1 //===- SampleProfileInference.cpp - Adjust sample profiles in the IR ------===//
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
7 //===----------------------------------------------------------------------===//
9 // This file implements a profile inference algorithm. Given an incomplete and
10 // possibly imprecise block counts, the algorithm reconstructs realistic block
11 // and edge counts that satisfy flow conservation rules, while minimally modify
12 // input block counts.
14 //===----------------------------------------------------------------------===//
16 #include "llvm/Transforms/Utils/SampleProfileInference.h"
17 #include "llvm/ADT/BitVector.h"
18 #include "llvm/Support/CommandLine.h"
19 #include "llvm/Support/Debug.h"
25 #define DEBUG_TYPE "sample-profile-inference"
29 static cl::opt
<bool> SampleProfileEvenCountDistribution(
30 "sample-profile-even-count-distribution", cl::init(true), cl::Hidden
,
31 cl::desc("Try to evenly distribute counts when there are multiple equally "
34 static cl::opt
<unsigned> SampleProfileMaxDfsCalls(
35 "sample-profile-max-dfs-calls", cl::init(10), cl::Hidden
,
36 cl::desc("Maximum number of dfs iterations for even count distribution."));
38 static cl::opt
<unsigned> SampleProfileProfiCostInc(
39 "sample-profile-profi-cost-inc", cl::init(10), cl::Hidden
,
40 cl::desc("A cost of increasing a block's count by one."));
42 static cl::opt
<unsigned> SampleProfileProfiCostDec(
43 "sample-profile-profi-cost-dec", cl::init(20), cl::Hidden
,
44 cl::desc("A cost of decreasing a block's count by one."));
46 static cl::opt
<unsigned> SampleProfileProfiCostIncZero(
47 "sample-profile-profi-cost-inc-zero", cl::init(11), cl::Hidden
,
48 cl::desc("A cost of increasing a count of zero-weight block by one."));
50 static cl::opt
<unsigned> SampleProfileProfiCostIncEntry(
51 "sample-profile-profi-cost-inc-entry", cl::init(40), cl::Hidden
,
52 cl::desc("A cost of increasing the entry block's count by one."));
54 static cl::opt
<unsigned> SampleProfileProfiCostDecEntry(
55 "sample-profile-profi-cost-dec-entry", cl::init(10), cl::Hidden
,
56 cl::desc("A cost of decreasing the entry block's count by one."));
58 /// A value indicating an infinite flow/capacity/weight of a block/edge.
59 /// Not using numeric_limits<int64_t>::max(), as the values can be summed up
60 /// during the execution.
61 static constexpr int64_t INF
= ((int64_t)1) << 50;
63 /// The minimum-cost maximum flow algorithm.
65 /// The algorithm finds the maximum flow of minimum cost on a given (directed)
66 /// network using a modified version of the classical Moore-Bellman-Ford
67 /// approach. The algorithm applies a number of augmentation iterations in which
68 /// flow is sent along paths of positive capacity from the source to the sink.
69 /// The worst-case time complexity of the implementation is O(v(f)*m*n), where
70 /// where m is the number of edges, n is the number of vertices, and v(f) is the
71 /// value of the maximum flow. However, the observed running time on typical
72 /// instances is sub-quadratic, that is, o(n^2).
74 /// The input is a set of edges with specified costs and capacities, and a pair
75 /// of nodes (source and sink). The output is the flow along each edge of the
76 /// minimum total cost respecting the given edge capacities.
77 class MinCostMaxFlow
{
79 // Initialize algorithm's data structures for a network of a given size.
80 void initialize(uint64_t NodeCount
, uint64_t SourceNode
, uint64_t SinkNode
) {
84 Nodes
= std::vector
<Node
>(NodeCount
);
85 Edges
= std::vector
<std::vector
<Edge
>>(NodeCount
, std::vector
<Edge
>());
86 if (SampleProfileEvenCountDistribution
)
88 std::vector
<std::vector
<Edge
*>>(NodeCount
, std::vector
<Edge
*>());
93 // Iteratively find an augmentation path/dag in the network and send the
94 // flow along its edges
95 size_t AugmentationIters
= applyFlowAugmentation();
97 // Compute the total flow and its cost
98 int64_t TotalCost
= 0;
99 int64_t TotalFlow
= 0;
100 for (uint64_t Src
= 0; Src
< Nodes
.size(); Src
++) {
101 for (auto &Edge
: Edges
[Src
]) {
103 TotalCost
+= Edge
.Cost
* Edge
.Flow
;
105 TotalFlow
+= Edge
.Flow
;
109 LLVM_DEBUG(dbgs() << "Completed profi after " << AugmentationIters
110 << " iterations with " << TotalFlow
<< " total flow"
111 << " of " << TotalCost
<< " cost\n");
113 (void)AugmentationIters
;
117 /// Adding an edge to the network with a specified capacity and a cost.
118 /// Multiple edges between a pair of nodes are allowed but self-edges
119 /// are not supported.
120 void addEdge(uint64_t Src
, uint64_t Dst
, int64_t Capacity
, int64_t Cost
) {
121 assert(Capacity
> 0 && "adding an edge of zero capacity");
122 assert(Src
!= Dst
&& "loop edge are not supported");
127 SrcEdge
.Capacity
= Capacity
;
129 SrcEdge
.RevEdgeIndex
= Edges
[Dst
].size();
133 DstEdge
.Cost
= -Cost
;
134 DstEdge
.Capacity
= 0;
136 DstEdge
.RevEdgeIndex
= Edges
[Src
].size();
138 Edges
[Src
].push_back(SrcEdge
);
139 Edges
[Dst
].push_back(DstEdge
);
142 /// Adding an edge to the network of infinite capacity and a given cost.
143 void addEdge(uint64_t Src
, uint64_t Dst
, int64_t Cost
) {
144 addEdge(Src
, Dst
, INF
, Cost
);
147 /// Get the total flow from a given source node.
148 /// Returns a list of pairs (target node, amount of flow to the target).
149 const std::vector
<std::pair
<uint64_t, int64_t>> getFlow(uint64_t Src
) const {
150 std::vector
<std::pair
<uint64_t, int64_t>> Flow
;
151 for (const auto &Edge
: Edges
[Src
]) {
153 Flow
.push_back(std::make_pair(Edge
.Dst
, Edge
.Flow
));
158 /// Get the total flow between a pair of nodes.
159 int64_t getFlow(uint64_t Src
, uint64_t Dst
) const {
161 for (const auto &Edge
: Edges
[Src
]) {
162 if (Edge
.Dst
== Dst
) {
169 /// A cost of taking an unlikely jump.
170 static constexpr int64_t AuxCostUnlikely
= ((int64_t)1) << 30;
171 /// Minimum BaseDistance for the jump distance values in island joining.
172 static constexpr uint64_t MinBaseDistance
= 10000;
175 /// Iteratively find an augmentation path/dag in the network and send the
176 /// flow along its edges. The method returns the number of applied iterations.
177 size_t applyFlowAugmentation() {
178 size_t AugmentationIters
= 0;
179 while (findAugmentingPath()) {
180 uint64_t PathCapacity
= computeAugmentingPathCapacity();
181 while (PathCapacity
> 0) {
182 bool Progress
= false;
183 if (SampleProfileEvenCountDistribution
) {
184 // Identify node/edge candidates for augmentation
185 identifyShortestEdges(PathCapacity
);
187 // Find an augmenting DAG
188 auto AugmentingOrder
= findAugmentingDAG();
190 // Apply the DAG augmentation
191 Progress
= augmentFlowAlongDAG(AugmentingOrder
);
192 PathCapacity
= computeAugmentingPathCapacity();
196 augmentFlowAlongPath(PathCapacity
);
203 return AugmentationIters
;
206 /// Compute the capacity of the cannonical augmenting path. If the path is
207 /// saturated (that is, no flow can be sent along the path), then return 0.
208 uint64_t computeAugmentingPathCapacity() {
209 uint64_t PathCapacity
= INF
;
210 uint64_t Now
= Target
;
211 while (Now
!= Source
) {
212 uint64_t Pred
= Nodes
[Now
].ParentNode
;
213 auto &Edge
= Edges
[Pred
][Nodes
[Now
].ParentEdgeIndex
];
215 assert(Edge
.Capacity
>= Edge
.Flow
&& "incorrect edge flow");
216 uint64_t EdgeCapacity
= uint64_t(Edge
.Capacity
- Edge
.Flow
);
217 PathCapacity
= std::min(PathCapacity
, EdgeCapacity
);
224 /// Check for existence of an augmenting path with a positive capacity.
225 bool findAugmentingPath() {
226 // Initialize data structures
227 for (auto &Node
: Nodes
) {
229 Node
.ParentNode
= uint64_t(-1);
230 Node
.ParentEdgeIndex
= uint64_t(-1);
234 std::queue
<uint64_t> Queue
;
236 Nodes
[Source
].Distance
= 0;
237 Nodes
[Source
].Taken
= true;
238 while (!Queue
.empty()) {
239 uint64_t Src
= Queue
.front();
241 Nodes
[Src
].Taken
= false;
242 // Although the residual network contains edges with negative costs
243 // (in particular, backward edges), it can be shown that there are no
244 // negative-weight cycles and the following two invariants are maintained:
245 // (i) Dist[Source, V] >= 0 and (ii) Dist[V, Target] >= 0 for all nodes V,
246 // where Dist is the length of the shortest path between two nodes. This
247 // allows to prune the search-space of the path-finding algorithm using
248 // the following early-stop criteria:
249 // -- If we find a path with zero-distance from Source to Target, stop the
250 // search, as the path is the shortest since Dist[Source, Target] >= 0;
251 // -- If we have Dist[Source, V] > Dist[Source, Target], then do not
252 // process node V, as it is guaranteed _not_ to be on a shortest path
253 // from Source to Target; it follows from inequalities
254 // Dist[Source, Target] >= Dist[Source, V] + Dist[V, Target]
255 // >= Dist[Source, V]
256 if (!SampleProfileEvenCountDistribution
&& Nodes
[Target
].Distance
== 0)
258 if (Nodes
[Src
].Distance
> Nodes
[Target
].Distance
)
261 // Process adjacent edges
262 for (uint64_t EdgeIdx
= 0; EdgeIdx
< Edges
[Src
].size(); EdgeIdx
++) {
263 auto &Edge
= Edges
[Src
][EdgeIdx
];
264 if (Edge
.Flow
< Edge
.Capacity
) {
265 uint64_t Dst
= Edge
.Dst
;
266 int64_t NewDistance
= Nodes
[Src
].Distance
+ Edge
.Cost
;
267 if (Nodes
[Dst
].Distance
> NewDistance
) {
268 // Update the distance and the parent node/edge
269 Nodes
[Dst
].Distance
= NewDistance
;
270 Nodes
[Dst
].ParentNode
= Src
;
271 Nodes
[Dst
].ParentEdgeIndex
= EdgeIdx
;
272 // Add the node to the queue, if it is not there yet
273 if (!Nodes
[Dst
].Taken
) {
275 Nodes
[Dst
].Taken
= true;
282 return Nodes
[Target
].Distance
!= INF
;
285 /// Update the current flow along the augmenting path.
286 void augmentFlowAlongPath(uint64_t PathCapacity
) {
287 assert(PathCapacity
> 0 && "found an incorrect augmenting path");
288 uint64_t Now
= Target
;
289 while (Now
!= Source
) {
290 uint64_t Pred
= Nodes
[Now
].ParentNode
;
291 auto &Edge
= Edges
[Pred
][Nodes
[Now
].ParentEdgeIndex
];
292 auto &RevEdge
= Edges
[Now
][Edge
.RevEdgeIndex
];
294 Edge
.Flow
+= PathCapacity
;
295 RevEdge
.Flow
-= PathCapacity
;
301 /// Find an Augmenting DAG order using a modified version of DFS in which we
302 /// can visit a node multiple times. In the DFS search, when scanning each
303 /// edge out of a node, continue search at Edge.Dst endpoint if it has not
304 /// been discovered yet and its NumCalls < MaxDfsCalls. The algorithm
305 /// runs in O(MaxDfsCalls * |Edges| + |Nodes|) time.
306 /// It returns an Augmenting Order (Taken nodes in decreasing Finish time)
307 /// that starts with Source and ends with Target.
308 std::vector
<uint64_t> findAugmentingDAG() {
309 // We use a stack based implemenation of DFS to avoid recursion.
310 // Defining DFS data structures:
311 // A pair (NodeIdx, EdgeIdx) at the top of the Stack denotes that
312 // - we are currently visiting Nodes[NodeIdx] and
313 // - the next edge to scan is Edges[NodeIdx][EdgeIdx]
314 typedef std::pair
<uint64_t, uint64_t> StackItemType
;
315 std::stack
<StackItemType
> Stack
;
316 std::vector
<uint64_t> AugmentingOrder
;
318 // Phase 0: Initialize Node attributes and Time for DFS run
319 for (auto &Node
: Nodes
) {
326 // Mark Target as Taken
327 // Taken attribute will be propagated backwards from Target towards Source
328 Nodes
[Target
].Taken
= true;
330 // Phase 1: Start DFS traversal from Source
331 Stack
.emplace(Source
, 0);
332 Nodes
[Source
].Discovery
= ++Time
;
333 while (!Stack
.empty()) {
334 auto NodeIdx
= Stack
.top().first
;
335 auto EdgeIdx
= Stack
.top().second
;
337 // If we haven't scanned all edges out of NodeIdx, continue scanning
338 if (EdgeIdx
< Edges
[NodeIdx
].size()) {
339 auto &Edge
= Edges
[NodeIdx
][EdgeIdx
];
340 auto &Dst
= Nodes
[Edge
.Dst
];
341 Stack
.top().second
++;
343 if (Edge
.OnShortestPath
) {
344 // If we haven't seen Edge.Dst so far, continue DFS search there
345 if (Dst
.Discovery
== 0 && Dst
.NumCalls
< SampleProfileMaxDfsCalls
) {
346 Dst
.Discovery
= ++Time
;
347 Stack
.emplace(Edge
.Dst
, 0);
349 } else if (Dst
.Taken
&& Dst
.Finish
!= 0) {
350 // Else, if Edge.Dst already have a path to Target, so that NodeIdx
351 Nodes
[NodeIdx
].Taken
= true;
355 // If we are done scanning all edge out of NodeIdx
357 // If we haven't found a path from NodeIdx to Target, forget about it
358 if (!Nodes
[NodeIdx
].Taken
) {
359 Nodes
[NodeIdx
].Discovery
= 0;
361 // If we have found a path from NodeIdx to Target, then finish NodeIdx
362 // and propagate Taken flag to DFS parent unless at the Source
363 Nodes
[NodeIdx
].Finish
= ++Time
;
364 // NodeIdx == Source if and only if the stack is empty
365 if (NodeIdx
!= Source
) {
366 assert(!Stack
.empty() && "empty stack while running dfs");
367 Nodes
[Stack
.top().first
].Taken
= true;
369 AugmentingOrder
.push_back(NodeIdx
);
373 // Nodes are collected decreasing Finish time, so the order is reversed
374 std::reverse(AugmentingOrder
.begin(), AugmentingOrder
.end());
376 // Phase 2: Extract all forward (DAG) edges and fill in AugmentingEdges
377 for (size_t Src
: AugmentingOrder
) {
378 AugmentingEdges
[Src
].clear();
379 for (auto &Edge
: Edges
[Src
]) {
380 uint64_t Dst
= Edge
.Dst
;
381 if (Edge
.OnShortestPath
&& Nodes
[Src
].Taken
&& Nodes
[Dst
].Taken
&&
382 Nodes
[Dst
].Finish
< Nodes
[Src
].Finish
) {
383 AugmentingEdges
[Src
].push_back(&Edge
);
386 assert((Src
== Target
|| !AugmentingEdges
[Src
].empty()) &&
387 "incorrectly constructed augmenting edges");
390 return AugmentingOrder
;
393 /// Update the current flow along the given (acyclic) subgraph specified by
394 /// the vertex order, AugmentingOrder. The objective is to send as much flow
395 /// as possible while evenly distributing flow among successors of each node.
396 /// After the update at least one edge is saturated.
397 bool augmentFlowAlongDAG(const std::vector
<uint64_t> &AugmentingOrder
) {
398 // Phase 0: Initialization
399 for (uint64_t Src
: AugmentingOrder
) {
400 Nodes
[Src
].FracFlow
= 0;
401 Nodes
[Src
].IntFlow
= 0;
402 for (auto &Edge
: AugmentingEdges
[Src
]) {
403 Edge
->AugmentedFlow
= 0;
407 // Phase 1: Send a unit of fractional flow along the DAG
408 uint64_t MaxFlowAmount
= INF
;
409 Nodes
[Source
].FracFlow
= 1.0;
410 for (uint64_t Src
: AugmentingOrder
) {
411 assert((Src
== Target
|| Nodes
[Src
].FracFlow
> 0.0) &&
412 "incorrectly computed fractional flow");
413 // Distribute flow evenly among successors of Src
414 uint64_t Degree
= AugmentingEdges
[Src
].size();
415 for (auto &Edge
: AugmentingEdges
[Src
]) {
416 double EdgeFlow
= Nodes
[Src
].FracFlow
/ Degree
;
417 Nodes
[Edge
->Dst
].FracFlow
+= EdgeFlow
;
418 if (Edge
->Capacity
== INF
)
420 uint64_t MaxIntFlow
= double(Edge
->Capacity
- Edge
->Flow
) / EdgeFlow
;
421 MaxFlowAmount
= std::min(MaxFlowAmount
, MaxIntFlow
);
424 // Stop early if we cannot send any (integral) flow from Source to Target
425 if (MaxFlowAmount
== 0)
428 // Phase 2: Send an integral flow of MaxFlowAmount
429 Nodes
[Source
].IntFlow
= MaxFlowAmount
;
430 for (uint64_t Src
: AugmentingOrder
) {
433 // Distribute flow evenly among successors of Src, rounding up to make
434 // sure all flow is sent
435 uint64_t Degree
= AugmentingEdges
[Src
].size();
436 // We are guaranteeed that Node[Src].IntFlow <= SuccFlow * Degree
437 uint64_t SuccFlow
= (Nodes
[Src
].IntFlow
+ Degree
- 1) / Degree
;
438 for (auto &Edge
: AugmentingEdges
[Src
]) {
439 uint64_t Dst
= Edge
->Dst
;
440 uint64_t EdgeFlow
= std::min(Nodes
[Src
].IntFlow
, SuccFlow
);
441 EdgeFlow
= std::min(EdgeFlow
, uint64_t(Edge
->Capacity
- Edge
->Flow
));
442 Nodes
[Dst
].IntFlow
+= EdgeFlow
;
443 Nodes
[Src
].IntFlow
-= EdgeFlow
;
444 Edge
->AugmentedFlow
+= EdgeFlow
;
447 assert(Nodes
[Target
].IntFlow
<= MaxFlowAmount
);
448 Nodes
[Target
].IntFlow
= 0;
450 // Phase 3: Send excess flow back traversing the nodes backwards.
451 // Because of rounding, not all flow can be sent along the edges of Src.
452 // Hence, sending the remaining flow back to maintain flow conservation
453 for (size_t Idx
= AugmentingOrder
.size() - 1; Idx
> 0; Idx
--) {
454 uint64_t Src
= AugmentingOrder
[Idx
- 1];
455 // Try to send excess flow back along each edge.
456 // Make sure we only send back flow we just augmented (AugmentedFlow).
457 for (auto &Edge
: AugmentingEdges
[Src
]) {
458 uint64_t Dst
= Edge
->Dst
;
459 if (Nodes
[Dst
].IntFlow
== 0)
461 uint64_t EdgeFlow
= std::min(Nodes
[Dst
].IntFlow
, Edge
->AugmentedFlow
);
462 Nodes
[Dst
].IntFlow
-= EdgeFlow
;
463 Nodes
[Src
].IntFlow
+= EdgeFlow
;
464 Edge
->AugmentedFlow
-= EdgeFlow
;
468 // Phase 4: Update flow values along all edges
469 bool HasSaturatedEdges
= false;
470 for (uint64_t Src
: AugmentingOrder
) {
471 // Verify that we have sent all the excess flow from the node
472 assert(Src
== Source
|| Nodes
[Src
].IntFlow
== 0);
473 for (auto &Edge
: AugmentingEdges
[Src
]) {
474 assert(uint64_t(Edge
->Capacity
- Edge
->Flow
) >= Edge
->AugmentedFlow
);
475 // Update flow values along the edge and its reverse copy
476 auto &RevEdge
= Edges
[Edge
->Dst
][Edge
->RevEdgeIndex
];
477 Edge
->Flow
+= Edge
->AugmentedFlow
;
478 RevEdge
.Flow
-= Edge
->AugmentedFlow
;
479 if (Edge
->Capacity
== Edge
->Flow
&& Edge
->AugmentedFlow
> 0)
480 HasSaturatedEdges
= true;
484 // The augmentation is successful iff at least one edge becomes saturated
485 return HasSaturatedEdges
;
488 /// Identify candidate (shortest) edges for augmentation.
489 void identifyShortestEdges(uint64_t PathCapacity
) {
490 assert(PathCapacity
> 0 && "found an incorrect augmenting DAG");
491 // To make sure the augmentation DAG contains only edges with large residual
492 // capacity, we prune all edges whose capacity is below a fraction of
493 // the capacity of the augmented path.
494 // (All edges of the path itself are always in the DAG)
495 uint64_t MinCapacity
= std::max(PathCapacity
/ 2, uint64_t(1));
497 // Decide which edges are on a shortest path from Source to Target
498 for (size_t Src
= 0; Src
< Nodes
.size(); Src
++) {
499 // An edge cannot be augmenting if the endpoint has large distance
500 if (Nodes
[Src
].Distance
> Nodes
[Target
].Distance
)
503 for (auto &Edge
: Edges
[Src
]) {
504 uint64_t Dst
= Edge
.Dst
;
505 Edge
.OnShortestPath
=
506 Src
!= Target
&& Dst
!= Source
&&
507 Nodes
[Dst
].Distance
<= Nodes
[Target
].Distance
&&
508 Nodes
[Dst
].Distance
== Nodes
[Src
].Distance
+ Edge
.Cost
&&
509 Edge
.Capacity
> Edge
.Flow
&&
510 uint64_t(Edge
.Capacity
- Edge
.Flow
) >= MinCapacity
;
515 /// A node in a flow network.
517 /// The cost of the cheapest path from the source to the current node.
519 /// The node preceding the current one in the path.
521 /// The index of the edge between ParentNode and the current node.
522 uint64_t ParentEdgeIndex
;
523 /// An indicator of whether the current node is in a queue.
526 /// Data fields utilized in DAG-augmentation:
539 /// An edge in a flow network.
541 /// The cost of the edge.
543 /// The capacity of the edge.
545 /// The current flow on the edge.
547 /// The destination node of the edge.
549 /// The index of the reverse edge between Dst and the current node.
550 uint64_t RevEdgeIndex
;
552 /// Data fields utilized in DAG-augmentation:
553 /// Whether the edge is currently on a shortest path from Source to Target.
555 /// Extra flow along the edge.
556 uint64_t AugmentedFlow
;
559 /// The set of network nodes.
560 std::vector
<Node
> Nodes
;
561 /// The set of network edges.
562 std::vector
<std::vector
<Edge
>> Edges
;
563 /// Source node of the flow.
565 /// Target (sink) node of the flow.
567 /// Augmenting edges.
568 std::vector
<std::vector
<Edge
*>> AugmentingEdges
;
571 constexpr int64_t MinCostMaxFlow::AuxCostUnlikely
;
572 constexpr uint64_t MinCostMaxFlow::MinBaseDistance
;
574 /// A post-processing adjustment of control flow. It applies two steps by
575 /// rerouting some flow and making it more realistic:
577 /// - First, it removes all isolated components ("islands") with a positive flow
578 /// that are unreachable from the entry block. For every such component, we
579 /// find the shortest from the entry to an exit passing through the component,
580 /// and increase the flow by one unit along the path.
582 /// - Second, it identifies all "unknown subgraphs" consisting of basic blocks
583 /// with no sampled counts. Then it rebalnces the flow that goes through such
584 /// a subgraph so that each branch is taken with probability 50%.
585 /// An unknown subgraph is such that for every two nodes u and v:
586 /// - u dominates v and u is not unknown;
587 /// - v post-dominates u; and
588 /// - all inner-nodes of all (u,v)-paths are unknown.
592 FlowAdjuster(FlowFunction
&Func
) : Func(Func
) {
593 assert(Func
.Blocks
[Func
.Entry
].isEntry() &&
594 "incorrect index of the entry block");
597 // Run the post-processing
599 /// Adjust the flow to get rid of isolated components.
600 joinIsolatedComponents();
602 /// Rebalance the flow inside unknown subgraphs.
603 rebalanceUnknownSubgraphs();
607 void joinIsolatedComponents() {
608 // Find blocks that are reachable from the source
609 auto Visited
= BitVector(NumBlocks(), false);
610 findReachable(Func
.Entry
, Visited
);
612 // Iterate over all non-reachable blocks and adjust their weights
613 for (uint64_t I
= 0; I
< NumBlocks(); I
++) {
614 auto &Block
= Func
.Blocks
[I
];
615 if (Block
.Flow
> 0 && !Visited
[I
]) {
616 // Find a path from the entry to an exit passing through the block I
617 auto Path
= findShortestPath(I
);
618 // Increase the flow along the path
619 assert(Path
.size() > 0 && Path
[0]->Source
== Func
.Entry
&&
620 "incorrectly computed path adjusting control flow");
621 Func
.Blocks
[Func
.Entry
].Flow
+= 1;
622 for (auto &Jump
: Path
) {
624 Func
.Blocks
[Jump
->Target
].Flow
+= 1;
625 // Update reachability
626 findReachable(Jump
->Target
, Visited
);
632 /// Run BFS from a given block along the jumps with a positive flow and mark
633 /// all reachable blocks.
634 void findReachable(uint64_t Src
, BitVector
&Visited
) {
637 std::queue
<uint64_t> Queue
;
640 while (!Queue
.empty()) {
643 for (auto Jump
: Func
.Blocks
[Src
].SuccJumps
) {
644 uint64_t Dst
= Jump
->Target
;
645 if (Jump
->Flow
> 0 && !Visited
[Dst
]) {
653 /// Find the shortest path from the entry block to an exit block passing
654 /// through a given block.
655 std::vector
<FlowJump
*> findShortestPath(uint64_t BlockIdx
) {
656 // A path from the entry block to BlockIdx
657 auto ForwardPath
= findShortestPath(Func
.Entry
, BlockIdx
);
658 // A path from BlockIdx to an exit block
659 auto BackwardPath
= findShortestPath(BlockIdx
, AnyExitBlock
);
661 // Concatenate the two paths
662 std::vector
<FlowJump
*> Result
;
663 Result
.insert(Result
.end(), ForwardPath
.begin(), ForwardPath
.end());
664 Result
.insert(Result
.end(), BackwardPath
.begin(), BackwardPath
.end());
668 /// Apply the Dijkstra algorithm to find the shortest path from a given
669 /// Source to a given Target block.
670 /// If Target == -1, then the path ends at an exit block.
671 std::vector
<FlowJump
*> findShortestPath(uint64_t Source
, uint64_t Target
) {
672 // Quit early, if possible
673 if (Source
== Target
)
674 return std::vector
<FlowJump
*>();
675 if (Func
.Blocks
[Source
].isExit() && Target
== AnyExitBlock
)
676 return std::vector
<FlowJump
*>();
678 // Initialize data structures
679 auto Distance
= std::vector
<int64_t>(NumBlocks(), INF
);
680 auto Parent
= std::vector
<FlowJump
*>(NumBlocks(), nullptr);
681 Distance
[Source
] = 0;
682 std::set
<std::pair
<uint64_t, uint64_t>> Queue
;
683 Queue
.insert(std::make_pair(Distance
[Source
], Source
));
685 // Run the Dijkstra algorithm
686 while (!Queue
.empty()) {
687 uint64_t Src
= Queue
.begin()->second
;
688 Queue
.erase(Queue
.begin());
689 // If we found a solution, quit early
691 (Func
.Blocks
[Src
].isExit() && Target
== AnyExitBlock
))
694 for (auto Jump
: Func
.Blocks
[Src
].SuccJumps
) {
695 uint64_t Dst
= Jump
->Target
;
696 int64_t JumpDist
= jumpDistance(Jump
);
697 if (Distance
[Dst
] > Distance
[Src
] + JumpDist
) {
698 Queue
.erase(std::make_pair(Distance
[Dst
], Dst
));
700 Distance
[Dst
] = Distance
[Src
] + JumpDist
;
703 Queue
.insert(std::make_pair(Distance
[Dst
], Dst
));
707 // If Target is not provided, find the closest exit block
708 if (Target
== AnyExitBlock
) {
709 for (uint64_t I
= 0; I
< NumBlocks(); I
++) {
710 if (Func
.Blocks
[I
].isExit() && Parent
[I
] != nullptr) {
711 if (Target
== AnyExitBlock
|| Distance
[Target
] > Distance
[I
]) {
717 assert(Parent
[Target
] != nullptr && "a path does not exist");
719 // Extract the constructed path
720 std::vector
<FlowJump
*> Result
;
721 uint64_t Now
= Target
;
722 while (Now
!= Source
) {
723 assert(Now
== Parent
[Now
]->Target
&& "incorrect parent jump");
724 Result
.push_back(Parent
[Now
]);
725 Now
= Parent
[Now
]->Source
;
727 // Reverse the path, since it is extracted from Target to Source
728 std::reverse(Result
.begin(), Result
.end());
732 /// A distance of a path for a given jump.
733 /// In order to incite the path to use blocks/jumps with large positive flow,
734 /// and avoid changing branch probability of outgoing edges drastically,
735 /// set the jump distance so as:
736 /// - to minimize the number of unlikely jumps used and subject to that,
737 /// - to minimize the number of Flow == 0 jumps used and subject to that,
738 /// - minimizes total multiplicative Flow increase for the remaining edges.
739 /// To capture this objective with integer distances, we round off fractional
740 /// parts to a multiple of 1 / BaseDistance.
741 int64_t jumpDistance(FlowJump
*Jump
) const {
742 uint64_t BaseDistance
=
743 std::max(MinCostMaxFlow::MinBaseDistance
,
744 std::min(Func
.Blocks
[Func
.Entry
].Flow
,
745 MinCostMaxFlow::AuxCostUnlikely
/ NumBlocks()));
746 if (Jump
->IsUnlikely
)
747 return MinCostMaxFlow::AuxCostUnlikely
;
749 return BaseDistance
+ BaseDistance
/ Jump
->Flow
;
750 return BaseDistance
* NumBlocks();
753 uint64_t NumBlocks() const { return Func
.Blocks
.size(); }
755 /// Rebalance unknown subgraphs so that the flow is split evenly across the
756 /// outgoing branches of every block of the subgraph. The method iterates over
757 /// blocks with known weight and identifies unknown subgraphs rooted at the
758 /// blocks. Then it verifies if flow rebalancing is feasible and applies it.
759 void rebalanceUnknownSubgraphs() {
760 // Try to find unknown subgraphs from each block
761 for (uint64_t I
= 0; I
< Func
.Blocks
.size(); I
++) {
762 auto SrcBlock
= &Func
.Blocks
[I
];
763 // Verify if rebalancing rooted at SrcBlock is feasible
764 if (!canRebalanceAtRoot(SrcBlock
))
767 // Find an unknown subgraphs starting at SrcBlock. Along the way,
768 // fill in known destinations and intermediate unknown blocks.
769 std::vector
<FlowBlock
*> UnknownBlocks
;
770 std::vector
<FlowBlock
*> KnownDstBlocks
;
771 findUnknownSubgraph(SrcBlock
, KnownDstBlocks
, UnknownBlocks
);
773 // Verify if rebalancing of the subgraph is feasible. If the search is
774 // successful, find the unique destination block (which can be null)
775 FlowBlock
*DstBlock
= nullptr;
776 if (!canRebalanceSubgraph(SrcBlock
, KnownDstBlocks
, UnknownBlocks
,
780 // We cannot rebalance subgraphs containing cycles among unknown blocks
781 if (!isAcyclicSubgraph(SrcBlock
, DstBlock
, UnknownBlocks
))
784 // Rebalance the flow
785 rebalanceUnknownSubgraph(SrcBlock
, DstBlock
, UnknownBlocks
);
789 /// Verify if rebalancing rooted at a given block is possible.
790 bool canRebalanceAtRoot(const FlowBlock
*SrcBlock
) {
791 // Do not attempt to find unknown subgraphs from an unknown or a
793 if (SrcBlock
->UnknownWeight
|| SrcBlock
->Flow
== 0)
796 // Do not attempt to process subgraphs from a block w/o unknown sucessors
797 bool HasUnknownSuccs
= false;
798 for (auto Jump
: SrcBlock
->SuccJumps
) {
799 if (Func
.Blocks
[Jump
->Target
].UnknownWeight
) {
800 HasUnknownSuccs
= true;
804 if (!HasUnknownSuccs
)
810 /// Find an unknown subgraph starting at block SrcBlock. The method sets
811 /// identified destinations, KnownDstBlocks, and intermediate UnknownBlocks.
812 void findUnknownSubgraph(const FlowBlock
*SrcBlock
,
813 std::vector
<FlowBlock
*> &KnownDstBlocks
,
814 std::vector
<FlowBlock
*> &UnknownBlocks
) {
815 // Run BFS from SrcBlock and make sure all paths are going through unknown
816 // blocks and end at a known DstBlock
817 auto Visited
= BitVector(NumBlocks(), false);
818 std::queue
<uint64_t> Queue
;
820 Queue
.push(SrcBlock
->Index
);
821 Visited
[SrcBlock
->Index
] = true;
822 while (!Queue
.empty()) {
823 auto &Block
= Func
.Blocks
[Queue
.front()];
825 // Process blocks reachable from Block
826 for (auto Jump
: Block
.SuccJumps
) {
827 // If Jump can be ignored, skip it
828 if (ignoreJump(SrcBlock
, nullptr, Jump
))
831 uint64_t Dst
= Jump
->Target
;
832 // If Dst has been visited, skip Jump
837 if (!Func
.Blocks
[Dst
].UnknownWeight
) {
838 KnownDstBlocks
.push_back(&Func
.Blocks
[Dst
]);
841 UnknownBlocks
.push_back(&Func
.Blocks
[Dst
]);
847 /// Verify if rebalancing of the subgraph is feasible. If the checks are
848 /// successful, set the unique destination block, DstBlock (can be null).
849 bool canRebalanceSubgraph(const FlowBlock
*SrcBlock
,
850 const std::vector
<FlowBlock
*> &KnownDstBlocks
,
851 const std::vector
<FlowBlock
*> &UnknownBlocks
,
852 FlowBlock
*&DstBlock
) {
853 // If the list of unknown blocks is empty, we don't need rebalancing
854 if (UnknownBlocks
.empty())
857 // If there are multiple known sinks, we can't rebalance
858 if (KnownDstBlocks
.size() > 1)
860 DstBlock
= KnownDstBlocks
.empty() ? nullptr : KnownDstBlocks
.front();
862 // Verify sinks of the subgraph
863 for (auto Block
: UnknownBlocks
) {
864 if (Block
->SuccJumps
.empty()) {
865 // If there are multiple (known and unknown) sinks, we can't rebalance
866 if (DstBlock
!= nullptr)
870 size_t NumIgnoredJumps
= 0;
871 for (auto Jump
: Block
->SuccJumps
) {
872 if (ignoreJump(SrcBlock
, DstBlock
, Jump
))
875 // If there is a non-sink block in UnknownBlocks with all jumps ignored,
876 // then we can't rebalance
877 if (NumIgnoredJumps
== Block
->SuccJumps
.size())
884 /// Decide whether the Jump is ignored while processing an unknown subgraphs
885 /// rooted at basic block SrcBlock with the destination block, DstBlock.
886 bool ignoreJump(const FlowBlock
*SrcBlock
, const FlowBlock
*DstBlock
,
887 const FlowJump
*Jump
) {
888 // Ignore unlikely jumps with zero flow
889 if (Jump
->IsUnlikely
&& Jump
->Flow
== 0)
892 auto JumpSource
= &Func
.Blocks
[Jump
->Source
];
893 auto JumpTarget
= &Func
.Blocks
[Jump
->Target
];
895 // Do not ignore jumps coming into DstBlock
896 if (DstBlock
!= nullptr && JumpTarget
== DstBlock
)
899 // Ignore jumps out of SrcBlock to known blocks
900 if (!JumpTarget
->UnknownWeight
&& JumpSource
== SrcBlock
)
903 // Ignore jumps to known blocks with zero flow
904 if (!JumpTarget
->UnknownWeight
&& JumpTarget
->Flow
== 0)
910 /// Verify if the given unknown subgraph is acyclic, and if yes, reorder
911 /// UnknownBlocks in the topological order (so that all jumps are "forward").
912 bool isAcyclicSubgraph(const FlowBlock
*SrcBlock
, const FlowBlock
*DstBlock
,
913 std::vector
<FlowBlock
*> &UnknownBlocks
) {
914 // Extract local in-degrees in the considered subgraph
915 auto LocalInDegree
= std::vector
<uint64_t>(NumBlocks(), 0);
916 auto fillInDegree
= [&](const FlowBlock
*Block
) {
917 for (auto Jump
: Block
->SuccJumps
) {
918 if (ignoreJump(SrcBlock
, DstBlock
, Jump
))
920 LocalInDegree
[Jump
->Target
]++;
923 fillInDegree(SrcBlock
);
924 for (auto Block
: UnknownBlocks
) {
927 // A loop containing SrcBlock
928 if (LocalInDegree
[SrcBlock
->Index
] > 0)
931 std::vector
<FlowBlock
*> AcyclicOrder
;
932 std::queue
<uint64_t> Queue
;
933 Queue
.push(SrcBlock
->Index
);
934 while (!Queue
.empty()) {
935 FlowBlock
*Block
= &Func
.Blocks
[Queue
.front()];
937 // Stop propagation once we reach DstBlock, if any
938 if (DstBlock
!= nullptr && Block
== DstBlock
)
941 // Keep an acyclic order of unknown blocks
942 if (Block
->UnknownWeight
&& Block
!= SrcBlock
)
943 AcyclicOrder
.push_back(Block
);
945 // Add to the queue all successors with zero local in-degree
946 for (auto Jump
: Block
->SuccJumps
) {
947 if (ignoreJump(SrcBlock
, DstBlock
, Jump
))
949 uint64_t Dst
= Jump
->Target
;
950 LocalInDegree
[Dst
]--;
951 if (LocalInDegree
[Dst
] == 0) {
957 // If there is a cycle in the subgraph, AcyclicOrder contains only a subset
959 if (UnknownBlocks
.size() != AcyclicOrder
.size())
961 UnknownBlocks
= AcyclicOrder
;
965 /// Rebalance a given subgraph rooted at SrcBlock, ending at DstBlock and
966 /// having UnknownBlocks intermediate blocks.
967 void rebalanceUnknownSubgraph(const FlowBlock
*SrcBlock
,
968 const FlowBlock
*DstBlock
,
969 const std::vector
<FlowBlock
*> &UnknownBlocks
) {
970 assert(SrcBlock
->Flow
> 0 && "zero-flow block in unknown subgraph");
972 // Ditribute flow from the source block
973 uint64_t BlockFlow
= 0;
974 // SrcBlock's flow is the sum of outgoing flows along non-ignored jumps
975 for (auto Jump
: SrcBlock
->SuccJumps
) {
976 if (ignoreJump(SrcBlock
, DstBlock
, Jump
))
978 BlockFlow
+= Jump
->Flow
;
980 rebalanceBlock(SrcBlock
, DstBlock
, SrcBlock
, BlockFlow
);
982 // Ditribute flow from the remaining blocks
983 for (auto Block
: UnknownBlocks
) {
984 assert(Block
->UnknownWeight
&& "incorrect unknown subgraph");
985 uint64_t BlockFlow
= 0;
986 // Block's flow is the sum of incoming flows
987 for (auto Jump
: Block
->PredJumps
) {
988 BlockFlow
+= Jump
->Flow
;
990 Block
->Flow
= BlockFlow
;
991 rebalanceBlock(SrcBlock
, DstBlock
, Block
, BlockFlow
);
995 /// Redistribute flow for a block in a subgraph rooted at SrcBlock,
996 /// and ending at DstBlock.
997 void rebalanceBlock(const FlowBlock
*SrcBlock
, const FlowBlock
*DstBlock
,
998 const FlowBlock
*Block
, uint64_t BlockFlow
) {
999 // Process all successor jumps and update corresponding flow values
1000 size_t BlockDegree
= 0;
1001 for (auto Jump
: Block
->SuccJumps
) {
1002 if (ignoreJump(SrcBlock
, DstBlock
, Jump
))
1006 // If all successor jumps of the block are ignored, skip it
1007 if (DstBlock
== nullptr && BlockDegree
== 0)
1009 assert(BlockDegree
> 0 && "all outgoing jumps are ignored");
1011 // Each of the Block's successors gets the following amount of flow.
1012 // Rounding the value up so that all flow is propagated
1013 uint64_t SuccFlow
= (BlockFlow
+ BlockDegree
- 1) / BlockDegree
;
1014 for (auto Jump
: Block
->SuccJumps
) {
1015 if (ignoreJump(SrcBlock
, DstBlock
, Jump
))
1017 uint64_t Flow
= std::min(SuccFlow
, BlockFlow
);
1021 assert(BlockFlow
== 0 && "not all flow is propagated");
1024 /// A constant indicating an arbitrary exit block of a function.
1025 static constexpr uint64_t AnyExitBlock
= uint64_t(-1);
1031 /// Initializing flow network for a given function.
1033 /// Every block is split into three nodes that are responsible for (i) an
1034 /// incoming flow, (ii) an outgoing flow, and (iii) penalizing an increase or
1035 /// reduction of the block weight.
1036 void initializeNetwork(MinCostMaxFlow
&Network
, FlowFunction
&Func
) {
1037 uint64_t NumBlocks
= Func
.Blocks
.size();
1038 assert(NumBlocks
> 1 && "Too few blocks in a function");
1039 LLVM_DEBUG(dbgs() << "Initializing profi for " << NumBlocks
<< " blocks\n");
1041 // Pre-process data: make sure the entry weight is at least 1
1042 if (Func
.Blocks
[Func
.Entry
].Weight
== 0) {
1043 Func
.Blocks
[Func
.Entry
].Weight
= 1;
1045 // Introducing dummy source/sink pairs to allow flow circulation.
1046 // The nodes corresponding to blocks of Func have indicies in the range
1047 // [0..3 * NumBlocks); the dummy nodes are indexed by the next four values.
1048 uint64_t S
= 3 * NumBlocks
;
1050 uint64_t S1
= S
+ 2;
1051 uint64_t T1
= S
+ 3;
1053 Network
.initialize(3 * NumBlocks
+ 4, S1
, T1
);
1055 // Create three nodes for every block of the function
1056 for (uint64_t B
= 0; B
< NumBlocks
; B
++) {
1057 auto &Block
= Func
.Blocks
[B
];
1058 assert((!Block
.UnknownWeight
|| Block
.Weight
== 0 || Block
.isEntry()) &&
1059 "non-zero weight of a block w/o weight except for an entry");
1061 // Split every block into two nodes
1062 uint64_t Bin
= 3 * B
;
1063 uint64_t Bout
= 3 * B
+ 1;
1064 uint64_t Baux
= 3 * B
+ 2;
1065 if (Block
.Weight
> 0) {
1066 Network
.addEdge(S1
, Bout
, Block
.Weight
, 0);
1067 Network
.addEdge(Bin
, T1
, Block
.Weight
, 0);
1070 // Edges from S and to T
1071 assert((!Block
.isEntry() || !Block
.isExit()) &&
1072 "a block cannot be an entry and an exit");
1073 if (Block
.isEntry()) {
1074 Network
.addEdge(S
, Bin
, 0);
1075 } else if (Block
.isExit()) {
1076 Network
.addEdge(Bout
, T
, 0);
1079 // An auxiliary node to allow increase/reduction of block counts:
1080 // We assume that decreasing block counts is more expensive than increasing,
1081 // and thus, setting separate costs here. In the future we may want to tune
1082 // the relative costs so as to maximize the quality of generated profiles.
1083 int64_t AuxCostInc
= SampleProfileProfiCostInc
;
1084 int64_t AuxCostDec
= SampleProfileProfiCostDec
;
1085 if (Block
.UnknownWeight
) {
1086 // Do not penalize changing weights of blocks w/o known profile count
1090 // Increasing the count for "cold" blocks with zero initial count is more
1091 // expensive than for "hot" ones
1092 if (Block
.Weight
== 0) {
1093 AuxCostInc
= SampleProfileProfiCostIncZero
;
1095 // Modifying the count of the entry block is expensive
1096 if (Block
.isEntry()) {
1097 AuxCostInc
= SampleProfileProfiCostIncEntry
;
1098 AuxCostDec
= SampleProfileProfiCostDecEntry
;
1101 // For blocks with self-edges, do not penalize a reduction of the count,
1102 // as all of the increase can be attributed to the self-edge
1103 if (Block
.HasSelfEdge
) {
1107 Network
.addEdge(Bin
, Baux
, AuxCostInc
);
1108 Network
.addEdge(Baux
, Bout
, AuxCostInc
);
1109 if (Block
.Weight
> 0) {
1110 Network
.addEdge(Bout
, Baux
, AuxCostDec
);
1111 Network
.addEdge(Baux
, Bin
, AuxCostDec
);
1115 // Creating edges for every jump
1116 for (auto &Jump
: Func
.Jumps
) {
1117 uint64_t Src
= Jump
.Source
;
1118 uint64_t Dst
= Jump
.Target
;
1120 uint64_t SrcOut
= 3 * Src
+ 1;
1121 uint64_t DstIn
= 3 * Dst
;
1122 uint64_t Cost
= Jump
.IsUnlikely
? MinCostMaxFlow::AuxCostUnlikely
: 0;
1123 Network
.addEdge(SrcOut
, DstIn
, Cost
);
1127 // Make sure we have a valid flow circulation
1128 Network
.addEdge(T
, S
, 0);
1131 /// Extract resulting block and edge counts from the flow network.
1132 void extractWeights(MinCostMaxFlow
&Network
, FlowFunction
&Func
) {
1133 uint64_t NumBlocks
= Func
.Blocks
.size();
1135 // Extract resulting block counts
1136 for (uint64_t Src
= 0; Src
< NumBlocks
; Src
++) {
1137 auto &Block
= Func
.Blocks
[Src
];
1138 uint64_t SrcOut
= 3 * Src
+ 1;
1140 for (const auto &Adj
: Network
.getFlow(SrcOut
)) {
1141 uint64_t DstIn
= Adj
.first
;
1142 int64_t DstFlow
= Adj
.second
;
1143 bool IsAuxNode
= (DstIn
< 3 * NumBlocks
&& DstIn
% 3 == 2);
1144 if (!IsAuxNode
|| Block
.HasSelfEdge
) {
1149 assert(Flow
>= 0 && "negative block flow");
1152 // Extract resulting jump counts
1153 for (auto &Jump
: Func
.Jumps
) {
1154 uint64_t Src
= Jump
.Source
;
1155 uint64_t Dst
= Jump
.Target
;
1158 uint64_t SrcOut
= 3 * Src
+ 1;
1159 uint64_t DstIn
= 3 * Dst
;
1160 Flow
= Network
.getFlow(SrcOut
, DstIn
);
1162 uint64_t SrcOut
= 3 * Src
+ 1;
1163 uint64_t SrcAux
= 3 * Src
+ 2;
1164 int64_t AuxFlow
= Network
.getFlow(SrcOut
, SrcAux
);
1169 assert(Flow
>= 0 && "negative jump flow");
1174 /// Verify that the computed flow values satisfy flow conservation rules
1175 void verifyWeights(const FlowFunction
&Func
) {
1176 const uint64_t NumBlocks
= Func
.Blocks
.size();
1177 auto InFlow
= std::vector
<uint64_t>(NumBlocks
, 0);
1178 auto OutFlow
= std::vector
<uint64_t>(NumBlocks
, 0);
1179 for (const auto &Jump
: Func
.Jumps
) {
1180 InFlow
[Jump
.Target
] += Jump
.Flow
;
1181 OutFlow
[Jump
.Source
] += Jump
.Flow
;
1184 uint64_t TotalInFlow
= 0;
1185 uint64_t TotalOutFlow
= 0;
1186 for (uint64_t I
= 0; I
< NumBlocks
; I
++) {
1187 auto &Block
= Func
.Blocks
[I
];
1188 if (Block
.isEntry()) {
1189 TotalInFlow
+= Block
.Flow
;
1190 assert(Block
.Flow
== OutFlow
[I
] && "incorrectly computed control flow");
1191 } else if (Block
.isExit()) {
1192 TotalOutFlow
+= Block
.Flow
;
1193 assert(Block
.Flow
== InFlow
[I
] && "incorrectly computed control flow");
1195 assert(Block
.Flow
== OutFlow
[I
] && "incorrectly computed control flow");
1196 assert(Block
.Flow
== InFlow
[I
] && "incorrectly computed control flow");
1199 assert(TotalInFlow
== TotalOutFlow
&& "incorrectly computed control flow");
1201 // Verify that there are no isolated flow components
1202 // One could modify FlowFunction to hold edges indexed by the sources, which
1203 // will avoid a creation of the object
1204 auto PositiveFlowEdges
= std::vector
<std::vector
<uint64_t>>(NumBlocks
);
1205 for (const auto &Jump
: Func
.Jumps
) {
1206 if (Jump
.Flow
> 0) {
1207 PositiveFlowEdges
[Jump
.Source
].push_back(Jump
.Target
);
1211 // Run BFS from the source along edges with positive flow
1212 std::queue
<uint64_t> Queue
;
1213 auto Visited
= BitVector(NumBlocks
, false);
1214 Queue
.push(Func
.Entry
);
1215 Visited
[Func
.Entry
] = true;
1216 while (!Queue
.empty()) {
1217 uint64_t Src
= Queue
.front();
1219 for (uint64_t Dst
: PositiveFlowEdges
[Src
]) {
1220 if (!Visited
[Dst
]) {
1222 Visited
[Dst
] = true;
1227 // Verify that every block that has a positive flow is reached from the source
1228 // along edges with a positive flow
1229 for (uint64_t I
= 0; I
< NumBlocks
; I
++) {
1230 auto &Block
= Func
.Blocks
[I
];
1231 assert((Visited
[I
] || Block
.Flow
== 0) && "an isolated flow component");
1236 } // end of anonymous namespace
1238 /// Apply the profile inference algorithm for a given flow function
1239 void llvm::applyFlowInference(FlowFunction
&Func
) {
1240 // Create and apply an inference network model
1241 auto InferenceNetwork
= MinCostMaxFlow();
1242 initializeNetwork(InferenceNetwork
, Func
);
1243 InferenceNetwork
.run();
1245 // Extract flow values for every block and every edge
1246 extractWeights(InferenceNetwork
, Func
);
1248 // Post-processing adjustments to the flow
1249 auto Adjuster
= FlowAdjuster(Func
);
1253 // Verify the result
1254 verifyWeights(Func
);