[docs] Add LICENSE.txt to the root of the mono-repo
[llvm-project.git] / llvm / lib / Transforms / Utils / InlineFunction.cpp
blob878f9477a29dd024f12d1a1ae9172d3d4bfab1fc
1 //===- InlineFunction.cpp - Code to perform function inlining -------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements inlining of a function into a call site, resolving
10 // parameters and the return value as appropriate.
12 //===----------------------------------------------------------------------===//
14 #include "llvm/ADT/DenseMap.h"
15 #include "llvm/ADT/None.h"
16 #include "llvm/ADT/Optional.h"
17 #include "llvm/ADT/STLExtras.h"
18 #include "llvm/ADT/SetVector.h"
19 #include "llvm/ADT/SmallPtrSet.h"
20 #include "llvm/ADT/SmallVector.h"
21 #include "llvm/ADT/StringExtras.h"
22 #include "llvm/ADT/iterator_range.h"
23 #include "llvm/Analysis/AliasAnalysis.h"
24 #include "llvm/Analysis/AssumptionCache.h"
25 #include "llvm/Analysis/BlockFrequencyInfo.h"
26 #include "llvm/Analysis/CallGraph.h"
27 #include "llvm/Analysis/CaptureTracking.h"
28 #include "llvm/Analysis/EHPersonalities.h"
29 #include "llvm/Analysis/InstructionSimplify.h"
30 #include "llvm/Analysis/ObjCARCAnalysisUtils.h"
31 #include "llvm/Analysis/ObjCARCUtil.h"
32 #include "llvm/Analysis/ProfileSummaryInfo.h"
33 #include "llvm/Analysis/ValueTracking.h"
34 #include "llvm/Analysis/VectorUtils.h"
35 #include "llvm/IR/Argument.h"
36 #include "llvm/IR/BasicBlock.h"
37 #include "llvm/IR/CFG.h"
38 #include "llvm/IR/Constant.h"
39 #include "llvm/IR/Constants.h"
40 #include "llvm/IR/DataLayout.h"
41 #include "llvm/IR/DebugInfo.h"
42 #include "llvm/IR/DebugInfoMetadata.h"
43 #include "llvm/IR/DebugLoc.h"
44 #include "llvm/IR/DerivedTypes.h"
45 #include "llvm/IR/Dominators.h"
46 #include "llvm/IR/Function.h"
47 #include "llvm/IR/IRBuilder.h"
48 #include "llvm/IR/InlineAsm.h"
49 #include "llvm/IR/InstrTypes.h"
50 #include "llvm/IR/Instruction.h"
51 #include "llvm/IR/Instructions.h"
52 #include "llvm/IR/IntrinsicInst.h"
53 #include "llvm/IR/Intrinsics.h"
54 #include "llvm/IR/LLVMContext.h"
55 #include "llvm/IR/MDBuilder.h"
56 #include "llvm/IR/Metadata.h"
57 #include "llvm/IR/Module.h"
58 #include "llvm/IR/Type.h"
59 #include "llvm/IR/User.h"
60 #include "llvm/IR/Value.h"
61 #include "llvm/Support/Casting.h"
62 #include "llvm/Support/CommandLine.h"
63 #include "llvm/Support/ErrorHandling.h"
64 #include "llvm/Transforms/Utils/AssumeBundleBuilder.h"
65 #include "llvm/Transforms/Utils/Cloning.h"
66 #include "llvm/Transforms/Utils/Local.h"
67 #include "llvm/Transforms/Utils/ValueMapper.h"
68 #include <algorithm>
69 #include <cassert>
70 #include <cstdint>
71 #include <iterator>
72 #include <limits>
73 #include <string>
74 #include <utility>
75 #include <vector>
77 using namespace llvm;
78 using ProfileCount = Function::ProfileCount;
80 static cl::opt<bool>
81 EnableNoAliasConversion("enable-noalias-to-md-conversion", cl::init(true),
82 cl::Hidden,
83 cl::desc("Convert noalias attributes to metadata during inlining."));
85 static cl::opt<bool>
86 UseNoAliasIntrinsic("use-noalias-intrinsic-during-inlining", cl::Hidden,
87 cl::init(true),
88 cl::desc("Use the llvm.experimental.noalias.scope.decl "
89 "intrinsic during inlining."));
91 // Disabled by default, because the added alignment assumptions may increase
92 // compile-time and block optimizations. This option is not suitable for use
93 // with frontends that emit comprehensive parameter alignment annotations.
94 static cl::opt<bool>
95 PreserveAlignmentAssumptions("preserve-alignment-assumptions-during-inlining",
96 cl::init(false), cl::Hidden,
97 cl::desc("Convert align attributes to assumptions during inlining."));
99 static cl::opt<bool> UpdateReturnAttributes(
100 "update-return-attrs", cl::init(true), cl::Hidden,
101 cl::desc("Update return attributes on calls within inlined body"));
103 static cl::opt<unsigned> InlinerAttributeWindow(
104 "max-inst-checked-for-throw-during-inlining", cl::Hidden,
105 cl::desc("the maximum number of instructions analyzed for may throw during "
106 "attribute inference in inlined body"),
107 cl::init(4));
109 namespace {
111 /// A class for recording information about inlining a landing pad.
112 class LandingPadInliningInfo {
113 /// Destination of the invoke's unwind.
114 BasicBlock *OuterResumeDest;
116 /// Destination for the callee's resume.
117 BasicBlock *InnerResumeDest = nullptr;
119 /// LandingPadInst associated with the invoke.
120 LandingPadInst *CallerLPad = nullptr;
122 /// PHI for EH values from landingpad insts.
123 PHINode *InnerEHValuesPHI = nullptr;
125 SmallVector<Value*, 8> UnwindDestPHIValues;
127 public:
128 LandingPadInliningInfo(InvokeInst *II)
129 : OuterResumeDest(II->getUnwindDest()) {
130 // If there are PHI nodes in the unwind destination block, we need to keep
131 // track of which values came into them from the invoke before removing
132 // the edge from this block.
133 BasicBlock *InvokeBB = II->getParent();
134 BasicBlock::iterator I = OuterResumeDest->begin();
135 for (; isa<PHINode>(I); ++I) {
136 // Save the value to use for this edge.
137 PHINode *PHI = cast<PHINode>(I);
138 UnwindDestPHIValues.push_back(PHI->getIncomingValueForBlock(InvokeBB));
141 CallerLPad = cast<LandingPadInst>(I);
144 /// The outer unwind destination is the target of
145 /// unwind edges introduced for calls within the inlined function.
146 BasicBlock *getOuterResumeDest() const {
147 return OuterResumeDest;
150 BasicBlock *getInnerResumeDest();
152 LandingPadInst *getLandingPadInst() const { return CallerLPad; }
154 /// Forward the 'resume' instruction to the caller's landing pad block.
155 /// When the landing pad block has only one predecessor, this is
156 /// a simple branch. When there is more than one predecessor, we need to
157 /// split the landing pad block after the landingpad instruction and jump
158 /// to there.
159 void forwardResume(ResumeInst *RI,
160 SmallPtrSetImpl<LandingPadInst*> &InlinedLPads);
162 /// Add incoming-PHI values to the unwind destination block for the given
163 /// basic block, using the values for the original invoke's source block.
164 void addIncomingPHIValuesFor(BasicBlock *BB) const {
165 addIncomingPHIValuesForInto(BB, OuterResumeDest);
168 void addIncomingPHIValuesForInto(BasicBlock *src, BasicBlock *dest) const {
169 BasicBlock::iterator I = dest->begin();
170 for (unsigned i = 0, e = UnwindDestPHIValues.size(); i != e; ++i, ++I) {
171 PHINode *phi = cast<PHINode>(I);
172 phi->addIncoming(UnwindDestPHIValues[i], src);
177 } // end anonymous namespace
179 /// Get or create a target for the branch from ResumeInsts.
180 BasicBlock *LandingPadInliningInfo::getInnerResumeDest() {
181 if (InnerResumeDest) return InnerResumeDest;
183 // Split the landing pad.
184 BasicBlock::iterator SplitPoint = ++CallerLPad->getIterator();
185 InnerResumeDest =
186 OuterResumeDest->splitBasicBlock(SplitPoint,
187 OuterResumeDest->getName() + ".body");
189 // The number of incoming edges we expect to the inner landing pad.
190 const unsigned PHICapacity = 2;
192 // Create corresponding new PHIs for all the PHIs in the outer landing pad.
193 Instruction *InsertPoint = &InnerResumeDest->front();
194 BasicBlock::iterator I = OuterResumeDest->begin();
195 for (unsigned i = 0, e = UnwindDestPHIValues.size(); i != e; ++i, ++I) {
196 PHINode *OuterPHI = cast<PHINode>(I);
197 PHINode *InnerPHI = PHINode::Create(OuterPHI->getType(), PHICapacity,
198 OuterPHI->getName() + ".lpad-body",
199 InsertPoint);
200 OuterPHI->replaceAllUsesWith(InnerPHI);
201 InnerPHI->addIncoming(OuterPHI, OuterResumeDest);
204 // Create a PHI for the exception values.
205 InnerEHValuesPHI = PHINode::Create(CallerLPad->getType(), PHICapacity,
206 "eh.lpad-body", InsertPoint);
207 CallerLPad->replaceAllUsesWith(InnerEHValuesPHI);
208 InnerEHValuesPHI->addIncoming(CallerLPad, OuterResumeDest);
210 // All done.
211 return InnerResumeDest;
214 /// Forward the 'resume' instruction to the caller's landing pad block.
215 /// When the landing pad block has only one predecessor, this is a simple
216 /// branch. When there is more than one predecessor, we need to split the
217 /// landing pad block after the landingpad instruction and jump to there.
218 void LandingPadInliningInfo::forwardResume(
219 ResumeInst *RI, SmallPtrSetImpl<LandingPadInst *> &InlinedLPads) {
220 BasicBlock *Dest = getInnerResumeDest();
221 BasicBlock *Src = RI->getParent();
223 BranchInst::Create(Dest, Src);
225 // Update the PHIs in the destination. They were inserted in an order which
226 // makes this work.
227 addIncomingPHIValuesForInto(Src, Dest);
229 InnerEHValuesPHI->addIncoming(RI->getOperand(0), Src);
230 RI->eraseFromParent();
233 /// Helper for getUnwindDestToken/getUnwindDestTokenHelper.
234 static Value *getParentPad(Value *EHPad) {
235 if (auto *FPI = dyn_cast<FuncletPadInst>(EHPad))
236 return FPI->getParentPad();
237 return cast<CatchSwitchInst>(EHPad)->getParentPad();
240 using UnwindDestMemoTy = DenseMap<Instruction *, Value *>;
242 /// Helper for getUnwindDestToken that does the descendant-ward part of
243 /// the search.
244 static Value *getUnwindDestTokenHelper(Instruction *EHPad,
245 UnwindDestMemoTy &MemoMap) {
246 SmallVector<Instruction *, 8> Worklist(1, EHPad);
248 while (!Worklist.empty()) {
249 Instruction *CurrentPad = Worklist.pop_back_val();
250 // We only put pads on the worklist that aren't in the MemoMap. When
251 // we find an unwind dest for a pad we may update its ancestors, but
252 // the queue only ever contains uncles/great-uncles/etc. of CurrentPad,
253 // so they should never get updated while queued on the worklist.
254 assert(!MemoMap.count(CurrentPad));
255 Value *UnwindDestToken = nullptr;
256 if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(CurrentPad)) {
257 if (CatchSwitch->hasUnwindDest()) {
258 UnwindDestToken = CatchSwitch->getUnwindDest()->getFirstNonPHI();
259 } else {
260 // Catchswitch doesn't have a 'nounwind' variant, and one might be
261 // annotated as "unwinds to caller" when really it's nounwind (see
262 // e.g. SimplifyCFGOpt::SimplifyUnreachable), so we can't infer the
263 // parent's unwind dest from this. We can check its catchpads'
264 // descendants, since they might include a cleanuppad with an
265 // "unwinds to caller" cleanupret, which can be trusted.
266 for (auto HI = CatchSwitch->handler_begin(),
267 HE = CatchSwitch->handler_end();
268 HI != HE && !UnwindDestToken; ++HI) {
269 BasicBlock *HandlerBlock = *HI;
270 auto *CatchPad = cast<CatchPadInst>(HandlerBlock->getFirstNonPHI());
271 for (User *Child : CatchPad->users()) {
272 // Intentionally ignore invokes here -- since the catchswitch is
273 // marked "unwind to caller", it would be a verifier error if it
274 // contained an invoke which unwinds out of it, so any invoke we'd
275 // encounter must unwind to some child of the catch.
276 if (!isa<CleanupPadInst>(Child) && !isa<CatchSwitchInst>(Child))
277 continue;
279 Instruction *ChildPad = cast<Instruction>(Child);
280 auto Memo = MemoMap.find(ChildPad);
281 if (Memo == MemoMap.end()) {
282 // Haven't figured out this child pad yet; queue it.
283 Worklist.push_back(ChildPad);
284 continue;
286 // We've already checked this child, but might have found that
287 // it offers no proof either way.
288 Value *ChildUnwindDestToken = Memo->second;
289 if (!ChildUnwindDestToken)
290 continue;
291 // We already know the child's unwind dest, which can either
292 // be ConstantTokenNone to indicate unwind to caller, or can
293 // be another child of the catchpad. Only the former indicates
294 // the unwind dest of the catchswitch.
295 if (isa<ConstantTokenNone>(ChildUnwindDestToken)) {
296 UnwindDestToken = ChildUnwindDestToken;
297 break;
299 assert(getParentPad(ChildUnwindDestToken) == CatchPad);
303 } else {
304 auto *CleanupPad = cast<CleanupPadInst>(CurrentPad);
305 for (User *U : CleanupPad->users()) {
306 if (auto *CleanupRet = dyn_cast<CleanupReturnInst>(U)) {
307 if (BasicBlock *RetUnwindDest = CleanupRet->getUnwindDest())
308 UnwindDestToken = RetUnwindDest->getFirstNonPHI();
309 else
310 UnwindDestToken = ConstantTokenNone::get(CleanupPad->getContext());
311 break;
313 Value *ChildUnwindDestToken;
314 if (auto *Invoke = dyn_cast<InvokeInst>(U)) {
315 ChildUnwindDestToken = Invoke->getUnwindDest()->getFirstNonPHI();
316 } else if (isa<CleanupPadInst>(U) || isa<CatchSwitchInst>(U)) {
317 Instruction *ChildPad = cast<Instruction>(U);
318 auto Memo = MemoMap.find(ChildPad);
319 if (Memo == MemoMap.end()) {
320 // Haven't resolved this child yet; queue it and keep searching.
321 Worklist.push_back(ChildPad);
322 continue;
324 // We've checked this child, but still need to ignore it if it
325 // had no proof either way.
326 ChildUnwindDestToken = Memo->second;
327 if (!ChildUnwindDestToken)
328 continue;
329 } else {
330 // Not a relevant user of the cleanuppad
331 continue;
333 // In a well-formed program, the child/invoke must either unwind to
334 // an(other) child of the cleanup, or exit the cleanup. In the
335 // first case, continue searching.
336 if (isa<Instruction>(ChildUnwindDestToken) &&
337 getParentPad(ChildUnwindDestToken) == CleanupPad)
338 continue;
339 UnwindDestToken = ChildUnwindDestToken;
340 break;
343 // If we haven't found an unwind dest for CurrentPad, we may have queued its
344 // children, so move on to the next in the worklist.
345 if (!UnwindDestToken)
346 continue;
348 // Now we know that CurrentPad unwinds to UnwindDestToken. It also exits
349 // any ancestors of CurrentPad up to but not including UnwindDestToken's
350 // parent pad. Record this in the memo map, and check to see if the
351 // original EHPad being queried is one of the ones exited.
352 Value *UnwindParent;
353 if (auto *UnwindPad = dyn_cast<Instruction>(UnwindDestToken))
354 UnwindParent = getParentPad(UnwindPad);
355 else
356 UnwindParent = nullptr;
357 bool ExitedOriginalPad = false;
358 for (Instruction *ExitedPad = CurrentPad;
359 ExitedPad && ExitedPad != UnwindParent;
360 ExitedPad = dyn_cast<Instruction>(getParentPad(ExitedPad))) {
361 // Skip over catchpads since they just follow their catchswitches.
362 if (isa<CatchPadInst>(ExitedPad))
363 continue;
364 MemoMap[ExitedPad] = UnwindDestToken;
365 ExitedOriginalPad |= (ExitedPad == EHPad);
368 if (ExitedOriginalPad)
369 return UnwindDestToken;
371 // Continue the search.
374 // No definitive information is contained within this funclet.
375 return nullptr;
378 /// Given an EH pad, find where it unwinds. If it unwinds to an EH pad,
379 /// return that pad instruction. If it unwinds to caller, return
380 /// ConstantTokenNone. If it does not have a definitive unwind destination,
381 /// return nullptr.
383 /// This routine gets invoked for calls in funclets in inlinees when inlining
384 /// an invoke. Since many funclets don't have calls inside them, it's queried
385 /// on-demand rather than building a map of pads to unwind dests up front.
386 /// Determining a funclet's unwind dest may require recursively searching its
387 /// descendants, and also ancestors and cousins if the descendants don't provide
388 /// an answer. Since most funclets will have their unwind dest immediately
389 /// available as the unwind dest of a catchswitch or cleanupret, this routine
390 /// searches top-down from the given pad and then up. To avoid worst-case
391 /// quadratic run-time given that approach, it uses a memo map to avoid
392 /// re-processing funclet trees. The callers that rewrite the IR as they go
393 /// take advantage of this, for correctness, by checking/forcing rewritten
394 /// pads' entries to match the original callee view.
395 static Value *getUnwindDestToken(Instruction *EHPad,
396 UnwindDestMemoTy &MemoMap) {
397 // Catchpads unwind to the same place as their catchswitch;
398 // redirct any queries on catchpads so the code below can
399 // deal with just catchswitches and cleanuppads.
400 if (auto *CPI = dyn_cast<CatchPadInst>(EHPad))
401 EHPad = CPI->getCatchSwitch();
403 // Check if we've already determined the unwind dest for this pad.
404 auto Memo = MemoMap.find(EHPad);
405 if (Memo != MemoMap.end())
406 return Memo->second;
408 // Search EHPad and, if necessary, its descendants.
409 Value *UnwindDestToken = getUnwindDestTokenHelper(EHPad, MemoMap);
410 assert((UnwindDestToken == nullptr) != (MemoMap.count(EHPad) != 0));
411 if (UnwindDestToken)
412 return UnwindDestToken;
414 // No information is available for this EHPad from itself or any of its
415 // descendants. An unwind all the way out to a pad in the caller would
416 // need also to agree with the unwind dest of the parent funclet, so
417 // search up the chain to try to find a funclet with information. Put
418 // null entries in the memo map to avoid re-processing as we go up.
419 MemoMap[EHPad] = nullptr;
420 #ifndef NDEBUG
421 SmallPtrSet<Instruction *, 4> TempMemos;
422 TempMemos.insert(EHPad);
423 #endif
424 Instruction *LastUselessPad = EHPad;
425 Value *AncestorToken;
426 for (AncestorToken = getParentPad(EHPad);
427 auto *AncestorPad = dyn_cast<Instruction>(AncestorToken);
428 AncestorToken = getParentPad(AncestorToken)) {
429 // Skip over catchpads since they just follow their catchswitches.
430 if (isa<CatchPadInst>(AncestorPad))
431 continue;
432 // If the MemoMap had an entry mapping AncestorPad to nullptr, since we
433 // haven't yet called getUnwindDestTokenHelper for AncestorPad in this
434 // call to getUnwindDestToken, that would mean that AncestorPad had no
435 // information in itself, its descendants, or its ancestors. If that
436 // were the case, then we should also have recorded the lack of information
437 // for the descendant that we're coming from. So assert that we don't
438 // find a null entry in the MemoMap for AncestorPad.
439 assert(!MemoMap.count(AncestorPad) || MemoMap[AncestorPad]);
440 auto AncestorMemo = MemoMap.find(AncestorPad);
441 if (AncestorMemo == MemoMap.end()) {
442 UnwindDestToken = getUnwindDestTokenHelper(AncestorPad, MemoMap);
443 } else {
444 UnwindDestToken = AncestorMemo->second;
446 if (UnwindDestToken)
447 break;
448 LastUselessPad = AncestorPad;
449 MemoMap[LastUselessPad] = nullptr;
450 #ifndef NDEBUG
451 TempMemos.insert(LastUselessPad);
452 #endif
455 // We know that getUnwindDestTokenHelper was called on LastUselessPad and
456 // returned nullptr (and likewise for EHPad and any of its ancestors up to
457 // LastUselessPad), so LastUselessPad has no information from below. Since
458 // getUnwindDestTokenHelper must investigate all downward paths through
459 // no-information nodes to prove that a node has no information like this,
460 // and since any time it finds information it records it in the MemoMap for
461 // not just the immediately-containing funclet but also any ancestors also
462 // exited, it must be the case that, walking downward from LastUselessPad,
463 // visiting just those nodes which have not been mapped to an unwind dest
464 // by getUnwindDestTokenHelper (the nullptr TempMemos notwithstanding, since
465 // they are just used to keep getUnwindDestTokenHelper from repeating work),
466 // any node visited must have been exhaustively searched with no information
467 // for it found.
468 SmallVector<Instruction *, 8> Worklist(1, LastUselessPad);
469 while (!Worklist.empty()) {
470 Instruction *UselessPad = Worklist.pop_back_val();
471 auto Memo = MemoMap.find(UselessPad);
472 if (Memo != MemoMap.end() && Memo->second) {
473 // Here the name 'UselessPad' is a bit of a misnomer, because we've found
474 // that it is a funclet that does have information about unwinding to
475 // a particular destination; its parent was a useless pad.
476 // Since its parent has no information, the unwind edge must not escape
477 // the parent, and must target a sibling of this pad. This local unwind
478 // gives us no information about EHPad. Leave it and the subtree rooted
479 // at it alone.
480 assert(getParentPad(Memo->second) == getParentPad(UselessPad));
481 continue;
483 // We know we don't have information for UselesPad. If it has an entry in
484 // the MemoMap (mapping it to nullptr), it must be one of the TempMemos
485 // added on this invocation of getUnwindDestToken; if a previous invocation
486 // recorded nullptr, it would have had to prove that the ancestors of
487 // UselessPad, which include LastUselessPad, had no information, and that
488 // in turn would have required proving that the descendants of
489 // LastUselesPad, which include EHPad, have no information about
490 // LastUselessPad, which would imply that EHPad was mapped to nullptr in
491 // the MemoMap on that invocation, which isn't the case if we got here.
492 assert(!MemoMap.count(UselessPad) || TempMemos.count(UselessPad));
493 // Assert as we enumerate users that 'UselessPad' doesn't have any unwind
494 // information that we'd be contradicting by making a map entry for it
495 // (which is something that getUnwindDestTokenHelper must have proved for
496 // us to get here). Just assert on is direct users here; the checks in
497 // this downward walk at its descendants will verify that they don't have
498 // any unwind edges that exit 'UselessPad' either (i.e. they either have no
499 // unwind edges or unwind to a sibling).
500 MemoMap[UselessPad] = UnwindDestToken;
501 if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(UselessPad)) {
502 assert(CatchSwitch->getUnwindDest() == nullptr && "Expected useless pad");
503 for (BasicBlock *HandlerBlock : CatchSwitch->handlers()) {
504 auto *CatchPad = HandlerBlock->getFirstNonPHI();
505 for (User *U : CatchPad->users()) {
506 assert(
507 (!isa<InvokeInst>(U) ||
508 (getParentPad(
509 cast<InvokeInst>(U)->getUnwindDest()->getFirstNonPHI()) ==
510 CatchPad)) &&
511 "Expected useless pad");
512 if (isa<CatchSwitchInst>(U) || isa<CleanupPadInst>(U))
513 Worklist.push_back(cast<Instruction>(U));
516 } else {
517 assert(isa<CleanupPadInst>(UselessPad));
518 for (User *U : UselessPad->users()) {
519 assert(!isa<CleanupReturnInst>(U) && "Expected useless pad");
520 assert((!isa<InvokeInst>(U) ||
521 (getParentPad(
522 cast<InvokeInst>(U)->getUnwindDest()->getFirstNonPHI()) ==
523 UselessPad)) &&
524 "Expected useless pad");
525 if (isa<CatchSwitchInst>(U) || isa<CleanupPadInst>(U))
526 Worklist.push_back(cast<Instruction>(U));
531 return UnwindDestToken;
534 /// When we inline a basic block into an invoke,
535 /// we have to turn all of the calls that can throw into invokes.
536 /// This function analyze BB to see if there are any calls, and if so,
537 /// it rewrites them to be invokes that jump to InvokeDest and fills in the PHI
538 /// nodes in that block with the values specified in InvokeDestPHIValues.
539 static BasicBlock *HandleCallsInBlockInlinedThroughInvoke(
540 BasicBlock *BB, BasicBlock *UnwindEdge,
541 UnwindDestMemoTy *FuncletUnwindMap = nullptr) {
542 for (Instruction &I : llvm::make_early_inc_range(*BB)) {
543 // We only need to check for function calls: inlined invoke
544 // instructions require no special handling.
545 CallInst *CI = dyn_cast<CallInst>(&I);
547 if (!CI || CI->doesNotThrow())
548 continue;
550 if (CI->isInlineAsm()) {
551 InlineAsm *IA = cast<InlineAsm>(CI->getCalledOperand());
552 if (!IA->canThrow()) {
553 continue;
557 // We do not need to (and in fact, cannot) convert possibly throwing calls
558 // to @llvm.experimental_deoptimize (resp. @llvm.experimental.guard) into
559 // invokes. The caller's "segment" of the deoptimization continuation
560 // attached to the newly inlined @llvm.experimental_deoptimize
561 // (resp. @llvm.experimental.guard) call should contain the exception
562 // handling logic, if any.
563 if (auto *F = CI->getCalledFunction())
564 if (F->getIntrinsicID() == Intrinsic::experimental_deoptimize ||
565 F->getIntrinsicID() == Intrinsic::experimental_guard)
566 continue;
568 if (auto FuncletBundle = CI->getOperandBundle(LLVMContext::OB_funclet)) {
569 // This call is nested inside a funclet. If that funclet has an unwind
570 // destination within the inlinee, then unwinding out of this call would
571 // be UB. Rewriting this call to an invoke which targets the inlined
572 // invoke's unwind dest would give the call's parent funclet multiple
573 // unwind destinations, which is something that subsequent EH table
574 // generation can't handle and that the veirifer rejects. So when we
575 // see such a call, leave it as a call.
576 auto *FuncletPad = cast<Instruction>(FuncletBundle->Inputs[0]);
577 Value *UnwindDestToken =
578 getUnwindDestToken(FuncletPad, *FuncletUnwindMap);
579 if (UnwindDestToken && !isa<ConstantTokenNone>(UnwindDestToken))
580 continue;
581 #ifndef NDEBUG
582 Instruction *MemoKey;
583 if (auto *CatchPad = dyn_cast<CatchPadInst>(FuncletPad))
584 MemoKey = CatchPad->getCatchSwitch();
585 else
586 MemoKey = FuncletPad;
587 assert(FuncletUnwindMap->count(MemoKey) &&
588 (*FuncletUnwindMap)[MemoKey] == UnwindDestToken &&
589 "must get memoized to avoid confusing later searches");
590 #endif // NDEBUG
593 changeToInvokeAndSplitBasicBlock(CI, UnwindEdge);
594 return BB;
596 return nullptr;
599 /// If we inlined an invoke site, we need to convert calls
600 /// in the body of the inlined function into invokes.
602 /// II is the invoke instruction being inlined. FirstNewBlock is the first
603 /// block of the inlined code (the last block is the end of the function),
604 /// and InlineCodeInfo is information about the code that got inlined.
605 static void HandleInlinedLandingPad(InvokeInst *II, BasicBlock *FirstNewBlock,
606 ClonedCodeInfo &InlinedCodeInfo) {
607 BasicBlock *InvokeDest = II->getUnwindDest();
609 Function *Caller = FirstNewBlock->getParent();
611 // The inlined code is currently at the end of the function, scan from the
612 // start of the inlined code to its end, checking for stuff we need to
613 // rewrite.
614 LandingPadInliningInfo Invoke(II);
616 // Get all of the inlined landing pad instructions.
617 SmallPtrSet<LandingPadInst*, 16> InlinedLPads;
618 for (Function::iterator I = FirstNewBlock->getIterator(), E = Caller->end();
619 I != E; ++I)
620 if (InvokeInst *II = dyn_cast<InvokeInst>(I->getTerminator()))
621 InlinedLPads.insert(II->getLandingPadInst());
623 // Append the clauses from the outer landing pad instruction into the inlined
624 // landing pad instructions.
625 LandingPadInst *OuterLPad = Invoke.getLandingPadInst();
626 for (LandingPadInst *InlinedLPad : InlinedLPads) {
627 unsigned OuterNum = OuterLPad->getNumClauses();
628 InlinedLPad->reserveClauses(OuterNum);
629 for (unsigned OuterIdx = 0; OuterIdx != OuterNum; ++OuterIdx)
630 InlinedLPad->addClause(OuterLPad->getClause(OuterIdx));
631 if (OuterLPad->isCleanup())
632 InlinedLPad->setCleanup(true);
635 for (Function::iterator BB = FirstNewBlock->getIterator(), E = Caller->end();
636 BB != E; ++BB) {
637 if (InlinedCodeInfo.ContainsCalls)
638 if (BasicBlock *NewBB = HandleCallsInBlockInlinedThroughInvoke(
639 &*BB, Invoke.getOuterResumeDest()))
640 // Update any PHI nodes in the exceptional block to indicate that there
641 // is now a new entry in them.
642 Invoke.addIncomingPHIValuesFor(NewBB);
644 // Forward any resumes that are remaining here.
645 if (ResumeInst *RI = dyn_cast<ResumeInst>(BB->getTerminator()))
646 Invoke.forwardResume(RI, InlinedLPads);
649 // Now that everything is happy, we have one final detail. The PHI nodes in
650 // the exception destination block still have entries due to the original
651 // invoke instruction. Eliminate these entries (which might even delete the
652 // PHI node) now.
653 InvokeDest->removePredecessor(II->getParent());
656 /// If we inlined an invoke site, we need to convert calls
657 /// in the body of the inlined function into invokes.
659 /// II is the invoke instruction being inlined. FirstNewBlock is the first
660 /// block of the inlined code (the last block is the end of the function),
661 /// and InlineCodeInfo is information about the code that got inlined.
662 static void HandleInlinedEHPad(InvokeInst *II, BasicBlock *FirstNewBlock,
663 ClonedCodeInfo &InlinedCodeInfo) {
664 BasicBlock *UnwindDest = II->getUnwindDest();
665 Function *Caller = FirstNewBlock->getParent();
667 assert(UnwindDest->getFirstNonPHI()->isEHPad() && "unexpected BasicBlock!");
669 // If there are PHI nodes in the unwind destination block, we need to keep
670 // track of which values came into them from the invoke before removing the
671 // edge from this block.
672 SmallVector<Value *, 8> UnwindDestPHIValues;
673 BasicBlock *InvokeBB = II->getParent();
674 for (PHINode &PHI : UnwindDest->phis()) {
675 // Save the value to use for this edge.
676 UnwindDestPHIValues.push_back(PHI.getIncomingValueForBlock(InvokeBB));
679 // Add incoming-PHI values to the unwind destination block for the given basic
680 // block, using the values for the original invoke's source block.
681 auto UpdatePHINodes = [&](BasicBlock *Src) {
682 BasicBlock::iterator I = UnwindDest->begin();
683 for (Value *V : UnwindDestPHIValues) {
684 PHINode *PHI = cast<PHINode>(I);
685 PHI->addIncoming(V, Src);
686 ++I;
690 // This connects all the instructions which 'unwind to caller' to the invoke
691 // destination.
692 UnwindDestMemoTy FuncletUnwindMap;
693 for (Function::iterator BB = FirstNewBlock->getIterator(), E = Caller->end();
694 BB != E; ++BB) {
695 if (auto *CRI = dyn_cast<CleanupReturnInst>(BB->getTerminator())) {
696 if (CRI->unwindsToCaller()) {
697 auto *CleanupPad = CRI->getCleanupPad();
698 CleanupReturnInst::Create(CleanupPad, UnwindDest, CRI);
699 CRI->eraseFromParent();
700 UpdatePHINodes(&*BB);
701 // Finding a cleanupret with an unwind destination would confuse
702 // subsequent calls to getUnwindDestToken, so map the cleanuppad
703 // to short-circuit any such calls and recognize this as an "unwind
704 // to caller" cleanup.
705 assert(!FuncletUnwindMap.count(CleanupPad) ||
706 isa<ConstantTokenNone>(FuncletUnwindMap[CleanupPad]));
707 FuncletUnwindMap[CleanupPad] =
708 ConstantTokenNone::get(Caller->getContext());
712 Instruction *I = BB->getFirstNonPHI();
713 if (!I->isEHPad())
714 continue;
716 Instruction *Replacement = nullptr;
717 if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(I)) {
718 if (CatchSwitch->unwindsToCaller()) {
719 Value *UnwindDestToken;
720 if (auto *ParentPad =
721 dyn_cast<Instruction>(CatchSwitch->getParentPad())) {
722 // This catchswitch is nested inside another funclet. If that
723 // funclet has an unwind destination within the inlinee, then
724 // unwinding out of this catchswitch would be UB. Rewriting this
725 // catchswitch to unwind to the inlined invoke's unwind dest would
726 // give the parent funclet multiple unwind destinations, which is
727 // something that subsequent EH table generation can't handle and
728 // that the veirifer rejects. So when we see such a call, leave it
729 // as "unwind to caller".
730 UnwindDestToken = getUnwindDestToken(ParentPad, FuncletUnwindMap);
731 if (UnwindDestToken && !isa<ConstantTokenNone>(UnwindDestToken))
732 continue;
733 } else {
734 // This catchswitch has no parent to inherit constraints from, and
735 // none of its descendants can have an unwind edge that exits it and
736 // targets another funclet in the inlinee. It may or may not have a
737 // descendant that definitively has an unwind to caller. In either
738 // case, we'll have to assume that any unwinds out of it may need to
739 // be routed to the caller, so treat it as though it has a definitive
740 // unwind to caller.
741 UnwindDestToken = ConstantTokenNone::get(Caller->getContext());
743 auto *NewCatchSwitch = CatchSwitchInst::Create(
744 CatchSwitch->getParentPad(), UnwindDest,
745 CatchSwitch->getNumHandlers(), CatchSwitch->getName(),
746 CatchSwitch);
747 for (BasicBlock *PadBB : CatchSwitch->handlers())
748 NewCatchSwitch->addHandler(PadBB);
749 // Propagate info for the old catchswitch over to the new one in
750 // the unwind map. This also serves to short-circuit any subsequent
751 // checks for the unwind dest of this catchswitch, which would get
752 // confused if they found the outer handler in the callee.
753 FuncletUnwindMap[NewCatchSwitch] = UnwindDestToken;
754 Replacement = NewCatchSwitch;
756 } else if (!isa<FuncletPadInst>(I)) {
757 llvm_unreachable("unexpected EHPad!");
760 if (Replacement) {
761 Replacement->takeName(I);
762 I->replaceAllUsesWith(Replacement);
763 I->eraseFromParent();
764 UpdatePHINodes(&*BB);
768 if (InlinedCodeInfo.ContainsCalls)
769 for (Function::iterator BB = FirstNewBlock->getIterator(),
770 E = Caller->end();
771 BB != E; ++BB)
772 if (BasicBlock *NewBB = HandleCallsInBlockInlinedThroughInvoke(
773 &*BB, UnwindDest, &FuncletUnwindMap))
774 // Update any PHI nodes in the exceptional block to indicate that there
775 // is now a new entry in them.
776 UpdatePHINodes(NewBB);
778 // Now that everything is happy, we have one final detail. The PHI nodes in
779 // the exception destination block still have entries due to the original
780 // invoke instruction. Eliminate these entries (which might even delete the
781 // PHI node) now.
782 UnwindDest->removePredecessor(InvokeBB);
785 /// When inlining a call site that has !llvm.mem.parallel_loop_access,
786 /// !llvm.access.group, !alias.scope or !noalias metadata, that metadata should
787 /// be propagated to all memory-accessing cloned instructions.
788 static void PropagateCallSiteMetadata(CallBase &CB, Function::iterator FStart,
789 Function::iterator FEnd) {
790 MDNode *MemParallelLoopAccess =
791 CB.getMetadata(LLVMContext::MD_mem_parallel_loop_access);
792 MDNode *AccessGroup = CB.getMetadata(LLVMContext::MD_access_group);
793 MDNode *AliasScope = CB.getMetadata(LLVMContext::MD_alias_scope);
794 MDNode *NoAlias = CB.getMetadata(LLVMContext::MD_noalias);
795 if (!MemParallelLoopAccess && !AccessGroup && !AliasScope && !NoAlias)
796 return;
798 for (BasicBlock &BB : make_range(FStart, FEnd)) {
799 for (Instruction &I : BB) {
800 // This metadata is only relevant for instructions that access memory.
801 if (!I.mayReadOrWriteMemory())
802 continue;
804 if (MemParallelLoopAccess) {
805 // TODO: This probably should not overwrite MemParalleLoopAccess.
806 MemParallelLoopAccess = MDNode::concatenate(
807 I.getMetadata(LLVMContext::MD_mem_parallel_loop_access),
808 MemParallelLoopAccess);
809 I.setMetadata(LLVMContext::MD_mem_parallel_loop_access,
810 MemParallelLoopAccess);
813 if (AccessGroup)
814 I.setMetadata(LLVMContext::MD_access_group, uniteAccessGroups(
815 I.getMetadata(LLVMContext::MD_access_group), AccessGroup));
817 if (AliasScope)
818 I.setMetadata(LLVMContext::MD_alias_scope, MDNode::concatenate(
819 I.getMetadata(LLVMContext::MD_alias_scope), AliasScope));
821 if (NoAlias)
822 I.setMetadata(LLVMContext::MD_noalias, MDNode::concatenate(
823 I.getMetadata(LLVMContext::MD_noalias), NoAlias));
828 /// Bundle operands of the inlined function must be added to inlined call sites.
829 static void PropagateOperandBundles(Function::iterator InlinedBB,
830 Instruction *CallSiteEHPad) {
831 for (Instruction &II : llvm::make_early_inc_range(*InlinedBB)) {
832 CallBase *I = dyn_cast<CallBase>(&II);
833 if (!I)
834 continue;
835 // Skip call sites which already have a "funclet" bundle.
836 if (I->getOperandBundle(LLVMContext::OB_funclet))
837 continue;
838 // Skip call sites which are nounwind intrinsics (as long as they don't
839 // lower into regular function calls in the course of IR transformations).
840 auto *CalledFn =
841 dyn_cast<Function>(I->getCalledOperand()->stripPointerCasts());
842 if (CalledFn && CalledFn->isIntrinsic() && I->doesNotThrow() &&
843 !IntrinsicInst::mayLowerToFunctionCall(CalledFn->getIntrinsicID()))
844 continue;
846 SmallVector<OperandBundleDef, 1> OpBundles;
847 I->getOperandBundlesAsDefs(OpBundles);
848 OpBundles.emplace_back("funclet", CallSiteEHPad);
850 Instruction *NewInst = CallBase::Create(I, OpBundles, I);
851 NewInst->takeName(I);
852 I->replaceAllUsesWith(NewInst);
853 I->eraseFromParent();
857 namespace {
858 /// Utility for cloning !noalias and !alias.scope metadata. When a code region
859 /// using scoped alias metadata is inlined, the aliasing relationships may not
860 /// hold between the two version. It is necessary to create a deep clone of the
861 /// metadata, putting the two versions in separate scope domains.
862 class ScopedAliasMetadataDeepCloner {
863 using MetadataMap = DenseMap<const MDNode *, TrackingMDNodeRef>;
864 SetVector<const MDNode *> MD;
865 MetadataMap MDMap;
866 void addRecursiveMetadataUses();
868 public:
869 ScopedAliasMetadataDeepCloner(const Function *F);
871 /// Create a new clone of the scoped alias metadata, which will be used by
872 /// subsequent remap() calls.
873 void clone();
875 /// Remap instructions in the given range from the original to the cloned
876 /// metadata.
877 void remap(Function::iterator FStart, Function::iterator FEnd);
879 } // namespace
881 ScopedAliasMetadataDeepCloner::ScopedAliasMetadataDeepCloner(
882 const Function *F) {
883 for (const BasicBlock &BB : *F) {
884 for (const Instruction &I : BB) {
885 if (const MDNode *M = I.getMetadata(LLVMContext::MD_alias_scope))
886 MD.insert(M);
887 if (const MDNode *M = I.getMetadata(LLVMContext::MD_noalias))
888 MD.insert(M);
890 // We also need to clone the metadata in noalias intrinsics.
891 if (const auto *Decl = dyn_cast<NoAliasScopeDeclInst>(&I))
892 MD.insert(Decl->getScopeList());
895 addRecursiveMetadataUses();
898 void ScopedAliasMetadataDeepCloner::addRecursiveMetadataUses() {
899 SmallVector<const Metadata *, 16> Queue(MD.begin(), MD.end());
900 while (!Queue.empty()) {
901 const MDNode *M = cast<MDNode>(Queue.pop_back_val());
902 for (const Metadata *Op : M->operands())
903 if (const MDNode *OpMD = dyn_cast<MDNode>(Op))
904 if (MD.insert(OpMD))
905 Queue.push_back(OpMD);
909 void ScopedAliasMetadataDeepCloner::clone() {
910 assert(MDMap.empty() && "clone() already called ?");
912 SmallVector<TempMDTuple, 16> DummyNodes;
913 for (const MDNode *I : MD) {
914 DummyNodes.push_back(MDTuple::getTemporary(I->getContext(), None));
915 MDMap[I].reset(DummyNodes.back().get());
918 // Create new metadata nodes to replace the dummy nodes, replacing old
919 // metadata references with either a dummy node or an already-created new
920 // node.
921 SmallVector<Metadata *, 4> NewOps;
922 for (const MDNode *I : MD) {
923 for (const Metadata *Op : I->operands()) {
924 if (const MDNode *M = dyn_cast<MDNode>(Op))
925 NewOps.push_back(MDMap[M]);
926 else
927 NewOps.push_back(const_cast<Metadata *>(Op));
930 MDNode *NewM = MDNode::get(I->getContext(), NewOps);
931 MDTuple *TempM = cast<MDTuple>(MDMap[I]);
932 assert(TempM->isTemporary() && "Expected temporary node");
934 TempM->replaceAllUsesWith(NewM);
935 NewOps.clear();
939 void ScopedAliasMetadataDeepCloner::remap(Function::iterator FStart,
940 Function::iterator FEnd) {
941 if (MDMap.empty())
942 return; // Nothing to do.
944 for (BasicBlock &BB : make_range(FStart, FEnd)) {
945 for (Instruction &I : BB) {
946 // TODO: The null checks for the MDMap.lookup() results should no longer
947 // be necessary.
948 if (MDNode *M = I.getMetadata(LLVMContext::MD_alias_scope))
949 if (MDNode *MNew = MDMap.lookup(M))
950 I.setMetadata(LLVMContext::MD_alias_scope, MNew);
952 if (MDNode *M = I.getMetadata(LLVMContext::MD_noalias))
953 if (MDNode *MNew = MDMap.lookup(M))
954 I.setMetadata(LLVMContext::MD_noalias, MNew);
956 if (auto *Decl = dyn_cast<NoAliasScopeDeclInst>(&I))
957 if (MDNode *MNew = MDMap.lookup(Decl->getScopeList()))
958 Decl->setScopeList(MNew);
963 /// If the inlined function has noalias arguments,
964 /// then add new alias scopes for each noalias argument, tag the mapped noalias
965 /// parameters with noalias metadata specifying the new scope, and tag all
966 /// non-derived loads, stores and memory intrinsics with the new alias scopes.
967 static void AddAliasScopeMetadata(CallBase &CB, ValueToValueMapTy &VMap,
968 const DataLayout &DL, AAResults *CalleeAAR,
969 ClonedCodeInfo &InlinedFunctionInfo) {
970 if (!EnableNoAliasConversion)
971 return;
973 const Function *CalledFunc = CB.getCalledFunction();
974 SmallVector<const Argument *, 4> NoAliasArgs;
976 for (const Argument &Arg : CalledFunc->args())
977 if (CB.paramHasAttr(Arg.getArgNo(), Attribute::NoAlias) && !Arg.use_empty())
978 NoAliasArgs.push_back(&Arg);
980 if (NoAliasArgs.empty())
981 return;
983 // To do a good job, if a noalias variable is captured, we need to know if
984 // the capture point dominates the particular use we're considering.
985 DominatorTree DT;
986 DT.recalculate(const_cast<Function&>(*CalledFunc));
988 // noalias indicates that pointer values based on the argument do not alias
989 // pointer values which are not based on it. So we add a new "scope" for each
990 // noalias function argument. Accesses using pointers based on that argument
991 // become part of that alias scope, accesses using pointers not based on that
992 // argument are tagged as noalias with that scope.
994 DenseMap<const Argument *, MDNode *> NewScopes;
995 MDBuilder MDB(CalledFunc->getContext());
997 // Create a new scope domain for this function.
998 MDNode *NewDomain =
999 MDB.createAnonymousAliasScopeDomain(CalledFunc->getName());
1000 for (unsigned i = 0, e = NoAliasArgs.size(); i != e; ++i) {
1001 const Argument *A = NoAliasArgs[i];
1003 std::string Name = std::string(CalledFunc->getName());
1004 if (A->hasName()) {
1005 Name += ": %";
1006 Name += A->getName();
1007 } else {
1008 Name += ": argument ";
1009 Name += utostr(i);
1012 // Note: We always create a new anonymous root here. This is true regardless
1013 // of the linkage of the callee because the aliasing "scope" is not just a
1014 // property of the callee, but also all control dependencies in the caller.
1015 MDNode *NewScope = MDB.createAnonymousAliasScope(NewDomain, Name);
1016 NewScopes.insert(std::make_pair(A, NewScope));
1018 if (UseNoAliasIntrinsic) {
1019 // Introduce a llvm.experimental.noalias.scope.decl for the noalias
1020 // argument.
1021 MDNode *AScopeList = MDNode::get(CalledFunc->getContext(), NewScope);
1022 auto *NoAliasDecl =
1023 IRBuilder<>(&CB).CreateNoAliasScopeDeclaration(AScopeList);
1024 // Ignore the result for now. The result will be used when the
1025 // llvm.noalias intrinsic is introduced.
1026 (void)NoAliasDecl;
1030 // Iterate over all new instructions in the map; for all memory-access
1031 // instructions, add the alias scope metadata.
1032 for (ValueToValueMapTy::iterator VMI = VMap.begin(), VMIE = VMap.end();
1033 VMI != VMIE; ++VMI) {
1034 if (const Instruction *I = dyn_cast<Instruction>(VMI->first)) {
1035 if (!VMI->second)
1036 continue;
1038 Instruction *NI = dyn_cast<Instruction>(VMI->second);
1039 if (!NI || InlinedFunctionInfo.isSimplified(I, NI))
1040 continue;
1042 bool IsArgMemOnlyCall = false, IsFuncCall = false;
1043 SmallVector<const Value *, 2> PtrArgs;
1045 if (const LoadInst *LI = dyn_cast<LoadInst>(I))
1046 PtrArgs.push_back(LI->getPointerOperand());
1047 else if (const StoreInst *SI = dyn_cast<StoreInst>(I))
1048 PtrArgs.push_back(SI->getPointerOperand());
1049 else if (const VAArgInst *VAAI = dyn_cast<VAArgInst>(I))
1050 PtrArgs.push_back(VAAI->getPointerOperand());
1051 else if (const AtomicCmpXchgInst *CXI = dyn_cast<AtomicCmpXchgInst>(I))
1052 PtrArgs.push_back(CXI->getPointerOperand());
1053 else if (const AtomicRMWInst *RMWI = dyn_cast<AtomicRMWInst>(I))
1054 PtrArgs.push_back(RMWI->getPointerOperand());
1055 else if (const auto *Call = dyn_cast<CallBase>(I)) {
1056 // If we know that the call does not access memory, then we'll still
1057 // know that about the inlined clone of this call site, and we don't
1058 // need to add metadata.
1059 if (Call->doesNotAccessMemory())
1060 continue;
1062 IsFuncCall = true;
1063 if (CalleeAAR) {
1064 FunctionModRefBehavior MRB = CalleeAAR->getModRefBehavior(Call);
1066 // We'll retain this knowledge without additional metadata.
1067 if (AAResults::onlyAccessesInaccessibleMem(MRB))
1068 continue;
1070 if (AAResults::onlyAccessesArgPointees(MRB))
1071 IsArgMemOnlyCall = true;
1074 for (Value *Arg : Call->args()) {
1075 // Only care about pointer arguments. If a noalias argument is
1076 // accessed through a non-pointer argument, it must be captured
1077 // first (e.g. via ptrtoint), and we protect against captures below.
1078 if (!Arg->getType()->isPointerTy())
1079 continue;
1081 PtrArgs.push_back(Arg);
1085 // If we found no pointers, then this instruction is not suitable for
1086 // pairing with an instruction to receive aliasing metadata.
1087 // However, if this is a call, this we might just alias with none of the
1088 // noalias arguments.
1089 if (PtrArgs.empty() && !IsFuncCall)
1090 continue;
1092 // It is possible that there is only one underlying object, but you
1093 // need to go through several PHIs to see it, and thus could be
1094 // repeated in the Objects list.
1095 SmallPtrSet<const Value *, 4> ObjSet;
1096 SmallVector<Metadata *, 4> Scopes, NoAliases;
1098 SmallSetVector<const Argument *, 4> NAPtrArgs;
1099 for (const Value *V : PtrArgs) {
1100 SmallVector<const Value *, 4> Objects;
1101 getUnderlyingObjects(V, Objects, /* LI = */ nullptr);
1103 for (const Value *O : Objects)
1104 ObjSet.insert(O);
1107 // Figure out if we're derived from anything that is not a noalias
1108 // argument.
1109 bool RequiresNoCaptureBefore = false, UsesAliasingPtr = false,
1110 UsesUnknownObject = false;
1111 for (const Value *V : ObjSet) {
1112 // Is this value a constant that cannot be derived from any pointer
1113 // value (we need to exclude constant expressions, for example, that
1114 // are formed from arithmetic on global symbols).
1115 bool IsNonPtrConst = isa<ConstantInt>(V) || isa<ConstantFP>(V) ||
1116 isa<ConstantPointerNull>(V) ||
1117 isa<ConstantDataVector>(V) || isa<UndefValue>(V);
1118 if (IsNonPtrConst)
1119 continue;
1121 // If this is anything other than a noalias argument, then we cannot
1122 // completely describe the aliasing properties using alias.scope
1123 // metadata (and, thus, won't add any).
1124 if (const Argument *A = dyn_cast<Argument>(V)) {
1125 if (!CB.paramHasAttr(A->getArgNo(), Attribute::NoAlias))
1126 UsesAliasingPtr = true;
1127 } else {
1128 UsesAliasingPtr = true;
1131 if (isEscapeSource(V)) {
1132 // An escape source can only alias with a noalias argument if it has
1133 // been captured beforehand.
1134 RequiresNoCaptureBefore = true;
1135 } else if (!isa<Argument>(V) && !isIdentifiedObject(V)) {
1136 // If this is neither an escape source, nor some identified object
1137 // (which cannot directly alias a noalias argument), nor some other
1138 // argument (which, by definition, also cannot alias a noalias
1139 // argument), conservatively do not make any assumptions.
1140 UsesUnknownObject = true;
1144 // Nothing we can do if the used underlying object cannot be reliably
1145 // determined.
1146 if (UsesUnknownObject)
1147 continue;
1149 // A function call can always get captured noalias pointers (via other
1150 // parameters, globals, etc.).
1151 if (IsFuncCall && !IsArgMemOnlyCall)
1152 RequiresNoCaptureBefore = true;
1154 // First, we want to figure out all of the sets with which we definitely
1155 // don't alias. Iterate over all noalias set, and add those for which:
1156 // 1. The noalias argument is not in the set of objects from which we
1157 // definitely derive.
1158 // 2. The noalias argument has not yet been captured.
1159 // An arbitrary function that might load pointers could see captured
1160 // noalias arguments via other noalias arguments or globals, and so we
1161 // must always check for prior capture.
1162 for (const Argument *A : NoAliasArgs) {
1163 if (ObjSet.contains(A))
1164 continue; // May be based on a noalias argument.
1166 // It might be tempting to skip the PointerMayBeCapturedBefore check if
1167 // A->hasNoCaptureAttr() is true, but this is incorrect because
1168 // nocapture only guarantees that no copies outlive the function, not
1169 // that the value cannot be locally captured.
1170 if (!RequiresNoCaptureBefore ||
1171 !PointerMayBeCapturedBefore(A, /* ReturnCaptures */ false,
1172 /* StoreCaptures */ false, I, &DT))
1173 NoAliases.push_back(NewScopes[A]);
1176 if (!NoAliases.empty())
1177 NI->setMetadata(LLVMContext::MD_noalias,
1178 MDNode::concatenate(
1179 NI->getMetadata(LLVMContext::MD_noalias),
1180 MDNode::get(CalledFunc->getContext(), NoAliases)));
1182 // Next, we want to figure out all of the sets to which we might belong.
1183 // We might belong to a set if the noalias argument is in the set of
1184 // underlying objects. If there is some non-noalias argument in our list
1185 // of underlying objects, then we cannot add a scope because the fact
1186 // that some access does not alias with any set of our noalias arguments
1187 // cannot itself guarantee that it does not alias with this access
1188 // (because there is some pointer of unknown origin involved and the
1189 // other access might also depend on this pointer). We also cannot add
1190 // scopes to arbitrary functions unless we know they don't access any
1191 // non-parameter pointer-values.
1192 bool CanAddScopes = !UsesAliasingPtr;
1193 if (CanAddScopes && IsFuncCall)
1194 CanAddScopes = IsArgMemOnlyCall;
1196 if (CanAddScopes)
1197 for (const Argument *A : NoAliasArgs) {
1198 if (ObjSet.count(A))
1199 Scopes.push_back(NewScopes[A]);
1202 if (!Scopes.empty())
1203 NI->setMetadata(
1204 LLVMContext::MD_alias_scope,
1205 MDNode::concatenate(NI->getMetadata(LLVMContext::MD_alias_scope),
1206 MDNode::get(CalledFunc->getContext(), Scopes)));
1211 static bool MayContainThrowingOrExitingCall(Instruction *Begin,
1212 Instruction *End) {
1214 assert(Begin->getParent() == End->getParent() &&
1215 "Expected to be in same basic block!");
1216 return !llvm::isGuaranteedToTransferExecutionToSuccessor(
1217 Begin->getIterator(), End->getIterator(), InlinerAttributeWindow + 1);
1220 static AttrBuilder IdentifyValidAttributes(CallBase &CB) {
1222 AttrBuilder AB(CB.getContext(), CB.getAttributes().getRetAttrs());
1223 if (!AB.hasAttributes())
1224 return AB;
1225 AttrBuilder Valid(CB.getContext());
1226 // Only allow these white listed attributes to be propagated back to the
1227 // callee. This is because other attributes may only be valid on the call
1228 // itself, i.e. attributes such as signext and zeroext.
1229 if (auto DerefBytes = AB.getDereferenceableBytes())
1230 Valid.addDereferenceableAttr(DerefBytes);
1231 if (auto DerefOrNullBytes = AB.getDereferenceableOrNullBytes())
1232 Valid.addDereferenceableOrNullAttr(DerefOrNullBytes);
1233 if (AB.contains(Attribute::NoAlias))
1234 Valid.addAttribute(Attribute::NoAlias);
1235 if (AB.contains(Attribute::NonNull))
1236 Valid.addAttribute(Attribute::NonNull);
1237 return Valid;
1240 static void AddReturnAttributes(CallBase &CB, ValueToValueMapTy &VMap) {
1241 if (!UpdateReturnAttributes)
1242 return;
1244 AttrBuilder Valid = IdentifyValidAttributes(CB);
1245 if (!Valid.hasAttributes())
1246 return;
1247 auto *CalledFunction = CB.getCalledFunction();
1248 auto &Context = CalledFunction->getContext();
1250 for (auto &BB : *CalledFunction) {
1251 auto *RI = dyn_cast<ReturnInst>(BB.getTerminator());
1252 if (!RI || !isa<CallBase>(RI->getOperand(0)))
1253 continue;
1254 auto *RetVal = cast<CallBase>(RI->getOperand(0));
1255 // Check that the cloned RetVal exists and is a call, otherwise we cannot
1256 // add the attributes on the cloned RetVal. Simplification during inlining
1257 // could have transformed the cloned instruction.
1258 auto *NewRetVal = dyn_cast_or_null<CallBase>(VMap.lookup(RetVal));
1259 if (!NewRetVal)
1260 continue;
1261 // Backward propagation of attributes to the returned value may be incorrect
1262 // if it is control flow dependent.
1263 // Consider:
1264 // @callee {
1265 // %rv = call @foo()
1266 // %rv2 = call @bar()
1267 // if (%rv2 != null)
1268 // return %rv2
1269 // if (%rv == null)
1270 // exit()
1271 // return %rv
1272 // }
1273 // caller() {
1274 // %val = call nonnull @callee()
1275 // }
1276 // Here we cannot add the nonnull attribute on either foo or bar. So, we
1277 // limit the check to both RetVal and RI are in the same basic block and
1278 // there are no throwing/exiting instructions between these instructions.
1279 if (RI->getParent() != RetVal->getParent() ||
1280 MayContainThrowingOrExitingCall(RetVal, RI))
1281 continue;
1282 // Add to the existing attributes of NewRetVal, i.e. the cloned call
1283 // instruction.
1284 // NB! When we have the same attribute already existing on NewRetVal, but
1285 // with a differing value, the AttributeList's merge API honours the already
1286 // existing attribute value (i.e. attributes such as dereferenceable,
1287 // dereferenceable_or_null etc). See AttrBuilder::merge for more details.
1288 AttributeList AL = NewRetVal->getAttributes();
1289 AttributeList NewAL = AL.addRetAttributes(Context, Valid);
1290 NewRetVal->setAttributes(NewAL);
1294 /// If the inlined function has non-byval align arguments, then
1295 /// add @llvm.assume-based alignment assumptions to preserve this information.
1296 static void AddAlignmentAssumptions(CallBase &CB, InlineFunctionInfo &IFI) {
1297 if (!PreserveAlignmentAssumptions || !IFI.GetAssumptionCache)
1298 return;
1300 AssumptionCache *AC = &IFI.GetAssumptionCache(*CB.getCaller());
1301 auto &DL = CB.getCaller()->getParent()->getDataLayout();
1303 // To avoid inserting redundant assumptions, we should check for assumptions
1304 // already in the caller. To do this, we might need a DT of the caller.
1305 DominatorTree DT;
1306 bool DTCalculated = false;
1308 Function *CalledFunc = CB.getCalledFunction();
1309 for (Argument &Arg : CalledFunc->args()) {
1310 unsigned Align = Arg.getType()->isPointerTy() ? Arg.getParamAlignment() : 0;
1311 if (Align && !Arg.hasPassPointeeByValueCopyAttr() && !Arg.hasNUses(0)) {
1312 if (!DTCalculated) {
1313 DT.recalculate(*CB.getCaller());
1314 DTCalculated = true;
1317 // If we can already prove the asserted alignment in the context of the
1318 // caller, then don't bother inserting the assumption.
1319 Value *ArgVal = CB.getArgOperand(Arg.getArgNo());
1320 if (getKnownAlignment(ArgVal, DL, &CB, AC, &DT) >= Align)
1321 continue;
1323 CallInst *NewAsmp =
1324 IRBuilder<>(&CB).CreateAlignmentAssumption(DL, ArgVal, Align);
1325 AC->registerAssumption(cast<AssumeInst>(NewAsmp));
1330 /// Once we have cloned code over from a callee into the caller,
1331 /// update the specified callgraph to reflect the changes we made.
1332 /// Note that it's possible that not all code was copied over, so only
1333 /// some edges of the callgraph may remain.
1334 static void UpdateCallGraphAfterInlining(CallBase &CB,
1335 Function::iterator FirstNewBlock,
1336 ValueToValueMapTy &VMap,
1337 InlineFunctionInfo &IFI) {
1338 CallGraph &CG = *IFI.CG;
1339 const Function *Caller = CB.getCaller();
1340 const Function *Callee = CB.getCalledFunction();
1341 CallGraphNode *CalleeNode = CG[Callee];
1342 CallGraphNode *CallerNode = CG[Caller];
1344 // Since we inlined some uninlined call sites in the callee into the caller,
1345 // add edges from the caller to all of the callees of the callee.
1346 CallGraphNode::iterator I = CalleeNode->begin(), E = CalleeNode->end();
1348 // Consider the case where CalleeNode == CallerNode.
1349 CallGraphNode::CalledFunctionsVector CallCache;
1350 if (CalleeNode == CallerNode) {
1351 CallCache.assign(I, E);
1352 I = CallCache.begin();
1353 E = CallCache.end();
1356 for (; I != E; ++I) {
1357 // Skip 'refererence' call records.
1358 if (!I->first)
1359 continue;
1361 const Value *OrigCall = *I->first;
1363 ValueToValueMapTy::iterator VMI = VMap.find(OrigCall);
1364 // Only copy the edge if the call was inlined!
1365 if (VMI == VMap.end() || VMI->second == nullptr)
1366 continue;
1368 // If the call was inlined, but then constant folded, there is no edge to
1369 // add. Check for this case.
1370 auto *NewCall = dyn_cast<CallBase>(VMI->second);
1371 if (!NewCall)
1372 continue;
1374 // We do not treat intrinsic calls like real function calls because we
1375 // expect them to become inline code; do not add an edge for an intrinsic.
1376 if (NewCall->getCalledFunction() &&
1377 NewCall->getCalledFunction()->isIntrinsic())
1378 continue;
1380 // Remember that this call site got inlined for the client of
1381 // InlineFunction.
1382 IFI.InlinedCalls.push_back(NewCall);
1384 // It's possible that inlining the callsite will cause it to go from an
1385 // indirect to a direct call by resolving a function pointer. If this
1386 // happens, set the callee of the new call site to a more precise
1387 // destination. This can also happen if the call graph node of the caller
1388 // was just unnecessarily imprecise.
1389 if (!I->second->getFunction())
1390 if (Function *F = NewCall->getCalledFunction()) {
1391 // Indirect call site resolved to direct call.
1392 CallerNode->addCalledFunction(NewCall, CG[F]);
1394 continue;
1397 CallerNode->addCalledFunction(NewCall, I->second);
1400 // Update the call graph by deleting the edge from Callee to Caller. We must
1401 // do this after the loop above in case Caller and Callee are the same.
1402 CallerNode->removeCallEdgeFor(*cast<CallBase>(&CB));
1405 static void HandleByValArgumentInit(Type *ByValType, Value *Dst, Value *Src,
1406 Module *M, BasicBlock *InsertBlock,
1407 InlineFunctionInfo &IFI) {
1408 IRBuilder<> Builder(InsertBlock, InsertBlock->begin());
1410 Value *Size =
1411 Builder.getInt64(M->getDataLayout().getTypeStoreSize(ByValType));
1413 // Always generate a memcpy of alignment 1 here because we don't know
1414 // the alignment of the src pointer. Other optimizations can infer
1415 // better alignment.
1416 Builder.CreateMemCpy(Dst, /*DstAlign*/ Align(1), Src,
1417 /*SrcAlign*/ Align(1), Size);
1420 /// When inlining a call site that has a byval argument,
1421 /// we have to make the implicit memcpy explicit by adding it.
1422 static Value *HandleByValArgument(Type *ByValType, Value *Arg,
1423 Instruction *TheCall,
1424 const Function *CalledFunc,
1425 InlineFunctionInfo &IFI,
1426 unsigned ByValAlignment) {
1427 assert(cast<PointerType>(Arg->getType())
1428 ->isOpaqueOrPointeeTypeMatches(ByValType));
1429 Function *Caller = TheCall->getFunction();
1430 const DataLayout &DL = Caller->getParent()->getDataLayout();
1432 // If the called function is readonly, then it could not mutate the caller's
1433 // copy of the byval'd memory. In this case, it is safe to elide the copy and
1434 // temporary.
1435 if (CalledFunc->onlyReadsMemory()) {
1436 // If the byval argument has a specified alignment that is greater than the
1437 // passed in pointer, then we either have to round up the input pointer or
1438 // give up on this transformation.
1439 if (ByValAlignment <= 1) // 0 = unspecified, 1 = no particular alignment.
1440 return Arg;
1442 AssumptionCache *AC =
1443 IFI.GetAssumptionCache ? &IFI.GetAssumptionCache(*Caller) : nullptr;
1445 // If the pointer is already known to be sufficiently aligned, or if we can
1446 // round it up to a larger alignment, then we don't need a temporary.
1447 if (getOrEnforceKnownAlignment(Arg, Align(ByValAlignment), DL, TheCall,
1448 AC) >= ByValAlignment)
1449 return Arg;
1451 // Otherwise, we have to make a memcpy to get a safe alignment. This is bad
1452 // for code quality, but rarely happens and is required for correctness.
1455 // Create the alloca. If we have DataLayout, use nice alignment.
1456 Align Alignment(DL.getPrefTypeAlignment(ByValType));
1458 // If the byval had an alignment specified, we *must* use at least that
1459 // alignment, as it is required by the byval argument (and uses of the
1460 // pointer inside the callee).
1461 if (ByValAlignment > 0)
1462 Alignment = std::max(Alignment, Align(ByValAlignment));
1464 Value *NewAlloca =
1465 new AllocaInst(ByValType, DL.getAllocaAddrSpace(), nullptr, Alignment,
1466 Arg->getName(), &*Caller->begin()->begin());
1467 IFI.StaticAllocas.push_back(cast<AllocaInst>(NewAlloca));
1469 // Uses of the argument in the function should use our new alloca
1470 // instead.
1471 return NewAlloca;
1474 // Check whether this Value is used by a lifetime intrinsic.
1475 static bool isUsedByLifetimeMarker(Value *V) {
1476 for (User *U : V->users())
1477 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(U))
1478 if (II->isLifetimeStartOrEnd())
1479 return true;
1480 return false;
1483 // Check whether the given alloca already has
1484 // lifetime.start or lifetime.end intrinsics.
1485 static bool hasLifetimeMarkers(AllocaInst *AI) {
1486 Type *Ty = AI->getType();
1487 Type *Int8PtrTy = Type::getInt8PtrTy(Ty->getContext(),
1488 Ty->getPointerAddressSpace());
1489 if (Ty == Int8PtrTy)
1490 return isUsedByLifetimeMarker(AI);
1492 // Do a scan to find all the casts to i8*.
1493 for (User *U : AI->users()) {
1494 if (U->getType() != Int8PtrTy) continue;
1495 if (U->stripPointerCasts() != AI) continue;
1496 if (isUsedByLifetimeMarker(U))
1497 return true;
1499 return false;
1502 /// Return the result of AI->isStaticAlloca() if AI were moved to the entry
1503 /// block. Allocas used in inalloca calls and allocas of dynamic array size
1504 /// cannot be static.
1505 static bool allocaWouldBeStaticInEntry(const AllocaInst *AI ) {
1506 return isa<Constant>(AI->getArraySize()) && !AI->isUsedWithInAlloca();
1509 /// Returns a DebugLoc for a new DILocation which is a clone of \p OrigDL
1510 /// inlined at \p InlinedAt. \p IANodes is an inlined-at cache.
1511 static DebugLoc inlineDebugLoc(DebugLoc OrigDL, DILocation *InlinedAt,
1512 LLVMContext &Ctx,
1513 DenseMap<const MDNode *, MDNode *> &IANodes) {
1514 auto IA = DebugLoc::appendInlinedAt(OrigDL, InlinedAt, Ctx, IANodes);
1515 return DILocation::get(Ctx, OrigDL.getLine(), OrigDL.getCol(),
1516 OrigDL.getScope(), IA);
1519 /// Update inlined instructions' line numbers to
1520 /// to encode location where these instructions are inlined.
1521 static void fixupLineNumbers(Function *Fn, Function::iterator FI,
1522 Instruction *TheCall, bool CalleeHasDebugInfo) {
1523 const DebugLoc &TheCallDL = TheCall->getDebugLoc();
1524 if (!TheCallDL)
1525 return;
1527 auto &Ctx = Fn->getContext();
1528 DILocation *InlinedAtNode = TheCallDL;
1530 // Create a unique call site, not to be confused with any other call from the
1531 // same location.
1532 InlinedAtNode = DILocation::getDistinct(
1533 Ctx, InlinedAtNode->getLine(), InlinedAtNode->getColumn(),
1534 InlinedAtNode->getScope(), InlinedAtNode->getInlinedAt());
1536 // Cache the inlined-at nodes as they're built so they are reused, without
1537 // this every instruction's inlined-at chain would become distinct from each
1538 // other.
1539 DenseMap<const MDNode *, MDNode *> IANodes;
1541 // Check if we are not generating inline line tables and want to use
1542 // the call site location instead.
1543 bool NoInlineLineTables = Fn->hasFnAttribute("no-inline-line-tables");
1545 for (; FI != Fn->end(); ++FI) {
1546 for (BasicBlock::iterator BI = FI->begin(), BE = FI->end();
1547 BI != BE; ++BI) {
1548 // Loop metadata needs to be updated so that the start and end locs
1549 // reference inlined-at locations.
1550 auto updateLoopInfoLoc = [&Ctx, &InlinedAtNode,
1551 &IANodes](Metadata *MD) -> Metadata * {
1552 if (auto *Loc = dyn_cast_or_null<DILocation>(MD))
1553 return inlineDebugLoc(Loc, InlinedAtNode, Ctx, IANodes).get();
1554 return MD;
1556 updateLoopMetadataDebugLocations(*BI, updateLoopInfoLoc);
1558 if (!NoInlineLineTables)
1559 if (DebugLoc DL = BI->getDebugLoc()) {
1560 DebugLoc IDL =
1561 inlineDebugLoc(DL, InlinedAtNode, BI->getContext(), IANodes);
1562 BI->setDebugLoc(IDL);
1563 continue;
1566 if (CalleeHasDebugInfo && !NoInlineLineTables)
1567 continue;
1569 // If the inlined instruction has no line number, or if inline info
1570 // is not being generated, make it look as if it originates from the call
1571 // location. This is important for ((__always_inline, __nodebug__))
1572 // functions which must use caller location for all instructions in their
1573 // function body.
1575 // Don't update static allocas, as they may get moved later.
1576 if (auto *AI = dyn_cast<AllocaInst>(BI))
1577 if (allocaWouldBeStaticInEntry(AI))
1578 continue;
1580 BI->setDebugLoc(TheCallDL);
1583 // Remove debug info intrinsics if we're not keeping inline info.
1584 if (NoInlineLineTables) {
1585 BasicBlock::iterator BI = FI->begin();
1586 while (BI != FI->end()) {
1587 if (isa<DbgInfoIntrinsic>(BI)) {
1588 BI = BI->eraseFromParent();
1589 continue;
1591 ++BI;
1598 /// Update the block frequencies of the caller after a callee has been inlined.
1600 /// Each block cloned into the caller has its block frequency scaled by the
1601 /// ratio of CallSiteFreq/CalleeEntryFreq. This ensures that the cloned copy of
1602 /// callee's entry block gets the same frequency as the callsite block and the
1603 /// relative frequencies of all cloned blocks remain the same after cloning.
1604 static void updateCallerBFI(BasicBlock *CallSiteBlock,
1605 const ValueToValueMapTy &VMap,
1606 BlockFrequencyInfo *CallerBFI,
1607 BlockFrequencyInfo *CalleeBFI,
1608 const BasicBlock &CalleeEntryBlock) {
1609 SmallPtrSet<BasicBlock *, 16> ClonedBBs;
1610 for (auto Entry : VMap) {
1611 if (!isa<BasicBlock>(Entry.first) || !Entry.second)
1612 continue;
1613 auto *OrigBB = cast<BasicBlock>(Entry.first);
1614 auto *ClonedBB = cast<BasicBlock>(Entry.second);
1615 uint64_t Freq = CalleeBFI->getBlockFreq(OrigBB).getFrequency();
1616 if (!ClonedBBs.insert(ClonedBB).second) {
1617 // Multiple blocks in the callee might get mapped to one cloned block in
1618 // the caller since we prune the callee as we clone it. When that happens,
1619 // we want to use the maximum among the original blocks' frequencies.
1620 uint64_t NewFreq = CallerBFI->getBlockFreq(ClonedBB).getFrequency();
1621 if (NewFreq > Freq)
1622 Freq = NewFreq;
1624 CallerBFI->setBlockFreq(ClonedBB, Freq);
1626 BasicBlock *EntryClone = cast<BasicBlock>(VMap.lookup(&CalleeEntryBlock));
1627 CallerBFI->setBlockFreqAndScale(
1628 EntryClone, CallerBFI->getBlockFreq(CallSiteBlock).getFrequency(),
1629 ClonedBBs);
1632 /// Update the branch metadata for cloned call instructions.
1633 static void updateCallProfile(Function *Callee, const ValueToValueMapTy &VMap,
1634 const ProfileCount &CalleeEntryCount,
1635 const CallBase &TheCall, ProfileSummaryInfo *PSI,
1636 BlockFrequencyInfo *CallerBFI) {
1637 if (CalleeEntryCount.isSynthetic() || CalleeEntryCount.getCount() < 1)
1638 return;
1639 auto CallSiteCount = PSI ? PSI->getProfileCount(TheCall, CallerBFI) : None;
1640 int64_t CallCount =
1641 std::min(CallSiteCount.value_or(0), CalleeEntryCount.getCount());
1642 updateProfileCallee(Callee, -CallCount, &VMap);
1645 void llvm::updateProfileCallee(
1646 Function *Callee, int64_t EntryDelta,
1647 const ValueMap<const Value *, WeakTrackingVH> *VMap) {
1648 auto CalleeCount = Callee->getEntryCount();
1649 if (!CalleeCount)
1650 return;
1652 const uint64_t PriorEntryCount = CalleeCount->getCount();
1654 // Since CallSiteCount is an estimate, it could exceed the original callee
1655 // count and has to be set to 0 so guard against underflow.
1656 const uint64_t NewEntryCount =
1657 (EntryDelta < 0 && static_cast<uint64_t>(-EntryDelta) > PriorEntryCount)
1659 : PriorEntryCount + EntryDelta;
1661 // During inlining ?
1662 if (VMap) {
1663 uint64_t CloneEntryCount = PriorEntryCount - NewEntryCount;
1664 for (auto Entry : *VMap)
1665 if (isa<CallInst>(Entry.first))
1666 if (auto *CI = dyn_cast_or_null<CallInst>(Entry.second))
1667 CI->updateProfWeight(CloneEntryCount, PriorEntryCount);
1670 if (EntryDelta) {
1671 Callee->setEntryCount(NewEntryCount);
1673 for (BasicBlock &BB : *Callee)
1674 // No need to update the callsite if it is pruned during inlining.
1675 if (!VMap || VMap->count(&BB))
1676 for (Instruction &I : BB)
1677 if (CallInst *CI = dyn_cast<CallInst>(&I))
1678 CI->updateProfWeight(NewEntryCount, PriorEntryCount);
1682 /// An operand bundle "clang.arc.attachedcall" on a call indicates the call
1683 /// result is implicitly consumed by a call to retainRV or claimRV immediately
1684 /// after the call. This function inlines the retainRV/claimRV calls.
1686 /// There are three cases to consider:
1688 /// 1. If there is a call to autoreleaseRV that takes a pointer to the returned
1689 /// object in the callee return block, the autoreleaseRV call and the
1690 /// retainRV/claimRV call in the caller cancel out. If the call in the caller
1691 /// is a claimRV call, a call to objc_release is emitted.
1693 /// 2. If there is a call in the callee return block that doesn't have operand
1694 /// bundle "clang.arc.attachedcall", the operand bundle on the original call
1695 /// is transferred to the call in the callee.
1697 /// 3. Otherwise, a call to objc_retain is inserted if the call in the caller is
1698 /// a retainRV call.
1699 static void
1700 inlineRetainOrClaimRVCalls(CallBase &CB, objcarc::ARCInstKind RVCallKind,
1701 const SmallVectorImpl<ReturnInst *> &Returns) {
1702 Module *Mod = CB.getModule();
1703 assert(objcarc::isRetainOrClaimRV(RVCallKind) && "unexpected ARC function");
1704 bool IsRetainRV = RVCallKind == objcarc::ARCInstKind::RetainRV,
1705 IsUnsafeClaimRV = !IsRetainRV;
1707 for (auto *RI : Returns) {
1708 Value *RetOpnd = objcarc::GetRCIdentityRoot(RI->getOperand(0));
1709 bool InsertRetainCall = IsRetainRV;
1710 IRBuilder<> Builder(RI->getContext());
1712 // Walk backwards through the basic block looking for either a matching
1713 // autoreleaseRV call or an unannotated call.
1714 auto InstRange = llvm::make_range(++(RI->getIterator().getReverse()),
1715 RI->getParent()->rend());
1716 for (Instruction &I : llvm::make_early_inc_range(InstRange)) {
1717 // Ignore casts.
1718 if (isa<CastInst>(I))
1719 continue;
1721 if (auto *II = dyn_cast<IntrinsicInst>(&I)) {
1722 if (II->getIntrinsicID() != Intrinsic::objc_autoreleaseReturnValue ||
1723 !II->hasNUses(0) ||
1724 objcarc::GetRCIdentityRoot(II->getOperand(0)) != RetOpnd)
1725 break;
1727 // If we've found a matching authoreleaseRV call:
1728 // - If claimRV is attached to the call, insert a call to objc_release
1729 // and erase the autoreleaseRV call.
1730 // - If retainRV is attached to the call, just erase the autoreleaseRV
1731 // call.
1732 if (IsUnsafeClaimRV) {
1733 Builder.SetInsertPoint(II);
1734 Function *IFn =
1735 Intrinsic::getDeclaration(Mod, Intrinsic::objc_release);
1736 Value *BC = Builder.CreateBitCast(RetOpnd, IFn->getArg(0)->getType());
1737 Builder.CreateCall(IFn, BC, "");
1739 II->eraseFromParent();
1740 InsertRetainCall = false;
1741 break;
1744 auto *CI = dyn_cast<CallInst>(&I);
1746 if (!CI)
1747 break;
1749 if (objcarc::GetRCIdentityRoot(CI) != RetOpnd ||
1750 objcarc::hasAttachedCallOpBundle(CI))
1751 break;
1753 // If we've found an unannotated call that defines RetOpnd, add a
1754 // "clang.arc.attachedcall" operand bundle.
1755 Value *BundleArgs[] = {*objcarc::getAttachedARCFunction(&CB)};
1756 OperandBundleDef OB("clang.arc.attachedcall", BundleArgs);
1757 auto *NewCall = CallBase::addOperandBundle(
1758 CI, LLVMContext::OB_clang_arc_attachedcall, OB, CI);
1759 NewCall->copyMetadata(*CI);
1760 CI->replaceAllUsesWith(NewCall);
1761 CI->eraseFromParent();
1762 InsertRetainCall = false;
1763 break;
1766 if (InsertRetainCall) {
1767 // The retainRV is attached to the call and we've failed to find a
1768 // matching autoreleaseRV or an annotated call in the callee. Emit a call
1769 // to objc_retain.
1770 Builder.SetInsertPoint(RI);
1771 Function *IFn = Intrinsic::getDeclaration(Mod, Intrinsic::objc_retain);
1772 Value *BC = Builder.CreateBitCast(RetOpnd, IFn->getArg(0)->getType());
1773 Builder.CreateCall(IFn, BC, "");
1778 /// This function inlines the called function into the basic block of the
1779 /// caller. This returns false if it is not possible to inline this call.
1780 /// The program is still in a well defined state if this occurs though.
1782 /// Note that this only does one level of inlining. For example, if the
1783 /// instruction 'call B' is inlined, and 'B' calls 'C', then the call to 'C' now
1784 /// exists in the instruction stream. Similarly this will inline a recursive
1785 /// function by one level.
1786 llvm::InlineResult llvm::InlineFunction(CallBase &CB, InlineFunctionInfo &IFI,
1787 AAResults *CalleeAAR,
1788 bool InsertLifetime,
1789 Function *ForwardVarArgsTo) {
1790 assert(CB.getParent() && CB.getFunction() && "Instruction not in function!");
1792 // FIXME: we don't inline callbr yet.
1793 if (isa<CallBrInst>(CB))
1794 return InlineResult::failure("We don't inline callbr yet.");
1796 // If IFI has any state in it, zap it before we fill it in.
1797 IFI.reset();
1799 Function *CalledFunc = CB.getCalledFunction();
1800 if (!CalledFunc || // Can't inline external function or indirect
1801 CalledFunc->isDeclaration()) // call!
1802 return InlineResult::failure("external or indirect");
1804 // The inliner does not know how to inline through calls with operand bundles
1805 // in general ...
1806 if (CB.hasOperandBundles()) {
1807 for (int i = 0, e = CB.getNumOperandBundles(); i != e; ++i) {
1808 uint32_t Tag = CB.getOperandBundleAt(i).getTagID();
1809 // ... but it knows how to inline through "deopt" operand bundles ...
1810 if (Tag == LLVMContext::OB_deopt)
1811 continue;
1812 // ... and "funclet" operand bundles.
1813 if (Tag == LLVMContext::OB_funclet)
1814 continue;
1815 if (Tag == LLVMContext::OB_clang_arc_attachedcall)
1816 continue;
1818 return InlineResult::failure("unsupported operand bundle");
1822 // If the call to the callee cannot throw, set the 'nounwind' flag on any
1823 // calls that we inline.
1824 bool MarkNoUnwind = CB.doesNotThrow();
1826 BasicBlock *OrigBB = CB.getParent();
1827 Function *Caller = OrigBB->getParent();
1829 // Do not inline strictfp function into non-strictfp one. It would require
1830 // conversion of all FP operations in host function to constrained intrinsics.
1831 if (CalledFunc->getAttributes().hasFnAttr(Attribute::StrictFP) &&
1832 !Caller->getAttributes().hasFnAttr(Attribute::StrictFP)) {
1833 return InlineResult::failure("incompatible strictfp attributes");
1836 // GC poses two hazards to inlining, which only occur when the callee has GC:
1837 // 1. If the caller has no GC, then the callee's GC must be propagated to the
1838 // caller.
1839 // 2. If the caller has a differing GC, it is invalid to inline.
1840 if (CalledFunc->hasGC()) {
1841 if (!Caller->hasGC())
1842 Caller->setGC(CalledFunc->getGC());
1843 else if (CalledFunc->getGC() != Caller->getGC())
1844 return InlineResult::failure("incompatible GC");
1847 // Get the personality function from the callee if it contains a landing pad.
1848 Constant *CalledPersonality =
1849 CalledFunc->hasPersonalityFn()
1850 ? CalledFunc->getPersonalityFn()->stripPointerCasts()
1851 : nullptr;
1853 // Find the personality function used by the landing pads of the caller. If it
1854 // exists, then check to see that it matches the personality function used in
1855 // the callee.
1856 Constant *CallerPersonality =
1857 Caller->hasPersonalityFn()
1858 ? Caller->getPersonalityFn()->stripPointerCasts()
1859 : nullptr;
1860 if (CalledPersonality) {
1861 if (!CallerPersonality)
1862 Caller->setPersonalityFn(CalledPersonality);
1863 // If the personality functions match, then we can perform the
1864 // inlining. Otherwise, we can't inline.
1865 // TODO: This isn't 100% true. Some personality functions are proper
1866 // supersets of others and can be used in place of the other.
1867 else if (CalledPersonality != CallerPersonality)
1868 return InlineResult::failure("incompatible personality");
1871 // We need to figure out which funclet the callsite was in so that we may
1872 // properly nest the callee.
1873 Instruction *CallSiteEHPad = nullptr;
1874 if (CallerPersonality) {
1875 EHPersonality Personality = classifyEHPersonality(CallerPersonality);
1876 if (isScopedEHPersonality(Personality)) {
1877 Optional<OperandBundleUse> ParentFunclet =
1878 CB.getOperandBundle(LLVMContext::OB_funclet);
1879 if (ParentFunclet)
1880 CallSiteEHPad = cast<FuncletPadInst>(ParentFunclet->Inputs.front());
1882 // OK, the inlining site is legal. What about the target function?
1884 if (CallSiteEHPad) {
1885 if (Personality == EHPersonality::MSVC_CXX) {
1886 // The MSVC personality cannot tolerate catches getting inlined into
1887 // cleanup funclets.
1888 if (isa<CleanupPadInst>(CallSiteEHPad)) {
1889 // Ok, the call site is within a cleanuppad. Let's check the callee
1890 // for catchpads.
1891 for (const BasicBlock &CalledBB : *CalledFunc) {
1892 if (isa<CatchSwitchInst>(CalledBB.getFirstNonPHI()))
1893 return InlineResult::failure("catch in cleanup funclet");
1896 } else if (isAsynchronousEHPersonality(Personality)) {
1897 // SEH is even less tolerant, there may not be any sort of exceptional
1898 // funclet in the callee.
1899 for (const BasicBlock &CalledBB : *CalledFunc) {
1900 if (CalledBB.isEHPad())
1901 return InlineResult::failure("SEH in cleanup funclet");
1908 // Determine if we are dealing with a call in an EHPad which does not unwind
1909 // to caller.
1910 bool EHPadForCallUnwindsLocally = false;
1911 if (CallSiteEHPad && isa<CallInst>(CB)) {
1912 UnwindDestMemoTy FuncletUnwindMap;
1913 Value *CallSiteUnwindDestToken =
1914 getUnwindDestToken(CallSiteEHPad, FuncletUnwindMap);
1916 EHPadForCallUnwindsLocally =
1917 CallSiteUnwindDestToken &&
1918 !isa<ConstantTokenNone>(CallSiteUnwindDestToken);
1921 // Get an iterator to the last basic block in the function, which will have
1922 // the new function inlined after it.
1923 Function::iterator LastBlock = --Caller->end();
1925 // Make sure to capture all of the return instructions from the cloned
1926 // function.
1927 SmallVector<ReturnInst*, 8> Returns;
1928 ClonedCodeInfo InlinedFunctionInfo;
1929 Function::iterator FirstNewBlock;
1931 { // Scope to destroy VMap after cloning.
1932 ValueToValueMapTy VMap;
1933 struct ByValInit {
1934 Value *Dst;
1935 Value *Src;
1936 Type *Ty;
1938 // Keep a list of pair (dst, src) to emit byval initializations.
1939 SmallVector<ByValInit, 4> ByValInits;
1941 // When inlining a function that contains noalias scope metadata,
1942 // this metadata needs to be cloned so that the inlined blocks
1943 // have different "unique scopes" at every call site.
1944 // Track the metadata that must be cloned. Do this before other changes to
1945 // the function, so that we do not get in trouble when inlining caller ==
1946 // callee.
1947 ScopedAliasMetadataDeepCloner SAMetadataCloner(CB.getCalledFunction());
1949 auto &DL = Caller->getParent()->getDataLayout();
1951 // Calculate the vector of arguments to pass into the function cloner, which
1952 // matches up the formal to the actual argument values.
1953 auto AI = CB.arg_begin();
1954 unsigned ArgNo = 0;
1955 for (Function::arg_iterator I = CalledFunc->arg_begin(),
1956 E = CalledFunc->arg_end(); I != E; ++I, ++AI, ++ArgNo) {
1957 Value *ActualArg = *AI;
1959 // When byval arguments actually inlined, we need to make the copy implied
1960 // by them explicit. However, we don't do this if the callee is readonly
1961 // or readnone, because the copy would be unneeded: the callee doesn't
1962 // modify the struct.
1963 if (CB.isByValArgument(ArgNo)) {
1964 ActualArg = HandleByValArgument(CB.getParamByValType(ArgNo), ActualArg,
1965 &CB, CalledFunc, IFI,
1966 CalledFunc->getParamAlignment(ArgNo));
1967 if (ActualArg != *AI)
1968 ByValInits.push_back(
1969 {ActualArg, (Value *)*AI, CB.getParamByValType(ArgNo)});
1972 VMap[&*I] = ActualArg;
1975 // TODO: Remove this when users have been updated to the assume bundles.
1976 // Add alignment assumptions if necessary. We do this before the inlined
1977 // instructions are actually cloned into the caller so that we can easily
1978 // check what will be known at the start of the inlined code.
1979 AddAlignmentAssumptions(CB, IFI);
1981 AssumptionCache *AC =
1982 IFI.GetAssumptionCache ? &IFI.GetAssumptionCache(*Caller) : nullptr;
1984 /// Preserve all attributes on of the call and its parameters.
1985 salvageKnowledge(&CB, AC);
1987 // We want the inliner to prune the code as it copies. We would LOVE to
1988 // have no dead or constant instructions leftover after inlining occurs
1989 // (which can happen, e.g., because an argument was constant), but we'll be
1990 // happy with whatever the cloner can do.
1991 CloneAndPruneFunctionInto(Caller, CalledFunc, VMap,
1992 /*ModuleLevelChanges=*/false, Returns, ".i",
1993 &InlinedFunctionInfo);
1994 // Remember the first block that is newly cloned over.
1995 FirstNewBlock = LastBlock; ++FirstNewBlock;
1997 // Insert retainRV/clainRV runtime calls.
1998 objcarc::ARCInstKind RVCallKind = objcarc::getAttachedARCFunctionKind(&CB);
1999 if (RVCallKind != objcarc::ARCInstKind::None)
2000 inlineRetainOrClaimRVCalls(CB, RVCallKind, Returns);
2002 // Updated caller/callee profiles only when requested. For sample loader
2003 // inlining, the context-sensitive inlinee profile doesn't need to be
2004 // subtracted from callee profile, and the inlined clone also doesn't need
2005 // to be scaled based on call site count.
2006 if (IFI.UpdateProfile) {
2007 if (IFI.CallerBFI != nullptr && IFI.CalleeBFI != nullptr)
2008 // Update the BFI of blocks cloned into the caller.
2009 updateCallerBFI(OrigBB, VMap, IFI.CallerBFI, IFI.CalleeBFI,
2010 CalledFunc->front());
2012 if (auto Profile = CalledFunc->getEntryCount())
2013 updateCallProfile(CalledFunc, VMap, *Profile, CB, IFI.PSI,
2014 IFI.CallerBFI);
2017 // Inject byval arguments initialization.
2018 for (ByValInit &Init : ByValInits)
2019 HandleByValArgumentInit(Init.Ty, Init.Dst, Init.Src, Caller->getParent(),
2020 &*FirstNewBlock, IFI);
2022 Optional<OperandBundleUse> ParentDeopt =
2023 CB.getOperandBundle(LLVMContext::OB_deopt);
2024 if (ParentDeopt) {
2025 SmallVector<OperandBundleDef, 2> OpDefs;
2027 for (auto &VH : InlinedFunctionInfo.OperandBundleCallSites) {
2028 CallBase *ICS = dyn_cast_or_null<CallBase>(VH);
2029 if (!ICS)
2030 continue; // instruction was DCE'd or RAUW'ed to undef
2032 OpDefs.clear();
2034 OpDefs.reserve(ICS->getNumOperandBundles());
2036 for (unsigned COBi = 0, COBe = ICS->getNumOperandBundles(); COBi < COBe;
2037 ++COBi) {
2038 auto ChildOB = ICS->getOperandBundleAt(COBi);
2039 if (ChildOB.getTagID() != LLVMContext::OB_deopt) {
2040 // If the inlined call has other operand bundles, let them be
2041 OpDefs.emplace_back(ChildOB);
2042 continue;
2045 // It may be useful to separate this logic (of handling operand
2046 // bundles) out to a separate "policy" component if this gets crowded.
2047 // Prepend the parent's deoptimization continuation to the newly
2048 // inlined call's deoptimization continuation.
2049 std::vector<Value *> MergedDeoptArgs;
2050 MergedDeoptArgs.reserve(ParentDeopt->Inputs.size() +
2051 ChildOB.Inputs.size());
2053 llvm::append_range(MergedDeoptArgs, ParentDeopt->Inputs);
2054 llvm::append_range(MergedDeoptArgs, ChildOB.Inputs);
2056 OpDefs.emplace_back("deopt", std::move(MergedDeoptArgs));
2059 Instruction *NewI = CallBase::Create(ICS, OpDefs, ICS);
2061 // Note: the RAUW does the appropriate fixup in VMap, so we need to do
2062 // this even if the call returns void.
2063 ICS->replaceAllUsesWith(NewI);
2065 VH = nullptr;
2066 ICS->eraseFromParent();
2070 // Update the callgraph if requested.
2071 if (IFI.CG)
2072 UpdateCallGraphAfterInlining(CB, FirstNewBlock, VMap, IFI);
2074 // For 'nodebug' functions, the associated DISubprogram is always null.
2075 // Conservatively avoid propagating the callsite debug location to
2076 // instructions inlined from a function whose DISubprogram is not null.
2077 fixupLineNumbers(Caller, FirstNewBlock, &CB,
2078 CalledFunc->getSubprogram() != nullptr);
2080 // Now clone the inlined noalias scope metadata.
2081 SAMetadataCloner.clone();
2082 SAMetadataCloner.remap(FirstNewBlock, Caller->end());
2084 // Add noalias metadata if necessary.
2085 AddAliasScopeMetadata(CB, VMap, DL, CalleeAAR, InlinedFunctionInfo);
2087 // Clone return attributes on the callsite into the calls within the inlined
2088 // function which feed into its return value.
2089 AddReturnAttributes(CB, VMap);
2091 // Propagate metadata on the callsite if necessary.
2092 PropagateCallSiteMetadata(CB, FirstNewBlock, Caller->end());
2094 // Register any cloned assumptions.
2095 if (IFI.GetAssumptionCache)
2096 for (BasicBlock &NewBlock :
2097 make_range(FirstNewBlock->getIterator(), Caller->end()))
2098 for (Instruction &I : NewBlock)
2099 if (auto *II = dyn_cast<AssumeInst>(&I))
2100 IFI.GetAssumptionCache(*Caller).registerAssumption(II);
2103 // If there are any alloca instructions in the block that used to be the entry
2104 // block for the callee, move them to the entry block of the caller. First
2105 // calculate which instruction they should be inserted before. We insert the
2106 // instructions at the end of the current alloca list.
2108 BasicBlock::iterator InsertPoint = Caller->begin()->begin();
2109 for (BasicBlock::iterator I = FirstNewBlock->begin(),
2110 E = FirstNewBlock->end(); I != E; ) {
2111 AllocaInst *AI = dyn_cast<AllocaInst>(I++);
2112 if (!AI) continue;
2114 // If the alloca is now dead, remove it. This often occurs due to code
2115 // specialization.
2116 if (AI->use_empty()) {
2117 AI->eraseFromParent();
2118 continue;
2121 if (!allocaWouldBeStaticInEntry(AI))
2122 continue;
2124 // Keep track of the static allocas that we inline into the caller.
2125 IFI.StaticAllocas.push_back(AI);
2127 // Scan for the block of allocas that we can move over, and move them
2128 // all at once.
2129 while (isa<AllocaInst>(I) &&
2130 !cast<AllocaInst>(I)->use_empty() &&
2131 allocaWouldBeStaticInEntry(cast<AllocaInst>(I))) {
2132 IFI.StaticAllocas.push_back(cast<AllocaInst>(I));
2133 ++I;
2136 // Transfer all of the allocas over in a block. Using splice means
2137 // that the instructions aren't removed from the symbol table, then
2138 // reinserted.
2139 Caller->getEntryBlock().getInstList().splice(
2140 InsertPoint, FirstNewBlock->getInstList(), AI->getIterator(), I);
2144 SmallVector<Value*,4> VarArgsToForward;
2145 SmallVector<AttributeSet, 4> VarArgsAttrs;
2146 for (unsigned i = CalledFunc->getFunctionType()->getNumParams();
2147 i < CB.arg_size(); i++) {
2148 VarArgsToForward.push_back(CB.getArgOperand(i));
2149 VarArgsAttrs.push_back(CB.getAttributes().getParamAttrs(i));
2152 bool InlinedMustTailCalls = false, InlinedDeoptimizeCalls = false;
2153 if (InlinedFunctionInfo.ContainsCalls) {
2154 CallInst::TailCallKind CallSiteTailKind = CallInst::TCK_None;
2155 if (CallInst *CI = dyn_cast<CallInst>(&CB))
2156 CallSiteTailKind = CI->getTailCallKind();
2158 // For inlining purposes, the "notail" marker is the same as no marker.
2159 if (CallSiteTailKind == CallInst::TCK_NoTail)
2160 CallSiteTailKind = CallInst::TCK_None;
2162 for (Function::iterator BB = FirstNewBlock, E = Caller->end(); BB != E;
2163 ++BB) {
2164 for (Instruction &I : llvm::make_early_inc_range(*BB)) {
2165 CallInst *CI = dyn_cast<CallInst>(&I);
2166 if (!CI)
2167 continue;
2169 // Forward varargs from inlined call site to calls to the
2170 // ForwardVarArgsTo function, if requested, and to musttail calls.
2171 if (!VarArgsToForward.empty() &&
2172 ((ForwardVarArgsTo &&
2173 CI->getCalledFunction() == ForwardVarArgsTo) ||
2174 CI->isMustTailCall())) {
2175 // Collect attributes for non-vararg parameters.
2176 AttributeList Attrs = CI->getAttributes();
2177 SmallVector<AttributeSet, 8> ArgAttrs;
2178 if (!Attrs.isEmpty() || !VarArgsAttrs.empty()) {
2179 for (unsigned ArgNo = 0;
2180 ArgNo < CI->getFunctionType()->getNumParams(); ++ArgNo)
2181 ArgAttrs.push_back(Attrs.getParamAttrs(ArgNo));
2184 // Add VarArg attributes.
2185 ArgAttrs.append(VarArgsAttrs.begin(), VarArgsAttrs.end());
2186 Attrs = AttributeList::get(CI->getContext(), Attrs.getFnAttrs(),
2187 Attrs.getRetAttrs(), ArgAttrs);
2188 // Add VarArgs to existing parameters.
2189 SmallVector<Value *, 6> Params(CI->args());
2190 Params.append(VarArgsToForward.begin(), VarArgsToForward.end());
2191 CallInst *NewCI = CallInst::Create(
2192 CI->getFunctionType(), CI->getCalledOperand(), Params, "", CI);
2193 NewCI->setDebugLoc(CI->getDebugLoc());
2194 NewCI->setAttributes(Attrs);
2195 NewCI->setCallingConv(CI->getCallingConv());
2196 CI->replaceAllUsesWith(NewCI);
2197 CI->eraseFromParent();
2198 CI = NewCI;
2201 if (Function *F = CI->getCalledFunction())
2202 InlinedDeoptimizeCalls |=
2203 F->getIntrinsicID() == Intrinsic::experimental_deoptimize;
2205 // We need to reduce the strength of any inlined tail calls. For
2206 // musttail, we have to avoid introducing potential unbounded stack
2207 // growth. For example, if functions 'f' and 'g' are mutually recursive
2208 // with musttail, we can inline 'g' into 'f' so long as we preserve
2209 // musttail on the cloned call to 'f'. If either the inlined call site
2210 // or the cloned call site is *not* musttail, the program already has
2211 // one frame of stack growth, so it's safe to remove musttail. Here is
2212 // a table of example transformations:
2214 // f -> musttail g -> musttail f ==> f -> musttail f
2215 // f -> musttail g -> tail f ==> f -> tail f
2216 // f -> g -> musttail f ==> f -> f
2217 // f -> g -> tail f ==> f -> f
2219 // Inlined notail calls should remain notail calls.
2220 CallInst::TailCallKind ChildTCK = CI->getTailCallKind();
2221 if (ChildTCK != CallInst::TCK_NoTail)
2222 ChildTCK = std::min(CallSiteTailKind, ChildTCK);
2223 CI->setTailCallKind(ChildTCK);
2224 InlinedMustTailCalls |= CI->isMustTailCall();
2226 // Call sites inlined through a 'nounwind' call site should be
2227 // 'nounwind' as well. However, avoid marking call sites explicitly
2228 // where possible. This helps expose more opportunities for CSE after
2229 // inlining, commonly when the callee is an intrinsic.
2230 if (MarkNoUnwind && !CI->doesNotThrow())
2231 CI->setDoesNotThrow();
2236 // Leave lifetime markers for the static alloca's, scoping them to the
2237 // function we just inlined.
2238 // We need to insert lifetime intrinsics even at O0 to avoid invalid
2239 // access caused by multithreaded coroutines. The check
2240 // `Caller->isPresplitCoroutine()` would affect AlwaysInliner at O0 only.
2241 if ((InsertLifetime || Caller->isPresplitCoroutine()) &&
2242 !IFI.StaticAllocas.empty()) {
2243 IRBuilder<> builder(&FirstNewBlock->front());
2244 for (unsigned ai = 0, ae = IFI.StaticAllocas.size(); ai != ae; ++ai) {
2245 AllocaInst *AI = IFI.StaticAllocas[ai];
2246 // Don't mark swifterror allocas. They can't have bitcast uses.
2247 if (AI->isSwiftError())
2248 continue;
2250 // If the alloca is already scoped to something smaller than the whole
2251 // function then there's no need to add redundant, less accurate markers.
2252 if (hasLifetimeMarkers(AI))
2253 continue;
2255 // Try to determine the size of the allocation.
2256 ConstantInt *AllocaSize = nullptr;
2257 if (ConstantInt *AIArraySize =
2258 dyn_cast<ConstantInt>(AI->getArraySize())) {
2259 auto &DL = Caller->getParent()->getDataLayout();
2260 Type *AllocaType = AI->getAllocatedType();
2261 TypeSize AllocaTypeSize = DL.getTypeAllocSize(AllocaType);
2262 uint64_t AllocaArraySize = AIArraySize->getLimitedValue();
2264 // Don't add markers for zero-sized allocas.
2265 if (AllocaArraySize == 0)
2266 continue;
2268 // Check that array size doesn't saturate uint64_t and doesn't
2269 // overflow when it's multiplied by type size.
2270 if (!AllocaTypeSize.isScalable() &&
2271 AllocaArraySize != std::numeric_limits<uint64_t>::max() &&
2272 std::numeric_limits<uint64_t>::max() / AllocaArraySize >=
2273 AllocaTypeSize.getFixedSize()) {
2274 AllocaSize = ConstantInt::get(Type::getInt64Ty(AI->getContext()),
2275 AllocaArraySize * AllocaTypeSize);
2279 builder.CreateLifetimeStart(AI, AllocaSize);
2280 for (ReturnInst *RI : Returns) {
2281 // Don't insert llvm.lifetime.end calls between a musttail or deoptimize
2282 // call and a return. The return kills all local allocas.
2283 if (InlinedMustTailCalls &&
2284 RI->getParent()->getTerminatingMustTailCall())
2285 continue;
2286 if (InlinedDeoptimizeCalls &&
2287 RI->getParent()->getTerminatingDeoptimizeCall())
2288 continue;
2289 IRBuilder<>(RI).CreateLifetimeEnd(AI, AllocaSize);
2294 // If the inlined code contained dynamic alloca instructions, wrap the inlined
2295 // code with llvm.stacksave/llvm.stackrestore intrinsics.
2296 if (InlinedFunctionInfo.ContainsDynamicAllocas) {
2297 Module *M = Caller->getParent();
2298 // Get the two intrinsics we care about.
2299 Function *StackSave = Intrinsic::getDeclaration(M, Intrinsic::stacksave);
2300 Function *StackRestore=Intrinsic::getDeclaration(M,Intrinsic::stackrestore);
2302 // Insert the llvm.stacksave.
2303 CallInst *SavedPtr = IRBuilder<>(&*FirstNewBlock, FirstNewBlock->begin())
2304 .CreateCall(StackSave, {}, "savedstack");
2306 // Insert a call to llvm.stackrestore before any return instructions in the
2307 // inlined function.
2308 for (ReturnInst *RI : Returns) {
2309 // Don't insert llvm.stackrestore calls between a musttail or deoptimize
2310 // call and a return. The return will restore the stack pointer.
2311 if (InlinedMustTailCalls && RI->getParent()->getTerminatingMustTailCall())
2312 continue;
2313 if (InlinedDeoptimizeCalls && RI->getParent()->getTerminatingDeoptimizeCall())
2314 continue;
2315 IRBuilder<>(RI).CreateCall(StackRestore, SavedPtr);
2319 // If we are inlining for an invoke instruction, we must make sure to rewrite
2320 // any call instructions into invoke instructions. This is sensitive to which
2321 // funclet pads were top-level in the inlinee, so must be done before
2322 // rewriting the "parent pad" links.
2323 if (auto *II = dyn_cast<InvokeInst>(&CB)) {
2324 BasicBlock *UnwindDest = II->getUnwindDest();
2325 Instruction *FirstNonPHI = UnwindDest->getFirstNonPHI();
2326 if (isa<LandingPadInst>(FirstNonPHI)) {
2327 HandleInlinedLandingPad(II, &*FirstNewBlock, InlinedFunctionInfo);
2328 } else {
2329 HandleInlinedEHPad(II, &*FirstNewBlock, InlinedFunctionInfo);
2333 // Update the lexical scopes of the new funclets and callsites.
2334 // Anything that had 'none' as its parent is now nested inside the callsite's
2335 // EHPad.
2336 if (CallSiteEHPad) {
2337 for (Function::iterator BB = FirstNewBlock->getIterator(),
2338 E = Caller->end();
2339 BB != E; ++BB) {
2340 // Add bundle operands to inlined call sites.
2341 PropagateOperandBundles(BB, CallSiteEHPad);
2343 // It is problematic if the inlinee has a cleanupret which unwinds to
2344 // caller and we inline it into a call site which doesn't unwind but into
2345 // an EH pad that does. Such an edge must be dynamically unreachable.
2346 // As such, we replace the cleanupret with unreachable.
2347 if (auto *CleanupRet = dyn_cast<CleanupReturnInst>(BB->getTerminator()))
2348 if (CleanupRet->unwindsToCaller() && EHPadForCallUnwindsLocally)
2349 changeToUnreachable(CleanupRet);
2351 Instruction *I = BB->getFirstNonPHI();
2352 if (!I->isEHPad())
2353 continue;
2355 if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(I)) {
2356 if (isa<ConstantTokenNone>(CatchSwitch->getParentPad()))
2357 CatchSwitch->setParentPad(CallSiteEHPad);
2358 } else {
2359 auto *FPI = cast<FuncletPadInst>(I);
2360 if (isa<ConstantTokenNone>(FPI->getParentPad()))
2361 FPI->setParentPad(CallSiteEHPad);
2366 if (InlinedDeoptimizeCalls) {
2367 // We need to at least remove the deoptimizing returns from the Return set,
2368 // so that the control flow from those returns does not get merged into the
2369 // caller (but terminate it instead). If the caller's return type does not
2370 // match the callee's return type, we also need to change the return type of
2371 // the intrinsic.
2372 if (Caller->getReturnType() == CB.getType()) {
2373 llvm::erase_if(Returns, [](ReturnInst *RI) {
2374 return RI->getParent()->getTerminatingDeoptimizeCall() != nullptr;
2376 } else {
2377 SmallVector<ReturnInst *, 8> NormalReturns;
2378 Function *NewDeoptIntrinsic = Intrinsic::getDeclaration(
2379 Caller->getParent(), Intrinsic::experimental_deoptimize,
2380 {Caller->getReturnType()});
2382 for (ReturnInst *RI : Returns) {
2383 CallInst *DeoptCall = RI->getParent()->getTerminatingDeoptimizeCall();
2384 if (!DeoptCall) {
2385 NormalReturns.push_back(RI);
2386 continue;
2389 // The calling convention on the deoptimize call itself may be bogus,
2390 // since the code we're inlining may have undefined behavior (and may
2391 // never actually execute at runtime); but all
2392 // @llvm.experimental.deoptimize declarations have to have the same
2393 // calling convention in a well-formed module.
2394 auto CallingConv = DeoptCall->getCalledFunction()->getCallingConv();
2395 NewDeoptIntrinsic->setCallingConv(CallingConv);
2396 auto *CurBB = RI->getParent();
2397 RI->eraseFromParent();
2399 SmallVector<Value *, 4> CallArgs(DeoptCall->args());
2401 SmallVector<OperandBundleDef, 1> OpBundles;
2402 DeoptCall->getOperandBundlesAsDefs(OpBundles);
2403 auto DeoptAttributes = DeoptCall->getAttributes();
2404 DeoptCall->eraseFromParent();
2405 assert(!OpBundles.empty() &&
2406 "Expected at least the deopt operand bundle");
2408 IRBuilder<> Builder(CurBB);
2409 CallInst *NewDeoptCall =
2410 Builder.CreateCall(NewDeoptIntrinsic, CallArgs, OpBundles);
2411 NewDeoptCall->setCallingConv(CallingConv);
2412 NewDeoptCall->setAttributes(DeoptAttributes);
2413 if (NewDeoptCall->getType()->isVoidTy())
2414 Builder.CreateRetVoid();
2415 else
2416 Builder.CreateRet(NewDeoptCall);
2419 // Leave behind the normal returns so we can merge control flow.
2420 std::swap(Returns, NormalReturns);
2424 // Handle any inlined musttail call sites. In order for a new call site to be
2425 // musttail, the source of the clone and the inlined call site must have been
2426 // musttail. Therefore it's safe to return without merging control into the
2427 // phi below.
2428 if (InlinedMustTailCalls) {
2429 // Check if we need to bitcast the result of any musttail calls.
2430 Type *NewRetTy = Caller->getReturnType();
2431 bool NeedBitCast = !CB.use_empty() && CB.getType() != NewRetTy;
2433 // Handle the returns preceded by musttail calls separately.
2434 SmallVector<ReturnInst *, 8> NormalReturns;
2435 for (ReturnInst *RI : Returns) {
2436 CallInst *ReturnedMustTail =
2437 RI->getParent()->getTerminatingMustTailCall();
2438 if (!ReturnedMustTail) {
2439 NormalReturns.push_back(RI);
2440 continue;
2442 if (!NeedBitCast)
2443 continue;
2445 // Delete the old return and any preceding bitcast.
2446 BasicBlock *CurBB = RI->getParent();
2447 auto *OldCast = dyn_cast_or_null<BitCastInst>(RI->getReturnValue());
2448 RI->eraseFromParent();
2449 if (OldCast)
2450 OldCast->eraseFromParent();
2452 // Insert a new bitcast and return with the right type.
2453 IRBuilder<> Builder(CurBB);
2454 Builder.CreateRet(Builder.CreateBitCast(ReturnedMustTail, NewRetTy));
2457 // Leave behind the normal returns so we can merge control flow.
2458 std::swap(Returns, NormalReturns);
2461 // Now that all of the transforms on the inlined code have taken place but
2462 // before we splice the inlined code into the CFG and lose track of which
2463 // blocks were actually inlined, collect the call sites. We only do this if
2464 // call graph updates weren't requested, as those provide value handle based
2465 // tracking of inlined call sites instead. Calls to intrinsics are not
2466 // collected because they are not inlineable.
2467 if (InlinedFunctionInfo.ContainsCalls && !IFI.CG) {
2468 // Otherwise just collect the raw call sites that were inlined.
2469 for (BasicBlock &NewBB :
2470 make_range(FirstNewBlock->getIterator(), Caller->end()))
2471 for (Instruction &I : NewBB)
2472 if (auto *CB = dyn_cast<CallBase>(&I))
2473 if (!(CB->getCalledFunction() &&
2474 CB->getCalledFunction()->isIntrinsic()))
2475 IFI.InlinedCallSites.push_back(CB);
2478 // If we cloned in _exactly one_ basic block, and if that block ends in a
2479 // return instruction, we splice the body of the inlined callee directly into
2480 // the calling basic block.
2481 if (Returns.size() == 1 && std::distance(FirstNewBlock, Caller->end()) == 1) {
2482 // Move all of the instructions right before the call.
2483 OrigBB->getInstList().splice(CB.getIterator(), FirstNewBlock->getInstList(),
2484 FirstNewBlock->begin(), FirstNewBlock->end());
2485 // Remove the cloned basic block.
2486 Caller->getBasicBlockList().pop_back();
2488 // If the call site was an invoke instruction, add a branch to the normal
2489 // destination.
2490 if (InvokeInst *II = dyn_cast<InvokeInst>(&CB)) {
2491 BranchInst *NewBr = BranchInst::Create(II->getNormalDest(), &CB);
2492 NewBr->setDebugLoc(Returns[0]->getDebugLoc());
2495 // If the return instruction returned a value, replace uses of the call with
2496 // uses of the returned value.
2497 if (!CB.use_empty()) {
2498 ReturnInst *R = Returns[0];
2499 if (&CB == R->getReturnValue())
2500 CB.replaceAllUsesWith(UndefValue::get(CB.getType()));
2501 else
2502 CB.replaceAllUsesWith(R->getReturnValue());
2504 // Since we are now done with the Call/Invoke, we can delete it.
2505 CB.eraseFromParent();
2507 // Since we are now done with the return instruction, delete it also.
2508 Returns[0]->eraseFromParent();
2510 // We are now done with the inlining.
2511 return InlineResult::success();
2514 // Otherwise, we have the normal case, of more than one block to inline or
2515 // multiple return sites.
2517 // We want to clone the entire callee function into the hole between the
2518 // "starter" and "ender" blocks. How we accomplish this depends on whether
2519 // this is an invoke instruction or a call instruction.
2520 BasicBlock *AfterCallBB;
2521 BranchInst *CreatedBranchToNormalDest = nullptr;
2522 if (InvokeInst *II = dyn_cast<InvokeInst>(&CB)) {
2524 // Add an unconditional branch to make this look like the CallInst case...
2525 CreatedBranchToNormalDest = BranchInst::Create(II->getNormalDest(), &CB);
2527 // Split the basic block. This guarantees that no PHI nodes will have to be
2528 // updated due to new incoming edges, and make the invoke case more
2529 // symmetric to the call case.
2530 AfterCallBB =
2531 OrigBB->splitBasicBlock(CreatedBranchToNormalDest->getIterator(),
2532 CalledFunc->getName() + ".exit");
2534 } else { // It's a call
2535 // If this is a call instruction, we need to split the basic block that
2536 // the call lives in.
2538 AfterCallBB = OrigBB->splitBasicBlock(CB.getIterator(),
2539 CalledFunc->getName() + ".exit");
2542 if (IFI.CallerBFI) {
2543 // Copy original BB's block frequency to AfterCallBB
2544 IFI.CallerBFI->setBlockFreq(
2545 AfterCallBB, IFI.CallerBFI->getBlockFreq(OrigBB).getFrequency());
2548 // Change the branch that used to go to AfterCallBB to branch to the first
2549 // basic block of the inlined function.
2551 Instruction *Br = OrigBB->getTerminator();
2552 assert(Br && Br->getOpcode() == Instruction::Br &&
2553 "splitBasicBlock broken!");
2554 Br->setOperand(0, &*FirstNewBlock);
2556 // Now that the function is correct, make it a little bit nicer. In
2557 // particular, move the basic blocks inserted from the end of the function
2558 // into the space made by splitting the source basic block.
2559 Caller->getBasicBlockList().splice(AfterCallBB->getIterator(),
2560 Caller->getBasicBlockList(), FirstNewBlock,
2561 Caller->end());
2563 // Handle all of the return instructions that we just cloned in, and eliminate
2564 // any users of the original call/invoke instruction.
2565 Type *RTy = CalledFunc->getReturnType();
2567 PHINode *PHI = nullptr;
2568 if (Returns.size() > 1) {
2569 // The PHI node should go at the front of the new basic block to merge all
2570 // possible incoming values.
2571 if (!CB.use_empty()) {
2572 PHI = PHINode::Create(RTy, Returns.size(), CB.getName(),
2573 &AfterCallBB->front());
2574 // Anything that used the result of the function call should now use the
2575 // PHI node as their operand.
2576 CB.replaceAllUsesWith(PHI);
2579 // Loop over all of the return instructions adding entries to the PHI node
2580 // as appropriate.
2581 if (PHI) {
2582 for (unsigned i = 0, e = Returns.size(); i != e; ++i) {
2583 ReturnInst *RI = Returns[i];
2584 assert(RI->getReturnValue()->getType() == PHI->getType() &&
2585 "Ret value not consistent in function!");
2586 PHI->addIncoming(RI->getReturnValue(), RI->getParent());
2590 // Add a branch to the merge points and remove return instructions.
2591 DebugLoc Loc;
2592 for (unsigned i = 0, e = Returns.size(); i != e; ++i) {
2593 ReturnInst *RI = Returns[i];
2594 BranchInst* BI = BranchInst::Create(AfterCallBB, RI);
2595 Loc = RI->getDebugLoc();
2596 BI->setDebugLoc(Loc);
2597 RI->eraseFromParent();
2599 // We need to set the debug location to *somewhere* inside the
2600 // inlined function. The line number may be nonsensical, but the
2601 // instruction will at least be associated with the right
2602 // function.
2603 if (CreatedBranchToNormalDest)
2604 CreatedBranchToNormalDest->setDebugLoc(Loc);
2605 } else if (!Returns.empty()) {
2606 // Otherwise, if there is exactly one return value, just replace anything
2607 // using the return value of the call with the computed value.
2608 if (!CB.use_empty()) {
2609 if (&CB == Returns[0]->getReturnValue())
2610 CB.replaceAllUsesWith(UndefValue::get(CB.getType()));
2611 else
2612 CB.replaceAllUsesWith(Returns[0]->getReturnValue());
2615 // Update PHI nodes that use the ReturnBB to use the AfterCallBB.
2616 BasicBlock *ReturnBB = Returns[0]->getParent();
2617 ReturnBB->replaceAllUsesWith(AfterCallBB);
2619 // Splice the code from the return block into the block that it will return
2620 // to, which contains the code that was after the call.
2621 AfterCallBB->getInstList().splice(AfterCallBB->begin(),
2622 ReturnBB->getInstList());
2624 if (CreatedBranchToNormalDest)
2625 CreatedBranchToNormalDest->setDebugLoc(Returns[0]->getDebugLoc());
2627 // Delete the return instruction now and empty ReturnBB now.
2628 Returns[0]->eraseFromParent();
2629 ReturnBB->eraseFromParent();
2630 } else if (!CB.use_empty()) {
2631 // No returns, but something is using the return value of the call. Just
2632 // nuke the result.
2633 CB.replaceAllUsesWith(PoisonValue::get(CB.getType()));
2636 // Since we are now done with the Call/Invoke, we can delete it.
2637 CB.eraseFromParent();
2639 // If we inlined any musttail calls and the original return is now
2640 // unreachable, delete it. It can only contain a bitcast and ret.
2641 if (InlinedMustTailCalls && pred_empty(AfterCallBB))
2642 AfterCallBB->eraseFromParent();
2644 // We should always be able to fold the entry block of the function into the
2645 // single predecessor of the block...
2646 assert(cast<BranchInst>(Br)->isUnconditional() && "splitBasicBlock broken!");
2647 BasicBlock *CalleeEntry = cast<BranchInst>(Br)->getSuccessor(0);
2649 // Splice the code entry block into calling block, right before the
2650 // unconditional branch.
2651 CalleeEntry->replaceAllUsesWith(OrigBB); // Update PHI nodes
2652 OrigBB->getInstList().splice(Br->getIterator(), CalleeEntry->getInstList());
2654 // Remove the unconditional branch.
2655 OrigBB->getInstList().erase(Br);
2657 // Now we can remove the CalleeEntry block, which is now empty.
2658 Caller->getBasicBlockList().erase(CalleeEntry);
2660 // If we inserted a phi node, check to see if it has a single value (e.g. all
2661 // the entries are the same or undef). If so, remove the PHI so it doesn't
2662 // block other optimizations.
2663 if (PHI) {
2664 AssumptionCache *AC =
2665 IFI.GetAssumptionCache ? &IFI.GetAssumptionCache(*Caller) : nullptr;
2666 auto &DL = Caller->getParent()->getDataLayout();
2667 if (Value *V = simplifyInstruction(PHI, {DL, nullptr, nullptr, AC})) {
2668 PHI->replaceAllUsesWith(V);
2669 PHI->eraseFromParent();
2673 return InlineResult::success();