1 //===- SimplifyCFG.cpp - Code to perform CFG simplification ---------------===//
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
7 //===----------------------------------------------------------------------===//
9 // Peephole optimize the CFG.
11 //===----------------------------------------------------------------------===//
13 #include "llvm/ADT/APInt.h"
14 #include "llvm/ADT/ArrayRef.h"
15 #include "llvm/ADT/DenseMap.h"
16 #include "llvm/ADT/MapVector.h"
17 #include "llvm/ADT/Optional.h"
18 #include "llvm/ADT/STLExtras.h"
19 #include "llvm/ADT/ScopeExit.h"
20 #include "llvm/ADT/Sequence.h"
21 #include "llvm/ADT/SetOperations.h"
22 #include "llvm/ADT/SetVector.h"
23 #include "llvm/ADT/SmallPtrSet.h"
24 #include "llvm/ADT/SmallVector.h"
25 #include "llvm/ADT/Statistic.h"
26 #include "llvm/ADT/StringRef.h"
27 #include "llvm/Analysis/AssumptionCache.h"
28 #include "llvm/Analysis/CaptureTracking.h"
29 #include "llvm/Analysis/ConstantFolding.h"
30 #include "llvm/Analysis/DomTreeUpdater.h"
31 #include "llvm/Analysis/GuardUtils.h"
32 #include "llvm/Analysis/InstructionSimplify.h"
33 #include "llvm/Analysis/MemorySSA.h"
34 #include "llvm/Analysis/MemorySSAUpdater.h"
35 #include "llvm/Analysis/TargetTransformInfo.h"
36 #include "llvm/Analysis/ValueTracking.h"
37 #include "llvm/IR/Attributes.h"
38 #include "llvm/IR/BasicBlock.h"
39 #include "llvm/IR/CFG.h"
40 #include "llvm/IR/Constant.h"
41 #include "llvm/IR/ConstantRange.h"
42 #include "llvm/IR/Constants.h"
43 #include "llvm/IR/DataLayout.h"
44 #include "llvm/IR/DerivedTypes.h"
45 #include "llvm/IR/Function.h"
46 #include "llvm/IR/GlobalValue.h"
47 #include "llvm/IR/GlobalVariable.h"
48 #include "llvm/IR/IRBuilder.h"
49 #include "llvm/IR/InstrTypes.h"
50 #include "llvm/IR/Instruction.h"
51 #include "llvm/IR/Instructions.h"
52 #include "llvm/IR/IntrinsicInst.h"
53 #include "llvm/IR/LLVMContext.h"
54 #include "llvm/IR/MDBuilder.h"
55 #include "llvm/IR/Metadata.h"
56 #include "llvm/IR/Module.h"
57 #include "llvm/IR/NoFolder.h"
58 #include "llvm/IR/Operator.h"
59 #include "llvm/IR/PatternMatch.h"
60 #include "llvm/IR/ProfDataUtils.h"
61 #include "llvm/IR/Type.h"
62 #include "llvm/IR/Use.h"
63 #include "llvm/IR/User.h"
64 #include "llvm/IR/Value.h"
65 #include "llvm/IR/ValueHandle.h"
66 #include "llvm/Support/BranchProbability.h"
67 #include "llvm/Support/Casting.h"
68 #include "llvm/Support/CommandLine.h"
69 #include "llvm/Support/Debug.h"
70 #include "llvm/Support/ErrorHandling.h"
71 #include "llvm/Support/KnownBits.h"
72 #include "llvm/Support/MathExtras.h"
73 #include "llvm/Support/raw_ostream.h"
74 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
75 #include "llvm/Transforms/Utils/Local.h"
76 #include "llvm/Transforms/Utils/ValueMapper.h"
90 using namespace PatternMatch
;
92 #define DEBUG_TYPE "simplifycfg"
94 cl::opt
<bool> llvm::RequireAndPreserveDomTree(
95 "simplifycfg-require-and-preserve-domtree", cl::Hidden
,
97 cl::desc("Temorary development switch used to gradually uplift SimplifyCFG "
98 "into preserving DomTree,"));
100 // Chosen as 2 so as to be cheap, but still to have enough power to fold
101 // a select, so the "clamp" idiom (of a min followed by a max) will be caught.
102 // To catch this, we need to fold a compare and a select, hence '2' being the
103 // minimum reasonable default.
104 static cl::opt
<unsigned> PHINodeFoldingThreshold(
105 "phi-node-folding-threshold", cl::Hidden
, cl::init(2),
107 "Control the amount of phi node folding to perform (default = 2)"));
109 static cl::opt
<unsigned> TwoEntryPHINodeFoldingThreshold(
110 "two-entry-phi-node-folding-threshold", cl::Hidden
, cl::init(4),
111 cl::desc("Control the maximal total instruction cost that we are willing "
112 "to speculatively execute to fold a 2-entry PHI node into a "
113 "select (default = 4)"));
116 HoistCommon("simplifycfg-hoist-common", cl::Hidden
, cl::init(true),
117 cl::desc("Hoist common instructions up to the parent block"));
120 SinkCommon("simplifycfg-sink-common", cl::Hidden
, cl::init(true),
121 cl::desc("Sink common instructions down to the end block"));
123 static cl::opt
<bool> HoistCondStores(
124 "simplifycfg-hoist-cond-stores", cl::Hidden
, cl::init(true),
125 cl::desc("Hoist conditional stores if an unconditional store precedes"));
127 static cl::opt
<bool> MergeCondStores(
128 "simplifycfg-merge-cond-stores", cl::Hidden
, cl::init(true),
129 cl::desc("Hoist conditional stores even if an unconditional store does not "
130 "precede - hoist multiple conditional stores into a single "
131 "predicated store"));
133 static cl::opt
<bool> MergeCondStoresAggressively(
134 "simplifycfg-merge-cond-stores-aggressively", cl::Hidden
, cl::init(false),
135 cl::desc("When merging conditional stores, do so even if the resultant "
136 "basic blocks are unlikely to be if-converted as a result"));
138 static cl::opt
<bool> SpeculateOneExpensiveInst(
139 "speculate-one-expensive-inst", cl::Hidden
, cl::init(true),
140 cl::desc("Allow exactly one expensive instruction to be speculatively "
143 static cl::opt
<unsigned> MaxSpeculationDepth(
144 "max-speculation-depth", cl::Hidden
, cl::init(10),
145 cl::desc("Limit maximum recursion depth when calculating costs of "
146 "speculatively executed instructions"));
149 MaxSmallBlockSize("simplifycfg-max-small-block-size", cl::Hidden
,
151 cl::desc("Max size of a block which is still considered "
152 "small enough to thread through"));
154 // Two is chosen to allow one negation and a logical combine.
155 static cl::opt
<unsigned>
156 BranchFoldThreshold("simplifycfg-branch-fold-threshold", cl::Hidden
,
158 cl::desc("Maximum cost of combining conditions when "
159 "folding branches"));
161 static cl::opt
<unsigned> BranchFoldToCommonDestVectorMultiplier(
162 "simplifycfg-branch-fold-common-dest-vector-multiplier", cl::Hidden
,
164 cl::desc("Multiplier to apply to threshold when determining whether or not "
165 "to fold branch to common destination when vector operations are "
168 static cl::opt
<bool> EnableMergeCompatibleInvokes(
169 "simplifycfg-merge-compatible-invokes", cl::Hidden
, cl::init(true),
170 cl::desc("Allow SimplifyCFG to merge invokes together when appropriate"));
172 static cl::opt
<unsigned> MaxSwitchCasesPerResult(
173 "max-switch-cases-per-result", cl::Hidden
, cl::init(16),
174 cl::desc("Limit cases to analyze when converting a switch to select"));
176 STATISTIC(NumBitMaps
, "Number of switch instructions turned into bitmaps");
177 STATISTIC(NumLinearMaps
,
178 "Number of switch instructions turned into linear mapping");
179 STATISTIC(NumLookupTables
,
180 "Number of switch instructions turned into lookup tables");
182 NumLookupTablesHoles
,
183 "Number of switch instructions turned into lookup tables (holes checked)");
184 STATISTIC(NumTableCmpReuses
, "Number of reused switch table lookup compares");
185 STATISTIC(NumFoldValueComparisonIntoPredecessors
,
186 "Number of value comparisons folded into predecessor basic blocks");
187 STATISTIC(NumFoldBranchToCommonDest
,
188 "Number of branches folded into predecessor basic block");
191 "Number of common instruction 'blocks' hoisted up to the begin block");
192 STATISTIC(NumHoistCommonInstrs
,
193 "Number of common instructions hoisted up to the begin block");
194 STATISTIC(NumSinkCommonCode
,
195 "Number of common instruction 'blocks' sunk down to the end block");
196 STATISTIC(NumSinkCommonInstrs
,
197 "Number of common instructions sunk down to the end block");
198 STATISTIC(NumSpeculations
, "Number of speculative executed instructions");
199 STATISTIC(NumInvokes
,
200 "Number of invokes with empty resume blocks simplified into calls");
201 STATISTIC(NumInvokesMerged
, "Number of invokes that were merged together");
202 STATISTIC(NumInvokeSetsFormed
, "Number of invoke sets that were formed");
206 // The first field contains the value that the switch produces when a certain
207 // case group is selected, and the second field is a vector containing the
208 // cases composing the case group.
209 using SwitchCaseResultVectorTy
=
210 SmallVector
<std::pair
<Constant
*, SmallVector
<ConstantInt
*, 4>>, 2>;
212 // The first field contains the phi node that generates a result of the switch
213 // and the second field contains the value generated for a certain case in the
214 // switch for that PHI.
215 using SwitchCaseResultsTy
= SmallVector
<std::pair
<PHINode
*, Constant
*>, 4>;
217 /// ValueEqualityComparisonCase - Represents a case of a switch.
218 struct ValueEqualityComparisonCase
{
222 ValueEqualityComparisonCase(ConstantInt
*Value
, BasicBlock
*Dest
)
223 : Value(Value
), Dest(Dest
) {}
225 bool operator<(ValueEqualityComparisonCase RHS
) const {
226 // Comparing pointers is ok as we only rely on the order for uniquing.
227 return Value
< RHS
.Value
;
230 bool operator==(BasicBlock
*RHSDest
) const { return Dest
== RHSDest
; }
233 class SimplifyCFGOpt
{
234 const TargetTransformInfo
&TTI
;
236 const DataLayout
&DL
;
237 ArrayRef
<WeakVH
> LoopHeaders
;
238 const SimplifyCFGOptions
&Options
;
241 Value
*isValueEqualityComparison(Instruction
*TI
);
242 BasicBlock
*GetValueEqualityComparisonCases(
243 Instruction
*TI
, std::vector
<ValueEqualityComparisonCase
> &Cases
);
244 bool SimplifyEqualityComparisonWithOnlyPredecessor(Instruction
*TI
,
246 IRBuilder
<> &Builder
);
247 bool PerformValueComparisonIntoPredecessorFolding(Instruction
*TI
, Value
*&CV
,
249 IRBuilder
<> &Builder
);
250 bool FoldValueComparisonIntoPredecessors(Instruction
*TI
,
251 IRBuilder
<> &Builder
);
253 bool simplifyResume(ResumeInst
*RI
, IRBuilder
<> &Builder
);
254 bool simplifySingleResume(ResumeInst
*RI
);
255 bool simplifyCommonResume(ResumeInst
*RI
);
256 bool simplifyCleanupReturn(CleanupReturnInst
*RI
);
257 bool simplifyUnreachable(UnreachableInst
*UI
);
258 bool simplifySwitch(SwitchInst
*SI
, IRBuilder
<> &Builder
);
259 bool simplifyIndirectBr(IndirectBrInst
*IBI
);
260 bool simplifyBranch(BranchInst
*Branch
, IRBuilder
<> &Builder
);
261 bool simplifyUncondBranch(BranchInst
*BI
, IRBuilder
<> &Builder
);
262 bool simplifyCondBranch(BranchInst
*BI
, IRBuilder
<> &Builder
);
264 bool tryToSimplifyUncondBranchWithICmpInIt(ICmpInst
*ICI
,
265 IRBuilder
<> &Builder
);
267 bool HoistThenElseCodeToIf(BranchInst
*BI
, const TargetTransformInfo
&TTI
,
269 bool SpeculativelyExecuteBB(BranchInst
*BI
, BasicBlock
*ThenBB
,
270 const TargetTransformInfo
&TTI
);
271 bool SimplifyTerminatorOnSelect(Instruction
*OldTerm
, Value
*Cond
,
272 BasicBlock
*TrueBB
, BasicBlock
*FalseBB
,
273 uint32_t TrueWeight
, uint32_t FalseWeight
);
274 bool SimplifyBranchOnICmpChain(BranchInst
*BI
, IRBuilder
<> &Builder
,
275 const DataLayout
&DL
);
276 bool SimplifySwitchOnSelect(SwitchInst
*SI
, SelectInst
*Select
);
277 bool SimplifyIndirectBrOnSelect(IndirectBrInst
*IBI
, SelectInst
*SI
);
278 bool TurnSwitchRangeIntoICmp(SwitchInst
*SI
, IRBuilder
<> &Builder
);
281 SimplifyCFGOpt(const TargetTransformInfo
&TTI
, DomTreeUpdater
*DTU
,
282 const DataLayout
&DL
, ArrayRef
<WeakVH
> LoopHeaders
,
283 const SimplifyCFGOptions
&Opts
)
284 : TTI(TTI
), DTU(DTU
), DL(DL
), LoopHeaders(LoopHeaders
), Options(Opts
) {
285 assert((!DTU
|| !DTU
->hasPostDomTree()) &&
286 "SimplifyCFG is not yet capable of maintaining validity of a "
287 "PostDomTree, so don't ask for it.");
290 bool simplifyOnce(BasicBlock
*BB
);
291 bool run(BasicBlock
*BB
);
293 // Helper to set Resimplify and return change indication.
294 bool requestResimplify() {
300 } // end anonymous namespace
302 /// Return true if all the PHI nodes in the basic block \p BB
303 /// receive compatible (identical) incoming values when coming from
304 /// all of the predecessor blocks that are specified in \p IncomingBlocks.
306 /// Note that if the values aren't exactly identical, but \p EquivalenceSet
307 /// is provided, and *both* of the values are present in the set,
308 /// then they are considered equal.
309 static bool IncomingValuesAreCompatible(
310 BasicBlock
*BB
, ArrayRef
<BasicBlock
*> IncomingBlocks
,
311 SmallPtrSetImpl
<Value
*> *EquivalenceSet
= nullptr) {
312 assert(IncomingBlocks
.size() == 2 &&
313 "Only for a pair of incoming blocks at the time!");
315 // FIXME: it is okay if one of the incoming values is an `undef` value,
316 // iff the other incoming value is guaranteed to be a non-poison value.
317 // FIXME: it is okay if one of the incoming values is a `poison` value.
318 return all_of(BB
->phis(), [IncomingBlocks
, EquivalenceSet
](PHINode
&PN
) {
319 Value
*IV0
= PN
.getIncomingValueForBlock(IncomingBlocks
[0]);
320 Value
*IV1
= PN
.getIncomingValueForBlock(IncomingBlocks
[1]);
323 if (EquivalenceSet
&& EquivalenceSet
->contains(IV0
) &&
324 EquivalenceSet
->contains(IV1
))
330 /// Return true if it is safe to merge these two
331 /// terminator instructions together.
333 SafeToMergeTerminators(Instruction
*SI1
, Instruction
*SI2
,
334 SmallSetVector
<BasicBlock
*, 4> *FailBlocks
= nullptr) {
336 return false; // Can't merge with self!
338 // It is not safe to merge these two switch instructions if they have a common
339 // successor, and if that successor has a PHI node, and if *that* PHI node has
340 // conflicting incoming values from the two switch blocks.
341 BasicBlock
*SI1BB
= SI1
->getParent();
342 BasicBlock
*SI2BB
= SI2
->getParent();
344 SmallPtrSet
<BasicBlock
*, 16> SI1Succs(succ_begin(SI1BB
), succ_end(SI1BB
));
346 for (BasicBlock
*Succ
: successors(SI2BB
)) {
347 if (!SI1Succs
.count(Succ
))
349 if (IncomingValuesAreCompatible(Succ
, {SI1BB
, SI2BB
}))
353 FailBlocks
->insert(Succ
);
361 /// Update PHI nodes in Succ to indicate that there will now be entries in it
362 /// from the 'NewPred' block. The values that will be flowing into the PHI nodes
363 /// will be the same as those coming in from ExistPred, an existing predecessor
365 static void AddPredecessorToBlock(BasicBlock
*Succ
, BasicBlock
*NewPred
,
366 BasicBlock
*ExistPred
,
367 MemorySSAUpdater
*MSSAU
= nullptr) {
368 for (PHINode
&PN
: Succ
->phis())
369 PN
.addIncoming(PN
.getIncomingValueForBlock(ExistPred
), NewPred
);
371 if (auto *MPhi
= MSSAU
->getMemorySSA()->getMemoryAccess(Succ
))
372 MPhi
->addIncoming(MPhi
->getIncomingValueForBlock(ExistPred
), NewPred
);
375 /// Compute an abstract "cost" of speculating the given instruction,
376 /// which is assumed to be safe to speculate. TCC_Free means cheap,
377 /// TCC_Basic means less cheap, and TCC_Expensive means prohibitively
379 static InstructionCost
computeSpeculationCost(const User
*I
,
380 const TargetTransformInfo
&TTI
) {
381 assert((!isa
<Instruction
>(I
) ||
382 isSafeToSpeculativelyExecute(cast
<Instruction
>(I
))) &&
383 "Instruction is not safe to speculatively execute!");
384 return TTI
.getInstructionCost(I
, TargetTransformInfo::TCK_SizeAndLatency
);
387 /// If we have a merge point of an "if condition" as accepted above,
388 /// return true if the specified value dominates the block. We
389 /// don't handle the true generality of domination here, just a special case
390 /// which works well enough for us.
392 /// If AggressiveInsts is non-null, and if V does not dominate BB, we check to
393 /// see if V (which must be an instruction) and its recursive operands
394 /// that do not dominate BB have a combined cost lower than Budget and
395 /// are non-trapping. If both are true, the instruction is inserted into the
396 /// set and true is returned.
398 /// The cost for most non-trapping instructions is defined as 1 except for
399 /// Select whose cost is 2.
401 /// After this function returns, Cost is increased by the cost of
402 /// V plus its non-dominating operands. If that cost is greater than
403 /// Budget, false is returned and Cost is undefined.
404 static bool dominatesMergePoint(Value
*V
, BasicBlock
*BB
,
405 SmallPtrSetImpl
<Instruction
*> &AggressiveInsts
,
406 InstructionCost
&Cost
,
407 InstructionCost Budget
,
408 const TargetTransformInfo
&TTI
,
409 unsigned Depth
= 0) {
410 // It is possible to hit a zero-cost cycle (phi/gep instructions for example),
411 // so limit the recursion depth.
412 // TODO: While this recursion limit does prevent pathological behavior, it
413 // would be better to track visited instructions to avoid cycles.
414 if (Depth
== MaxSpeculationDepth
)
417 Instruction
*I
= dyn_cast
<Instruction
>(V
);
419 // Non-instructions dominate all instructions and can be executed
423 BasicBlock
*PBB
= I
->getParent();
425 // We don't want to allow weird loops that might have the "if condition" in
426 // the bottom of this block.
430 // If this instruction is defined in a block that contains an unconditional
431 // branch to BB, then it must be in the 'conditional' part of the "if
432 // statement". If not, it definitely dominates the region.
433 BranchInst
*BI
= dyn_cast
<BranchInst
>(PBB
->getTerminator());
434 if (!BI
|| BI
->isConditional() || BI
->getSuccessor(0) != BB
)
437 // If we have seen this instruction before, don't count it again.
438 if (AggressiveInsts
.count(I
))
441 // Okay, it looks like the instruction IS in the "condition". Check to
442 // see if it's a cheap instruction to unconditionally compute, and if it
443 // only uses stuff defined outside of the condition. If so, hoist it out.
444 if (!isSafeToSpeculativelyExecute(I
))
447 Cost
+= computeSpeculationCost(I
, TTI
);
449 // Allow exactly one instruction to be speculated regardless of its cost
450 // (as long as it is safe to do so).
451 // This is intended to flatten the CFG even if the instruction is a division
452 // or other expensive operation. The speculation of an expensive instruction
453 // is expected to be undone in CodeGenPrepare if the speculation has not
454 // enabled further IR optimizations.
456 (!SpeculateOneExpensiveInst
|| !AggressiveInsts
.empty() || Depth
> 0 ||
460 // Okay, we can only really hoist these out if their operands do
461 // not take us over the cost threshold.
462 for (Use
&Op
: I
->operands())
463 if (!dominatesMergePoint(Op
, BB
, AggressiveInsts
, Cost
, Budget
, TTI
,
466 // Okay, it's safe to do this! Remember this instruction.
467 AggressiveInsts
.insert(I
);
471 /// Extract ConstantInt from value, looking through IntToPtr
472 /// and PointerNullValue. Return NULL if value is not a constant int.
473 static ConstantInt
*GetConstantInt(Value
*V
, const DataLayout
&DL
) {
474 // Normal constant int.
475 ConstantInt
*CI
= dyn_cast
<ConstantInt
>(V
);
476 if (CI
|| !isa
<Constant
>(V
) || !V
->getType()->isPointerTy() ||
477 DL
.isNonIntegralPointerType(V
->getType()))
480 // This is some kind of pointer constant. Turn it into a pointer-sized
481 // ConstantInt if possible.
482 IntegerType
*PtrTy
= cast
<IntegerType
>(DL
.getIntPtrType(V
->getType()));
484 // Null pointer means 0, see SelectionDAGBuilder::getValue(const Value*).
485 if (isa
<ConstantPointerNull
>(V
))
486 return ConstantInt::get(PtrTy
, 0);
488 // IntToPtr const int.
489 if (ConstantExpr
*CE
= dyn_cast
<ConstantExpr
>(V
))
490 if (CE
->getOpcode() == Instruction::IntToPtr
)
491 if (ConstantInt
*CI
= dyn_cast
<ConstantInt
>(CE
->getOperand(0))) {
492 // The constant is very likely to have the right type already.
493 if (CI
->getType() == PtrTy
)
496 return cast
<ConstantInt
>(
497 ConstantExpr::getIntegerCast(CI
, PtrTy
, /*isSigned=*/false));
504 /// Given a chain of or (||) or and (&&) comparison of a value against a
505 /// constant, this will try to recover the information required for a switch
507 /// It will depth-first traverse the chain of comparison, seeking for patterns
508 /// like %a == 12 or %a < 4 and combine them to produce a set of integer
509 /// representing the different cases for the switch.
510 /// Note that if the chain is composed of '||' it will build the set of elements
511 /// that matches the comparisons (i.e. any of this value validate the chain)
512 /// while for a chain of '&&' it will build the set elements that make the test
514 struct ConstantComparesGatherer
{
515 const DataLayout
&DL
;
517 /// Value found for the switch comparison
518 Value
*CompValue
= nullptr;
520 /// Extra clause to be checked before the switch
521 Value
*Extra
= nullptr;
523 /// Set of integers to match in switch
524 SmallVector
<ConstantInt
*, 8> Vals
;
526 /// Number of comparisons matched in the and/or chain
527 unsigned UsedICmps
= 0;
529 /// Construct and compute the result for the comparison instruction Cond
530 ConstantComparesGatherer(Instruction
*Cond
, const DataLayout
&DL
) : DL(DL
) {
534 ConstantComparesGatherer(const ConstantComparesGatherer
&) = delete;
535 ConstantComparesGatherer
&
536 operator=(const ConstantComparesGatherer
&) = delete;
539 /// Try to set the current value used for the comparison, it succeeds only if
540 /// it wasn't set before or if the new value is the same as the old one
541 bool setValueOnce(Value
*NewVal
) {
542 if (CompValue
&& CompValue
!= NewVal
)
545 return (CompValue
!= nullptr);
548 /// Try to match Instruction "I" as a comparison against a constant and
549 /// populates the array Vals with the set of values that match (or do not
550 /// match depending on isEQ).
551 /// Return false on failure. On success, the Value the comparison matched
552 /// against is placed in CompValue.
553 /// If CompValue is already set, the function is expected to fail if a match
554 /// is found but the value compared to is different.
555 bool matchInstruction(Instruction
*I
, bool isEQ
) {
556 // If this is an icmp against a constant, handle this as one of the cases.
559 if (!((ICI
= dyn_cast
<ICmpInst
>(I
)) &&
560 (C
= GetConstantInt(I
->getOperand(1), DL
)))) {
567 // Pattern match a special case
568 // (x & ~2^z) == y --> x == y || x == y|2^z
569 // This undoes a transformation done by instcombine to fuse 2 compares.
570 if (ICI
->getPredicate() == (isEQ
? ICmpInst::ICMP_EQ
: ICmpInst::ICMP_NE
)) {
571 // It's a little bit hard to see why the following transformations are
572 // correct. Here is a CVC3 program to verify them for 64-bit values:
575 ONE : BITVECTOR(64) = BVZEROEXTEND(0bin1, 63);
579 mask : BITVECTOR(64) = BVSHL(ONE, z);
580 QUERY( (y & ~mask = y) =>
581 ((x & ~mask = y) <=> (x = y OR x = (y | mask)))
583 QUERY( (y | mask = y) =>
584 ((x | mask = y) <=> (x = y OR x = (y & ~mask)))
588 // Please note that each pattern must be a dual implication (<--> or
589 // iff). One directional implication can create spurious matches. If the
590 // implication is only one-way, an unsatisfiable condition on the left
591 // side can imply a satisfiable condition on the right side. Dual
592 // implication ensures that satisfiable conditions are transformed to
593 // other satisfiable conditions and unsatisfiable conditions are
594 // transformed to other unsatisfiable conditions.
596 // Here is a concrete example of a unsatisfiable condition on the left
597 // implying a satisfiable condition on the right:
600 // (x & ~mask) == y --> (x == y || x == (y | mask))
602 // Substituting y = 3, z = 0 yields:
603 // (x & -2) == 3 --> (x == 3 || x == 2)
605 // Pattern match a special case:
607 QUERY( (y & ~mask = y) =>
608 ((x & ~mask = y) <=> (x = y OR x = (y | mask)))
611 if (match(ICI
->getOperand(0),
612 m_And(m_Value(RHSVal
), m_APInt(RHSC
)))) {
614 if (Mask
.isPowerOf2() && (C
->getValue() & ~Mask
) == C
->getValue()) {
615 // If we already have a value for the switch, it has to match!
616 if (!setValueOnce(RHSVal
))
621 ConstantInt::get(C
->getContext(),
622 C
->getValue() | Mask
));
628 // Pattern match a special case:
630 QUERY( (y | mask = y) =>
631 ((x | mask = y) <=> (x = y OR x = (y & ~mask)))
634 if (match(ICI
->getOperand(0),
635 m_Or(m_Value(RHSVal
), m_APInt(RHSC
)))) {
637 if (Mask
.isPowerOf2() && (C
->getValue() | Mask
) == C
->getValue()) {
638 // If we already have a value for the switch, it has to match!
639 if (!setValueOnce(RHSVal
))
643 Vals
.push_back(ConstantInt::get(C
->getContext(),
644 C
->getValue() & ~Mask
));
650 // If we already have a value for the switch, it has to match!
651 if (!setValueOnce(ICI
->getOperand(0)))
656 return ICI
->getOperand(0);
659 // If we have "x ult 3", for example, then we can add 0,1,2 to the set.
661 ConstantRange::makeExactICmpRegion(ICI
->getPredicate(), C
->getValue());
663 // Shift the range if the compare is fed by an add. This is the range
664 // compare idiom as emitted by instcombine.
665 Value
*CandidateVal
= I
->getOperand(0);
666 if (match(I
->getOperand(0), m_Add(m_Value(RHSVal
), m_APInt(RHSC
)))) {
667 Span
= Span
.subtract(*RHSC
);
668 CandidateVal
= RHSVal
;
671 // If this is an and/!= check, then we are looking to build the set of
672 // value that *don't* pass the and chain. I.e. to turn "x ugt 2" into
675 Span
= Span
.inverse();
677 // If there are a ton of values, we don't want to make a ginormous switch.
678 if (Span
.isSizeLargerThan(8) || Span
.isEmptySet()) {
682 // If we already have a value for the switch, it has to match!
683 if (!setValueOnce(CandidateVal
))
686 // Add all values from the range to the set
687 for (APInt Tmp
= Span
.getLower(); Tmp
!= Span
.getUpper(); ++Tmp
)
688 Vals
.push_back(ConstantInt::get(I
->getContext(), Tmp
));
694 /// Given a potentially 'or'd or 'and'd together collection of icmp
695 /// eq/ne/lt/gt instructions that compare a value against a constant, extract
696 /// the value being compared, and stick the list constants into the Vals
698 /// One "Extra" case is allowed to differ from the other.
699 void gather(Value
*V
) {
700 bool isEQ
= match(V
, m_LogicalOr(m_Value(), m_Value()));
702 // Keep a stack (SmallVector for efficiency) for depth-first traversal
703 SmallVector
<Value
*, 8> DFT
;
704 SmallPtrSet
<Value
*, 8> Visited
;
710 while (!DFT
.empty()) {
711 V
= DFT
.pop_back_val();
713 if (Instruction
*I
= dyn_cast
<Instruction
>(V
)) {
714 // If it is a || (or && depending on isEQ), process the operands.
716 if (isEQ
? match(I
, m_LogicalOr(m_Value(Op0
), m_Value(Op1
)))
717 : match(I
, m_LogicalAnd(m_Value(Op0
), m_Value(Op1
)))) {
718 if (Visited
.insert(Op1
).second
)
720 if (Visited
.insert(Op0
).second
)
726 // Try to match the current instruction
727 if (matchInstruction(I
, isEQ
))
728 // Match succeed, continue the loop
732 // One element of the sequence of || (or &&) could not be match as a
733 // comparison against the same value as the others.
734 // We allow only one "Extra" case to be checked before the switch
739 // Failed to parse a proper sequence, abort now
746 } // end anonymous namespace
748 static void EraseTerminatorAndDCECond(Instruction
*TI
,
749 MemorySSAUpdater
*MSSAU
= nullptr) {
750 Instruction
*Cond
= nullptr;
751 if (SwitchInst
*SI
= dyn_cast
<SwitchInst
>(TI
)) {
752 Cond
= dyn_cast
<Instruction
>(SI
->getCondition());
753 } else if (BranchInst
*BI
= dyn_cast
<BranchInst
>(TI
)) {
754 if (BI
->isConditional())
755 Cond
= dyn_cast
<Instruction
>(BI
->getCondition());
756 } else if (IndirectBrInst
*IBI
= dyn_cast
<IndirectBrInst
>(TI
)) {
757 Cond
= dyn_cast
<Instruction
>(IBI
->getAddress());
760 TI
->eraseFromParent();
762 RecursivelyDeleteTriviallyDeadInstructions(Cond
, nullptr, MSSAU
);
765 /// Return true if the specified terminator checks
766 /// to see if a value is equal to constant integer value.
767 Value
*SimplifyCFGOpt::isValueEqualityComparison(Instruction
*TI
) {
769 if (SwitchInst
*SI
= dyn_cast
<SwitchInst
>(TI
)) {
770 // Do not permit merging of large switch instructions into their
771 // predecessors unless there is only one predecessor.
772 if (!SI
->getParent()->hasNPredecessorsOrMore(128 / SI
->getNumSuccessors()))
773 CV
= SI
->getCondition();
774 } else if (BranchInst
*BI
= dyn_cast
<BranchInst
>(TI
))
775 if (BI
->isConditional() && BI
->getCondition()->hasOneUse())
776 if (ICmpInst
*ICI
= dyn_cast
<ICmpInst
>(BI
->getCondition())) {
777 if (ICI
->isEquality() && GetConstantInt(ICI
->getOperand(1), DL
))
778 CV
= ICI
->getOperand(0);
781 // Unwrap any lossless ptrtoint cast.
783 if (PtrToIntInst
*PTII
= dyn_cast
<PtrToIntInst
>(CV
)) {
784 Value
*Ptr
= PTII
->getPointerOperand();
785 if (PTII
->getType() == DL
.getIntPtrType(Ptr
->getType()))
792 /// Given a value comparison instruction,
793 /// decode all of the 'cases' that it represents and return the 'default' block.
794 BasicBlock
*SimplifyCFGOpt::GetValueEqualityComparisonCases(
795 Instruction
*TI
, std::vector
<ValueEqualityComparisonCase
> &Cases
) {
796 if (SwitchInst
*SI
= dyn_cast
<SwitchInst
>(TI
)) {
797 Cases
.reserve(SI
->getNumCases());
798 for (auto Case
: SI
->cases())
799 Cases
.push_back(ValueEqualityComparisonCase(Case
.getCaseValue(),
800 Case
.getCaseSuccessor()));
801 return SI
->getDefaultDest();
804 BranchInst
*BI
= cast
<BranchInst
>(TI
);
805 ICmpInst
*ICI
= cast
<ICmpInst
>(BI
->getCondition());
806 BasicBlock
*Succ
= BI
->getSuccessor(ICI
->getPredicate() == ICmpInst::ICMP_NE
);
807 Cases
.push_back(ValueEqualityComparisonCase(
808 GetConstantInt(ICI
->getOperand(1), DL
), Succ
));
809 return BI
->getSuccessor(ICI
->getPredicate() == ICmpInst::ICMP_EQ
);
812 /// Given a vector of bb/value pairs, remove any entries
813 /// in the list that match the specified block.
815 EliminateBlockCases(BasicBlock
*BB
,
816 std::vector
<ValueEqualityComparisonCase
> &Cases
) {
817 llvm::erase_value(Cases
, BB
);
820 /// Return true if there are any keys in C1 that exist in C2 as well.
821 static bool ValuesOverlap(std::vector
<ValueEqualityComparisonCase
> &C1
,
822 std::vector
<ValueEqualityComparisonCase
> &C2
) {
823 std::vector
<ValueEqualityComparisonCase
> *V1
= &C1
, *V2
= &C2
;
825 // Make V1 be smaller than V2.
826 if (V1
->size() > V2
->size())
831 if (V1
->size() == 1) {
833 ConstantInt
*TheVal
= (*V1
)[0].Value
;
834 for (unsigned i
= 0, e
= V2
->size(); i
!= e
; ++i
)
835 if (TheVal
== (*V2
)[i
].Value
)
839 // Otherwise, just sort both lists and compare element by element.
840 array_pod_sort(V1
->begin(), V1
->end());
841 array_pod_sort(V2
->begin(), V2
->end());
842 unsigned i1
= 0, i2
= 0, e1
= V1
->size(), e2
= V2
->size();
843 while (i1
!= e1
&& i2
!= e2
) {
844 if ((*V1
)[i1
].Value
== (*V2
)[i2
].Value
)
846 if ((*V1
)[i1
].Value
< (*V2
)[i2
].Value
)
854 // Set branch weights on SwitchInst. This sets the metadata if there is at
855 // least one non-zero weight.
856 static void setBranchWeights(SwitchInst
*SI
, ArrayRef
<uint32_t> Weights
) {
857 // Check that there is at least one non-zero weight. Otherwise, pass
858 // nullptr to setMetadata which will erase the existing metadata.
860 if (llvm::any_of(Weights
, [](uint32_t W
) { return W
!= 0; }))
861 N
= MDBuilder(SI
->getParent()->getContext()).createBranchWeights(Weights
);
862 SI
->setMetadata(LLVMContext::MD_prof
, N
);
865 // Similar to the above, but for branch and select instructions that take
866 // exactly 2 weights.
867 static void setBranchWeights(Instruction
*I
, uint32_t TrueWeight
,
868 uint32_t FalseWeight
) {
869 assert(isa
<BranchInst
>(I
) || isa
<SelectInst
>(I
));
870 // Check that there is at least one non-zero weight. Otherwise, pass
871 // nullptr to setMetadata which will erase the existing metadata.
873 if (TrueWeight
|| FalseWeight
)
874 N
= MDBuilder(I
->getParent()->getContext())
875 .createBranchWeights(TrueWeight
, FalseWeight
);
876 I
->setMetadata(LLVMContext::MD_prof
, N
);
879 /// If TI is known to be a terminator instruction and its block is known to
880 /// only have a single predecessor block, check to see if that predecessor is
881 /// also a value comparison with the same value, and if that comparison
882 /// determines the outcome of this comparison. If so, simplify TI. This does a
883 /// very limited form of jump threading.
884 bool SimplifyCFGOpt::SimplifyEqualityComparisonWithOnlyPredecessor(
885 Instruction
*TI
, BasicBlock
*Pred
, IRBuilder
<> &Builder
) {
886 Value
*PredVal
= isValueEqualityComparison(Pred
->getTerminator());
888 return false; // Not a value comparison in predecessor.
890 Value
*ThisVal
= isValueEqualityComparison(TI
);
891 assert(ThisVal
&& "This isn't a value comparison!!");
892 if (ThisVal
!= PredVal
)
893 return false; // Different predicates.
895 // TODO: Preserve branch weight metadata, similarly to how
896 // FoldValueComparisonIntoPredecessors preserves it.
898 // Find out information about when control will move from Pred to TI's block.
899 std::vector
<ValueEqualityComparisonCase
> PredCases
;
900 BasicBlock
*PredDef
=
901 GetValueEqualityComparisonCases(Pred
->getTerminator(), PredCases
);
902 EliminateBlockCases(PredDef
, PredCases
); // Remove default from cases.
904 // Find information about how control leaves this block.
905 std::vector
<ValueEqualityComparisonCase
> ThisCases
;
906 BasicBlock
*ThisDef
= GetValueEqualityComparisonCases(TI
, ThisCases
);
907 EliminateBlockCases(ThisDef
, ThisCases
); // Remove default from cases.
909 // If TI's block is the default block from Pred's comparison, potentially
910 // simplify TI based on this knowledge.
911 if (PredDef
== TI
->getParent()) {
912 // If we are here, we know that the value is none of those cases listed in
913 // PredCases. If there are any cases in ThisCases that are in PredCases, we
915 if (!ValuesOverlap(PredCases
, ThisCases
))
918 if (isa
<BranchInst
>(TI
)) {
919 // Okay, one of the successors of this condbr is dead. Convert it to a
921 assert(ThisCases
.size() == 1 && "Branch can only have one case!");
922 // Insert the new branch.
923 Instruction
*NI
= Builder
.CreateBr(ThisDef
);
926 // Remove PHI node entries for the dead edge.
927 ThisCases
[0].Dest
->removePredecessor(PredDef
);
929 LLVM_DEBUG(dbgs() << "Threading pred instr: " << *Pred
->getTerminator()
930 << "Through successor TI: " << *TI
<< "Leaving: " << *NI
933 EraseTerminatorAndDCECond(TI
);
937 {{DominatorTree::Delete
, PredDef
, ThisCases
[0].Dest
}});
942 SwitchInstProfUpdateWrapper SI
= *cast
<SwitchInst
>(TI
);
943 // Okay, TI has cases that are statically dead, prune them away.
944 SmallPtrSet
<Constant
*, 16> DeadCases
;
945 for (unsigned i
= 0, e
= PredCases
.size(); i
!= e
; ++i
)
946 DeadCases
.insert(PredCases
[i
].Value
);
948 LLVM_DEBUG(dbgs() << "Threading pred instr: " << *Pred
->getTerminator()
949 << "Through successor TI: " << *TI
);
951 SmallDenseMap
<BasicBlock
*, int, 8> NumPerSuccessorCases
;
952 for (SwitchInst::CaseIt i
= SI
->case_end(), e
= SI
->case_begin(); i
!= e
;) {
954 auto *Successor
= i
->getCaseSuccessor();
956 ++NumPerSuccessorCases
[Successor
];
957 if (DeadCases
.count(i
->getCaseValue())) {
958 Successor
->removePredecessor(PredDef
);
961 --NumPerSuccessorCases
[Successor
];
966 std::vector
<DominatorTree::UpdateType
> Updates
;
967 for (const std::pair
<BasicBlock
*, int> &I
: NumPerSuccessorCases
)
969 Updates
.push_back({DominatorTree::Delete
, PredDef
, I
.first
});
970 DTU
->applyUpdates(Updates
);
973 LLVM_DEBUG(dbgs() << "Leaving: " << *TI
<< "\n");
977 // Otherwise, TI's block must correspond to some matched value. Find out
978 // which value (or set of values) this is.
979 ConstantInt
*TIV
= nullptr;
980 BasicBlock
*TIBB
= TI
->getParent();
981 for (unsigned i
= 0, e
= PredCases
.size(); i
!= e
; ++i
)
982 if (PredCases
[i
].Dest
== TIBB
) {
984 return false; // Cannot handle multiple values coming to this block.
985 TIV
= PredCases
[i
].Value
;
987 assert(TIV
&& "No edge from pred to succ?");
989 // Okay, we found the one constant that our value can be if we get into TI's
990 // BB. Find out which successor will unconditionally be branched to.
991 BasicBlock
*TheRealDest
= nullptr;
992 for (unsigned i
= 0, e
= ThisCases
.size(); i
!= e
; ++i
)
993 if (ThisCases
[i
].Value
== TIV
) {
994 TheRealDest
= ThisCases
[i
].Dest
;
998 // If not handled by any explicit cases, it is handled by the default case.
1000 TheRealDest
= ThisDef
;
1002 SmallPtrSet
<BasicBlock
*, 2> RemovedSuccs
;
1004 // Remove PHI node entries for dead edges.
1005 BasicBlock
*CheckEdge
= TheRealDest
;
1006 for (BasicBlock
*Succ
: successors(TIBB
))
1007 if (Succ
!= CheckEdge
) {
1008 if (Succ
!= TheRealDest
)
1009 RemovedSuccs
.insert(Succ
);
1010 Succ
->removePredecessor(TIBB
);
1012 CheckEdge
= nullptr;
1014 // Insert the new branch.
1015 Instruction
*NI
= Builder
.CreateBr(TheRealDest
);
1018 LLVM_DEBUG(dbgs() << "Threading pred instr: " << *Pred
->getTerminator()
1019 << "Through successor TI: " << *TI
<< "Leaving: " << *NI
1022 EraseTerminatorAndDCECond(TI
);
1024 SmallVector
<DominatorTree::UpdateType
, 2> Updates
;
1025 Updates
.reserve(RemovedSuccs
.size());
1026 for (auto *RemovedSucc
: RemovedSuccs
)
1027 Updates
.push_back({DominatorTree::Delete
, TIBB
, RemovedSucc
});
1028 DTU
->applyUpdates(Updates
);
1035 /// This class implements a stable ordering of constant
1036 /// integers that does not depend on their address. This is important for
1037 /// applications that sort ConstantInt's to ensure uniqueness.
1038 struct ConstantIntOrdering
{
1039 bool operator()(const ConstantInt
*LHS
, const ConstantInt
*RHS
) const {
1040 return LHS
->getValue().ult(RHS
->getValue());
1044 } // end anonymous namespace
1046 static int ConstantIntSortPredicate(ConstantInt
*const *P1
,
1047 ConstantInt
*const *P2
) {
1048 const ConstantInt
*LHS
= *P1
;
1049 const ConstantInt
*RHS
= *P2
;
1052 return LHS
->getValue().ult(RHS
->getValue()) ? 1 : -1;
1055 /// Get Weights of a given terminator, the default weight is at the front
1056 /// of the vector. If TI is a conditional eq, we need to swap the branch-weight
1058 static void GetBranchWeights(Instruction
*TI
,
1059 SmallVectorImpl
<uint64_t> &Weights
) {
1060 MDNode
*MD
= TI
->getMetadata(LLVMContext::MD_prof
);
1062 for (unsigned i
= 1, e
= MD
->getNumOperands(); i
< e
; ++i
) {
1063 ConstantInt
*CI
= mdconst::extract
<ConstantInt
>(MD
->getOperand(i
));
1064 Weights
.push_back(CI
->getValue().getZExtValue());
1067 // If TI is a conditional eq, the default case is the false case,
1068 // and the corresponding branch-weight data is at index 2. We swap the
1069 // default weight to be the first entry.
1070 if (BranchInst
*BI
= dyn_cast
<BranchInst
>(TI
)) {
1071 assert(Weights
.size() == 2);
1072 ICmpInst
*ICI
= cast
<ICmpInst
>(BI
->getCondition());
1073 if (ICI
->getPredicate() == ICmpInst::ICMP_EQ
)
1074 std::swap(Weights
.front(), Weights
.back());
1078 /// Keep halving the weights until all can fit in uint32_t.
1079 static void FitWeights(MutableArrayRef
<uint64_t> Weights
) {
1080 uint64_t Max
= *std::max_element(Weights
.begin(), Weights
.end());
1081 if (Max
> UINT_MAX
) {
1082 unsigned Offset
= 32 - countLeadingZeros(Max
);
1083 for (uint64_t &I
: Weights
)
1088 static void CloneInstructionsIntoPredecessorBlockAndUpdateSSAUses(
1089 BasicBlock
*BB
, BasicBlock
*PredBlock
, ValueToValueMapTy
&VMap
) {
1090 Instruction
*PTI
= PredBlock
->getTerminator();
1092 // If we have bonus instructions, clone them into the predecessor block.
1093 // Note that there may be multiple predecessor blocks, so we cannot move
1094 // bonus instructions to a predecessor block.
1095 for (Instruction
&BonusInst
: *BB
) {
1096 if (isa
<DbgInfoIntrinsic
>(BonusInst
) || BonusInst
.isTerminator())
1099 Instruction
*NewBonusInst
= BonusInst
.clone();
1101 if (PTI
->getDebugLoc() != NewBonusInst
->getDebugLoc()) {
1102 // Unless the instruction has the same !dbg location as the original
1103 // branch, drop it. When we fold the bonus instructions we want to make
1104 // sure we reset their debug locations in order to avoid stepping on
1105 // dead code caused by folding dead branches.
1106 NewBonusInst
->setDebugLoc(DebugLoc());
1109 RemapInstruction(NewBonusInst
, VMap
,
1110 RF_NoModuleLevelChanges
| RF_IgnoreMissingLocals
);
1111 VMap
[&BonusInst
] = NewBonusInst
;
1113 // If we moved a load, we cannot any longer claim any knowledge about
1114 // its potential value. The previous information might have been valid
1115 // only given the branch precondition.
1116 // For an analogous reason, we must also drop all the metadata whose
1117 // semantics we don't understand. We *can* preserve !annotation, because
1118 // it is tied to the instruction itself, not the value or position.
1119 // Similarly strip attributes on call parameters that may cause UB in
1120 // location the call is moved to.
1121 NewBonusInst
->dropUndefImplyingAttrsAndUnknownMetadata(
1122 LLVMContext::MD_annotation
);
1124 PredBlock
->getInstList().insert(PTI
->getIterator(), NewBonusInst
);
1125 NewBonusInst
->takeName(&BonusInst
);
1126 BonusInst
.setName(NewBonusInst
->getName() + ".old");
1128 // Update (liveout) uses of bonus instructions,
1129 // now that the bonus instruction has been cloned into predecessor.
1130 // Note that we expect to be in a block-closed SSA form for this to work!
1131 for (Use
&U
: make_early_inc_range(BonusInst
.uses())) {
1132 auto *UI
= cast
<Instruction
>(U
.getUser());
1133 auto *PN
= dyn_cast
<PHINode
>(UI
);
1135 assert(UI
->getParent() == BB
&& BonusInst
.comesBefore(UI
) &&
1136 "If the user is not a PHI node, then it should be in the same "
1137 "block as, and come after, the original bonus instruction.");
1138 continue; // Keep using the original bonus instruction.
1140 // Is this the block-closed SSA form PHI node?
1141 if (PN
->getIncomingBlock(U
) == BB
)
1142 continue; // Great, keep using the original bonus instruction.
1143 // The only other alternative is an "use" when coming from
1144 // the predecessor block - here we should refer to the cloned bonus instr.
1145 assert(PN
->getIncomingBlock(U
) == PredBlock
&&
1146 "Not in block-closed SSA form?");
1147 U
.set(NewBonusInst
);
1152 bool SimplifyCFGOpt::PerformValueComparisonIntoPredecessorFolding(
1153 Instruction
*TI
, Value
*&CV
, Instruction
*PTI
, IRBuilder
<> &Builder
) {
1154 BasicBlock
*BB
= TI
->getParent();
1155 BasicBlock
*Pred
= PTI
->getParent();
1157 SmallVector
<DominatorTree::UpdateType
, 32> Updates
;
1159 // Figure out which 'cases' to copy from SI to PSI.
1160 std::vector
<ValueEqualityComparisonCase
> BBCases
;
1161 BasicBlock
*BBDefault
= GetValueEqualityComparisonCases(TI
, BBCases
);
1163 std::vector
<ValueEqualityComparisonCase
> PredCases
;
1164 BasicBlock
*PredDefault
= GetValueEqualityComparisonCases(PTI
, PredCases
);
1166 // Based on whether the default edge from PTI goes to BB or not, fill in
1167 // PredCases and PredDefault with the new switch cases we would like to
1169 SmallMapVector
<BasicBlock
*, int, 8> NewSuccessors
;
1171 // Update the branch weight metadata along the way
1172 SmallVector
<uint64_t, 8> Weights
;
1173 bool PredHasWeights
= hasBranchWeightMD(*PTI
);
1174 bool SuccHasWeights
= hasBranchWeightMD(*TI
);
1176 if (PredHasWeights
) {
1177 GetBranchWeights(PTI
, Weights
);
1178 // branch-weight metadata is inconsistent here.
1179 if (Weights
.size() != 1 + PredCases
.size())
1180 PredHasWeights
= SuccHasWeights
= false;
1181 } else if (SuccHasWeights
)
1182 // If there are no predecessor weights but there are successor weights,
1183 // populate Weights with 1, which will later be scaled to the sum of
1184 // successor's weights
1185 Weights
.assign(1 + PredCases
.size(), 1);
1187 SmallVector
<uint64_t, 8> SuccWeights
;
1188 if (SuccHasWeights
) {
1189 GetBranchWeights(TI
, SuccWeights
);
1190 // branch-weight metadata is inconsistent here.
1191 if (SuccWeights
.size() != 1 + BBCases
.size())
1192 PredHasWeights
= SuccHasWeights
= false;
1193 } else if (PredHasWeights
)
1194 SuccWeights
.assign(1 + BBCases
.size(), 1);
1196 if (PredDefault
== BB
) {
1197 // If this is the default destination from PTI, only the edges in TI
1198 // that don't occur in PTI, or that branch to BB will be activated.
1199 std::set
<ConstantInt
*, ConstantIntOrdering
> PTIHandled
;
1200 for (unsigned i
= 0, e
= PredCases
.size(); i
!= e
; ++i
)
1201 if (PredCases
[i
].Dest
!= BB
)
1202 PTIHandled
.insert(PredCases
[i
].Value
);
1204 // The default destination is BB, we don't need explicit targets.
1205 std::swap(PredCases
[i
], PredCases
.back());
1207 if (PredHasWeights
|| SuccHasWeights
) {
1208 // Increase weight for the default case.
1209 Weights
[0] += Weights
[i
+ 1];
1210 std::swap(Weights
[i
+ 1], Weights
.back());
1214 PredCases
.pop_back();
1219 // Reconstruct the new switch statement we will be building.
1220 if (PredDefault
!= BBDefault
) {
1221 PredDefault
->removePredecessor(Pred
);
1222 if (DTU
&& PredDefault
!= BB
)
1223 Updates
.push_back({DominatorTree::Delete
, Pred
, PredDefault
});
1224 PredDefault
= BBDefault
;
1225 ++NewSuccessors
[BBDefault
];
1228 unsigned CasesFromPred
= Weights
.size();
1229 uint64_t ValidTotalSuccWeight
= 0;
1230 for (unsigned i
= 0, e
= BBCases
.size(); i
!= e
; ++i
)
1231 if (!PTIHandled
.count(BBCases
[i
].Value
) && BBCases
[i
].Dest
!= BBDefault
) {
1232 PredCases
.push_back(BBCases
[i
]);
1233 ++NewSuccessors
[BBCases
[i
].Dest
];
1234 if (SuccHasWeights
|| PredHasWeights
) {
1235 // The default weight is at index 0, so weight for the ith case
1236 // should be at index i+1. Scale the cases from successor by
1237 // PredDefaultWeight (Weights[0]).
1238 Weights
.push_back(Weights
[0] * SuccWeights
[i
+ 1]);
1239 ValidTotalSuccWeight
+= SuccWeights
[i
+ 1];
1243 if (SuccHasWeights
|| PredHasWeights
) {
1244 ValidTotalSuccWeight
+= SuccWeights
[0];
1245 // Scale the cases from predecessor by ValidTotalSuccWeight.
1246 for (unsigned i
= 1; i
< CasesFromPred
; ++i
)
1247 Weights
[i
] *= ValidTotalSuccWeight
;
1248 // Scale the default weight by SuccDefaultWeight (SuccWeights[0]).
1249 Weights
[0] *= SuccWeights
[0];
1252 // If this is not the default destination from PSI, only the edges
1253 // in SI that occur in PSI with a destination of BB will be
1255 std::set
<ConstantInt
*, ConstantIntOrdering
> PTIHandled
;
1256 std::map
<ConstantInt
*, uint64_t> WeightsForHandled
;
1257 for (unsigned i
= 0, e
= PredCases
.size(); i
!= e
; ++i
)
1258 if (PredCases
[i
].Dest
== BB
) {
1259 PTIHandled
.insert(PredCases
[i
].Value
);
1261 if (PredHasWeights
|| SuccHasWeights
) {
1262 WeightsForHandled
[PredCases
[i
].Value
] = Weights
[i
+ 1];
1263 std::swap(Weights
[i
+ 1], Weights
.back());
1267 std::swap(PredCases
[i
], PredCases
.back());
1268 PredCases
.pop_back();
1273 // Okay, now we know which constants were sent to BB from the
1274 // predecessor. Figure out where they will all go now.
1275 for (unsigned i
= 0, e
= BBCases
.size(); i
!= e
; ++i
)
1276 if (PTIHandled
.count(BBCases
[i
].Value
)) {
1277 // If this is one we are capable of getting...
1278 if (PredHasWeights
|| SuccHasWeights
)
1279 Weights
.push_back(WeightsForHandled
[BBCases
[i
].Value
]);
1280 PredCases
.push_back(BBCases
[i
]);
1281 ++NewSuccessors
[BBCases
[i
].Dest
];
1282 PTIHandled
.erase(BBCases
[i
].Value
); // This constant is taken care of
1285 // If there are any constants vectored to BB that TI doesn't handle,
1286 // they must go to the default destination of TI.
1287 for (ConstantInt
*I
: PTIHandled
) {
1288 if (PredHasWeights
|| SuccHasWeights
)
1289 Weights
.push_back(WeightsForHandled
[I
]);
1290 PredCases
.push_back(ValueEqualityComparisonCase(I
, BBDefault
));
1291 ++NewSuccessors
[BBDefault
];
1295 // Okay, at this point, we know which new successor Pred will get. Make
1296 // sure we update the number of entries in the PHI nodes for these
1298 SmallPtrSet
<BasicBlock
*, 2> SuccsOfPred
;
1300 SuccsOfPred
= {succ_begin(Pred
), succ_end(Pred
)};
1301 Updates
.reserve(Updates
.size() + NewSuccessors
.size());
1303 for (const std::pair
<BasicBlock
*, int /*Num*/> &NewSuccessor
:
1305 for (auto I
: seq(0, NewSuccessor
.second
)) {
1307 AddPredecessorToBlock(NewSuccessor
.first
, Pred
, BB
);
1309 if (DTU
&& !SuccsOfPred
.contains(NewSuccessor
.first
))
1310 Updates
.push_back({DominatorTree::Insert
, Pred
, NewSuccessor
.first
});
1313 Builder
.SetInsertPoint(PTI
);
1314 // Convert pointer to int before we switch.
1315 if (CV
->getType()->isPointerTy()) {
1317 Builder
.CreatePtrToInt(CV
, DL
.getIntPtrType(CV
->getType()), "magicptr");
1320 // Now that the successors are updated, create the new Switch instruction.
1321 SwitchInst
*NewSI
= Builder
.CreateSwitch(CV
, PredDefault
, PredCases
.size());
1322 NewSI
->setDebugLoc(PTI
->getDebugLoc());
1323 for (ValueEqualityComparisonCase
&V
: PredCases
)
1324 NewSI
->addCase(V
.Value
, V
.Dest
);
1326 if (PredHasWeights
|| SuccHasWeights
) {
1327 // Halve the weights if any of them cannot fit in an uint32_t
1328 FitWeights(Weights
);
1330 SmallVector
<uint32_t, 8> MDWeights(Weights
.begin(), Weights
.end());
1332 setBranchWeights(NewSI
, MDWeights
);
1335 EraseTerminatorAndDCECond(PTI
);
1337 // Okay, last check. If BB is still a successor of PSI, then we must
1338 // have an infinite loop case. If so, add an infinitely looping block
1339 // to handle the case to preserve the behavior of the code.
1340 BasicBlock
*InfLoopBlock
= nullptr;
1341 for (unsigned i
= 0, e
= NewSI
->getNumSuccessors(); i
!= e
; ++i
)
1342 if (NewSI
->getSuccessor(i
) == BB
) {
1343 if (!InfLoopBlock
) {
1344 // Insert it at the end of the function, because it's either code,
1345 // or it won't matter if it's hot. :)
1347 BasicBlock::Create(BB
->getContext(), "infloop", BB
->getParent());
1348 BranchInst::Create(InfLoopBlock
, InfLoopBlock
);
1351 {DominatorTree::Insert
, InfLoopBlock
, InfLoopBlock
});
1353 NewSI
->setSuccessor(i
, InfLoopBlock
);
1358 Updates
.push_back({DominatorTree::Insert
, Pred
, InfLoopBlock
});
1360 Updates
.push_back({DominatorTree::Delete
, Pred
, BB
});
1362 DTU
->applyUpdates(Updates
);
1365 ++NumFoldValueComparisonIntoPredecessors
;
1369 /// The specified terminator is a value equality comparison instruction
1370 /// (either a switch or a branch on "X == c").
1371 /// See if any of the predecessors of the terminator block are value comparisons
1372 /// on the same value. If so, and if safe to do so, fold them together.
1373 bool SimplifyCFGOpt::FoldValueComparisonIntoPredecessors(Instruction
*TI
,
1374 IRBuilder
<> &Builder
) {
1375 BasicBlock
*BB
= TI
->getParent();
1376 Value
*CV
= isValueEqualityComparison(TI
); // CondVal
1377 assert(CV
&& "Not a comparison?");
1379 bool Changed
= false;
1381 SmallSetVector
<BasicBlock
*, 16> Preds(pred_begin(BB
), pred_end(BB
));
1382 while (!Preds
.empty()) {
1383 BasicBlock
*Pred
= Preds
.pop_back_val();
1384 Instruction
*PTI
= Pred
->getTerminator();
1386 // Don't try to fold into itself.
1390 // See if the predecessor is a comparison with the same value.
1391 Value
*PCV
= isValueEqualityComparison(PTI
); // PredCondVal
1395 SmallSetVector
<BasicBlock
*, 4> FailBlocks
;
1396 if (!SafeToMergeTerminators(TI
, PTI
, &FailBlocks
)) {
1397 for (auto *Succ
: FailBlocks
) {
1398 if (!SplitBlockPredecessors(Succ
, TI
->getParent(), ".fold.split", DTU
))
1403 PerformValueComparisonIntoPredecessorFolding(TI
, CV
, PTI
, Builder
);
1409 // If we would need to insert a select that uses the value of this invoke
1410 // (comments in HoistThenElseCodeToIf explain why we would need to do this), we
1411 // can't hoist the invoke, as there is nowhere to put the select in this case.
1412 static bool isSafeToHoistInvoke(BasicBlock
*BB1
, BasicBlock
*BB2
,
1413 Instruction
*I1
, Instruction
*I2
) {
1414 for (BasicBlock
*Succ
: successors(BB1
)) {
1415 for (const PHINode
&PN
: Succ
->phis()) {
1416 Value
*BB1V
= PN
.getIncomingValueForBlock(BB1
);
1417 Value
*BB2V
= PN
.getIncomingValueForBlock(BB2
);
1418 if (BB1V
!= BB2V
&& (BB1V
== I1
|| BB2V
== I2
)) {
1426 static bool passingValueIsAlwaysUndefined(Value
*V
, Instruction
*I
, bool PtrValueMayBeModified
= false);
1428 /// Given a conditional branch that goes to BB1 and BB2, hoist any common code
1429 /// in the two blocks up into the branch block. The caller of this function
1430 /// guarantees that BI's block dominates BB1 and BB2. If EqTermsOnly is given,
1431 /// only perform hoisting in case both blocks only contain a terminator. In that
1432 /// case, only the original BI will be replaced and selects for PHIs are added.
1433 bool SimplifyCFGOpt::HoistThenElseCodeToIf(BranchInst
*BI
,
1434 const TargetTransformInfo
&TTI
,
1436 // This does very trivial matching, with limited scanning, to find identical
1437 // instructions in the two blocks. In particular, we don't want to get into
1438 // O(M*N) situations here where M and N are the sizes of BB1 and BB2. As
1439 // such, we currently just scan for obviously identical instructions in an
1441 BasicBlock
*BB1
= BI
->getSuccessor(0); // The true destination.
1442 BasicBlock
*BB2
= BI
->getSuccessor(1); // The false destination
1444 // If either of the blocks has it's address taken, then we can't do this fold,
1445 // because the code we'd hoist would no longer run when we jump into the block
1447 if (BB1
->hasAddressTaken() || BB2
->hasAddressTaken())
1450 BasicBlock::iterator BB1_Itr
= BB1
->begin();
1451 BasicBlock::iterator BB2_Itr
= BB2
->begin();
1453 Instruction
*I1
= &*BB1_Itr
++, *I2
= &*BB2_Itr
++;
1454 // Skip debug info if it is not identical.
1455 DbgInfoIntrinsic
*DBI1
= dyn_cast
<DbgInfoIntrinsic
>(I1
);
1456 DbgInfoIntrinsic
*DBI2
= dyn_cast
<DbgInfoIntrinsic
>(I2
);
1457 if (!DBI1
|| !DBI2
|| !DBI1
->isIdenticalToWhenDefined(DBI2
)) {
1458 while (isa
<DbgInfoIntrinsic
>(I1
))
1460 while (isa
<DbgInfoIntrinsic
>(I2
))
1463 if (isa
<PHINode
>(I1
) || !I1
->isIdenticalToWhenDefined(I2
))
1466 BasicBlock
*BIParent
= BI
->getParent();
1468 bool Changed
= false;
1470 auto _
= make_scope_exit([&]() {
1472 ++NumHoistCommonCode
;
1475 // Check if only hoisting terminators is allowed. This does not add new
1476 // instructions to the hoist location.
1478 // Skip any debug intrinsics, as they are free to hoist.
1479 auto *I1NonDbg
= &*skipDebugIntrinsics(I1
->getIterator());
1480 auto *I2NonDbg
= &*skipDebugIntrinsics(I2
->getIterator());
1481 if (!I1NonDbg
->isIdenticalToWhenDefined(I2NonDbg
))
1483 if (!I1NonDbg
->isTerminator())
1485 // Now we know that we only need to hoist debug intrinsics and the
1486 // terminator. Let the loop below handle those 2 cases.
1490 // If we are hoisting the terminator instruction, don't move one (making a
1491 // broken BB), instead clone it, and remove BI.
1492 if (I1
->isTerminator())
1493 goto HoistTerminator
;
1495 // If we're going to hoist a call, make sure that the two instructions we're
1496 // commoning/hoisting are both marked with musttail, or neither of them is
1497 // marked as such. Otherwise, we might end up in a situation where we hoist
1498 // from a block where the terminator is a `ret` to a block where the terminator
1499 // is a `br`, and `musttail` calls expect to be followed by a return.
1500 auto *C1
= dyn_cast
<CallInst
>(I1
);
1501 auto *C2
= dyn_cast
<CallInst
>(I2
);
1503 if (C1
->isMustTailCall() != C2
->isMustTailCall())
1506 if (!TTI
.isProfitableToHoist(I1
) || !TTI
.isProfitableToHoist(I2
))
1509 // If any of the two call sites has nomerge attribute, stop hoisting.
1510 if (const auto *CB1
= dyn_cast
<CallBase
>(I1
))
1511 if (CB1
->cannotMerge())
1513 if (const auto *CB2
= dyn_cast
<CallBase
>(I2
))
1514 if (CB2
->cannotMerge())
1517 if (isa
<DbgInfoIntrinsic
>(I1
) || isa
<DbgInfoIntrinsic
>(I2
)) {
1518 assert (isa
<DbgInfoIntrinsic
>(I1
) && isa
<DbgInfoIntrinsic
>(I2
));
1519 // The debug location is an integral part of a debug info intrinsic
1520 // and can't be separated from it or replaced. Instead of attempting
1521 // to merge locations, simply hoist both copies of the intrinsic.
1522 BIParent
->getInstList().splice(BI
->getIterator(),
1523 BB1
->getInstList(), I1
);
1524 BIParent
->getInstList().splice(BI
->getIterator(),
1525 BB2
->getInstList(), I2
);
1528 // For a normal instruction, we just move one to right before the branch,
1529 // then replace all uses of the other with the first. Finally, we remove
1530 // the now redundant second instruction.
1531 BIParent
->getInstList().splice(BI
->getIterator(),
1532 BB1
->getInstList(), I1
);
1533 if (!I2
->use_empty())
1534 I2
->replaceAllUsesWith(I1
);
1536 unsigned KnownIDs
[] = {LLVMContext::MD_tbaa
,
1537 LLVMContext::MD_range
,
1538 LLVMContext::MD_fpmath
,
1539 LLVMContext::MD_invariant_load
,
1540 LLVMContext::MD_nonnull
,
1541 LLVMContext::MD_invariant_group
,
1542 LLVMContext::MD_align
,
1543 LLVMContext::MD_dereferenceable
,
1544 LLVMContext::MD_dereferenceable_or_null
,
1545 LLVMContext::MD_mem_parallel_loop_access
,
1546 LLVMContext::MD_access_group
,
1547 LLVMContext::MD_preserve_access_index
};
1548 combineMetadata(I1
, I2
, KnownIDs
, true);
1550 // I1 and I2 are being combined into a single instruction. Its debug
1551 // location is the merged locations of the original instructions.
1552 I1
->applyMergedLocation(I1
->getDebugLoc(), I2
->getDebugLoc());
1554 I2
->eraseFromParent();
1557 ++NumHoistCommonInstrs
;
1561 // Skip debug info if it is not identical.
1562 DbgInfoIntrinsic
*DBI1
= dyn_cast
<DbgInfoIntrinsic
>(I1
);
1563 DbgInfoIntrinsic
*DBI2
= dyn_cast
<DbgInfoIntrinsic
>(I2
);
1564 if (!DBI1
|| !DBI2
|| !DBI1
->isIdenticalToWhenDefined(DBI2
)) {
1565 while (isa
<DbgInfoIntrinsic
>(I1
))
1567 while (isa
<DbgInfoIntrinsic
>(I2
))
1570 } while (I1
->isIdenticalToWhenDefined(I2
));
1575 // It may not be possible to hoist an invoke.
1576 // FIXME: Can we define a safety predicate for CallBr?
1577 if (isa
<InvokeInst
>(I1
) && !isSafeToHoistInvoke(BB1
, BB2
, I1
, I2
))
1580 // TODO: callbr hoisting currently disabled pending further study.
1581 if (isa
<CallBrInst
>(I1
))
1584 for (BasicBlock
*Succ
: successors(BB1
)) {
1585 for (PHINode
&PN
: Succ
->phis()) {
1586 Value
*BB1V
= PN
.getIncomingValueForBlock(BB1
);
1587 Value
*BB2V
= PN
.getIncomingValueForBlock(BB2
);
1591 // Check for passingValueIsAlwaysUndefined here because we would rather
1592 // eliminate undefined control flow then converting it to a select.
1593 if (passingValueIsAlwaysUndefined(BB1V
, &PN
) ||
1594 passingValueIsAlwaysUndefined(BB2V
, &PN
))
1599 // Okay, it is safe to hoist the terminator.
1600 Instruction
*NT
= I1
->clone();
1601 BIParent
->getInstList().insert(BI
->getIterator(), NT
);
1602 if (!NT
->getType()->isVoidTy()) {
1603 I1
->replaceAllUsesWith(NT
);
1604 I2
->replaceAllUsesWith(NT
);
1608 ++NumHoistCommonInstrs
;
1610 // Ensure terminator gets a debug location, even an unknown one, in case
1611 // it involves inlinable calls.
1612 NT
->applyMergedLocation(I1
->getDebugLoc(), I2
->getDebugLoc());
1614 // PHIs created below will adopt NT's merged DebugLoc.
1615 IRBuilder
<NoFolder
> Builder(NT
);
1617 // Hoisting one of the terminators from our successor is a great thing.
1618 // Unfortunately, the successors of the if/else blocks may have PHI nodes in
1619 // them. If they do, all PHI entries for BB1/BB2 must agree for all PHI
1620 // nodes, so we insert select instruction to compute the final result.
1621 std::map
<std::pair
<Value
*, Value
*>, SelectInst
*> InsertedSelects
;
1622 for (BasicBlock
*Succ
: successors(BB1
)) {
1623 for (PHINode
&PN
: Succ
->phis()) {
1624 Value
*BB1V
= PN
.getIncomingValueForBlock(BB1
);
1625 Value
*BB2V
= PN
.getIncomingValueForBlock(BB2
);
1629 // These values do not agree. Insert a select instruction before NT
1630 // that determines the right value.
1631 SelectInst
*&SI
= InsertedSelects
[std::make_pair(BB1V
, BB2V
)];
1633 // Propagate fast-math-flags from phi node to its replacement select.
1634 IRBuilder
<>::FastMathFlagGuard
FMFGuard(Builder
);
1635 if (isa
<FPMathOperator
>(PN
))
1636 Builder
.setFastMathFlags(PN
.getFastMathFlags());
1638 SI
= cast
<SelectInst
>(
1639 Builder
.CreateSelect(BI
->getCondition(), BB1V
, BB2V
,
1640 BB1V
->getName() + "." + BB2V
->getName(), BI
));
1643 // Make the PHI node use the select for all incoming values for BB1/BB2
1644 for (unsigned i
= 0, e
= PN
.getNumIncomingValues(); i
!= e
; ++i
)
1645 if (PN
.getIncomingBlock(i
) == BB1
|| PN
.getIncomingBlock(i
) == BB2
)
1646 PN
.setIncomingValue(i
, SI
);
1650 SmallVector
<DominatorTree::UpdateType
, 4> Updates
;
1652 // Update any PHI nodes in our new successors.
1653 for (BasicBlock
*Succ
: successors(BB1
)) {
1654 AddPredecessorToBlock(Succ
, BIParent
, BB1
);
1656 Updates
.push_back({DominatorTree::Insert
, BIParent
, Succ
});
1660 for (BasicBlock
*Succ
: successors(BI
))
1661 Updates
.push_back({DominatorTree::Delete
, BIParent
, Succ
});
1663 EraseTerminatorAndDCECond(BI
);
1665 DTU
->applyUpdates(Updates
);
1669 // Check lifetime markers.
1670 static bool isLifeTimeMarker(const Instruction
*I
) {
1671 if (auto II
= dyn_cast
<IntrinsicInst
>(I
)) {
1672 switch (II
->getIntrinsicID()) {
1675 case Intrinsic::lifetime_start
:
1676 case Intrinsic::lifetime_end
:
1683 // TODO: Refine this. This should avoid cases like turning constant memcpy sizes
1685 static bool replacingOperandWithVariableIsCheap(const Instruction
*I
,
1687 return !isa
<IntrinsicInst
>(I
);
1690 // All instructions in Insts belong to different blocks that all unconditionally
1691 // branch to a common successor. Analyze each instruction and return true if it
1692 // would be possible to sink them into their successor, creating one common
1693 // instruction instead. For every value that would be required to be provided by
1694 // PHI node (because an operand varies in each input block), add to PHIOperands.
1695 static bool canSinkInstructions(
1696 ArrayRef
<Instruction
*> Insts
,
1697 DenseMap
<Instruction
*, SmallVector
<Value
*, 4>> &PHIOperands
) {
1698 // Prune out obviously bad instructions to move. Each instruction must have
1699 // exactly zero or one use, and we check later that use is by a single, common
1700 // PHI instruction in the successor.
1701 bool HasUse
= !Insts
.front()->user_empty();
1702 for (auto *I
: Insts
) {
1703 // These instructions may change or break semantics if moved.
1704 if (isa
<PHINode
>(I
) || I
->isEHPad() || isa
<AllocaInst
>(I
) ||
1705 I
->getType()->isTokenTy())
1708 // Do not try to sink an instruction in an infinite loop - it can cause
1709 // this algorithm to infinite loop.
1710 if (I
->getParent()->getSingleSuccessor() == I
->getParent())
1713 // Conservatively return false if I is an inline-asm instruction. Sinking
1714 // and merging inline-asm instructions can potentially create arguments
1715 // that cannot satisfy the inline-asm constraints.
1716 // If the instruction has nomerge attribute, return false.
1717 if (const auto *C
= dyn_cast
<CallBase
>(I
))
1718 if (C
->isInlineAsm() || C
->cannotMerge())
1721 // Each instruction must have zero or one use.
1722 if (HasUse
&& !I
->hasOneUse())
1724 if (!HasUse
&& !I
->user_empty())
1728 const Instruction
*I0
= Insts
.front();
1729 for (auto *I
: Insts
)
1730 if (!I
->isSameOperationAs(I0
))
1733 // All instructions in Insts are known to be the same opcode. If they have a
1734 // use, check that the only user is a PHI or in the same block as the
1735 // instruction, because if a user is in the same block as an instruction we're
1736 // contemplating sinking, it must already be determined to be sinkable.
1738 auto *PNUse
= dyn_cast
<PHINode
>(*I0
->user_begin());
1739 auto *Succ
= I0
->getParent()->getTerminator()->getSuccessor(0);
1740 if (!all_of(Insts
, [&PNUse
,&Succ
](const Instruction
*I
) -> bool {
1741 auto *U
= cast
<Instruction
>(*I
->user_begin());
1743 PNUse
->getParent() == Succ
&&
1744 PNUse
->getIncomingValueForBlock(I
->getParent()) == I
) ||
1745 U
->getParent() == I
->getParent();
1750 // Because SROA can't handle speculating stores of selects, try not to sink
1751 // loads, stores or lifetime markers of allocas when we'd have to create a
1752 // PHI for the address operand. Also, because it is likely that loads or
1753 // stores of allocas will disappear when Mem2Reg/SROA is run, don't sink
1755 // This can cause code churn which can have unintended consequences down
1756 // the line - see https://llvm.org/bugs/show_bug.cgi?id=30244.
1757 // FIXME: This is a workaround for a deficiency in SROA - see
1758 // https://llvm.org/bugs/show_bug.cgi?id=30188
1759 if (isa
<StoreInst
>(I0
) && any_of(Insts
, [](const Instruction
*I
) {
1760 return isa
<AllocaInst
>(I
->getOperand(1)->stripPointerCasts());
1763 if (isa
<LoadInst
>(I0
) && any_of(Insts
, [](const Instruction
*I
) {
1764 return isa
<AllocaInst
>(I
->getOperand(0)->stripPointerCasts());
1767 if (isLifeTimeMarker(I0
) && any_of(Insts
, [](const Instruction
*I
) {
1768 return isa
<AllocaInst
>(I
->getOperand(1)->stripPointerCasts());
1772 // For calls to be sinkable, they must all be indirect, or have same callee.
1773 // I.e. if we have two direct calls to different callees, we don't want to
1774 // turn that into an indirect call. Likewise, if we have an indirect call,
1775 // and a direct call, we don't actually want to have a single indirect call.
1776 if (isa
<CallBase
>(I0
)) {
1777 auto IsIndirectCall
= [](const Instruction
*I
) {
1778 return cast
<CallBase
>(I
)->isIndirectCall();
1780 bool HaveIndirectCalls
= any_of(Insts
, IsIndirectCall
);
1781 bool AllCallsAreIndirect
= all_of(Insts
, IsIndirectCall
);
1782 if (HaveIndirectCalls
) {
1783 if (!AllCallsAreIndirect
)
1786 // All callees must be identical.
1787 Value
*Callee
= nullptr;
1788 for (const Instruction
*I
: Insts
) {
1789 Value
*CurrCallee
= cast
<CallBase
>(I
)->getCalledOperand();
1791 Callee
= CurrCallee
;
1792 else if (Callee
!= CurrCallee
)
1798 for (unsigned OI
= 0, OE
= I0
->getNumOperands(); OI
!= OE
; ++OI
) {
1799 Value
*Op
= I0
->getOperand(OI
);
1800 if (Op
->getType()->isTokenTy())
1801 // Don't touch any operand of token type.
1804 auto SameAsI0
= [&I0
, OI
](const Instruction
*I
) {
1805 assert(I
->getNumOperands() == I0
->getNumOperands());
1806 return I
->getOperand(OI
) == I0
->getOperand(OI
);
1808 if (!all_of(Insts
, SameAsI0
)) {
1809 if ((isa
<Constant
>(Op
) && !replacingOperandWithVariableIsCheap(I0
, OI
)) ||
1810 !canReplaceOperandWithVariable(I0
, OI
))
1811 // We can't create a PHI from this GEP.
1813 for (auto *I
: Insts
)
1814 PHIOperands
[I
].push_back(I
->getOperand(OI
));
1820 // Assuming canSinkInstructions(Blocks) has returned true, sink the last
1821 // instruction of every block in Blocks to their common successor, commoning
1822 // into one instruction.
1823 static bool sinkLastInstruction(ArrayRef
<BasicBlock
*> Blocks
) {
1824 auto *BBEnd
= Blocks
[0]->getTerminator()->getSuccessor(0);
1826 // canSinkInstructions returning true guarantees that every block has at
1827 // least one non-terminator instruction.
1828 SmallVector
<Instruction
*,4> Insts
;
1829 for (auto *BB
: Blocks
) {
1830 Instruction
*I
= BB
->getTerminator();
1832 I
= I
->getPrevNode();
1833 } while (isa
<DbgInfoIntrinsic
>(I
) && I
!= &BB
->front());
1834 if (!isa
<DbgInfoIntrinsic
>(I
))
1838 // The only checking we need to do now is that all users of all instructions
1839 // are the same PHI node. canSinkInstructions should have checked this but
1840 // it is slightly over-aggressive - it gets confused by commutative
1841 // instructions so double-check it here.
1842 Instruction
*I0
= Insts
.front();
1843 if (!I0
->user_empty()) {
1844 auto *PNUse
= dyn_cast
<PHINode
>(*I0
->user_begin());
1845 if (!all_of(Insts
, [&PNUse
](const Instruction
*I
) -> bool {
1846 auto *U
= cast
<Instruction
>(*I
->user_begin());
1852 // We don't need to do any more checking here; canSinkInstructions should
1853 // have done it all for us.
1854 SmallVector
<Value
*, 4> NewOperands
;
1855 for (unsigned O
= 0, E
= I0
->getNumOperands(); O
!= E
; ++O
) {
1856 // This check is different to that in canSinkInstructions. There, we
1857 // cared about the global view once simplifycfg (and instcombine) have
1858 // completed - it takes into account PHIs that become trivially
1859 // simplifiable. However here we need a more local view; if an operand
1860 // differs we create a PHI and rely on instcombine to clean up the very
1861 // small mess we may make.
1862 bool NeedPHI
= any_of(Insts
, [&I0
, O
](const Instruction
*I
) {
1863 return I
->getOperand(O
) != I0
->getOperand(O
);
1866 NewOperands
.push_back(I0
->getOperand(O
));
1870 // Create a new PHI in the successor block and populate it.
1871 auto *Op
= I0
->getOperand(O
);
1872 assert(!Op
->getType()->isTokenTy() && "Can't PHI tokens!");
1873 auto *PN
= PHINode::Create(Op
->getType(), Insts
.size(),
1874 Op
->getName() + ".sink", &BBEnd
->front());
1875 for (auto *I
: Insts
)
1876 PN
->addIncoming(I
->getOperand(O
), I
->getParent());
1877 NewOperands
.push_back(PN
);
1880 // Arbitrarily use I0 as the new "common" instruction; remap its operands
1881 // and move it to the start of the successor block.
1882 for (unsigned O
= 0, E
= I0
->getNumOperands(); O
!= E
; ++O
)
1883 I0
->getOperandUse(O
).set(NewOperands
[O
]);
1884 I0
->moveBefore(&*BBEnd
->getFirstInsertionPt());
1886 // Update metadata and IR flags, and merge debug locations.
1887 for (auto *I
: Insts
)
1889 // The debug location for the "common" instruction is the merged locations
1890 // of all the commoned instructions. We start with the original location
1891 // of the "common" instruction and iteratively merge each location in the
1893 // This is an N-way merge, which will be inefficient if I0 is a CallInst.
1894 // However, as N-way merge for CallInst is rare, so we use simplified API
1895 // instead of using complex API for N-way merge.
1896 I0
->applyMergedLocation(I0
->getDebugLoc(), I
->getDebugLoc());
1897 combineMetadataForCSE(I0
, I
, true);
1901 if (!I0
->user_empty()) {
1902 // canSinkLastInstruction checked that all instructions were used by
1903 // one and only one PHI node. Find that now, RAUW it to our common
1904 // instruction and nuke it.
1905 auto *PN
= cast
<PHINode
>(*I0
->user_begin());
1906 PN
->replaceAllUsesWith(I0
);
1907 PN
->eraseFromParent();
1910 // Finally nuke all instructions apart from the common instruction.
1911 for (auto *I
: Insts
)
1913 I
->eraseFromParent();
1920 // LockstepReverseIterator - Iterates through instructions
1921 // in a set of blocks in reverse order from the first non-terminator.
1922 // For example (assume all blocks have size n):
1923 // LockstepReverseIterator I([B1, B2, B3]);
1924 // *I-- = [B1[n], B2[n], B3[n]];
1925 // *I-- = [B1[n-1], B2[n-1], B3[n-1]];
1926 // *I-- = [B1[n-2], B2[n-2], B3[n-2]];
1928 class LockstepReverseIterator
{
1929 ArrayRef
<BasicBlock
*> Blocks
;
1930 SmallVector
<Instruction
*,4> Insts
;
1934 LockstepReverseIterator(ArrayRef
<BasicBlock
*> Blocks
) : Blocks(Blocks
) {
1941 for (auto *BB
: Blocks
) {
1942 Instruction
*Inst
= BB
->getTerminator();
1943 for (Inst
= Inst
->getPrevNode(); Inst
&& isa
<DbgInfoIntrinsic
>(Inst
);)
1944 Inst
= Inst
->getPrevNode();
1946 // Block wasn't big enough.
1950 Insts
.push_back(Inst
);
1954 bool isValid() const {
1961 for (auto *&Inst
: Insts
) {
1962 for (Inst
= Inst
->getPrevNode(); Inst
&& isa
<DbgInfoIntrinsic
>(Inst
);)
1963 Inst
= Inst
->getPrevNode();
1964 // Already at beginning of block.
1975 for (auto *&Inst
: Insts
) {
1976 for (Inst
= Inst
->getNextNode(); Inst
&& isa
<DbgInfoIntrinsic
>(Inst
);)
1977 Inst
= Inst
->getNextNode();
1978 // Already at end of block.
1986 ArrayRef
<Instruction
*> operator * () const {
1991 } // end anonymous namespace
1993 /// Check whether BB's predecessors end with unconditional branches. If it is
1994 /// true, sink any common code from the predecessors to BB.
1995 static bool SinkCommonCodeFromPredecessors(BasicBlock
*BB
,
1996 DomTreeUpdater
*DTU
) {
1997 // We support two situations:
1998 // (1) all incoming arcs are unconditional
1999 // (2) there are non-unconditional incoming arcs
2001 // (2) is very common in switch defaults and
2002 // else-if patterns;
2005 // else if (b) f(2);
2018 // [end] has two unconditional predecessor arcs and one conditional. The
2019 // conditional refers to the implicit empty 'else' arc. This conditional
2020 // arc can also be caused by an empty default block in a switch.
2022 // In this case, we attempt to sink code from all *unconditional* arcs.
2023 // If we can sink instructions from these arcs (determined during the scan
2024 // phase below) we insert a common successor for all unconditional arcs and
2025 // connect that to [end], to enable sinking:
2038 SmallVector
<BasicBlock
*,4> UnconditionalPreds
;
2039 bool HaveNonUnconditionalPredecessors
= false;
2040 for (auto *PredBB
: predecessors(BB
)) {
2041 auto *PredBr
= dyn_cast
<BranchInst
>(PredBB
->getTerminator());
2042 if (PredBr
&& PredBr
->isUnconditional())
2043 UnconditionalPreds
.push_back(PredBB
);
2045 HaveNonUnconditionalPredecessors
= true;
2047 if (UnconditionalPreds
.size() < 2)
2050 // We take a two-step approach to tail sinking. First we scan from the end of
2051 // each block upwards in lockstep. If the n'th instruction from the end of each
2052 // block can be sunk, those instructions are added to ValuesToSink and we
2053 // carry on. If we can sink an instruction but need to PHI-merge some operands
2054 // (because they're not identical in each instruction) we add these to
2057 SmallPtrSet
<Value
*,4> InstructionsToSink
;
2058 DenseMap
<Instruction
*, SmallVector
<Value
*,4>> PHIOperands
;
2059 LockstepReverseIterator
LRI(UnconditionalPreds
);
2060 while (LRI
.isValid() &&
2061 canSinkInstructions(*LRI
, PHIOperands
)) {
2062 LLVM_DEBUG(dbgs() << "SINK: instruction can be sunk: " << *(*LRI
)[0]
2064 InstructionsToSink
.insert((*LRI
).begin(), (*LRI
).end());
2069 // If no instructions can be sunk, early-return.
2073 bool followedByDeoptOrUnreachable
= IsBlockFollowedByDeoptOrUnreachable(BB
);
2075 if (!followedByDeoptOrUnreachable
) {
2076 // Okay, we *could* sink last ScanIdx instructions. But how many can we
2077 // actually sink before encountering instruction that is unprofitable to
2079 auto ProfitableToSinkInstruction
= [&](LockstepReverseIterator
&LRI
) {
2080 unsigned NumPHIdValues
= 0;
2081 for (auto *I
: *LRI
)
2082 for (auto *V
: PHIOperands
[I
]) {
2083 if (!InstructionsToSink
.contains(V
))
2085 // FIXME: this check is overly optimistic. We may end up not sinking
2086 // said instruction, due to the very same profitability check.
2087 // See @creating_too_many_phis in sink-common-code.ll.
2089 LLVM_DEBUG(dbgs() << "SINK: #phid values: " << NumPHIdValues
<< "\n");
2090 unsigned NumPHIInsts
= NumPHIdValues
/ UnconditionalPreds
.size();
2091 if ((NumPHIdValues
% UnconditionalPreds
.size()) != 0)
2094 return NumPHIInsts
<= 1;
2097 // We've determined that we are going to sink last ScanIdx instructions,
2098 // and recorded them in InstructionsToSink. Now, some instructions may be
2099 // unprofitable to sink. But that determination depends on the instructions
2100 // that we are going to sink.
2102 // First, forward scan: find the first instruction unprofitable to sink,
2103 // recording all the ones that are profitable to sink.
2104 // FIXME: would it be better, after we detect that not all are profitable.
2105 // to either record the profitable ones, or erase the unprofitable ones?
2106 // Maybe we need to choose (at runtime) the one that will touch least
2110 SmallPtrSet
<Value
*, 4> InstructionsProfitableToSink
;
2111 while (Idx
< ScanIdx
) {
2112 if (!ProfitableToSinkInstruction(LRI
)) {
2113 // Too many PHIs would be created.
2115 dbgs() << "SINK: stopping here, too many PHIs would be created!\n");
2118 InstructionsProfitableToSink
.insert((*LRI
).begin(), (*LRI
).end());
2123 // If no instructions can be sunk, early-return.
2127 // Did we determine that (only) some instructions are unprofitable to sink?
2128 if (Idx
< ScanIdx
) {
2129 // Okay, some instructions are unprofitable.
2131 InstructionsToSink
= InstructionsProfitableToSink
;
2133 // But, that may make other instructions unprofitable, too.
2134 // So, do a backward scan, do any earlier instructions become
2137 !ProfitableToSinkInstruction(LRI
) &&
2138 "We already know that the last instruction is unprofitable to sink");
2142 // If we detect that an instruction becomes unprofitable to sink,
2143 // all earlier instructions won't be sunk either,
2144 // so preemptively keep InstructionsProfitableToSink in sync.
2145 // FIXME: is this the most performant approach?
2146 for (auto *I
: *LRI
)
2147 InstructionsProfitableToSink
.erase(I
);
2148 if (!ProfitableToSinkInstruction(LRI
)) {
2149 // Everything starting with this instruction won't be sunk.
2151 InstructionsToSink
= InstructionsProfitableToSink
;
2158 // If no instructions can be sunk, early-return.
2163 bool Changed
= false;
2165 if (HaveNonUnconditionalPredecessors
) {
2166 if (!followedByDeoptOrUnreachable
) {
2167 // It is always legal to sink common instructions from unconditional
2168 // predecessors. However, if not all predecessors are unconditional,
2169 // this transformation might be pessimizing. So as a rule of thumb,
2170 // don't do it unless we'd sink at least one non-speculatable instruction.
2171 // See https://bugs.llvm.org/show_bug.cgi?id=30244
2174 bool Profitable
= false;
2175 while (Idx
< ScanIdx
) {
2176 if (!isSafeToSpeculativelyExecute((*LRI
)[0])) {
2187 LLVM_DEBUG(dbgs() << "SINK: Splitting edge\n");
2188 // We have a conditional edge and we're going to sink some instructions.
2189 // Insert a new block postdominating all blocks we're going to sink from.
2190 if (!SplitBlockPredecessors(BB
, UnconditionalPreds
, ".sink.split", DTU
))
2191 // Edges couldn't be split.
2196 // Now that we've analyzed all potential sinking candidates, perform the
2197 // actual sink. We iteratively sink the last non-terminator of the source
2198 // blocks into their common successor unless doing so would require too
2199 // many PHI instructions to be generated (currently only one PHI is allowed
2200 // per sunk instruction).
2202 // We can use InstructionsToSink to discount values needing PHI-merging that will
2203 // actually be sunk in a later iteration. This allows us to be more
2204 // aggressive in what we sink. This does allow a false positive where we
2205 // sink presuming a later value will also be sunk, but stop half way through
2206 // and never actually sink it which means we produce more PHIs than intended.
2207 // This is unlikely in practice though.
2209 for (; SinkIdx
!= ScanIdx
; ++SinkIdx
) {
2210 LLVM_DEBUG(dbgs() << "SINK: Sink: "
2211 << *UnconditionalPreds
[0]->getTerminator()->getPrevNode()
2214 // Because we've sunk every instruction in turn, the current instruction to
2215 // sink is always at index 0.
2218 if (!sinkLastInstruction(UnconditionalPreds
)) {
2221 << "SINK: stopping here, failed to actually sink instruction!\n");
2225 NumSinkCommonInstrs
++;
2229 ++NumSinkCommonCode
;
2235 struct CompatibleSets
{
2236 using SetTy
= SmallVector
<InvokeInst
*, 2>;
2238 SmallVector
<SetTy
, 1> Sets
;
2240 static bool shouldBelongToSameSet(ArrayRef
<InvokeInst
*> Invokes
);
2242 SetTy
&getCompatibleSet(InvokeInst
*II
);
2244 void insert(InvokeInst
*II
);
2247 CompatibleSets::SetTy
&CompatibleSets::getCompatibleSet(InvokeInst
*II
) {
2248 // Perform a linear scan over all the existing sets, see if the new `invoke`
2249 // is compatible with any particular set. Since we know that all the `invokes`
2250 // within a set are compatible, only check the first `invoke` in each set.
2251 // WARNING: at worst, this has quadratic complexity.
2252 for (CompatibleSets::SetTy
&Set
: Sets
) {
2253 if (CompatibleSets::shouldBelongToSameSet({Set
.front(), II
}))
2257 // Otherwise, we either had no sets yet, or this invoke forms a new set.
2258 return Sets
.emplace_back();
2261 void CompatibleSets::insert(InvokeInst
*II
) {
2262 getCompatibleSet(II
).emplace_back(II
);
2265 bool CompatibleSets::shouldBelongToSameSet(ArrayRef
<InvokeInst
*> Invokes
) {
2266 assert(Invokes
.size() == 2 && "Always called with exactly two candidates.");
2268 // Can we theoretically merge these `invoke`s?
2269 auto IsIllegalToMerge
= [](InvokeInst
*II
) {
2270 return II
->cannotMerge() || II
->isInlineAsm();
2272 if (any_of(Invokes
, IsIllegalToMerge
))
2275 // Either both `invoke`s must be direct,
2276 // or both `invoke`s must be indirect.
2277 auto IsIndirectCall
= [](InvokeInst
*II
) { return II
->isIndirectCall(); };
2278 bool HaveIndirectCalls
= any_of(Invokes
, IsIndirectCall
);
2279 bool AllCallsAreIndirect
= all_of(Invokes
, IsIndirectCall
);
2280 if (HaveIndirectCalls
) {
2281 if (!AllCallsAreIndirect
)
2284 // All callees must be identical.
2285 Value
*Callee
= nullptr;
2286 for (InvokeInst
*II
: Invokes
) {
2287 Value
*CurrCallee
= II
->getCalledOperand();
2288 assert(CurrCallee
&& "There is always a called operand.");
2290 Callee
= CurrCallee
;
2291 else if (Callee
!= CurrCallee
)
2296 // Either both `invoke`s must not have a normal destination,
2297 // or both `invoke`s must have a normal destination,
2298 auto HasNormalDest
= [](InvokeInst
*II
) {
2299 return !isa
<UnreachableInst
>(II
->getNormalDest()->getFirstNonPHIOrDbg());
2301 if (any_of(Invokes
, HasNormalDest
)) {
2302 // Do not merge `invoke` that does not have a normal destination with one
2303 // that does have a normal destination, even though doing so would be legal.
2304 if (!all_of(Invokes
, HasNormalDest
))
2307 // All normal destinations must be identical.
2308 BasicBlock
*NormalBB
= nullptr;
2309 for (InvokeInst
*II
: Invokes
) {
2310 BasicBlock
*CurrNormalBB
= II
->getNormalDest();
2311 assert(CurrNormalBB
&& "There is always a 'continue to' basic block.");
2313 NormalBB
= CurrNormalBB
;
2314 else if (NormalBB
!= CurrNormalBB
)
2318 // In the normal destination, the incoming values for these two `invoke`s
2319 // must be compatible.
2320 SmallPtrSet
<Value
*, 16> EquivalenceSet(Invokes
.begin(), Invokes
.end());
2321 if (!IncomingValuesAreCompatible(
2322 NormalBB
, {Invokes
[0]->getParent(), Invokes
[1]->getParent()},
2328 // All unwind destinations must be identical.
2329 // We know that because we have started from said unwind destination.
2330 BasicBlock
*UnwindBB
= nullptr;
2331 for (InvokeInst
*II
: Invokes
) {
2332 BasicBlock
*CurrUnwindBB
= II
->getUnwindDest();
2333 assert(CurrUnwindBB
&& "There is always an 'unwind to' basic block.");
2335 UnwindBB
= CurrUnwindBB
;
2337 assert(UnwindBB
== CurrUnwindBB
&& "Unexpected unwind destination.");
2341 // In the unwind destination, the incoming values for these two `invoke`s
2342 // must be compatible.
2343 if (!IncomingValuesAreCompatible(
2344 Invokes
.front()->getUnwindDest(),
2345 {Invokes
[0]->getParent(), Invokes
[1]->getParent()}))
2348 // Ignoring arguments, these `invoke`s must be identical,
2349 // including operand bundles.
2350 const InvokeInst
*II0
= Invokes
.front();
2351 for (auto *II
: Invokes
.drop_front())
2352 if (!II
->isSameOperationAs(II0
))
2355 // Can we theoretically form the data operands for the merged `invoke`?
2356 auto IsIllegalToMergeArguments
= [](auto Ops
) {
2357 Type
*Ty
= std::get
<0>(Ops
)->getType();
2358 assert(Ty
== std::get
<1>(Ops
)->getType() && "Incompatible types?");
2359 return Ty
->isTokenTy() && std::get
<0>(Ops
) != std::get
<1>(Ops
);
2361 assert(Invokes
.size() == 2 && "Always called with exactly two candidates.");
2362 if (any_of(zip(Invokes
[0]->data_ops(), Invokes
[1]->data_ops()),
2363 IsIllegalToMergeArguments
))
2371 // Merge all invokes in the provided set, all of which are compatible
2372 // as per the `CompatibleSets::shouldBelongToSameSet()`.
2373 static void MergeCompatibleInvokesImpl(ArrayRef
<InvokeInst
*> Invokes
,
2374 DomTreeUpdater
*DTU
) {
2375 assert(Invokes
.size() >= 2 && "Must have at least two invokes to merge.");
2377 SmallVector
<DominatorTree::UpdateType
, 8> Updates
;
2379 Updates
.reserve(2 + 3 * Invokes
.size());
2381 bool HasNormalDest
=
2382 !isa
<UnreachableInst
>(Invokes
[0]->getNormalDest()->getFirstNonPHIOrDbg());
2384 // Clone one of the invokes into a new basic block.
2385 // Since they are all compatible, it doesn't matter which invoke is cloned.
2386 InvokeInst
*MergedInvoke
= [&Invokes
, HasNormalDest
]() {
2387 InvokeInst
*II0
= Invokes
.front();
2388 BasicBlock
*II0BB
= II0
->getParent();
2389 BasicBlock
*InsertBeforeBlock
=
2390 II0
->getParent()->getIterator()->getNextNode();
2391 Function
*Func
= II0BB
->getParent();
2392 LLVMContext
&Ctx
= II0
->getContext();
2394 BasicBlock
*MergedInvokeBB
= BasicBlock::Create(
2395 Ctx
, II0BB
->getName() + ".invoke", Func
, InsertBeforeBlock
);
2397 auto *MergedInvoke
= cast
<InvokeInst
>(II0
->clone());
2398 // NOTE: all invokes have the same attributes, so no handling needed.
2399 MergedInvokeBB
->getInstList().push_back(MergedInvoke
);
2401 if (!HasNormalDest
) {
2402 // This set does not have a normal destination,
2403 // so just form a new block with unreachable terminator.
2404 BasicBlock
*MergedNormalDest
= BasicBlock::Create(
2405 Ctx
, II0BB
->getName() + ".cont", Func
, InsertBeforeBlock
);
2406 new UnreachableInst(Ctx
, MergedNormalDest
);
2407 MergedInvoke
->setNormalDest(MergedNormalDest
);
2410 // The unwind destination, however, remainds identical for all invokes here.
2412 return MergedInvoke
;
2416 // Predecessor blocks that contained these invokes will now branch to
2417 // the new block that contains the merged invoke, ...
2418 for (InvokeInst
*II
: Invokes
)
2420 {DominatorTree::Insert
, II
->getParent(), MergedInvoke
->getParent()});
2422 // ... which has the new `unreachable` block as normal destination,
2423 // or unwinds to the (same for all `invoke`s in this set) `landingpad`,
2424 for (BasicBlock
*SuccBBOfMergedInvoke
: successors(MergedInvoke
))
2425 Updates
.push_back({DominatorTree::Insert
, MergedInvoke
->getParent(),
2426 SuccBBOfMergedInvoke
});
2428 // Since predecessor blocks now unconditionally branch to a new block,
2429 // they no longer branch to their original successors.
2430 for (InvokeInst
*II
: Invokes
)
2431 for (BasicBlock
*SuccOfPredBB
: successors(II
->getParent()))
2433 {DominatorTree::Delete
, II
->getParent(), SuccOfPredBB
});
2436 bool IsIndirectCall
= Invokes
[0]->isIndirectCall();
2438 // Form the merged operands for the merged invoke.
2439 for (Use
&U
: MergedInvoke
->operands()) {
2440 // Only PHI together the indirect callees and data operands.
2441 if (MergedInvoke
->isCallee(&U
)) {
2442 if (!IsIndirectCall
)
2444 } else if (!MergedInvoke
->isDataOperand(&U
))
2447 // Don't create trivial PHI's with all-identical incoming values.
2448 bool NeedPHI
= any_of(Invokes
, [&U
](InvokeInst
*II
) {
2449 return II
->getOperand(U
.getOperandNo()) != U
.get();
2454 // Form a PHI out of all the data ops under this index.
2455 PHINode
*PN
= PHINode::Create(
2456 U
->getType(), /*NumReservedValues=*/Invokes
.size(), "", MergedInvoke
);
2457 for (InvokeInst
*II
: Invokes
)
2458 PN
->addIncoming(II
->getOperand(U
.getOperandNo()), II
->getParent());
2463 // We've ensured that each PHI node has compatible (identical) incoming values
2464 // when coming from each of the `invoke`s in the current merge set,
2465 // so update the PHI nodes accordingly.
2466 for (BasicBlock
*Succ
: successors(MergedInvoke
))
2467 AddPredecessorToBlock(Succ
, /*NewPred=*/MergedInvoke
->getParent(),
2468 /*ExistPred=*/Invokes
.front()->getParent());
2470 // And finally, replace the original `invoke`s with an unconditional branch
2471 // to the block with the merged `invoke`. Also, give that merged `invoke`
2472 // the merged debugloc of all the original `invoke`s.
2473 const DILocation
*MergedDebugLoc
= nullptr;
2474 for (InvokeInst
*II
: Invokes
) {
2475 // Compute the debug location common to all the original `invoke`s.
2476 if (!MergedDebugLoc
)
2477 MergedDebugLoc
= II
->getDebugLoc();
2480 DILocation::getMergedLocation(MergedDebugLoc
, II
->getDebugLoc());
2482 // And replace the old `invoke` with an unconditionally branch
2483 // to the block with the merged `invoke`.
2484 for (BasicBlock
*OrigSuccBB
: successors(II
->getParent()))
2485 OrigSuccBB
->removePredecessor(II
->getParent());
2486 BranchInst::Create(MergedInvoke
->getParent(), II
->getParent());
2487 II
->replaceAllUsesWith(MergedInvoke
);
2488 II
->eraseFromParent();
2491 MergedInvoke
->setDebugLoc(MergedDebugLoc
);
2492 ++NumInvokeSetsFormed
;
2495 DTU
->applyUpdates(Updates
);
2498 /// If this block is a `landingpad` exception handling block, categorize all
2499 /// the predecessor `invoke`s into sets, with all `invoke`s in each set
2500 /// being "mergeable" together, and then merge invokes in each set together.
2502 /// This is a weird mix of hoisting and sinking. Visually, it goes from:
2505 /// [invoke0] [invoke1]
2507 /// [cont0] [landingpad] [cont1]
2513 /// [cont] [landingpad]
2515 /// But of course we can only do that if the invokes share the `landingpad`,
2516 /// edges invoke0->cont0 and invoke1->cont1 are "compatible",
2517 /// and the invoked functions are "compatible".
2518 static bool MergeCompatibleInvokes(BasicBlock
*BB
, DomTreeUpdater
*DTU
) {
2519 if (!EnableMergeCompatibleInvokes
)
2522 bool Changed
= false;
2524 // FIXME: generalize to all exception handling blocks?
2525 if (!BB
->isLandingPad())
2528 CompatibleSets Grouper
;
2530 // Record all the predecessors of this `landingpad`. As per verifier,
2531 // the only allowed predecessor is the unwind edge of an `invoke`.
2532 // We want to group "compatible" `invokes` into the same set to be merged.
2533 for (BasicBlock
*PredBB
: predecessors(BB
))
2534 Grouper
.insert(cast
<InvokeInst
>(PredBB
->getTerminator()));
2536 // And now, merge `invoke`s that were grouped togeter.
2537 for (ArrayRef
<InvokeInst
*> Invokes
: Grouper
.Sets
) {
2538 if (Invokes
.size() < 2)
2541 MergeCompatibleInvokesImpl(Invokes
, DTU
);
2547 /// Determine if we can hoist sink a sole store instruction out of a
2548 /// conditional block.
2550 /// We are looking for code like the following:
2552 /// store i32 %add, i32* %arrayidx2
2553 /// ... // No other stores or function calls (we could be calling a memory
2554 /// ... // function).
2555 /// %cmp = icmp ult %x, %y
2556 /// br i1 %cmp, label %EndBB, label %ThenBB
2558 /// store i32 %add5, i32* %arrayidx2
2562 /// We are going to transform this into:
2564 /// store i32 %add, i32* %arrayidx2
2566 /// %cmp = icmp ult %x, %y
2567 /// %add.add5 = select i1 %cmp, i32 %add, %add5
2568 /// store i32 %add.add5, i32* %arrayidx2
2571 /// \return The pointer to the value of the previous store if the store can be
2572 /// hoisted into the predecessor block. 0 otherwise.
2573 static Value
*isSafeToSpeculateStore(Instruction
*I
, BasicBlock
*BrBB
,
2574 BasicBlock
*StoreBB
, BasicBlock
*EndBB
) {
2575 StoreInst
*StoreToHoist
= dyn_cast
<StoreInst
>(I
);
2579 // Volatile or atomic.
2580 if (!StoreToHoist
->isSimple())
2583 Value
*StorePtr
= StoreToHoist
->getPointerOperand();
2584 Type
*StoreTy
= StoreToHoist
->getValueOperand()->getType();
2586 // Look for a store to the same pointer in BrBB.
2587 unsigned MaxNumInstToLookAt
= 9;
2588 // Skip pseudo probe intrinsic calls which are not really killing any memory
2590 for (Instruction
&CurI
: reverse(BrBB
->instructionsWithoutDebug(true))) {
2591 if (!MaxNumInstToLookAt
)
2593 --MaxNumInstToLookAt
;
2595 // Could be calling an instruction that affects memory like free().
2596 if (CurI
.mayWriteToMemory() && !isa
<StoreInst
>(CurI
))
2599 if (auto *SI
= dyn_cast
<StoreInst
>(&CurI
)) {
2600 // Found the previous store to same location and type. Make sure it is
2601 // simple, to avoid introducing a spurious non-atomic write after an
2603 if (SI
->getPointerOperand() == StorePtr
&&
2604 SI
->getValueOperand()->getType() == StoreTy
&& SI
->isSimple())
2605 // Found the previous store, return its value operand.
2606 return SI
->getValueOperand();
2607 return nullptr; // Unknown store.
2610 if (auto *LI
= dyn_cast
<LoadInst
>(&CurI
)) {
2611 if (LI
->getPointerOperand() == StorePtr
&& LI
->getType() == StoreTy
&&
2613 // Local objects (created by an `alloca` instruction) are always
2614 // writable, so once we are past a read from a location it is valid to
2615 // also write to that same location.
2616 // If the address of the local object never escapes the function, that
2617 // means it's never concurrently read or written, hence moving the store
2618 // from under the condition will not introduce a data race.
2619 auto *AI
= dyn_cast
<AllocaInst
>(getUnderlyingObject(StorePtr
));
2620 if (AI
&& !PointerMayBeCaptured(AI
, false, true))
2621 // Found a previous load, return it.
2624 // The load didn't work out, but we may still find a store.
2631 /// Estimate the cost of the insertion(s) and check that the PHI nodes can be
2632 /// converted to selects.
2633 static bool validateAndCostRequiredSelects(BasicBlock
*BB
, BasicBlock
*ThenBB
,
2635 unsigned &SpeculatedInstructions
,
2636 InstructionCost
&Cost
,
2637 const TargetTransformInfo
&TTI
) {
2638 TargetTransformInfo::TargetCostKind CostKind
=
2639 BB
->getParent()->hasMinSize()
2640 ? TargetTransformInfo::TCK_CodeSize
2641 : TargetTransformInfo::TCK_SizeAndLatency
;
2643 bool HaveRewritablePHIs
= false;
2644 for (PHINode
&PN
: EndBB
->phis()) {
2645 Value
*OrigV
= PN
.getIncomingValueForBlock(BB
);
2646 Value
*ThenV
= PN
.getIncomingValueForBlock(ThenBB
);
2648 // FIXME: Try to remove some of the duplication with HoistThenElseCodeToIf.
2649 // Skip PHIs which are trivial.
2653 Cost
+= TTI
.getCmpSelInstrCost(Instruction::Select
, PN
.getType(), nullptr,
2654 CmpInst::BAD_ICMP_PREDICATE
, CostKind
);
2656 // Don't convert to selects if we could remove undefined behavior instead.
2657 if (passingValueIsAlwaysUndefined(OrigV
, &PN
) ||
2658 passingValueIsAlwaysUndefined(ThenV
, &PN
))
2661 HaveRewritablePHIs
= true;
2662 ConstantExpr
*OrigCE
= dyn_cast
<ConstantExpr
>(OrigV
);
2663 ConstantExpr
*ThenCE
= dyn_cast
<ConstantExpr
>(ThenV
);
2664 if (!OrigCE
&& !ThenCE
)
2665 continue; // Known cheap (FIXME: Maybe not true for aggregates).
2667 InstructionCost OrigCost
= OrigCE
? computeSpeculationCost(OrigCE
, TTI
) : 0;
2668 InstructionCost ThenCost
= ThenCE
? computeSpeculationCost(ThenCE
, TTI
) : 0;
2669 InstructionCost MaxCost
=
2670 2 * PHINodeFoldingThreshold
* TargetTransformInfo::TCC_Basic
;
2671 if (OrigCost
+ ThenCost
> MaxCost
)
2674 // Account for the cost of an unfolded ConstantExpr which could end up
2675 // getting expanded into Instructions.
2676 // FIXME: This doesn't account for how many operations are combined in the
2677 // constant expression.
2678 ++SpeculatedInstructions
;
2679 if (SpeculatedInstructions
> 1)
2683 return HaveRewritablePHIs
;
2686 /// Speculate a conditional basic block flattening the CFG.
2688 /// Note that this is a very risky transform currently. Speculating
2689 /// instructions like this is most often not desirable. Instead, there is an MI
2690 /// pass which can do it with full awareness of the resource constraints.
2691 /// However, some cases are "obvious" and we should do directly. An example of
2692 /// this is speculating a single, reasonably cheap instruction.
2694 /// There is only one distinct advantage to flattening the CFG at the IR level:
2695 /// it makes very common but simplistic optimizations such as are common in
2696 /// instcombine and the DAG combiner more powerful by removing CFG edges and
2697 /// modeling their effects with easier to reason about SSA value graphs.
2700 /// An illustration of this transform is turning this IR:
2703 /// %cmp = icmp ult %x, %y
2704 /// br i1 %cmp, label %EndBB, label %ThenBB
2706 /// %sub = sub %x, %y
2709 /// %phi = phi [ %sub, %ThenBB ], [ 0, %EndBB ]
2716 /// %cmp = icmp ult %x, %y
2717 /// %sub = sub %x, %y
2718 /// %cond = select i1 %cmp, 0, %sub
2722 /// \returns true if the conditional block is removed.
2723 bool SimplifyCFGOpt::SpeculativelyExecuteBB(BranchInst
*BI
, BasicBlock
*ThenBB
,
2724 const TargetTransformInfo
&TTI
) {
2725 // Be conservative for now. FP select instruction can often be expensive.
2726 Value
*BrCond
= BI
->getCondition();
2727 if (isa
<FCmpInst
>(BrCond
))
2730 BasicBlock
*BB
= BI
->getParent();
2731 BasicBlock
*EndBB
= ThenBB
->getTerminator()->getSuccessor(0);
2732 InstructionCost Budget
=
2733 PHINodeFoldingThreshold
* TargetTransformInfo::TCC_Basic
;
2735 // If ThenBB is actually on the false edge of the conditional branch, remember
2736 // to swap the select operands later.
2737 bool Invert
= false;
2738 if (ThenBB
!= BI
->getSuccessor(0)) {
2739 assert(ThenBB
== BI
->getSuccessor(1) && "No edge from 'if' block?");
2742 assert(EndBB
== BI
->getSuccessor(!Invert
) && "No edge from to end block");
2744 // If the branch is non-unpredictable, and is predicted to *not* branch to
2745 // the `then` block, then avoid speculating it.
2746 if (!BI
->getMetadata(LLVMContext::MD_unpredictable
)) {
2747 uint64_t TWeight
, FWeight
;
2748 if (extractBranchWeights(*BI
, TWeight
, FWeight
) &&
2749 (TWeight
+ FWeight
) != 0) {
2750 uint64_t EndWeight
= Invert
? TWeight
: FWeight
;
2751 BranchProbability BIEndProb
=
2752 BranchProbability::getBranchProbability(EndWeight
, TWeight
+ FWeight
);
2753 BranchProbability Likely
= TTI
.getPredictableBranchThreshold();
2754 if (BIEndProb
>= Likely
)
2759 // Keep a count of how many times instructions are used within ThenBB when
2760 // they are candidates for sinking into ThenBB. Specifically:
2761 // - They are defined in BB, and
2762 // - They have no side effects, and
2763 // - All of their uses are in ThenBB.
2764 SmallDenseMap
<Instruction
*, unsigned, 4> SinkCandidateUseCounts
;
2766 SmallVector
<Instruction
*, 4> SpeculatedDbgIntrinsics
;
2768 unsigned SpeculatedInstructions
= 0;
2769 Value
*SpeculatedStoreValue
= nullptr;
2770 StoreInst
*SpeculatedStore
= nullptr;
2771 for (BasicBlock::iterator BBI
= ThenBB
->begin(),
2772 BBE
= std::prev(ThenBB
->end());
2773 BBI
!= BBE
; ++BBI
) {
2774 Instruction
*I
= &*BBI
;
2776 if (isa
<DbgInfoIntrinsic
>(I
)) {
2777 SpeculatedDbgIntrinsics
.push_back(I
);
2781 // Skip pseudo probes. The consequence is we lose track of the branch
2782 // probability for ThenBB, which is fine since the optimization here takes
2783 // place regardless of the branch probability.
2784 if (isa
<PseudoProbeInst
>(I
)) {
2785 // The probe should be deleted so that it will not be over-counted when
2786 // the samples collected on the non-conditional path are counted towards
2787 // the conditional path. We leave it for the counts inference algorithm to
2788 // figure out a proper count for an unknown probe.
2789 SpeculatedDbgIntrinsics
.push_back(I
);
2793 // Only speculatively execute a single instruction (not counting the
2794 // terminator) for now.
2795 ++SpeculatedInstructions
;
2796 if (SpeculatedInstructions
> 1)
2799 // Don't hoist the instruction if it's unsafe or expensive.
2800 if (!isSafeToSpeculativelyExecute(I
) &&
2801 !(HoistCondStores
&& (SpeculatedStoreValue
= isSafeToSpeculateStore(
2802 I
, BB
, ThenBB
, EndBB
))))
2804 if (!SpeculatedStoreValue
&&
2805 computeSpeculationCost(I
, TTI
) >
2806 PHINodeFoldingThreshold
* TargetTransformInfo::TCC_Basic
)
2809 // Store the store speculation candidate.
2810 if (SpeculatedStoreValue
)
2811 SpeculatedStore
= cast
<StoreInst
>(I
);
2813 // Do not hoist the instruction if any of its operands are defined but not
2814 // used in BB. The transformation will prevent the operand from
2815 // being sunk into the use block.
2816 for (Use
&Op
: I
->operands()) {
2817 Instruction
*OpI
= dyn_cast
<Instruction
>(Op
);
2818 if (!OpI
|| OpI
->getParent() != BB
|| OpI
->mayHaveSideEffects())
2819 continue; // Not a candidate for sinking.
2821 ++SinkCandidateUseCounts
[OpI
];
2825 // Consider any sink candidates which are only used in ThenBB as costs for
2826 // speculation. Note, while we iterate over a DenseMap here, we are summing
2827 // and so iteration order isn't significant.
2828 for (SmallDenseMap
<Instruction
*, unsigned, 4>::iterator
2829 I
= SinkCandidateUseCounts
.begin(),
2830 E
= SinkCandidateUseCounts
.end();
2832 if (I
->first
->hasNUses(I
->second
)) {
2833 ++SpeculatedInstructions
;
2834 if (SpeculatedInstructions
> 1)
2838 // Check that we can insert the selects and that it's not too expensive to do
2840 bool Convert
= SpeculatedStore
!= nullptr;
2841 InstructionCost Cost
= 0;
2842 Convert
|= validateAndCostRequiredSelects(BB
, ThenBB
, EndBB
,
2843 SpeculatedInstructions
,
2845 if (!Convert
|| Cost
> Budget
)
2848 // If we get here, we can hoist the instruction and if-convert.
2849 LLVM_DEBUG(dbgs() << "SPECULATIVELY EXECUTING BB" << *ThenBB
<< "\n";);
2851 // Insert a select of the value of the speculated store.
2852 if (SpeculatedStoreValue
) {
2853 IRBuilder
<NoFolder
> Builder(BI
);
2854 Value
*TrueV
= SpeculatedStore
->getValueOperand();
2855 Value
*FalseV
= SpeculatedStoreValue
;
2857 std::swap(TrueV
, FalseV
);
2858 Value
*S
= Builder
.CreateSelect(
2859 BrCond
, TrueV
, FalseV
, "spec.store.select", BI
);
2860 SpeculatedStore
->setOperand(0, S
);
2861 SpeculatedStore
->applyMergedLocation(BI
->getDebugLoc(),
2862 SpeculatedStore
->getDebugLoc());
2865 // Metadata can be dependent on the condition we are hoisting above.
2866 // Conservatively strip all metadata on the instruction. Drop the debug loc
2867 // to avoid making it appear as if the condition is a constant, which would
2868 // be misleading while debugging.
2869 // Similarly strip attributes that maybe dependent on condition we are
2871 for (auto &I
: *ThenBB
) {
2872 if (!SpeculatedStoreValue
|| &I
!= SpeculatedStore
)
2873 I
.setDebugLoc(DebugLoc());
2874 I
.dropUndefImplyingAttrsAndUnknownMetadata();
2877 // Hoist the instructions.
2878 BB
->getInstList().splice(BI
->getIterator(), ThenBB
->getInstList(),
2879 ThenBB
->begin(), std::prev(ThenBB
->end()));
2881 // Insert selects and rewrite the PHI operands.
2882 IRBuilder
<NoFolder
> Builder(BI
);
2883 for (PHINode
&PN
: EndBB
->phis()) {
2884 unsigned OrigI
= PN
.getBasicBlockIndex(BB
);
2885 unsigned ThenI
= PN
.getBasicBlockIndex(ThenBB
);
2886 Value
*OrigV
= PN
.getIncomingValue(OrigI
);
2887 Value
*ThenV
= PN
.getIncomingValue(ThenI
);
2889 // Skip PHIs which are trivial.
2893 // Create a select whose true value is the speculatively executed value and
2894 // false value is the pre-existing value. Swap them if the branch
2895 // destinations were inverted.
2896 Value
*TrueV
= ThenV
, *FalseV
= OrigV
;
2898 std::swap(TrueV
, FalseV
);
2899 Value
*V
= Builder
.CreateSelect(BrCond
, TrueV
, FalseV
, "spec.select", BI
);
2900 PN
.setIncomingValue(OrigI
, V
);
2901 PN
.setIncomingValue(ThenI
, V
);
2904 // Remove speculated dbg intrinsics.
2905 // FIXME: Is it possible to do this in a more elegant way? Moving/merging the
2906 // dbg value for the different flows and inserting it after the select.
2907 for (Instruction
*I
: SpeculatedDbgIntrinsics
)
2908 I
->eraseFromParent();
2914 /// Return true if we can thread a branch across this block.
2915 static bool BlockIsSimpleEnoughToThreadThrough(BasicBlock
*BB
) {
2918 SmallPtrSet
<const Value
*, 32> EphValues
;
2919 auto IsEphemeral
= [&](const Instruction
*I
) {
2920 if (isa
<AssumeInst
>(I
))
2922 return !I
->mayHaveSideEffects() && !I
->isTerminator() &&
2924 [&](const User
*U
) { return EphValues
.count(U
); });
2927 // Walk the loop in reverse so that we can identify ephemeral values properly
2928 // (values only feeding assumes).
2929 for (Instruction
&I
: reverse(BB
->instructionsWithoutDebug(false))) {
2930 // Can't fold blocks that contain noduplicate or convergent calls.
2931 if (CallInst
*CI
= dyn_cast
<CallInst
>(&I
))
2932 if (CI
->cannotDuplicate() || CI
->isConvergent())
2935 // Ignore ephemeral values which are deleted during codegen.
2936 if (IsEphemeral(&I
))
2937 EphValues
.insert(&I
);
2938 // We will delete Phis while threading, so Phis should not be accounted in
2940 else if (!isa
<PHINode
>(I
)) {
2941 if (Size
++ > MaxSmallBlockSize
)
2942 return false; // Don't clone large BB's.
2945 // We can only support instructions that do not define values that are
2946 // live outside of the current basic block.
2947 for (User
*U
: I
.users()) {
2948 Instruction
*UI
= cast
<Instruction
>(U
);
2949 if (UI
->getParent() != BB
|| isa
<PHINode
>(UI
))
2953 // Looks ok, continue checking.
2959 static ConstantInt
*getKnownValueOnEdge(Value
*V
, BasicBlock
*From
,
2961 // Don't look past the block defining the value, we might get the value from
2962 // a previous loop iteration.
2963 auto *I
= dyn_cast
<Instruction
>(V
);
2964 if (I
&& I
->getParent() == To
)
2967 // We know the value if the From block branches on it.
2968 auto *BI
= dyn_cast
<BranchInst
>(From
->getTerminator());
2969 if (BI
&& BI
->isConditional() && BI
->getCondition() == V
&&
2970 BI
->getSuccessor(0) != BI
->getSuccessor(1))
2971 return BI
->getSuccessor(0) == To
? ConstantInt::getTrue(BI
->getContext())
2972 : ConstantInt::getFalse(BI
->getContext());
2977 /// If we have a conditional branch on something for which we know the constant
2978 /// value in predecessors (e.g. a phi node in the current block), thread edges
2979 /// from the predecessor to their ultimate destination.
2980 static Optional
<bool>
2981 FoldCondBranchOnValueKnownInPredecessorImpl(BranchInst
*BI
, DomTreeUpdater
*DTU
,
2982 const DataLayout
&DL
,
2983 AssumptionCache
*AC
) {
2984 SmallMapVector
<ConstantInt
*, SmallSetVector
<BasicBlock
*, 2>, 2> KnownValues
;
2985 BasicBlock
*BB
= BI
->getParent();
2986 Value
*Cond
= BI
->getCondition();
2987 PHINode
*PN
= dyn_cast
<PHINode
>(Cond
);
2988 if (PN
&& PN
->getParent() == BB
) {
2989 // Degenerate case of a single entry PHI.
2990 if (PN
->getNumIncomingValues() == 1) {
2991 FoldSingleEntryPHINodes(PN
->getParent());
2995 for (Use
&U
: PN
->incoming_values())
2996 if (auto *CB
= dyn_cast
<ConstantInt
>(U
))
2997 KnownValues
[CB
].insert(PN
->getIncomingBlock(U
));
2999 for (BasicBlock
*Pred
: predecessors(BB
)) {
3000 if (ConstantInt
*CB
= getKnownValueOnEdge(Cond
, Pred
, BB
))
3001 KnownValues
[CB
].insert(Pred
);
3005 if (KnownValues
.empty())
3008 // Now we know that this block has multiple preds and two succs.
3009 // Check that the block is small enough and values defined in the block are
3010 // not used outside of it.
3011 if (!BlockIsSimpleEnoughToThreadThrough(BB
))
3014 for (const auto &Pair
: KnownValues
) {
3015 // Okay, we now know that all edges from PredBB should be revectored to
3016 // branch to RealDest.
3017 ConstantInt
*CB
= Pair
.first
;
3018 ArrayRef
<BasicBlock
*> PredBBs
= Pair
.second
.getArrayRef();
3019 BasicBlock
*RealDest
= BI
->getSuccessor(!CB
->getZExtValue());
3022 continue; // Skip self loops.
3024 // Skip if the predecessor's terminator is an indirect branch.
3025 if (any_of(PredBBs
, [](BasicBlock
*PredBB
) {
3026 return isa
<IndirectBrInst
>(PredBB
->getTerminator());
3031 dbgs() << "Condition " << *Cond
<< " in " << BB
->getName()
3032 << " has value " << *Pair
.first
<< " in predecessors:\n";
3033 for (const BasicBlock
*PredBB
: Pair
.second
)
3034 dbgs() << " " << PredBB
->getName() << "\n";
3035 dbgs() << "Threading to destination " << RealDest
->getName() << ".\n";
3038 // Split the predecessors we are threading into a new edge block. We'll
3039 // clone the instructions into this block, and then redirect it to RealDest.
3040 BasicBlock
*EdgeBB
= SplitBlockPredecessors(BB
, PredBBs
, ".critedge", DTU
);
3042 // TODO: These just exist to reduce test diff, we can drop them if we like.
3043 EdgeBB
->setName(RealDest
->getName() + ".critedge");
3044 EdgeBB
->moveBefore(RealDest
);
3046 // Update PHI nodes.
3047 AddPredecessorToBlock(RealDest
, EdgeBB
, BB
);
3049 // BB may have instructions that are being threaded over. Clone these
3050 // instructions into EdgeBB. We know that there will be no uses of the
3051 // cloned instructions outside of EdgeBB.
3052 BasicBlock::iterator InsertPt
= EdgeBB
->getFirstInsertionPt();
3053 DenseMap
<Value
*, Value
*> TranslateMap
; // Track translated values.
3054 TranslateMap
[Cond
] = CB
;
3055 for (BasicBlock::iterator BBI
= BB
->begin(); &*BBI
!= BI
; ++BBI
) {
3056 if (PHINode
*PN
= dyn_cast
<PHINode
>(BBI
)) {
3057 TranslateMap
[PN
] = PN
->getIncomingValueForBlock(EdgeBB
);
3060 // Clone the instruction.
3061 Instruction
*N
= BBI
->clone();
3063 N
->setName(BBI
->getName() + ".c");
3065 // Update operands due to translation.
3066 for (Use
&Op
: N
->operands()) {
3067 DenseMap
<Value
*, Value
*>::iterator PI
= TranslateMap
.find(Op
);
3068 if (PI
!= TranslateMap
.end())
3072 // Check for trivial simplification.
3073 if (Value
*V
= simplifyInstruction(N
, {DL
, nullptr, nullptr, AC
})) {
3074 if (!BBI
->use_empty())
3075 TranslateMap
[&*BBI
] = V
;
3076 if (!N
->mayHaveSideEffects()) {
3077 N
->deleteValue(); // Instruction folded away, don't need actual inst
3081 if (!BBI
->use_empty())
3082 TranslateMap
[&*BBI
] = N
;
3085 // Insert the new instruction into its new home.
3086 EdgeBB
->getInstList().insert(InsertPt
, N
);
3088 // Register the new instruction with the assumption cache if necessary.
3089 if (auto *Assume
= dyn_cast
<AssumeInst
>(N
))
3091 AC
->registerAssumption(Assume
);
3095 BB
->removePredecessor(EdgeBB
);
3096 BranchInst
*EdgeBI
= cast
<BranchInst
>(EdgeBB
->getTerminator());
3097 EdgeBI
->setSuccessor(0, RealDest
);
3098 EdgeBI
->setDebugLoc(BI
->getDebugLoc());
3101 SmallVector
<DominatorTree::UpdateType
, 2> Updates
;
3102 Updates
.push_back({DominatorTree::Delete
, EdgeBB
, BB
});
3103 Updates
.push_back({DominatorTree::Insert
, EdgeBB
, RealDest
});
3104 DTU
->applyUpdates(Updates
);
3107 // For simplicity, we created a separate basic block for the edge. Merge
3108 // it back into the predecessor if possible. This not only avoids
3109 // unnecessary SimplifyCFG iterations, but also makes sure that we don't
3110 // bypass the check for trivial cycles above.
3111 MergeBlockIntoPredecessor(EdgeBB
, DTU
);
3113 // Signal repeat, simplifying any other constants.
3120 static bool FoldCondBranchOnValueKnownInPredecessor(BranchInst
*BI
,
3121 DomTreeUpdater
*DTU
,
3122 const DataLayout
&DL
,
3123 AssumptionCache
*AC
) {
3124 Optional
<bool> Result
;
3125 bool EverChanged
= false;
3127 // Note that None means "we changed things, but recurse further."
3128 Result
= FoldCondBranchOnValueKnownInPredecessorImpl(BI
, DTU
, DL
, AC
);
3129 EverChanged
|= Result
== None
|| *Result
;
3130 } while (Result
== None
);
3134 /// Given a BB that starts with the specified two-entry PHI node,
3135 /// see if we can eliminate it.
3136 static bool FoldTwoEntryPHINode(PHINode
*PN
, const TargetTransformInfo
&TTI
,
3137 DomTreeUpdater
*DTU
, const DataLayout
&DL
) {
3138 // Ok, this is a two entry PHI node. Check to see if this is a simple "if
3139 // statement", which has a very simple dominance structure. Basically, we
3140 // are trying to find the condition that is being branched on, which
3141 // subsequently causes this merge to happen. We really want control
3142 // dependence information for this check, but simplifycfg can't keep it up
3143 // to date, and this catches most of the cases we care about anyway.
3144 BasicBlock
*BB
= PN
->getParent();
3146 BasicBlock
*IfTrue
, *IfFalse
;
3147 BranchInst
*DomBI
= GetIfCondition(BB
, IfTrue
, IfFalse
);
3150 Value
*IfCond
= DomBI
->getCondition();
3151 // Don't bother if the branch will be constant folded trivially.
3152 if (isa
<ConstantInt
>(IfCond
))
3155 BasicBlock
*DomBlock
= DomBI
->getParent();
3156 SmallVector
<BasicBlock
*, 2> IfBlocks
;
3158 PN
->blocks(), std::back_inserter(IfBlocks
), [](BasicBlock
*IfBlock
) {
3159 return cast
<BranchInst
>(IfBlock
->getTerminator())->isUnconditional();
3161 assert((IfBlocks
.size() == 1 || IfBlocks
.size() == 2) &&
3162 "Will have either one or two blocks to speculate.");
3164 // If the branch is non-unpredictable, see if we either predictably jump to
3165 // the merge bb (if we have only a single 'then' block), or if we predictably
3166 // jump to one specific 'then' block (if we have two of them).
3167 // It isn't beneficial to speculatively execute the code
3168 // from the block that we know is predictably not entered.
3169 if (!DomBI
->getMetadata(LLVMContext::MD_unpredictable
)) {
3170 uint64_t TWeight
, FWeight
;
3171 if (extractBranchWeights(*DomBI
, TWeight
, FWeight
) &&
3172 (TWeight
+ FWeight
) != 0) {
3173 BranchProbability BITrueProb
=
3174 BranchProbability::getBranchProbability(TWeight
, TWeight
+ FWeight
);
3175 BranchProbability Likely
= TTI
.getPredictableBranchThreshold();
3176 BranchProbability BIFalseProb
= BITrueProb
.getCompl();
3177 if (IfBlocks
.size() == 1) {
3178 BranchProbability BIBBProb
=
3179 DomBI
->getSuccessor(0) == BB
? BITrueProb
: BIFalseProb
;
3180 if (BIBBProb
>= Likely
)
3183 if (BITrueProb
>= Likely
|| BIFalseProb
>= Likely
)
3189 // Don't try to fold an unreachable block. For example, the phi node itself
3190 // can't be the candidate if-condition for a select that we want to form.
3191 if (auto *IfCondPhiInst
= dyn_cast
<PHINode
>(IfCond
))
3192 if (IfCondPhiInst
->getParent() == BB
)
3195 // Okay, we found that we can merge this two-entry phi node into a select.
3196 // Doing so would require us to fold *all* two entry phi nodes in this block.
3197 // At some point this becomes non-profitable (particularly if the target
3198 // doesn't support cmov's). Only do this transformation if there are two or
3199 // fewer PHI nodes in this block.
3200 unsigned NumPhis
= 0;
3201 for (BasicBlock::iterator I
= BB
->begin(); isa
<PHINode
>(I
); ++NumPhis
, ++I
)
3205 // Loop over the PHI's seeing if we can promote them all to select
3206 // instructions. While we are at it, keep track of the instructions
3207 // that need to be moved to the dominating block.
3208 SmallPtrSet
<Instruction
*, 4> AggressiveInsts
;
3209 InstructionCost Cost
= 0;
3210 InstructionCost Budget
=
3211 TwoEntryPHINodeFoldingThreshold
* TargetTransformInfo::TCC_Basic
;
3213 bool Changed
= false;
3214 for (BasicBlock::iterator II
= BB
->begin(); isa
<PHINode
>(II
);) {
3215 PHINode
*PN
= cast
<PHINode
>(II
++);
3216 if (Value
*V
= simplifyInstruction(PN
, {DL
, PN
})) {
3217 PN
->replaceAllUsesWith(V
);
3218 PN
->eraseFromParent();
3223 if (!dominatesMergePoint(PN
->getIncomingValue(0), BB
, AggressiveInsts
,
3224 Cost
, Budget
, TTI
) ||
3225 !dominatesMergePoint(PN
->getIncomingValue(1), BB
, AggressiveInsts
,
3230 // If we folded the first phi, PN dangles at this point. Refresh it. If
3231 // we ran out of PHIs then we simplified them all.
3232 PN
= dyn_cast
<PHINode
>(BB
->begin());
3236 // Return true if at least one of these is a 'not', and another is either
3237 // a 'not' too, or a constant.
3238 auto CanHoistNotFromBothValues
= [](Value
*V0
, Value
*V1
) {
3239 if (!match(V0
, m_Not(m_Value())))
3241 auto Invertible
= m_CombineOr(m_Not(m_Value()), m_AnyIntegralConstant());
3242 return match(V0
, m_Not(m_Value())) && match(V1
, Invertible
);
3245 // Don't fold i1 branches on PHIs which contain binary operators or
3246 // (possibly inverted) select form of or/ands, unless one of
3247 // the incoming values is an 'not' and another one is freely invertible.
3248 // These can often be turned into switches and other things.
3249 auto IsBinOpOrAnd
= [](Value
*V
) {
3253 m_CombineOr(m_Select(m_Value(), m_ImmConstant(), m_Value()),
3254 m_Select(m_Value(), m_Value(), m_ImmConstant()))));
3256 if (PN
->getType()->isIntegerTy(1) &&
3257 (IsBinOpOrAnd(PN
->getIncomingValue(0)) ||
3258 IsBinOpOrAnd(PN
->getIncomingValue(1)) || IsBinOpOrAnd(IfCond
)) &&
3259 !CanHoistNotFromBothValues(PN
->getIncomingValue(0),
3260 PN
->getIncomingValue(1)))
3263 // If all PHI nodes are promotable, check to make sure that all instructions
3264 // in the predecessor blocks can be promoted as well. If not, we won't be able
3265 // to get rid of the control flow, so it's not worth promoting to select
3267 for (BasicBlock
*IfBlock
: IfBlocks
)
3268 for (BasicBlock::iterator I
= IfBlock
->begin(); !I
->isTerminator(); ++I
)
3269 if (!AggressiveInsts
.count(&*I
) && !I
->isDebugOrPseudoInst()) {
3270 // This is not an aggressive instruction that we can promote.
3271 // Because of this, we won't be able to get rid of the control flow, so
3272 // the xform is not worth it.
3276 // If either of the blocks has it's address taken, we can't do this fold.
3277 if (any_of(IfBlocks
,
3278 [](BasicBlock
*IfBlock
) { return IfBlock
->hasAddressTaken(); }))
3281 LLVM_DEBUG(dbgs() << "FOUND IF CONDITION! " << *IfCond
3282 << " T: " << IfTrue
->getName()
3283 << " F: " << IfFalse
->getName() << "\n");
3285 // If we can still promote the PHI nodes after this gauntlet of tests,
3286 // do all of the PHI's now.
3288 // Move all 'aggressive' instructions, which are defined in the
3289 // conditional parts of the if's up to the dominating block.
3290 for (BasicBlock
*IfBlock
: IfBlocks
)
3291 hoistAllInstructionsInto(DomBlock
, DomBI
, IfBlock
);
3293 IRBuilder
<NoFolder
> Builder(DomBI
);
3294 // Propagate fast-math-flags from phi nodes to replacement selects.
3295 IRBuilder
<>::FastMathFlagGuard
FMFGuard(Builder
);
3296 while (PHINode
*PN
= dyn_cast
<PHINode
>(BB
->begin())) {
3297 if (isa
<FPMathOperator
>(PN
))
3298 Builder
.setFastMathFlags(PN
->getFastMathFlags());
3300 // Change the PHI node into a select instruction.
3301 Value
*TrueVal
= PN
->getIncomingValueForBlock(IfTrue
);
3302 Value
*FalseVal
= PN
->getIncomingValueForBlock(IfFalse
);
3304 Value
*Sel
= Builder
.CreateSelect(IfCond
, TrueVal
, FalseVal
, "", DomBI
);
3305 PN
->replaceAllUsesWith(Sel
);
3307 PN
->eraseFromParent();
3310 // At this point, all IfBlocks are empty, so our if statement
3311 // has been flattened. Change DomBlock to jump directly to our new block to
3312 // avoid other simplifycfg's kicking in on the diamond.
3313 Builder
.CreateBr(BB
);
3315 SmallVector
<DominatorTree::UpdateType
, 3> Updates
;
3317 Updates
.push_back({DominatorTree::Insert
, DomBlock
, BB
});
3318 for (auto *Successor
: successors(DomBlock
))
3319 Updates
.push_back({DominatorTree::Delete
, DomBlock
, Successor
});
3322 DomBI
->eraseFromParent();
3324 DTU
->applyUpdates(Updates
);
3329 static Value
*createLogicalOp(IRBuilderBase
&Builder
,
3330 Instruction::BinaryOps Opc
, Value
*LHS
,
3331 Value
*RHS
, const Twine
&Name
= "") {
3332 // Try to relax logical op to binary op.
3333 if (impliesPoison(RHS
, LHS
))
3334 return Builder
.CreateBinOp(Opc
, LHS
, RHS
, Name
);
3335 if (Opc
== Instruction::And
)
3336 return Builder
.CreateLogicalAnd(LHS
, RHS
, Name
);
3337 if (Opc
== Instruction::Or
)
3338 return Builder
.CreateLogicalOr(LHS
, RHS
, Name
);
3339 llvm_unreachable("Invalid logical opcode");
3342 /// Return true if either PBI or BI has branch weight available, and store
3343 /// the weights in {Pred|Succ}{True|False}Weight. If one of PBI and BI does
3344 /// not have branch weight, use 1:1 as its weight.
3345 static bool extractPredSuccWeights(BranchInst
*PBI
, BranchInst
*BI
,
3346 uint64_t &PredTrueWeight
,
3347 uint64_t &PredFalseWeight
,
3348 uint64_t &SuccTrueWeight
,
3349 uint64_t &SuccFalseWeight
) {
3350 bool PredHasWeights
=
3351 extractBranchWeights(*PBI
, PredTrueWeight
, PredFalseWeight
);
3352 bool SuccHasWeights
=
3353 extractBranchWeights(*BI
, SuccTrueWeight
, SuccFalseWeight
);
3354 if (PredHasWeights
|| SuccHasWeights
) {
3355 if (!PredHasWeights
)
3356 PredTrueWeight
= PredFalseWeight
= 1;
3357 if (!SuccHasWeights
)
3358 SuccTrueWeight
= SuccFalseWeight
= 1;
3365 /// Determine if the two branches share a common destination and deduce a glue
3366 /// that joins the branches' conditions to arrive at the common destination if
3367 /// that would be profitable.
3368 static Optional
<std::pair
<Instruction::BinaryOps
, bool>>
3369 shouldFoldCondBranchesToCommonDestination(BranchInst
*BI
, BranchInst
*PBI
,
3370 const TargetTransformInfo
*TTI
) {
3371 assert(BI
&& PBI
&& BI
->isConditional() && PBI
->isConditional() &&
3372 "Both blocks must end with a conditional branches.");
3373 assert(is_contained(predecessors(BI
->getParent()), PBI
->getParent()) &&
3374 "PredBB must be a predecessor of BB.");
3376 // We have the potential to fold the conditions together, but if the
3377 // predecessor branch is predictable, we may not want to merge them.
3378 uint64_t PTWeight
, PFWeight
;
3379 BranchProbability PBITrueProb
, Likely
;
3380 if (TTI
&& !PBI
->getMetadata(LLVMContext::MD_unpredictable
) &&
3381 extractBranchWeights(*PBI
, PTWeight
, PFWeight
) &&
3382 (PTWeight
+ PFWeight
) != 0) {
3384 BranchProbability::getBranchProbability(PTWeight
, PTWeight
+ PFWeight
);
3385 Likely
= TTI
->getPredictableBranchThreshold();
3388 if (PBI
->getSuccessor(0) == BI
->getSuccessor(0)) {
3389 // Speculate the 2nd condition unless the 1st is probably true.
3390 if (PBITrueProb
.isUnknown() || PBITrueProb
< Likely
)
3391 return {{Instruction::Or
, false}};
3392 } else if (PBI
->getSuccessor(1) == BI
->getSuccessor(1)) {
3393 // Speculate the 2nd condition unless the 1st is probably false.
3394 if (PBITrueProb
.isUnknown() || PBITrueProb
.getCompl() < Likely
)
3395 return {{Instruction::And
, false}};
3396 } else if (PBI
->getSuccessor(0) == BI
->getSuccessor(1)) {
3397 // Speculate the 2nd condition unless the 1st is probably true.
3398 if (PBITrueProb
.isUnknown() || PBITrueProb
< Likely
)
3399 return {{Instruction::And
, true}};
3400 } else if (PBI
->getSuccessor(1) == BI
->getSuccessor(0)) {
3401 // Speculate the 2nd condition unless the 1st is probably false.
3402 if (PBITrueProb
.isUnknown() || PBITrueProb
.getCompl() < Likely
)
3403 return {{Instruction::Or
, true}};
3408 static bool performBranchToCommonDestFolding(BranchInst
*BI
, BranchInst
*PBI
,
3409 DomTreeUpdater
*DTU
,
3410 MemorySSAUpdater
*MSSAU
,
3411 const TargetTransformInfo
*TTI
) {
3412 BasicBlock
*BB
= BI
->getParent();
3413 BasicBlock
*PredBlock
= PBI
->getParent();
3415 // Determine if the two branches share a common destination.
3416 Instruction::BinaryOps Opc
;
3417 bool InvertPredCond
;
3418 std::tie(Opc
, InvertPredCond
) =
3419 *shouldFoldCondBranchesToCommonDestination(BI
, PBI
, TTI
);
3421 LLVM_DEBUG(dbgs() << "FOLDING BRANCH TO COMMON DEST:\n" << *PBI
<< *BB
);
3423 IRBuilder
<> Builder(PBI
);
3424 // The builder is used to create instructions to eliminate the branch in BB.
3425 // If BB's terminator has !annotation metadata, add it to the new
3427 Builder
.CollectMetadataToCopy(BB
->getTerminator(),
3428 {LLVMContext::MD_annotation
});
3430 // If we need to invert the condition in the pred block to match, do so now.
3431 if (InvertPredCond
) {
3432 Value
*NewCond
= PBI
->getCondition();
3433 if (NewCond
->hasOneUse() && isa
<CmpInst
>(NewCond
)) {
3434 CmpInst
*CI
= cast
<CmpInst
>(NewCond
);
3435 CI
->setPredicate(CI
->getInversePredicate());
3438 Builder
.CreateNot(NewCond
, PBI
->getCondition()->getName() + ".not");
3441 PBI
->setCondition(NewCond
);
3442 PBI
->swapSuccessors();
3445 BasicBlock
*UniqueSucc
=
3446 PBI
->getSuccessor(0) == BB
? BI
->getSuccessor(0) : BI
->getSuccessor(1);
3448 // Before cloning instructions, notify the successor basic block that it
3449 // is about to have a new predecessor. This will update PHI nodes,
3450 // which will allow us to update live-out uses of bonus instructions.
3451 AddPredecessorToBlock(UniqueSucc
, PredBlock
, BB
, MSSAU
);
3453 // Try to update branch weights.
3454 uint64_t PredTrueWeight
, PredFalseWeight
, SuccTrueWeight
, SuccFalseWeight
;
3455 if (extractPredSuccWeights(PBI
, BI
, PredTrueWeight
, PredFalseWeight
,
3456 SuccTrueWeight
, SuccFalseWeight
)) {
3457 SmallVector
<uint64_t, 8> NewWeights
;
3459 if (PBI
->getSuccessor(0) == BB
) {
3460 // PBI: br i1 %x, BB, FalseDest
3461 // BI: br i1 %y, UniqueSucc, FalseDest
3462 // TrueWeight is TrueWeight for PBI * TrueWeight for BI.
3463 NewWeights
.push_back(PredTrueWeight
* SuccTrueWeight
);
3464 // FalseWeight is FalseWeight for PBI * TotalWeight for BI +
3465 // TrueWeight for PBI * FalseWeight for BI.
3466 // We assume that total weights of a BranchInst can fit into 32 bits.
3467 // Therefore, we will not have overflow using 64-bit arithmetic.
3468 NewWeights
.push_back(PredFalseWeight
*
3469 (SuccFalseWeight
+ SuccTrueWeight
) +
3470 PredTrueWeight
* SuccFalseWeight
);
3472 // PBI: br i1 %x, TrueDest, BB
3473 // BI: br i1 %y, TrueDest, UniqueSucc
3474 // TrueWeight is TrueWeight for PBI * TotalWeight for BI +
3475 // FalseWeight for PBI * TrueWeight for BI.
3476 NewWeights
.push_back(PredTrueWeight
* (SuccFalseWeight
+ SuccTrueWeight
) +
3477 PredFalseWeight
* SuccTrueWeight
);
3478 // FalseWeight is FalseWeight for PBI * FalseWeight for BI.
3479 NewWeights
.push_back(PredFalseWeight
* SuccFalseWeight
);
3482 // Halve the weights if any of them cannot fit in an uint32_t
3483 FitWeights(NewWeights
);
3485 SmallVector
<uint32_t, 8> MDWeights(NewWeights
.begin(), NewWeights
.end());
3486 setBranchWeights(PBI
, MDWeights
[0], MDWeights
[1]);
3488 // TODO: If BB is reachable from all paths through PredBlock, then we
3489 // could replace PBI's branch probabilities with BI's.
3491 PBI
->setMetadata(LLVMContext::MD_prof
, nullptr);
3493 // Now, update the CFG.
3494 PBI
->setSuccessor(PBI
->getSuccessor(0) != BB
, UniqueSucc
);
3497 DTU
->applyUpdates({{DominatorTree::Insert
, PredBlock
, UniqueSucc
},
3498 {DominatorTree::Delete
, PredBlock
, BB
}});
3500 // If BI was a loop latch, it may have had associated loop metadata.
3501 // We need to copy it to the new latch, that is, PBI.
3502 if (MDNode
*LoopMD
= BI
->getMetadata(LLVMContext::MD_loop
))
3503 PBI
->setMetadata(LLVMContext::MD_loop
, LoopMD
);
3505 ValueToValueMapTy VMap
; // maps original values to cloned values
3506 CloneInstructionsIntoPredecessorBlockAndUpdateSSAUses(BB
, PredBlock
, VMap
);
3508 // Now that the Cond was cloned into the predecessor basic block,
3509 // or/and the two conditions together.
3510 Value
*BICond
= VMap
[BI
->getCondition()];
3512 createLogicalOp(Builder
, Opc
, PBI
->getCondition(), BICond
, "or.cond"));
3514 // Copy any debug value intrinsics into the end of PredBlock.
3515 for (Instruction
&I
: *BB
) {
3516 if (isa
<DbgInfoIntrinsic
>(I
)) {
3517 Instruction
*NewI
= I
.clone();
3518 RemapInstruction(NewI
, VMap
,
3519 RF_NoModuleLevelChanges
| RF_IgnoreMissingLocals
);
3520 NewI
->insertBefore(PBI
);
3524 ++NumFoldBranchToCommonDest
;
3528 /// Return if an instruction's type or any of its operands' types are a vector
3530 static bool isVectorOp(Instruction
&I
) {
3531 return I
.getType()->isVectorTy() || any_of(I
.operands(), [](Use
&U
) {
3532 return U
->getType()->isVectorTy();
3536 /// If this basic block is simple enough, and if a predecessor branches to us
3537 /// and one of our successors, fold the block into the predecessor and use
3538 /// logical operations to pick the right destination.
3539 bool llvm::FoldBranchToCommonDest(BranchInst
*BI
, DomTreeUpdater
*DTU
,
3540 MemorySSAUpdater
*MSSAU
,
3541 const TargetTransformInfo
*TTI
,
3542 unsigned BonusInstThreshold
) {
3543 // If this block ends with an unconditional branch,
3544 // let SpeculativelyExecuteBB() deal with it.
3545 if (!BI
->isConditional())
3548 BasicBlock
*BB
= BI
->getParent();
3549 TargetTransformInfo::TargetCostKind CostKind
=
3550 BB
->getParent()->hasMinSize() ? TargetTransformInfo::TCK_CodeSize
3551 : TargetTransformInfo::TCK_SizeAndLatency
;
3553 Instruction
*Cond
= dyn_cast
<Instruction
>(BI
->getCondition());
3556 (!isa
<CmpInst
>(Cond
) && !isa
<BinaryOperator
>(Cond
) &&
3557 !isa
<SelectInst
>(Cond
)) ||
3558 Cond
->getParent() != BB
|| !Cond
->hasOneUse())
3561 // Finally, don't infinitely unroll conditional loops.
3562 if (is_contained(successors(BB
), BB
))
3565 // With which predecessors will we want to deal with?
3566 SmallVector
<BasicBlock
*, 8> Preds
;
3567 for (BasicBlock
*PredBlock
: predecessors(BB
)) {
3568 BranchInst
*PBI
= dyn_cast
<BranchInst
>(PredBlock
->getTerminator());
3570 // Check that we have two conditional branches. If there is a PHI node in
3571 // the common successor, verify that the same value flows in from both
3573 if (!PBI
|| PBI
->isUnconditional() || !SafeToMergeTerminators(BI
, PBI
))
3576 // Determine if the two branches share a common destination.
3577 Instruction::BinaryOps Opc
;
3578 bool InvertPredCond
;
3579 if (auto Recipe
= shouldFoldCondBranchesToCommonDestination(BI
, PBI
, TTI
))
3580 std::tie(Opc
, InvertPredCond
) = *Recipe
;
3584 // Check the cost of inserting the necessary logic before performing the
3587 Type
*Ty
= BI
->getCondition()->getType();
3588 InstructionCost Cost
= TTI
->getArithmeticInstrCost(Opc
, Ty
, CostKind
);
3589 if (InvertPredCond
&& (!PBI
->getCondition()->hasOneUse() ||
3590 !isa
<CmpInst
>(PBI
->getCondition())))
3591 Cost
+= TTI
->getArithmeticInstrCost(Instruction::Xor
, Ty
, CostKind
);
3593 if (Cost
> BranchFoldThreshold
)
3597 // Ok, we do want to deal with this predecessor. Record it.
3598 Preds
.emplace_back(PredBlock
);
3601 // If there aren't any predecessors into which we can fold,
3602 // don't bother checking the cost.
3606 // Only allow this transformation if computing the condition doesn't involve
3607 // too many instructions and these involved instructions can be executed
3608 // unconditionally. We denote all involved instructions except the condition
3609 // as "bonus instructions", and only allow this transformation when the
3610 // number of the bonus instructions we'll need to create when cloning into
3611 // each predecessor does not exceed a certain threshold.
3612 unsigned NumBonusInsts
= 0;
3613 bool SawVectorOp
= false;
3614 const unsigned PredCount
= Preds
.size();
3615 for (Instruction
&I
: *BB
) {
3616 // Don't check the branch condition comparison itself.
3619 // Ignore dbg intrinsics, and the terminator.
3620 if (isa
<DbgInfoIntrinsic
>(I
) || isa
<BranchInst
>(I
))
3622 // I must be safe to execute unconditionally.
3623 if (!isSafeToSpeculativelyExecute(&I
))
3625 SawVectorOp
|= isVectorOp(I
);
3627 // Account for the cost of duplicating this instruction into each
3628 // predecessor. Ignore free instructions.
3629 if (!TTI
|| TTI
->getInstructionCost(&I
, CostKind
) !=
3630 TargetTransformInfo::TCC_Free
) {
3631 NumBonusInsts
+= PredCount
;
3633 // Early exits once we reach the limit.
3635 BonusInstThreshold
* BranchFoldToCommonDestVectorMultiplier
)
3639 auto IsBCSSAUse
= [BB
, &I
](Use
&U
) {
3640 auto *UI
= cast
<Instruction
>(U
.getUser());
3641 if (auto *PN
= dyn_cast
<PHINode
>(UI
))
3642 return PN
->getIncomingBlock(U
) == BB
;
3643 return UI
->getParent() == BB
&& I
.comesBefore(UI
);
3646 // Does this instruction require rewriting of uses?
3647 if (!all_of(I
.uses(), IsBCSSAUse
))
3651 BonusInstThreshold
*
3652 (SawVectorOp
? BranchFoldToCommonDestVectorMultiplier
: 1))
3655 // Ok, we have the budget. Perform the transformation.
3656 for (BasicBlock
*PredBlock
: Preds
) {
3657 auto *PBI
= cast
<BranchInst
>(PredBlock
->getTerminator());
3658 return performBranchToCommonDestFolding(BI
, PBI
, DTU
, MSSAU
, TTI
);
3663 // If there is only one store in BB1 and BB2, return it, otherwise return
3665 static StoreInst
*findUniqueStoreInBlocks(BasicBlock
*BB1
, BasicBlock
*BB2
) {
3666 StoreInst
*S
= nullptr;
3667 for (auto *BB
: {BB1
, BB2
}) {
3671 if (auto *SI
= dyn_cast
<StoreInst
>(&I
)) {
3673 // Multiple stores seen.
3682 static Value
*ensureValueAvailableInSuccessor(Value
*V
, BasicBlock
*BB
,
3683 Value
*AlternativeV
= nullptr) {
3684 // PHI is going to be a PHI node that allows the value V that is defined in
3685 // BB to be referenced in BB's only successor.
3687 // If AlternativeV is nullptr, the only value we care about in PHI is V. It
3688 // doesn't matter to us what the other operand is (it'll never get used). We
3689 // could just create a new PHI with an undef incoming value, but that could
3690 // increase register pressure if EarlyCSE/InstCombine can't fold it with some
3691 // other PHI. So here we directly look for some PHI in BB's successor with V
3692 // as an incoming operand. If we find one, we use it, else we create a new
3695 // If AlternativeV is not nullptr, we care about both incoming values in PHI.
3696 // PHI must be exactly: phi <ty> [ %BB, %V ], [ %OtherBB, %AlternativeV]
3697 // where OtherBB is the single other predecessor of BB's only successor.
3698 PHINode
*PHI
= nullptr;
3699 BasicBlock
*Succ
= BB
->getSingleSuccessor();
3701 for (auto I
= Succ
->begin(); isa
<PHINode
>(I
); ++I
)
3702 if (cast
<PHINode
>(I
)->getIncomingValueForBlock(BB
) == V
) {
3703 PHI
= cast
<PHINode
>(I
);
3707 assert(Succ
->hasNPredecessors(2));
3708 auto PredI
= pred_begin(Succ
);
3709 BasicBlock
*OtherPredBB
= *PredI
== BB
? *++PredI
: *PredI
;
3710 if (PHI
->getIncomingValueForBlock(OtherPredBB
) == AlternativeV
)
3717 // If V is not an instruction defined in BB, just return it.
3718 if (!AlternativeV
&&
3719 (!isa
<Instruction
>(V
) || cast
<Instruction
>(V
)->getParent() != BB
))
3722 PHI
= PHINode::Create(V
->getType(), 2, "simplifycfg.merge", &Succ
->front());
3723 PHI
->addIncoming(V
, BB
);
3724 for (BasicBlock
*PredBB
: predecessors(Succ
))
3727 AlternativeV
? AlternativeV
: UndefValue::get(V
->getType()), PredBB
);
3731 static bool mergeConditionalStoreToAddress(
3732 BasicBlock
*PTB
, BasicBlock
*PFB
, BasicBlock
*QTB
, BasicBlock
*QFB
,
3733 BasicBlock
*PostBB
, Value
*Address
, bool InvertPCond
, bool InvertQCond
,
3734 DomTreeUpdater
*DTU
, const DataLayout
&DL
, const TargetTransformInfo
&TTI
) {
3735 // For every pointer, there must be exactly two stores, one coming from
3736 // PTB or PFB, and the other from QTB or QFB. We don't support more than one
3737 // store (to any address) in PTB,PFB or QTB,QFB.
3738 // FIXME: We could relax this restriction with a bit more work and performance
3740 StoreInst
*PStore
= findUniqueStoreInBlocks(PTB
, PFB
);
3741 StoreInst
*QStore
= findUniqueStoreInBlocks(QTB
, QFB
);
3742 if (!PStore
|| !QStore
)
3745 // Now check the stores are compatible.
3746 if (!QStore
->isUnordered() || !PStore
->isUnordered() ||
3747 PStore
->getValueOperand()->getType() !=
3748 QStore
->getValueOperand()->getType())
3751 // Check that sinking the store won't cause program behavior changes. Sinking
3752 // the store out of the Q blocks won't change any behavior as we're sinking
3753 // from a block to its unconditional successor. But we're moving a store from
3754 // the P blocks down through the middle block (QBI) and past both QFB and QTB.
3755 // So we need to check that there are no aliasing loads or stores in
3756 // QBI, QTB and QFB. We also need to check there are no conflicting memory
3757 // operations between PStore and the end of its parent block.
3759 // The ideal way to do this is to query AliasAnalysis, but we don't
3760 // preserve AA currently so that is dangerous. Be super safe and just
3761 // check there are no other memory operations at all.
3762 for (auto &I
: *QFB
->getSinglePredecessor())
3763 if (I
.mayReadOrWriteMemory())
3765 for (auto &I
: *QFB
)
3766 if (&I
!= QStore
&& I
.mayReadOrWriteMemory())
3769 for (auto &I
: *QTB
)
3770 if (&I
!= QStore
&& I
.mayReadOrWriteMemory())
3772 for (auto I
= BasicBlock::iterator(PStore
), E
= PStore
->getParent()->end();
3774 if (&*I
!= PStore
&& I
->mayReadOrWriteMemory())
3777 // If we're not in aggressive mode, we only optimize if we have some
3778 // confidence that by optimizing we'll allow P and/or Q to be if-converted.
3779 auto IsWorthwhile
= [&](BasicBlock
*BB
, ArrayRef
<StoreInst
*> FreeStores
) {
3782 // Heuristic: if the block can be if-converted/phi-folded and the
3783 // instructions inside are all cheap (arithmetic/GEPs), it's worthwhile to
3784 // thread this store.
3785 InstructionCost Cost
= 0;
3786 InstructionCost Budget
=
3787 PHINodeFoldingThreshold
* TargetTransformInfo::TCC_Basic
;
3788 for (auto &I
: BB
->instructionsWithoutDebug(false)) {
3789 // Consider terminator instruction to be free.
3790 if (I
.isTerminator())
3792 // If this is one the stores that we want to speculate out of this BB,
3793 // then don't count it's cost, consider it to be free.
3794 if (auto *S
= dyn_cast
<StoreInst
>(&I
))
3795 if (llvm::find(FreeStores
, S
))
3797 // Else, we have a white-list of instructions that we are ak speculating.
3798 if (!isa
<BinaryOperator
>(I
) && !isa
<GetElementPtrInst
>(I
))
3799 return false; // Not in white-list - not worthwhile folding.
3800 // And finally, if this is a non-free instruction that we are okay
3801 // speculating, ensure that we consider the speculation budget.
3803 TTI
.getInstructionCost(&I
, TargetTransformInfo::TCK_SizeAndLatency
);
3805 return false; // Eagerly refuse to fold as soon as we're out of budget.
3807 assert(Cost
<= Budget
&&
3808 "When we run out of budget we will eagerly return from within the "
3809 "per-instruction loop.");
3813 const std::array
<StoreInst
*, 2> FreeStores
= {PStore
, QStore
};
3814 if (!MergeCondStoresAggressively
&&
3815 (!IsWorthwhile(PTB
, FreeStores
) || !IsWorthwhile(PFB
, FreeStores
) ||
3816 !IsWorthwhile(QTB
, FreeStores
) || !IsWorthwhile(QFB
, FreeStores
)))
3819 // If PostBB has more than two predecessors, we need to split it so we can
3821 if (std::next(pred_begin(PostBB
), 2) != pred_end(PostBB
)) {
3822 // We know that QFB's only successor is PostBB. And QFB has a single
3823 // predecessor. If QTB exists, then its only successor is also PostBB.
3824 // If QTB does not exist, then QFB's only predecessor has a conditional
3825 // branch to QFB and PostBB.
3826 BasicBlock
*TruePred
= QTB
? QTB
: QFB
->getSinglePredecessor();
3828 SplitBlockPredecessors(PostBB
, {QFB
, TruePred
}, "condstore.split", DTU
);
3834 // OK, we're going to sink the stores to PostBB. The store has to be
3835 // conditional though, so first create the predicate.
3836 Value
*PCond
= cast
<BranchInst
>(PFB
->getSinglePredecessor()->getTerminator())
3838 Value
*QCond
= cast
<BranchInst
>(QFB
->getSinglePredecessor()->getTerminator())
3841 Value
*PPHI
= ensureValueAvailableInSuccessor(PStore
->getValueOperand(),
3842 PStore
->getParent());
3843 Value
*QPHI
= ensureValueAvailableInSuccessor(QStore
->getValueOperand(),
3844 QStore
->getParent(), PPHI
);
3846 IRBuilder
<> QB(&*PostBB
->getFirstInsertionPt());
3848 Value
*PPred
= PStore
->getParent() == PTB
? PCond
: QB
.CreateNot(PCond
);
3849 Value
*QPred
= QStore
->getParent() == QTB
? QCond
: QB
.CreateNot(QCond
);
3852 PPred
= QB
.CreateNot(PPred
);
3854 QPred
= QB
.CreateNot(QPred
);
3855 Value
*CombinedPred
= QB
.CreateOr(PPred
, QPred
);
3857 auto *T
= SplitBlockAndInsertIfThen(CombinedPred
, &*QB
.GetInsertPoint(),
3858 /*Unreachable=*/false,
3859 /*BranchWeights=*/nullptr, DTU
);
3860 QB
.SetInsertPoint(T
);
3861 StoreInst
*SI
= cast
<StoreInst
>(QB
.CreateStore(QPHI
, Address
));
3862 SI
->setAAMetadata(PStore
->getAAMetadata().merge(QStore
->getAAMetadata()));
3863 // Choose the minimum alignment. If we could prove both stores execute, we
3864 // could use biggest one. In this case, though, we only know that one of the
3865 // stores executes. And we don't know it's safe to take the alignment from a
3866 // store that doesn't execute.
3867 SI
->setAlignment(std::min(PStore
->getAlign(), QStore
->getAlign()));
3869 QStore
->eraseFromParent();
3870 PStore
->eraseFromParent();
3875 static bool mergeConditionalStores(BranchInst
*PBI
, BranchInst
*QBI
,
3876 DomTreeUpdater
*DTU
, const DataLayout
&DL
,
3877 const TargetTransformInfo
&TTI
) {
3878 // The intention here is to find diamonds or triangles (see below) where each
3879 // conditional block contains a store to the same address. Both of these
3880 // stores are conditional, so they can't be unconditionally sunk. But it may
3881 // be profitable to speculatively sink the stores into one merged store at the
3882 // end, and predicate the merged store on the union of the two conditions of
3885 // This can reduce the number of stores executed if both of the conditions are
3886 // true, and can allow the blocks to become small enough to be if-converted.
3887 // This optimization will also chain, so that ladders of test-and-set
3888 // sequences can be if-converted away.
3890 // We only deal with simple diamonds or triangles:
3892 // PBI or PBI or a combination of the two
3902 // We model triangles as a type of diamond with a nullptr "true" block.
3903 // Triangles are canonicalized so that the fallthrough edge is represented by
3904 // a true condition, as in the diagram above.
3905 BasicBlock
*PTB
= PBI
->getSuccessor(0);
3906 BasicBlock
*PFB
= PBI
->getSuccessor(1);
3907 BasicBlock
*QTB
= QBI
->getSuccessor(0);
3908 BasicBlock
*QFB
= QBI
->getSuccessor(1);
3909 BasicBlock
*PostBB
= QFB
->getSingleSuccessor();
3911 // Make sure we have a good guess for PostBB. If QTB's only successor is
3912 // QFB, then QFB is a better PostBB.
3913 if (QTB
->getSingleSuccessor() == QFB
)
3916 // If we couldn't find a good PostBB, stop.
3920 bool InvertPCond
= false, InvertQCond
= false;
3921 // Canonicalize fallthroughs to the true branches.
3922 if (PFB
== QBI
->getParent()) {
3923 std::swap(PFB
, PTB
);
3926 if (QFB
== PostBB
) {
3927 std::swap(QFB
, QTB
);
3931 // From this point on we can assume PTB or QTB may be fallthroughs but PFB
3932 // and QFB may not. Model fallthroughs as a nullptr block.
3933 if (PTB
== QBI
->getParent())
3938 // Legality bailouts. We must have at least the non-fallthrough blocks and
3939 // the post-dominating block, and the non-fallthroughs must only have one
3941 auto HasOnePredAndOneSucc
= [](BasicBlock
*BB
, BasicBlock
*P
, BasicBlock
*S
) {
3942 return BB
->getSinglePredecessor() == P
&& BB
->getSingleSuccessor() == S
;
3944 if (!HasOnePredAndOneSucc(PFB
, PBI
->getParent(), QBI
->getParent()) ||
3945 !HasOnePredAndOneSucc(QFB
, QBI
->getParent(), PostBB
))
3947 if ((PTB
&& !HasOnePredAndOneSucc(PTB
, PBI
->getParent(), QBI
->getParent())) ||
3948 (QTB
&& !HasOnePredAndOneSucc(QTB
, QBI
->getParent(), PostBB
)))
3950 if (!QBI
->getParent()->hasNUses(2))
3953 // OK, this is a sequence of two diamonds or triangles.
3954 // Check if there are stores in PTB or PFB that are repeated in QTB or QFB.
3955 SmallPtrSet
<Value
*, 4> PStoreAddresses
, QStoreAddresses
;
3956 for (auto *BB
: {PTB
, PFB
}) {
3960 if (StoreInst
*SI
= dyn_cast
<StoreInst
>(&I
))
3961 PStoreAddresses
.insert(SI
->getPointerOperand());
3963 for (auto *BB
: {QTB
, QFB
}) {
3967 if (StoreInst
*SI
= dyn_cast
<StoreInst
>(&I
))
3968 QStoreAddresses
.insert(SI
->getPointerOperand());
3971 set_intersect(PStoreAddresses
, QStoreAddresses
);
3972 // set_intersect mutates PStoreAddresses in place. Rename it here to make it
3973 // clear what it contains.
3974 auto &CommonAddresses
= PStoreAddresses
;
3976 bool Changed
= false;
3977 for (auto *Address
: CommonAddresses
)
3979 mergeConditionalStoreToAddress(PTB
, PFB
, QTB
, QFB
, PostBB
, Address
,
3980 InvertPCond
, InvertQCond
, DTU
, DL
, TTI
);
3984 /// If the previous block ended with a widenable branch, determine if reusing
3985 /// the target block is profitable and legal. This will have the effect of
3986 /// "widening" PBI, but doesn't require us to reason about hosting safety.
3987 static bool tryWidenCondBranchToCondBranch(BranchInst
*PBI
, BranchInst
*BI
,
3988 DomTreeUpdater
*DTU
) {
3989 // TODO: This can be generalized in two important ways:
3990 // 1) We can allow phi nodes in IfFalseBB and simply reuse all the input
3991 // values from the PBI edge.
3992 // 2) We can sink side effecting instructions into BI's fallthrough
3993 // successor provided they doesn't contribute to computation of
3996 BasicBlock
*IfTrueBB
, *IfFalseBB
;
3997 if (!parseWidenableBranch(PBI
, CondWB
, WC
, IfTrueBB
, IfFalseBB
) ||
3998 IfTrueBB
!= BI
->getParent() || !BI
->getParent()->getSinglePredecessor())
4000 if (!IfFalseBB
->phis().empty())
4001 return false; // TODO
4002 // Use lambda to lazily compute expensive condition after cheap ones.
4003 auto NoSideEffects
= [](BasicBlock
&BB
) {
4004 return llvm::none_of(BB
, [](const Instruction
&I
) {
4005 return I
.mayWriteToMemory() || I
.mayHaveSideEffects();
4008 if (BI
->getSuccessor(1) != IfFalseBB
&& // no inf looping
4009 BI
->getSuccessor(1)->getTerminatingDeoptimizeCall() && // profitability
4010 NoSideEffects(*BI
->getParent())) {
4011 auto *OldSuccessor
= BI
->getSuccessor(1);
4012 OldSuccessor
->removePredecessor(BI
->getParent());
4013 BI
->setSuccessor(1, IfFalseBB
);
4016 {{DominatorTree::Insert
, BI
->getParent(), IfFalseBB
},
4017 {DominatorTree::Delete
, BI
->getParent(), OldSuccessor
}});
4020 if (BI
->getSuccessor(0) != IfFalseBB
&& // no inf looping
4021 BI
->getSuccessor(0)->getTerminatingDeoptimizeCall() && // profitability
4022 NoSideEffects(*BI
->getParent())) {
4023 auto *OldSuccessor
= BI
->getSuccessor(0);
4024 OldSuccessor
->removePredecessor(BI
->getParent());
4025 BI
->setSuccessor(0, IfFalseBB
);
4028 {{DominatorTree::Insert
, BI
->getParent(), IfFalseBB
},
4029 {DominatorTree::Delete
, BI
->getParent(), OldSuccessor
}});
4035 /// If we have a conditional branch as a predecessor of another block,
4036 /// this function tries to simplify it. We know
4037 /// that PBI and BI are both conditional branches, and BI is in one of the
4038 /// successor blocks of PBI - PBI branches to BI.
4039 static bool SimplifyCondBranchToCondBranch(BranchInst
*PBI
, BranchInst
*BI
,
4040 DomTreeUpdater
*DTU
,
4041 const DataLayout
&DL
,
4042 const TargetTransformInfo
&TTI
) {
4043 assert(PBI
->isConditional() && BI
->isConditional());
4044 BasicBlock
*BB
= BI
->getParent();
4046 // If this block ends with a branch instruction, and if there is a
4047 // predecessor that ends on a branch of the same condition, make
4048 // this conditional branch redundant.
4049 if (PBI
->getCondition() == BI
->getCondition() &&
4050 PBI
->getSuccessor(0) != PBI
->getSuccessor(1)) {
4051 // Okay, the outcome of this conditional branch is statically
4052 // knowable. If this block had a single pred, handle specially, otherwise
4053 // FoldCondBranchOnValueKnownInPredecessor() will handle it.
4054 if (BB
->getSinglePredecessor()) {
4055 // Turn this into a branch on constant.
4056 bool CondIsTrue
= PBI
->getSuccessor(0) == BB
;
4058 ConstantInt::get(Type::getInt1Ty(BB
->getContext()), CondIsTrue
));
4059 return true; // Nuke the branch on constant.
4063 // If the previous block ended with a widenable branch, determine if reusing
4064 // the target block is profitable and legal. This will have the effect of
4065 // "widening" PBI, but doesn't require us to reason about hosting safety.
4066 if (tryWidenCondBranchToCondBranch(PBI
, BI
, DTU
))
4069 // If both branches are conditional and both contain stores to the same
4070 // address, remove the stores from the conditionals and create a conditional
4071 // merged store at the end.
4072 if (MergeCondStores
&& mergeConditionalStores(PBI
, BI
, DTU
, DL
, TTI
))
4075 // If this is a conditional branch in an empty block, and if any
4076 // predecessors are a conditional branch to one of our destinations,
4077 // fold the conditions into logical ops and one cond br.
4079 // Ignore dbg intrinsics.
4080 if (&*BB
->instructionsWithoutDebug(false).begin() != BI
)
4084 if (PBI
->getSuccessor(0) == BI
->getSuccessor(0)) {
4087 } else if (PBI
->getSuccessor(0) == BI
->getSuccessor(1)) {
4090 } else if (PBI
->getSuccessor(1) == BI
->getSuccessor(0)) {
4093 } else if (PBI
->getSuccessor(1) == BI
->getSuccessor(1)) {
4100 // Check to make sure that the other destination of this branch
4101 // isn't BB itself. If so, this is an infinite loop that will
4102 // keep getting unwound.
4103 if (PBI
->getSuccessor(PBIOp
) == BB
)
4106 // Do not perform this transformation if it would require
4107 // insertion of a large number of select instructions. For targets
4108 // without predication/cmovs, this is a big pessimization.
4110 BasicBlock
*CommonDest
= PBI
->getSuccessor(PBIOp
);
4111 BasicBlock
*RemovedDest
= PBI
->getSuccessor(PBIOp
^ 1);
4112 unsigned NumPhis
= 0;
4113 for (BasicBlock::iterator II
= CommonDest
->begin(); isa
<PHINode
>(II
);
4115 if (NumPhis
> 2) // Disable this xform.
4119 // Finally, if everything is ok, fold the branches to logical ops.
4120 BasicBlock
*OtherDest
= BI
->getSuccessor(BIOp
^ 1);
4122 LLVM_DEBUG(dbgs() << "FOLDING BRs:" << *PBI
->getParent()
4123 << "AND: " << *BI
->getParent());
4125 SmallVector
<DominatorTree::UpdateType
, 5> Updates
;
4127 // If OtherDest *is* BB, then BB is a basic block with a single conditional
4128 // branch in it, where one edge (OtherDest) goes back to itself but the other
4129 // exits. We don't *know* that the program avoids the infinite loop
4130 // (even though that seems likely). If we do this xform naively, we'll end up
4131 // recursively unpeeling the loop. Since we know that (after the xform is
4132 // done) that the block *is* infinite if reached, we just make it an obviously
4133 // infinite loop with no cond branch.
4134 if (OtherDest
== BB
) {
4135 // Insert it at the end of the function, because it's either code,
4136 // or it won't matter if it's hot. :)
4137 BasicBlock
*InfLoopBlock
=
4138 BasicBlock::Create(BB
->getContext(), "infloop", BB
->getParent());
4139 BranchInst::Create(InfLoopBlock
, InfLoopBlock
);
4141 Updates
.push_back({DominatorTree::Insert
, InfLoopBlock
, InfLoopBlock
});
4142 OtherDest
= InfLoopBlock
;
4145 LLVM_DEBUG(dbgs() << *PBI
->getParent()->getParent());
4147 // BI may have other predecessors. Because of this, we leave
4148 // it alone, but modify PBI.
4150 // Make sure we get to CommonDest on True&True directions.
4151 Value
*PBICond
= PBI
->getCondition();
4152 IRBuilder
<NoFolder
> Builder(PBI
);
4154 PBICond
= Builder
.CreateNot(PBICond
, PBICond
->getName() + ".not");
4156 Value
*BICond
= BI
->getCondition();
4158 BICond
= Builder
.CreateNot(BICond
, BICond
->getName() + ".not");
4160 // Merge the conditions.
4162 createLogicalOp(Builder
, Instruction::Or
, PBICond
, BICond
, "brmerge");
4164 // Modify PBI to branch on the new condition to the new dests.
4165 PBI
->setCondition(Cond
);
4166 PBI
->setSuccessor(0, CommonDest
);
4167 PBI
->setSuccessor(1, OtherDest
);
4170 Updates
.push_back({DominatorTree::Insert
, PBI
->getParent(), OtherDest
});
4171 Updates
.push_back({DominatorTree::Delete
, PBI
->getParent(), RemovedDest
});
4173 DTU
->applyUpdates(Updates
);
4176 // Update branch weight for PBI.
4177 uint64_t PredTrueWeight
, PredFalseWeight
, SuccTrueWeight
, SuccFalseWeight
;
4178 uint64_t PredCommon
, PredOther
, SuccCommon
, SuccOther
;
4180 extractPredSuccWeights(PBI
, BI
, PredTrueWeight
, PredFalseWeight
,
4181 SuccTrueWeight
, SuccFalseWeight
);
4183 PredCommon
= PBIOp
? PredFalseWeight
: PredTrueWeight
;
4184 PredOther
= PBIOp
? PredTrueWeight
: PredFalseWeight
;
4185 SuccCommon
= BIOp
? SuccFalseWeight
: SuccTrueWeight
;
4186 SuccOther
= BIOp
? SuccTrueWeight
: SuccFalseWeight
;
4187 // The weight to CommonDest should be PredCommon * SuccTotal +
4188 // PredOther * SuccCommon.
4189 // The weight to OtherDest should be PredOther * SuccOther.
4190 uint64_t NewWeights
[2] = {PredCommon
* (SuccCommon
+ SuccOther
) +
4191 PredOther
* SuccCommon
,
4192 PredOther
* SuccOther
};
4193 // Halve the weights if any of them cannot fit in an uint32_t
4194 FitWeights(NewWeights
);
4196 setBranchWeights(PBI
, NewWeights
[0], NewWeights
[1]);
4199 // OtherDest may have phi nodes. If so, add an entry from PBI's
4200 // block that are identical to the entries for BI's block.
4201 AddPredecessorToBlock(OtherDest
, PBI
->getParent(), BB
);
4203 // We know that the CommonDest already had an edge from PBI to
4204 // it. If it has PHIs though, the PHIs may have different
4205 // entries for BB and PBI's BB. If so, insert a select to make
4207 for (PHINode
&PN
: CommonDest
->phis()) {
4208 Value
*BIV
= PN
.getIncomingValueForBlock(BB
);
4209 unsigned PBBIdx
= PN
.getBasicBlockIndex(PBI
->getParent());
4210 Value
*PBIV
= PN
.getIncomingValue(PBBIdx
);
4212 // Insert a select in PBI to pick the right value.
4213 SelectInst
*NV
= cast
<SelectInst
>(
4214 Builder
.CreateSelect(PBICond
, PBIV
, BIV
, PBIV
->getName() + ".mux"));
4215 PN
.setIncomingValue(PBBIdx
, NV
);
4216 // Although the select has the same condition as PBI, the original branch
4217 // weights for PBI do not apply to the new select because the select's
4218 // 'logical' edges are incoming edges of the phi that is eliminated, not
4219 // the outgoing edges of PBI.
4221 uint64_t PredCommon
= PBIOp
? PredFalseWeight
: PredTrueWeight
;
4222 uint64_t PredOther
= PBIOp
? PredTrueWeight
: PredFalseWeight
;
4223 uint64_t SuccCommon
= BIOp
? SuccFalseWeight
: SuccTrueWeight
;
4224 uint64_t SuccOther
= BIOp
? SuccTrueWeight
: SuccFalseWeight
;
4225 // The weight to PredCommonDest should be PredCommon * SuccTotal.
4226 // The weight to PredOtherDest should be PredOther * SuccCommon.
4227 uint64_t NewWeights
[2] = {PredCommon
* (SuccCommon
+ SuccOther
),
4228 PredOther
* SuccCommon
};
4230 FitWeights(NewWeights
);
4232 setBranchWeights(NV
, NewWeights
[0], NewWeights
[1]);
4237 LLVM_DEBUG(dbgs() << "INTO: " << *PBI
->getParent());
4238 LLVM_DEBUG(dbgs() << *PBI
->getParent()->getParent());
4240 // This basic block is probably dead. We know it has at least
4241 // one fewer predecessor.
4245 // Simplifies a terminator by replacing it with a branch to TrueBB if Cond is
4246 // true or to FalseBB if Cond is false.
4247 // Takes care of updating the successors and removing the old terminator.
4248 // Also makes sure not to introduce new successors by assuming that edges to
4249 // non-successor TrueBBs and FalseBBs aren't reachable.
4250 bool SimplifyCFGOpt::SimplifyTerminatorOnSelect(Instruction
*OldTerm
,
4251 Value
*Cond
, BasicBlock
*TrueBB
,
4252 BasicBlock
*FalseBB
,
4253 uint32_t TrueWeight
,
4254 uint32_t FalseWeight
) {
4255 auto *BB
= OldTerm
->getParent();
4256 // Remove any superfluous successor edges from the CFG.
4257 // First, figure out which successors to preserve.
4258 // If TrueBB and FalseBB are equal, only try to preserve one copy of that
4260 BasicBlock
*KeepEdge1
= TrueBB
;
4261 BasicBlock
*KeepEdge2
= TrueBB
!= FalseBB
? FalseBB
: nullptr;
4263 SmallSetVector
<BasicBlock
*, 2> RemovedSuccessors
;
4265 // Then remove the rest.
4266 for (BasicBlock
*Succ
: successors(OldTerm
)) {
4267 // Make sure only to keep exactly one copy of each edge.
4268 if (Succ
== KeepEdge1
)
4269 KeepEdge1
= nullptr;
4270 else if (Succ
== KeepEdge2
)
4271 KeepEdge2
= nullptr;
4273 Succ
->removePredecessor(BB
,
4274 /*KeepOneInputPHIs=*/true);
4276 if (Succ
!= TrueBB
&& Succ
!= FalseBB
)
4277 RemovedSuccessors
.insert(Succ
);
4281 IRBuilder
<> Builder(OldTerm
);
4282 Builder
.SetCurrentDebugLocation(OldTerm
->getDebugLoc());
4284 // Insert an appropriate new terminator.
4285 if (!KeepEdge1
&& !KeepEdge2
) {
4286 if (TrueBB
== FalseBB
) {
4287 // We were only looking for one successor, and it was present.
4288 // Create an unconditional branch to it.
4289 Builder
.CreateBr(TrueBB
);
4291 // We found both of the successors we were looking for.
4292 // Create a conditional branch sharing the condition of the select.
4293 BranchInst
*NewBI
= Builder
.CreateCondBr(Cond
, TrueBB
, FalseBB
);
4294 if (TrueWeight
!= FalseWeight
)
4295 setBranchWeights(NewBI
, TrueWeight
, FalseWeight
);
4297 } else if (KeepEdge1
&& (KeepEdge2
|| TrueBB
== FalseBB
)) {
4298 // Neither of the selected blocks were successors, so this
4299 // terminator must be unreachable.
4300 new UnreachableInst(OldTerm
->getContext(), OldTerm
);
4302 // One of the selected values was a successor, but the other wasn't.
4303 // Insert an unconditional branch to the one that was found;
4304 // the edge to the one that wasn't must be unreachable.
4306 // Only TrueBB was found.
4307 Builder
.CreateBr(TrueBB
);
4309 // Only FalseBB was found.
4310 Builder
.CreateBr(FalseBB
);
4314 EraseTerminatorAndDCECond(OldTerm
);
4317 SmallVector
<DominatorTree::UpdateType
, 2> Updates
;
4318 Updates
.reserve(RemovedSuccessors
.size());
4319 for (auto *RemovedSuccessor
: RemovedSuccessors
)
4320 Updates
.push_back({DominatorTree::Delete
, BB
, RemovedSuccessor
});
4321 DTU
->applyUpdates(Updates
);
4328 // (switch (select cond, X, Y)) on constant X, Y
4329 // with a branch - conditional if X and Y lead to distinct BBs,
4330 // unconditional otherwise.
4331 bool SimplifyCFGOpt::SimplifySwitchOnSelect(SwitchInst
*SI
,
4332 SelectInst
*Select
) {
4333 // Check for constant integer values in the select.
4334 ConstantInt
*TrueVal
= dyn_cast
<ConstantInt
>(Select
->getTrueValue());
4335 ConstantInt
*FalseVal
= dyn_cast
<ConstantInt
>(Select
->getFalseValue());
4336 if (!TrueVal
|| !FalseVal
)
4339 // Find the relevant condition and destinations.
4340 Value
*Condition
= Select
->getCondition();
4341 BasicBlock
*TrueBB
= SI
->findCaseValue(TrueVal
)->getCaseSuccessor();
4342 BasicBlock
*FalseBB
= SI
->findCaseValue(FalseVal
)->getCaseSuccessor();
4344 // Get weight for TrueBB and FalseBB.
4345 uint32_t TrueWeight
= 0, FalseWeight
= 0;
4346 SmallVector
<uint64_t, 8> Weights
;
4347 bool HasWeights
= hasBranchWeightMD(*SI
);
4349 GetBranchWeights(SI
, Weights
);
4350 if (Weights
.size() == 1 + SI
->getNumCases()) {
4352 (uint32_t)Weights
[SI
->findCaseValue(TrueVal
)->getSuccessorIndex()];
4354 (uint32_t)Weights
[SI
->findCaseValue(FalseVal
)->getSuccessorIndex()];
4358 // Perform the actual simplification.
4359 return SimplifyTerminatorOnSelect(SI
, Condition
, TrueBB
, FalseBB
, TrueWeight
,
4364 // (indirectbr (select cond, blockaddress(@fn, BlockA),
4365 // blockaddress(@fn, BlockB)))
4367 // (br cond, BlockA, BlockB).
4368 bool SimplifyCFGOpt::SimplifyIndirectBrOnSelect(IndirectBrInst
*IBI
,
4370 // Check that both operands of the select are block addresses.
4371 BlockAddress
*TBA
= dyn_cast
<BlockAddress
>(SI
->getTrueValue());
4372 BlockAddress
*FBA
= dyn_cast
<BlockAddress
>(SI
->getFalseValue());
4376 // Extract the actual blocks.
4377 BasicBlock
*TrueBB
= TBA
->getBasicBlock();
4378 BasicBlock
*FalseBB
= FBA
->getBasicBlock();
4380 // Perform the actual simplification.
4381 return SimplifyTerminatorOnSelect(IBI
, SI
->getCondition(), TrueBB
, FalseBB
, 0,
4385 /// This is called when we find an icmp instruction
4386 /// (a seteq/setne with a constant) as the only instruction in a
4387 /// block that ends with an uncond branch. We are looking for a very specific
4388 /// pattern that occurs when "A == 1 || A == 2 || A == 3" gets simplified. In
4389 /// this case, we merge the first two "or's of icmp" into a switch, but then the
4390 /// default value goes to an uncond block with a seteq in it, we get something
4393 /// switch i8 %A, label %DEFAULT [ i8 1, label %end i8 2, label %end ]
4395 /// %tmp = icmp eq i8 %A, 92
4398 /// ... = phi i1 [ true, %entry ], [ %tmp, %DEFAULT ], [ true, %entry ]
4400 /// We prefer to split the edge to 'end' so that there is a true/false entry to
4401 /// the PHI, merging the third icmp into the switch.
4402 bool SimplifyCFGOpt::tryToSimplifyUncondBranchWithICmpInIt(
4403 ICmpInst
*ICI
, IRBuilder
<> &Builder
) {
4404 BasicBlock
*BB
= ICI
->getParent();
4406 // If the block has any PHIs in it or the icmp has multiple uses, it is too
4408 if (isa
<PHINode
>(BB
->begin()) || !ICI
->hasOneUse())
4411 Value
*V
= ICI
->getOperand(0);
4412 ConstantInt
*Cst
= cast
<ConstantInt
>(ICI
->getOperand(1));
4414 // The pattern we're looking for is where our only predecessor is a switch on
4415 // 'V' and this block is the default case for the switch. In this case we can
4416 // fold the compared value into the switch to simplify things.
4417 BasicBlock
*Pred
= BB
->getSinglePredecessor();
4418 if (!Pred
|| !isa
<SwitchInst
>(Pred
->getTerminator()))
4421 SwitchInst
*SI
= cast
<SwitchInst
>(Pred
->getTerminator());
4422 if (SI
->getCondition() != V
)
4425 // If BB is reachable on a non-default case, then we simply know the value of
4426 // V in this block. Substitute it and constant fold the icmp instruction
4428 if (SI
->getDefaultDest() != BB
) {
4429 ConstantInt
*VVal
= SI
->findCaseDest(BB
);
4430 assert(VVal
&& "Should have a unique destination value");
4431 ICI
->setOperand(0, VVal
);
4433 if (Value
*V
= simplifyInstruction(ICI
, {DL
, ICI
})) {
4434 ICI
->replaceAllUsesWith(V
);
4435 ICI
->eraseFromParent();
4437 // BB is now empty, so it is likely to simplify away.
4438 return requestResimplify();
4441 // Ok, the block is reachable from the default dest. If the constant we're
4442 // comparing exists in one of the other edges, then we can constant fold ICI
4444 if (SI
->findCaseValue(Cst
) != SI
->case_default()) {
4446 if (ICI
->getPredicate() == ICmpInst::ICMP_EQ
)
4447 V
= ConstantInt::getFalse(BB
->getContext());
4449 V
= ConstantInt::getTrue(BB
->getContext());
4451 ICI
->replaceAllUsesWith(V
);
4452 ICI
->eraseFromParent();
4453 // BB is now empty, so it is likely to simplify away.
4454 return requestResimplify();
4457 // The use of the icmp has to be in the 'end' block, by the only PHI node in
4459 BasicBlock
*SuccBlock
= BB
->getTerminator()->getSuccessor(0);
4460 PHINode
*PHIUse
= dyn_cast
<PHINode
>(ICI
->user_back());
4461 if (PHIUse
== nullptr || PHIUse
!= &SuccBlock
->front() ||
4462 isa
<PHINode
>(++BasicBlock::iterator(PHIUse
)))
4465 // If the icmp is a SETEQ, then the default dest gets false, the new edge gets
4467 Constant
*DefaultCst
= ConstantInt::getTrue(BB
->getContext());
4468 Constant
*NewCst
= ConstantInt::getFalse(BB
->getContext());
4470 if (ICI
->getPredicate() == ICmpInst::ICMP_EQ
)
4471 std::swap(DefaultCst
, NewCst
);
4473 // Replace ICI (which is used by the PHI for the default value) with true or
4474 // false depending on if it is EQ or NE.
4475 ICI
->replaceAllUsesWith(DefaultCst
);
4476 ICI
->eraseFromParent();
4478 SmallVector
<DominatorTree::UpdateType
, 2> Updates
;
4480 // Okay, the switch goes to this block on a default value. Add an edge from
4481 // the switch to the merge point on the compared value.
4483 BasicBlock::Create(BB
->getContext(), "switch.edge", BB
->getParent(), BB
);
4485 SwitchInstProfUpdateWrapper
SIW(*SI
);
4486 auto W0
= SIW
.getSuccessorWeight(0);
4487 SwitchInstProfUpdateWrapper::CaseWeightOpt NewW
;
4489 NewW
= ((uint64_t(*W0
) + 1) >> 1);
4490 SIW
.setSuccessorWeight(0, *NewW
);
4492 SIW
.addCase(Cst
, NewBB
, NewW
);
4494 Updates
.push_back({DominatorTree::Insert
, Pred
, NewBB
});
4497 // NewBB branches to the phi block, add the uncond branch and the phi entry.
4498 Builder
.SetInsertPoint(NewBB
);
4499 Builder
.SetCurrentDebugLocation(SI
->getDebugLoc());
4500 Builder
.CreateBr(SuccBlock
);
4501 PHIUse
->addIncoming(NewCst
, NewBB
);
4503 Updates
.push_back({DominatorTree::Insert
, NewBB
, SuccBlock
});
4504 DTU
->applyUpdates(Updates
);
4509 /// The specified branch is a conditional branch.
4510 /// Check to see if it is branching on an or/and chain of icmp instructions, and
4511 /// fold it into a switch instruction if so.
4512 bool SimplifyCFGOpt::SimplifyBranchOnICmpChain(BranchInst
*BI
,
4513 IRBuilder
<> &Builder
,
4514 const DataLayout
&DL
) {
4515 Instruction
*Cond
= dyn_cast
<Instruction
>(BI
->getCondition());
4519 // Change br (X == 0 | X == 1), T, F into a switch instruction.
4520 // If this is a bunch of seteq's or'd together, or if it's a bunch of
4521 // 'setne's and'ed together, collect them.
4523 // Try to gather values from a chain of and/or to be turned into a switch
4524 ConstantComparesGatherer
ConstantCompare(Cond
, DL
);
4525 // Unpack the result
4526 SmallVectorImpl
<ConstantInt
*> &Values
= ConstantCompare
.Vals
;
4527 Value
*CompVal
= ConstantCompare
.CompValue
;
4528 unsigned UsedICmps
= ConstantCompare
.UsedICmps
;
4529 Value
*ExtraCase
= ConstantCompare
.Extra
;
4531 // If we didn't have a multiply compared value, fail.
4535 // Avoid turning single icmps into a switch.
4539 bool TrueWhenEqual
= match(Cond
, m_LogicalOr(m_Value(), m_Value()));
4541 // There might be duplicate constants in the list, which the switch
4542 // instruction can't handle, remove them now.
4543 array_pod_sort(Values
.begin(), Values
.end(), ConstantIntSortPredicate
);
4544 Values
.erase(std::unique(Values
.begin(), Values
.end()), Values
.end());
4546 // If Extra was used, we require at least two switch values to do the
4547 // transformation. A switch with one value is just a conditional branch.
4548 if (ExtraCase
&& Values
.size() < 2)
4551 // TODO: Preserve branch weight metadata, similarly to how
4552 // FoldValueComparisonIntoPredecessors preserves it.
4554 // Figure out which block is which destination.
4555 BasicBlock
*DefaultBB
= BI
->getSuccessor(1);
4556 BasicBlock
*EdgeBB
= BI
->getSuccessor(0);
4558 std::swap(DefaultBB
, EdgeBB
);
4560 BasicBlock
*BB
= BI
->getParent();
4562 LLVM_DEBUG(dbgs() << "Converting 'icmp' chain with " << Values
.size()
4563 << " cases into SWITCH. BB is:\n"
4566 SmallVector
<DominatorTree::UpdateType
, 2> Updates
;
4568 // If there are any extra values that couldn't be folded into the switch
4569 // then we evaluate them with an explicit branch first. Split the block
4570 // right before the condbr to handle it.
4572 BasicBlock
*NewBB
= SplitBlock(BB
, BI
, DTU
, /*LI=*/nullptr,
4573 /*MSSAU=*/nullptr, "switch.early.test");
4575 // Remove the uncond branch added to the old block.
4576 Instruction
*OldTI
= BB
->getTerminator();
4577 Builder
.SetInsertPoint(OldTI
);
4579 // There can be an unintended UB if extra values are Poison. Before the
4580 // transformation, extra values may not be evaluated according to the
4581 // condition, and it will not raise UB. But after transformation, we are
4582 // evaluating extra values before checking the condition, and it will raise
4583 // UB. It can be solved by adding freeze instruction to extra values.
4584 AssumptionCache
*AC
= Options
.AC
;
4586 if (!isGuaranteedNotToBeUndefOrPoison(ExtraCase
, AC
, BI
, nullptr))
4587 ExtraCase
= Builder
.CreateFreeze(ExtraCase
);
4590 Builder
.CreateCondBr(ExtraCase
, EdgeBB
, NewBB
);
4592 Builder
.CreateCondBr(ExtraCase
, NewBB
, EdgeBB
);
4594 OldTI
->eraseFromParent();
4597 Updates
.push_back({DominatorTree::Insert
, BB
, EdgeBB
});
4599 // If there are PHI nodes in EdgeBB, then we need to add a new entry to them
4600 // for the edge we just added.
4601 AddPredecessorToBlock(EdgeBB
, BB
, NewBB
);
4603 LLVM_DEBUG(dbgs() << " ** 'icmp' chain unhandled condition: " << *ExtraCase
4604 << "\nEXTRABB = " << *BB
);
4608 Builder
.SetInsertPoint(BI
);
4609 // Convert pointer to int before we switch.
4610 if (CompVal
->getType()->isPointerTy()) {
4611 CompVal
= Builder
.CreatePtrToInt(
4612 CompVal
, DL
.getIntPtrType(CompVal
->getType()), "magicptr");
4615 // Create the new switch instruction now.
4616 SwitchInst
*New
= Builder
.CreateSwitch(CompVal
, DefaultBB
, Values
.size());
4618 // Add all of the 'cases' to the switch instruction.
4619 for (unsigned i
= 0, e
= Values
.size(); i
!= e
; ++i
)
4620 New
->addCase(Values
[i
], EdgeBB
);
4622 // We added edges from PI to the EdgeBB. As such, if there were any
4623 // PHI nodes in EdgeBB, they need entries to be added corresponding to
4624 // the number of edges added.
4625 for (BasicBlock::iterator BBI
= EdgeBB
->begin(); isa
<PHINode
>(BBI
); ++BBI
) {
4626 PHINode
*PN
= cast
<PHINode
>(BBI
);
4627 Value
*InVal
= PN
->getIncomingValueForBlock(BB
);
4628 for (unsigned i
= 0, e
= Values
.size() - 1; i
!= e
; ++i
)
4629 PN
->addIncoming(InVal
, BB
);
4632 // Erase the old branch instruction.
4633 EraseTerminatorAndDCECond(BI
);
4635 DTU
->applyUpdates(Updates
);
4637 LLVM_DEBUG(dbgs() << " ** 'icmp' chain result is:\n" << *BB
<< '\n');
4641 bool SimplifyCFGOpt::simplifyResume(ResumeInst
*RI
, IRBuilder
<> &Builder
) {
4642 if (isa
<PHINode
>(RI
->getValue()))
4643 return simplifyCommonResume(RI
);
4644 else if (isa
<LandingPadInst
>(RI
->getParent()->getFirstNonPHI()) &&
4645 RI
->getValue() == RI
->getParent()->getFirstNonPHI())
4646 // The resume must unwind the exception that caused control to branch here.
4647 return simplifySingleResume(RI
);
4652 // Check if cleanup block is empty
4653 static bool isCleanupBlockEmpty(iterator_range
<BasicBlock::iterator
> R
) {
4654 for (Instruction
&I
: R
) {
4655 auto *II
= dyn_cast
<IntrinsicInst
>(&I
);
4659 Intrinsic::ID IntrinsicID
= II
->getIntrinsicID();
4660 switch (IntrinsicID
) {
4661 case Intrinsic::dbg_declare
:
4662 case Intrinsic::dbg_value
:
4663 case Intrinsic::dbg_label
:
4664 case Intrinsic::lifetime_end
:
4673 // Simplify resume that is shared by several landing pads (phi of landing pad).
4674 bool SimplifyCFGOpt::simplifyCommonResume(ResumeInst
*RI
) {
4675 BasicBlock
*BB
= RI
->getParent();
4677 // Check that there are no other instructions except for debug and lifetime
4678 // intrinsics between the phi's and resume instruction.
4679 if (!isCleanupBlockEmpty(
4680 make_range(RI
->getParent()->getFirstNonPHI(), BB
->getTerminator())))
4683 SmallSetVector
<BasicBlock
*, 4> TrivialUnwindBlocks
;
4684 auto *PhiLPInst
= cast
<PHINode
>(RI
->getValue());
4686 // Check incoming blocks to see if any of them are trivial.
4687 for (unsigned Idx
= 0, End
= PhiLPInst
->getNumIncomingValues(); Idx
!= End
;
4689 auto *IncomingBB
= PhiLPInst
->getIncomingBlock(Idx
);
4690 auto *IncomingValue
= PhiLPInst
->getIncomingValue(Idx
);
4692 // If the block has other successors, we can not delete it because
4693 // it has other dependents.
4694 if (IncomingBB
->getUniqueSuccessor() != BB
)
4697 auto *LandingPad
= dyn_cast
<LandingPadInst
>(IncomingBB
->getFirstNonPHI());
4698 // Not the landing pad that caused the control to branch here.
4699 if (IncomingValue
!= LandingPad
)
4702 if (isCleanupBlockEmpty(
4703 make_range(LandingPad
->getNextNode(), IncomingBB
->getTerminator())))
4704 TrivialUnwindBlocks
.insert(IncomingBB
);
4707 // If no trivial unwind blocks, don't do any simplifications.
4708 if (TrivialUnwindBlocks
.empty())
4711 // Turn all invokes that unwind here into calls.
4712 for (auto *TrivialBB
: TrivialUnwindBlocks
) {
4713 // Blocks that will be simplified should be removed from the phi node.
4714 // Note there could be multiple edges to the resume block, and we need
4715 // to remove them all.
4716 while (PhiLPInst
->getBasicBlockIndex(TrivialBB
) != -1)
4717 BB
->removePredecessor(TrivialBB
, true);
4719 for (BasicBlock
*Pred
:
4720 llvm::make_early_inc_range(predecessors(TrivialBB
))) {
4721 removeUnwindEdge(Pred
, DTU
);
4725 // In each SimplifyCFG run, only the current processed block can be erased.
4726 // Otherwise, it will break the iteration of SimplifyCFG pass. So instead
4727 // of erasing TrivialBB, we only remove the branch to the common resume
4728 // block so that we can later erase the resume block since it has no
4730 TrivialBB
->getTerminator()->eraseFromParent();
4731 new UnreachableInst(RI
->getContext(), TrivialBB
);
4733 DTU
->applyUpdates({{DominatorTree::Delete
, TrivialBB
, BB
}});
4736 // Delete the resume block if all its predecessors have been removed.
4738 DeleteDeadBlock(BB
, DTU
);
4740 return !TrivialUnwindBlocks
.empty();
4743 // Simplify resume that is only used by a single (non-phi) landing pad.
4744 bool SimplifyCFGOpt::simplifySingleResume(ResumeInst
*RI
) {
4745 BasicBlock
*BB
= RI
->getParent();
4746 auto *LPInst
= cast
<LandingPadInst
>(BB
->getFirstNonPHI());
4747 assert(RI
->getValue() == LPInst
&&
4748 "Resume must unwind the exception that caused control to here");
4750 // Check that there are no other instructions except for debug intrinsics.
4751 if (!isCleanupBlockEmpty(
4752 make_range
<Instruction
*>(LPInst
->getNextNode(), RI
)))
4755 // Turn all invokes that unwind here into calls and delete the basic block.
4756 for (BasicBlock
*Pred
: llvm::make_early_inc_range(predecessors(BB
))) {
4757 removeUnwindEdge(Pred
, DTU
);
4761 // The landingpad is now unreachable. Zap it.
4762 DeleteDeadBlock(BB
, DTU
);
4766 static bool removeEmptyCleanup(CleanupReturnInst
*RI
, DomTreeUpdater
*DTU
) {
4767 // If this is a trivial cleanup pad that executes no instructions, it can be
4768 // eliminated. If the cleanup pad continues to the caller, any predecessor
4769 // that is an EH pad will be updated to continue to the caller and any
4770 // predecessor that terminates with an invoke instruction will have its invoke
4771 // instruction converted to a call instruction. If the cleanup pad being
4772 // simplified does not continue to the caller, each predecessor will be
4773 // updated to continue to the unwind destination of the cleanup pad being
4775 BasicBlock
*BB
= RI
->getParent();
4776 CleanupPadInst
*CPInst
= RI
->getCleanupPad();
4777 if (CPInst
->getParent() != BB
)
4778 // This isn't an empty cleanup.
4781 // We cannot kill the pad if it has multiple uses. This typically arises
4782 // from unreachable basic blocks.
4783 if (!CPInst
->hasOneUse())
4786 // Check that there are no other instructions except for benign intrinsics.
4787 if (!isCleanupBlockEmpty(
4788 make_range
<Instruction
*>(CPInst
->getNextNode(), RI
)))
4791 // If the cleanup return we are simplifying unwinds to the caller, this will
4792 // set UnwindDest to nullptr.
4793 BasicBlock
*UnwindDest
= RI
->getUnwindDest();
4794 Instruction
*DestEHPad
= UnwindDest
? UnwindDest
->getFirstNonPHI() : nullptr;
4796 // We're about to remove BB from the control flow. Before we do, sink any
4797 // PHINodes into the unwind destination. Doing this before changing the
4798 // control flow avoids some potentially slow checks, since we can currently
4799 // be certain that UnwindDest and BB have no common predecessors (since they
4800 // are both EH pads).
4802 // First, go through the PHI nodes in UnwindDest and update any nodes that
4803 // reference the block we are removing
4804 for (PHINode
&DestPN
: UnwindDest
->phis()) {
4805 int Idx
= DestPN
.getBasicBlockIndex(BB
);
4806 // Since BB unwinds to UnwindDest, it has to be in the PHI node.
4808 // This PHI node has an incoming value that corresponds to a control
4809 // path through the cleanup pad we are removing. If the incoming
4810 // value is in the cleanup pad, it must be a PHINode (because we
4811 // verified above that the block is otherwise empty). Otherwise, the
4812 // value is either a constant or a value that dominates the cleanup
4813 // pad being removed.
4815 // Because BB and UnwindDest are both EH pads, all of their
4816 // predecessors must unwind to these blocks, and since no instruction
4817 // can have multiple unwind destinations, there will be no overlap in
4818 // incoming blocks between SrcPN and DestPN.
4819 Value
*SrcVal
= DestPN
.getIncomingValue(Idx
);
4820 PHINode
*SrcPN
= dyn_cast
<PHINode
>(SrcVal
);
4822 bool NeedPHITranslation
= SrcPN
&& SrcPN
->getParent() == BB
;
4823 for (auto *Pred
: predecessors(BB
)) {
4825 NeedPHITranslation
? SrcPN
->getIncomingValueForBlock(Pred
) : SrcVal
;
4826 DestPN
.addIncoming(Incoming
, Pred
);
4830 // Sink any remaining PHI nodes directly into UnwindDest.
4831 Instruction
*InsertPt
= DestEHPad
;
4832 for (PHINode
&PN
: make_early_inc_range(BB
->phis())) {
4833 if (PN
.use_empty() || !PN
.isUsedOutsideOfBlock(BB
))
4834 // If the PHI node has no uses or all of its uses are in this basic
4835 // block (meaning they are debug or lifetime intrinsics), just leave
4836 // it. It will be erased when we erase BB below.
4839 // Otherwise, sink this PHI node into UnwindDest.
4840 // Any predecessors to UnwindDest which are not already represented
4841 // must be back edges which inherit the value from the path through
4842 // BB. In this case, the PHI value must reference itself.
4843 for (auto *pred
: predecessors(UnwindDest
))
4845 PN
.addIncoming(&PN
, pred
);
4846 PN
.moveBefore(InsertPt
);
4847 // Also, add a dummy incoming value for the original BB itself,
4848 // so that the PHI is well-formed until we drop said predecessor.
4849 PN
.addIncoming(PoisonValue::get(PN
.getType()), BB
);
4853 std::vector
<DominatorTree::UpdateType
> Updates
;
4855 // We use make_early_inc_range here because we will remove all predecessors.
4856 for (BasicBlock
*PredBB
: llvm::make_early_inc_range(predecessors(BB
))) {
4857 if (UnwindDest
== nullptr) {
4859 DTU
->applyUpdates(Updates
);
4862 removeUnwindEdge(PredBB
, DTU
);
4865 BB
->removePredecessor(PredBB
);
4866 Instruction
*TI
= PredBB
->getTerminator();
4867 TI
->replaceUsesOfWith(BB
, UnwindDest
);
4869 Updates
.push_back({DominatorTree::Insert
, PredBB
, UnwindDest
});
4870 Updates
.push_back({DominatorTree::Delete
, PredBB
, BB
});
4876 DTU
->applyUpdates(Updates
);
4878 DeleteDeadBlock(BB
, DTU
);
4883 // Try to merge two cleanuppads together.
4884 static bool mergeCleanupPad(CleanupReturnInst
*RI
) {
4885 // Skip any cleanuprets which unwind to caller, there is nothing to merge
4887 BasicBlock
*UnwindDest
= RI
->getUnwindDest();
4891 // This cleanupret isn't the only predecessor of this cleanuppad, it wouldn't
4892 // be safe to merge without code duplication.
4893 if (UnwindDest
->getSinglePredecessor() != RI
->getParent())
4896 // Verify that our cleanuppad's unwind destination is another cleanuppad.
4897 auto *SuccessorCleanupPad
= dyn_cast
<CleanupPadInst
>(&UnwindDest
->front());
4898 if (!SuccessorCleanupPad
)
4901 CleanupPadInst
*PredecessorCleanupPad
= RI
->getCleanupPad();
4902 // Replace any uses of the successor cleanupad with the predecessor pad
4903 // The only cleanuppad uses should be this cleanupret, it's cleanupret and
4904 // funclet bundle operands.
4905 SuccessorCleanupPad
->replaceAllUsesWith(PredecessorCleanupPad
);
4906 // Remove the old cleanuppad.
4907 SuccessorCleanupPad
->eraseFromParent();
4908 // Now, we simply replace the cleanupret with a branch to the unwind
4910 BranchInst::Create(UnwindDest
, RI
->getParent());
4911 RI
->eraseFromParent();
4916 bool SimplifyCFGOpt::simplifyCleanupReturn(CleanupReturnInst
*RI
) {
4917 // It is possible to transiantly have an undef cleanuppad operand because we
4918 // have deleted some, but not all, dead blocks.
4919 // Eventually, this block will be deleted.
4920 if (isa
<UndefValue
>(RI
->getOperand(0)))
4923 if (mergeCleanupPad(RI
))
4926 if (removeEmptyCleanup(RI
, DTU
))
4932 // WARNING: keep in sync with InstCombinerImpl::visitUnreachableInst()!
4933 bool SimplifyCFGOpt::simplifyUnreachable(UnreachableInst
*UI
) {
4934 BasicBlock
*BB
= UI
->getParent();
4936 bool Changed
= false;
4938 // If there are any instructions immediately before the unreachable that can
4939 // be removed, do so.
4940 while (UI
->getIterator() != BB
->begin()) {
4941 BasicBlock::iterator BBI
= UI
->getIterator();
4944 if (!isGuaranteedToTransferExecutionToSuccessor(&*BBI
))
4945 break; // Can not drop any more instructions. We're done here.
4946 // Otherwise, this instruction can be freely erased,
4947 // even if it is not side-effect free.
4949 // Note that deleting EH's here is in fact okay, although it involves a bit
4950 // of subtle reasoning. If this inst is an EH, all the predecessors of this
4951 // block will be the unwind edges of Invoke/CatchSwitch/CleanupReturn,
4952 // and we can therefore guarantee this block will be erased.
4954 // Delete this instruction (any uses are guaranteed to be dead)
4955 BBI
->replaceAllUsesWith(PoisonValue::get(BBI
->getType()));
4956 BBI
->eraseFromParent();
4960 // If the unreachable instruction is the first in the block, take a gander
4961 // at all of the predecessors of this instruction, and simplify them.
4962 if (&BB
->front() != UI
)
4965 std::vector
<DominatorTree::UpdateType
> Updates
;
4967 SmallSetVector
<BasicBlock
*, 8> Preds(pred_begin(BB
), pred_end(BB
));
4968 for (unsigned i
= 0, e
= Preds
.size(); i
!= e
; ++i
) {
4969 auto *Predecessor
= Preds
[i
];
4970 Instruction
*TI
= Predecessor
->getTerminator();
4971 IRBuilder
<> Builder(TI
);
4972 if (auto *BI
= dyn_cast
<BranchInst
>(TI
)) {
4973 // We could either have a proper unconditional branch,
4974 // or a degenerate conditional branch with matching destinations.
4975 if (all_of(BI
->successors(),
4976 [BB
](auto *Successor
) { return Successor
== BB
; })) {
4977 new UnreachableInst(TI
->getContext(), TI
);
4978 TI
->eraseFromParent();
4981 assert(BI
->isConditional() && "Can't get here with an uncond branch.");
4982 Value
* Cond
= BI
->getCondition();
4983 assert(BI
->getSuccessor(0) != BI
->getSuccessor(1) &&
4984 "The destinations are guaranteed to be different here.");
4985 if (BI
->getSuccessor(0) == BB
) {
4986 Builder
.CreateAssumption(Builder
.CreateNot(Cond
));
4987 Builder
.CreateBr(BI
->getSuccessor(1));
4989 assert(BI
->getSuccessor(1) == BB
&& "Incorrect CFG");
4990 Builder
.CreateAssumption(Cond
);
4991 Builder
.CreateBr(BI
->getSuccessor(0));
4993 EraseTerminatorAndDCECond(BI
);
4997 Updates
.push_back({DominatorTree::Delete
, Predecessor
, BB
});
4998 } else if (auto *SI
= dyn_cast
<SwitchInst
>(TI
)) {
4999 SwitchInstProfUpdateWrapper
SU(*SI
);
5000 for (auto i
= SU
->case_begin(), e
= SU
->case_end(); i
!= e
;) {
5001 if (i
->getCaseSuccessor() != BB
) {
5005 BB
->removePredecessor(SU
->getParent());
5006 i
= SU
.removeCase(i
);
5010 // Note that the default destination can't be removed!
5011 if (DTU
&& SI
->getDefaultDest() != BB
)
5012 Updates
.push_back({DominatorTree::Delete
, Predecessor
, BB
});
5013 } else if (auto *II
= dyn_cast
<InvokeInst
>(TI
)) {
5014 if (II
->getUnwindDest() == BB
) {
5016 DTU
->applyUpdates(Updates
);
5019 removeUnwindEdge(TI
->getParent(), DTU
);
5022 } else if (auto *CSI
= dyn_cast
<CatchSwitchInst
>(TI
)) {
5023 if (CSI
->getUnwindDest() == BB
) {
5025 DTU
->applyUpdates(Updates
);
5028 removeUnwindEdge(TI
->getParent(), DTU
);
5033 for (CatchSwitchInst::handler_iterator I
= CSI
->handler_begin(),
5034 E
= CSI
->handler_end();
5037 CSI
->removeHandler(I
);
5044 Updates
.push_back({DominatorTree::Delete
, Predecessor
, BB
});
5045 if (CSI
->getNumHandlers() == 0) {
5046 if (CSI
->hasUnwindDest()) {
5047 // Redirect all predecessors of the block containing CatchSwitchInst
5048 // to instead branch to the CatchSwitchInst's unwind destination.
5050 for (auto *PredecessorOfPredecessor
: predecessors(Predecessor
)) {
5051 Updates
.push_back({DominatorTree::Insert
,
5052 PredecessorOfPredecessor
,
5053 CSI
->getUnwindDest()});
5054 Updates
.push_back({DominatorTree::Delete
,
5055 PredecessorOfPredecessor
, Predecessor
});
5058 Predecessor
->replaceAllUsesWith(CSI
->getUnwindDest());
5060 // Rewrite all preds to unwind to caller (or from invoke to call).
5062 DTU
->applyUpdates(Updates
);
5065 SmallVector
<BasicBlock
*, 8> EHPreds(predecessors(Predecessor
));
5066 for (BasicBlock
*EHPred
: EHPreds
)
5067 removeUnwindEdge(EHPred
, DTU
);
5069 // The catchswitch is no longer reachable.
5070 new UnreachableInst(CSI
->getContext(), CSI
);
5071 CSI
->eraseFromParent();
5074 } else if (auto *CRI
= dyn_cast
<CleanupReturnInst
>(TI
)) {
5076 assert(CRI
->hasUnwindDest() && CRI
->getUnwindDest() == BB
&&
5077 "Expected to always have an unwind to BB.");
5079 Updates
.push_back({DominatorTree::Delete
, Predecessor
, BB
});
5080 new UnreachableInst(TI
->getContext(), TI
);
5081 TI
->eraseFromParent();
5087 DTU
->applyUpdates(Updates
);
5089 // If this block is now dead, remove it.
5090 if (pred_empty(BB
) && BB
!= &BB
->getParent()->getEntryBlock()) {
5091 DeleteDeadBlock(BB
, DTU
);
5098 static bool CasesAreContiguous(SmallVectorImpl
<ConstantInt
*> &Cases
) {
5099 assert(Cases
.size() >= 1);
5101 array_pod_sort(Cases
.begin(), Cases
.end(), ConstantIntSortPredicate
);
5102 for (size_t I
= 1, E
= Cases
.size(); I
!= E
; ++I
) {
5103 if (Cases
[I
- 1]->getValue() != Cases
[I
]->getValue() + 1)
5109 static void createUnreachableSwitchDefault(SwitchInst
*Switch
,
5110 DomTreeUpdater
*DTU
) {
5111 LLVM_DEBUG(dbgs() << "SimplifyCFG: switch default is dead.\n");
5112 auto *BB
= Switch
->getParent();
5113 auto *OrigDefaultBlock
= Switch
->getDefaultDest();
5114 OrigDefaultBlock
->removePredecessor(BB
);
5115 BasicBlock
*NewDefaultBlock
= BasicBlock::Create(
5116 BB
->getContext(), BB
->getName() + ".unreachabledefault", BB
->getParent(),
5118 new UnreachableInst(Switch
->getContext(), NewDefaultBlock
);
5119 Switch
->setDefaultDest(&*NewDefaultBlock
);
5121 SmallVector
<DominatorTree::UpdateType
, 2> Updates
;
5122 Updates
.push_back({DominatorTree::Insert
, BB
, &*NewDefaultBlock
});
5123 if (!is_contained(successors(BB
), OrigDefaultBlock
))
5124 Updates
.push_back({DominatorTree::Delete
, BB
, &*OrigDefaultBlock
});
5125 DTU
->applyUpdates(Updates
);
5129 /// Turn a switch into an integer range comparison and branch.
5130 /// Switches with more than 2 destinations are ignored.
5131 /// Switches with 1 destination are also ignored.
5132 bool SimplifyCFGOpt::TurnSwitchRangeIntoICmp(SwitchInst
*SI
,
5133 IRBuilder
<> &Builder
) {
5134 assert(SI
->getNumCases() > 1 && "Degenerate switch?");
5137 !isa
<UnreachableInst
>(SI
->getDefaultDest()->getFirstNonPHIOrDbg());
5139 auto *BB
= SI
->getParent();
5141 // Partition the cases into two sets with different destinations.
5142 BasicBlock
*DestA
= HasDefault
? SI
->getDefaultDest() : nullptr;
5143 BasicBlock
*DestB
= nullptr;
5144 SmallVector
<ConstantInt
*, 16> CasesA
;
5145 SmallVector
<ConstantInt
*, 16> CasesB
;
5147 for (auto Case
: SI
->cases()) {
5148 BasicBlock
*Dest
= Case
.getCaseSuccessor();
5151 if (Dest
== DestA
) {
5152 CasesA
.push_back(Case
.getCaseValue());
5157 if (Dest
== DestB
) {
5158 CasesB
.push_back(Case
.getCaseValue());
5161 return false; // More than two destinations.
5164 return false; // All destinations are the same and the default is unreachable
5166 assert(DestA
&& DestB
&&
5167 "Single-destination switch should have been folded.");
5168 assert(DestA
!= DestB
);
5169 assert(DestB
!= SI
->getDefaultDest());
5170 assert(!CasesB
.empty() && "There must be non-default cases.");
5171 assert(!CasesA
.empty() || HasDefault
);
5173 // Figure out if one of the sets of cases form a contiguous range.
5174 SmallVectorImpl
<ConstantInt
*> *ContiguousCases
= nullptr;
5175 BasicBlock
*ContiguousDest
= nullptr;
5176 BasicBlock
*OtherDest
= nullptr;
5177 if (!CasesA
.empty() && CasesAreContiguous(CasesA
)) {
5178 ContiguousCases
= &CasesA
;
5179 ContiguousDest
= DestA
;
5181 } else if (CasesAreContiguous(CasesB
)) {
5182 ContiguousCases
= &CasesB
;
5183 ContiguousDest
= DestB
;
5188 // Start building the compare and branch.
5190 Constant
*Offset
= ConstantExpr::getNeg(ContiguousCases
->back());
5191 Constant
*NumCases
=
5192 ConstantInt::get(Offset
->getType(), ContiguousCases
->size());
5194 Value
*Sub
= SI
->getCondition();
5195 if (!Offset
->isNullValue())
5196 Sub
= Builder
.CreateAdd(Sub
, Offset
, Sub
->getName() + ".off");
5199 // If NumCases overflowed, then all possible values jump to the successor.
5200 if (NumCases
->isNullValue() && !ContiguousCases
->empty())
5201 Cmp
= ConstantInt::getTrue(SI
->getContext());
5203 Cmp
= Builder
.CreateICmpULT(Sub
, NumCases
, "switch");
5204 BranchInst
*NewBI
= Builder
.CreateCondBr(Cmp
, ContiguousDest
, OtherDest
);
5206 // Update weight for the newly-created conditional branch.
5207 if (hasBranchWeightMD(*SI
)) {
5208 SmallVector
<uint64_t, 8> Weights
;
5209 GetBranchWeights(SI
, Weights
);
5210 if (Weights
.size() == 1 + SI
->getNumCases()) {
5211 uint64_t TrueWeight
= 0;
5212 uint64_t FalseWeight
= 0;
5213 for (size_t I
= 0, E
= Weights
.size(); I
!= E
; ++I
) {
5214 if (SI
->getSuccessor(I
) == ContiguousDest
)
5215 TrueWeight
+= Weights
[I
];
5217 FalseWeight
+= Weights
[I
];
5219 while (TrueWeight
> UINT32_MAX
|| FalseWeight
> UINT32_MAX
) {
5223 setBranchWeights(NewBI
, TrueWeight
, FalseWeight
);
5227 // Prune obsolete incoming values off the successors' PHI nodes.
5228 for (auto BBI
= ContiguousDest
->begin(); isa
<PHINode
>(BBI
); ++BBI
) {
5229 unsigned PreviousEdges
= ContiguousCases
->size();
5230 if (ContiguousDest
== SI
->getDefaultDest())
5232 for (unsigned I
= 0, E
= PreviousEdges
- 1; I
!= E
; ++I
)
5233 cast
<PHINode
>(BBI
)->removeIncomingValue(SI
->getParent());
5235 for (auto BBI
= OtherDest
->begin(); isa
<PHINode
>(BBI
); ++BBI
) {
5236 unsigned PreviousEdges
= SI
->getNumCases() - ContiguousCases
->size();
5237 if (OtherDest
== SI
->getDefaultDest())
5239 for (unsigned I
= 0, E
= PreviousEdges
- 1; I
!= E
; ++I
)
5240 cast
<PHINode
>(BBI
)->removeIncomingValue(SI
->getParent());
5243 // Clean up the default block - it may have phis or other instructions before
5244 // the unreachable terminator.
5246 createUnreachableSwitchDefault(SI
, DTU
);
5248 auto *UnreachableDefault
= SI
->getDefaultDest();
5251 SI
->eraseFromParent();
5253 if (!HasDefault
&& DTU
)
5254 DTU
->applyUpdates({{DominatorTree::Delete
, BB
, UnreachableDefault
}});
5259 /// Compute masked bits for the condition of a switch
5260 /// and use it to remove dead cases.
5261 static bool eliminateDeadSwitchCases(SwitchInst
*SI
, DomTreeUpdater
*DTU
,
5262 AssumptionCache
*AC
,
5263 const DataLayout
&DL
) {
5264 Value
*Cond
= SI
->getCondition();
5265 KnownBits Known
= computeKnownBits(Cond
, DL
, 0, AC
, SI
);
5267 // We can also eliminate cases by determining that their values are outside of
5268 // the limited range of the condition based on how many significant (non-sign)
5269 // bits are in the condition value.
5270 unsigned MaxSignificantBitsInCond
=
5271 ComputeMaxSignificantBits(Cond
, DL
, 0, AC
, SI
);
5273 // Gather dead cases.
5274 SmallVector
<ConstantInt
*, 8> DeadCases
;
5275 SmallDenseMap
<BasicBlock
*, int, 8> NumPerSuccessorCases
;
5276 SmallVector
<BasicBlock
*, 8> UniqueSuccessors
;
5277 for (const auto &Case
: SI
->cases()) {
5278 auto *Successor
= Case
.getCaseSuccessor();
5280 if (!NumPerSuccessorCases
.count(Successor
))
5281 UniqueSuccessors
.push_back(Successor
);
5282 ++NumPerSuccessorCases
[Successor
];
5284 const APInt
&CaseVal
= Case
.getCaseValue()->getValue();
5285 if (Known
.Zero
.intersects(CaseVal
) || !Known
.One
.isSubsetOf(CaseVal
) ||
5286 (CaseVal
.getMinSignedBits() > MaxSignificantBitsInCond
)) {
5287 DeadCases
.push_back(Case
.getCaseValue());
5289 --NumPerSuccessorCases
[Successor
];
5290 LLVM_DEBUG(dbgs() << "SimplifyCFG: switch case " << CaseVal
5295 // If we can prove that the cases must cover all possible values, the
5296 // default destination becomes dead and we can remove it. If we know some
5297 // of the bits in the value, we can use that to more precisely compute the
5298 // number of possible unique case values.
5300 !isa
<UnreachableInst
>(SI
->getDefaultDest()->getFirstNonPHIOrDbg());
5301 const unsigned NumUnknownBits
=
5302 Known
.getBitWidth() - (Known
.Zero
| Known
.One
).countPopulation();
5303 assert(NumUnknownBits
<= Known
.getBitWidth());
5304 if (HasDefault
&& DeadCases
.empty() &&
5305 NumUnknownBits
< 64 /* avoid overflow */ &&
5306 SI
->getNumCases() == (1ULL << NumUnknownBits
)) {
5307 createUnreachableSwitchDefault(SI
, DTU
);
5311 if (DeadCases
.empty())
5314 SwitchInstProfUpdateWrapper
SIW(*SI
);
5315 for (ConstantInt
*DeadCase
: DeadCases
) {
5316 SwitchInst::CaseIt CaseI
= SI
->findCaseValue(DeadCase
);
5317 assert(CaseI
!= SI
->case_default() &&
5318 "Case was not found. Probably mistake in DeadCases forming.");
5319 // Prune unused values from PHI nodes.
5320 CaseI
->getCaseSuccessor()->removePredecessor(SI
->getParent());
5321 SIW
.removeCase(CaseI
);
5325 std::vector
<DominatorTree::UpdateType
> Updates
;
5326 for (auto *Successor
: UniqueSuccessors
)
5327 if (NumPerSuccessorCases
[Successor
] == 0)
5328 Updates
.push_back({DominatorTree::Delete
, SI
->getParent(), Successor
});
5329 DTU
->applyUpdates(Updates
);
5335 /// If BB would be eligible for simplification by
5336 /// TryToSimplifyUncondBranchFromEmptyBlock (i.e. it is empty and terminated
5337 /// by an unconditional branch), look at the phi node for BB in the successor
5338 /// block and see if the incoming value is equal to CaseValue. If so, return
5339 /// the phi node, and set PhiIndex to BB's index in the phi node.
5340 static PHINode
*FindPHIForConditionForwarding(ConstantInt
*CaseValue
,
5341 BasicBlock
*BB
, int *PhiIndex
) {
5342 if (BB
->getFirstNonPHIOrDbg() != BB
->getTerminator())
5343 return nullptr; // BB must be empty to be a candidate for simplification.
5344 if (!BB
->getSinglePredecessor())
5345 return nullptr; // BB must be dominated by the switch.
5347 BranchInst
*Branch
= dyn_cast
<BranchInst
>(BB
->getTerminator());
5348 if (!Branch
|| !Branch
->isUnconditional())
5349 return nullptr; // Terminator must be unconditional branch.
5351 BasicBlock
*Succ
= Branch
->getSuccessor(0);
5353 for (PHINode
&PHI
: Succ
->phis()) {
5354 int Idx
= PHI
.getBasicBlockIndex(BB
);
5355 assert(Idx
>= 0 && "PHI has no entry for predecessor?");
5357 Value
*InValue
= PHI
.getIncomingValue(Idx
);
5358 if (InValue
!= CaseValue
)
5368 /// Try to forward the condition of a switch instruction to a phi node
5369 /// dominated by the switch, if that would mean that some of the destination
5370 /// blocks of the switch can be folded away. Return true if a change is made.
5371 static bool ForwardSwitchConditionToPHI(SwitchInst
*SI
) {
5372 using ForwardingNodesMap
= DenseMap
<PHINode
*, SmallVector
<int, 4>>;
5374 ForwardingNodesMap ForwardingNodes
;
5375 BasicBlock
*SwitchBlock
= SI
->getParent();
5376 bool Changed
= false;
5377 for (const auto &Case
: SI
->cases()) {
5378 ConstantInt
*CaseValue
= Case
.getCaseValue();
5379 BasicBlock
*CaseDest
= Case
.getCaseSuccessor();
5381 // Replace phi operands in successor blocks that are using the constant case
5382 // value rather than the switch condition variable:
5384 // switch i32 %x, label %default [
5385 // i32 17, label %succ
5388 // %r = phi i32 ... [ 17, %switchbb ] ...
5390 // %r = phi i32 ... [ %x, %switchbb ] ...
5392 for (PHINode
&Phi
: CaseDest
->phis()) {
5393 // This only works if there is exactly 1 incoming edge from the switch to
5394 // a phi. If there is >1, that means multiple cases of the switch map to 1
5395 // value in the phi, and that phi value is not the switch condition. Thus,
5396 // this transform would not make sense (the phi would be invalid because
5397 // a phi can't have different incoming values from the same block).
5398 int SwitchBBIdx
= Phi
.getBasicBlockIndex(SwitchBlock
);
5399 if (Phi
.getIncomingValue(SwitchBBIdx
) == CaseValue
&&
5400 count(Phi
.blocks(), SwitchBlock
) == 1) {
5401 Phi
.setIncomingValue(SwitchBBIdx
, SI
->getCondition());
5406 // Collect phi nodes that are indirectly using this switch's case constants.
5408 if (auto *Phi
= FindPHIForConditionForwarding(CaseValue
, CaseDest
, &PhiIdx
))
5409 ForwardingNodes
[Phi
].push_back(PhiIdx
);
5412 for (auto &ForwardingNode
: ForwardingNodes
) {
5413 PHINode
*Phi
= ForwardingNode
.first
;
5414 SmallVectorImpl
<int> &Indexes
= ForwardingNode
.second
;
5415 if (Indexes
.size() < 2)
5418 for (int Index
: Indexes
)
5419 Phi
->setIncomingValue(Index
, SI
->getCondition());
5426 /// Return true if the backend will be able to handle
5427 /// initializing an array of constants like C.
5428 static bool ValidLookupTableConstant(Constant
*C
, const TargetTransformInfo
&TTI
) {
5429 if (C
->isThreadDependent())
5431 if (C
->isDLLImportDependent())
5434 if (!isa
<ConstantFP
>(C
) && !isa
<ConstantInt
>(C
) &&
5435 !isa
<ConstantPointerNull
>(C
) && !isa
<GlobalValue
>(C
) &&
5436 !isa
<UndefValue
>(C
) && !isa
<ConstantExpr
>(C
))
5439 if (ConstantExpr
*CE
= dyn_cast
<ConstantExpr
>(C
)) {
5440 // Pointer casts and in-bounds GEPs will not prohibit the backend from
5441 // materializing the array of constants.
5442 Constant
*StrippedC
= cast
<Constant
>(CE
->stripInBoundsConstantOffsets());
5443 if (StrippedC
== C
|| !ValidLookupTableConstant(StrippedC
, TTI
))
5447 if (!TTI
.shouldBuildLookupTablesForConstant(C
))
5453 /// If V is a Constant, return it. Otherwise, try to look up
5454 /// its constant value in ConstantPool, returning 0 if it's not there.
5456 LookupConstant(Value
*V
,
5457 const SmallDenseMap
<Value
*, Constant
*> &ConstantPool
) {
5458 if (Constant
*C
= dyn_cast
<Constant
>(V
))
5460 return ConstantPool
.lookup(V
);
5463 /// Try to fold instruction I into a constant. This works for
5464 /// simple instructions such as binary operations where both operands are
5465 /// constant or can be replaced by constants from the ConstantPool. Returns the
5466 /// resulting constant on success, 0 otherwise.
5468 ConstantFold(Instruction
*I
, const DataLayout
&DL
,
5469 const SmallDenseMap
<Value
*, Constant
*> &ConstantPool
) {
5470 if (SelectInst
*Select
= dyn_cast
<SelectInst
>(I
)) {
5471 Constant
*A
= LookupConstant(Select
->getCondition(), ConstantPool
);
5474 if (A
->isAllOnesValue())
5475 return LookupConstant(Select
->getTrueValue(), ConstantPool
);
5476 if (A
->isNullValue())
5477 return LookupConstant(Select
->getFalseValue(), ConstantPool
);
5481 SmallVector
<Constant
*, 4> COps
;
5482 for (unsigned N
= 0, E
= I
->getNumOperands(); N
!= E
; ++N
) {
5483 if (Constant
*A
= LookupConstant(I
->getOperand(N
), ConstantPool
))
5489 return ConstantFoldInstOperands(I
, COps
, DL
);
5492 /// Try to determine the resulting constant values in phi nodes
5493 /// at the common destination basic block, *CommonDest, for one of the case
5494 /// destionations CaseDest corresponding to value CaseVal (0 for the default
5495 /// case), of a switch instruction SI.
5497 getCaseResults(SwitchInst
*SI
, ConstantInt
*CaseVal
, BasicBlock
*CaseDest
,
5498 BasicBlock
**CommonDest
,
5499 SmallVectorImpl
<std::pair
<PHINode
*, Constant
*>> &Res
,
5500 const DataLayout
&DL
, const TargetTransformInfo
&TTI
) {
5501 // The block from which we enter the common destination.
5502 BasicBlock
*Pred
= SI
->getParent();
5504 // If CaseDest is empty except for some side-effect free instructions through
5505 // which we can constant-propagate the CaseVal, continue to its successor.
5506 SmallDenseMap
<Value
*, Constant
*> ConstantPool
;
5507 ConstantPool
.insert(std::make_pair(SI
->getCondition(), CaseVal
));
5508 for (Instruction
&I
: CaseDest
->instructionsWithoutDebug(false)) {
5509 if (I
.isTerminator()) {
5510 // If the terminator is a simple branch, continue to the next block.
5511 if (I
.getNumSuccessors() != 1 || I
.isExceptionalTerminator())
5514 CaseDest
= I
.getSuccessor(0);
5515 } else if (Constant
*C
= ConstantFold(&I
, DL
, ConstantPool
)) {
5516 // Instruction is side-effect free and constant.
5518 // If the instruction has uses outside this block or a phi node slot for
5519 // the block, it is not safe to bypass the instruction since it would then
5520 // no longer dominate all its uses.
5521 for (auto &Use
: I
.uses()) {
5522 User
*User
= Use
.getUser();
5523 if (Instruction
*I
= dyn_cast
<Instruction
>(User
))
5524 if (I
->getParent() == CaseDest
)
5526 if (PHINode
*Phi
= dyn_cast
<PHINode
>(User
))
5527 if (Phi
->getIncomingBlock(Use
) == CaseDest
)
5532 ConstantPool
.insert(std::make_pair(&I
, C
));
5538 // If we did not have a CommonDest before, use the current one.
5540 *CommonDest
= CaseDest
;
5541 // If the destination isn't the common one, abort.
5542 if (CaseDest
!= *CommonDest
)
5545 // Get the values for this case from phi nodes in the destination block.
5546 for (PHINode
&PHI
: (*CommonDest
)->phis()) {
5547 int Idx
= PHI
.getBasicBlockIndex(Pred
);
5551 Constant
*ConstVal
=
5552 LookupConstant(PHI
.getIncomingValue(Idx
), ConstantPool
);
5556 // Be conservative about which kinds of constants we support.
5557 if (!ValidLookupTableConstant(ConstVal
, TTI
))
5560 Res
.push_back(std::make_pair(&PHI
, ConstVal
));
5563 return Res
.size() > 0;
5566 // Helper function used to add CaseVal to the list of cases that generate
5567 // Result. Returns the updated number of cases that generate this result.
5568 static size_t mapCaseToResult(ConstantInt
*CaseVal
,
5569 SwitchCaseResultVectorTy
&UniqueResults
,
5571 for (auto &I
: UniqueResults
) {
5572 if (I
.first
== Result
) {
5573 I
.second
.push_back(CaseVal
);
5574 return I
.second
.size();
5577 UniqueResults
.push_back(
5578 std::make_pair(Result
, SmallVector
<ConstantInt
*, 4>(1, CaseVal
)));
5582 // Helper function that initializes a map containing
5583 // results for the PHI node of the common destination block for a switch
5584 // instruction. Returns false if multiple PHI nodes have been found or if
5585 // there is not a common destination block for the switch.
5586 static bool initializeUniqueCases(SwitchInst
*SI
, PHINode
*&PHI
,
5587 BasicBlock
*&CommonDest
,
5588 SwitchCaseResultVectorTy
&UniqueResults
,
5589 Constant
*&DefaultResult
,
5590 const DataLayout
&DL
,
5591 const TargetTransformInfo
&TTI
,
5592 uintptr_t MaxUniqueResults
) {
5593 for (const auto &I
: SI
->cases()) {
5594 ConstantInt
*CaseVal
= I
.getCaseValue();
5596 // Resulting value at phi nodes for this case value.
5597 SwitchCaseResultsTy Results
;
5598 if (!getCaseResults(SI
, CaseVal
, I
.getCaseSuccessor(), &CommonDest
, Results
,
5602 // Only one value per case is permitted.
5603 if (Results
.size() > 1)
5606 // Add the case->result mapping to UniqueResults.
5607 const size_t NumCasesForResult
=
5608 mapCaseToResult(CaseVal
, UniqueResults
, Results
.begin()->second
);
5610 // Early out if there are too many cases for this result.
5611 if (NumCasesForResult
> MaxSwitchCasesPerResult
)
5614 // Early out if there are too many unique results.
5615 if (UniqueResults
.size() > MaxUniqueResults
)
5618 // Check the PHI consistency.
5620 PHI
= Results
[0].first
;
5621 else if (PHI
!= Results
[0].first
)
5624 // Find the default result value.
5625 SmallVector
<std::pair
<PHINode
*, Constant
*>, 1> DefaultResults
;
5626 BasicBlock
*DefaultDest
= SI
->getDefaultDest();
5627 getCaseResults(SI
, nullptr, SI
->getDefaultDest(), &CommonDest
, DefaultResults
,
5629 // If the default value is not found abort unless the default destination
5632 DefaultResults
.size() == 1 ? DefaultResults
.begin()->second
: nullptr;
5633 if ((!DefaultResult
&&
5634 !isa
<UnreachableInst
>(DefaultDest
->getFirstNonPHIOrDbg())))
5640 // Helper function that checks if it is possible to transform a switch with only
5641 // two cases (or two cases + default) that produces a result into a select.
5642 // TODO: Handle switches with more than 2 cases that map to the same result.
5643 static Value
*foldSwitchToSelect(const SwitchCaseResultVectorTy
&ResultVector
,
5644 Constant
*DefaultResult
, Value
*Condition
,
5645 IRBuilder
<> &Builder
) {
5646 // If we are selecting between only two cases transform into a simple
5647 // select or a two-way select if default is possible.
5649 // switch (a) { %0 = icmp eq i32 %a, 10
5650 // case 10: return 42; %1 = select i1 %0, i32 42, i32 4
5651 // case 20: return 2; ----> %2 = icmp eq i32 %a, 20
5652 // default: return 4; %3 = select i1 %2, i32 2, i32 %1
5654 if (ResultVector
.size() == 2 && ResultVector
[0].second
.size() == 1 &&
5655 ResultVector
[1].second
.size() == 1) {
5656 ConstantInt
*FirstCase
= ResultVector
[0].second
[0];
5657 ConstantInt
*SecondCase
= ResultVector
[1].second
[0];
5658 Value
*SelectValue
= ResultVector
[1].first
;
5659 if (DefaultResult
) {
5660 Value
*ValueCompare
=
5661 Builder
.CreateICmpEQ(Condition
, SecondCase
, "switch.selectcmp");
5662 SelectValue
= Builder
.CreateSelect(ValueCompare
, ResultVector
[1].first
,
5663 DefaultResult
, "switch.select");
5665 Value
*ValueCompare
=
5666 Builder
.CreateICmpEQ(Condition
, FirstCase
, "switch.selectcmp");
5667 return Builder
.CreateSelect(ValueCompare
, ResultVector
[0].first
,
5668 SelectValue
, "switch.select");
5671 // Handle the degenerate case where two cases have the same result value.
5672 if (ResultVector
.size() == 1 && DefaultResult
) {
5673 ArrayRef
<ConstantInt
*> CaseValues
= ResultVector
[0].second
;
5674 unsigned CaseCount
= CaseValues
.size();
5675 // n bits group cases map to the same result:
5676 // case 0,4 -> Cond & 0b1..1011 == 0 ? result : default
5677 // case 0,2,4,6 -> Cond & 0b1..1001 == 0 ? result : default
5678 // case 0,2,8,10 -> Cond & 0b1..0101 == 0 ? result : default
5679 if (isPowerOf2_32(CaseCount
)) {
5680 ConstantInt
*MinCaseVal
= CaseValues
[0];
5681 // Find mininal value.
5682 for (auto Case
: CaseValues
)
5683 if (Case
->getValue().slt(MinCaseVal
->getValue()))
5686 // Mark the bits case number touched.
5687 APInt BitMask
= APInt::getZero(MinCaseVal
->getBitWidth());
5688 for (auto Case
: CaseValues
)
5689 BitMask
|= (Case
->getValue() - MinCaseVal
->getValue());
5691 // Check if cases with the same result can cover all number
5693 if (BitMask
.countPopulation() == Log2_32(CaseCount
)) {
5694 if (!MinCaseVal
->isNullValue())
5695 Condition
= Builder
.CreateSub(Condition
, MinCaseVal
);
5696 Value
*And
= Builder
.CreateAnd(Condition
, ~BitMask
, "switch.and");
5697 Value
*Cmp
= Builder
.CreateICmpEQ(
5698 And
, Constant::getNullValue(And
->getType()), "switch.selectcmp");
5699 return Builder
.CreateSelect(Cmp
, ResultVector
[0].first
, DefaultResult
);
5703 // Handle the degenerate case where two cases have the same value.
5704 if (CaseValues
.size() == 2) {
5705 Value
*Cmp1
= Builder
.CreateICmpEQ(Condition
, CaseValues
[0],
5706 "switch.selectcmp.case1");
5707 Value
*Cmp2
= Builder
.CreateICmpEQ(Condition
, CaseValues
[1],
5708 "switch.selectcmp.case2");
5709 Value
*Cmp
= Builder
.CreateOr(Cmp1
, Cmp2
, "switch.selectcmp");
5710 return Builder
.CreateSelect(Cmp
, ResultVector
[0].first
, DefaultResult
);
5717 // Helper function to cleanup a switch instruction that has been converted into
5718 // a select, fixing up PHI nodes and basic blocks.
5719 static void removeSwitchAfterSelectFold(SwitchInst
*SI
, PHINode
*PHI
,
5721 IRBuilder
<> &Builder
,
5722 DomTreeUpdater
*DTU
) {
5723 std::vector
<DominatorTree::UpdateType
> Updates
;
5725 BasicBlock
*SelectBB
= SI
->getParent();
5726 BasicBlock
*DestBB
= PHI
->getParent();
5728 if (DTU
&& !is_contained(predecessors(DestBB
), SelectBB
))
5729 Updates
.push_back({DominatorTree::Insert
, SelectBB
, DestBB
});
5730 Builder
.CreateBr(DestBB
);
5732 // Remove the switch.
5734 while (PHI
->getBasicBlockIndex(SelectBB
) >= 0)
5735 PHI
->removeIncomingValue(SelectBB
);
5736 PHI
->addIncoming(SelectValue
, SelectBB
);
5738 SmallPtrSet
<BasicBlock
*, 4> RemovedSuccessors
;
5739 for (unsigned i
= 0, e
= SI
->getNumSuccessors(); i
< e
; ++i
) {
5740 BasicBlock
*Succ
= SI
->getSuccessor(i
);
5744 Succ
->removePredecessor(SelectBB
);
5745 if (DTU
&& RemovedSuccessors
.insert(Succ
).second
)
5746 Updates
.push_back({DominatorTree::Delete
, SelectBB
, Succ
});
5748 SI
->eraseFromParent();
5750 DTU
->applyUpdates(Updates
);
5753 /// If a switch is only used to initialize one or more phi nodes in a common
5754 /// successor block with only two different constant values, try to replace the
5755 /// switch with a select. Returns true if the fold was made.
5756 static bool trySwitchToSelect(SwitchInst
*SI
, IRBuilder
<> &Builder
,
5757 DomTreeUpdater
*DTU
, const DataLayout
&DL
,
5758 const TargetTransformInfo
&TTI
) {
5759 Value
*const Cond
= SI
->getCondition();
5760 PHINode
*PHI
= nullptr;
5761 BasicBlock
*CommonDest
= nullptr;
5762 Constant
*DefaultResult
;
5763 SwitchCaseResultVectorTy UniqueResults
;
5764 // Collect all the cases that will deliver the same value from the switch.
5765 if (!initializeUniqueCases(SI
, PHI
, CommonDest
, UniqueResults
, DefaultResult
,
5766 DL
, TTI
, /*MaxUniqueResults*/ 2))
5769 assert(PHI
!= nullptr && "PHI for value select not found");
5770 Builder
.SetInsertPoint(SI
);
5771 Value
*SelectValue
=
5772 foldSwitchToSelect(UniqueResults
, DefaultResult
, Cond
, Builder
);
5776 removeSwitchAfterSelectFold(SI
, PHI
, SelectValue
, Builder
, DTU
);
5782 /// This class represents a lookup table that can be used to replace a switch.
5783 class SwitchLookupTable
{
5785 /// Create a lookup table to use as a switch replacement with the contents
5786 /// of Values, using DefaultValue to fill any holes in the table.
5788 Module
&M
, uint64_t TableSize
, ConstantInt
*Offset
,
5789 const SmallVectorImpl
<std::pair
<ConstantInt
*, Constant
*>> &Values
,
5790 Constant
*DefaultValue
, const DataLayout
&DL
, const StringRef
&FuncName
);
5792 /// Build instructions with Builder to retrieve the value at
5793 /// the position given by Index in the lookup table.
5794 Value
*BuildLookup(Value
*Index
, IRBuilder
<> &Builder
);
5796 /// Return true if a table with TableSize elements of
5797 /// type ElementType would fit in a target-legal register.
5798 static bool WouldFitInRegister(const DataLayout
&DL
, uint64_t TableSize
,
5802 // Depending on the contents of the table, it can be represented in
5805 // For tables where each element contains the same value, we just have to
5806 // store that single value and return it for each lookup.
5809 // For tables where there is a linear relationship between table index
5810 // and values. We calculate the result with a simple multiplication
5811 // and addition instead of a table lookup.
5814 // For small tables with integer elements, we can pack them into a bitmap
5815 // that fits into a target-legal register. Values are retrieved by
5816 // shift and mask operations.
5819 // The table is stored as an array of values. Values are retrieved by load
5820 // instructions from the table.
5824 // For SingleValueKind, this is the single value.
5825 Constant
*SingleValue
= nullptr;
5827 // For BitMapKind, this is the bitmap.
5828 ConstantInt
*BitMap
= nullptr;
5829 IntegerType
*BitMapElementTy
= nullptr;
5831 // For LinearMapKind, these are the constants used to derive the value.
5832 ConstantInt
*LinearOffset
= nullptr;
5833 ConstantInt
*LinearMultiplier
= nullptr;
5835 // For ArrayKind, this is the array.
5836 GlobalVariable
*Array
= nullptr;
5839 } // end anonymous namespace
5841 SwitchLookupTable::SwitchLookupTable(
5842 Module
&M
, uint64_t TableSize
, ConstantInt
*Offset
,
5843 const SmallVectorImpl
<std::pair
<ConstantInt
*, Constant
*>> &Values
,
5844 Constant
*DefaultValue
, const DataLayout
&DL
, const StringRef
&FuncName
) {
5845 assert(Values
.size() && "Can't build lookup table without values!");
5846 assert(TableSize
>= Values
.size() && "Can't fit values in table!");
5848 // If all values in the table are equal, this is that value.
5849 SingleValue
= Values
.begin()->second
;
5851 Type
*ValueType
= Values
.begin()->second
->getType();
5853 // Build up the table contents.
5854 SmallVector
<Constant
*, 64> TableContents(TableSize
);
5855 for (size_t I
= 0, E
= Values
.size(); I
!= E
; ++I
) {
5856 ConstantInt
*CaseVal
= Values
[I
].first
;
5857 Constant
*CaseRes
= Values
[I
].second
;
5858 assert(CaseRes
->getType() == ValueType
);
5860 uint64_t Idx
= (CaseVal
->getValue() - Offset
->getValue()).getLimitedValue();
5861 TableContents
[Idx
] = CaseRes
;
5863 if (CaseRes
!= SingleValue
)
5864 SingleValue
= nullptr;
5867 // Fill in any holes in the table with the default result.
5868 if (Values
.size() < TableSize
) {
5869 assert(DefaultValue
&&
5870 "Need a default value to fill the lookup table holes.");
5871 assert(DefaultValue
->getType() == ValueType
);
5872 for (uint64_t I
= 0; I
< TableSize
; ++I
) {
5873 if (!TableContents
[I
])
5874 TableContents
[I
] = DefaultValue
;
5877 if (DefaultValue
!= SingleValue
)
5878 SingleValue
= nullptr;
5881 // If each element in the table contains the same value, we only need to store
5882 // that single value.
5884 Kind
= SingleValueKind
;
5888 // Check if we can derive the value with a linear transformation from the
5890 if (isa
<IntegerType
>(ValueType
)) {
5891 bool LinearMappingPossible
= true;
5894 assert(TableSize
>= 2 && "Should be a SingleValue table.");
5895 // Check if there is the same distance between two consecutive values.
5896 for (uint64_t I
= 0; I
< TableSize
; ++I
) {
5897 ConstantInt
*ConstVal
= dyn_cast
<ConstantInt
>(TableContents
[I
]);
5899 // This is an undef. We could deal with it, but undefs in lookup tables
5900 // are very seldom. It's probably not worth the additional complexity.
5901 LinearMappingPossible
= false;
5904 const APInt
&Val
= ConstVal
->getValue();
5906 APInt Dist
= Val
- PrevVal
;
5909 } else if (Dist
!= DistToPrev
) {
5910 LinearMappingPossible
= false;
5916 if (LinearMappingPossible
) {
5917 LinearOffset
= cast
<ConstantInt
>(TableContents
[0]);
5918 LinearMultiplier
= ConstantInt::get(M
.getContext(), DistToPrev
);
5919 Kind
= LinearMapKind
;
5925 // If the type is integer and the table fits in a register, build a bitmap.
5926 if (WouldFitInRegister(DL
, TableSize
, ValueType
)) {
5927 IntegerType
*IT
= cast
<IntegerType
>(ValueType
);
5928 APInt
TableInt(TableSize
* IT
->getBitWidth(), 0);
5929 for (uint64_t I
= TableSize
; I
> 0; --I
) {
5930 TableInt
<<= IT
->getBitWidth();
5931 // Insert values into the bitmap. Undef values are set to zero.
5932 if (!isa
<UndefValue
>(TableContents
[I
- 1])) {
5933 ConstantInt
*Val
= cast
<ConstantInt
>(TableContents
[I
- 1]);
5934 TableInt
|= Val
->getValue().zext(TableInt
.getBitWidth());
5937 BitMap
= ConstantInt::get(M
.getContext(), TableInt
);
5938 BitMapElementTy
= IT
;
5944 // Store the table in an array.
5945 ArrayType
*ArrayTy
= ArrayType::get(ValueType
, TableSize
);
5946 Constant
*Initializer
= ConstantArray::get(ArrayTy
, TableContents
);
5948 Array
= new GlobalVariable(M
, ArrayTy
, /*isConstant=*/true,
5949 GlobalVariable::PrivateLinkage
, Initializer
,
5950 "switch.table." + FuncName
);
5951 Array
->setUnnamedAddr(GlobalValue::UnnamedAddr::Global
);
5952 // Set the alignment to that of an array items. We will be only loading one
5954 Array
->setAlignment(Align(DL
.getPrefTypeAlignment(ValueType
)));
5958 Value
*SwitchLookupTable::BuildLookup(Value
*Index
, IRBuilder
<> &Builder
) {
5960 case SingleValueKind
:
5962 case LinearMapKind
: {
5963 // Derive the result value from the input value.
5964 Value
*Result
= Builder
.CreateIntCast(Index
, LinearMultiplier
->getType(),
5965 false, "switch.idx.cast");
5966 if (!LinearMultiplier
->isOne())
5967 Result
= Builder
.CreateMul(Result
, LinearMultiplier
, "switch.idx.mult");
5968 if (!LinearOffset
->isZero())
5969 Result
= Builder
.CreateAdd(Result
, LinearOffset
, "switch.offset");
5973 // Type of the bitmap (e.g. i59).
5974 IntegerType
*MapTy
= BitMap
->getType();
5976 // Cast Index to the same type as the bitmap.
5977 // Note: The Index is <= the number of elements in the table, so
5978 // truncating it to the width of the bitmask is safe.
5979 Value
*ShiftAmt
= Builder
.CreateZExtOrTrunc(Index
, MapTy
, "switch.cast");
5981 // Multiply the shift amount by the element width.
5982 ShiftAmt
= Builder
.CreateMul(
5983 ShiftAmt
, ConstantInt::get(MapTy
, BitMapElementTy
->getBitWidth()),
5987 Value
*DownShifted
=
5988 Builder
.CreateLShr(BitMap
, ShiftAmt
, "switch.downshift");
5990 return Builder
.CreateTrunc(DownShifted
, BitMapElementTy
, "switch.masked");
5993 // Make sure the table index will not overflow when treated as signed.
5994 IntegerType
*IT
= cast
<IntegerType
>(Index
->getType());
5995 uint64_t TableSize
=
5996 Array
->getInitializer()->getType()->getArrayNumElements();
5997 if (TableSize
> (1ULL << std::min(IT
->getBitWidth() - 1, 63u)))
5998 Index
= Builder
.CreateZExt(
5999 Index
, IntegerType::get(IT
->getContext(), IT
->getBitWidth() + 1),
6000 "switch.tableidx.zext");
6002 Value
*GEPIndices
[] = {Builder
.getInt32(0), Index
};
6003 Value
*GEP
= Builder
.CreateInBoundsGEP(Array
->getValueType(), Array
,
6004 GEPIndices
, "switch.gep");
6005 return Builder
.CreateLoad(
6006 cast
<ArrayType
>(Array
->getValueType())->getElementType(), GEP
,
6010 llvm_unreachable("Unknown lookup table kind!");
6013 bool SwitchLookupTable::WouldFitInRegister(const DataLayout
&DL
,
6015 Type
*ElementType
) {
6016 auto *IT
= dyn_cast
<IntegerType
>(ElementType
);
6019 // FIXME: If the type is wider than it needs to be, e.g. i8 but all values
6020 // are <= 15, we could try to narrow the type.
6022 // Avoid overflow, fitsInLegalInteger uses unsigned int for the width.
6023 if (TableSize
>= UINT_MAX
/ IT
->getBitWidth())
6025 return DL
.fitsInLegalInteger(TableSize
* IT
->getBitWidth());
6028 static bool isTypeLegalForLookupTable(Type
*Ty
, const TargetTransformInfo
&TTI
,
6029 const DataLayout
&DL
) {
6030 // Allow any legal type.
6031 if (TTI
.isTypeLegal(Ty
))
6034 auto *IT
= dyn_cast
<IntegerType
>(Ty
);
6038 // Also allow power of 2 integer types that have at least 8 bits and fit in
6039 // a register. These types are common in frontend languages and targets
6040 // usually support loads of these types.
6041 // TODO: We could relax this to any integer that fits in a register and rely
6042 // on ABI alignment and padding in the table to allow the load to be widened.
6043 // Or we could widen the constants and truncate the load.
6044 unsigned BitWidth
= IT
->getBitWidth();
6045 return BitWidth
>= 8 && isPowerOf2_32(BitWidth
) &&
6046 DL
.fitsInLegalInteger(IT
->getBitWidth());
6049 static bool isSwitchDense(uint64_t NumCases
, uint64_t CaseRange
) {
6050 // 40% is the default density for building a jump table in optsize/minsize
6051 // mode. See also TargetLoweringBase::isSuitableForJumpTable(), which this
6052 // function was based on.
6053 const uint64_t MinDensity
= 40;
6055 if (CaseRange
>= UINT64_MAX
/ 100)
6056 return false; // Avoid multiplication overflows below.
6058 return NumCases
* 100 >= CaseRange
* MinDensity
;
6061 static bool isSwitchDense(ArrayRef
<int64_t> Values
) {
6062 uint64_t Diff
= (uint64_t)Values
.back() - (uint64_t)Values
.front();
6063 uint64_t Range
= Diff
+ 1;
6065 return false; // Overflow.
6067 return isSwitchDense(Values
.size(), Range
);
6070 /// Determine whether a lookup table should be built for this switch, based on
6071 /// the number of cases, size of the table, and the types of the results.
6072 // TODO: We could support larger than legal types by limiting based on the
6073 // number of loads required and/or table size. If the constants are small we
6074 // could use smaller table entries and extend after the load.
6076 ShouldBuildLookupTable(SwitchInst
*SI
, uint64_t TableSize
,
6077 const TargetTransformInfo
&TTI
, const DataLayout
&DL
,
6078 const SmallDenseMap
<PHINode
*, Type
*> &ResultTypes
) {
6079 if (SI
->getNumCases() > TableSize
)
6080 return false; // TableSize overflowed.
6082 bool AllTablesFitInRegister
= true;
6083 bool HasIllegalType
= false;
6084 for (const auto &I
: ResultTypes
) {
6085 Type
*Ty
= I
.second
;
6087 // Saturate this flag to true.
6088 HasIllegalType
= HasIllegalType
|| !isTypeLegalForLookupTable(Ty
, TTI
, DL
);
6090 // Saturate this flag to false.
6091 AllTablesFitInRegister
=
6092 AllTablesFitInRegister
&&
6093 SwitchLookupTable::WouldFitInRegister(DL
, TableSize
, Ty
);
6095 // If both flags saturate, we're done. NOTE: This *only* works with
6096 // saturating flags, and all flags have to saturate first due to the
6097 // non-deterministic behavior of iterating over a dense map.
6098 if (HasIllegalType
&& !AllTablesFitInRegister
)
6102 // If each table would fit in a register, we should build it anyway.
6103 if (AllTablesFitInRegister
)
6106 // Don't build a table that doesn't fit in-register if it has illegal types.
6110 return isSwitchDense(SI
->getNumCases(), TableSize
);
6113 static bool ShouldUseSwitchConditionAsTableIndex(
6114 ConstantInt
&MinCaseVal
, const ConstantInt
&MaxCaseVal
,
6115 bool HasDefaultResults
, const SmallDenseMap
<PHINode
*, Type
*> &ResultTypes
,
6116 const DataLayout
&DL
, const TargetTransformInfo
&TTI
) {
6117 if (MinCaseVal
.isNullValue())
6119 if (MinCaseVal
.isNegative() ||
6120 MaxCaseVal
.getLimitedValue() == std::numeric_limits
<uint64_t>::max() ||
6123 return all_of(ResultTypes
, [&](const auto &KV
) {
6124 return SwitchLookupTable::WouldFitInRegister(
6125 DL
, MaxCaseVal
.getLimitedValue() + 1 /* TableSize */,
6126 KV
.second
/* ResultType */);
6130 /// Try to reuse the switch table index compare. Following pattern:
6132 /// if (idx < tablesize)
6133 /// r = table[idx]; // table does not contain default_value
6135 /// r = default_value;
6136 /// if (r != default_value)
6139 /// Is optimized to:
6141 /// cond = idx < tablesize;
6145 /// r = default_value;
6149 /// Jump threading will then eliminate the second if(cond).
6150 static void reuseTableCompare(
6151 User
*PhiUser
, BasicBlock
*PhiBlock
, BranchInst
*RangeCheckBranch
,
6152 Constant
*DefaultValue
,
6153 const SmallVectorImpl
<std::pair
<ConstantInt
*, Constant
*>> &Values
) {
6154 ICmpInst
*CmpInst
= dyn_cast
<ICmpInst
>(PhiUser
);
6158 // We require that the compare is in the same block as the phi so that jump
6159 // threading can do its work afterwards.
6160 if (CmpInst
->getParent() != PhiBlock
)
6163 Constant
*CmpOp1
= dyn_cast
<Constant
>(CmpInst
->getOperand(1));
6167 Value
*RangeCmp
= RangeCheckBranch
->getCondition();
6168 Constant
*TrueConst
= ConstantInt::getTrue(RangeCmp
->getType());
6169 Constant
*FalseConst
= ConstantInt::getFalse(RangeCmp
->getType());
6171 // Check if the compare with the default value is constant true or false.
6172 Constant
*DefaultConst
= ConstantExpr::getICmp(CmpInst
->getPredicate(),
6173 DefaultValue
, CmpOp1
, true);
6174 if (DefaultConst
!= TrueConst
&& DefaultConst
!= FalseConst
)
6177 // Check if the compare with the case values is distinct from the default
6179 for (auto ValuePair
: Values
) {
6180 Constant
*CaseConst
= ConstantExpr::getICmp(CmpInst
->getPredicate(),
6181 ValuePair
.second
, CmpOp1
, true);
6182 if (!CaseConst
|| CaseConst
== DefaultConst
||
6183 (CaseConst
!= TrueConst
&& CaseConst
!= FalseConst
))
6187 // Check if the branch instruction dominates the phi node. It's a simple
6188 // dominance check, but sufficient for our needs.
6189 // Although this check is invariant in the calling loops, it's better to do it
6190 // at this late stage. Practically we do it at most once for a switch.
6191 BasicBlock
*BranchBlock
= RangeCheckBranch
->getParent();
6192 for (BasicBlock
*Pred
: predecessors(PhiBlock
)) {
6193 if (Pred
!= BranchBlock
&& Pred
->getUniquePredecessor() != BranchBlock
)
6197 if (DefaultConst
== FalseConst
) {
6198 // The compare yields the same result. We can replace it.
6199 CmpInst
->replaceAllUsesWith(RangeCmp
);
6200 ++NumTableCmpReuses
;
6202 // The compare yields the same result, just inverted. We can replace it.
6203 Value
*InvertedTableCmp
= BinaryOperator::CreateXor(
6204 RangeCmp
, ConstantInt::get(RangeCmp
->getType(), 1), "inverted.cmp",
6206 CmpInst
->replaceAllUsesWith(InvertedTableCmp
);
6207 ++NumTableCmpReuses
;
6211 /// If the switch is only used to initialize one or more phi nodes in a common
6212 /// successor block with different constant values, replace the switch with
6214 static bool SwitchToLookupTable(SwitchInst
*SI
, IRBuilder
<> &Builder
,
6215 DomTreeUpdater
*DTU
, const DataLayout
&DL
,
6216 const TargetTransformInfo
&TTI
) {
6217 assert(SI
->getNumCases() > 1 && "Degenerate switch?");
6219 BasicBlock
*BB
= SI
->getParent();
6220 Function
*Fn
= BB
->getParent();
6221 // Only build lookup table when we have a target that supports it or the
6222 // attribute is not set.
6223 if (!TTI
.shouldBuildLookupTables() ||
6224 (Fn
->getFnAttribute("no-jump-tables").getValueAsBool()))
6227 // FIXME: If the switch is too sparse for a lookup table, perhaps we could
6228 // split off a dense part and build a lookup table for that.
6230 // FIXME: This creates arrays of GEPs to constant strings, which means each
6231 // GEP needs a runtime relocation in PIC code. We should just build one big
6232 // string and lookup indices into that.
6234 // Ignore switches with less than three cases. Lookup tables will not make
6235 // them faster, so we don't analyze them.
6236 if (SI
->getNumCases() < 3)
6239 // Figure out the corresponding result for each case value and phi node in the
6240 // common destination, as well as the min and max case values.
6241 assert(!SI
->cases().empty());
6242 SwitchInst::CaseIt CI
= SI
->case_begin();
6243 ConstantInt
*MinCaseVal
= CI
->getCaseValue();
6244 ConstantInt
*MaxCaseVal
= CI
->getCaseValue();
6246 BasicBlock
*CommonDest
= nullptr;
6248 using ResultListTy
= SmallVector
<std::pair
<ConstantInt
*, Constant
*>, 4>;
6249 SmallDenseMap
<PHINode
*, ResultListTy
> ResultLists
;
6251 SmallDenseMap
<PHINode
*, Constant
*> DefaultResults
;
6252 SmallDenseMap
<PHINode
*, Type
*> ResultTypes
;
6253 SmallVector
<PHINode
*, 4> PHIs
;
6255 for (SwitchInst::CaseIt E
= SI
->case_end(); CI
!= E
; ++CI
) {
6256 ConstantInt
*CaseVal
= CI
->getCaseValue();
6257 if (CaseVal
->getValue().slt(MinCaseVal
->getValue()))
6258 MinCaseVal
= CaseVal
;
6259 if (CaseVal
->getValue().sgt(MaxCaseVal
->getValue()))
6260 MaxCaseVal
= CaseVal
;
6262 // Resulting value at phi nodes for this case value.
6263 using ResultsTy
= SmallVector
<std::pair
<PHINode
*, Constant
*>, 4>;
6265 if (!getCaseResults(SI
, CaseVal
, CI
->getCaseSuccessor(), &CommonDest
,
6269 // Append the result from this case to the list for each phi.
6270 for (const auto &I
: Results
) {
6271 PHINode
*PHI
= I
.first
;
6272 Constant
*Value
= I
.second
;
6273 if (!ResultLists
.count(PHI
))
6274 PHIs
.push_back(PHI
);
6275 ResultLists
[PHI
].push_back(std::make_pair(CaseVal
, Value
));
6279 // Keep track of the result types.
6280 for (PHINode
*PHI
: PHIs
) {
6281 ResultTypes
[PHI
] = ResultLists
[PHI
][0].second
->getType();
6284 uint64_t NumResults
= ResultLists
[PHIs
[0]].size();
6286 // If the table has holes, we need a constant result for the default case
6287 // or a bitmask that fits in a register.
6288 SmallVector
<std::pair
<PHINode
*, Constant
*>, 4> DefaultResultsList
;
6289 bool HasDefaultResults
=
6290 getCaseResults(SI
, nullptr, SI
->getDefaultDest(), &CommonDest
,
6291 DefaultResultsList
, DL
, TTI
);
6293 for (const auto &I
: DefaultResultsList
) {
6294 PHINode
*PHI
= I
.first
;
6295 Constant
*Result
= I
.second
;
6296 DefaultResults
[PHI
] = Result
;
6299 bool UseSwitchConditionAsTableIndex
= ShouldUseSwitchConditionAsTableIndex(
6300 *MinCaseVal
, *MaxCaseVal
, HasDefaultResults
, ResultTypes
, DL
, TTI
);
6302 if (UseSwitchConditionAsTableIndex
)
6303 TableSize
= MaxCaseVal
->getLimitedValue() + 1;
6306 (MaxCaseVal
->getValue() - MinCaseVal
->getValue()).getLimitedValue() + 1;
6308 bool TableHasHoles
= (NumResults
< TableSize
);
6309 bool NeedMask
= (TableHasHoles
&& !HasDefaultResults
);
6311 // As an extra penalty for the validity test we require more cases.
6312 if (SI
->getNumCases() < 4) // FIXME: Find best threshold value (benchmark).
6314 if (!DL
.fitsInLegalInteger(TableSize
))
6318 if (!ShouldBuildLookupTable(SI
, TableSize
, TTI
, DL
, ResultTypes
))
6321 std::vector
<DominatorTree::UpdateType
> Updates
;
6323 // Create the BB that does the lookups.
6324 Module
&Mod
= *CommonDest
->getParent()->getParent();
6325 BasicBlock
*LookupBB
= BasicBlock::Create(
6326 Mod
.getContext(), "switch.lookup", CommonDest
->getParent(), CommonDest
);
6328 // Compute the table index value.
6329 Builder
.SetInsertPoint(SI
);
6331 ConstantInt
*TableIndexOffset
;
6332 if (UseSwitchConditionAsTableIndex
) {
6333 TableIndexOffset
= ConstantInt::get(MaxCaseVal
->getType(), 0);
6334 TableIndex
= SI
->getCondition();
6336 TableIndexOffset
= MinCaseVal
;
6338 Builder
.CreateSub(SI
->getCondition(), TableIndexOffset
, "switch.tableidx");
6341 // Compute the maximum table size representable by the integer type we are
6343 unsigned CaseSize
= MinCaseVal
->getType()->getPrimitiveSizeInBits();
6344 uint64_t MaxTableSize
= CaseSize
> 63 ? UINT64_MAX
: 1ULL << CaseSize
;
6345 assert(MaxTableSize
>= TableSize
&&
6346 "It is impossible for a switch to have more entries than the max "
6347 "representable value of its input integer type's size.");
6349 // If the default destination is unreachable, or if the lookup table covers
6350 // all values of the conditional variable, branch directly to the lookup table
6351 // BB. Otherwise, check that the condition is within the case range.
6352 const bool DefaultIsReachable
=
6353 !isa
<UnreachableInst
>(SI
->getDefaultDest()->getFirstNonPHIOrDbg());
6354 const bool GeneratingCoveredLookupTable
= (MaxTableSize
== TableSize
);
6355 BranchInst
*RangeCheckBranch
= nullptr;
6357 if (!DefaultIsReachable
|| GeneratingCoveredLookupTable
) {
6358 Builder
.CreateBr(LookupBB
);
6360 Updates
.push_back({DominatorTree::Insert
, BB
, LookupBB
});
6361 // Note: We call removeProdecessor later since we need to be able to get the
6362 // PHI value for the default case in case we're using a bit mask.
6364 Value
*Cmp
= Builder
.CreateICmpULT(
6365 TableIndex
, ConstantInt::get(MinCaseVal
->getType(), TableSize
));
6367 Builder
.CreateCondBr(Cmp
, LookupBB
, SI
->getDefaultDest());
6369 Updates
.push_back({DominatorTree::Insert
, BB
, LookupBB
});
6372 // Populate the BB that does the lookups.
6373 Builder
.SetInsertPoint(LookupBB
);
6376 // Before doing the lookup, we do the hole check. The LookupBB is therefore
6377 // re-purposed to do the hole check, and we create a new LookupBB.
6378 BasicBlock
*MaskBB
= LookupBB
;
6379 MaskBB
->setName("switch.hole_check");
6380 LookupBB
= BasicBlock::Create(Mod
.getContext(), "switch.lookup",
6381 CommonDest
->getParent(), CommonDest
);
6383 // Make the mask's bitwidth at least 8-bit and a power-of-2 to avoid
6384 // unnecessary illegal types.
6385 uint64_t TableSizePowOf2
= NextPowerOf2(std::max(7ULL, TableSize
- 1ULL));
6386 APInt
MaskInt(TableSizePowOf2
, 0);
6387 APInt
One(TableSizePowOf2
, 1);
6388 // Build bitmask; fill in a 1 bit for every case.
6389 const ResultListTy
&ResultList
= ResultLists
[PHIs
[0]];
6390 for (size_t I
= 0, E
= ResultList
.size(); I
!= E
; ++I
) {
6391 uint64_t Idx
= (ResultList
[I
].first
->getValue() - TableIndexOffset
->getValue())
6393 MaskInt
|= One
<< Idx
;
6395 ConstantInt
*TableMask
= ConstantInt::get(Mod
.getContext(), MaskInt
);
6397 // Get the TableIndex'th bit of the bitmask.
6398 // If this bit is 0 (meaning hole) jump to the default destination,
6399 // else continue with table lookup.
6400 IntegerType
*MapTy
= TableMask
->getType();
6402 Builder
.CreateZExtOrTrunc(TableIndex
, MapTy
, "switch.maskindex");
6403 Value
*Shifted
= Builder
.CreateLShr(TableMask
, MaskIndex
, "switch.shifted");
6404 Value
*LoBit
= Builder
.CreateTrunc(
6405 Shifted
, Type::getInt1Ty(Mod
.getContext()), "switch.lobit");
6406 Builder
.CreateCondBr(LoBit
, LookupBB
, SI
->getDefaultDest());
6408 Updates
.push_back({DominatorTree::Insert
, MaskBB
, LookupBB
});
6409 Updates
.push_back({DominatorTree::Insert
, MaskBB
, SI
->getDefaultDest()});
6411 Builder
.SetInsertPoint(LookupBB
);
6412 AddPredecessorToBlock(SI
->getDefaultDest(), MaskBB
, BB
);
6415 if (!DefaultIsReachable
|| GeneratingCoveredLookupTable
) {
6416 // We cached PHINodes in PHIs. To avoid accessing deleted PHINodes later,
6417 // do not delete PHINodes here.
6418 SI
->getDefaultDest()->removePredecessor(BB
,
6419 /*KeepOneInputPHIs=*/true);
6421 Updates
.push_back({DominatorTree::Delete
, BB
, SI
->getDefaultDest()});
6424 for (PHINode
*PHI
: PHIs
) {
6425 const ResultListTy
&ResultList
= ResultLists
[PHI
];
6427 // If using a bitmask, use any value to fill the lookup table holes.
6428 Constant
*DV
= NeedMask
? ResultLists
[PHI
][0].second
: DefaultResults
[PHI
];
6429 StringRef FuncName
= Fn
->getName();
6430 SwitchLookupTable
Table(Mod
, TableSize
, TableIndexOffset
, ResultList
, DV
,
6433 Value
*Result
= Table
.BuildLookup(TableIndex
, Builder
);
6435 // Do a small peephole optimization: re-use the switch table compare if
6437 if (!TableHasHoles
&& HasDefaultResults
&& RangeCheckBranch
) {
6438 BasicBlock
*PhiBlock
= PHI
->getParent();
6439 // Search for compare instructions which use the phi.
6440 for (auto *User
: PHI
->users()) {
6441 reuseTableCompare(User
, PhiBlock
, RangeCheckBranch
, DV
, ResultList
);
6445 PHI
->addIncoming(Result
, LookupBB
);
6448 Builder
.CreateBr(CommonDest
);
6450 Updates
.push_back({DominatorTree::Insert
, LookupBB
, CommonDest
});
6452 // Remove the switch.
6453 SmallPtrSet
<BasicBlock
*, 8> RemovedSuccessors
;
6454 for (unsigned i
= 0, e
= SI
->getNumSuccessors(); i
< e
; ++i
) {
6455 BasicBlock
*Succ
= SI
->getSuccessor(i
);
6457 if (Succ
== SI
->getDefaultDest())
6459 Succ
->removePredecessor(BB
);
6460 if (DTU
&& RemovedSuccessors
.insert(Succ
).second
)
6461 Updates
.push_back({DominatorTree::Delete
, BB
, Succ
});
6463 SI
->eraseFromParent();
6466 DTU
->applyUpdates(Updates
);
6470 ++NumLookupTablesHoles
;
6474 /// Try to transform a switch that has "holes" in it to a contiguous sequence
6477 /// A switch such as: switch(i) {case 5: case 9: case 13: case 17:} can be
6478 /// range-reduced to: switch ((i-5) / 4) {case 0: case 1: case 2: case 3:}.
6480 /// This converts a sparse switch into a dense switch which allows better
6481 /// lowering and could also allow transforming into a lookup table.
6482 static bool ReduceSwitchRange(SwitchInst
*SI
, IRBuilder
<> &Builder
,
6483 const DataLayout
&DL
,
6484 const TargetTransformInfo
&TTI
) {
6485 auto *CondTy
= cast
<IntegerType
>(SI
->getCondition()->getType());
6486 if (CondTy
->getIntegerBitWidth() > 64 ||
6487 !DL
.fitsInLegalInteger(CondTy
->getIntegerBitWidth()))
6489 // Only bother with this optimization if there are more than 3 switch cases;
6490 // SDAG will only bother creating jump tables for 4 or more cases.
6491 if (SI
->getNumCases() < 4)
6494 // This transform is agnostic to the signedness of the input or case values. We
6495 // can treat the case values as signed or unsigned. We can optimize more common
6496 // cases such as a sequence crossing zero {-4,0,4,8} if we interpret case values
6498 SmallVector
<int64_t,4> Values
;
6499 for (const auto &C
: SI
->cases())
6500 Values
.push_back(C
.getCaseValue()->getValue().getSExtValue());
6503 // If the switch is already dense, there's nothing useful to do here.
6504 if (isSwitchDense(Values
))
6507 // First, transform the values such that they start at zero and ascend.
6508 int64_t Base
= Values
[0];
6509 for (auto &V
: Values
)
6510 V
-= (uint64_t)(Base
);
6512 // Now we have signed numbers that have been shifted so that, given enough
6513 // precision, there are no negative values. Since the rest of the transform
6514 // is bitwise only, we switch now to an unsigned representation.
6516 // This transform can be done speculatively because it is so cheap - it
6517 // results in a single rotate operation being inserted.
6518 // FIXME: It's possible that optimizing a switch on powers of two might also
6519 // be beneficial - flag values are often powers of two and we could use a CLZ
6520 // as the key function.
6522 // countTrailingZeros(0) returns 64. As Values is guaranteed to have more than
6523 // one element and LLVM disallows duplicate cases, Shift is guaranteed to be
6525 unsigned Shift
= 64;
6526 for (auto &V
: Values
)
6527 Shift
= std::min(Shift
, countTrailingZeros((uint64_t)V
));
6530 for (auto &V
: Values
)
6531 V
= (int64_t)((uint64_t)V
>> Shift
);
6533 if (!isSwitchDense(Values
))
6534 // Transform didn't create a dense switch.
6537 // The obvious transform is to shift the switch condition right and emit a
6538 // check that the condition actually cleanly divided by GCD, i.e.
6539 // C & (1 << Shift - 1) == 0
6540 // inserting a new CFG edge to handle the case where it didn't divide cleanly.
6542 // A cheaper way of doing this is a simple ROTR(C, Shift). This performs the
6543 // shift and puts the shifted-off bits in the uppermost bits. If any of these
6544 // are nonzero then the switch condition will be very large and will hit the
6547 auto *Ty
= cast
<IntegerType
>(SI
->getCondition()->getType());
6548 Builder
.SetInsertPoint(SI
);
6549 auto *ShiftC
= ConstantInt::get(Ty
, Shift
);
6550 auto *Sub
= Builder
.CreateSub(SI
->getCondition(), ConstantInt::get(Ty
, Base
));
6551 auto *LShr
= Builder
.CreateLShr(Sub
, ShiftC
);
6552 auto *Shl
= Builder
.CreateShl(Sub
, Ty
->getBitWidth() - Shift
);
6553 auto *Rot
= Builder
.CreateOr(LShr
, Shl
);
6554 SI
->replaceUsesOfWith(SI
->getCondition(), Rot
);
6556 for (auto Case
: SI
->cases()) {
6557 auto *Orig
= Case
.getCaseValue();
6558 auto Sub
= Orig
->getValue() - APInt(Ty
->getBitWidth(), Base
);
6560 cast
<ConstantInt
>(ConstantInt::get(Ty
, Sub
.lshr(ShiftC
->getValue()))));
6565 bool SimplifyCFGOpt::simplifySwitch(SwitchInst
*SI
, IRBuilder
<> &Builder
) {
6566 BasicBlock
*BB
= SI
->getParent();
6568 if (isValueEqualityComparison(SI
)) {
6569 // If we only have one predecessor, and if it is a branch on this value,
6570 // see if that predecessor totally determines the outcome of this switch.
6571 if (BasicBlock
*OnlyPred
= BB
->getSinglePredecessor())
6572 if (SimplifyEqualityComparisonWithOnlyPredecessor(SI
, OnlyPred
, Builder
))
6573 return requestResimplify();
6575 Value
*Cond
= SI
->getCondition();
6576 if (SelectInst
*Select
= dyn_cast
<SelectInst
>(Cond
))
6577 if (SimplifySwitchOnSelect(SI
, Select
))
6578 return requestResimplify();
6580 // If the block only contains the switch, see if we can fold the block
6581 // away into any preds.
6582 if (SI
== &*BB
->instructionsWithoutDebug(false).begin())
6583 if (FoldValueComparisonIntoPredecessors(SI
, Builder
))
6584 return requestResimplify();
6587 // Try to transform the switch into an icmp and a branch.
6588 // The conversion from switch to comparison may lose information on
6589 // impossible switch values, so disable it early in the pipeline.
6590 if (Options
.ConvertSwitchRangeToICmp
&& TurnSwitchRangeIntoICmp(SI
, Builder
))
6591 return requestResimplify();
6593 // Remove unreachable cases.
6594 if (eliminateDeadSwitchCases(SI
, DTU
, Options
.AC
, DL
))
6595 return requestResimplify();
6597 if (trySwitchToSelect(SI
, Builder
, DTU
, DL
, TTI
))
6598 return requestResimplify();
6600 if (Options
.ForwardSwitchCondToPhi
&& ForwardSwitchConditionToPHI(SI
))
6601 return requestResimplify();
6603 // The conversion from switch to lookup tables results in difficult-to-analyze
6604 // code and makes pruning branches much harder. This is a problem if the
6605 // switch expression itself can still be restricted as a result of inlining or
6606 // CVP. Therefore, only apply this transformation during late stages of the
6607 // optimisation pipeline.
6608 if (Options
.ConvertSwitchToLookupTable
&&
6609 SwitchToLookupTable(SI
, Builder
, DTU
, DL
, TTI
))
6610 return requestResimplify();
6612 if (ReduceSwitchRange(SI
, Builder
, DL
, TTI
))
6613 return requestResimplify();
6618 bool SimplifyCFGOpt::simplifyIndirectBr(IndirectBrInst
*IBI
) {
6619 BasicBlock
*BB
= IBI
->getParent();
6620 bool Changed
= false;
6622 // Eliminate redundant destinations.
6623 SmallPtrSet
<Value
*, 8> Succs
;
6624 SmallSetVector
<BasicBlock
*, 8> RemovedSuccs
;
6625 for (unsigned i
= 0, e
= IBI
->getNumDestinations(); i
!= e
; ++i
) {
6626 BasicBlock
*Dest
= IBI
->getDestination(i
);
6627 if (!Dest
->hasAddressTaken() || !Succs
.insert(Dest
).second
) {
6628 if (!Dest
->hasAddressTaken())
6629 RemovedSuccs
.insert(Dest
);
6630 Dest
->removePredecessor(BB
);
6631 IBI
->removeDestination(i
);
6639 std::vector
<DominatorTree::UpdateType
> Updates
;
6640 Updates
.reserve(RemovedSuccs
.size());
6641 for (auto *RemovedSucc
: RemovedSuccs
)
6642 Updates
.push_back({DominatorTree::Delete
, BB
, RemovedSucc
});
6643 DTU
->applyUpdates(Updates
);
6646 if (IBI
->getNumDestinations() == 0) {
6647 // If the indirectbr has no successors, change it to unreachable.
6648 new UnreachableInst(IBI
->getContext(), IBI
);
6649 EraseTerminatorAndDCECond(IBI
);
6653 if (IBI
->getNumDestinations() == 1) {
6654 // If the indirectbr has one successor, change it to a direct branch.
6655 BranchInst::Create(IBI
->getDestination(0), IBI
);
6656 EraseTerminatorAndDCECond(IBI
);
6660 if (SelectInst
*SI
= dyn_cast
<SelectInst
>(IBI
->getAddress())) {
6661 if (SimplifyIndirectBrOnSelect(IBI
, SI
))
6662 return requestResimplify();
6667 /// Given an block with only a single landing pad and a unconditional branch
6668 /// try to find another basic block which this one can be merged with. This
6669 /// handles cases where we have multiple invokes with unique landing pads, but
6670 /// a shared handler.
6672 /// We specifically choose to not worry about merging non-empty blocks
6673 /// here. That is a PRE/scheduling problem and is best solved elsewhere. In
6674 /// practice, the optimizer produces empty landing pad blocks quite frequently
6675 /// when dealing with exception dense code. (see: instcombine, gvn, if-else
6676 /// sinking in this file)
6678 /// This is primarily a code size optimization. We need to avoid performing
6679 /// any transform which might inhibit optimization (such as our ability to
6680 /// specialize a particular handler via tail commoning). We do this by not
6681 /// merging any blocks which require us to introduce a phi. Since the same
6682 /// values are flowing through both blocks, we don't lose any ability to
6683 /// specialize. If anything, we make such specialization more likely.
6685 /// TODO - This transformation could remove entries from a phi in the target
6686 /// block when the inputs in the phi are the same for the two blocks being
6687 /// merged. In some cases, this could result in removal of the PHI entirely.
6688 static bool TryToMergeLandingPad(LandingPadInst
*LPad
, BranchInst
*BI
,
6689 BasicBlock
*BB
, DomTreeUpdater
*DTU
) {
6690 auto Succ
= BB
->getUniqueSuccessor();
6692 // If there's a phi in the successor block, we'd likely have to introduce
6693 // a phi into the merged landing pad block.
6694 if (isa
<PHINode
>(*Succ
->begin()))
6697 for (BasicBlock
*OtherPred
: predecessors(Succ
)) {
6698 if (BB
== OtherPred
)
6700 BasicBlock::iterator I
= OtherPred
->begin();
6701 LandingPadInst
*LPad2
= dyn_cast
<LandingPadInst
>(I
);
6702 if (!LPad2
|| !LPad2
->isIdenticalTo(LPad
))
6704 for (++I
; isa
<DbgInfoIntrinsic
>(I
); ++I
)
6706 BranchInst
*BI2
= dyn_cast
<BranchInst
>(I
);
6707 if (!BI2
|| !BI2
->isIdenticalTo(BI
))
6710 std::vector
<DominatorTree::UpdateType
> Updates
;
6712 // We've found an identical block. Update our predecessors to take that
6713 // path instead and make ourselves dead.
6714 SmallSetVector
<BasicBlock
*, 16> UniquePreds(pred_begin(BB
), pred_end(BB
));
6715 for (BasicBlock
*Pred
: UniquePreds
) {
6716 InvokeInst
*II
= cast
<InvokeInst
>(Pred
->getTerminator());
6717 assert(II
->getNormalDest() != BB
&& II
->getUnwindDest() == BB
&&
6718 "unexpected successor");
6719 II
->setUnwindDest(OtherPred
);
6721 Updates
.push_back({DominatorTree::Insert
, Pred
, OtherPred
});
6722 Updates
.push_back({DominatorTree::Delete
, Pred
, BB
});
6726 // The debug info in OtherPred doesn't cover the merged control flow that
6727 // used to go through BB. We need to delete it or update it.
6728 for (Instruction
&Inst
: llvm::make_early_inc_range(*OtherPred
))
6729 if (isa
<DbgInfoIntrinsic
>(Inst
))
6730 Inst
.eraseFromParent();
6732 SmallSetVector
<BasicBlock
*, 16> UniqueSuccs(succ_begin(BB
), succ_end(BB
));
6733 for (BasicBlock
*Succ
: UniqueSuccs
) {
6734 Succ
->removePredecessor(BB
);
6736 Updates
.push_back({DominatorTree::Delete
, BB
, Succ
});
6739 IRBuilder
<> Builder(BI
);
6740 Builder
.CreateUnreachable();
6741 BI
->eraseFromParent();
6743 DTU
->applyUpdates(Updates
);
6749 bool SimplifyCFGOpt::simplifyBranch(BranchInst
*Branch
, IRBuilder
<> &Builder
) {
6750 return Branch
->isUnconditional() ? simplifyUncondBranch(Branch
, Builder
)
6751 : simplifyCondBranch(Branch
, Builder
);
6754 bool SimplifyCFGOpt::simplifyUncondBranch(BranchInst
*BI
,
6755 IRBuilder
<> &Builder
) {
6756 BasicBlock
*BB
= BI
->getParent();
6757 BasicBlock
*Succ
= BI
->getSuccessor(0);
6759 // If the Terminator is the only non-phi instruction, simplify the block.
6760 // If LoopHeader is provided, check if the block or its successor is a loop
6761 // header. (This is for early invocations before loop simplify and
6762 // vectorization to keep canonical loop forms for nested loops. These blocks
6763 // can be eliminated when the pass is invoked later in the back-end.)
6764 // Note that if BB has only one predecessor then we do not introduce new
6765 // backedge, so we can eliminate BB.
6766 bool NeedCanonicalLoop
=
6767 Options
.NeedCanonicalLoop
&&
6768 (!LoopHeaders
.empty() && BB
->hasNPredecessorsOrMore(2) &&
6769 (is_contained(LoopHeaders
, BB
) || is_contained(LoopHeaders
, Succ
)));
6770 BasicBlock::iterator I
= BB
->getFirstNonPHIOrDbg(true)->getIterator();
6771 if (I
->isTerminator() && BB
!= &BB
->getParent()->getEntryBlock() &&
6772 !NeedCanonicalLoop
&& TryToSimplifyUncondBranchFromEmptyBlock(BB
, DTU
))
6775 // If the only instruction in the block is a seteq/setne comparison against a
6776 // constant, try to simplify the block.
6777 if (ICmpInst
*ICI
= dyn_cast
<ICmpInst
>(I
))
6778 if (ICI
->isEquality() && isa
<ConstantInt
>(ICI
->getOperand(1))) {
6779 for (++I
; isa
<DbgInfoIntrinsic
>(I
); ++I
)
6781 if (I
->isTerminator() &&
6782 tryToSimplifyUncondBranchWithICmpInIt(ICI
, Builder
))
6786 // See if we can merge an empty landing pad block with another which is
6788 if (LandingPadInst
*LPad
= dyn_cast
<LandingPadInst
>(I
)) {
6789 for (++I
; isa
<DbgInfoIntrinsic
>(I
); ++I
)
6791 if (I
->isTerminator() && TryToMergeLandingPad(LPad
, BI
, BB
, DTU
))
6795 // If this basic block is ONLY a compare and a branch, and if a predecessor
6796 // branches to us and our successor, fold the comparison into the
6797 // predecessor and use logical operations to update the incoming value
6798 // for PHI nodes in common successor.
6799 if (FoldBranchToCommonDest(BI
, DTU
, /*MSSAU=*/nullptr, &TTI
,
6800 Options
.BonusInstThreshold
))
6801 return requestResimplify();
6805 static BasicBlock
*allPredecessorsComeFromSameSource(BasicBlock
*BB
) {
6806 BasicBlock
*PredPred
= nullptr;
6807 for (auto *P
: predecessors(BB
)) {
6808 BasicBlock
*PPred
= P
->getSinglePredecessor();
6809 if (!PPred
|| (PredPred
&& PredPred
!= PPred
))
6816 bool SimplifyCFGOpt::simplifyCondBranch(BranchInst
*BI
, IRBuilder
<> &Builder
) {
6818 !isa
<ConstantInt
>(BI
->getCondition()) &&
6819 BI
->getSuccessor(0) != BI
->getSuccessor(1) &&
6820 "Tautological conditional branch should have been eliminated already.");
6822 BasicBlock
*BB
= BI
->getParent();
6823 if (!Options
.SimplifyCondBranch
)
6826 // Conditional branch
6827 if (isValueEqualityComparison(BI
)) {
6828 // If we only have one predecessor, and if it is a branch on this value,
6829 // see if that predecessor totally determines the outcome of this
6831 if (BasicBlock
*OnlyPred
= BB
->getSinglePredecessor())
6832 if (SimplifyEqualityComparisonWithOnlyPredecessor(BI
, OnlyPred
, Builder
))
6833 return requestResimplify();
6835 // This block must be empty, except for the setcond inst, if it exists.
6836 // Ignore dbg and pseudo intrinsics.
6837 auto I
= BB
->instructionsWithoutDebug(true).begin();
6839 if (FoldValueComparisonIntoPredecessors(BI
, Builder
))
6840 return requestResimplify();
6841 } else if (&*I
== cast
<Instruction
>(BI
->getCondition())) {
6843 if (&*I
== BI
&& FoldValueComparisonIntoPredecessors(BI
, Builder
))
6844 return requestResimplify();
6848 // Try to turn "br (X == 0 | X == 1), T, F" into a switch instruction.
6849 if (SimplifyBranchOnICmpChain(BI
, Builder
, DL
))
6852 // If this basic block has dominating predecessor blocks and the dominating
6853 // blocks' conditions imply BI's condition, we know the direction of BI.
6854 Optional
<bool> Imp
= isImpliedByDomCondition(BI
->getCondition(), BI
, DL
);
6856 // Turn this into a branch on constant.
6857 auto *OldCond
= BI
->getCondition();
6858 ConstantInt
*TorF
= *Imp
? ConstantInt::getTrue(BB
->getContext())
6859 : ConstantInt::getFalse(BB
->getContext());
6860 BI
->setCondition(TorF
);
6861 RecursivelyDeleteTriviallyDeadInstructions(OldCond
);
6862 return requestResimplify();
6865 // If this basic block is ONLY a compare and a branch, and if a predecessor
6866 // branches to us and one of our successors, fold the comparison into the
6867 // predecessor and use logical operations to pick the right destination.
6868 if (FoldBranchToCommonDest(BI
, DTU
, /*MSSAU=*/nullptr, &TTI
,
6869 Options
.BonusInstThreshold
))
6870 return requestResimplify();
6872 // We have a conditional branch to two blocks that are only reachable
6873 // from BI. We know that the condbr dominates the two blocks, so see if
6874 // there is any identical code in the "then" and "else" blocks. If so, we
6875 // can hoist it up to the branching block.
6876 if (BI
->getSuccessor(0)->getSinglePredecessor()) {
6877 if (BI
->getSuccessor(1)->getSinglePredecessor()) {
6879 HoistThenElseCodeToIf(BI
, TTI
, !Options
.HoistCommonInsts
))
6880 return requestResimplify();
6882 // If Successor #1 has multiple preds, we may be able to conditionally
6883 // execute Successor #0 if it branches to Successor #1.
6884 Instruction
*Succ0TI
= BI
->getSuccessor(0)->getTerminator();
6885 if (Succ0TI
->getNumSuccessors() == 1 &&
6886 Succ0TI
->getSuccessor(0) == BI
->getSuccessor(1))
6887 if (SpeculativelyExecuteBB(BI
, BI
->getSuccessor(0), TTI
))
6888 return requestResimplify();
6890 } else if (BI
->getSuccessor(1)->getSinglePredecessor()) {
6891 // If Successor #0 has multiple preds, we may be able to conditionally
6892 // execute Successor #1 if it branches to Successor #0.
6893 Instruction
*Succ1TI
= BI
->getSuccessor(1)->getTerminator();
6894 if (Succ1TI
->getNumSuccessors() == 1 &&
6895 Succ1TI
->getSuccessor(0) == BI
->getSuccessor(0))
6896 if (SpeculativelyExecuteBB(BI
, BI
->getSuccessor(1), TTI
))
6897 return requestResimplify();
6900 // If this is a branch on something for which we know the constant value in
6901 // predecessors (e.g. a phi node in the current block), thread control
6902 // through this block.
6903 if (FoldCondBranchOnValueKnownInPredecessor(BI
, DTU
, DL
, Options
.AC
))
6904 return requestResimplify();
6906 // Scan predecessor blocks for conditional branches.
6907 for (BasicBlock
*Pred
: predecessors(BB
))
6908 if (BranchInst
*PBI
= dyn_cast
<BranchInst
>(Pred
->getTerminator()))
6909 if (PBI
!= BI
&& PBI
->isConditional())
6910 if (SimplifyCondBranchToCondBranch(PBI
, BI
, DTU
, DL
, TTI
))
6911 return requestResimplify();
6913 // Look for diamond patterns.
6914 if (MergeCondStores
)
6915 if (BasicBlock
*PrevBB
= allPredecessorsComeFromSameSource(BB
))
6916 if (BranchInst
*PBI
= dyn_cast
<BranchInst
>(PrevBB
->getTerminator()))
6917 if (PBI
!= BI
&& PBI
->isConditional())
6918 if (mergeConditionalStores(PBI
, BI
, DTU
, DL
, TTI
))
6919 return requestResimplify();
6924 /// Check if passing a value to an instruction will cause undefined behavior.
6925 static bool passingValueIsAlwaysUndefined(Value
*V
, Instruction
*I
, bool PtrValueMayBeModified
) {
6926 Constant
*C
= dyn_cast
<Constant
>(V
);
6933 if (C
->isNullValue() || isa
<UndefValue
>(C
)) {
6934 // Only look at the first use, avoid hurting compile time with long uselists
6935 auto *Use
= cast
<Instruction
>(*I
->user_begin());
6936 // Bail out if Use is not in the same BB as I or Use == I or Use comes
6937 // before I in the block. The latter two can be the case if Use is a PHI
6939 if (Use
->getParent() != I
->getParent() || Use
== I
|| Use
->comesBefore(I
))
6942 // Now make sure that there are no instructions in between that can alter
6943 // control flow (eg. calls)
6945 make_range(std::next(I
->getIterator()), Use
->getIterator());
6946 if (any_of(InstrRange
, [](Instruction
&I
) {
6947 return !isGuaranteedToTransferExecutionToSuccessor(&I
);
6951 // Look through GEPs. A load from a GEP derived from NULL is still undefined
6952 if (GetElementPtrInst
*GEP
= dyn_cast
<GetElementPtrInst
>(Use
))
6953 if (GEP
->getPointerOperand() == I
) {
6954 if (!GEP
->isInBounds() || !GEP
->hasAllZeroIndices())
6955 PtrValueMayBeModified
= true;
6956 return passingValueIsAlwaysUndefined(V
, GEP
, PtrValueMayBeModified
);
6959 // Look through bitcasts.
6960 if (BitCastInst
*BC
= dyn_cast
<BitCastInst
>(Use
))
6961 return passingValueIsAlwaysUndefined(V
, BC
, PtrValueMayBeModified
);
6963 // Load from null is undefined.
6964 if (LoadInst
*LI
= dyn_cast
<LoadInst
>(Use
))
6965 if (!LI
->isVolatile())
6966 return !NullPointerIsDefined(LI
->getFunction(),
6967 LI
->getPointerAddressSpace());
6969 // Store to null is undefined.
6970 if (StoreInst
*SI
= dyn_cast
<StoreInst
>(Use
))
6971 if (!SI
->isVolatile())
6972 return (!NullPointerIsDefined(SI
->getFunction(),
6973 SI
->getPointerAddressSpace())) &&
6974 SI
->getPointerOperand() == I
;
6976 if (auto *CB
= dyn_cast
<CallBase
>(Use
)) {
6977 if (C
->isNullValue() && NullPointerIsDefined(CB
->getFunction()))
6979 // A call to null is undefined.
6980 if (CB
->getCalledOperand() == I
)
6983 if (C
->isNullValue()) {
6984 for (const llvm::Use
&Arg
: CB
->args())
6986 unsigned ArgIdx
= CB
->getArgOperandNo(&Arg
);
6987 if (CB
->isPassingUndefUB(ArgIdx
) &&
6988 CB
->paramHasAttr(ArgIdx
, Attribute::NonNull
)) {
6989 // Passing null to a nonnnull+noundef argument is undefined.
6990 return !PtrValueMayBeModified
;
6993 } else if (isa
<UndefValue
>(C
)) {
6994 // Passing undef to a noundef argument is undefined.
6995 for (const llvm::Use
&Arg
: CB
->args())
6997 unsigned ArgIdx
= CB
->getArgOperandNo(&Arg
);
6998 if (CB
->isPassingUndefUB(ArgIdx
)) {
6999 // Passing undef to a noundef argument is undefined.
7009 /// If BB has an incoming value that will always trigger undefined behavior
7010 /// (eg. null pointer dereference), remove the branch leading here.
7011 static bool removeUndefIntroducingPredecessor(BasicBlock
*BB
,
7012 DomTreeUpdater
*DTU
) {
7013 for (PHINode
&PHI
: BB
->phis())
7014 for (unsigned i
= 0, e
= PHI
.getNumIncomingValues(); i
!= e
; ++i
)
7015 if (passingValueIsAlwaysUndefined(PHI
.getIncomingValue(i
), &PHI
)) {
7016 BasicBlock
*Predecessor
= PHI
.getIncomingBlock(i
);
7017 Instruction
*T
= Predecessor
->getTerminator();
7018 IRBuilder
<> Builder(T
);
7019 if (BranchInst
*BI
= dyn_cast
<BranchInst
>(T
)) {
7020 BB
->removePredecessor(Predecessor
);
7021 // Turn unconditional branches into unreachables and remove the dead
7022 // destination from conditional branches.
7023 if (BI
->isUnconditional())
7024 Builder
.CreateUnreachable();
7026 // Preserve guarding condition in assume, because it might not be
7027 // inferrable from any dominating condition.
7028 Value
*Cond
= BI
->getCondition();
7029 if (BI
->getSuccessor(0) == BB
)
7030 Builder
.CreateAssumption(Builder
.CreateNot(Cond
));
7032 Builder
.CreateAssumption(Cond
);
7033 Builder
.CreateBr(BI
->getSuccessor(0) == BB
? BI
->getSuccessor(1)
7034 : BI
->getSuccessor(0));
7036 BI
->eraseFromParent();
7038 DTU
->applyUpdates({{DominatorTree::Delete
, Predecessor
, BB
}});
7040 } else if (SwitchInst
*SI
= dyn_cast
<SwitchInst
>(T
)) {
7041 // Redirect all branches leading to UB into
7042 // a newly created unreachable block.
7043 BasicBlock
*Unreachable
= BasicBlock::Create(
7044 Predecessor
->getContext(), "unreachable", BB
->getParent(), BB
);
7045 Builder
.SetInsertPoint(Unreachable
);
7046 // The new block contains only one instruction: Unreachable
7047 Builder
.CreateUnreachable();
7048 for (const auto &Case
: SI
->cases())
7049 if (Case
.getCaseSuccessor() == BB
) {
7050 BB
->removePredecessor(Predecessor
);
7051 Case
.setSuccessor(Unreachable
);
7053 if (SI
->getDefaultDest() == BB
) {
7054 BB
->removePredecessor(Predecessor
);
7055 SI
->setDefaultDest(Unreachable
);
7060 { { DominatorTree::Insert
, Predecessor
, Unreachable
},
7061 { DominatorTree::Delete
, Predecessor
, BB
} });
7069 bool SimplifyCFGOpt::simplifyOnce(BasicBlock
*BB
) {
7070 bool Changed
= false;
7072 assert(BB
&& BB
->getParent() && "Block not embedded in function!");
7073 assert(BB
->getTerminator() && "Degenerate basic block encountered!");
7075 // Remove basic blocks that have no predecessors (except the entry block)...
7076 // or that just have themself as a predecessor. These are unreachable.
7077 if ((pred_empty(BB
) && BB
!= &BB
->getParent()->getEntryBlock()) ||
7078 BB
->getSinglePredecessor() == BB
) {
7079 LLVM_DEBUG(dbgs() << "Removing BB: \n" << *BB
);
7080 DeleteDeadBlock(BB
, DTU
);
7084 // Check to see if we can constant propagate this terminator instruction
7086 Changed
|= ConstantFoldTerminator(BB
, /*DeleteDeadConditions=*/true,
7087 /*TLI=*/nullptr, DTU
);
7089 // Check for and eliminate duplicate PHI nodes in this block.
7090 Changed
|= EliminateDuplicatePHINodes(BB
);
7092 // Check for and remove branches that will always cause undefined behavior.
7093 if (removeUndefIntroducingPredecessor(BB
, DTU
))
7094 return requestResimplify();
7096 // Merge basic blocks into their predecessor if there is only one distinct
7097 // pred, and if there is only one distinct successor of the predecessor, and
7098 // if there are no PHI nodes.
7099 if (MergeBlockIntoPredecessor(BB
, DTU
))
7102 if (SinkCommon
&& Options
.SinkCommonInsts
)
7103 if (SinkCommonCodeFromPredecessors(BB
, DTU
) ||
7104 MergeCompatibleInvokes(BB
, DTU
)) {
7105 // SinkCommonCodeFromPredecessors() does not automatically CSE PHI's,
7106 // so we may now how duplicate PHI's.
7107 // Let's rerun EliminateDuplicatePHINodes() first,
7108 // before FoldTwoEntryPHINode() potentially converts them into select's,
7109 // after which we'd need a whole EarlyCSE pass run to cleanup them.
7113 IRBuilder
<> Builder(BB
);
7115 if (Options
.FoldTwoEntryPHINode
) {
7116 // If there is a trivial two-entry PHI node in this basic block, and we can
7117 // eliminate it, do so now.
7118 if (auto *PN
= dyn_cast
<PHINode
>(BB
->begin()))
7119 if (PN
->getNumIncomingValues() == 2)
7120 if (FoldTwoEntryPHINode(PN
, TTI
, DTU
, DL
))
7124 Instruction
*Terminator
= BB
->getTerminator();
7125 Builder
.SetInsertPoint(Terminator
);
7126 switch (Terminator
->getOpcode()) {
7127 case Instruction::Br
:
7128 Changed
|= simplifyBranch(cast
<BranchInst
>(Terminator
), Builder
);
7130 case Instruction::Resume
:
7131 Changed
|= simplifyResume(cast
<ResumeInst
>(Terminator
), Builder
);
7133 case Instruction::CleanupRet
:
7134 Changed
|= simplifyCleanupReturn(cast
<CleanupReturnInst
>(Terminator
));
7136 case Instruction::Switch
:
7137 Changed
|= simplifySwitch(cast
<SwitchInst
>(Terminator
), Builder
);
7139 case Instruction::Unreachable
:
7140 Changed
|= simplifyUnreachable(cast
<UnreachableInst
>(Terminator
));
7142 case Instruction::IndirectBr
:
7143 Changed
|= simplifyIndirectBr(cast
<IndirectBrInst
>(Terminator
));
7150 bool SimplifyCFGOpt::run(BasicBlock
*BB
) {
7151 bool Changed
= false;
7153 // Repeated simplify BB as long as resimplification is requested.
7157 // Perform one round of simplifcation. Resimplify flag will be set if
7158 // another iteration is requested.
7159 Changed
|= simplifyOnce(BB
);
7160 } while (Resimplify
);
7165 bool llvm::simplifyCFG(BasicBlock
*BB
, const TargetTransformInfo
&TTI
,
7166 DomTreeUpdater
*DTU
, const SimplifyCFGOptions
&Options
,
7167 ArrayRef
<WeakVH
> LoopHeaders
) {
7168 return SimplifyCFGOpt(TTI
, DTU
, BB
->getModule()->getDataLayout(), LoopHeaders
,