[docs] Add LICENSE.txt to the root of the mono-repo
[llvm-project.git] / llvm / lib / Transforms / Utils / SSAUpdater.cpp
blob2520aa5d9db003cccbf734af7591837fd8c7c708
1 //===- SSAUpdater.cpp - Unstructured SSA Update Tool ----------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements the SSAUpdater class.
11 //===----------------------------------------------------------------------===//
13 #include "llvm/Transforms/Utils/SSAUpdater.h"
14 #include "llvm/ADT/DenseMap.h"
15 #include "llvm/ADT/STLExtras.h"
16 #include "llvm/ADT/SmallVector.h"
17 #include "llvm/ADT/TinyPtrVector.h"
18 #include "llvm/Analysis/InstructionSimplify.h"
19 #include "llvm/IR/BasicBlock.h"
20 #include "llvm/IR/CFG.h"
21 #include "llvm/IR/Constants.h"
22 #include "llvm/IR/DebugLoc.h"
23 #include "llvm/IR/Instruction.h"
24 #include "llvm/IR/Instructions.h"
25 #include "llvm/IR/Module.h"
26 #include "llvm/IR/Use.h"
27 #include "llvm/IR/Value.h"
28 #include "llvm/Support/Casting.h"
29 #include "llvm/Support/Debug.h"
30 #include "llvm/Support/raw_ostream.h"
31 #include "llvm/Transforms/Utils/SSAUpdaterImpl.h"
32 #include <cassert>
33 #include <utility>
35 using namespace llvm;
37 #define DEBUG_TYPE "ssaupdater"
39 using AvailableValsTy = DenseMap<BasicBlock *, Value *>;
41 static AvailableValsTy &getAvailableVals(void *AV) {
42 return *static_cast<AvailableValsTy*>(AV);
45 SSAUpdater::SSAUpdater(SmallVectorImpl<PHINode *> *NewPHI)
46 : InsertedPHIs(NewPHI) {}
48 SSAUpdater::~SSAUpdater() {
49 delete static_cast<AvailableValsTy*>(AV);
52 void SSAUpdater::Initialize(Type *Ty, StringRef Name) {
53 if (!AV)
54 AV = new AvailableValsTy();
55 else
56 getAvailableVals(AV).clear();
57 ProtoType = Ty;
58 ProtoName = std::string(Name);
61 bool SSAUpdater::HasValueForBlock(BasicBlock *BB) const {
62 return getAvailableVals(AV).count(BB);
65 Value *SSAUpdater::FindValueForBlock(BasicBlock *BB) const {
66 return getAvailableVals(AV).lookup(BB);
69 void SSAUpdater::AddAvailableValue(BasicBlock *BB, Value *V) {
70 assert(ProtoType && "Need to initialize SSAUpdater");
71 assert(ProtoType == V->getType() &&
72 "All rewritten values must have the same type");
73 getAvailableVals(AV)[BB] = V;
76 static bool IsEquivalentPHI(PHINode *PHI,
77 SmallDenseMap<BasicBlock *, Value *, 8> &ValueMapping) {
78 unsigned PHINumValues = PHI->getNumIncomingValues();
79 if (PHINumValues != ValueMapping.size())
80 return false;
82 // Scan the phi to see if it matches.
83 for (unsigned i = 0, e = PHINumValues; i != e; ++i)
84 if (ValueMapping[PHI->getIncomingBlock(i)] !=
85 PHI->getIncomingValue(i)) {
86 return false;
89 return true;
92 Value *SSAUpdater::GetValueAtEndOfBlock(BasicBlock *BB) {
93 Value *Res = GetValueAtEndOfBlockInternal(BB);
94 return Res;
97 Value *SSAUpdater::GetValueInMiddleOfBlock(BasicBlock *BB) {
98 // If there is no definition of the renamed variable in this block, just use
99 // GetValueAtEndOfBlock to do our work.
100 if (!HasValueForBlock(BB))
101 return GetValueAtEndOfBlock(BB);
103 // Otherwise, we have the hard case. Get the live-in values for each
104 // predecessor.
105 SmallVector<std::pair<BasicBlock *, Value *>, 8> PredValues;
106 Value *SingularValue = nullptr;
108 // We can get our predecessor info by walking the pred_iterator list, but it
109 // is relatively slow. If we already have PHI nodes in this block, walk one
110 // of them to get the predecessor list instead.
111 if (PHINode *SomePhi = dyn_cast<PHINode>(BB->begin())) {
112 for (unsigned i = 0, e = SomePhi->getNumIncomingValues(); i != e; ++i) {
113 BasicBlock *PredBB = SomePhi->getIncomingBlock(i);
114 Value *PredVal = GetValueAtEndOfBlock(PredBB);
115 PredValues.push_back(std::make_pair(PredBB, PredVal));
117 // Compute SingularValue.
118 if (i == 0)
119 SingularValue = PredVal;
120 else if (PredVal != SingularValue)
121 SingularValue = nullptr;
123 } else {
124 bool isFirstPred = true;
125 for (BasicBlock *PredBB : predecessors(BB)) {
126 Value *PredVal = GetValueAtEndOfBlock(PredBB);
127 PredValues.push_back(std::make_pair(PredBB, PredVal));
129 // Compute SingularValue.
130 if (isFirstPred) {
131 SingularValue = PredVal;
132 isFirstPred = false;
133 } else if (PredVal != SingularValue)
134 SingularValue = nullptr;
138 // If there are no predecessors, just return undef.
139 if (PredValues.empty())
140 return UndefValue::get(ProtoType);
142 // Otherwise, if all the merged values are the same, just use it.
143 if (SingularValue)
144 return SingularValue;
146 // Otherwise, we do need a PHI: check to see if we already have one available
147 // in this block that produces the right value.
148 if (isa<PHINode>(BB->begin())) {
149 SmallDenseMap<BasicBlock *, Value *, 8> ValueMapping(PredValues.begin(),
150 PredValues.end());
151 for (PHINode &SomePHI : BB->phis()) {
152 if (IsEquivalentPHI(&SomePHI, ValueMapping))
153 return &SomePHI;
157 // Ok, we have no way out, insert a new one now.
158 PHINode *InsertedPHI = PHINode::Create(ProtoType, PredValues.size(),
159 ProtoName, &BB->front());
161 // Fill in all the predecessors of the PHI.
162 for (const auto &PredValue : PredValues)
163 InsertedPHI->addIncoming(PredValue.second, PredValue.first);
165 // See if the PHI node can be merged to a single value. This can happen in
166 // loop cases when we get a PHI of itself and one other value.
167 if (Value *V =
168 simplifyInstruction(InsertedPHI, BB->getModule()->getDataLayout())) {
169 InsertedPHI->eraseFromParent();
170 return V;
173 // Set the DebugLoc of the inserted PHI, if available.
174 DebugLoc DL;
175 if (const Instruction *I = BB->getFirstNonPHI())
176 DL = I->getDebugLoc();
177 InsertedPHI->setDebugLoc(DL);
179 // If the client wants to know about all new instructions, tell it.
180 if (InsertedPHIs) InsertedPHIs->push_back(InsertedPHI);
182 LLVM_DEBUG(dbgs() << " Inserted PHI: " << *InsertedPHI << "\n");
183 return InsertedPHI;
186 void SSAUpdater::RewriteUse(Use &U) {
187 Instruction *User = cast<Instruction>(U.getUser());
189 Value *V;
190 if (PHINode *UserPN = dyn_cast<PHINode>(User))
191 V = GetValueAtEndOfBlock(UserPN->getIncomingBlock(U));
192 else
193 V = GetValueInMiddleOfBlock(User->getParent());
195 U.set(V);
198 void SSAUpdater::RewriteUseAfterInsertions(Use &U) {
199 Instruction *User = cast<Instruction>(U.getUser());
201 Value *V;
202 if (PHINode *UserPN = dyn_cast<PHINode>(User))
203 V = GetValueAtEndOfBlock(UserPN->getIncomingBlock(U));
204 else
205 V = GetValueAtEndOfBlock(User->getParent());
207 U.set(V);
210 namespace llvm {
212 template<>
213 class SSAUpdaterTraits<SSAUpdater> {
214 public:
215 using BlkT = BasicBlock;
216 using ValT = Value *;
217 using PhiT = PHINode;
218 using BlkSucc_iterator = succ_iterator;
220 static BlkSucc_iterator BlkSucc_begin(BlkT *BB) { return succ_begin(BB); }
221 static BlkSucc_iterator BlkSucc_end(BlkT *BB) { return succ_end(BB); }
223 class PHI_iterator {
224 private:
225 PHINode *PHI;
226 unsigned idx;
228 public:
229 explicit PHI_iterator(PHINode *P) // begin iterator
230 : PHI(P), idx(0) {}
231 PHI_iterator(PHINode *P, bool) // end iterator
232 : PHI(P), idx(PHI->getNumIncomingValues()) {}
234 PHI_iterator &operator++() { ++idx; return *this; }
235 bool operator==(const PHI_iterator& x) const { return idx == x.idx; }
236 bool operator!=(const PHI_iterator& x) const { return !operator==(x); }
238 Value *getIncomingValue() { return PHI->getIncomingValue(idx); }
239 BasicBlock *getIncomingBlock() { return PHI->getIncomingBlock(idx); }
242 static PHI_iterator PHI_begin(PhiT *PHI) { return PHI_iterator(PHI); }
243 static PHI_iterator PHI_end(PhiT *PHI) {
244 return PHI_iterator(PHI, true);
247 /// FindPredecessorBlocks - Put the predecessors of Info->BB into the Preds
248 /// vector, set Info->NumPreds, and allocate space in Info->Preds.
249 static void FindPredecessorBlocks(BasicBlock *BB,
250 SmallVectorImpl<BasicBlock *> *Preds) {
251 // We can get our predecessor info by walking the pred_iterator list,
252 // but it is relatively slow. If we already have PHI nodes in this
253 // block, walk one of them to get the predecessor list instead.
254 if (PHINode *SomePhi = dyn_cast<PHINode>(BB->begin()))
255 append_range(*Preds, SomePhi->blocks());
256 else
257 append_range(*Preds, predecessors(BB));
260 /// GetUndefVal - Get an undefined value of the same type as the value
261 /// being handled.
262 static Value *GetUndefVal(BasicBlock *BB, SSAUpdater *Updater) {
263 return UndefValue::get(Updater->ProtoType);
266 /// CreateEmptyPHI - Create a new PHI instruction in the specified block.
267 /// Reserve space for the operands but do not fill them in yet.
268 static Value *CreateEmptyPHI(BasicBlock *BB, unsigned NumPreds,
269 SSAUpdater *Updater) {
270 PHINode *PHI = PHINode::Create(Updater->ProtoType, NumPreds,
271 Updater->ProtoName, &BB->front());
272 return PHI;
275 /// AddPHIOperand - Add the specified value as an operand of the PHI for
276 /// the specified predecessor block.
277 static void AddPHIOperand(PHINode *PHI, Value *Val, BasicBlock *Pred) {
278 PHI->addIncoming(Val, Pred);
281 /// ValueIsPHI - Check if a value is a PHI.
282 static PHINode *ValueIsPHI(Value *Val, SSAUpdater *Updater) {
283 return dyn_cast<PHINode>(Val);
286 /// ValueIsNewPHI - Like ValueIsPHI but also check if the PHI has no source
287 /// operands, i.e., it was just added.
288 static PHINode *ValueIsNewPHI(Value *Val, SSAUpdater *Updater) {
289 PHINode *PHI = ValueIsPHI(Val, Updater);
290 if (PHI && PHI->getNumIncomingValues() == 0)
291 return PHI;
292 return nullptr;
295 /// GetPHIValue - For the specified PHI instruction, return the value
296 /// that it defines.
297 static Value *GetPHIValue(PHINode *PHI) {
298 return PHI;
302 } // end namespace llvm
304 /// Check to see if AvailableVals has an entry for the specified BB and if so,
305 /// return it. If not, construct SSA form by first calculating the required
306 /// placement of PHIs and then inserting new PHIs where needed.
307 Value *SSAUpdater::GetValueAtEndOfBlockInternal(BasicBlock *BB) {
308 AvailableValsTy &AvailableVals = getAvailableVals(AV);
309 if (Value *V = AvailableVals[BB])
310 return V;
312 SSAUpdaterImpl<SSAUpdater> Impl(this, &AvailableVals, InsertedPHIs);
313 return Impl.GetValue(BB);
316 //===----------------------------------------------------------------------===//
317 // LoadAndStorePromoter Implementation
318 //===----------------------------------------------------------------------===//
320 LoadAndStorePromoter::
321 LoadAndStorePromoter(ArrayRef<const Instruction *> Insts,
322 SSAUpdater &S, StringRef BaseName) : SSA(S) {
323 if (Insts.empty()) return;
325 const Value *SomeVal;
326 if (const LoadInst *LI = dyn_cast<LoadInst>(Insts[0]))
327 SomeVal = LI;
328 else
329 SomeVal = cast<StoreInst>(Insts[0])->getOperand(0);
331 if (BaseName.empty())
332 BaseName = SomeVal->getName();
333 SSA.Initialize(SomeVal->getType(), BaseName);
336 void LoadAndStorePromoter::run(const SmallVectorImpl<Instruction *> &Insts) {
337 // First step: bucket up uses of the alloca by the block they occur in.
338 // This is important because we have to handle multiple defs/uses in a block
339 // ourselves: SSAUpdater is purely for cross-block references.
340 DenseMap<BasicBlock *, TinyPtrVector<Instruction *>> UsesByBlock;
342 for (Instruction *User : Insts)
343 UsesByBlock[User->getParent()].push_back(User);
345 // Okay, now we can iterate over all the blocks in the function with uses,
346 // processing them. Keep track of which loads are loading a live-in value.
347 // Walk the uses in the use-list order to be determinstic.
348 SmallVector<LoadInst *, 32> LiveInLoads;
349 DenseMap<Value *, Value *> ReplacedLoads;
351 for (Instruction *User : Insts) {
352 BasicBlock *BB = User->getParent();
353 TinyPtrVector<Instruction *> &BlockUses = UsesByBlock[BB];
355 // If this block has already been processed, ignore this repeat use.
356 if (BlockUses.empty()) continue;
358 // Okay, this is the first use in the block. If this block just has a
359 // single user in it, we can rewrite it trivially.
360 if (BlockUses.size() == 1) {
361 // If it is a store, it is a trivial def of the value in the block.
362 if (StoreInst *SI = dyn_cast<StoreInst>(User)) {
363 updateDebugInfo(SI);
364 SSA.AddAvailableValue(BB, SI->getOperand(0));
365 } else
366 // Otherwise it is a load, queue it to rewrite as a live-in load.
367 LiveInLoads.push_back(cast<LoadInst>(User));
368 BlockUses.clear();
369 continue;
372 // Otherwise, check to see if this block is all loads.
373 bool HasStore = false;
374 for (Instruction *I : BlockUses) {
375 if (isa<StoreInst>(I)) {
376 HasStore = true;
377 break;
381 // If so, we can queue them all as live in loads. We don't have an
382 // efficient way to tell which on is first in the block and don't want to
383 // scan large blocks, so just add all loads as live ins.
384 if (!HasStore) {
385 for (Instruction *I : BlockUses)
386 LiveInLoads.push_back(cast<LoadInst>(I));
387 BlockUses.clear();
388 continue;
391 // Otherwise, we have mixed loads and stores (or just a bunch of stores).
392 // Since SSAUpdater is purely for cross-block values, we need to determine
393 // the order of these instructions in the block. If the first use in the
394 // block is a load, then it uses the live in value. The last store defines
395 // the live out value. We handle this by doing a linear scan of the block.
396 Value *StoredValue = nullptr;
397 for (Instruction &I : *BB) {
398 if (LoadInst *L = dyn_cast<LoadInst>(&I)) {
399 // If this is a load from an unrelated pointer, ignore it.
400 if (!isInstInList(L, Insts)) continue;
402 // If we haven't seen a store yet, this is a live in use, otherwise
403 // use the stored value.
404 if (StoredValue) {
405 replaceLoadWithValue(L, StoredValue);
406 L->replaceAllUsesWith(StoredValue);
407 ReplacedLoads[L] = StoredValue;
408 } else {
409 LiveInLoads.push_back(L);
411 continue;
414 if (StoreInst *SI = dyn_cast<StoreInst>(&I)) {
415 // If this is a store to an unrelated pointer, ignore it.
416 if (!isInstInList(SI, Insts)) continue;
417 updateDebugInfo(SI);
419 // Remember that this is the active value in the block.
420 StoredValue = SI->getOperand(0);
424 // The last stored value that happened is the live-out for the block.
425 assert(StoredValue && "Already checked that there is a store in block");
426 SSA.AddAvailableValue(BB, StoredValue);
427 BlockUses.clear();
430 // Okay, now we rewrite all loads that use live-in values in the loop,
431 // inserting PHI nodes as necessary.
432 for (LoadInst *ALoad : LiveInLoads) {
433 Value *NewVal = SSA.GetValueInMiddleOfBlock(ALoad->getParent());
434 replaceLoadWithValue(ALoad, NewVal);
436 // Avoid assertions in unreachable code.
437 if (NewVal == ALoad) NewVal = PoisonValue::get(NewVal->getType());
438 ALoad->replaceAllUsesWith(NewVal);
439 ReplacedLoads[ALoad] = NewVal;
442 // Allow the client to do stuff before we start nuking things.
443 doExtraRewritesBeforeFinalDeletion();
445 // Now that everything is rewritten, delete the old instructions from the
446 // function. They should all be dead now.
447 for (Instruction *User : Insts) {
448 if (!shouldDelete(User))
449 continue;
451 // If this is a load that still has uses, then the load must have been added
452 // as a live value in the SSAUpdate data structure for a block (e.g. because
453 // the loaded value was stored later). In this case, we need to recursively
454 // propagate the updates until we get to the real value.
455 if (!User->use_empty()) {
456 Value *NewVal = ReplacedLoads[User];
457 assert(NewVal && "not a replaced load?");
459 // Propagate down to the ultimate replacee. The intermediately loads
460 // could theoretically already have been deleted, so we don't want to
461 // dereference the Value*'s.
462 DenseMap<Value*, Value*>::iterator RLI = ReplacedLoads.find(NewVal);
463 while (RLI != ReplacedLoads.end()) {
464 NewVal = RLI->second;
465 RLI = ReplacedLoads.find(NewVal);
468 replaceLoadWithValue(cast<LoadInst>(User), NewVal);
469 User->replaceAllUsesWith(NewVal);
472 instructionDeleted(User);
473 User->eraseFromParent();
477 bool
478 LoadAndStorePromoter::isInstInList(Instruction *I,
479 const SmallVectorImpl<Instruction *> &Insts)
480 const {
481 return is_contained(Insts, I);