilityLinkageUnit
);
855 void runWholeProgramDevirtOnIndex(
856 ModuleSummaryIndex
&Summary
, std::set
<GlobalValue::GUID
> &ExportedGUIDs
,
857 std::map
<ValueInfo
, std::vector
<VTableSlotSummary
>> &LocalWPDTargetsMap
) {
858 DevirtIndex(Summary
, ExportedGUIDs
, LocalWPDTargetsMap
).run();
861 void updateIndexWPDForExports(
862 ModuleSummaryIndex
&Summary
,
863 function_ref
<bool(StringRef
, ValueInfo
)> isExported
,
864 std::map
<ValueInfo
, std::vector
<VTableSlotSummary
>> &LocalWPDTargetsMap
) {
865 for (auto &T
: LocalWPDTargetsMap
) {
867 // This was enforced earlier during trySingleImplDevirt.
868 assert(VI
.getSummaryList().size() == 1 &&
869 "Devirt of local target has more than one copy");
870 auto &S
= VI
.getSummaryList()[0];
871 if (!isExported(S
->modulePath(), VI
))
874 // It's been exported by a cross module import.
875 for (auto &SlotSummary
: T
.second
) {
876 auto *TIdSum
= Summary
.getTypeIdSummary(SlotSummary
.TypeID
);
878 auto WPDRes
= TIdSum
->WPDRes
.find(SlotSummary
.ByteOffset
);
879 assert(WPDRes
!= TIdSum
->WPDRes
.end());
880 WPDRes
->second
.SingleImplName
= ModuleSummaryIndex::getGlobalNameForLocal(
881 WPDRes
->second
.SingleImplName
,
882 Summary
.getModuleHash(S
->modulePath()));
887 } // end namespace llvm
889 static Error
checkCombinedSummaryForTesting(ModuleSummaryIndex
*Summary
) {
890 // Check that summary index contains regular LTO module when performing
891 // export to prevent occasional use of index from pure ThinLTO compilation
892 // (-fno-split-lto-module). This kind of summary index is passed to
893 // DevirtIndex::run, not to DevirtModule::run used by opt/runForTesting.
894 const auto &ModPaths
= Summary
->modulePaths();
895 if (ClSummaryAction
!= PassSummaryAction::Import
&&
896 ModPaths
.find(ModuleSummaryIndex::getRegularLTOModuleName()) ==
898 return createStringError(
899 errc::invalid_argument
,
900 "combined summary should contain Regular LTO module");
901 return ErrorSuccess();
904 bool DevirtModule::runForTesting(
905 Module
&M
, function_ref
<AAResults
&(Function
&)> AARGetter
,
906 function_ref
<OptimizationRemarkEmitter
&(Function
*)> OREGetter
,
907 function_ref
<DominatorTree
&(Function
&)> LookupDomTree
) {
908 std::unique_ptr
<ModuleSummaryIndex
> Summary
=
909 std::make_unique
<ModuleSummaryIndex
>(/*HaveGVs=*/false);
911 // Handle the command-line summary arguments. This code is for testing
912 // purposes only, so we handle errors directly.
913 if (!ClReadSummary
.empty()) {
914 ExitOnError
ExitOnErr("-wholeprogramdevirt-read-summary: " + ClReadSummary
+
916 auto ReadSummaryFile
=
917 ExitOnErr(errorOrToExpected(MemoryBuffer::getFile(ClReadSummary
)));
918 if (Expected
<std::unique_ptr
<ModuleSummaryIndex
>> SummaryOrErr
=
919 getModuleSummaryIndex(*ReadSummaryFile
)) {
920 Summary
= std::move(*SummaryOrErr
);
921 ExitOnErr(checkCombinedSummaryForTesting(Summary
.get()));
923 // Try YAML if we've failed with bitcode.
924 consumeError(SummaryOrErr
.takeError());
925 yaml::Input
In(ReadSummaryFile
->getBuffer());
927 ExitOnErr(errorCodeToError(In
.error()));
932 DevirtModule(M
, AARGetter
, OREGetter
, LookupDomTree
,
933 ClSummaryAction
== PassSummaryAction::Export
? Summary
.get()
935 ClSummaryAction
== PassSummaryAction::Import
? Summary
.get()
939 if (!ClWriteSummary
.empty()) {
940 ExitOnError
ExitOnErr(
941 "-wholeprogramdevirt-write-summary: " + ClWriteSummary
+ ": ");
943 if (StringRef(ClWriteSummary
).endswith(".bc")) {
944 raw_fd_ostream
OS(ClWriteSummary
, EC
, sys::fs::OF_None
);
945 ExitOnErr(errorCodeToError(EC
));
946 writeIndexToFile(*Summary
, OS
);
948 raw_fd_ostream
OS(ClWriteSummary
, EC
, sys::fs::OF_TextWithCRLF
);
949 ExitOnErr(errorCodeToError(EC
));
950 yaml::Output
Out(OS
);
958 void DevirtModule::buildTypeIdentifierMap(
959 std::vector
<VTableBits
> &Bits
,
960 DenseMap
<Metadata
*, std::set
<TypeMemberInfo
>> &TypeIdMap
) {
961 DenseMap
<GlobalVariable
*, VTableBits
*> GVToBits
;
962 Bits
.reserve(M
.getGlobalList().size());
963 SmallVector
<MDNode
*, 2> Types
;
964 for (GlobalVariable
&GV
: M
.globals()) {
966 GV
.getMetadata(LLVMContext::MD_type
, Types
);
967 if (GV
.isDeclaration() || Types
.empty())
970 VTableBits
*&BitsPtr
= GVToBits
[&GV
];
973 Bits
.back().GV
= &GV
;
974 Bits
.back().ObjectSize
=
975 M
.getDataLayout().getTypeAllocSize(GV
.getInitializer()->getType());
976 BitsPtr
= &Bits
.back();
979 for (MDNode
*Type
: Types
) {
980 auto TypeID
= Type
->getOperand(1).get();
984 cast
<ConstantAsMetadata
>(Type
->getOperand(0))->getValue())
987 TypeIdMap
[TypeID
].insert({BitsPtr
, Offset
});
992 bool DevirtModule::tryFindVirtualCallTargets(
993 std::vector
<VirtualCallTarget
> &TargetsForSlot
,
994 const std::set
<TypeMemberInfo
> &TypeMemberInfos
, uint64_t ByteOffset
,
995 ModuleSummaryIndex
*ExportSummary
) {
996 for (const TypeMemberInfo
&TM
: TypeMemberInfos
) {
997 if (!TM
.Bits
->GV
->isConstant())
1000 // We cannot perform whole program devirtualization analysis on a vtable
1001 // with public LTO visibility.
1002 if (TM
.Bits
->GV
->getVCallVisibility() ==
1003 GlobalObject::VCallVisibilityPublic
)
1006 Constant
*Ptr
= getPointerAtOffset(TM
.Bits
->GV
->getInitializer(),
1007 TM
.Offset
+ ByteOffset
, M
);
1011 auto Fn
= dyn_cast
<Function
>(Ptr
->stripPointerCasts());
1015 if (FunctionsToSkip
.match(Fn
->getName()))
1018 // We can disregard __cxa_pure_virtual as a possible call target, as
1019 // calls to pure virtuals are UB.
1020 if (Fn
->getName() == "__cxa_pure_virtual")
1023 // We can disregard unreachable functions as possible call targets, as
1024 // unreachable functions shouldn't be called.
1025 if (mustBeUnreachableFunction(Fn
, ExportSummary
))
1028 TargetsForSlot
.push_back({Fn
, &TM
});
1031 // Give up if we couldn't find any targets.
1032 return !TargetsForSlot
.empty();
1035 bool DevirtIndex::tryFindVirtualCallTargets(
1036 std::vector
<ValueInfo
> &TargetsForSlot
, const TypeIdCompatibleVtableInfo TIdInfo
,
1037 uint64_t ByteOffset
) {
1038 for (const TypeIdOffsetVtableInfo
&P
: TIdInfo
) {
1039 // Find a representative copy of the vtable initializer.
1040 // We can have multiple available_externally, linkonce_odr and weak_odr
1041 // vtable initializers. We can also have multiple external vtable
1042 // initializers in the case of comdats, which we cannot check here.
1043 // The linker should give an error in this case.
1045 // Also, handle the case of same-named local Vtables with the same path
1046 // and therefore the same GUID. This can happen if there isn't enough
1047 // distinguishing path when compiling the source file. In that case we
1048 // conservatively return false early.
1049 const GlobalVarSummary
*VS
= nullptr;
1050 bool LocalFound
= false;
1051 for (const auto &S
: P
.VTableVI
.getSummaryList()) {
1052 if (GlobalValue::isLocalLinkage(S
->linkage())) {
1057 auto *CurVS
= cast
<GlobalVarSummary
>(S
->getBaseObject());
1058 if (!CurVS
->vTableFuncs().empty() ||
1059 // Previously clang did not attach the necessary type metadata to
1060 // available_externally vtables, in which case there would not
1061 // be any vtable functions listed in the summary and we need
1062 // to treat this case conservatively (in case the bitcode is old).
1063 // However, we will also not have any vtable functions in the
1064 // case of a pure virtual base class. In that case we do want
1065 // to set VS to avoid treating it conservatively.
1066 !GlobalValue::isAvailableExternallyLinkage(S
->linkage())) {
1068 // We cannot perform whole program devirtualization analysis on a vtable
1069 // with public LTO visibility.
1070 if (VS
->getVCallVisibility() == GlobalObject::VCallVisibilityPublic
)
1074 // There will be no VS if all copies are available_externally having no
1075 // type metadata. In that case we can't safely perform WPD.
1080 for (auto VTP
: VS
->vTableFuncs()) {
1081 if (VTP
.VTableOffset
!= P
.AddressPointOffset
+ ByteOffset
)
1084 if (mustBeUnreachableFunction(VTP
.FuncVI
))
1087 TargetsForSlot
.push_back(VTP
.FuncVI
);
1091 // Give up if we couldn't find any targets.
1092 return !TargetsForSlot
.empty();
1095 void DevirtModule::applySingleImplDevirt(VTableSlotInfo
&SlotInfo
,
1096 Constant
*TheFn
, bool &IsExported
) {
1097 // Don't devirtualize function if we're told to skip it
1098 // in -wholeprogramdevirt-skip.
1099 if (FunctionsToSkip
.match(TheFn
->stripPointerCasts()->getName()))
1101 auto Apply
= [&](CallSiteInfo
&CSInfo
) {
1102 for (auto &&VCallSite
: CSInfo
.CallSites
) {
1103 if (!OptimizedCalls
.insert(&VCallSite
.CB
).second
)
1107 VCallSite
.emitRemark("single-impl",
1108 TheFn
->stripPointerCasts()->getName(), OREGetter
);
1110 auto &CB
= VCallSite
.CB
;
1111 assert(!CB
.getCalledFunction() && "devirtualizing direct call?");
1112 IRBuilder
<> Builder(&CB
);
1114 Builder
.CreateBitCast(TheFn
, CB
.getCalledOperand()->getType());
1116 // If trap checking is enabled, add support to compare the virtual
1117 // function pointer to the devirtualized target. In case of a mismatch,
1118 // perform a debug trap.
1119 if (DevirtCheckMode
== WPDCheckMode::Trap
) {
1120 auto *Cond
= Builder
.CreateICmpNE(CB
.getCalledOperand(), Callee
);
1121 Instruction
*ThenTerm
=
1122 SplitBlockAndInsertIfThen(Cond
, &CB
, /*Unreachable=*/false);
1123 Builder
.SetInsertPoint(ThenTerm
);
1124 Function
*TrapFn
= Intrinsic::getDeclaration(&M
, Intrinsic::debugtrap
);
1125 auto *CallTrap
= Builder
.CreateCall(TrapFn
);
1126 CallTrap
->setDebugLoc(CB
.getDebugLoc());
1129 // If fallback checking is enabled, add support to compare the virtual
1130 // function pointer to the devirtualized target. In case of a mismatch,
1131 // fall back to indirect call.
1132 if (DevirtCheckMode
== WPDCheckMode::Fallback
) {
1134 MDBuilder(M
.getContext()).createBranchWeights((1U << 20) - 1, 1);
1135 // Version the indirect call site. If the called value is equal to the
1136 // given callee, 'NewInst' will be executed, otherwise the original call
1137 // site will be executed.
1138 CallBase
&NewInst
= versionCallSite(CB
, Callee
, Weights
);
1139 NewInst
.setCalledOperand(Callee
);
1140 // Since the new call site is direct, we must clear metadata that
1141 // is only appropriate for indirect calls. This includes !prof and
1142 // !callees metadata.
1143 NewInst
.setMetadata(LLVMContext::MD_prof
, nullptr);
1144 NewInst
.setMetadata(LLVMContext::MD_callees
, nullptr);
1145 // Additionally, we should remove them from the fallback indirect call,
1146 // so that we don't attempt to perform indirect call promotion later.
1147 CB
.setMetadata(LLVMContext::MD_prof
, nullptr);
1148 CB
.setMetadata(LLVMContext::MD_callees
, nullptr);
1151 // In either trapping or non-checking mode, devirtualize original call.
1153 // Devirtualize unconditionally.
1154 CB
.setCalledOperand(Callee
);
1155 // Since the call site is now direct, we must clear metadata that
1156 // is only appropriate for indirect calls. This includes !prof and
1157 // !callees metadata.
1158 CB
.setMetadata(LLVMContext::MD_prof
, nullptr);
1159 CB
.setMetadata(LLVMContext::MD_callees
, nullptr);
1162 // This use is no longer unsafe.
1163 if (VCallSite
.NumUnsafeUses
)
1164 --*VCallSite
.NumUnsafeUses
;
1166 if (CSInfo
.isExported())
1168 CSInfo
.markDevirt();
1170 Apply(SlotInfo
.CSInfo
);
1171 for (auto &P
: SlotInfo
.ConstCSInfo
)
1175 static bool AddCalls(VTableSlotInfo
&SlotInfo
, const ValueInfo
&Callee
) {
1176 // We can't add calls if we haven't seen a definition
1177 if (Callee
.getSummaryList().empty())
1180 // Insert calls into the summary index so that the devirtualized targets
1181 // are eligible for import.
1182 // FIXME: Annotate type tests with hotness. For now, mark these as hot
1183 // to better ensure we have the opportunity to inline them.
1184 bool IsExported
= false;
1185 auto &S
= Callee
.getSummaryList()[0];
1186 CalleeInfo
CI(CalleeInfo::HotnessType::Hot
, /* RelBF = */ 0);
1187 auto AddCalls
= [&](CallSiteInfo
&CSInfo
) {
1188 for (auto *FS
: CSInfo
.SummaryTypeCheckedLoadUsers
) {
1189 FS
->addCall({Callee
, CI
});
1190 IsExported
|= S
->modulePath() != FS
->modulePath();
1192 for (auto *FS
: CSInfo
.SummaryTypeTestAssumeUsers
) {
1193 FS
->addCall({Callee
, CI
});
1194 IsExported
|= S
->modulePath() != FS
->modulePath();
1197 AddCalls(SlotInfo
.CSInfo
);
1198 for (auto &P
: SlotInfo
.ConstCSInfo
)
1203 bool DevirtModule::trySingleImplDevirt(
1204 ModuleSummaryIndex
*ExportSummary
,
1205 MutableArrayRef
<VirtualCallTarget
> TargetsForSlot
, VTableSlotInfo
&SlotInfo
,
1206 WholeProgramDevirtResolution
*Res
) {
1207 // See if the program contains a single implementation of this virtual
1209 Function
*TheFn
= TargetsForSlot
[0].Fn
;
1210 for (auto &&Target
: TargetsForSlot
)
1211 if (TheFn
!= Target
.Fn
)
1214 // If so, update each call site to call that implementation directly.
1215 if (RemarksEnabled
|| AreStatisticsEnabled())
1216 TargetsForSlot
[0].WasDevirt
= true;
1218 bool IsExported
= false;
1219 applySingleImplDevirt(SlotInfo
, TheFn
, IsExported
);
1223 // If the only implementation has local linkage, we must promote to external
1224 // to make it visible to thin LTO objects. We can only get here during the
1225 // ThinLTO export phase.
1226 if (TheFn
->hasLocalLinkage()) {
1227 std::string NewName
= (TheFn
->getName() + ".llvm.merged").str();
1229 // Since we are renaming the function, any comdats with the same name must
1230 // also be renamed. This is required when targeting COFF, as the comdat name
1231 // must match one of the names of the symbols in the comdat.
1232 if (Comdat
*C
= TheFn
->getComdat()) {
1233 if (C
->getName() == TheFn
->getName()) {
1234 Comdat
*NewC
= M
.getOrInsertComdat(NewName
);
1235 NewC
->setSelectionKind(C
->getSelectionKind());
1236 for (GlobalObject
&GO
: M
.global_objects())
1237 if (GO
.getComdat() == C
)
1242 TheFn
->setLinkage(GlobalValue::ExternalLinkage
);
1243 TheFn
->setVisibility(GlobalValue::HiddenVisibility
);
1244 TheFn
->setName(NewName
);
1246 if (ValueInfo TheFnVI
= ExportSummary
->getValueInfo(TheFn
->getGUID()))
1247 // Any needed promotion of 'TheFn' has already been done during
1248 // LTO unit split, so we can ignore return value of AddCalls.
1249 AddCalls(SlotInfo
, TheFnVI
);
1251 Res
->TheKind
= WholeProgramDevirtResolution::SingleImpl
;
1252 Res
->SingleImplName
= std::string(TheFn
->getName());
1257 bool DevirtIndex::trySingleImplDevirt(MutableArrayRef
<ValueInfo
> TargetsForSlot
,
1258 VTableSlotSummary
&SlotSummary
,
1259 VTableSlotInfo
&SlotInfo
,
1260 WholeProgramDevirtResolution
*Res
,
1261 std::set
<ValueInfo
> &DevirtTargets
) {
1262 // See if the program contains a single implementation of this virtual
1264 auto TheFn
= TargetsForSlot
[0];
1265 for (auto &&Target
: TargetsForSlot
)
1266 if (TheFn
!= Target
)
1269 // Don't devirtualize if we don't have target definition.
1270 auto Size
= TheFn
.getSummaryList().size();
1274 // Don't devirtualize function if we're told to skip it
1275 // in -wholeprogramdevirt-skip.
1276 if (FunctionsToSkip
.match(TheFn
.name()))
1279 // If the summary list contains multiple summaries where at least one is
1280 // a local, give up, as we won't know which (possibly promoted) name to use.
1281 for (const auto &S
: TheFn
.getSummaryList())
1282 if (GlobalValue::isLocalLinkage(S
->linkage()) && Size
> 1)
1285 // Collect functions devirtualized at least for one call site for stats.
1286 if (PrintSummaryDevirt
|| AreStatisticsEnabled())
1287 DevirtTargets
.insert(TheFn
);
1289 auto &S
= TheFn
.getSummaryList()[0];
1290 bool IsExported
= AddCalls(SlotInfo
, TheFn
);
1292 ExportedGUIDs
.insert(TheFn
.getGUID());
1294 // Record in summary for use in devirtualization during the ThinLTO import
1296 Res
->TheKind
= WholeProgramDevirtResolution::SingleImpl
;
1297 if (GlobalValue::isLocalLinkage(S
->linkage())) {
1299 // If target is a local function and we are exporting it by
1300 // devirtualizing a call in another module, we need to record the
1302 Res
->SingleImplName
= ModuleSummaryIndex::getGlobalNameForLocal(
1303 TheFn
.name(), ExportSummary
.getModuleHash(S
->modulePath()));
1305 LocalWPDTargetsMap
[TheFn
].push_back(SlotSummary
);
1306 Res
->SingleImplName
= std::string(TheFn
.name());
1309 Res
->SingleImplName
= std::string(TheFn
.name());
1311 // Name will be empty if this thin link driven off of serialized combined
1312 // index (e.g. llvm-lto). However, WPD is not supported/invoked for the
1313 // legacy LTO API anyway.
1314 assert(!Res
->SingleImplName
.empty());
1319 void DevirtModule::tryICallBranchFunnel(
1320 MutableArrayRef
<VirtualCallTarget
> TargetsForSlot
, VTableSlotInfo
&SlotInfo
,
1321 WholeProgramDevirtResolution
*Res
, VTableSlot Slot
) {
1322 Triple
T(M
.getTargetTriple());
1323 if (T
.getArch() != Triple::x86_64
)
1326 if (TargetsForSlot
.size() > ClThreshold
)
1329 bool HasNonDevirt
= !SlotInfo
.CSInfo
.AllCallSitesDevirted
;
1331 for (auto &P
: SlotInfo
.ConstCSInfo
)
1332 if (!P
.second
.AllCallSitesDevirted
) {
1333 HasNonDevirt
= true;
1341 FunctionType::get(Type::getVoidTy(M
.getContext()), {Int8PtrTy
}, true);
1343 if (isa
<MDString
>(Slot
.TypeID
)) {
1344 JT
= Function::Create(FT
, Function::ExternalLinkage
,
1345 M
.getDataLayout().getProgramAddressSpace(),
1346 getGlobalName(Slot
, {}, "branch_funnel"), &M
);
1347 JT
->setVisibility(GlobalValue::HiddenVisibility
);
1349 JT
= Function::Create(FT
, Function::InternalLinkage
,
1350 M
.getDataLayout().getProgramAddressSpace(),
1351 "branch_funnel", &M
);
1353 JT
->addParamAttr(0, Attribute::Nest
);
1355 std::vector
<Value
*> JTArgs
;
1356 JTArgs
.push_back(JT
->arg_begin());
1357 for (auto &T
: TargetsForSlot
) {
1358 JTArgs
.push_back(getMemberAddr(T
.TM
));
1359 JTArgs
.push_back(T
.Fn
);
1362 BasicBlock
*BB
= BasicBlock::Create(M
.getContext(), "", JT
, nullptr);
1364 Intrinsic::getDeclaration(&M
, llvm::Intrinsic::icall_branch_funnel
, {});
1366 auto *CI
= CallInst::Create(Intr
, JTArgs
, "", BB
);
1367 CI
->setTailCallKind(CallInst::TCK_MustTail
);
1368 ReturnInst::Create(M
.getContext(), nullptr, BB
);
1370 bool IsExported
= false;
1371 applyICallBranchFunnel(SlotInfo
, JT
, IsExported
);
1373 Res
->TheKind
= WholeProgramDevirtResolution::BranchFunnel
;
1376 void DevirtModule::applyICallBranchFunnel(VTableSlotInfo
&SlotInfo
,
1377 Constant
*JT
, bool &IsExported
) {
1378 auto Apply
= [&](CallSiteInfo
&CSInfo
) {
1379 if (CSInfo
.isExported())
1381 if (CSInfo
.AllCallSitesDevirted
)
1383 for (auto &&VCallSite
: CSInfo
.CallSites
) {
1384 CallBase
&CB
= VCallSite
.CB
;
1386 // Jump tables are only profitable if the retpoline mitigation is enabled.
1387 Attribute FSAttr
= CB
.getCaller()->getFnAttribute("target-features");
1388 if (!FSAttr
.isValid() ||
1389 !FSAttr
.getValueAsString().contains("+retpoline"))
1394 VCallSite
.emitRemark("branch-funnel",
1395 JT
->stripPointerCasts()->getName(), OREGetter
);
1397 // Pass the address of the vtable in the nest register, which is r10 on
1399 std::vector
<Type
*> NewArgs
;
1400 NewArgs
.push_back(Int8PtrTy
);
1401 append_range(NewArgs
, CB
.getFunctionType()->params());
1402 FunctionType
*NewFT
=
1403 FunctionType::get(CB
.getFunctionType()->getReturnType(), NewArgs
,
1404 CB
.getFunctionType()->isVarArg());
1405 PointerType
*NewFTPtr
= PointerType::getUnqual(NewFT
);
1407 IRBuilder
<> IRB(&CB
);
1408 std::vector
<Value
*> Args
;
1409 Args
.push_back(IRB
.CreateBitCast(VCallSite
.VTable
, Int8PtrTy
));
1410 llvm::append_range(Args
, CB
.args());
1412 CallBase
*NewCS
= nullptr;
1413 if (isa
<CallInst
>(CB
))
1414 NewCS
= IRB
.CreateCall(NewFT
, IRB
.CreateBitCast(JT
, NewFTPtr
), Args
);
1416 NewCS
= IRB
.CreateInvoke(NewFT
, IRB
.CreateBitCast(JT
, NewFTPtr
),
1417 cast
<InvokeInst
>(CB
).getNormalDest(),
1418 cast
<InvokeInst
>(CB
).getUnwindDest(), Args
);
1419 NewCS
->setCallingConv(CB
.getCallingConv());
1421 AttributeList Attrs
= CB
.getAttributes();
1422 std::vector
<AttributeSet
> NewArgAttrs
;
1423 NewArgAttrs
.push_back(AttributeSet::get(
1424 M
.getContext(), ArrayRef
<Attribute
>{Attribute::get(
1425 M
.getContext(), Attribute::Nest
)}));
1426 for (unsigned I
= 0; I
+ 2 < Attrs
.getNumAttrSets(); ++I
)
1427 NewArgAttrs
.push_back(Attrs
.getParamAttrs(I
));
1428 NewCS
->setAttributes(
1429 AttributeList::get(M
.getContext(), Attrs
.getFnAttrs(),
1430 Attrs
.getRetAttrs(), NewArgAttrs
));
1432 CB
.replaceAllUsesWith(NewCS
);
1433 CB
.eraseFromParent();
1435 // This use is no longer unsafe.
1436 if (VCallSite
.NumUnsafeUses
)
1437 --*VCallSite
.NumUnsafeUses
;
1439 // Don't mark as devirtualized because there may be callers compiled without
1440 // retpoline mitigation, which would mean that they are lowered to
1441 // llvm.type.test and therefore require an llvm.type.test resolution for the
1444 Apply(SlotInfo
.CSInfo
);
1445 for (auto &P
: SlotInfo
.ConstCSInfo
)
1449 bool DevirtModule::tryEvaluateFunctionsWithArgs(
1450 MutableArrayRef
<VirtualCallTarget
> TargetsForSlot
,
1451 ArrayRef
<uint64_t> Args
) {
1452 // Evaluate each function and store the result in each target's RetVal
1454 for (VirtualCallTarget
&Target
: TargetsForSlot
) {
1455 if (Target
.Fn
->arg_size() != Args
.size() + 1)
1458 Evaluator
Eval(M
.getDataLayout(), nullptr);
1459 SmallVector
<Constant
*, 2> EvalArgs
;
1461 Constant::getNullValue(Target
.Fn
->getFunctionType()->getParamType(0)));
1462 for (unsigned I
= 0; I
!= Args
.size(); ++I
) {
1463 auto *ArgTy
= dyn_cast
<IntegerType
>(
1464 Target
.Fn
->getFunctionType()->getParamType(I
+ 1));
1467 EvalArgs
.push_back(ConstantInt::get(ArgTy
, Args
[I
]));
1471 if (!Eval
.EvaluateFunction(Target
.Fn
, RetVal
, EvalArgs
) ||
1472 !isa
<ConstantInt
>(RetVal
))
1474 Target
.RetVal
= cast
<ConstantInt
>(RetVal
)->getZExtValue();
1479 void DevirtModule::applyUniformRetValOpt(CallSiteInfo
&CSInfo
, StringRef FnName
,
1480 uint64_t TheRetVal
) {
1481 for (auto Call
: CSInfo
.CallSites
) {
1482 if (!OptimizedCalls
.insert(&Call
.CB
).second
)
1485 Call
.replaceAndErase(
1486 "uniform-ret-val", FnName
, RemarksEnabled
, OREGetter
,
1487 ConstantInt::get(cast
<IntegerType
>(Call
.CB
.getType()), TheRetVal
));
1489 CSInfo
.markDevirt();
1492 bool DevirtModule::tryUniformRetValOpt(
1493 MutableArrayRef
<VirtualCallTarget
> TargetsForSlot
, CallSiteInfo
&CSInfo
,
1494 WholeProgramDevirtResolution::ByArg
*Res
) {
1495 // Uniform return value optimization. If all functions return the same
1496 // constant, replace all calls with that constant.
1497 uint64_t TheRetVal
= TargetsForSlot
[0].RetVal
;
1498 for (const VirtualCallTarget
&Target
: TargetsForSlot
)
1499 if (Target
.RetVal
!= TheRetVal
)
1502 if (CSInfo
.isExported()) {
1503 Res
->TheKind
= WholeProgramDevirtResolution::ByArg::UniformRetVal
;
1504 Res
->Info
= TheRetVal
;
1507 applyUniformRetValOpt(CSInfo
, TargetsForSlot
[0].Fn
->getName(), TheRetVal
);
1508 if (RemarksEnabled
|| AreStatisticsEnabled())
1509 for (auto &&Target
: TargetsForSlot
)
1510 Target
.WasDevirt
= true;
1514 std::string
DevirtModule::getGlobalName(VTableSlot Slot
,
1515 ArrayRef
<uint64_t> Args
,
1517 std::string FullName
= "__typeid_";
1518 raw_string_ostream
OS(FullName
);
1519 OS
<< cast
<MDString
>(Slot
.TypeID
)->getString() << '_' << Slot
.ByteOffset
;
1520 for (uint64_t Arg
: Args
)
1526 bool DevirtModule::shouldExportConstantsAsAbsoluteSymbols() {
1527 Triple
T(M
.getTargetTriple());
1528 return T
.isX86() && T
.getObjectFormat() == Triple::ELF
;
1531 void DevirtModule::exportGlobal(VTableSlot Slot
, ArrayRef
<uint64_t> Args
,
1532 StringRef Name
, Constant
*C
) {
1533 GlobalAlias
*GA
= GlobalAlias::create(Int8Ty
, 0, GlobalValue::ExternalLinkage
,
1534 getGlobalName(Slot
, Args
, Name
), C
, &M
);
1535 GA
->setVisibility(GlobalValue::HiddenVisibility
);
1538 void DevirtModule::exportConstant(VTableSlot Slot
, ArrayRef
<uint64_t> Args
,
1539 StringRef Name
, uint32_t Const
,
1540 uint32_t &Storage
) {
1541 if (shouldExportConstantsAsAbsoluteSymbols()) {
1544 ConstantExpr::getIntToPtr(ConstantInt::get(Int32Ty
, Const
), Int8PtrTy
));
1551 Constant
*DevirtModule::importGlobal(VTableSlot Slot
, ArrayRef
<uint64_t> Args
,
1554 M
.getOrInsertGlobal(getGlobalName(Slot
, Args
, Name
), Int8Arr0Ty
);
1555 auto *GV
= dyn_cast
<GlobalVariable
>(C
);
1557 GV
->setVisibility(GlobalValue::HiddenVisibility
);
1561 Constant
*DevirtModule::importConstant(VTableSlot Slot
, ArrayRef
<uint64_t> Args
,
1562 StringRef Name
, IntegerType
*IntTy
,
1564 if (!shouldExportConstantsAsAbsoluteSymbols())
1565 return ConstantInt::get(IntTy
, Storage
);
1567 Constant
*C
= importGlobal(Slot
, Args
, Name
);
1568 auto *GV
= cast
<GlobalVariable
>(C
->stripPointerCasts());
1569 C
= ConstantExpr::getPtrToInt(C
, IntTy
);
1571 // We only need to set metadata if the global is newly created, in which
1572 // case it would not have hidden visibility.
1573 if (GV
->hasMetadata(LLVMContext::MD_absolute_symbol
))
1576 auto SetAbsRange
= [&](uint64_t Min
, uint64_t Max
) {
1577 auto *MinC
= ConstantAsMetadata::get(ConstantInt::get(IntPtrTy
, Min
));
1578 auto *MaxC
= ConstantAsMetadata::get(ConstantInt::get(IntPtrTy
, Max
));
1579 GV
->setMetadata(LLVMContext::MD_absolute_symbol
,
1580 MDNode::get(M
.getContext(), {MinC
, MaxC
}));
1582 unsigned AbsWidth
= IntTy
->getBitWidth();
1583 if (AbsWidth
== IntPtrTy
->getBitWidth())
1584 SetAbsRange(~0ull, ~0ull); // Full set.
1586 SetAbsRange(0, 1ull << AbsWidth
);
1590 void DevirtModule::applyUniqueRetValOpt(CallSiteInfo
&CSInfo
, StringRef FnName
,
1592 Constant
*UniqueMemberAddr
) {
1593 for (auto &&Call
: CSInfo
.CallSites
) {
1594 if (!OptimizedCalls
.insert(&Call
.CB
).second
)
1596 IRBuilder
<> B(&Call
.CB
);
1598 B
.CreateICmp(IsOne
? ICmpInst::ICMP_EQ
: ICmpInst::ICMP_NE
, Call
.VTable
,
1599 B
.CreateBitCast(UniqueMemberAddr
, Call
.VTable
->getType()));
1600 Cmp
= B
.CreateZExt(Cmp
, Call
.CB
.getType());
1602 Call
.replaceAndErase("unique-ret-val", FnName
, RemarksEnabled
, OREGetter
,
1605 CSInfo
.markDevirt();
1608 Constant
*DevirtModule::getMemberAddr(const TypeMemberInfo
*M
) {
1609 Constant
*C
= ConstantExpr::getBitCast(M
->Bits
->GV
, Int8PtrTy
);
1610 return ConstantExpr::getGetElementPtr(Int8Ty
, C
,
1611 ConstantInt::get(Int64Ty
, M
->Offset
));
1614 bool DevirtModule::tryUniqueRetValOpt(
1615 unsigned BitWidth
, MutableArrayRef
<VirtualCallTarget
> TargetsForSlot
,
1616 CallSiteInfo
&CSInfo
, WholeProgramDevirtResolution::ByArg
*Res
,
1617 VTableSlot Slot
, ArrayRef
<uint64_t> Args
) {
1618 // IsOne controls whether we look for a 0 or a 1.
1619 auto tryUniqueRetValOptFor
= [&](bool IsOne
) {
1620 const TypeMemberInfo
*UniqueMember
= nullptr;
1621 for (const VirtualCallTarget
&Target
: TargetsForSlot
) {
1622 if (Target
.RetVal
== (IsOne
? 1 : 0)) {
1625 UniqueMember
= Target
.TM
;
1629 // We should have found a unique member or bailed out by now. We already
1630 // checked for a uniform return value in tryUniformRetValOpt.
1631 assert(UniqueMember
);
1633 Constant
*UniqueMemberAddr
= getMemberAddr(UniqueMember
);
1634 if (CSInfo
.isExported()) {
1635 Res
->TheKind
= WholeProgramDevirtResolution::ByArg::UniqueRetVal
;
1638 exportGlobal(Slot
, Args
, "unique_member", UniqueMemberAddr
);
1641 // Replace each call with the comparison.
1642 applyUniqueRetValOpt(CSInfo
, TargetsForSlot
[0].Fn
->getName(), IsOne
,
1645 // Update devirtualization statistics for targets.
1646 if (RemarksEnabled
|| AreStatisticsEnabled())
1647 for (auto &&Target
: TargetsForSlot
)
1648 Target
.WasDevirt
= true;
1653 if (BitWidth
== 1) {
1654 if (tryUniqueRetValOptFor(true))
1656 if (tryUniqueRetValOptFor(false))
1662 void DevirtModule::applyVirtualConstProp(CallSiteInfo
&CSInfo
, StringRef FnName
,
1663 Constant
*Byte
, Constant
*Bit
) {
1664 for (auto Call
: CSInfo
.CallSites
) {
1665 if (!OptimizedCalls
.insert(&Call
.CB
).second
)
1667 auto *RetType
= cast
<IntegerType
>(Call
.CB
.getType());
1668 IRBuilder
<> B(&Call
.CB
);
1670 B
.CreateGEP(Int8Ty
, B
.CreateBitCast(Call
.VTable
, Int8PtrTy
), Byte
);
1671 if (RetType
->getBitWidth() == 1) {
1672 Value
*Bits
= B
.CreateLoad(Int8Ty
, Addr
);
1673 Value
*BitsAndBit
= B
.CreateAnd(Bits
, Bit
);
1674 auto IsBitSet
= B
.CreateICmpNE(BitsAndBit
, ConstantInt::get(Int8Ty
, 0));
1675 NumVirtConstProp1Bit
++;
1676 Call
.replaceAndErase("virtual-const-prop-1-bit", FnName
, RemarksEnabled
,
1677 OREGetter
, IsBitSet
);
1679 Value
*ValAddr
= B
.CreateBitCast(Addr
, RetType
->getPointerTo());
1680 Value
*Val
= B
.CreateLoad(RetType
, ValAddr
);
1682 Call
.replaceAndErase("virtual-const-prop", FnName
, RemarksEnabled
,
1686 CSInfo
.markDevirt();
1689 bool DevirtModule::tryVirtualConstProp(
1690 MutableArrayRef
<VirtualCallTarget
> TargetsForSlot
, VTableSlotInfo
&SlotInfo
,
1691 WholeProgramDevirtResolution
*Res
, VTableSlot Slot
) {
1692 // This only works if the function returns an integer.
1693 auto RetType
= dyn_cast
<IntegerType
>(TargetsForSlot
[0].Fn
->getReturnType());
1696 unsigned BitWidth
= RetType
->getBitWidth();
1700 // Make sure that each function is defined, does not access memory, takes at
1701 // least one argument, does not use its first argument (which we assume is
1702 // 'this'), and has the same return type.
1704 // Note that we test whether this copy of the function is readnone, rather
1705 // than testing function attributes, which must hold for any copy of the
1706 // function, even a less optimized version substituted at link time. This is
1707 // sound because the virtual constant propagation optimizations effectively
1708 // inline all implementations of the virtual function into each call site,
1709 // rather than using function attributes to perform local optimization.
1710 for (VirtualCallTarget
&Target
: TargetsForSlot
) {
1711 if (Target
.Fn
->isDeclaration() ||
1712 computeFunctionBodyMemoryAccess(*Target
.Fn
, AARGetter(*Target
.Fn
)) !=
1713 FMRB_DoesNotAccessMemory
||
1714 Target
.Fn
->arg_empty() || !Target
.Fn
->arg_begin()->use_empty() ||
1715 Target
.Fn
->getReturnType() != RetType
)
1719 for (auto &&CSByConstantArg
: SlotInfo
.ConstCSInfo
) {
1720 if (!tryEvaluateFunctionsWithArgs(TargetsForSlot
, CSByConstantArg
.first
))
1723 WholeProgramDevirtResolution::ByArg
*ResByArg
= nullptr;
1725 ResByArg
= &Res
->ResByArg
[CSByConstantArg
.first
];
1727 if (tryUniformRetValOpt(TargetsForSlot
, CSByConstantArg
.second
, ResByArg
))
1730 if (tryUniqueRetValOpt(BitWidth
, TargetsForSlot
, CSByConstantArg
.second
,
1731 ResByArg
, Slot
, CSByConstantArg
.first
))
1734 // Find an allocation offset in bits in all vtables associated with the
1736 uint64_t AllocBefore
=
1737 findLowestOffset(TargetsForSlot
, /*IsAfter=*/false, BitWidth
);
1738 uint64_t AllocAfter
=
1739 findLowestOffset(TargetsForSlot
, /*IsAfter=*/true, BitWidth
);
1741 // Calculate the total amount of padding needed to store a value at both
1742 // ends of the object.
1743 uint64_t TotalPaddingBefore
= 0, TotalPaddingAfter
= 0;
1744 for (auto &&Target
: TargetsForSlot
) {
1745 TotalPaddingBefore
+= std::max
<int64_t>(
1746 (AllocBefore
+ 7) / 8 - Target
.allocatedBeforeBytes() - 1, 0);
1747 TotalPaddingAfter
+= std::max
<int64_t>(
1748 (AllocAfter
+ 7) / 8 - Target
.allocatedAfterBytes() - 1, 0);
1751 // If the amount of padding is too large, give up.
1752 // FIXME: do something smarter here.
1753 if (std::min(TotalPaddingBefore
, TotalPaddingAfter
) > 128)
1756 // Calculate the offset to the value as a (possibly negative) byte offset
1757 // and (if applicable) a bit offset, and store the values in the targets.
1760 if (TotalPaddingBefore
<= TotalPaddingAfter
)
1761 setBeforeReturnValues(TargetsForSlot
, AllocBefore
, BitWidth
, OffsetByte
,
1764 setAfterReturnValues(TargetsForSlot
, AllocAfter
, BitWidth
, OffsetByte
,
1767 if (RemarksEnabled
|| AreStatisticsEnabled())
1768 for (auto &&Target
: TargetsForSlot
)
1769 Target
.WasDevirt
= true;
1772 if (CSByConstantArg
.second
.isExported()) {
1773 ResByArg
->TheKind
= WholeProgramDevirtResolution::ByArg::VirtualConstProp
;
1774 exportConstant(Slot
, CSByConstantArg
.first
, "byte", OffsetByte
,
1776 exportConstant(Slot
, CSByConstantArg
.first
, "bit", 1ULL << OffsetBit
,
1780 // Rewrite each call to a load from OffsetByte/OffsetBit.
1781 Constant
*ByteConst
= ConstantInt::get(Int32Ty
, OffsetByte
);
1782 Constant
*BitConst
= ConstantInt::get(Int8Ty
, 1ULL << OffsetBit
);
1783 applyVirtualConstProp(CSByConstantArg
.second
,
1784 TargetsForSlot
[0].Fn
->getName(), ByteConst
, BitConst
);
1789 void DevirtModule::rebuildGlobal(VTableBits
&B
) {
1790 if (B
.Before
.Bytes
.empty() && B
.After
.Bytes
.empty())
1793 // Align the before byte array to the global's minimum alignment so that we
1794 // don't break any alignment requirements on the global.
1795 Align Alignment
= M
.getDataLayout().getValueOrABITypeAlignment(
1796 B
.GV
->getAlign(), B
.GV
->getValueType());
1797 B
.Before
.Bytes
.resize(alignTo(B
.Before
.Bytes
.size(), Alignment
));
1799 // Before was stored in reverse order; flip it now.
1800 for (size_t I
= 0, Size
= B
.Before
.Bytes
.size(); I
!= Size
/ 2; ++I
)
1801 std::swap(B
.Before
.Bytes
[I
], B
.Before
.Bytes
[Size
- 1 - I
]);
1803 // Build an anonymous global containing the before bytes, followed by the
1804 // original initializer, followed by the after bytes.
1805 auto NewInit
= ConstantStruct::getAnon(
1806 {ConstantDataArray::get(M
.getContext(), B
.Before
.Bytes
),
1807 B
.GV
->getInitializer(),
1808 ConstantDataArray::get(M
.getContext(), B
.After
.Bytes
)});
1810 new GlobalVariable(M
, NewInit
->getType(), B
.GV
->isConstant(),
1811 GlobalVariable::PrivateLinkage
, NewInit
, "", B
.GV
);
1812 NewGV
->setSection(B
.GV
->getSection());
1813 NewGV
->setComdat(B
.GV
->getComdat());
1814 NewGV
->setAlignment(B
.GV
->getAlign());
1816 // Copy the original vtable's metadata to the anonymous global, adjusting
1817 // offsets as required.
1818 NewGV
->copyMetadata(B
.GV
, B
.Before
.Bytes
.size());
1820 // Build an alias named after the original global, pointing at the second
1821 // element (the original initializer).
1822 auto Alias
= GlobalAlias::create(
1823 B
.GV
->getInitializer()->getType(), 0, B
.GV
->getLinkage(), "",
1824 ConstantExpr::getGetElementPtr(
1825 NewInit
->getType(), NewGV
,
1826 ArrayRef
<Constant
*>{ConstantInt::get(Int32Ty
, 0),
1827 ConstantInt::get(Int32Ty
, 1)}),
1829 Alias
->setVisibility(B
.GV
->getVisibility());
1830 Alias
->takeName(B
.GV
);
1832 B
.GV
->replaceAllUsesWith(Alias
);
1833 B
.GV
->eraseFromParent();
1836 bool DevirtModule::areRemarksEnabled() {
1837 const auto &FL
= M
.getFunctionList();
1838 for (const Function
&Fn
: FL
) {
1839 const auto &BBL
= Fn
.getBasicBlockList();
1842 auto DI
= OptimizationRemark(DEBUG_TYPE
, "", DebugLoc(), &BBL
.front());
1843 return DI
.isEnabled();
1848 void DevirtModule::scanTypeTestUsers(
1849 Function
*TypeTestFunc
,
1850 DenseMap
<Metadata
*, std::set
<TypeMemberInfo
>> &TypeIdMap
) {
1851 // Find all virtual calls via a virtual table pointer %p under an assumption
1852 // of the form llvm.assume(llvm.type.test(%p, %md)). This indicates that %p
1853 // points to a member of the type identifier %md. Group calls by (type ID,
1854 // offset) pair (effectively the identity of the virtual function) and store
1856 for (Use
&U
: llvm::make_early_inc_range(TypeTestFunc
->uses())) {
1857 auto *CI
= dyn_cast
<CallInst
>(U
.getUser());
1861 // Search for virtual calls based on %p and add them to DevirtCalls.
1862 SmallVector
<DevirtCallSite
, 1> DevirtCalls
;
1863 SmallVector
<CallInst
*, 1> Assumes
;
1864 auto &DT
= LookupDomTree(*CI
->getFunction());
1865 findDevirtualizableCallsForTypeTest(DevirtCalls
, Assumes
, CI
, DT
);
1868 cast
<MetadataAsValue
>(CI
->getArgOperand(1))->getMetadata();
1869 // If we found any, add them to CallSlots.
1870 if (!Assumes
.empty()) {
1871 Value
*Ptr
= CI
->getArgOperand(0)->stripPointerCasts();
1872 for (DevirtCallSite Call
: DevirtCalls
)
1873 CallSlots
[{TypeId
, Call
.Offset
}].addCallSite(Ptr
, Call
.CB
, nullptr);
1876 auto RemoveTypeTestAssumes
= [&]() {
1877 // We no longer need the assumes or the type test.
1878 for (auto Assume
: Assumes
)
1879 Assume
->eraseFromParent();
1880 // We can't use RecursivelyDeleteTriviallyDeadInstructions here because we
1881 // may use the vtable argument later.
1882 if (CI
->use_empty())
1883 CI
->eraseFromParent();
1886 // At this point we could remove all type test assume sequences, as they
1887 // were originally inserted for WPD. However, we can keep these in the
1888 // code stream for later analysis (e.g. to help drive more efficient ICP
1889 // sequences). They will eventually be removed by a second LowerTypeTests
1890 // invocation that cleans them up. In order to do this correctly, the first
1891 // LowerTypeTests invocation needs to know that they have "Unknown" type
1892 // test resolution, so that they aren't treated as Unsat and lowered to
1893 // False, which will break any uses on assumes. Below we remove any type
1894 // test assumes that will not be treated as Unknown by LTT.
1896 // The type test assumes will be treated by LTT as Unsat if the type id is
1897 // not used on a global (in which case it has no entry in the TypeIdMap).
1898 if (!TypeIdMap
.count(TypeId
))
1899 RemoveTypeTestAssumes();
1901 // For ThinLTO importing, we need to remove the type test assumes if this is
1902 // an MDString type id without a corresponding TypeIdSummary. Any
1903 // non-MDString type ids are ignored and treated as Unknown by LTT, so their
1904 // type test assumes can be kept. If the MDString type id is missing a
1905 // TypeIdSummary (e.g. because there was no use on a vcall, preventing the
1906 // exporting phase of WPD from analyzing it), then it would be treated as
1907 // Unsat by LTT and we need to remove its type test assumes here. If not
1908 // used on a vcall we don't need them for later optimization use in any
1910 else if (ImportSummary
&& isa
<MDString
>(TypeId
)) {
1911 const TypeIdSummary
*TidSummary
=
1912 ImportSummary
->getTypeIdSummary(cast
<MDString
>(TypeId
)->getString());
1914 RemoveTypeTestAssumes();
1916 // If one was created it should not be Unsat, because if we reached here
1917 // the type id was used on a global.
1918 assert(TidSummary
->TTRes
.TheKind
!= TypeTestResolution::Unsat
);
1923 void DevirtModule::scanTypeCheckedLoadUsers(Function
*TypeCheckedLoadFunc
) {
1924 Function
*TypeTestFunc
= Intrinsic::getDeclaration(&M
, Intrinsic::type_test
);
1926 for (Use
&U
: llvm::make_early_inc_range(TypeCheckedLoadFunc
->uses())) {
1927 auto *CI
= dyn_cast
<CallInst
>(U
.getUser());
1931 Value
*Ptr
= CI
->getArgOperand(0);
1932 Value
*Offset
= CI
->getArgOperand(1);
1933 Value
*TypeIdValue
= CI
->getArgOperand(2);
1934 Metadata
*TypeId
= cast
<MetadataAsValue
>(TypeIdValue
)->getMetadata();
1936 SmallVector
<DevirtCallSite
, 1> DevirtCalls
;
1937 SmallVector
<Instruction
*, 1> LoadedPtrs
;
1938 SmallVector
<Instruction
*, 1> Preds
;
1939 bool HasNonCallUses
= false;
1940 auto &DT
= LookupDomTree(*CI
->getFunction());
1941 findDevirtualizableCallsForTypeCheckedLoad(DevirtCalls
, LoadedPtrs
, Preds
,
1942 HasNonCallUses
, CI
, DT
);
1944 // Start by generating "pessimistic" code that explicitly loads the function
1945 // pointer from the vtable and performs the type check. If possible, we will
1946 // eliminate the load and the type check later.
1948 // If possible, only generate the load at the point where it is used.
1949 // This helps avoid unnecessary spills.
1951 (LoadedPtrs
.size() == 1 && !HasNonCallUses
) ? LoadedPtrs
[0] : CI
);
1952 Value
*GEP
= LoadB
.CreateGEP(Int8Ty
, Ptr
, Offset
);
1953 Value
*GEPPtr
= LoadB
.CreateBitCast(GEP
, PointerType::getUnqual(Int8PtrTy
));
1954 Value
*LoadedValue
= LoadB
.CreateLoad(Int8PtrTy
, GEPPtr
);
1956 for (Instruction
*LoadedPtr
: LoadedPtrs
) {
1957 LoadedPtr
->replaceAllUsesWith(LoadedValue
);
1958 LoadedPtr
->eraseFromParent();
1961 // Likewise for the type test.
1962 IRBuilder
<> CallB((Preds
.size() == 1 && !HasNonCallUses
) ? Preds
[0] : CI
);
1963 CallInst
*TypeTestCall
= CallB
.CreateCall(TypeTestFunc
, {Ptr
, TypeIdValue
});
1965 for (Instruction
*Pred
: Preds
) {
1966 Pred
->replaceAllUsesWith(TypeTestCall
);
1967 Pred
->eraseFromParent();
1970 // We have already erased any extractvalue instructions that refer to the
1971 // intrinsic call, but the intrinsic may have other non-extractvalue uses
1972 // (although this is unlikely). In that case, explicitly build a pair and
1974 if (!CI
->use_empty()) {
1975 Value
*Pair
= PoisonValue::get(CI
->getType());
1977 Pair
= B
.CreateInsertValue(Pair
, LoadedValue
, {0});
1978 Pair
= B
.CreateInsertValue(Pair
, TypeTestCall
, {1});
1979 CI
->replaceAllUsesWith(Pair
);
1982 // The number of unsafe uses is initially the number of uses.
1983 auto &NumUnsafeUses
= NumUnsafeUsesForTypeTest
[TypeTestCall
];
1984 NumUnsafeUses
= DevirtCalls
.size();
1986 // If the function pointer has a non-call user, we cannot eliminate the type
1987 // check, as one of those users may eventually call the pointer. Increment
1988 // the unsafe use count to make sure it cannot reach zero.
1991 for (DevirtCallSite Call
: DevirtCalls
) {
1992 CallSlots
[{TypeId
, Call
.Offset
}].addCallSite(Ptr
, Call
.CB
,
1996 CI
->eraseFromParent();
2000 void DevirtModule::importResolution(VTableSlot Slot
, VTableSlotInfo
&SlotInfo
) {
2001 auto *TypeId
= dyn_cast
<MDString
>(Slot
.TypeID
);
2004 const TypeIdSummary
*TidSummary
=
2005 ImportSummary
->getTypeIdSummary(TypeId
->getString());
2008 auto ResI
= TidSummary
->WPDRes
.find(Slot
.ByteOffset
);
2009 if (ResI
== TidSummary
->WPDRes
.end())
2011 const WholeProgramDevirtResolution
&Res
= ResI
->second
;
2013 if (Res
.TheKind
== WholeProgramDevirtResolution::SingleImpl
) {
2014 assert(!Res
.SingleImplName
.empty());
2015 // The type of the function in the declaration is irrelevant because every
2016 // call site will cast it to the correct type.
2017 Constant
*SingleImpl
=
2018 cast
<Constant
>(M
.getOrInsertFunction(Res
.SingleImplName
,
2019 Type::getVoidTy(M
.getContext()))
2022 // This is the import phase so we should not be exporting anything.
2023 bool IsExported
= false;
2024 applySingleImplDevirt(SlotInfo
, SingleImpl
, IsExported
);
2025 assert(!IsExported
);
2028 for (auto &CSByConstantArg
: SlotInfo
.ConstCSInfo
) {
2029 auto I
= Res
.ResByArg
.find(CSByConstantArg
.first
);
2030 if (I
== Res
.ResByArg
.end())
2032 auto &ResByArg
= I
->second
;
2033 // FIXME: We should figure out what to do about the "function name" argument
2034 // to the apply* functions, as the function names are unavailable during the
2035 // importing phase. For now we just pass the empty string. This does not
2036 // impact correctness because the function names are just used for remarks.
2037 switch (ResByArg
.TheKind
) {
2038 case WholeProgramDevirtResolution::ByArg::UniformRetVal
:
2039 applyUniformRetValOpt(CSByConstantArg
.second
, "", ResByArg
.Info
);
2041 case WholeProgramDevirtResolution::ByArg::UniqueRetVal
: {
2042 Constant
*UniqueMemberAddr
=
2043 importGlobal(Slot
, CSByConstantArg
.first
, "unique_member");
2044 applyUniqueRetValOpt(CSByConstantArg
.second
, "", ResByArg
.Info
,
2048 case WholeProgramDevirtResolution::ByArg::VirtualConstProp
: {
2049 Constant
*Byte
= importConstant(Slot
, CSByConstantArg
.first
, "byte",
2050 Int32Ty
, ResByArg
.Byte
);
2051 Constant
*Bit
= importConstant(Slot
, CSByConstantArg
.first
, "bit", Int8Ty
,
2053 applyVirtualConstProp(CSByConstantArg
.second
, "", Byte
, Bit
);
2061 if (Res
.TheKind
== WholeProgramDevirtResolution::BranchFunnel
) {
2062 // The type of the function is irrelevant, because it's bitcast at calls
2064 Constant
*JT
= cast
<Constant
>(
2065 M
.getOrInsertFunction(getGlobalName(Slot
, {}, "branch_funnel"),
2066 Type::getVoidTy(M
.getContext()))
2068 bool IsExported
= false;
2069 applyICallBranchFunnel(SlotInfo
, JT
, IsExported
);
2070 assert(!IsExported
);
2074 void DevirtModule::removeRedundantTypeTests() {
2075 auto True
= ConstantInt::getTrue(M
.getContext());
2076 for (auto &&U
: NumUnsafeUsesForTypeTest
) {
2077 if (U
.second
== 0) {
2078 U
.first
->replaceAllUsesWith(True
);
2079 U
.first
->eraseFromParent();
2085 DevirtModule::lookUpFunctionValueInfo(Function
*TheFn
,
2086 ModuleSummaryIndex
*ExportSummary
) {
2087 assert((ExportSummary
!= nullptr) &&
2088 "Caller guarantees ExportSummary is not nullptr");
2090 const auto TheFnGUID
= TheFn
->getGUID();
2091 const auto TheFnGUIDWithExportedName
= GlobalValue::getGUID(TheFn
->getName());
2092 // Look up ValueInfo with the GUID in the current linkage.
2093 ValueInfo TheFnVI
= ExportSummary
->getValueInfo(TheFnGUID
);
2094 // If no entry is found and GUID is different from GUID computed using
2095 // exported name, look up ValueInfo with the exported name unconditionally.
2096 // This is a fallback.
2098 // The reason to have a fallback:
2099 // 1. LTO could enable global value internalization via
2100 // `enable-lto-internalization`.
2101 // 2. The GUID in ExportedSummary is computed using exported name.
2102 if ((!TheFnVI
) && (TheFnGUID
!= TheFnGUIDWithExportedName
)) {
2103 TheFnVI
= ExportSummary
->getValueInfo(TheFnGUIDWithExportedName
);
2108 bool DevirtModule::mustBeUnreachableFunction(
2109 Function
*const F
, ModuleSummaryIndex
*ExportSummary
) {
2110 // First, learn unreachability by analyzing function IR.
2111 if (!F
->isDeclaration()) {
2112 // A function must be unreachable if its entry block ends with an
2114 return isa
<UnreachableInst
>(F
->getEntryBlock().getTerminator());
2116 // Learn unreachability from ExportSummary if ExportSummary is present.
2117 return ExportSummary
&&
2118 ::mustBeUnreachableFunction(
2119 DevirtModule::lookUpFunctionValueInfo(F
, ExportSummary
));
2122 bool DevirtModule::run() {
2123 // If only some of the modules were split, we cannot correctly perform
2124 // this transformation. We already checked for the presense of type tests
2125 // with partially split modules during the thin link, and would have emitted
2126 // an error if any were found, so here we can simply return.
2127 if ((ExportSummary
&& ExportSummary
->partiallySplitLTOUnits()) ||
2128 (ImportSummary
&& ImportSummary
->partiallySplitLTOUnits()))
2131 Function
*TypeTestFunc
=
2132 M
.getFunction(Intrinsic::getName(Intrinsic::type_test
));
2133 Function
*TypeCheckedLoadFunc
=
2134 M
.getFunction(Intrinsic::getName(Intrinsic::type_checked_load
));
2135 Function
*AssumeFunc
= M
.getFunction(Intrinsic::getName(Intrinsic::assume
));
2137 // Normally if there are no users of the devirtualization intrinsics in the
2138 // module, this pass has nothing to do. But if we are exporting, we also need
2139 // to handle any users that appear only in the function summaries.
2140 if (!ExportSummary
&&
2141 (!TypeTestFunc
|| TypeTestFunc
->use_empty() || !AssumeFunc
||
2142 AssumeFunc
->use_empty()) &&
2143 (!TypeCheckedLoadFunc
|| TypeCheckedLoadFunc
->use_empty()))
2146 // Rebuild type metadata into a map for easy lookup.
2147 std::vector
<VTableBits
> Bits
;
2148 DenseMap
<Metadata
*, std::set
<TypeMemberInfo
>> TypeIdMap
;
2149 buildTypeIdentifierMap(Bits
, TypeIdMap
);
2151 if (TypeTestFunc
&& AssumeFunc
)
2152 scanTypeTestUsers(TypeTestFunc
, TypeIdMap
);
2154 if (TypeCheckedLoadFunc
)
2155 scanTypeCheckedLoadUsers(TypeCheckedLoadFunc
);
2157 if (ImportSummary
) {
2158 for (auto &S
: CallSlots
)
2159 importResolution(S
.first
, S
.second
);
2161 removeRedundantTypeTests();
2163 // We have lowered or deleted the type intrinsics, so we will no longer have
2164 // enough information to reason about the liveness of virtual function
2165 // pointers in GlobalDCE.
2166 for (GlobalVariable
&GV
: M
.globals())
2167 GV
.eraseMetadata(LLVMContext::MD_vcall_visibility
);
2169 // The rest of the code is only necessary when exporting or during regular
2170 // LTO, so we are done.
2174 if (TypeIdMap
.empty())
2177 // Collect information from summary about which calls to try to devirtualize.
2178 if (ExportSummary
) {
2179 DenseMap
<GlobalValue::GUID
, TinyPtrVector
<Metadata
*>> MetadataByGUID
;
2180 for (auto &P
: TypeIdMap
) {
2181 if (auto *TypeId
= dyn_cast
<MDString
>(P
.first
))
2182 MetadataByGUID
[GlobalValue::getGUID(TypeId
->getString())].push_back(
2186 for (auto &P
: *ExportSummary
) {
2187 for (auto &S
: P
.second
.SummaryList
) {
2188 auto *FS
= dyn_cast
<FunctionSummary
>(S
.get());
2191 // FIXME: Only add live functions.
2192 for (FunctionSummary::VFuncId VF
: FS
->type_test_assume_vcalls()) {
2193 for (Metadata
*MD
: MetadataByGUID
[VF
.GUID
]) {
2194 CallSlots
[{MD
, VF
.Offset
}].CSInfo
.addSummaryTypeTestAssumeUser(FS
);
2197 for (FunctionSummary::VFuncId VF
: FS
->type_checked_load_vcalls()) {
2198 for (Metadata
*MD
: MetadataByGUID
[VF
.GUID
]) {
2199 CallSlots
[{MD
, VF
.Offset
}].CSInfo
.addSummaryTypeCheckedLoadUser(FS
);
2202 for (const FunctionSummary::ConstVCall
&VC
:
2203 FS
->type_test_assume_const_vcalls()) {
2204 for (Metadata
*MD
: MetadataByGUID
[VC
.VFunc
.GUID
]) {
2205 CallSlots
[{MD
, VC
.VFunc
.Offset
}]
2206 .ConstCSInfo
[VC
.Args
]
2207 .addSummaryTypeTestAssumeUser(FS
);
2210 for (const FunctionSummary::ConstVCall
&VC
:
2211 FS
->type_checked_load_const_vcalls()) {
2212 for (Metadata
*MD
: MetadataByGUID
[VC
.VFunc
.GUID
]) {
2213 CallSlots
[{MD
, VC
.VFunc
.Offset
}]
2214 .ConstCSInfo
[VC
.Args
]
2215 .addSummaryTypeCheckedLoadUser(FS
);
2222 // For each (type, offset) pair:
2223 bool DidVirtualConstProp
= false;
2224 std::map
<std::string
, Function
*> DevirtTargets
;
2225 for (auto &S
: CallSlots
) {
2226 // Search each of the members of the type identifier for the virtual
2227 // function implementation at offset S.first.ByteOffset, and add to
2229 std::vector
<VirtualCallTarget
> TargetsForSlot
;
2230 WholeProgramDevirtResolution
*Res
= nullptr;
2231 const std::set
<TypeMemberInfo
> &TypeMemberInfos
= TypeIdMap
[S
.first
.TypeID
];
2232 if (ExportSummary
&& isa
<MDString
>(S
.first
.TypeID
) &&
2233 TypeMemberInfos
.size())
2234 // For any type id used on a global's type metadata, create the type id
2235 // summary resolution regardless of whether we can devirtualize, so that
2236 // lower type tests knows the type id is not Unsat. If it was not used on
2237 // a global's type metadata, the TypeIdMap entry set will be empty, and
2238 // we don't want to create an entry (with the default Unknown type
2239 // resolution), which can prevent detection of the Unsat.
2240 Res
= &ExportSummary
2241 ->getOrInsertTypeIdSummary(
2242 cast
<MDString
>(S
.first
.TypeID
)->getString())
2243 .WPDRes
[S
.first
.ByteOffset
];
2244 if (tryFindVirtualCallTargets(TargetsForSlot
, TypeMemberInfos
,
2245 S
.first
.ByteOffset
, ExportSummary
)) {
2247 if (!trySingleImplDevirt(ExportSummary
, TargetsForSlot
, S
.second
, Res
)) {
2248 DidVirtualConstProp
|=
2249 tryVirtualConstProp(TargetsForSlot
, S
.second
, Res
, S
.first
);
2251 tryICallBranchFunnel(TargetsForSlot
, S
.second
, Res
, S
.first
);
2254 // Collect functions devirtualized at least for one call site for stats.
2255 if (RemarksEnabled
|| AreStatisticsEnabled())
2256 for (const auto &T
: TargetsForSlot
)
2258 DevirtTargets
[std::string(T
.Fn
->getName())] = T
.Fn
;
2261 // CFI-specific: if we are exporting and any llvm.type.checked.load
2262 // intrinsics were *not* devirtualized, we need to add the resulting
2263 // llvm.type.test intrinsics to the function summaries so that the
2264 // LowerTypeTests pass will export them.
2265 if (ExportSummary
&& isa
<MDString
>(S
.first
.TypeID
)) {
2267 GlobalValue::getGUID(cast
<MDString
>(S
.first
.TypeID
)->getString());
2268 for (auto FS
: S
.second
.CSInfo
.SummaryTypeCheckedLoadUsers
)
2269 FS
->addTypeTest(GUID
);
2270 for (auto &CCS
: S
.second
.ConstCSInfo
)
2271 for (auto FS
: CCS
.second
.SummaryTypeCheckedLoadUsers
)
2272 FS
->addTypeTest(GUID
);
2276 if (RemarksEnabled
) {
2277 // Generate remarks for each devirtualized function.
2278 for (const auto &DT
: DevirtTargets
) {
2279 Function
*F
= DT
.second
;
2281 using namespace ore
;
2282 OREGetter(F
).emit(OptimizationRemark(DEBUG_TYPE
, "Devirtualized", F
)
2284 << NV("FunctionName", DT
.first
));
2288 NumDevirtTargets
+= DevirtTargets
.size();
2290 removeRedundantTypeTests();
2292 // Rebuild each global we touched as part of virtual constant propagation to
2293 // include the before and after bytes.
2294 if (DidVirtualConstProp
)
2295 for (VTableBits
&B
: Bits
)
2298 // We have lowered or deleted the type intrinsics, so we will no longer have
2299 // enough information to reason about the liveness of virtual function
2300 // pointers in GlobalDCE.
2301 for (GlobalVariable
&GV
: M
.globals())
2302 GV
.eraseMetadata(LLVMContext::MD_vcall_visibility
);
2307 void DevirtIndex::run() {
2308 if (ExportSummary
.typeIdCompatibleVtableMap().empty())
2311 DenseMap
<GlobalValue::GUID
, std::vector
<StringRef
>> NameByGUID
;
2312 for (const auto &P
: ExportSummary
.typeIdCompatibleVtableMap()) {
2313 NameByGUID
[GlobalValue::getGUID(P
.first
)].push_back(P
.first
);
2316 // Collect information from summary about which calls to try to devirtualize.
2317 for (auto &P
: ExportSummary
) {
2318 for (auto &S
: P
.second
.SummaryList
) {
2319 auto *FS
= dyn_cast
<FunctionSummary
>(S
.get());
2322 // FIXME: Only add live functions.
2323 for (FunctionSummary::VFuncId VF
: FS
->type_test_assume_vcalls()) {
2324 for (StringRef Name
: NameByGUID
[VF
.GUID
]) {
2325 CallSlots
[{Name
, VF
.Offset
}].CSInfo
.addSummaryTypeTestAssumeUser(FS
);
2328 for (FunctionSummary::VFuncId VF
: FS
->type_checked_load_vcalls()) {
2329 for (StringRef Name
: NameByGUID
[VF
.GUID
]) {
2330 CallSlots
[{Name
, VF
.Offset
}].CSInfo
.addSummaryTypeCheckedLoadUser(FS
);
2333 for (const FunctionSummary::ConstVCall
&VC
:
2334 FS
->type_test_assume_const_vcalls()) {
2335 for (StringRef Name
: NameByGUID
[VC
.VFunc
.GUID
]) {
2336 CallSlots
[{Name
, VC
.VFunc
.Offset
}]
2337 .ConstCSInfo
[VC
.Args
]
2338 .addSummaryTypeTestAssumeUser(FS
);
2341 for (const FunctionSummary::ConstVCall
&VC
:
2342 FS
->type_checked_load_const_vcalls()) {
2343 for (StringRef Name
: NameByGUID
[VC
.VFunc
.GUID
]) {
2344 CallSlots
[{Name
, VC
.VFunc
.Offset
}]
2345 .ConstCSInfo
[VC
.Args
]
2346 .addSummaryTypeCheckedLoadUser(FS
);
2352 std::set
<ValueInfo
> DevirtTargets
;
2353 // For each (type, offset) pair:
2354 for (auto &S
: CallSlots
) {
2355 // Search each of the members of the type identifier for the virtual
2356 // function implementation at offset S.first.ByteOffset, and add to
2358 std::vector
<ValueInfo
> TargetsForSlot
;
2359 auto TidSummary
= ExportSummary
.getTypeIdCompatibleVtableSummary(S
.first
.TypeID
);
2361 // Create the type id summary resolution regardlness of whether we can
2362 // devirtualize, so that lower type tests knows the type id is used on
2363 // a global and not Unsat.
2364 WholeProgramDevirtResolution
*Res
=
2365 &ExportSummary
.getOrInsertTypeIdSummary(S
.first
.TypeID
)
2366 .WPDRes
[S
.first
.ByteOffset
];
2367 if (tryFindVirtualCallTargets(TargetsForSlot
, *TidSummary
,
2368 S
.first
.ByteOffset
)) {
2370 if (!trySingleImplDevirt(TargetsForSlot
, S
.first
, S
.second
, Res
,
2376 // Optionally have the thin link print message for each devirtualized
2378 if (PrintSummaryDevirt
)
2379 for (const auto &DT
: DevirtTargets
)
2380 errs() << "Devirtualized call to " << DT
<< "\n";
2382 NumDevirtTargets
+= DevirtTargets
.size();