[docs] Add LICENSE.txt to the root of the mono-repo
[llvm-project.git] / llvm / lib / Transforms / Utils / LowerMemIntrinsics.cpp
blob630f586db76cf08a20c0d2cb22c3c78c2ee12a93
1 //===- LowerMemIntrinsics.cpp ----------------------------------*- C++ -*--===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
9 #include "llvm/Transforms/Utils/LowerMemIntrinsics.h"
10 #include "llvm/Analysis/ScalarEvolution.h"
11 #include "llvm/Analysis/TargetTransformInfo.h"
12 #include "llvm/IR/IRBuilder.h"
13 #include "llvm/IR/IntrinsicInst.h"
14 #include "llvm/IR/MDBuilder.h"
15 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
17 using namespace llvm;
19 void llvm::createMemCpyLoopKnownSize(Instruction *InsertBefore, Value *SrcAddr,
20 Value *DstAddr, ConstantInt *CopyLen,
21 Align SrcAlign, Align DstAlign,
22 bool SrcIsVolatile, bool DstIsVolatile,
23 bool CanOverlap,
24 const TargetTransformInfo &TTI,
25 Optional<uint32_t> AtomicElementSize) {
26 // No need to expand zero length copies.
27 if (CopyLen->isZero())
28 return;
30 BasicBlock *PreLoopBB = InsertBefore->getParent();
31 BasicBlock *PostLoopBB = nullptr;
32 Function *ParentFunc = PreLoopBB->getParent();
33 LLVMContext &Ctx = PreLoopBB->getContext();
34 const DataLayout &DL = ParentFunc->getParent()->getDataLayout();
35 MDBuilder MDB(Ctx);
36 MDNode *NewDomain = MDB.createAnonymousAliasScopeDomain("MemCopyDomain");
37 StringRef Name = "MemCopyAliasScope";
38 MDNode *NewScope = MDB.createAnonymousAliasScope(NewDomain, Name);
40 unsigned SrcAS = cast<PointerType>(SrcAddr->getType())->getAddressSpace();
41 unsigned DstAS = cast<PointerType>(DstAddr->getType())->getAddressSpace();
43 Type *TypeOfCopyLen = CopyLen->getType();
44 Type *LoopOpType = TTI.getMemcpyLoopLoweringType(
45 Ctx, CopyLen, SrcAS, DstAS, SrcAlign.value(), DstAlign.value(),
46 AtomicElementSize);
47 assert((!AtomicElementSize || !LoopOpType->isVectorTy()) &&
48 "Atomic memcpy lowering is not supported for vector operand type");
50 unsigned LoopOpSize = DL.getTypeStoreSize(LoopOpType);
51 assert((!AtomicElementSize || LoopOpSize % *AtomicElementSize == 0) &&
52 "Atomic memcpy lowering is not supported for selected operand size");
54 uint64_t LoopEndCount = CopyLen->getZExtValue() / LoopOpSize;
56 if (LoopEndCount != 0) {
57 // Split
58 PostLoopBB = PreLoopBB->splitBasicBlock(InsertBefore, "memcpy-split");
59 BasicBlock *LoopBB =
60 BasicBlock::Create(Ctx, "load-store-loop", ParentFunc, PostLoopBB);
61 PreLoopBB->getTerminator()->setSuccessor(0, LoopBB);
63 IRBuilder<> PLBuilder(PreLoopBB->getTerminator());
65 // Cast the Src and Dst pointers to pointers to the loop operand type (if
66 // needed).
67 PointerType *SrcOpType = PointerType::get(LoopOpType, SrcAS);
68 PointerType *DstOpType = PointerType::get(LoopOpType, DstAS);
69 if (SrcAddr->getType() != SrcOpType) {
70 SrcAddr = PLBuilder.CreateBitCast(SrcAddr, SrcOpType);
72 if (DstAddr->getType() != DstOpType) {
73 DstAddr = PLBuilder.CreateBitCast(DstAddr, DstOpType);
76 Align PartDstAlign(commonAlignment(DstAlign, LoopOpSize));
77 Align PartSrcAlign(commonAlignment(SrcAlign, LoopOpSize));
79 IRBuilder<> LoopBuilder(LoopBB);
80 PHINode *LoopIndex = LoopBuilder.CreatePHI(TypeOfCopyLen, 2, "loop-index");
81 LoopIndex->addIncoming(ConstantInt::get(TypeOfCopyLen, 0U), PreLoopBB);
82 // Loop Body
83 Value *SrcGEP =
84 LoopBuilder.CreateInBoundsGEP(LoopOpType, SrcAddr, LoopIndex);
85 LoadInst *Load = LoopBuilder.CreateAlignedLoad(LoopOpType, SrcGEP,
86 PartSrcAlign, SrcIsVolatile);
87 if (!CanOverlap) {
88 // Set alias scope for loads.
89 Load->setMetadata(LLVMContext::MD_alias_scope,
90 MDNode::get(Ctx, NewScope));
92 Value *DstGEP =
93 LoopBuilder.CreateInBoundsGEP(LoopOpType, DstAddr, LoopIndex);
94 StoreInst *Store = LoopBuilder.CreateAlignedStore(
95 Load, DstGEP, PartDstAlign, DstIsVolatile);
96 if (!CanOverlap) {
97 // Indicate that stores don't overlap loads.
98 Store->setMetadata(LLVMContext::MD_noalias, MDNode::get(Ctx, NewScope));
100 if (AtomicElementSize) {
101 Load->setAtomic(AtomicOrdering::Unordered);
102 Store->setAtomic(AtomicOrdering::Unordered);
104 Value *NewIndex =
105 LoopBuilder.CreateAdd(LoopIndex, ConstantInt::get(TypeOfCopyLen, 1U));
106 LoopIndex->addIncoming(NewIndex, LoopBB);
108 // Create the loop branch condition.
109 Constant *LoopEndCI = ConstantInt::get(TypeOfCopyLen, LoopEndCount);
110 LoopBuilder.CreateCondBr(LoopBuilder.CreateICmpULT(NewIndex, LoopEndCI),
111 LoopBB, PostLoopBB);
114 uint64_t BytesCopied = LoopEndCount * LoopOpSize;
115 uint64_t RemainingBytes = CopyLen->getZExtValue() - BytesCopied;
116 if (RemainingBytes) {
117 IRBuilder<> RBuilder(PostLoopBB ? PostLoopBB->getFirstNonPHI()
118 : InsertBefore);
120 SmallVector<Type *, 5> RemainingOps;
121 TTI.getMemcpyLoopResidualLoweringType(RemainingOps, Ctx, RemainingBytes,
122 SrcAS, DstAS, SrcAlign.value(),
123 DstAlign.value(), AtomicElementSize);
125 for (auto OpTy : RemainingOps) {
126 Align PartSrcAlign(commonAlignment(SrcAlign, BytesCopied));
127 Align PartDstAlign(commonAlignment(DstAlign, BytesCopied));
129 // Calculate the new index
130 unsigned OperandSize = DL.getTypeStoreSize(OpTy);
131 assert(
132 (!AtomicElementSize || OperandSize % *AtomicElementSize == 0) &&
133 "Atomic memcpy lowering is not supported for selected operand size");
135 uint64_t GepIndex = BytesCopied / OperandSize;
136 assert(GepIndex * OperandSize == BytesCopied &&
137 "Division should have no Remainder!");
138 // Cast source to operand type and load
139 PointerType *SrcPtrType = PointerType::get(OpTy, SrcAS);
140 Value *CastedSrc = SrcAddr->getType() == SrcPtrType
141 ? SrcAddr
142 : RBuilder.CreateBitCast(SrcAddr, SrcPtrType);
143 Value *SrcGEP = RBuilder.CreateInBoundsGEP(
144 OpTy, CastedSrc, ConstantInt::get(TypeOfCopyLen, GepIndex));
145 LoadInst *Load =
146 RBuilder.CreateAlignedLoad(OpTy, SrcGEP, PartSrcAlign, SrcIsVolatile);
147 if (!CanOverlap) {
148 // Set alias scope for loads.
149 Load->setMetadata(LLVMContext::MD_alias_scope,
150 MDNode::get(Ctx, NewScope));
152 // Cast destination to operand type and store.
153 PointerType *DstPtrType = PointerType::get(OpTy, DstAS);
154 Value *CastedDst = DstAddr->getType() == DstPtrType
155 ? DstAddr
156 : RBuilder.CreateBitCast(DstAddr, DstPtrType);
157 Value *DstGEP = RBuilder.CreateInBoundsGEP(
158 OpTy, CastedDst, ConstantInt::get(TypeOfCopyLen, GepIndex));
159 StoreInst *Store = RBuilder.CreateAlignedStore(Load, DstGEP, PartDstAlign,
160 DstIsVolatile);
161 if (!CanOverlap) {
162 // Indicate that stores don't overlap loads.
163 Store->setMetadata(LLVMContext::MD_noalias, MDNode::get(Ctx, NewScope));
165 if (AtomicElementSize) {
166 Load->setAtomic(AtomicOrdering::Unordered);
167 Store->setAtomic(AtomicOrdering::Unordered);
169 BytesCopied += OperandSize;
172 assert(BytesCopied == CopyLen->getZExtValue() &&
173 "Bytes copied should match size in the call!");
176 void llvm::createMemCpyLoopUnknownSize(Instruction *InsertBefore,
177 Value *SrcAddr, Value *DstAddr,
178 Value *CopyLen, Align SrcAlign,
179 Align DstAlign, bool SrcIsVolatile,
180 bool DstIsVolatile, bool CanOverlap,
181 const TargetTransformInfo &TTI,
182 Optional<uint32_t> AtomicElementSize) {
183 BasicBlock *PreLoopBB = InsertBefore->getParent();
184 BasicBlock *PostLoopBB =
185 PreLoopBB->splitBasicBlock(InsertBefore, "post-loop-memcpy-expansion");
187 Function *ParentFunc = PreLoopBB->getParent();
188 const DataLayout &DL = ParentFunc->getParent()->getDataLayout();
189 LLVMContext &Ctx = PreLoopBB->getContext();
190 MDBuilder MDB(Ctx);
191 MDNode *NewDomain = MDB.createAnonymousAliasScopeDomain("MemCopyDomain");
192 StringRef Name = "MemCopyAliasScope";
193 MDNode *NewScope = MDB.createAnonymousAliasScope(NewDomain, Name);
195 unsigned SrcAS = cast<PointerType>(SrcAddr->getType())->getAddressSpace();
196 unsigned DstAS = cast<PointerType>(DstAddr->getType())->getAddressSpace();
198 Type *LoopOpType = TTI.getMemcpyLoopLoweringType(
199 Ctx, CopyLen, SrcAS, DstAS, SrcAlign.value(), DstAlign.value(),
200 AtomicElementSize);
201 assert((!AtomicElementSize || !LoopOpType->isVectorTy()) &&
202 "Atomic memcpy lowering is not supported for vector operand type");
203 unsigned LoopOpSize = DL.getTypeStoreSize(LoopOpType);
204 assert((!AtomicElementSize || LoopOpSize % *AtomicElementSize == 0) &&
205 "Atomic memcpy lowering is not supported for selected operand size");
207 IRBuilder<> PLBuilder(PreLoopBB->getTerminator());
209 PointerType *SrcOpType = PointerType::get(LoopOpType, SrcAS);
210 PointerType *DstOpType = PointerType::get(LoopOpType, DstAS);
211 if (SrcAddr->getType() != SrcOpType) {
212 SrcAddr = PLBuilder.CreateBitCast(SrcAddr, SrcOpType);
214 if (DstAddr->getType() != DstOpType) {
215 DstAddr = PLBuilder.CreateBitCast(DstAddr, DstOpType);
218 // Calculate the loop trip count, and remaining bytes to copy after the loop.
219 Type *CopyLenType = CopyLen->getType();
220 IntegerType *ILengthType = dyn_cast<IntegerType>(CopyLenType);
221 assert(ILengthType &&
222 "expected size argument to memcpy to be an integer type!");
223 Type *Int8Type = Type::getInt8Ty(Ctx);
224 bool LoopOpIsInt8 = LoopOpType == Int8Type;
225 ConstantInt *CILoopOpSize = ConstantInt::get(ILengthType, LoopOpSize);
226 Value *RuntimeLoopCount = LoopOpIsInt8 ?
227 CopyLen :
228 PLBuilder.CreateUDiv(CopyLen, CILoopOpSize);
229 BasicBlock *LoopBB =
230 BasicBlock::Create(Ctx, "loop-memcpy-expansion", ParentFunc, PostLoopBB);
231 IRBuilder<> LoopBuilder(LoopBB);
233 Align PartSrcAlign(commonAlignment(SrcAlign, LoopOpSize));
234 Align PartDstAlign(commonAlignment(DstAlign, LoopOpSize));
236 PHINode *LoopIndex = LoopBuilder.CreatePHI(CopyLenType, 2, "loop-index");
237 LoopIndex->addIncoming(ConstantInt::get(CopyLenType, 0U), PreLoopBB);
239 Value *SrcGEP = LoopBuilder.CreateInBoundsGEP(LoopOpType, SrcAddr, LoopIndex);
240 LoadInst *Load = LoopBuilder.CreateAlignedLoad(LoopOpType, SrcGEP,
241 PartSrcAlign, SrcIsVolatile);
242 if (!CanOverlap) {
243 // Set alias scope for loads.
244 Load->setMetadata(LLVMContext::MD_alias_scope, MDNode::get(Ctx, NewScope));
246 Value *DstGEP = LoopBuilder.CreateInBoundsGEP(LoopOpType, DstAddr, LoopIndex);
247 StoreInst *Store =
248 LoopBuilder.CreateAlignedStore(Load, DstGEP, PartDstAlign, DstIsVolatile);
249 if (!CanOverlap) {
250 // Indicate that stores don't overlap loads.
251 Store->setMetadata(LLVMContext::MD_noalias, MDNode::get(Ctx, NewScope));
253 if (AtomicElementSize) {
254 Load->setAtomic(AtomicOrdering::Unordered);
255 Store->setAtomic(AtomicOrdering::Unordered);
257 Value *NewIndex =
258 LoopBuilder.CreateAdd(LoopIndex, ConstantInt::get(CopyLenType, 1U));
259 LoopIndex->addIncoming(NewIndex, LoopBB);
261 bool requiresResidual =
262 !LoopOpIsInt8 && !(AtomicElementSize && LoopOpSize == AtomicElementSize);
263 if (requiresResidual) {
264 Type *ResLoopOpType = AtomicElementSize
265 ? Type::getIntNTy(Ctx, *AtomicElementSize * 8)
266 : Int8Type;
267 unsigned ResLoopOpSize = DL.getTypeStoreSize(ResLoopOpType);
268 assert((ResLoopOpSize == AtomicElementSize ? *AtomicElementSize : 1) &&
269 "Store size is expected to match type size");
271 // Add in the
272 Value *RuntimeResidual = PLBuilder.CreateURem(CopyLen, CILoopOpSize);
273 Value *RuntimeBytesCopied = PLBuilder.CreateSub(CopyLen, RuntimeResidual);
275 // Loop body for the residual copy.
276 BasicBlock *ResLoopBB = BasicBlock::Create(Ctx, "loop-memcpy-residual",
277 PreLoopBB->getParent(),
278 PostLoopBB);
279 // Residual loop header.
280 BasicBlock *ResHeaderBB = BasicBlock::Create(
281 Ctx, "loop-memcpy-residual-header", PreLoopBB->getParent(), nullptr);
283 // Need to update the pre-loop basic block to branch to the correct place.
284 // branch to the main loop if the count is non-zero, branch to the residual
285 // loop if the copy size is smaller then 1 iteration of the main loop but
286 // non-zero and finally branch to after the residual loop if the memcpy
287 // size is zero.
288 ConstantInt *Zero = ConstantInt::get(ILengthType, 0U);
289 PLBuilder.CreateCondBr(PLBuilder.CreateICmpNE(RuntimeLoopCount, Zero),
290 LoopBB, ResHeaderBB);
291 PreLoopBB->getTerminator()->eraseFromParent();
293 LoopBuilder.CreateCondBr(
294 LoopBuilder.CreateICmpULT(NewIndex, RuntimeLoopCount), LoopBB,
295 ResHeaderBB);
297 // Determine if we need to branch to the residual loop or bypass it.
298 IRBuilder<> RHBuilder(ResHeaderBB);
299 RHBuilder.CreateCondBr(RHBuilder.CreateICmpNE(RuntimeResidual, Zero),
300 ResLoopBB, PostLoopBB);
302 // Copy the residual with single byte load/store loop.
303 IRBuilder<> ResBuilder(ResLoopBB);
304 PHINode *ResidualIndex =
305 ResBuilder.CreatePHI(CopyLenType, 2, "residual-loop-index");
306 ResidualIndex->addIncoming(Zero, ResHeaderBB);
308 Value *SrcAsResLoopOpType = ResBuilder.CreateBitCast(
309 SrcAddr, PointerType::get(ResLoopOpType, SrcAS));
310 Value *DstAsResLoopOpType = ResBuilder.CreateBitCast(
311 DstAddr, PointerType::get(ResLoopOpType, DstAS));
312 Value *FullOffset = ResBuilder.CreateAdd(RuntimeBytesCopied, ResidualIndex);
313 Value *SrcGEP = ResBuilder.CreateInBoundsGEP(
314 ResLoopOpType, SrcAsResLoopOpType, FullOffset);
315 LoadInst *Load = ResBuilder.CreateAlignedLoad(ResLoopOpType, SrcGEP,
316 PartSrcAlign, SrcIsVolatile);
317 if (!CanOverlap) {
318 // Set alias scope for loads.
319 Load->setMetadata(LLVMContext::MD_alias_scope,
320 MDNode::get(Ctx, NewScope));
322 Value *DstGEP = ResBuilder.CreateInBoundsGEP(
323 ResLoopOpType, DstAsResLoopOpType, FullOffset);
324 StoreInst *Store = ResBuilder.CreateAlignedStore(Load, DstGEP, PartDstAlign,
325 DstIsVolatile);
326 if (!CanOverlap) {
327 // Indicate that stores don't overlap loads.
328 Store->setMetadata(LLVMContext::MD_noalias, MDNode::get(Ctx, NewScope));
330 if (AtomicElementSize) {
331 Load->setAtomic(AtomicOrdering::Unordered);
332 Store->setAtomic(AtomicOrdering::Unordered);
334 Value *ResNewIndex = ResBuilder.CreateAdd(
335 ResidualIndex, ConstantInt::get(CopyLenType, ResLoopOpSize));
336 ResidualIndex->addIncoming(ResNewIndex, ResLoopBB);
338 // Create the loop branch condition.
339 ResBuilder.CreateCondBr(
340 ResBuilder.CreateICmpULT(ResNewIndex, RuntimeResidual), ResLoopBB,
341 PostLoopBB);
342 } else {
343 // In this case the loop operand type was a byte, and there is no need for a
344 // residual loop to copy the remaining memory after the main loop.
345 // We do however need to patch up the control flow by creating the
346 // terminators for the preloop block and the memcpy loop.
347 ConstantInt *Zero = ConstantInt::get(ILengthType, 0U);
348 PLBuilder.CreateCondBr(PLBuilder.CreateICmpNE(RuntimeLoopCount, Zero),
349 LoopBB, PostLoopBB);
350 PreLoopBB->getTerminator()->eraseFromParent();
351 LoopBuilder.CreateCondBr(
352 LoopBuilder.CreateICmpULT(NewIndex, RuntimeLoopCount), LoopBB,
353 PostLoopBB);
357 // Lower memmove to IR. memmove is required to correctly copy overlapping memory
358 // regions; therefore, it has to check the relative positions of the source and
359 // destination pointers and choose the copy direction accordingly.
361 // The code below is an IR rendition of this C function:
363 // void* memmove(void* dst, const void* src, size_t n) {
364 // unsigned char* d = dst;
365 // const unsigned char* s = src;
366 // if (s < d) {
367 // // copy backwards
368 // while (n--) {
369 // d[n] = s[n];
370 // }
371 // } else {
372 // // copy forward
373 // for (size_t i = 0; i < n; ++i) {
374 // d[i] = s[i];
375 // }
376 // }
377 // return dst;
378 // }
379 static void createMemMoveLoop(Instruction *InsertBefore, Value *SrcAddr,
380 Value *DstAddr, Value *CopyLen, Align SrcAlign,
381 Align DstAlign, bool SrcIsVolatile,
382 bool DstIsVolatile) {
383 Type *TypeOfCopyLen = CopyLen->getType();
384 BasicBlock *OrigBB = InsertBefore->getParent();
385 Function *F = OrigBB->getParent();
386 const DataLayout &DL = F->getParent()->getDataLayout();
388 // TODO: Use different element type if possible?
389 IRBuilder<> CastBuilder(InsertBefore);
390 Type *EltTy = CastBuilder.getInt8Ty();
391 Type *PtrTy =
392 CastBuilder.getInt8PtrTy(SrcAddr->getType()->getPointerAddressSpace());
393 SrcAddr = CastBuilder.CreateBitCast(SrcAddr, PtrTy);
394 DstAddr = CastBuilder.CreateBitCast(DstAddr, PtrTy);
396 // Create the a comparison of src and dst, based on which we jump to either
397 // the forward-copy part of the function (if src >= dst) or the backwards-copy
398 // part (if src < dst).
399 // SplitBlockAndInsertIfThenElse conveniently creates the basic if-then-else
400 // structure. Its block terminators (unconditional branches) are replaced by
401 // the appropriate conditional branches when the loop is built.
402 ICmpInst *PtrCompare = new ICmpInst(InsertBefore, ICmpInst::ICMP_ULT,
403 SrcAddr, DstAddr, "compare_src_dst");
404 Instruction *ThenTerm, *ElseTerm;
405 SplitBlockAndInsertIfThenElse(PtrCompare, InsertBefore, &ThenTerm,
406 &ElseTerm);
408 // Each part of the function consists of two blocks:
409 // copy_backwards: used to skip the loop when n == 0
410 // copy_backwards_loop: the actual backwards loop BB
411 // copy_forward: used to skip the loop when n == 0
412 // copy_forward_loop: the actual forward loop BB
413 BasicBlock *CopyBackwardsBB = ThenTerm->getParent();
414 CopyBackwardsBB->setName("copy_backwards");
415 BasicBlock *CopyForwardBB = ElseTerm->getParent();
416 CopyForwardBB->setName("copy_forward");
417 BasicBlock *ExitBB = InsertBefore->getParent();
418 ExitBB->setName("memmove_done");
420 unsigned PartSize = DL.getTypeStoreSize(EltTy);
421 Align PartSrcAlign(commonAlignment(SrcAlign, PartSize));
422 Align PartDstAlign(commonAlignment(DstAlign, PartSize));
424 // Initial comparison of n == 0 that lets us skip the loops altogether. Shared
425 // between both backwards and forward copy clauses.
426 ICmpInst *CompareN =
427 new ICmpInst(OrigBB->getTerminator(), ICmpInst::ICMP_EQ, CopyLen,
428 ConstantInt::get(TypeOfCopyLen, 0), "compare_n_to_0");
430 // Copying backwards.
431 BasicBlock *LoopBB =
432 BasicBlock::Create(F->getContext(), "copy_backwards_loop", F, CopyForwardBB);
433 IRBuilder<> LoopBuilder(LoopBB);
434 PHINode *LoopPhi = LoopBuilder.CreatePHI(TypeOfCopyLen, 0);
435 Value *IndexPtr = LoopBuilder.CreateSub(
436 LoopPhi, ConstantInt::get(TypeOfCopyLen, 1), "index_ptr");
437 Value *Element = LoopBuilder.CreateAlignedLoad(
438 EltTy, LoopBuilder.CreateInBoundsGEP(EltTy, SrcAddr, IndexPtr),
439 PartSrcAlign, "element");
440 LoopBuilder.CreateAlignedStore(
441 Element, LoopBuilder.CreateInBoundsGEP(EltTy, DstAddr, IndexPtr),
442 PartDstAlign);
443 LoopBuilder.CreateCondBr(
444 LoopBuilder.CreateICmpEQ(IndexPtr, ConstantInt::get(TypeOfCopyLen, 0)),
445 ExitBB, LoopBB);
446 LoopPhi->addIncoming(IndexPtr, LoopBB);
447 LoopPhi->addIncoming(CopyLen, CopyBackwardsBB);
448 BranchInst::Create(ExitBB, LoopBB, CompareN, ThenTerm);
449 ThenTerm->eraseFromParent();
451 // Copying forward.
452 BasicBlock *FwdLoopBB =
453 BasicBlock::Create(F->getContext(), "copy_forward_loop", F, ExitBB);
454 IRBuilder<> FwdLoopBuilder(FwdLoopBB);
455 PHINode *FwdCopyPhi = FwdLoopBuilder.CreatePHI(TypeOfCopyLen, 0, "index_ptr");
456 Value *SrcGEP = FwdLoopBuilder.CreateInBoundsGEP(EltTy, SrcAddr, FwdCopyPhi);
457 Value *FwdElement =
458 FwdLoopBuilder.CreateAlignedLoad(EltTy, SrcGEP, PartSrcAlign, "element");
459 Value *DstGEP = FwdLoopBuilder.CreateInBoundsGEP(EltTy, DstAddr, FwdCopyPhi);
460 FwdLoopBuilder.CreateAlignedStore(FwdElement, DstGEP, PartDstAlign);
461 Value *FwdIndexPtr = FwdLoopBuilder.CreateAdd(
462 FwdCopyPhi, ConstantInt::get(TypeOfCopyLen, 1), "index_increment");
463 FwdLoopBuilder.CreateCondBr(FwdLoopBuilder.CreateICmpEQ(FwdIndexPtr, CopyLen),
464 ExitBB, FwdLoopBB);
465 FwdCopyPhi->addIncoming(FwdIndexPtr, FwdLoopBB);
466 FwdCopyPhi->addIncoming(ConstantInt::get(TypeOfCopyLen, 0), CopyForwardBB);
468 BranchInst::Create(ExitBB, FwdLoopBB, CompareN, ElseTerm);
469 ElseTerm->eraseFromParent();
472 static void createMemSetLoop(Instruction *InsertBefore, Value *DstAddr,
473 Value *CopyLen, Value *SetValue, Align DstAlign,
474 bool IsVolatile) {
475 Type *TypeOfCopyLen = CopyLen->getType();
476 BasicBlock *OrigBB = InsertBefore->getParent();
477 Function *F = OrigBB->getParent();
478 const DataLayout &DL = F->getParent()->getDataLayout();
479 BasicBlock *NewBB =
480 OrigBB->splitBasicBlock(InsertBefore, "split");
481 BasicBlock *LoopBB
482 = BasicBlock::Create(F->getContext(), "loadstoreloop", F, NewBB);
484 IRBuilder<> Builder(OrigBB->getTerminator());
486 // Cast pointer to the type of value getting stored
487 unsigned dstAS = cast<PointerType>(DstAddr->getType())->getAddressSpace();
488 DstAddr = Builder.CreateBitCast(DstAddr,
489 PointerType::get(SetValue->getType(), dstAS));
491 Builder.CreateCondBr(
492 Builder.CreateICmpEQ(ConstantInt::get(TypeOfCopyLen, 0), CopyLen), NewBB,
493 LoopBB);
494 OrigBB->getTerminator()->eraseFromParent();
496 unsigned PartSize = DL.getTypeStoreSize(SetValue->getType());
497 Align PartAlign(commonAlignment(DstAlign, PartSize));
499 IRBuilder<> LoopBuilder(LoopBB);
500 PHINode *LoopIndex = LoopBuilder.CreatePHI(TypeOfCopyLen, 0);
501 LoopIndex->addIncoming(ConstantInt::get(TypeOfCopyLen, 0), OrigBB);
503 LoopBuilder.CreateAlignedStore(
504 SetValue,
505 LoopBuilder.CreateInBoundsGEP(SetValue->getType(), DstAddr, LoopIndex),
506 PartAlign, IsVolatile);
508 Value *NewIndex =
509 LoopBuilder.CreateAdd(LoopIndex, ConstantInt::get(TypeOfCopyLen, 1));
510 LoopIndex->addIncoming(NewIndex, LoopBB);
512 LoopBuilder.CreateCondBr(LoopBuilder.CreateICmpULT(NewIndex, CopyLen), LoopBB,
513 NewBB);
516 template <typename T>
517 static bool canOverlap(MemTransferBase<T> *Memcpy, ScalarEvolution *SE) {
518 if (SE) {
519 auto *SrcSCEV = SE->getSCEV(Memcpy->getRawSource());
520 auto *DestSCEV = SE->getSCEV(Memcpy->getRawDest());
521 if (SE->isKnownPredicateAt(CmpInst::ICMP_NE, SrcSCEV, DestSCEV, Memcpy))
522 return false;
524 return true;
527 void llvm::expandMemCpyAsLoop(MemCpyInst *Memcpy,
528 const TargetTransformInfo &TTI,
529 ScalarEvolution *SE) {
530 bool CanOverlap = canOverlap(Memcpy, SE);
531 if (ConstantInt *CI = dyn_cast<ConstantInt>(Memcpy->getLength())) {
532 createMemCpyLoopKnownSize(
533 /* InsertBefore */ Memcpy,
534 /* SrcAddr */ Memcpy->getRawSource(),
535 /* DstAddr */ Memcpy->getRawDest(),
536 /* CopyLen */ CI,
537 /* SrcAlign */ Memcpy->getSourceAlign().valueOrOne(),
538 /* DestAlign */ Memcpy->getDestAlign().valueOrOne(),
539 /* SrcIsVolatile */ Memcpy->isVolatile(),
540 /* DstIsVolatile */ Memcpy->isVolatile(),
541 /* CanOverlap */ CanOverlap,
542 /* TargetTransformInfo */ TTI);
543 } else {
544 createMemCpyLoopUnknownSize(
545 /* InsertBefore */ Memcpy,
546 /* SrcAddr */ Memcpy->getRawSource(),
547 /* DstAddr */ Memcpy->getRawDest(),
548 /* CopyLen */ Memcpy->getLength(),
549 /* SrcAlign */ Memcpy->getSourceAlign().valueOrOne(),
550 /* DestAlign */ Memcpy->getDestAlign().valueOrOne(),
551 /* SrcIsVolatile */ Memcpy->isVolatile(),
552 /* DstIsVolatile */ Memcpy->isVolatile(),
553 /* CanOverlap */ CanOverlap,
554 /* TargetTransformInfo */ TTI);
558 void llvm::expandMemMoveAsLoop(MemMoveInst *Memmove) {
559 createMemMoveLoop(/* InsertBefore */ Memmove,
560 /* SrcAddr */ Memmove->getRawSource(),
561 /* DstAddr */ Memmove->getRawDest(),
562 /* CopyLen */ Memmove->getLength(),
563 /* SrcAlign */ Memmove->getSourceAlign().valueOrOne(),
564 /* DestAlign */ Memmove->getDestAlign().valueOrOne(),
565 /* SrcIsVolatile */ Memmove->isVolatile(),
566 /* DstIsVolatile */ Memmove->isVolatile());
569 void llvm::expandMemSetAsLoop(MemSetInst *Memset) {
570 createMemSetLoop(/* InsertBefore */ Memset,
571 /* DstAddr */ Memset->getRawDest(),
572 /* CopyLen */ Memset->getLength(),
573 /* SetValue */ Memset->getValue(),
574 /* Alignment */ Memset->getDestAlign().valueOrOne(),
575 Memset->isVolatile());
578 void llvm::expandAtomicMemCpyAsLoop(AtomicMemCpyInst *AtomicMemcpy,
579 const TargetTransformInfo &TTI,
580 ScalarEvolution *SE) {
581 if (ConstantInt *CI = dyn_cast<ConstantInt>(AtomicMemcpy->getLength())) {
582 createMemCpyLoopKnownSize(
583 /* InsertBefore */ AtomicMemcpy,
584 /* SrcAddr */ AtomicMemcpy->getRawSource(),
585 /* DstAddr */ AtomicMemcpy->getRawDest(),
586 /* CopyLen */ CI,
587 /* SrcAlign */ AtomicMemcpy->getSourceAlign().valueOrOne(),
588 /* DestAlign */ AtomicMemcpy->getDestAlign().valueOrOne(),
589 /* SrcIsVolatile */ AtomicMemcpy->isVolatile(),
590 /* DstIsVolatile */ AtomicMemcpy->isVolatile(),
591 /* CanOverlap */ false, // SrcAddr & DstAddr may not overlap by spec.
592 /* TargetTransformInfo */ TTI,
593 /* AtomicCpySize */ AtomicMemcpy->getElementSizeInBytes());
594 } else {
595 createMemCpyLoopUnknownSize(
596 /* InsertBefore */ AtomicMemcpy,
597 /* SrcAddr */ AtomicMemcpy->getRawSource(),
598 /* DstAddr */ AtomicMemcpy->getRawDest(),
599 /* CopyLen */ AtomicMemcpy->getLength(),
600 /* SrcAlign */ AtomicMemcpy->getSourceAlign().valueOrOne(),
601 /* DestAlign */ AtomicMemcpy->getDestAlign().valueOrOne(),
602 /* SrcIsVolatile */ AtomicMemcpy->isVolatile(),
603 /* DstIsVolatile */ AtomicMemcpy->isVolatile(),
604 /* CanOverlap */ false, // SrcAddr & DstAddr may not overlap by spec.
605 /* TargetTransformInfo */ TTI,
606 /* AtomicCpySize */ AtomicMemcpy->getElementSizeInBytes());