1 //===- InlineFunction.cpp - Code to perform function inlining -------------===//
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
7 //===----------------------------------------------------------------------===//
9 // This file implements inlining of a function into a call site, resolving
10 // parameters and the return value as appropriate.
12 //===----------------------------------------------------------------------===//
14 #include "llvm/ADT/DenseMap.h"
15 #include "llvm/ADT/None.h"
16 #include "llvm/ADT/Optional.h"
17 #include "llvm/ADT/STLExtras.h"
18 #include "llvm/ADT/SetVector.h"
19 #include "llvm/ADT/SmallPtrSet.h"
20 #include "llvm/ADT/SmallVector.h"
21 #include "llvm/ADT/StringExtras.h"
22 #include "llvm/ADT/iterator_range.h"
23 #include "llvm/Analysis/AliasAnalysis.h"
24 #include "llvm/Analysis/AssumptionCache.h"
25 #include "llvm/Analysis/BlockFrequencyInfo.h"
26 #include "llvm/Analysis/CallGraph.h"
27 #include "llvm/Analysis/CaptureTracking.h"
28 #include "llvm/Analysis/EHPersonalities.h"
29 #include "llvm/Analysis/InstructionSimplify.h"
30 #include "llvm/Analysis/ObjCARCAnalysisUtils.h"
31 #include "llvm/Analysis/ObjCARCUtil.h"
32 #include "llvm/Analysis/ProfileSummaryInfo.h"
33 #include "llvm/Analysis/ValueTracking.h"
34 #include "llvm/Analysis/VectorUtils.h"
35 #include "llvm/IR/Argument.h"
36 #include "llvm/IR/BasicBlock.h"
37 #include "llvm/IR/CFG.h"
38 #include "llvm/IR/Constant.h"
39 #include "llvm/IR/Constants.h"
40 #include "llvm/IR/DataLayout.h"
41 #include "llvm/IR/DebugInfo.h"
42 #include "llvm/IR/DebugInfoMetadata.h"
43 #include "llvm/IR/DebugLoc.h"
44 #include "llvm/IR/DerivedTypes.h"
45 #include "llvm/IR/Dominators.h"
46 #include "llvm/IR/Function.h"
47 #include "llvm/IR/IRBuilder.h"
48 #include "llvm/IR/InlineAsm.h"
49 #include "llvm/IR/InstrTypes.h"
50 #include "llvm/IR/Instruction.h"
51 #include "llvm/IR/Instructions.h"
52 #include "llvm/IR/IntrinsicInst.h"
53 #include "llvm/IR/Intrinsics.h"
54 #include "llvm/IR/LLVMContext.h"
55 #include "llvm/IR/MDBuilder.h"
56 #include "llvm/IR/Metadata.h"
57 #include "llvm/IR/Module.h"
58 #include "llvm/IR/Type.h"
59 #include "llvm/IR/User.h"
60 #include "llvm/IR/Value.h"
61 #include "llvm/Support/Casting.h"
62 #include "llvm/Support/CommandLine.h"
63 #include "llvm/Support/ErrorHandling.h"
64 #include "llvm/Transforms/Utils/AssumeBundleBuilder.h"
65 #include "llvm/Transforms/Utils/Cloning.h"
66 #include "llvm/Transforms/Utils/Local.h"
67 #include "llvm/Transforms/Utils/ValueMapper.h"
78 using ProfileCount
= Function::ProfileCount
;
81 EnableNoAliasConversion("enable-noalias-to-md-conversion", cl::init(true),
83 cl::desc("Convert noalias attributes to metadata during inlining."));
86 UseNoAliasIntrinsic("use-noalias-intrinsic-during-inlining", cl::Hidden
,
88 cl::desc("Use the llvm.experimental.noalias.scope.decl "
89 "intrinsic during inlining."));
91 // Disabled by default, because the added alignment assumptions may increase
92 // compile-time and block optimizations. This option is not suitable for use
93 // with frontends that emit comprehensive parameter alignment annotations.
95 PreserveAlignmentAssumptions("preserve-alignment-assumptions-during-inlining",
96 cl::init(false), cl::Hidden
,
97 cl::desc("Convert align attributes to assumptions during inlining."));
99 static cl::opt
<bool> UpdateReturnAttributes(
100 "update-return-attrs", cl::init(true), cl::Hidden
,
101 cl::desc("Update return attributes on calls within inlined body"));
103 static cl::opt
<unsigned> InlinerAttributeWindow(
104 "max-inst-checked-for-throw-during-inlining", cl::Hidden
,
105 cl::desc("the maximum number of instructions analyzed for may throw during "
106 "attribute inference in inlined body"),
111 /// A class for recording information about inlining a landing pad.
112 class LandingPadInliningInfo
{
113 /// Destination of the invoke's unwind.
114 BasicBlock
*OuterResumeDest
;
116 /// Destination for the callee's resume.
117 BasicBlock
*InnerResumeDest
= nullptr;
119 /// LandingPadInst associated with the invoke.
120 LandingPadInst
*CallerLPad
= nullptr;
122 /// PHI for EH values from landingpad insts.
123 PHINode
*InnerEHValuesPHI
= nullptr;
125 SmallVector
<Value
*, 8> UnwindDestPHIValues
;
128 LandingPadInliningInfo(InvokeInst
*II
)
129 : OuterResumeDest(II
->getUnwindDest()) {
130 // If there are PHI nodes in the unwind destination block, we need to keep
131 // track of which values came into them from the invoke before removing
132 // the edge from this block.
133 BasicBlock
*InvokeBB
= II
->getParent();
134 BasicBlock::iterator I
= OuterResumeDest
->begin();
135 for (; isa
<PHINode
>(I
); ++I
) {
136 // Save the value to use for this edge.
137 PHINode
*PHI
= cast
<PHINode
>(I
);
138 UnwindDestPHIValues
.push_back(PHI
->getIncomingValueForBlock(InvokeBB
));
141 CallerLPad
= cast
<LandingPadInst
>(I
);
144 /// The outer unwind destination is the target of
145 /// unwind edges introduced for calls within the inlined function.
146 BasicBlock
*getOuterResumeDest() const {
147 return OuterResumeDest
;
150 BasicBlock
*getInnerResumeDest();
152 LandingPadInst
*getLandingPadInst() const { return CallerLPad
; }
154 /// Forward the 'resume' instruction to the caller's landing pad block.
155 /// When the landing pad block has only one predecessor, this is
156 /// a simple branch. When there is more than one predecessor, we need to
157 /// split the landing pad block after the landingpad instruction and jump
159 void forwardResume(ResumeInst
*RI
,
160 SmallPtrSetImpl
<LandingPadInst
*> &InlinedLPads
);
162 /// Add incoming-PHI values to the unwind destination block for the given
163 /// basic block, using the values for the original invoke's source block.
164 void addIncomingPHIValuesFor(BasicBlock
*BB
) const {
165 addIncomingPHIValuesForInto(BB
, OuterResumeDest
);
168 void addIncomingPHIValuesForInto(BasicBlock
*src
, BasicBlock
*dest
) const {
169 BasicBlock::iterator I
= dest
->begin();
170 for (unsigned i
= 0, e
= UnwindDestPHIValues
.size(); i
!= e
; ++i
, ++I
) {
171 PHINode
*phi
= cast
<PHINode
>(I
);
172 phi
->addIncoming(UnwindDestPHIValues
[i
], src
);
177 } // end anonymous namespace
179 /// Get or create a target for the branch from ResumeInsts.
180 BasicBlock
*LandingPadInliningInfo::getInnerResumeDest() {
181 if (InnerResumeDest
) return InnerResumeDest
;
183 // Split the landing pad.
184 BasicBlock::iterator SplitPoint
= ++CallerLPad
->getIterator();
186 OuterResumeDest
->splitBasicBlock(SplitPoint
,
187 OuterResumeDest
->getName() + ".body");
189 // The number of incoming edges we expect to the inner landing pad.
190 const unsigned PHICapacity
= 2;
192 // Create corresponding new PHIs for all the PHIs in the outer landing pad.
193 Instruction
*InsertPoint
= &InnerResumeDest
->front();
194 BasicBlock::iterator I
= OuterResumeDest
->begin();
195 for (unsigned i
= 0, e
= UnwindDestPHIValues
.size(); i
!= e
; ++i
, ++I
) {
196 PHINode
*OuterPHI
= cast
<PHINode
>(I
);
197 PHINode
*InnerPHI
= PHINode::Create(OuterPHI
->getType(), PHICapacity
,
198 OuterPHI
->getName() + ".lpad-body",
200 OuterPHI
->replaceAllUsesWith(InnerPHI
);
201 InnerPHI
->addIncoming(OuterPHI
, OuterResumeDest
);
204 // Create a PHI for the exception values.
205 InnerEHValuesPHI
= PHINode::Create(CallerLPad
->getType(), PHICapacity
,
206 "eh.lpad-body", InsertPoint
);
207 CallerLPad
->replaceAllUsesWith(InnerEHValuesPHI
);
208 InnerEHValuesPHI
->addIncoming(CallerLPad
, OuterResumeDest
);
211 return InnerResumeDest
;
214 /// Forward the 'resume' instruction to the caller's landing pad block.
215 /// When the landing pad block has only one predecessor, this is a simple
216 /// branch. When there is more than one predecessor, we need to split the
217 /// landing pad block after the landingpad instruction and jump to there.
218 void LandingPadInliningInfo::forwardResume(
219 ResumeInst
*RI
, SmallPtrSetImpl
<LandingPadInst
*> &InlinedLPads
) {
220 BasicBlock
*Dest
= getInnerResumeDest();
221 BasicBlock
*Src
= RI
->getParent();
223 BranchInst::Create(Dest
, Src
);
225 // Update the PHIs in the destination. They were inserted in an order which
227 addIncomingPHIValuesForInto(Src
, Dest
);
229 InnerEHValuesPHI
->addIncoming(RI
->getOperand(0), Src
);
230 RI
->eraseFromParent();
233 /// Helper for getUnwindDestToken/getUnwindDestTokenHelper.
234 static Value
*getParentPad(Value
*EHPad
) {
235 if (auto *FPI
= dyn_cast
<FuncletPadInst
>(EHPad
))
236 return FPI
->getParentPad();
237 return cast
<CatchSwitchInst
>(EHPad
)->getParentPad();
240 using UnwindDestMemoTy
= DenseMap
<Instruction
*, Value
*>;
242 /// Helper for getUnwindDestToken that does the descendant-ward part of
244 static Value
*getUnwindDestTokenHelper(Instruction
*EHPad
,
245 UnwindDestMemoTy
&MemoMap
) {
246 SmallVector
<Instruction
*, 8> Worklist(1, EHPad
);
248 while (!Worklist
.empty()) {
249 Instruction
*CurrentPad
= Worklist
.pop_back_val();
250 // We only put pads on the worklist that aren't in the MemoMap. When
251 // we find an unwind dest for a pad we may update its ancestors, but
252 // the queue only ever contains uncles/great-uncles/etc. of CurrentPad,
253 // so they should never get updated while queued on the worklist.
254 assert(!MemoMap
.count(CurrentPad
));
255 Value
*UnwindDestToken
= nullptr;
256 if (auto *CatchSwitch
= dyn_cast
<CatchSwitchInst
>(CurrentPad
)) {
257 if (CatchSwitch
->hasUnwindDest()) {
258 UnwindDestToken
= CatchSwitch
->getUnwindDest()->getFirstNonPHI();
260 // Catchswitch doesn't have a 'nounwind' variant, and one might be
261 // annotated as "unwinds to caller" when really it's nounwind (see
262 // e.g. SimplifyCFGOpt::SimplifyUnreachable), so we can't infer the
263 // parent's unwind dest from this. We can check its catchpads'
264 // descendants, since they might include a cleanuppad with an
265 // "unwinds to caller" cleanupret, which can be trusted.
266 for (auto HI
= CatchSwitch
->handler_begin(),
267 HE
= CatchSwitch
->handler_end();
268 HI
!= HE
&& !UnwindDestToken
; ++HI
) {
269 BasicBlock
*HandlerBlock
= *HI
;
270 auto *CatchPad
= cast
<CatchPadInst
>(HandlerBlock
->getFirstNonPHI());
271 for (User
*Child
: CatchPad
->users()) {
272 // Intentionally ignore invokes here -- since the catchswitch is
273 // marked "unwind to caller", it would be a verifier error if it
274 // contained an invoke which unwinds out of it, so any invoke we'd
275 // encounter must unwind to some child of the catch.
276 if (!isa
<CleanupPadInst
>(Child
) && !isa
<CatchSwitchInst
>(Child
))
279 Instruction
*ChildPad
= cast
<Instruction
>(Child
);
280 auto Memo
= MemoMap
.find(ChildPad
);
281 if (Memo
== MemoMap
.end()) {
282 // Haven't figured out this child pad yet; queue it.
283 Worklist
.push_back(ChildPad
);
286 // We've already checked this child, but might have found that
287 // it offers no proof either way.
288 Value
*ChildUnwindDestToken
= Memo
->second
;
289 if (!ChildUnwindDestToken
)
291 // We already know the child's unwind dest, which can either
292 // be ConstantTokenNone to indicate unwind to caller, or can
293 // be another child of the catchpad. Only the former indicates
294 // the unwind dest of the catchswitch.
295 if (isa
<ConstantTokenNone
>(ChildUnwindDestToken
)) {
296 UnwindDestToken
= ChildUnwindDestToken
;
299 assert(getParentPad(ChildUnwindDestToken
) == CatchPad
);
304 auto *CleanupPad
= cast
<CleanupPadInst
>(CurrentPad
);
305 for (User
*U
: CleanupPad
->users()) {
306 if (auto *CleanupRet
= dyn_cast
<CleanupReturnInst
>(U
)) {
307 if (BasicBlock
*RetUnwindDest
= CleanupRet
->getUnwindDest())
308 UnwindDestToken
= RetUnwindDest
->getFirstNonPHI();
310 UnwindDestToken
= ConstantTokenNone::get(CleanupPad
->getContext());
313 Value
*ChildUnwindDestToken
;
314 if (auto *Invoke
= dyn_cast
<InvokeInst
>(U
)) {
315 ChildUnwindDestToken
= Invoke
->getUnwindDest()->getFirstNonPHI();
316 } else if (isa
<CleanupPadInst
>(U
) || isa
<CatchSwitchInst
>(U
)) {
317 Instruction
*ChildPad
= cast
<Instruction
>(U
);
318 auto Memo
= MemoMap
.find(ChildPad
);
319 if (Memo
== MemoMap
.end()) {
320 // Haven't resolved this child yet; queue it and keep searching.
321 Worklist
.push_back(ChildPad
);
324 // We've checked this child, but still need to ignore it if it
325 // had no proof either way.
326 ChildUnwindDestToken
= Memo
->second
;
327 if (!ChildUnwindDestToken
)
330 // Not a relevant user of the cleanuppad
333 // In a well-formed program, the child/invoke must either unwind to
334 // an(other) child of the cleanup, or exit the cleanup. In the
335 // first case, continue searching.
336 if (isa
<Instruction
>(ChildUnwindDestToken
) &&
337 getParentPad(ChildUnwindDestToken
) == CleanupPad
)
339 UnwindDestToken
= ChildUnwindDestToken
;
343 // If we haven't found an unwind dest for CurrentPad, we may have queued its
344 // children, so move on to the next in the worklist.
345 if (!UnwindDestToken
)
348 // Now we know that CurrentPad unwinds to UnwindDestToken. It also exits
349 // any ancestors of CurrentPad up to but not including UnwindDestToken's
350 // parent pad. Record this in the memo map, and check to see if the
351 // original EHPad being queried is one of the ones exited.
353 if (auto *UnwindPad
= dyn_cast
<Instruction
>(UnwindDestToken
))
354 UnwindParent
= getParentPad(UnwindPad
);
356 UnwindParent
= nullptr;
357 bool ExitedOriginalPad
= false;
358 for (Instruction
*ExitedPad
= CurrentPad
;
359 ExitedPad
&& ExitedPad
!= UnwindParent
;
360 ExitedPad
= dyn_cast
<Instruction
>(getParentPad(ExitedPad
))) {
361 // Skip over catchpads since they just follow their catchswitches.
362 if (isa
<CatchPadInst
>(ExitedPad
))
364 MemoMap
[ExitedPad
] = UnwindDestToken
;
365 ExitedOriginalPad
|= (ExitedPad
== EHPad
);
368 if (ExitedOriginalPad
)
369 return UnwindDestToken
;
371 // Continue the search.
374 // No definitive information is contained within this funclet.
378 /// Given an EH pad, find where it unwinds. If it unwinds to an EH pad,
379 /// return that pad instruction. If it unwinds to caller, return
380 /// ConstantTokenNone. If it does not have a definitive unwind destination,
383 /// This routine gets invoked for calls in funclets in inlinees when inlining
384 /// an invoke. Since many funclets don't have calls inside them, it's queried
385 /// on-demand rather than building a map of pads to unwind dests up front.
386 /// Determining a funclet's unwind dest may require recursively searching its
387 /// descendants, and also ancestors and cousins if the descendants don't provide
388 /// an answer. Since most funclets will have their unwind dest immediately
389 /// available as the unwind dest of a catchswitch or cleanupret, this routine
390 /// searches top-down from the given pad and then up. To avoid worst-case
391 /// quadratic run-time given that approach, it uses a memo map to avoid
392 /// re-processing funclet trees. The callers that rewrite the IR as they go
393 /// take advantage of this, for correctness, by checking/forcing rewritten
394 /// pads' entries to match the original callee view.
395 static Value
*getUnwindDestToken(Instruction
*EHPad
,
396 UnwindDestMemoTy
&MemoMap
) {
397 // Catchpads unwind to the same place as their catchswitch;
398 // redirct any queries on catchpads so the code below can
399 // deal with just catchswitches and cleanuppads.
400 if (auto *CPI
= dyn_cast
<CatchPadInst
>(EHPad
))
401 EHPad
= CPI
->getCatchSwitch();
403 // Check if we've already determined the unwind dest for this pad.
404 auto Memo
= MemoMap
.find(EHPad
);
405 if (Memo
!= MemoMap
.end())
408 // Search EHPad and, if necessary, its descendants.
409 Value
*UnwindDestToken
= getUnwindDestTokenHelper(EHPad
, MemoMap
);
410 assert((UnwindDestToken
== nullptr) != (MemoMap
.count(EHPad
) != 0));
412 return UnwindDestToken
;
414 // No information is available for this EHPad from itself or any of its
415 // descendants. An unwind all the way out to a pad in the caller would
416 // need also to agree with the unwind dest of the parent funclet, so
417 // search up the chain to try to find a funclet with information. Put
418 // null entries in the memo map to avoid re-processing as we go up.
419 MemoMap
[EHPad
] = nullptr;
421 SmallPtrSet
<Instruction
*, 4> TempMemos
;
422 TempMemos
.insert(EHPad
);
424 Instruction
*LastUselessPad
= EHPad
;
425 Value
*AncestorToken
;
426 for (AncestorToken
= getParentPad(EHPad
);
427 auto *AncestorPad
= dyn_cast
<Instruction
>(AncestorToken
);
428 AncestorToken
= getParentPad(AncestorToken
)) {
429 // Skip over catchpads since they just follow their catchswitches.
430 if (isa
<CatchPadInst
>(AncestorPad
))
432 // If the MemoMap had an entry mapping AncestorPad to nullptr, since we
433 // haven't yet called getUnwindDestTokenHelper for AncestorPad in this
434 // call to getUnwindDestToken, that would mean that AncestorPad had no
435 // information in itself, its descendants, or its ancestors. If that
436 // were the case, then we should also have recorded the lack of information
437 // for the descendant that we're coming from. So assert that we don't
438 // find a null entry in the MemoMap for AncestorPad.
439 assert(!MemoMap
.count(AncestorPad
) || MemoMap
[AncestorPad
]);
440 auto AncestorMemo
= MemoMap
.find(AncestorPad
);
441 if (AncestorMemo
== MemoMap
.end()) {
442 UnwindDestToken
= getUnwindDestTokenHelper(AncestorPad
, MemoMap
);
444 UnwindDestToken
= AncestorMemo
->second
;
448 LastUselessPad
= AncestorPad
;
449 MemoMap
[LastUselessPad
] = nullptr;
451 TempMemos
.insert(LastUselessPad
);
455 // We know that getUnwindDestTokenHelper was called on LastUselessPad and
456 // returned nullptr (and likewise for EHPad and any of its ancestors up to
457 // LastUselessPad), so LastUselessPad has no information from below. Since
458 // getUnwindDestTokenHelper must investigate all downward paths through
459 // no-information nodes to prove that a node has no information like this,
460 // and since any time it finds information it records it in the MemoMap for
461 // not just the immediately-containing funclet but also any ancestors also
462 // exited, it must be the case that, walking downward from LastUselessPad,
463 // visiting just those nodes which have not been mapped to an unwind dest
464 // by getUnwindDestTokenHelper (the nullptr TempMemos notwithstanding, since
465 // they are just used to keep getUnwindDestTokenHelper from repeating work),
466 // any node visited must have been exhaustively searched with no information
468 SmallVector
<Instruction
*, 8> Worklist(1, LastUselessPad
);
469 while (!Worklist
.empty()) {
470 Instruction
*UselessPad
= Worklist
.pop_back_val();
471 auto Memo
= MemoMap
.find(UselessPad
);
472 if (Memo
!= MemoMap
.end() && Memo
->second
) {
473 // Here the name 'UselessPad' is a bit of a misnomer, because we've found
474 // that it is a funclet that does have information about unwinding to
475 // a particular destination; its parent was a useless pad.
476 // Since its parent has no information, the unwind edge must not escape
477 // the parent, and must target a sibling of this pad. This local unwind
478 // gives us no information about EHPad. Leave it and the subtree rooted
480 assert(getParentPad(Memo
->second
) == getParentPad(UselessPad
));
483 // We know we don't have information for UselesPad. If it has an entry in
484 // the MemoMap (mapping it to nullptr), it must be one of the TempMemos
485 // added on this invocation of getUnwindDestToken; if a previous invocation
486 // recorded nullptr, it would have had to prove that the ancestors of
487 // UselessPad, which include LastUselessPad, had no information, and that
488 // in turn would have required proving that the descendants of
489 // LastUselesPad, which include EHPad, have no information about
490 // LastUselessPad, which would imply that EHPad was mapped to nullptr in
491 // the MemoMap on that invocation, which isn't the case if we got here.
492 assert(!MemoMap
.count(UselessPad
) || TempMemos
.count(UselessPad
));
493 // Assert as we enumerate users that 'UselessPad' doesn't have any unwind
494 // information that we'd be contradicting by making a map entry for it
495 // (which is something that getUnwindDestTokenHelper must have proved for
496 // us to get here). Just assert on is direct users here; the checks in
497 // this downward walk at its descendants will verify that they don't have
498 // any unwind edges that exit 'UselessPad' either (i.e. they either have no
499 // unwind edges or unwind to a sibling).
500 MemoMap
[UselessPad
] = UnwindDestToken
;
501 if (auto *CatchSwitch
= dyn_cast
<CatchSwitchInst
>(UselessPad
)) {
502 assert(CatchSwitch
->getUnwindDest() == nullptr && "Expected useless pad");
503 for (BasicBlock
*HandlerBlock
: CatchSwitch
->handlers()) {
504 auto *CatchPad
= HandlerBlock
->getFirstNonPHI();
505 for (User
*U
: CatchPad
->users()) {
507 (!isa
<InvokeInst
>(U
) ||
509 cast
<InvokeInst
>(U
)->getUnwindDest()->getFirstNonPHI()) ==
511 "Expected useless pad");
512 if (isa
<CatchSwitchInst
>(U
) || isa
<CleanupPadInst
>(U
))
513 Worklist
.push_back(cast
<Instruction
>(U
));
517 assert(isa
<CleanupPadInst
>(UselessPad
));
518 for (User
*U
: UselessPad
->users()) {
519 assert(!isa
<CleanupReturnInst
>(U
) && "Expected useless pad");
520 assert((!isa
<InvokeInst
>(U
) ||
522 cast
<InvokeInst
>(U
)->getUnwindDest()->getFirstNonPHI()) ==
524 "Expected useless pad");
525 if (isa
<CatchSwitchInst
>(U
) || isa
<CleanupPadInst
>(U
))
526 Worklist
.push_back(cast
<Instruction
>(U
));
531 return UnwindDestToken
;
534 /// When we inline a basic block into an invoke,
535 /// we have to turn all of the calls that can throw into invokes.
536 /// This function analyze BB to see if there are any calls, and if so,
537 /// it rewrites them to be invokes that jump to InvokeDest and fills in the PHI
538 /// nodes in that block with the values specified in InvokeDestPHIValues.
539 static BasicBlock
*HandleCallsInBlockInlinedThroughInvoke(
540 BasicBlock
*BB
, BasicBlock
*UnwindEdge
,
541 UnwindDestMemoTy
*FuncletUnwindMap
= nullptr) {
542 for (Instruction
&I
: llvm::make_early_inc_range(*BB
)) {
543 // We only need to check for function calls: inlined invoke
544 // instructions require no special handling.
545 CallInst
*CI
= dyn_cast
<CallInst
>(&I
);
547 if (!CI
|| CI
->doesNotThrow())
550 if (CI
->isInlineAsm()) {
551 InlineAsm
*IA
= cast
<InlineAsm
>(CI
->getCalledOperand());
552 if (!IA
->canThrow()) {
557 // We do not need to (and in fact, cannot) convert possibly throwing calls
558 // to @llvm.experimental_deoptimize (resp. @llvm.experimental.guard) into
559 // invokes. The caller's "segment" of the deoptimization continuation
560 // attached to the newly inlined @llvm.experimental_deoptimize
561 // (resp. @llvm.experimental.guard) call should contain the exception
562 // handling logic, if any.
563 if (auto *F
= CI
->getCalledFunction())
564 if (F
->getIntrinsicID() == Intrinsic::experimental_deoptimize
||
565 F
->getIntrinsicID() == Intrinsic::experimental_guard
)
568 if (auto FuncletBundle
= CI
->getOperandBundle(LLVMContext::OB_funclet
)) {
569 // This call is nested inside a funclet. If that funclet has an unwind
570 // destination within the inlinee, then unwinding out of this call would
571 // be UB. Rewriting this call to an invoke which targets the inlined
572 // invoke's unwind dest would give the call's parent funclet multiple
573 // unwind destinations, which is something that subsequent EH table
574 // generation can't handle and that the veirifer rejects. So when we
575 // see such a call, leave it as a call.
576 auto *FuncletPad
= cast
<Instruction
>(FuncletBundle
->Inputs
[0]);
577 Value
*UnwindDestToken
=
578 getUnwindDestToken(FuncletPad
, *FuncletUnwindMap
);
579 if (UnwindDestToken
&& !isa
<ConstantTokenNone
>(UnwindDestToken
))
582 Instruction
*MemoKey
;
583 if (auto *CatchPad
= dyn_cast
<CatchPadInst
>(FuncletPad
))
584 MemoKey
= CatchPad
->getCatchSwitch();
586 MemoKey
= FuncletPad
;
587 assert(FuncletUnwindMap
->count(MemoKey
) &&
588 (*FuncletUnwindMap
)[MemoKey
] == UnwindDestToken
&&
589 "must get memoized to avoid confusing later searches");
593 changeToInvokeAndSplitBasicBlock(CI
, UnwindEdge
);
599 /// If we inlined an invoke site, we need to convert calls
600 /// in the body of the inlined function into invokes.
602 /// II is the invoke instruction being inlined. FirstNewBlock is the first
603 /// block of the inlined code (the last block is the end of the function),
604 /// and InlineCodeInfo is information about the code that got inlined.
605 static void HandleInlinedLandingPad(InvokeInst
*II
, BasicBlock
*FirstNewBlock
,
606 ClonedCodeInfo
&InlinedCodeInfo
) {
607 BasicBlock
*InvokeDest
= II
->getUnwindDest();
609 Function
*Caller
= FirstNewBlock
->getParent();
611 // The inlined code is currently at the end of the function, scan from the
612 // start of the inlined code to its end, checking for stuff we need to
614 LandingPadInliningInfo
Invoke(II
);
616 // Get all of the inlined landing pad instructions.
617 SmallPtrSet
<LandingPadInst
*, 16> InlinedLPads
;
618 for (Function::iterator I
= FirstNewBlock
->getIterator(), E
= Caller
->end();
620 if (InvokeInst
*II
= dyn_cast
<InvokeInst
>(I
->getTerminator()))
621 InlinedLPads
.insert(II
->getLandingPadInst());
623 // Append the clauses from the outer landing pad instruction into the inlined
624 // landing pad instructions.
625 LandingPadInst
*OuterLPad
= Invoke
.getLandingPadInst();
626 for (LandingPadInst
*InlinedLPad
: InlinedLPads
) {
627 unsigned OuterNum
= OuterLPad
->getNumClauses();
628 InlinedLPad
->reserveClauses(OuterNum
);
629 for (unsigned OuterIdx
= 0; OuterIdx
!= OuterNum
; ++OuterIdx
)
630 InlinedLPad
->addClause(OuterLPad
->getClause(OuterIdx
));
631 if (OuterLPad
->isCleanup())
632 InlinedLPad
->setCleanup(true);
635 for (Function::iterator BB
= FirstNewBlock
->getIterator(), E
= Caller
->end();
637 if (InlinedCodeInfo
.ContainsCalls
)
638 if (BasicBlock
*NewBB
= HandleCallsInBlockInlinedThroughInvoke(
639 &*BB
, Invoke
.getOuterResumeDest()))
640 // Update any PHI nodes in the exceptional block to indicate that there
641 // is now a new entry in them.
642 Invoke
.addIncomingPHIValuesFor(NewBB
);
644 // Forward any resumes that are remaining here.
645 if (ResumeInst
*RI
= dyn_cast
<ResumeInst
>(BB
->getTerminator()))
646 Invoke
.forwardResume(RI
, InlinedLPads
);
649 // Now that everything is happy, we have one final detail. The PHI nodes in
650 // the exception destination block still have entries due to the original
651 // invoke instruction. Eliminate these entries (which might even delete the
653 InvokeDest
->removePredecessor(II
->getParent());
656 /// If we inlined an invoke site, we need to convert calls
657 /// in the body of the inlined function into invokes.
659 /// II is the invoke instruction being inlined. FirstNewBlock is the first
660 /// block of the inlined code (the last block is the end of the function),
661 /// and InlineCodeInfo is information about the code that got inlined.
662 static void HandleInlinedEHPad(InvokeInst
*II
, BasicBlock
*FirstNewBlock
,
663 ClonedCodeInfo
&InlinedCodeInfo
) {
664 BasicBlock
*UnwindDest
= II
->getUnwindDest();
665 Function
*Caller
= FirstNewBlock
->getParent();
667 assert(UnwindDest
->getFirstNonPHI()->isEHPad() && "unexpected BasicBlock!");
669 // If there are PHI nodes in the unwind destination block, we need to keep
670 // track of which values came into them from the invoke before removing the
671 // edge from this block.
672 SmallVector
<Value
*, 8> UnwindDestPHIValues
;
673 BasicBlock
*InvokeBB
= II
->getParent();
674 for (PHINode
&PHI
: UnwindDest
->phis()) {
675 // Save the value to use for this edge.
676 UnwindDestPHIValues
.push_back(PHI
.getIncomingValueForBlock(InvokeBB
));
679 // Add incoming-PHI values to the unwind destination block for the given basic
680 // block, using the values for the original invoke's source block.
681 auto UpdatePHINodes
= [&](BasicBlock
*Src
) {
682 BasicBlock::iterator I
= UnwindDest
->begin();
683 for (Value
*V
: UnwindDestPHIValues
) {
684 PHINode
*PHI
= cast
<PHINode
>(I
);
685 PHI
->addIncoming(V
, Src
);
690 // This connects all the instructions which 'unwind to caller' to the invoke
692 UnwindDestMemoTy FuncletUnwindMap
;
693 for (Function::iterator BB
= FirstNewBlock
->getIterator(), E
= Caller
->end();
695 if (auto *CRI
= dyn_cast
<CleanupReturnInst
>(BB
->getTerminator())) {
696 if (CRI
->unwindsToCaller()) {
697 auto *CleanupPad
= CRI
->getCleanupPad();
698 CleanupReturnInst::Create(CleanupPad
, UnwindDest
, CRI
);
699 CRI
->eraseFromParent();
700 UpdatePHINodes(&*BB
);
701 // Finding a cleanupret with an unwind destination would confuse
702 // subsequent calls to getUnwindDestToken, so map the cleanuppad
703 // to short-circuit any such calls and recognize this as an "unwind
704 // to caller" cleanup.
705 assert(!FuncletUnwindMap
.count(CleanupPad
) ||
706 isa
<ConstantTokenNone
>(FuncletUnwindMap
[CleanupPad
]));
707 FuncletUnwindMap
[CleanupPad
] =
708 ConstantTokenNone::get(Caller
->getContext());
712 Instruction
*I
= BB
->getFirstNonPHI();
716 Instruction
*Replacement
= nullptr;
717 if (auto *CatchSwitch
= dyn_cast
<CatchSwitchInst
>(I
)) {
718 if (CatchSwitch
->unwindsToCaller()) {
719 Value
*UnwindDestToken
;
720 if (auto *ParentPad
=
721 dyn_cast
<Instruction
>(CatchSwitch
->getParentPad())) {
722 // This catchswitch is nested inside another funclet. If that
723 // funclet has an unwind destination within the inlinee, then
724 // unwinding out of this catchswitch would be UB. Rewriting this
725 // catchswitch to unwind to the inlined invoke's unwind dest would
726 // give the parent funclet multiple unwind destinations, which is
727 // something that subsequent EH table generation can't handle and
728 // that the veirifer rejects. So when we see such a call, leave it
729 // as "unwind to caller".
730 UnwindDestToken
= getUnwindDestToken(ParentPad
, FuncletUnwindMap
);
731 if (UnwindDestToken
&& !isa
<ConstantTokenNone
>(UnwindDestToken
))
734 // This catchswitch has no parent to inherit constraints from, and
735 // none of its descendants can have an unwind edge that exits it and
736 // targets another funclet in the inlinee. It may or may not have a
737 // descendant that definitively has an unwind to caller. In either
738 // case, we'll have to assume that any unwinds out of it may need to
739 // be routed to the caller, so treat it as though it has a definitive
741 UnwindDestToken
= ConstantTokenNone::get(Caller
->getContext());
743 auto *NewCatchSwitch
= CatchSwitchInst::Create(
744 CatchSwitch
->getParentPad(), UnwindDest
,
745 CatchSwitch
->getNumHandlers(), CatchSwitch
->getName(),
747 for (BasicBlock
*PadBB
: CatchSwitch
->handlers())
748 NewCatchSwitch
->addHandler(PadBB
);
749 // Propagate info for the old catchswitch over to the new one in
750 // the unwind map. This also serves to short-circuit any subsequent
751 // checks for the unwind dest of this catchswitch, which would get
752 // confused if they found the outer handler in the callee.
753 FuncletUnwindMap
[NewCatchSwitch
] = UnwindDestToken
;
754 Replacement
= NewCatchSwitch
;
756 } else if (!isa
<FuncletPadInst
>(I
)) {
757 llvm_unreachable("unexpected EHPad!");
761 Replacement
->takeName(I
);
762 I
->replaceAllUsesWith(Replacement
);
763 I
->eraseFromParent();
764 UpdatePHINodes(&*BB
);
768 if (InlinedCodeInfo
.ContainsCalls
)
769 for (Function::iterator BB
= FirstNewBlock
->getIterator(),
772 if (BasicBlock
*NewBB
= HandleCallsInBlockInlinedThroughInvoke(
773 &*BB
, UnwindDest
, &FuncletUnwindMap
))
774 // Update any PHI nodes in the exceptional block to indicate that there
775 // is now a new entry in them.
776 UpdatePHINodes(NewBB
);
778 // Now that everything is happy, we have one final detail. The PHI nodes in
779 // the exception destination block still have entries due to the original
780 // invoke instruction. Eliminate these entries (which might even delete the
782 UnwindDest
->removePredecessor(InvokeBB
);
785 /// When inlining a call site that has !llvm.mem.parallel_loop_access,
786 /// !llvm.access.group, !alias.scope or !noalias metadata, that metadata should
787 /// be propagated to all memory-accessing cloned instructions.
788 static void PropagateCallSiteMetadata(CallBase
&CB
, Function::iterator FStart
,
789 Function::iterator FEnd
) {
790 MDNode
*MemParallelLoopAccess
=
791 CB
.getMetadata(LLVMContext::MD_mem_parallel_loop_access
);
792 MDNode
*AccessGroup
= CB
.getMetadata(LLVMContext::MD_access_group
);
793 MDNode
*AliasScope
= CB
.getMetadata(LLVMContext::MD_alias_scope
);
794 MDNode
*NoAlias
= CB
.getMetadata(LLVMContext::MD_noalias
);
795 if (!MemParallelLoopAccess
&& !AccessGroup
&& !AliasScope
&& !NoAlias
)
798 for (BasicBlock
&BB
: make_range(FStart
, FEnd
)) {
799 for (Instruction
&I
: BB
) {
800 // This metadata is only relevant for instructions that access memory.
801 if (!I
.mayReadOrWriteMemory())
804 if (MemParallelLoopAccess
) {
805 // TODO: This probably should not overwrite MemParalleLoopAccess.
806 MemParallelLoopAccess
= MDNode::concatenate(
807 I
.getMetadata(LLVMContext::MD_mem_parallel_loop_access
),
808 MemParallelLoopAccess
);
809 I
.setMetadata(LLVMContext::MD_mem_parallel_loop_access
,
810 MemParallelLoopAccess
);
814 I
.setMetadata(LLVMContext::MD_access_group
, uniteAccessGroups(
815 I
.getMetadata(LLVMContext::MD_access_group
), AccessGroup
));
818 I
.setMetadata(LLVMContext::MD_alias_scope
, MDNode::concatenate(
819 I
.getMetadata(LLVMContext::MD_alias_scope
), AliasScope
));
822 I
.setMetadata(LLVMContext::MD_noalias
, MDNode::concatenate(
823 I
.getMetadata(LLVMContext::MD_noalias
), NoAlias
));
828 /// Bundle operands of the inlined function must be added to inlined call sites.
829 static void PropagateOperandBundles(Function::iterator InlinedBB
,
830 Instruction
*CallSiteEHPad
) {
831 for (Instruction
&II
: llvm::make_early_inc_range(*InlinedBB
)) {
832 CallBase
*I
= dyn_cast
<CallBase
>(&II
);
835 // Skip call sites which already have a "funclet" bundle.
836 if (I
->getOperandBundle(LLVMContext::OB_funclet
))
838 // Skip call sites which are nounwind intrinsics (as long as they don't
839 // lower into regular function calls in the course of IR transformations).
841 dyn_cast
<Function
>(I
->getCalledOperand()->stripPointerCasts());
842 if (CalledFn
&& CalledFn
->isIntrinsic() && I
->doesNotThrow() &&
843 !IntrinsicInst::mayLowerToFunctionCall(CalledFn
->getIntrinsicID()))
846 SmallVector
<OperandBundleDef
, 1> OpBundles
;
847 I
->getOperandBundlesAsDefs(OpBundles
);
848 OpBundles
.emplace_back("funclet", CallSiteEHPad
);
850 Instruction
*NewInst
= CallBase::Create(I
, OpBundles
, I
);
851 NewInst
->takeName(I
);
852 I
->replaceAllUsesWith(NewInst
);
853 I
->eraseFromParent();
858 /// Utility for cloning !noalias and !alias.scope metadata. When a code region
859 /// using scoped alias metadata is inlined, the aliasing relationships may not
860 /// hold between the two version. It is necessary to create a deep clone of the
861 /// metadata, putting the two versions in separate scope domains.
862 class ScopedAliasMetadataDeepCloner
{
863 using MetadataMap
= DenseMap
<const MDNode
*, TrackingMDNodeRef
>;
864 SetVector
<const MDNode
*> MD
;
866 void addRecursiveMetadataUses();
869 ScopedAliasMetadataDeepCloner(const Function
*F
);
871 /// Create a new clone of the scoped alias metadata, which will be used by
872 /// subsequent remap() calls.
875 /// Remap instructions in the given range from the original to the cloned
877 void remap(Function::iterator FStart
, Function::iterator FEnd
);
881 ScopedAliasMetadataDeepCloner::ScopedAliasMetadataDeepCloner(
883 for (const BasicBlock
&BB
: *F
) {
884 for (const Instruction
&I
: BB
) {
885 if (const MDNode
*M
= I
.getMetadata(LLVMContext::MD_alias_scope
))
887 if (const MDNode
*M
= I
.getMetadata(LLVMContext::MD_noalias
))
890 // We also need to clone the metadata in noalias intrinsics.
891 if (const auto *Decl
= dyn_cast
<NoAliasScopeDeclInst
>(&I
))
892 MD
.insert(Decl
->getScopeList());
895 addRecursiveMetadataUses();
898 void ScopedAliasMetadataDeepCloner::addRecursiveMetadataUses() {
899 SmallVector
<const Metadata
*, 16> Queue(MD
.begin(), MD
.end());
900 while (!Queue
.empty()) {
901 const MDNode
*M
= cast
<MDNode
>(Queue
.pop_back_val());
902 for (const Metadata
*Op
: M
->operands())
903 if (const MDNode
*OpMD
= dyn_cast
<MDNode
>(Op
))
905 Queue
.push_back(OpMD
);
909 void ScopedAliasMetadataDeepCloner::clone() {
910 assert(MDMap
.empty() && "clone() already called ?");
912 SmallVector
<TempMDTuple
, 16> DummyNodes
;
913 for (const MDNode
*I
: MD
) {
914 DummyNodes
.push_back(MDTuple::getTemporary(I
->getContext(), None
));
915 MDMap
[I
].reset(DummyNodes
.back().get());
918 // Create new metadata nodes to replace the dummy nodes, replacing old
919 // metadata references with either a dummy node or an already-created new
921 SmallVector
<Metadata
*, 4> NewOps
;
922 for (const MDNode
*I
: MD
) {
923 for (const Metadata
*Op
: I
->operands()) {
924 if (const MDNode
*M
= dyn_cast
<MDNode
>(Op
))
925 NewOps
.push_back(MDMap
[M
]);
927 NewOps
.push_back(const_cast<Metadata
*>(Op
));
930 MDNode
*NewM
= MDNode::get(I
->getContext(), NewOps
);
931 MDTuple
*TempM
= cast
<MDTuple
>(MDMap
[I
]);
932 assert(TempM
->isTemporary() && "Expected temporary node");
934 TempM
->replaceAllUsesWith(NewM
);
939 void ScopedAliasMetadataDeepCloner::remap(Function::iterator FStart
,
940 Function::iterator FEnd
) {
942 return; // Nothing to do.
944 for (BasicBlock
&BB
: make_range(FStart
, FEnd
)) {
945 for (Instruction
&I
: BB
) {
946 // TODO: The null checks for the MDMap.lookup() results should no longer
948 if (MDNode
*M
= I
.getMetadata(LLVMContext::MD_alias_scope
))
949 if (MDNode
*MNew
= MDMap
.lookup(M
))
950 I
.setMetadata(LLVMContext::MD_alias_scope
, MNew
);
952 if (MDNode
*M
= I
.getMetadata(LLVMContext::MD_noalias
))
953 if (MDNode
*MNew
= MDMap
.lookup(M
))
954 I
.setMetadata(LLVMContext::MD_noalias
, MNew
);
956 if (auto *Decl
= dyn_cast
<NoAliasScopeDeclInst
>(&I
))
957 if (MDNode
*MNew
= MDMap
.lookup(Decl
->getScopeList()))
958 Decl
->setScopeList(MNew
);
963 /// If the inlined function has noalias arguments,
964 /// then add new alias scopes for each noalias argument, tag the mapped noalias
965 /// parameters with noalias metadata specifying the new scope, and tag all
966 /// non-derived loads, stores and memory intrinsics with the new alias scopes.
967 static void AddAliasScopeMetadata(CallBase
&CB
, ValueToValueMapTy
&VMap
,
968 const DataLayout
&DL
, AAResults
*CalleeAAR
,
969 ClonedCodeInfo
&InlinedFunctionInfo
) {
970 if (!EnableNoAliasConversion
)
973 const Function
*CalledFunc
= CB
.getCalledFunction();
974 SmallVector
<const Argument
*, 4> NoAliasArgs
;
976 for (const Argument
&Arg
: CalledFunc
->args())
977 if (CB
.paramHasAttr(Arg
.getArgNo(), Attribute::NoAlias
) && !Arg
.use_empty())
978 NoAliasArgs
.push_back(&Arg
);
980 if (NoAliasArgs
.empty())
983 // To do a good job, if a noalias variable is captured, we need to know if
984 // the capture point dominates the particular use we're considering.
986 DT
.recalculate(const_cast<Function
&>(*CalledFunc
));
988 // noalias indicates that pointer values based on the argument do not alias
989 // pointer values which are not based on it. So we add a new "scope" for each
990 // noalias function argument. Accesses using pointers based on that argument
991 // become part of that alias scope, accesses using pointers not based on that
992 // argument are tagged as noalias with that scope.
994 DenseMap
<const Argument
*, MDNode
*> NewScopes
;
995 MDBuilder
MDB(CalledFunc
->getContext());
997 // Create a new scope domain for this function.
999 MDB
.createAnonymousAliasScopeDomain(CalledFunc
->getName());
1000 for (unsigned i
= 0, e
= NoAliasArgs
.size(); i
!= e
; ++i
) {
1001 const Argument
*A
= NoAliasArgs
[i
];
1003 std::string Name
= std::string(CalledFunc
->getName());
1006 Name
+= A
->getName();
1008 Name
+= ": argument ";
1012 // Note: We always create a new anonymous root here. This is true regardless
1013 // of the linkage of the callee because the aliasing "scope" is not just a
1014 // property of the callee, but also all control dependencies in the caller.
1015 MDNode
*NewScope
= MDB
.createAnonymousAliasScope(NewDomain
, Name
);
1016 NewScopes
.insert(std::make_pair(A
, NewScope
));
1018 if (UseNoAliasIntrinsic
) {
1019 // Introduce a llvm.experimental.noalias.scope.decl for the noalias
1021 MDNode
*AScopeList
= MDNode::get(CalledFunc
->getContext(), NewScope
);
1023 IRBuilder
<>(&CB
).CreateNoAliasScopeDeclaration(AScopeList
);
1024 // Ignore the result for now. The result will be used when the
1025 // llvm.noalias intrinsic is introduced.
1030 // Iterate over all new instructions in the map; for all memory-access
1031 // instructions, add the alias scope metadata.
1032 for (ValueToValueMapTy::iterator VMI
= VMap
.begin(), VMIE
= VMap
.end();
1033 VMI
!= VMIE
; ++VMI
) {
1034 if (const Instruction
*I
= dyn_cast
<Instruction
>(VMI
->first
)) {
1038 Instruction
*NI
= dyn_cast
<Instruction
>(VMI
->second
);
1039 if (!NI
|| InlinedFunctionInfo
.isSimplified(I
, NI
))
1042 bool IsArgMemOnlyCall
= false, IsFuncCall
= false;
1043 SmallVector
<const Value
*, 2> PtrArgs
;
1045 if (const LoadInst
*LI
= dyn_cast
<LoadInst
>(I
))
1046 PtrArgs
.push_back(LI
->getPointerOperand());
1047 else if (const StoreInst
*SI
= dyn_cast
<StoreInst
>(I
))
1048 PtrArgs
.push_back(SI
->getPointerOperand());
1049 else if (const VAArgInst
*VAAI
= dyn_cast
<VAArgInst
>(I
))
1050 PtrArgs
.push_back(VAAI
->getPointerOperand());
1051 else if (const AtomicCmpXchgInst
*CXI
= dyn_cast
<AtomicCmpXchgInst
>(I
))
1052 PtrArgs
.push_back(CXI
->getPointerOperand());
1053 else if (const AtomicRMWInst
*RMWI
= dyn_cast
<AtomicRMWInst
>(I
))
1054 PtrArgs
.push_back(RMWI
->getPointerOperand());
1055 else if (const auto *Call
= dyn_cast
<CallBase
>(I
)) {
1056 // If we know that the call does not access memory, then we'll still
1057 // know that about the inlined clone of this call site, and we don't
1058 // need to add metadata.
1059 if (Call
->doesNotAccessMemory())
1064 FunctionModRefBehavior MRB
= CalleeAAR
->getModRefBehavior(Call
);
1066 // We'll retain this knowledge without additional metadata.
1067 if (AAResults::onlyAccessesInaccessibleMem(MRB
))
1070 if (AAResults::onlyAccessesArgPointees(MRB
))
1071 IsArgMemOnlyCall
= true;
1074 for (Value
*Arg
: Call
->args()) {
1075 // Only care about pointer arguments. If a noalias argument is
1076 // accessed through a non-pointer argument, it must be captured
1077 // first (e.g. via ptrtoint), and we protect against captures below.
1078 if (!Arg
->getType()->isPointerTy())
1081 PtrArgs
.push_back(Arg
);
1085 // If we found no pointers, then this instruction is not suitable for
1086 // pairing with an instruction to receive aliasing metadata.
1087 // However, if this is a call, this we might just alias with none of the
1088 // noalias arguments.
1089 if (PtrArgs
.empty() && !IsFuncCall
)
1092 // It is possible that there is only one underlying object, but you
1093 // need to go through several PHIs to see it, and thus could be
1094 // repeated in the Objects list.
1095 SmallPtrSet
<const Value
*, 4> ObjSet
;
1096 SmallVector
<Metadata
*, 4> Scopes
, NoAliases
;
1098 SmallSetVector
<const Argument
*, 4> NAPtrArgs
;
1099 for (const Value
*V
: PtrArgs
) {
1100 SmallVector
<const Value
*, 4> Objects
;
1101 getUnderlyingObjects(V
, Objects
, /* LI = */ nullptr);
1103 for (const Value
*O
: Objects
)
1107 // Figure out if we're derived from anything that is not a noalias
1109 bool RequiresNoCaptureBefore
= false, UsesAliasingPtr
= false,
1110 UsesUnknownObject
= false;
1111 for (const Value
*V
: ObjSet
) {
1112 // Is this value a constant that cannot be derived from any pointer
1113 // value (we need to exclude constant expressions, for example, that
1114 // are formed from arithmetic on global symbols).
1115 bool IsNonPtrConst
= isa
<ConstantInt
>(V
) || isa
<ConstantFP
>(V
) ||
1116 isa
<ConstantPointerNull
>(V
) ||
1117 isa
<ConstantDataVector
>(V
) || isa
<UndefValue
>(V
);
1121 // If this is anything other than a noalias argument, then we cannot
1122 // completely describe the aliasing properties using alias.scope
1123 // metadata (and, thus, won't add any).
1124 if (const Argument
*A
= dyn_cast
<Argument
>(V
)) {
1125 if (!CB
.paramHasAttr(A
->getArgNo(), Attribute::NoAlias
))
1126 UsesAliasingPtr
= true;
1128 UsesAliasingPtr
= true;
1131 if (isEscapeSource(V
)) {
1132 // An escape source can only alias with a noalias argument if it has
1133 // been captured beforehand.
1134 RequiresNoCaptureBefore
= true;
1135 } else if (!isa
<Argument
>(V
) && !isIdentifiedObject(V
)) {
1136 // If this is neither an escape source, nor some identified object
1137 // (which cannot directly alias a noalias argument), nor some other
1138 // argument (which, by definition, also cannot alias a noalias
1139 // argument), conservatively do not make any assumptions.
1140 UsesUnknownObject
= true;
1144 // Nothing we can do if the used underlying object cannot be reliably
1146 if (UsesUnknownObject
)
1149 // A function call can always get captured noalias pointers (via other
1150 // parameters, globals, etc.).
1151 if (IsFuncCall
&& !IsArgMemOnlyCall
)
1152 RequiresNoCaptureBefore
= true;
1154 // First, we want to figure out all of the sets with which we definitely
1155 // don't alias. Iterate over all noalias set, and add those for which:
1156 // 1. The noalias argument is not in the set of objects from which we
1157 // definitely derive.
1158 // 2. The noalias argument has not yet been captured.
1159 // An arbitrary function that might load pointers could see captured
1160 // noalias arguments via other noalias arguments or globals, and so we
1161 // must always check for prior capture.
1162 for (const Argument
*A
: NoAliasArgs
) {
1163 if (ObjSet
.contains(A
))
1164 continue; // May be based on a noalias argument.
1166 // It might be tempting to skip the PointerMayBeCapturedBefore check if
1167 // A->hasNoCaptureAttr() is true, but this is incorrect because
1168 // nocapture only guarantees that no copies outlive the function, not
1169 // that the value cannot be locally captured.
1170 if (!RequiresNoCaptureBefore
||
1171 !PointerMayBeCapturedBefore(A
, /* ReturnCaptures */ false,
1172 /* StoreCaptures */ false, I
, &DT
))
1173 NoAliases
.push_back(NewScopes
[A
]);
1176 if (!NoAliases
.empty())
1177 NI
->setMetadata(LLVMContext::MD_noalias
,
1178 MDNode::concatenate(
1179 NI
->getMetadata(LLVMContext::MD_noalias
),
1180 MDNode::get(CalledFunc
->getContext(), NoAliases
)));
1182 // Next, we want to figure out all of the sets to which we might belong.
1183 // We might belong to a set if the noalias argument is in the set of
1184 // underlying objects. If there is some non-noalias argument in our list
1185 // of underlying objects, then we cannot add a scope because the fact
1186 // that some access does not alias with any set of our noalias arguments
1187 // cannot itself guarantee that it does not alias with this access
1188 // (because there is some pointer of unknown origin involved and the
1189 // other access might also depend on this pointer). We also cannot add
1190 // scopes to arbitrary functions unless we know they don't access any
1191 // non-parameter pointer-values.
1192 bool CanAddScopes
= !UsesAliasingPtr
;
1193 if (CanAddScopes
&& IsFuncCall
)
1194 CanAddScopes
= IsArgMemOnlyCall
;
1197 for (const Argument
*A
: NoAliasArgs
) {
1198 if (ObjSet
.count(A
))
1199 Scopes
.push_back(NewScopes
[A
]);
1202 if (!Scopes
.empty())
1204 LLVMContext::MD_alias_scope
,
1205 MDNode::concatenate(NI
->getMetadata(LLVMContext::MD_alias_scope
),
1206 MDNode::get(CalledFunc
->getContext(), Scopes
)));
1211 static bool MayContainThrowingOrExitingCall(Instruction
*Begin
,
1214 assert(Begin
->getParent() == End
->getParent() &&
1215 "Expected to be in same basic block!");
1216 return !llvm::isGuaranteedToTransferExecutionToSuccessor(
1217 Begin
->getIterator(), End
->getIterator(), InlinerAttributeWindow
+ 1);
1220 static AttrBuilder
IdentifyValidAttributes(CallBase
&CB
) {
1222 AttrBuilder
AB(CB
.getContext(), CB
.getAttributes().getRetAttrs());
1223 if (!AB
.hasAttributes())
1225 AttrBuilder
Valid(CB
.getContext());
1226 // Only allow these white listed attributes to be propagated back to the
1227 // callee. This is because other attributes may only be valid on the call
1228 // itself, i.e. attributes such as signext and zeroext.
1229 if (auto DerefBytes
= AB
.getDereferenceableBytes())
1230 Valid
.addDereferenceableAttr(DerefBytes
);
1231 if (auto DerefOrNullBytes
= AB
.getDereferenceableOrNullBytes())
1232 Valid
.addDereferenceableOrNullAttr(DerefOrNullBytes
);
1233 if (AB
.contains(Attribute::NoAlias
))
1234 Valid
.addAttribute(Attribute::NoAlias
);
1235 if (AB
.contains(Attribute::NonNull
))
1236 Valid
.addAttribute(Attribute::NonNull
);
1240 static void AddReturnAttributes(CallBase
&CB
, ValueToValueMapTy
&VMap
) {
1241 if (!UpdateReturnAttributes
)
1244 AttrBuilder Valid
= IdentifyValidAttributes(CB
);
1245 if (!Valid
.hasAttributes())
1247 auto *CalledFunction
= CB
.getCalledFunction();
1248 auto &Context
= CalledFunction
->getContext();
1250 for (auto &BB
: *CalledFunction
) {
1251 auto *RI
= dyn_cast
<ReturnInst
>(BB
.getTerminator());
1252 if (!RI
|| !isa
<CallBase
>(RI
->getOperand(0)))
1254 auto *RetVal
= cast
<CallBase
>(RI
->getOperand(0));
1255 // Check that the cloned RetVal exists and is a call, otherwise we cannot
1256 // add the attributes on the cloned RetVal. Simplification during inlining
1257 // could have transformed the cloned instruction.
1258 auto *NewRetVal
= dyn_cast_or_null
<CallBase
>(VMap
.lookup(RetVal
));
1261 // Backward propagation of attributes to the returned value may be incorrect
1262 // if it is control flow dependent.
1265 // %rv = call @foo()
1266 // %rv2 = call @bar()
1267 // if (%rv2 != null)
1274 // %val = call nonnull @callee()
1276 // Here we cannot add the nonnull attribute on either foo or bar. So, we
1277 // limit the check to both RetVal and RI are in the same basic block and
1278 // there are no throwing/exiting instructions between these instructions.
1279 if (RI
->getParent() != RetVal
->getParent() ||
1280 MayContainThrowingOrExitingCall(RetVal
, RI
))
1282 // Add to the existing attributes of NewRetVal, i.e. the cloned call
1284 // NB! When we have the same attribute already existing on NewRetVal, but
1285 // with a differing value, the AttributeList's merge API honours the already
1286 // existing attribute value (i.e. attributes such as dereferenceable,
1287 // dereferenceable_or_null etc). See AttrBuilder::merge for more details.
1288 AttributeList AL
= NewRetVal
->getAttributes();
1289 AttributeList NewAL
= AL
.addRetAttributes(Context
, Valid
);
1290 NewRetVal
->setAttributes(NewAL
);
1294 /// If the inlined function has non-byval align arguments, then
1295 /// add @llvm.assume-based alignment assumptions to preserve this information.
1296 static void AddAlignmentAssumptions(CallBase
&CB
, InlineFunctionInfo
&IFI
) {
1297 if (!PreserveAlignmentAssumptions
|| !IFI
.GetAssumptionCache
)
1300 AssumptionCache
*AC
= &IFI
.GetAssumptionCache(*CB
.getCaller());
1301 auto &DL
= CB
.getCaller()->getParent()->getDataLayout();
1303 // To avoid inserting redundant assumptions, we should check for assumptions
1304 // already in the caller. To do this, we might need a DT of the caller.
1306 bool DTCalculated
= false;
1308 Function
*CalledFunc
= CB
.getCalledFunction();
1309 for (Argument
&Arg
: CalledFunc
->args()) {
1310 unsigned Align
= Arg
.getType()->isPointerTy() ? Arg
.getParamAlignment() : 0;
1311 if (Align
&& !Arg
.hasPassPointeeByValueCopyAttr() && !Arg
.hasNUses(0)) {
1312 if (!DTCalculated
) {
1313 DT
.recalculate(*CB
.getCaller());
1314 DTCalculated
= true;
1317 // If we can already prove the asserted alignment in the context of the
1318 // caller, then don't bother inserting the assumption.
1319 Value
*ArgVal
= CB
.getArgOperand(Arg
.getArgNo());
1320 if (getKnownAlignment(ArgVal
, DL
, &CB
, AC
, &DT
) >= Align
)
1324 IRBuilder
<>(&CB
).CreateAlignmentAssumption(DL
, ArgVal
, Align
);
1325 AC
->registerAssumption(cast
<AssumeInst
>(NewAsmp
));
1330 /// Once we have cloned code over from a callee into the caller,
1331 /// update the specified callgraph to reflect the changes we made.
1332 /// Note that it's possible that not all code was copied over, so only
1333 /// some edges of the callgraph may remain.
1334 static void UpdateCallGraphAfterInlining(CallBase
&CB
,
1335 Function::iterator FirstNewBlock
,
1336 ValueToValueMapTy
&VMap
,
1337 InlineFunctionInfo
&IFI
) {
1338 CallGraph
&CG
= *IFI
.CG
;
1339 const Function
*Caller
= CB
.getCaller();
1340 const Function
*Callee
= CB
.getCalledFunction();
1341 CallGraphNode
*CalleeNode
= CG
[Callee
];
1342 CallGraphNode
*CallerNode
= CG
[Caller
];
1344 // Since we inlined some uninlined call sites in the callee into the caller,
1345 // add edges from the caller to all of the callees of the callee.
1346 CallGraphNode::iterator I
= CalleeNode
->begin(), E
= CalleeNode
->end();
1348 // Consider the case where CalleeNode == CallerNode.
1349 CallGraphNode::CalledFunctionsVector CallCache
;
1350 if (CalleeNode
== CallerNode
) {
1351 CallCache
.assign(I
, E
);
1352 I
= CallCache
.begin();
1353 E
= CallCache
.end();
1356 for (; I
!= E
; ++I
) {
1357 // Skip 'refererence' call records.
1361 const Value
*OrigCall
= *I
->first
;
1363 ValueToValueMapTy::iterator VMI
= VMap
.find(OrigCall
);
1364 // Only copy the edge if the call was inlined!
1365 if (VMI
== VMap
.end() || VMI
->second
== nullptr)
1368 // If the call was inlined, but then constant folded, there is no edge to
1369 // add. Check for this case.
1370 auto *NewCall
= dyn_cast
<CallBase
>(VMI
->second
);
1374 // We do not treat intrinsic calls like real function calls because we
1375 // expect them to become inline code; do not add an edge for an intrinsic.
1376 if (NewCall
->getCalledFunction() &&
1377 NewCall
->getCalledFunction()->isIntrinsic())
1380 // Remember that this call site got inlined for the client of
1382 IFI
.InlinedCalls
.push_back(NewCall
);
1384 // It's possible that inlining the callsite will cause it to go from an
1385 // indirect to a direct call by resolving a function pointer. If this
1386 // happens, set the callee of the new call site to a more precise
1387 // destination. This can also happen if the call graph node of the caller
1388 // was just unnecessarily imprecise.
1389 if (!I
->second
->getFunction())
1390 if (Function
*F
= NewCall
->getCalledFunction()) {
1391 // Indirect call site resolved to direct call.
1392 CallerNode
->addCalledFunction(NewCall
, CG
[F
]);
1397 CallerNode
->addCalledFunction(NewCall
, I
->second
);
1400 // Update the call graph by deleting the edge from Callee to Caller. We must
1401 // do this after the loop above in case Caller and Callee are the same.
1402 CallerNode
->removeCallEdgeFor(*cast
<CallBase
>(&CB
));
1405 static void HandleByValArgumentInit(Type
*ByValType
, Value
*Dst
, Value
*Src
,
1406 Module
*M
, BasicBlock
*InsertBlock
,
1407 InlineFunctionInfo
&IFI
) {
1408 IRBuilder
<> Builder(InsertBlock
, InsertBlock
->begin());
1411 Builder
.getInt64(M
->getDataLayout().getTypeStoreSize(ByValType
));
1413 // Always generate a memcpy of alignment 1 here because we don't know
1414 // the alignment of the src pointer. Other optimizations can infer
1415 // better alignment.
1416 Builder
.CreateMemCpy(Dst
, /*DstAlign*/ Align(1), Src
,
1417 /*SrcAlign*/ Align(1), Size
);
1420 /// When inlining a call site that has a byval argument,
1421 /// we have to make the implicit memcpy explicit by adding it.
1422 static Value
*HandleByValArgument(Type
*ByValType
, Value
*Arg
,
1423 Instruction
*TheCall
,
1424 const Function
*CalledFunc
,
1425 InlineFunctionInfo
&IFI
,
1426 unsigned ByValAlignment
) {
1427 assert(cast
<PointerType
>(Arg
->getType())
1428 ->isOpaqueOrPointeeTypeMatches(ByValType
));
1429 Function
*Caller
= TheCall
->getFunction();
1430 const DataLayout
&DL
= Caller
->getParent()->getDataLayout();
1432 // If the called function is readonly, then it could not mutate the caller's
1433 // copy of the byval'd memory. In this case, it is safe to elide the copy and
1435 if (CalledFunc
->onlyReadsMemory()) {
1436 // If the byval argument has a specified alignment that is greater than the
1437 // passed in pointer, then we either have to round up the input pointer or
1438 // give up on this transformation.
1439 if (ByValAlignment
<= 1) // 0 = unspecified, 1 = no particular alignment.
1442 AssumptionCache
*AC
=
1443 IFI
.GetAssumptionCache
? &IFI
.GetAssumptionCache(*Caller
) : nullptr;
1445 // If the pointer is already known to be sufficiently aligned, or if we can
1446 // round it up to a larger alignment, then we don't need a temporary.
1447 if (getOrEnforceKnownAlignment(Arg
, Align(ByValAlignment
), DL
, TheCall
,
1448 AC
) >= ByValAlignment
)
1451 // Otherwise, we have to make a memcpy to get a safe alignment. This is bad
1452 // for code quality, but rarely happens and is required for correctness.
1455 // Create the alloca. If we have DataLayout, use nice alignment.
1456 Align
Alignment(DL
.getPrefTypeAlignment(ByValType
));
1458 // If the byval had an alignment specified, we *must* use at least that
1459 // alignment, as it is required by the byval argument (and uses of the
1460 // pointer inside the callee).
1461 if (ByValAlignment
> 0)
1462 Alignment
= std::max(Alignment
, Align(ByValAlignment
));
1465 new AllocaInst(ByValType
, DL
.getAllocaAddrSpace(), nullptr, Alignment
,
1466 Arg
->getName(), &*Caller
->begin()->begin());
1467 IFI
.StaticAllocas
.push_back(cast
<AllocaInst
>(NewAlloca
));
1469 // Uses of the argument in the function should use our new alloca
1474 // Check whether this Value is used by a lifetime intrinsic.
1475 static bool isUsedByLifetimeMarker(Value
*V
) {
1476 for (User
*U
: V
->users())
1477 if (IntrinsicInst
*II
= dyn_cast
<IntrinsicInst
>(U
))
1478 if (II
->isLifetimeStartOrEnd())
1483 // Check whether the given alloca already has
1484 // lifetime.start or lifetime.end intrinsics.
1485 static bool hasLifetimeMarkers(AllocaInst
*AI
) {
1486 Type
*Ty
= AI
->getType();
1487 Type
*Int8PtrTy
= Type::getInt8PtrTy(Ty
->getContext(),
1488 Ty
->getPointerAddressSpace());
1489 if (Ty
== Int8PtrTy
)
1490 return isUsedByLifetimeMarker(AI
);
1492 // Do a scan to find all the casts to i8*.
1493 for (User
*U
: AI
->users()) {
1494 if (U
->getType() != Int8PtrTy
) continue;
1495 if (U
->stripPointerCasts() != AI
) continue;
1496 if (isUsedByLifetimeMarker(U
))
1502 /// Return the result of AI->isStaticAlloca() if AI were moved to the entry
1503 /// block. Allocas used in inalloca calls and allocas of dynamic array size
1504 /// cannot be static.
1505 static bool allocaWouldBeStaticInEntry(const AllocaInst
*AI
) {
1506 return isa
<Constant
>(AI
->getArraySize()) && !AI
->isUsedWithInAlloca();
1509 /// Returns a DebugLoc for a new DILocation which is a clone of \p OrigDL
1510 /// inlined at \p InlinedAt. \p IANodes is an inlined-at cache.
1511 static DebugLoc
inlineDebugLoc(DebugLoc OrigDL
, DILocation
*InlinedAt
,
1513 DenseMap
<const MDNode
*, MDNode
*> &IANodes
) {
1514 auto IA
= DebugLoc::appendInlinedAt(OrigDL
, InlinedAt
, Ctx
, IANodes
);
1515 return DILocation::get(Ctx
, OrigDL
.getLine(), OrigDL
.getCol(),
1516 OrigDL
.getScope(), IA
);
1519 /// Update inlined instructions' line numbers to
1520 /// to encode location where these instructions are inlined.
1521 static void fixupLineNumbers(Function
*Fn
, Function::iterator FI
,
1522 Instruction
*TheCall
, bool CalleeHasDebugInfo
) {
1523 const DebugLoc
&TheCallDL
= TheCall
->getDebugLoc();
1527 auto &Ctx
= Fn
->getContext();
1528 DILocation
*InlinedAtNode
= TheCallDL
;
1530 // Create a unique call site, not to be confused with any other call from the
1532 InlinedAtNode
= DILocation::getDistinct(
1533 Ctx
, InlinedAtNode
->getLine(), InlinedAtNode
->getColumn(),
1534 InlinedAtNode
->getScope(), InlinedAtNode
->getInlinedAt());
1536 // Cache the inlined-at nodes as they're built so they are reused, without
1537 // this every instruction's inlined-at chain would become distinct from each
1539 DenseMap
<const MDNode
*, MDNode
*> IANodes
;
1541 // Check if we are not generating inline line tables and want to use
1542 // the call site location instead.
1543 bool NoInlineLineTables
= Fn
->hasFnAttribute("no-inline-line-tables");
1545 for (; FI
!= Fn
->end(); ++FI
) {
1546 for (BasicBlock::iterator BI
= FI
->begin(), BE
= FI
->end();
1548 // Loop metadata needs to be updated so that the start and end locs
1549 // reference inlined-at locations.
1550 auto updateLoopInfoLoc
= [&Ctx
, &InlinedAtNode
,
1551 &IANodes
](Metadata
*MD
) -> Metadata
* {
1552 if (auto *Loc
= dyn_cast_or_null
<DILocation
>(MD
))
1553 return inlineDebugLoc(Loc
, InlinedAtNode
, Ctx
, IANodes
).get();
1556 updateLoopMetadataDebugLocations(*BI
, updateLoopInfoLoc
);
1558 if (!NoInlineLineTables
)
1559 if (DebugLoc DL
= BI
->getDebugLoc()) {
1561 inlineDebugLoc(DL
, InlinedAtNode
, BI
->getContext(), IANodes
);
1562 BI
->setDebugLoc(IDL
);
1566 if (CalleeHasDebugInfo
&& !NoInlineLineTables
)
1569 // If the inlined instruction has no line number, or if inline info
1570 // is not being generated, make it look as if it originates from the call
1571 // location. This is important for ((__always_inline, __nodebug__))
1572 // functions which must use caller location for all instructions in their
1575 // Don't update static allocas, as they may get moved later.
1576 if (auto *AI
= dyn_cast
<AllocaInst
>(BI
))
1577 if (allocaWouldBeStaticInEntry(AI
))
1580 BI
->setDebugLoc(TheCallDL
);
1583 // Remove debug info intrinsics if we're not keeping inline info.
1584 if (NoInlineLineTables
) {
1585 BasicBlock::iterator BI
= FI
->begin();
1586 while (BI
!= FI
->end()) {
1587 if (isa
<DbgInfoIntrinsic
>(BI
)) {
1588 BI
= BI
->eraseFromParent();
1598 /// Update the block frequencies of the caller after a callee has been inlined.
1600 /// Each block cloned into the caller has its block frequency scaled by the
1601 /// ratio of CallSiteFreq/CalleeEntryFreq. This ensures that the cloned copy of
1602 /// callee's entry block gets the same frequency as the callsite block and the
1603 /// relative frequencies of all cloned blocks remain the same after cloning.
1604 static void updateCallerBFI(BasicBlock
*CallSiteBlock
,
1605 const ValueToValueMapTy
&VMap
,
1606 BlockFrequencyInfo
*CallerBFI
,
1607 BlockFrequencyInfo
*CalleeBFI
,
1608 const BasicBlock
&CalleeEntryBlock
) {
1609 SmallPtrSet
<BasicBlock
*, 16> ClonedBBs
;
1610 for (auto Entry
: VMap
) {
1611 if (!isa
<BasicBlock
>(Entry
.first
) || !Entry
.second
)
1613 auto *OrigBB
= cast
<BasicBlock
>(Entry
.first
);
1614 auto *ClonedBB
= cast
<BasicBlock
>(Entry
.second
);
1615 uint64_t Freq
= CalleeBFI
->getBlockFreq(OrigBB
).getFrequency();
1616 if (!ClonedBBs
.insert(ClonedBB
).second
) {
1617 // Multiple blocks in the callee might get mapped to one cloned block in
1618 // the caller since we prune the callee as we clone it. When that happens,
1619 // we want to use the maximum among the original blocks' frequencies.
1620 uint64_t NewFreq
= CallerBFI
->getBlockFreq(ClonedBB
).getFrequency();
1624 CallerBFI
->setBlockFreq(ClonedBB
, Freq
);
1626 BasicBlock
*EntryClone
= cast
<BasicBlock
>(VMap
.lookup(&CalleeEntryBlock
));
1627 CallerBFI
->setBlockFreqAndScale(
1628 EntryClone
, CallerBFI
->getBlockFreq(CallSiteBlock
).getFrequency(),
1632 /// Update the branch metadata for cloned call instructions.
1633 static void updateCallProfile(Function
*Callee
, const ValueToValueMapTy
&VMap
,
1634 const ProfileCount
&CalleeEntryCount
,
1635 const CallBase
&TheCall
, ProfileSummaryInfo
*PSI
,
1636 BlockFrequencyInfo
*CallerBFI
) {
1637 if (CalleeEntryCount
.isSynthetic() || CalleeEntryCount
.getCount() < 1)
1639 auto CallSiteCount
= PSI
? PSI
->getProfileCount(TheCall
, CallerBFI
) : None
;
1641 std::min(CallSiteCount
.value_or(0), CalleeEntryCount
.getCount());
1642 updateProfileCallee(Callee
, -CallCount
, &VMap
);
1645 void llvm::updateProfileCallee(
1646 Function
*Callee
, int64_t EntryDelta
,
1647 const ValueMap
<const Value
*, WeakTrackingVH
> *VMap
) {
1648 auto CalleeCount
= Callee
->getEntryCount();
1652 const uint64_t PriorEntryCount
= CalleeCount
->getCount();
1654 // Since CallSiteCount is an estimate, it could exceed the original callee
1655 // count and has to be set to 0 so guard against underflow.
1656 const uint64_t NewEntryCount
=
1657 (EntryDelta
< 0 && static_cast<uint64_t>(-EntryDelta
) > PriorEntryCount
)
1659 : PriorEntryCount
+ EntryDelta
;
1661 // During inlining ?
1663 uint64_t CloneEntryCount
= PriorEntryCount
- NewEntryCount
;
1664 for (auto Entry
: *VMap
)
1665 if (isa
<CallInst
>(Entry
.first
))
1666 if (auto *CI
= dyn_cast_or_null
<CallInst
>(Entry
.second
))
1667 CI
->updateProfWeight(CloneEntryCount
, PriorEntryCount
);
1671 Callee
->setEntryCount(NewEntryCount
);
1673 for (BasicBlock
&BB
: *Callee
)
1674 // No need to update the callsite if it is pruned during inlining.
1675 if (!VMap
|| VMap
->count(&BB
))
1676 for (Instruction
&I
: BB
)
1677 if (CallInst
*CI
= dyn_cast
<CallInst
>(&I
))
1678 CI
->updateProfWeight(NewEntryCount
, PriorEntryCount
);
1682 /// An operand bundle "clang.arc.attachedcall" on a call indicates the call
1683 /// result is implicitly consumed by a call to retainRV or claimRV immediately
1684 /// after the call. This function inlines the retainRV/claimRV calls.
1686 /// There are three cases to consider:
1688 /// 1. If there is a call to autoreleaseRV that takes a pointer to the returned
1689 /// object in the callee return block, the autoreleaseRV call and the
1690 /// retainRV/claimRV call in the caller cancel out. If the call in the caller
1691 /// is a claimRV call, a call to objc_release is emitted.
1693 /// 2. If there is a call in the callee return block that doesn't have operand
1694 /// bundle "clang.arc.attachedcall", the operand bundle on the original call
1695 /// is transferred to the call in the callee.
1697 /// 3. Otherwise, a call to objc_retain is inserted if the call in the caller is
1698 /// a retainRV call.
1700 inlineRetainOrClaimRVCalls(CallBase
&CB
, objcarc::ARCInstKind RVCallKind
,
1701 const SmallVectorImpl
<ReturnInst
*> &Returns
) {
1702 Module
*Mod
= CB
.getModule();
1703 assert(objcarc::isRetainOrClaimRV(RVCallKind
) && "unexpected ARC function");
1704 bool IsRetainRV
= RVCallKind
== objcarc::ARCInstKind::RetainRV
,
1705 IsUnsafeClaimRV
= !IsRetainRV
;
1707 for (auto *RI
: Returns
) {
1708 Value
*RetOpnd
= objcarc::GetRCIdentityRoot(RI
->getOperand(0));
1709 bool InsertRetainCall
= IsRetainRV
;
1710 IRBuilder
<> Builder(RI
->getContext());
1712 // Walk backwards through the basic block looking for either a matching
1713 // autoreleaseRV call or an unannotated call.
1714 auto InstRange
= llvm::make_range(++(RI
->getIterator().getReverse()),
1715 RI
->getParent()->rend());
1716 for (Instruction
&I
: llvm::make_early_inc_range(InstRange
)) {
1718 if (isa
<CastInst
>(I
))
1721 if (auto *II
= dyn_cast
<IntrinsicInst
>(&I
)) {
1722 if (II
->getIntrinsicID() != Intrinsic::objc_autoreleaseReturnValue
||
1724 objcarc::GetRCIdentityRoot(II
->getOperand(0)) != RetOpnd
)
1727 // If we've found a matching authoreleaseRV call:
1728 // - If claimRV is attached to the call, insert a call to objc_release
1729 // and erase the autoreleaseRV call.
1730 // - If retainRV is attached to the call, just erase the autoreleaseRV
1732 if (IsUnsafeClaimRV
) {
1733 Builder
.SetInsertPoint(II
);
1735 Intrinsic::getDeclaration(Mod
, Intrinsic::objc_release
);
1736 Value
*BC
= Builder
.CreateBitCast(RetOpnd
, IFn
->getArg(0)->getType());
1737 Builder
.CreateCall(IFn
, BC
, "");
1739 II
->eraseFromParent();
1740 InsertRetainCall
= false;
1744 auto *CI
= dyn_cast
<CallInst
>(&I
);
1749 if (objcarc::GetRCIdentityRoot(CI
) != RetOpnd
||
1750 objcarc::hasAttachedCallOpBundle(CI
))
1753 // If we've found an unannotated call that defines RetOpnd, add a
1754 // "clang.arc.attachedcall" operand bundle.
1755 Value
*BundleArgs
[] = {*objcarc::getAttachedARCFunction(&CB
)};
1756 OperandBundleDef
OB("clang.arc.attachedcall", BundleArgs
);
1757 auto *NewCall
= CallBase::addOperandBundle(
1758 CI
, LLVMContext::OB_clang_arc_attachedcall
, OB
, CI
);
1759 NewCall
->copyMetadata(*CI
);
1760 CI
->replaceAllUsesWith(NewCall
);
1761 CI
->eraseFromParent();
1762 InsertRetainCall
= false;
1766 if (InsertRetainCall
) {
1767 // The retainRV is attached to the call and we've failed to find a
1768 // matching autoreleaseRV or an annotated call in the callee. Emit a call
1770 Builder
.SetInsertPoint(RI
);
1771 Function
*IFn
= Intrinsic::getDeclaration(Mod
, Intrinsic::objc_retain
);
1772 Value
*BC
= Builder
.CreateBitCast(RetOpnd
, IFn
->getArg(0)->getType());
1773 Builder
.CreateCall(IFn
, BC
, "");
1778 /// This function inlines the called function into the basic block of the
1779 /// caller. This returns false if it is not possible to inline this call.
1780 /// The program is still in a well defined state if this occurs though.
1782 /// Note that this only does one level of inlining. For example, if the
1783 /// instruction 'call B' is inlined, and 'B' calls 'C', then the call to 'C' now
1784 /// exists in the instruction stream. Similarly this will inline a recursive
1785 /// function by one level.
1786 llvm::InlineResult
llvm::InlineFunction(CallBase
&CB
, InlineFunctionInfo
&IFI
,
1787 AAResults
*CalleeAAR
,
1788 bool InsertLifetime
,
1789 Function
*ForwardVarArgsTo
) {
1790 assert(CB
.getParent() && CB
.getFunction() && "Instruction not in function!");
1792 // FIXME: we don't inline callbr yet.
1793 if (isa
<CallBrInst
>(CB
))
1794 return InlineResult::failure("We don't inline callbr yet.");
1796 // If IFI has any state in it, zap it before we fill it in.
1799 Function
*CalledFunc
= CB
.getCalledFunction();
1800 if (!CalledFunc
|| // Can't inline external function or indirect
1801 CalledFunc
->isDeclaration()) // call!
1802 return InlineResult::failure("external or indirect");
1804 // The inliner does not know how to inline through calls with operand bundles
1806 if (CB
.hasOperandBundles()) {
1807 for (int i
= 0, e
= CB
.getNumOperandBundles(); i
!= e
; ++i
) {
1808 uint32_t Tag
= CB
.getOperandBundleAt(i
).getTagID();
1809 // ... but it knows how to inline through "deopt" operand bundles ...
1810 if (Tag
== LLVMContext::OB_deopt
)
1812 // ... and "funclet" operand bundles.
1813 if (Tag
== LLVMContext::OB_funclet
)
1815 if (Tag
== LLVMContext::OB_clang_arc_attachedcall
)
1818 return InlineResult::failure("unsupported operand bundle");
1822 // If the call to the callee cannot throw, set the 'nounwind' flag on any
1823 // calls that we inline.
1824 bool MarkNoUnwind
= CB
.doesNotThrow();
1826 BasicBlock
*OrigBB
= CB
.getParent();
1827 Function
*Caller
= OrigBB
->getParent();
1829 // Do not inline strictfp function into non-strictfp one. It would require
1830 // conversion of all FP operations in host function to constrained intrinsics.
1831 if (CalledFunc
->getAttributes().hasFnAttr(Attribute::StrictFP
) &&
1832 !Caller
->getAttributes().hasFnAttr(Attribute::StrictFP
)) {
1833 return InlineResult::failure("incompatible strictfp attributes");
1836 // GC poses two hazards to inlining, which only occur when the callee has GC:
1837 // 1. If the caller has no GC, then the callee's GC must be propagated to the
1839 // 2. If the caller has a differing GC, it is invalid to inline.
1840 if (CalledFunc
->hasGC()) {
1841 if (!Caller
->hasGC())
1842 Caller
->setGC(CalledFunc
->getGC());
1843 else if (CalledFunc
->getGC() != Caller
->getGC())
1844 return InlineResult::failure("incompatible GC");
1847 // Get the personality function from the callee if it contains a landing pad.
1848 Constant
*CalledPersonality
=
1849 CalledFunc
->hasPersonalityFn()
1850 ? CalledFunc
->getPersonalityFn()->stripPointerCasts()
1853 // Find the personality function used by the landing pads of the caller. If it
1854 // exists, then check to see that it matches the personality function used in
1856 Constant
*CallerPersonality
=
1857 Caller
->hasPersonalityFn()
1858 ? Caller
->getPersonalityFn()->stripPointerCasts()
1860 if (CalledPersonality
) {
1861 if (!CallerPersonality
)
1862 Caller
->setPersonalityFn(CalledPersonality
);
1863 // If the personality functions match, then we can perform the
1864 // inlining. Otherwise, we can't inline.
1865 // TODO: This isn't 100% true. Some personality functions are proper
1866 // supersets of others and can be used in place of the other.
1867 else if (CalledPersonality
!= CallerPersonality
)
1868 return InlineResult::failure("incompatible personality");
1871 // We need to figure out which funclet the callsite was in so that we may
1872 // properly nest the callee.
1873 Instruction
*CallSiteEHPad
= nullptr;
1874 if (CallerPersonality
) {
1875 EHPersonality Personality
= classifyEHPersonality(CallerPersonality
);
1876 if (isScopedEHPersonality(Personality
)) {
1877 Optional
<OperandBundleUse
> ParentFunclet
=
1878 CB
.getOperandBundle(LLVMContext::OB_funclet
);
1880 CallSiteEHPad
= cast
<FuncletPadInst
>(ParentFunclet
->Inputs
.front());
1882 // OK, the inlining site is legal. What about the target function?
1884 if (CallSiteEHPad
) {
1885 if (Personality
== EHPersonality::MSVC_CXX
) {
1886 // The MSVC personality cannot tolerate catches getting inlined into
1887 // cleanup funclets.
1888 if (isa
<CleanupPadInst
>(CallSiteEHPad
)) {
1889 // Ok, the call site is within a cleanuppad. Let's check the callee
1891 for (const BasicBlock
&CalledBB
: *CalledFunc
) {
1892 if (isa
<CatchSwitchInst
>(CalledBB
.getFirstNonPHI()))
1893 return InlineResult::failure("catch in cleanup funclet");
1896 } else if (isAsynchronousEHPersonality(Personality
)) {
1897 // SEH is even less tolerant, there may not be any sort of exceptional
1898 // funclet in the callee.
1899 for (const BasicBlock
&CalledBB
: *CalledFunc
) {
1900 if (CalledBB
.isEHPad())
1901 return InlineResult::failure("SEH in cleanup funclet");
1908 // Determine if we are dealing with a call in an EHPad which does not unwind
1910 bool EHPadForCallUnwindsLocally
= false;
1911 if (CallSiteEHPad
&& isa
<CallInst
>(CB
)) {
1912 UnwindDestMemoTy FuncletUnwindMap
;
1913 Value
*CallSiteUnwindDestToken
=
1914 getUnwindDestToken(CallSiteEHPad
, FuncletUnwindMap
);
1916 EHPadForCallUnwindsLocally
=
1917 CallSiteUnwindDestToken
&&
1918 !isa
<ConstantTokenNone
>(CallSiteUnwindDestToken
);
1921 // Get an iterator to the last basic block in the function, which will have
1922 // the new function inlined after it.
1923 Function::iterator LastBlock
= --Caller
->end();
1925 // Make sure to capture all of the return instructions from the cloned
1927 SmallVector
<ReturnInst
*, 8> Returns
;
1928 ClonedCodeInfo InlinedFunctionInfo
;
1929 Function::iterator FirstNewBlock
;
1931 { // Scope to destroy VMap after cloning.
1932 ValueToValueMapTy VMap
;
1938 // Keep a list of pair (dst, src) to emit byval initializations.
1939 SmallVector
<ByValInit
, 4> ByValInits
;
1941 // When inlining a function that contains noalias scope metadata,
1942 // this metadata needs to be cloned so that the inlined blocks
1943 // have different "unique scopes" at every call site.
1944 // Track the metadata that must be cloned. Do this before other changes to
1945 // the function, so that we do not get in trouble when inlining caller ==
1947 ScopedAliasMetadataDeepCloner
SAMetadataCloner(CB
.getCalledFunction());
1949 auto &DL
= Caller
->getParent()->getDataLayout();
1951 // Calculate the vector of arguments to pass into the function cloner, which
1952 // matches up the formal to the actual argument values.
1953 auto AI
= CB
.arg_begin();
1955 for (Function::arg_iterator I
= CalledFunc
->arg_begin(),
1956 E
= CalledFunc
->arg_end(); I
!= E
; ++I
, ++AI
, ++ArgNo
) {
1957 Value
*ActualArg
= *AI
;
1959 // When byval arguments actually inlined, we need to make the copy implied
1960 // by them explicit. However, we don't do this if the callee is readonly
1961 // or readnone, because the copy would be unneeded: the callee doesn't
1962 // modify the struct.
1963 if (CB
.isByValArgument(ArgNo
)) {
1964 ActualArg
= HandleByValArgument(CB
.getParamByValType(ArgNo
), ActualArg
,
1965 &CB
, CalledFunc
, IFI
,
1966 CalledFunc
->getParamAlignment(ArgNo
));
1967 if (ActualArg
!= *AI
)
1968 ByValInits
.push_back(
1969 {ActualArg
, (Value
*)*AI
, CB
.getParamByValType(ArgNo
)});
1972 VMap
[&*I
] = ActualArg
;
1975 // TODO: Remove this when users have been updated to the assume bundles.
1976 // Add alignment assumptions if necessary. We do this before the inlined
1977 // instructions are actually cloned into the caller so that we can easily
1978 // check what will be known at the start of the inlined code.
1979 AddAlignmentAssumptions(CB
, IFI
);
1981 AssumptionCache
*AC
=
1982 IFI
.GetAssumptionCache
? &IFI
.GetAssumptionCache(*Caller
) : nullptr;
1984 /// Preserve all attributes on of the call and its parameters.
1985 salvageKnowledge(&CB
, AC
);
1987 // We want the inliner to prune the code as it copies. We would LOVE to
1988 // have no dead or constant instructions leftover after inlining occurs
1989 // (which can happen, e.g., because an argument was constant), but we'll be
1990 // happy with whatever the cloner can do.
1991 CloneAndPruneFunctionInto(Caller
, CalledFunc
, VMap
,
1992 /*ModuleLevelChanges=*/false, Returns
, ".i",
1993 &InlinedFunctionInfo
);
1994 // Remember the first block that is newly cloned over.
1995 FirstNewBlock
= LastBlock
; ++FirstNewBlock
;
1997 // Insert retainRV/clainRV runtime calls.
1998 objcarc::ARCInstKind RVCallKind
= objcarc::getAttachedARCFunctionKind(&CB
);
1999 if (RVCallKind
!= objcarc::ARCInstKind::None
)
2000 inlineRetainOrClaimRVCalls(CB
, RVCallKind
, Returns
);
2002 // Updated caller/callee profiles only when requested. For sample loader
2003 // inlining, the context-sensitive inlinee profile doesn't need to be
2004 // subtracted from callee profile, and the inlined clone also doesn't need
2005 // to be scaled based on call site count.
2006 if (IFI
.UpdateProfile
) {
2007 if (IFI
.CallerBFI
!= nullptr && IFI
.CalleeBFI
!= nullptr)
2008 // Update the BFI of blocks cloned into the caller.
2009 updateCallerBFI(OrigBB
, VMap
, IFI
.CallerBFI
, IFI
.CalleeBFI
,
2010 CalledFunc
->front());
2012 if (auto Profile
= CalledFunc
->getEntryCount())
2013 updateCallProfile(CalledFunc
, VMap
, *Profile
, CB
, IFI
.PSI
,
2017 // Inject byval arguments initialization.
2018 for (ByValInit
&Init
: ByValInits
)
2019 HandleByValArgumentInit(Init
.Ty
, Init
.Dst
, Init
.Src
, Caller
->getParent(),
2020 &*FirstNewBlock
, IFI
);
2022 Optional
<OperandBundleUse
> ParentDeopt
=
2023 CB
.getOperandBundle(LLVMContext::OB_deopt
);
2025 SmallVector
<OperandBundleDef
, 2> OpDefs
;
2027 for (auto &VH
: InlinedFunctionInfo
.OperandBundleCallSites
) {
2028 CallBase
*ICS
= dyn_cast_or_null
<CallBase
>(VH
);
2030 continue; // instruction was DCE'd or RAUW'ed to undef
2034 OpDefs
.reserve(ICS
->getNumOperandBundles());
2036 for (unsigned COBi
= 0, COBe
= ICS
->getNumOperandBundles(); COBi
< COBe
;
2038 auto ChildOB
= ICS
->getOperandBundleAt(COBi
);
2039 if (ChildOB
.getTagID() != LLVMContext::OB_deopt
) {
2040 // If the inlined call has other operand bundles, let them be
2041 OpDefs
.emplace_back(ChildOB
);
2045 // It may be useful to separate this logic (of handling operand
2046 // bundles) out to a separate "policy" component if this gets crowded.
2047 // Prepend the parent's deoptimization continuation to the newly
2048 // inlined call's deoptimization continuation.
2049 std::vector
<Value
*> MergedDeoptArgs
;
2050 MergedDeoptArgs
.reserve(ParentDeopt
->Inputs
.size() +
2051 ChildOB
.Inputs
.size());
2053 llvm::append_range(MergedDeoptArgs
, ParentDeopt
->Inputs
);
2054 llvm::append_range(MergedDeoptArgs
, ChildOB
.Inputs
);
2056 OpDefs
.emplace_back("deopt", std::move(MergedDeoptArgs
));
2059 Instruction
*NewI
= CallBase::Create(ICS
, OpDefs
, ICS
);
2061 // Note: the RAUW does the appropriate fixup in VMap, so we need to do
2062 // this even if the call returns void.
2063 ICS
->replaceAllUsesWith(NewI
);
2066 ICS
->eraseFromParent();
2070 // Update the callgraph if requested.
2072 UpdateCallGraphAfterInlining(CB
, FirstNewBlock
, VMap
, IFI
);
2074 // For 'nodebug' functions, the associated DISubprogram is always null.
2075 // Conservatively avoid propagating the callsite debug location to
2076 // instructions inlined from a function whose DISubprogram is not null.
2077 fixupLineNumbers(Caller
, FirstNewBlock
, &CB
,
2078 CalledFunc
->getSubprogram() != nullptr);
2080 // Now clone the inlined noalias scope metadata.
2081 SAMetadataCloner
.clone();
2082 SAMetadataCloner
.remap(FirstNewBlock
, Caller
->end());
2084 // Add noalias metadata if necessary.
2085 AddAliasScopeMetadata(CB
, VMap
, DL
, CalleeAAR
, InlinedFunctionInfo
);
2087 // Clone return attributes on the callsite into the calls within the inlined
2088 // function which feed into its return value.
2089 AddReturnAttributes(CB
, VMap
);
2091 // Propagate metadata on the callsite if necessary.
2092 PropagateCallSiteMetadata(CB
, FirstNewBlock
, Caller
->end());
2094 // Register any cloned assumptions.
2095 if (IFI
.GetAssumptionCache
)
2096 for (BasicBlock
&NewBlock
:
2097 make_range(FirstNewBlock
->getIterator(), Caller
->end()))
2098 for (Instruction
&I
: NewBlock
)
2099 if (auto *II
= dyn_cast
<AssumeInst
>(&I
))
2100 IFI
.GetAssumptionCache(*Caller
).registerAssumption(II
);
2103 // If there are any alloca instructions in the block that used to be the entry
2104 // block for the callee, move them to the entry block of the caller. First
2105 // calculate which instruction they should be inserted before. We insert the
2106 // instructions at the end of the current alloca list.
2108 BasicBlock::iterator InsertPoint
= Caller
->begin()->begin();
2109 for (BasicBlock::iterator I
= FirstNewBlock
->begin(),
2110 E
= FirstNewBlock
->end(); I
!= E
; ) {
2111 AllocaInst
*AI
= dyn_cast
<AllocaInst
>(I
++);
2114 // If the alloca is now dead, remove it. This often occurs due to code
2116 if (AI
->use_empty()) {
2117 AI
->eraseFromParent();
2121 if (!allocaWouldBeStaticInEntry(AI
))
2124 // Keep track of the static allocas that we inline into the caller.
2125 IFI
.StaticAllocas
.push_back(AI
);
2127 // Scan for the block of allocas that we can move over, and move them
2129 while (isa
<AllocaInst
>(I
) &&
2130 !cast
<AllocaInst
>(I
)->use_empty() &&
2131 allocaWouldBeStaticInEntry(cast
<AllocaInst
>(I
))) {
2132 IFI
.StaticAllocas
.push_back(cast
<AllocaInst
>(I
));
2136 // Transfer all of the allocas over in a block. Using splice means
2137 // that the instructions aren't removed from the symbol table, then
2139 Caller
->getEntryBlock().getInstList().splice(
2140 InsertPoint
, FirstNewBlock
->getInstList(), AI
->getIterator(), I
);
2144 SmallVector
<Value
*,4> VarArgsToForward
;
2145 SmallVector
<AttributeSet
, 4> VarArgsAttrs
;
2146 for (unsigned i
= CalledFunc
->getFunctionType()->getNumParams();
2147 i
< CB
.arg_size(); i
++) {
2148 VarArgsToForward
.push_back(CB
.getArgOperand(i
));
2149 VarArgsAttrs
.push_back(CB
.getAttributes().getParamAttrs(i
));
2152 bool InlinedMustTailCalls
= false, InlinedDeoptimizeCalls
= false;
2153 if (InlinedFunctionInfo
.ContainsCalls
) {
2154 CallInst::TailCallKind CallSiteTailKind
= CallInst::TCK_None
;
2155 if (CallInst
*CI
= dyn_cast
<CallInst
>(&CB
))
2156 CallSiteTailKind
= CI
->getTailCallKind();
2158 // For inlining purposes, the "notail" marker is the same as no marker.
2159 if (CallSiteTailKind
== CallInst::TCK_NoTail
)
2160 CallSiteTailKind
= CallInst::TCK_None
;
2162 for (Function::iterator BB
= FirstNewBlock
, E
= Caller
->end(); BB
!= E
;
2164 for (Instruction
&I
: llvm::make_early_inc_range(*BB
)) {
2165 CallInst
*CI
= dyn_cast
<CallInst
>(&I
);
2169 // Forward varargs from inlined call site to calls to the
2170 // ForwardVarArgsTo function, if requested, and to musttail calls.
2171 if (!VarArgsToForward
.empty() &&
2172 ((ForwardVarArgsTo
&&
2173 CI
->getCalledFunction() == ForwardVarArgsTo
) ||
2174 CI
->isMustTailCall())) {
2175 // Collect attributes for non-vararg parameters.
2176 AttributeList Attrs
= CI
->getAttributes();
2177 SmallVector
<AttributeSet
, 8> ArgAttrs
;
2178 if (!Attrs
.isEmpty() || !VarArgsAttrs
.empty()) {
2179 for (unsigned ArgNo
= 0;
2180 ArgNo
< CI
->getFunctionType()->getNumParams(); ++ArgNo
)
2181 ArgAttrs
.push_back(Attrs
.getParamAttrs(ArgNo
));
2184 // Add VarArg attributes.
2185 ArgAttrs
.append(VarArgsAttrs
.begin(), VarArgsAttrs
.end());
2186 Attrs
= AttributeList::get(CI
->getContext(), Attrs
.getFnAttrs(),
2187 Attrs
.getRetAttrs(), ArgAttrs
);
2188 // Add VarArgs to existing parameters.
2189 SmallVector
<Value
*, 6> Params(CI
->args());
2190 Params
.append(VarArgsToForward
.begin(), VarArgsToForward
.end());
2191 CallInst
*NewCI
= CallInst::Create(
2192 CI
->getFunctionType(), CI
->getCalledOperand(), Params
, "", CI
);
2193 NewCI
->setDebugLoc(CI
->getDebugLoc());
2194 NewCI
->setAttributes(Attrs
);
2195 NewCI
->setCallingConv(CI
->getCallingConv());
2196 CI
->replaceAllUsesWith(NewCI
);
2197 CI
->eraseFromParent();
2201 if (Function
*F
= CI
->getCalledFunction())
2202 InlinedDeoptimizeCalls
|=
2203 F
->getIntrinsicID() == Intrinsic::experimental_deoptimize
;
2205 // We need to reduce the strength of any inlined tail calls. For
2206 // musttail, we have to avoid introducing potential unbounded stack
2207 // growth. For example, if functions 'f' and 'g' are mutually recursive
2208 // with musttail, we can inline 'g' into 'f' so long as we preserve
2209 // musttail on the cloned call to 'f'. If either the inlined call site
2210 // or the cloned call site is *not* musttail, the program already has
2211 // one frame of stack growth, so it's safe to remove musttail. Here is
2212 // a table of example transformations:
2214 // f -> musttail g -> musttail f ==> f -> musttail f
2215 // f -> musttail g -> tail f ==> f -> tail f
2216 // f -> g -> musttail f ==> f -> f
2217 // f -> g -> tail f ==> f -> f
2219 // Inlined notail calls should remain notail calls.
2220 CallInst::TailCallKind ChildTCK
= CI
->getTailCallKind();
2221 if (ChildTCK
!= CallInst::TCK_NoTail
)
2222 ChildTCK
= std::min(CallSiteTailKind
, ChildTCK
);
2223 CI
->setTailCallKind(ChildTCK
);
2224 InlinedMustTailCalls
|= CI
->isMustTailCall();
2226 // Call sites inlined through a 'nounwind' call site should be
2227 // 'nounwind' as well. However, avoid marking call sites explicitly
2228 // where possible. This helps expose more opportunities for CSE after
2229 // inlining, commonly when the callee is an intrinsic.
2230 if (MarkNoUnwind
&& !CI
->doesNotThrow())
2231 CI
->setDoesNotThrow();
2236 // Leave lifetime markers for the static alloca's, scoping them to the
2237 // function we just inlined.
2238 // We need to insert lifetime intrinsics even at O0 to avoid invalid
2239 // access caused by multithreaded coroutines. The check
2240 // `Caller->isPresplitCoroutine()` would affect AlwaysInliner at O0 only.
2241 if ((InsertLifetime
|| Caller
->isPresplitCoroutine()) &&
2242 !IFI
.StaticAllocas
.empty()) {
2243 IRBuilder
<> builder(&FirstNewBlock
->front());
2244 for (unsigned ai
= 0, ae
= IFI
.StaticAllocas
.size(); ai
!= ae
; ++ai
) {
2245 AllocaInst
*AI
= IFI
.StaticAllocas
[ai
];
2246 // Don't mark swifterror allocas. They can't have bitcast uses.
2247 if (AI
->isSwiftError())
2250 // If the alloca is already scoped to something smaller than the whole
2251 // function then there's no need to add redundant, less accurate markers.
2252 if (hasLifetimeMarkers(AI
))
2255 // Try to determine the size of the allocation.
2256 ConstantInt
*AllocaSize
= nullptr;
2257 if (ConstantInt
*AIArraySize
=
2258 dyn_cast
<ConstantInt
>(AI
->getArraySize())) {
2259 auto &DL
= Caller
->getParent()->getDataLayout();
2260 Type
*AllocaType
= AI
->getAllocatedType();
2261 TypeSize AllocaTypeSize
= DL
.getTypeAllocSize(AllocaType
);
2262 uint64_t AllocaArraySize
= AIArraySize
->getLimitedValue();
2264 // Don't add markers for zero-sized allocas.
2265 if (AllocaArraySize
== 0)
2268 // Check that array size doesn't saturate uint64_t and doesn't
2269 // overflow when it's multiplied by type size.
2270 if (!AllocaTypeSize
.isScalable() &&
2271 AllocaArraySize
!= std::numeric_limits
<uint64_t>::max() &&
2272 std::numeric_limits
<uint64_t>::max() / AllocaArraySize
>=
2273 AllocaTypeSize
.getFixedSize()) {
2274 AllocaSize
= ConstantInt::get(Type::getInt64Ty(AI
->getContext()),
2275 AllocaArraySize
* AllocaTypeSize
);
2279 builder
.CreateLifetimeStart(AI
, AllocaSize
);
2280 for (ReturnInst
*RI
: Returns
) {
2281 // Don't insert llvm.lifetime.end calls between a musttail or deoptimize
2282 // call and a return. The return kills all local allocas.
2283 if (InlinedMustTailCalls
&&
2284 RI
->getParent()->getTerminatingMustTailCall())
2286 if (InlinedDeoptimizeCalls
&&
2287 RI
->getParent()->getTerminatingDeoptimizeCall())
2289 IRBuilder
<>(RI
).CreateLifetimeEnd(AI
, AllocaSize
);
2294 // If the inlined code contained dynamic alloca instructions, wrap the inlined
2295 // code with llvm.stacksave/llvm.stackrestore intrinsics.
2296 if (InlinedFunctionInfo
.ContainsDynamicAllocas
) {
2297 Module
*M
= Caller
->getParent();
2298 // Get the two intrinsics we care about.
2299 Function
*StackSave
= Intrinsic::getDeclaration(M
, Intrinsic::stacksave
);
2300 Function
*StackRestore
=Intrinsic::getDeclaration(M
,Intrinsic::stackrestore
);
2302 // Insert the llvm.stacksave.
2303 CallInst
*SavedPtr
= IRBuilder
<>(&*FirstNewBlock
, FirstNewBlock
->begin())
2304 .CreateCall(StackSave
, {}, "savedstack");
2306 // Insert a call to llvm.stackrestore before any return instructions in the
2307 // inlined function.
2308 for (ReturnInst
*RI
: Returns
) {
2309 // Don't insert llvm.stackrestore calls between a musttail or deoptimize
2310 // call and a return. The return will restore the stack pointer.
2311 if (InlinedMustTailCalls
&& RI
->getParent()->getTerminatingMustTailCall())
2313 if (InlinedDeoptimizeCalls
&& RI
->getParent()->getTerminatingDeoptimizeCall())
2315 IRBuilder
<>(RI
).CreateCall(StackRestore
, SavedPtr
);
2319 // If we are inlining for an invoke instruction, we must make sure to rewrite
2320 // any call instructions into invoke instructions. This is sensitive to which
2321 // funclet pads were top-level in the inlinee, so must be done before
2322 // rewriting the "parent pad" links.
2323 if (auto *II
= dyn_cast
<InvokeInst
>(&CB
)) {
2324 BasicBlock
*UnwindDest
= II
->getUnwindDest();
2325 Instruction
*FirstNonPHI
= UnwindDest
->getFirstNonPHI();
2326 if (isa
<LandingPadInst
>(FirstNonPHI
)) {
2327 HandleInlinedLandingPad(II
, &*FirstNewBlock
, InlinedFunctionInfo
);
2329 HandleInlinedEHPad(II
, &*FirstNewBlock
, InlinedFunctionInfo
);
2333 // Update the lexical scopes of the new funclets and callsites.
2334 // Anything that had 'none' as its parent is now nested inside the callsite's
2336 if (CallSiteEHPad
) {
2337 for (Function::iterator BB
= FirstNewBlock
->getIterator(),
2340 // Add bundle operands to inlined call sites.
2341 PropagateOperandBundles(BB
, CallSiteEHPad
);
2343 // It is problematic if the inlinee has a cleanupret which unwinds to
2344 // caller and we inline it into a call site which doesn't unwind but into
2345 // an EH pad that does. Such an edge must be dynamically unreachable.
2346 // As such, we replace the cleanupret with unreachable.
2347 if (auto *CleanupRet
= dyn_cast
<CleanupReturnInst
>(BB
->getTerminator()))
2348 if (CleanupRet
->unwindsToCaller() && EHPadForCallUnwindsLocally
)
2349 changeToUnreachable(CleanupRet
);
2351 Instruction
*I
= BB
->getFirstNonPHI();
2355 if (auto *CatchSwitch
= dyn_cast
<CatchSwitchInst
>(I
)) {
2356 if (isa
<ConstantTokenNone
>(CatchSwitch
->getParentPad()))
2357 CatchSwitch
->setParentPad(CallSiteEHPad
);
2359 auto *FPI
= cast
<FuncletPadInst
>(I
);
2360 if (isa
<ConstantTokenNone
>(FPI
->getParentPad()))
2361 FPI
->setParentPad(CallSiteEHPad
);
2366 if (InlinedDeoptimizeCalls
) {
2367 // We need to at least remove the deoptimizing returns from the Return set,
2368 // so that the control flow from those returns does not get merged into the
2369 // caller (but terminate it instead). If the caller's return type does not
2370 // match the callee's return type, we also need to change the return type of
2372 if (Caller
->getReturnType() == CB
.getType()) {
2373 llvm::erase_if(Returns
, [](ReturnInst
*RI
) {
2374 return RI
->getParent()->getTerminatingDeoptimizeCall() != nullptr;
2377 SmallVector
<ReturnInst
*, 8> NormalReturns
;
2378 Function
*NewDeoptIntrinsic
= Intrinsic::getDeclaration(
2379 Caller
->getParent(), Intrinsic::experimental_deoptimize
,
2380 {Caller
->getReturnType()});
2382 for (ReturnInst
*RI
: Returns
) {
2383 CallInst
*DeoptCall
= RI
->getParent()->getTerminatingDeoptimizeCall();
2385 NormalReturns
.push_back(RI
);
2389 // The calling convention on the deoptimize call itself may be bogus,
2390 // since the code we're inlining may have undefined behavior (and may
2391 // never actually execute at runtime); but all
2392 // @llvm.experimental.deoptimize declarations have to have the same
2393 // calling convention in a well-formed module.
2394 auto CallingConv
= DeoptCall
->getCalledFunction()->getCallingConv();
2395 NewDeoptIntrinsic
->setCallingConv(CallingConv
);
2396 auto *CurBB
= RI
->getParent();
2397 RI
->eraseFromParent();
2399 SmallVector
<Value
*, 4> CallArgs(DeoptCall
->args());
2401 SmallVector
<OperandBundleDef
, 1> OpBundles
;
2402 DeoptCall
->getOperandBundlesAsDefs(OpBundles
);
2403 auto DeoptAttributes
= DeoptCall
->getAttributes();
2404 DeoptCall
->eraseFromParent();
2405 assert(!OpBundles
.empty() &&
2406 "Expected at least the deopt operand bundle");
2408 IRBuilder
<> Builder(CurBB
);
2409 CallInst
*NewDeoptCall
=
2410 Builder
.CreateCall(NewDeoptIntrinsic
, CallArgs
, OpBundles
);
2411 NewDeoptCall
->setCallingConv(CallingConv
);
2412 NewDeoptCall
->setAttributes(DeoptAttributes
);
2413 if (NewDeoptCall
->getType()->isVoidTy())
2414 Builder
.CreateRetVoid();
2416 Builder
.CreateRet(NewDeoptCall
);
2419 // Leave behind the normal returns so we can merge control flow.
2420 std::swap(Returns
, NormalReturns
);
2424 // Handle any inlined musttail call sites. In order for a new call site to be
2425 // musttail, the source of the clone and the inlined call site must have been
2426 // musttail. Therefore it's safe to return without merging control into the
2428 if (InlinedMustTailCalls
) {
2429 // Check if we need to bitcast the result of any musttail calls.
2430 Type
*NewRetTy
= Caller
->getReturnType();
2431 bool NeedBitCast
= !CB
.use_empty() && CB
.getType() != NewRetTy
;
2433 // Handle the returns preceded by musttail calls separately.
2434 SmallVector
<ReturnInst
*, 8> NormalReturns
;
2435 for (ReturnInst
*RI
: Returns
) {
2436 CallInst
*ReturnedMustTail
=
2437 RI
->getParent()->getTerminatingMustTailCall();
2438 if (!ReturnedMustTail
) {
2439 NormalReturns
.push_back(RI
);
2445 // Delete the old return and any preceding bitcast.
2446 BasicBlock
*CurBB
= RI
->getParent();
2447 auto *OldCast
= dyn_cast_or_null
<BitCastInst
>(RI
->getReturnValue());
2448 RI
->eraseFromParent();
2450 OldCast
->eraseFromParent();
2452 // Insert a new bitcast and return with the right type.
2453 IRBuilder
<> Builder(CurBB
);
2454 Builder
.CreateRet(Builder
.CreateBitCast(ReturnedMustTail
, NewRetTy
));
2457 // Leave behind the normal returns so we can merge control flow.
2458 std::swap(Returns
, NormalReturns
);
2461 // Now that all of the transforms on the inlined code have taken place but
2462 // before we splice the inlined code into the CFG and lose track of which
2463 // blocks were actually inlined, collect the call sites. We only do this if
2464 // call graph updates weren't requested, as those provide value handle based
2465 // tracking of inlined call sites instead. Calls to intrinsics are not
2466 // collected because they are not inlineable.
2467 if (InlinedFunctionInfo
.ContainsCalls
&& !IFI
.CG
) {
2468 // Otherwise just collect the raw call sites that were inlined.
2469 for (BasicBlock
&NewBB
:
2470 make_range(FirstNewBlock
->getIterator(), Caller
->end()))
2471 for (Instruction
&I
: NewBB
)
2472 if (auto *CB
= dyn_cast
<CallBase
>(&I
))
2473 if (!(CB
->getCalledFunction() &&
2474 CB
->getCalledFunction()->isIntrinsic()))
2475 IFI
.InlinedCallSites
.push_back(CB
);
2478 // If we cloned in _exactly one_ basic block, and if that block ends in a
2479 // return instruction, we splice the body of the inlined callee directly into
2480 // the calling basic block.
2481 if (Returns
.size() == 1 && std::distance(FirstNewBlock
, Caller
->end()) == 1) {
2482 // Move all of the instructions right before the call.
2483 OrigBB
->getInstList().splice(CB
.getIterator(), FirstNewBlock
->getInstList(),
2484 FirstNewBlock
->begin(), FirstNewBlock
->end());
2485 // Remove the cloned basic block.
2486 Caller
->getBasicBlockList().pop_back();
2488 // If the call site was an invoke instruction, add a branch to the normal
2490 if (InvokeInst
*II
= dyn_cast
<InvokeInst
>(&CB
)) {
2491 BranchInst
*NewBr
= BranchInst::Create(II
->getNormalDest(), &CB
);
2492 NewBr
->setDebugLoc(Returns
[0]->getDebugLoc());
2495 // If the return instruction returned a value, replace uses of the call with
2496 // uses of the returned value.
2497 if (!CB
.use_empty()) {
2498 ReturnInst
*R
= Returns
[0];
2499 if (&CB
== R
->getReturnValue())
2500 CB
.replaceAllUsesWith(UndefValue::get(CB
.getType()));
2502 CB
.replaceAllUsesWith(R
->getReturnValue());
2504 // Since we are now done with the Call/Invoke, we can delete it.
2505 CB
.eraseFromParent();
2507 // Since we are now done with the return instruction, delete it also.
2508 Returns
[0]->eraseFromParent();
2510 // We are now done with the inlining.
2511 return InlineResult::success();
2514 // Otherwise, we have the normal case, of more than one block to inline or
2515 // multiple return sites.
2517 // We want to clone the entire callee function into the hole between the
2518 // "starter" and "ender" blocks. How we accomplish this depends on whether
2519 // this is an invoke instruction or a call instruction.
2520 BasicBlock
*AfterCallBB
;
2521 BranchInst
*CreatedBranchToNormalDest
= nullptr;
2522 if (InvokeInst
*II
= dyn_cast
<InvokeInst
>(&CB
)) {
2524 // Add an unconditional branch to make this look like the CallInst case...
2525 CreatedBranchToNormalDest
= BranchInst::Create(II
->getNormalDest(), &CB
);
2527 // Split the basic block. This guarantees that no PHI nodes will have to be
2528 // updated due to new incoming edges, and make the invoke case more
2529 // symmetric to the call case.
2531 OrigBB
->splitBasicBlock(CreatedBranchToNormalDest
->getIterator(),
2532 CalledFunc
->getName() + ".exit");
2534 } else { // It's a call
2535 // If this is a call instruction, we need to split the basic block that
2536 // the call lives in.
2538 AfterCallBB
= OrigBB
->splitBasicBlock(CB
.getIterator(),
2539 CalledFunc
->getName() + ".exit");
2542 if (IFI
.CallerBFI
) {
2543 // Copy original BB's block frequency to AfterCallBB
2544 IFI
.CallerBFI
->setBlockFreq(
2545 AfterCallBB
, IFI
.CallerBFI
->getBlockFreq(OrigBB
).getFrequency());
2548 // Change the branch that used to go to AfterCallBB to branch to the first
2549 // basic block of the inlined function.
2551 Instruction
*Br
= OrigBB
->getTerminator();
2552 assert(Br
&& Br
->getOpcode() == Instruction::Br
&&
2553 "splitBasicBlock broken!");
2554 Br
->setOperand(0, &*FirstNewBlock
);
2556 // Now that the function is correct, make it a little bit nicer. In
2557 // particular, move the basic blocks inserted from the end of the function
2558 // into the space made by splitting the source basic block.
2559 Caller
->getBasicBlockList().splice(AfterCallBB
->getIterator(),
2560 Caller
->getBasicBlockList(), FirstNewBlock
,
2563 // Handle all of the return instructions that we just cloned in, and eliminate
2564 // any users of the original call/invoke instruction.
2565 Type
*RTy
= CalledFunc
->getReturnType();
2567 PHINode
*PHI
= nullptr;
2568 if (Returns
.size() > 1) {
2569 // The PHI node should go at the front of the new basic block to merge all
2570 // possible incoming values.
2571 if (!CB
.use_empty()) {
2572 PHI
= PHINode::Create(RTy
, Returns
.size(), CB
.getName(),
2573 &AfterCallBB
->front());
2574 // Anything that used the result of the function call should now use the
2575 // PHI node as their operand.
2576 CB
.replaceAllUsesWith(PHI
);
2579 // Loop over all of the return instructions adding entries to the PHI node
2582 for (unsigned i
= 0, e
= Returns
.size(); i
!= e
; ++i
) {
2583 ReturnInst
*RI
= Returns
[i
];
2584 assert(RI
->getReturnValue()->getType() == PHI
->getType() &&
2585 "Ret value not consistent in function!");
2586 PHI
->addIncoming(RI
->getReturnValue(), RI
->getParent());
2590 // Add a branch to the merge points and remove return instructions.
2592 for (unsigned i
= 0, e
= Returns
.size(); i
!= e
; ++i
) {
2593 ReturnInst
*RI
= Returns
[i
];
2594 BranchInst
* BI
= BranchInst::Create(AfterCallBB
, RI
);
2595 Loc
= RI
->getDebugLoc();
2596 BI
->setDebugLoc(Loc
);
2597 RI
->eraseFromParent();
2599 // We need to set the debug location to *somewhere* inside the
2600 // inlined function. The line number may be nonsensical, but the
2601 // instruction will at least be associated with the right
2603 if (CreatedBranchToNormalDest
)
2604 CreatedBranchToNormalDest
->setDebugLoc(Loc
);
2605 } else if (!Returns
.empty()) {
2606 // Otherwise, if there is exactly one return value, just replace anything
2607 // using the return value of the call with the computed value.
2608 if (!CB
.use_empty()) {
2609 if (&CB
== Returns
[0]->getReturnValue())
2610 CB
.replaceAllUsesWith(UndefValue::get(CB
.getType()));
2612 CB
.replaceAllUsesWith(Returns
[0]->getReturnValue());
2615 // Update PHI nodes that use the ReturnBB to use the AfterCallBB.
2616 BasicBlock
*ReturnBB
= Returns
[0]->getParent();
2617 ReturnBB
->replaceAllUsesWith(AfterCallBB
);
2619 // Splice the code from the return block into the block that it will return
2620 // to, which contains the code that was after the call.
2621 AfterCallBB
->getInstList().splice(AfterCallBB
->begin(),
2622 ReturnBB
->getInstList());
2624 if (CreatedBranchToNormalDest
)
2625 CreatedBranchToNormalDest
->setDebugLoc(Returns
[0]->getDebugLoc());
2627 // Delete the return instruction now and empty ReturnBB now.
2628 Returns
[0]->eraseFromParent();
2629 ReturnBB
->eraseFromParent();
2630 } else if (!CB
.use_empty()) {
2631 // No returns, but something is using the return value of the call. Just
2633 CB
.replaceAllUsesWith(PoisonValue::get(CB
.getType()));
2636 // Since we are now done with the Call/Invoke, we can delete it.
2637 CB
.eraseFromParent();
2639 // If we inlined any musttail calls and the original return is now
2640 // unreachable, delete it. It can only contain a bitcast and ret.
2641 if (InlinedMustTailCalls
&& pred_empty(AfterCallBB
))
2642 AfterCallBB
->eraseFromParent();
2644 // We should always be able to fold the entry block of the function into the
2645 // single predecessor of the block...
2646 assert(cast
<BranchInst
>(Br
)->isUnconditional() && "splitBasicBlock broken!");
2647 BasicBlock
*CalleeEntry
= cast
<BranchInst
>(Br
)->getSuccessor(0);
2649 // Splice the code entry block into calling block, right before the
2650 // unconditional branch.
2651 CalleeEntry
->replaceAllUsesWith(OrigBB
); // Update PHI nodes
2652 OrigBB
->getInstList().splice(Br
->getIterator(), CalleeEntry
->getInstList());
2654 // Remove the unconditional branch.
2655 OrigBB
->getInstList().erase(Br
);
2657 // Now we can remove the CalleeEntry block, which is now empty.
2658 Caller
->getBasicBlockList().erase(CalleeEntry
);
2660 // If we inserted a phi node, check to see if it has a single value (e.g. all
2661 // the entries are the same or undef). If so, remove the PHI so it doesn't
2662 // block other optimizations.
2664 AssumptionCache
*AC
=
2665 IFI
.GetAssumptionCache
? &IFI
.GetAssumptionCache(*Caller
) : nullptr;
2666 auto &DL
= Caller
->getParent()->getDataLayout();
2667 if (Value
*V
= simplifyInstruction(PHI
, {DL
, nullptr, nullptr, AC
})) {
2668 PHI
->replaceAllUsesWith(V
);
2669 PHI
->eraseFromParent();
2673 return InlineResult::success();