1 ; RUN: llc -mtriple=mips -relocation-model=static < %s | FileCheck --check-prefixes=ALL,SYM32,O32 %s
2 ; RUN: llc -mtriple=mipsel -relocation-model=static < %s | FileCheck --check-prefixes=ALL,SYM32,O32 %s
4 ; RUN-TODO: llc -mtriple=mips64 -relocation-model=static -target-abi n32 < %s | FileCheck --check-prefixes=ALL,SYM32,O32 %s
5 ; RUN-TODO: llc -mtriple=mips64el -relocation-model=static -target-abi n32 < %s | FileCheck --check-prefixes=ALL,SYM32,O32 %s
7 ; RUN: llc -mtriple=mips64 -relocation-model=static -target-abi n32 < %s | FileCheck --check-prefixes=ALL,SYM32,NEW %s
8 ; RUN: llc -mtriple=mips64el -relocation-model=static -target-abi n32 < %s | FileCheck --check-prefixes=ALL,SYM32,NEW %s
10 ; RUN: llc -mtriple=mips64 -relocation-model=static -target-abi n64 < %s | FileCheck --check-prefixes=ALL,SYM64,NEW %s
11 ; RUN: llc -mtriple=mips64el -relocation-model=static -target-abi n64 < %s | FileCheck --check-prefixes=ALL,SYM64,NEW %s
13 ; Test the integer arguments for all ABI's and byte orders as specified by
14 ; section 5 of MD00305 (MIPS ABIs Described).
16 ; N32/N64 are identical in this area so their checks have been combined into
17 ; the 'NEW' prefix (the N stands for New).
19 ; Varargs are covered in arguments-hard-float-varargs.ll.
21 @bytes = global [11 x i8] zeroinitializer
22 @dwords = global [11 x i64] zeroinitializer
23 @floats = global [11 x float] zeroinitializer
24 @doubles = global [11 x double] zeroinitializer
26 define void @align_to_arg_slots(i8 signext %a, i8 signext %b, i8 signext %c,
27 i8 signext %d, i8 signext %e, i8 signext %f,
28 i8 signext %g, i8 signext %h, i8 signext %i,
29 i8 signext %j) nounwind {
31 %0 = getelementptr [11 x i8], [11 x i8]* @bytes, i32 0, i32 1
32 store volatile i8 %a, i8* %0
33 %1 = getelementptr [11 x i8], [11 x i8]* @bytes, i32 0, i32 2
34 store volatile i8 %b, i8* %1
35 %2 = getelementptr [11 x i8], [11 x i8]* @bytes, i32 0, i32 3
36 store volatile i8 %c, i8* %2
37 %3 = getelementptr [11 x i8], [11 x i8]* @bytes, i32 0, i32 4
38 store volatile i8 %d, i8* %3
39 %4 = getelementptr [11 x i8], [11 x i8]* @bytes, i32 0, i32 5
40 store volatile i8 %e, i8* %4
41 %5 = getelementptr [11 x i8], [11 x i8]* @bytes, i32 0, i32 6
42 store volatile i8 %f, i8* %5
43 %6 = getelementptr [11 x i8], [11 x i8]* @bytes, i32 0, i32 7
44 store volatile i8 %g, i8* %6
45 %7 = getelementptr [11 x i8], [11 x i8]* @bytes, i32 0, i32 8
46 store volatile i8 %h, i8* %7
47 %8 = getelementptr [11 x i8], [11 x i8]* @bytes, i32 0, i32 9
48 store volatile i8 %i, i8* %8
49 %9 = getelementptr [11 x i8], [11 x i8]* @bytes, i32 0, i32 10
50 store volatile i8 %j, i8* %9
54 ; ALL-LABEL: align_to_arg_slots:
55 ; We won't test the way the global address is calculated in this test. This is
56 ; just to get the register number for the other checks.
57 ; SYM32-DAG: addiu [[R1:\$[0-9]+]], ${{[0-9]+}}, %lo(bytes)
58 ; SYM64-DAG: daddiu [[R1:\$[0-9]+]], ${{[0-9]+}}, %lo(bytes)
60 ; The first four arguments are the same in O32/N32/N64
61 ; ALL-DAG: sb $4, 1([[R1]])
62 ; ALL-DAG: sb $5, 2([[R1]])
63 ; ALL-DAG: sb $6, 3([[R1]])
64 ; ALL-DAG: sb $7, 4([[R1]])
66 ; N32/N64 get an extra four arguments in registers
67 ; O32 starts loading from the stack. The addresses start at 16 because space is
68 ; always reserved for the first four arguments.
69 ; O32-DAG: lw [[R3:\$[0-9]+]], 16($sp)
70 ; O32-DAG: sb [[R3]], 5([[R1]])
71 ; NEW-DAG: sb $8, 5([[R1]])
72 ; O32-DAG: lw [[R3:\$[0-9]+]], 20($sp)
73 ; O32-DAG: sb [[R3]], 6([[R1]])
74 ; NEW-DAG: sb $9, 6([[R1]])
75 ; O32-DAG: lw [[R3:\$[0-9]+]], 24($sp)
76 ; O32-DAG: sb [[R3]], 7([[R1]])
77 ; NEW-DAG: sb $10, 7([[R1]])
78 ; O32-DAG: lw [[R3:\$[0-9]+]], 28($sp)
79 ; O32-DAG: sb [[R3]], 8([[R1]])
80 ; NEW-DAG: sb $11, 8([[R1]])
82 ; O32/N32/N64 are accessing the stack at this point.
83 ; Unlike O32, N32/N64 do not reserve space for the arguments.
84 ; increase by 4 for O32 and 8 for N32/N64.
85 ; O32-DAG: lw [[R3:\$[0-9]+]], 32($sp)
86 ; O32-DAG: sb [[R3]], 9([[R1]])
87 ; NEW-DAG: ld [[R3:\$[0-9]+]], 0($sp)
88 ; NEW-DAG: sb [[R3]], 9([[R1]])
89 ; O32-DAG: lw [[R3:\$[0-9]+]], 36($sp)
90 ; O32-DAG: sb [[R3]], 10([[R1]])
91 ; NEW-DAG: ld [[R3:\$[0-9]+]], 8($sp)
92 ; NEW-DAG: sb [[R3]], 10([[R1]])
94 define void @slot_skipping(i8 signext %a, i64 signext %b, i8 signext %c,
95 i8 signext %d, i8 signext %e, i8 signext %f,
96 i8 signext %g, i64 signext %i, i8 signext %j) nounwind {
98 %0 = getelementptr [11 x i8], [11 x i8]* @bytes, i32 0, i32 1
99 store volatile i8 %a, i8* %0
100 %1 = getelementptr [11 x i64], [11 x i64]* @dwords, i32 0, i32 1
101 store volatile i64 %b, i64* %1
102 %2 = getelementptr [11 x i8], [11 x i8]* @bytes, i32 0, i32 2
103 store volatile i8 %c, i8* %2
104 %3 = getelementptr [11 x i8], [11 x i8]* @bytes, i32 0, i32 3
105 store volatile i8 %d, i8* %3
106 %4 = getelementptr [11 x i8], [11 x i8]* @bytes, i32 0, i32 4
107 store volatile i8 %e, i8* %4
108 %5 = getelementptr [11 x i8], [11 x i8]* @bytes, i32 0, i32 5
109 store volatile i8 %f, i8* %5
110 %6 = getelementptr [11 x i8], [11 x i8]* @bytes, i32 0, i32 6
111 store volatile i8 %g, i8* %6
112 %7 = getelementptr [11 x i64], [11 x i64]* @dwords, i32 0, i32 2
113 store volatile i64 %i, i64* %7
114 %8 = getelementptr [11 x i8], [11 x i8]* @bytes, i32 0, i32 7
115 store volatile i8 %j, i8* %8
119 ; ALL-LABEL: slot_skipping:
120 ; We won't test the way the global address is calculated in this test. This is
121 ; just to get the register number for the other checks.
122 ; SYM32-DAG: addiu [[R1:\$[0-9]+]], ${{[0-9]+}}, %lo(bytes)
123 ; SYM64-DAG: daddiu [[R1:\$[0-9]+]], ${{[0-9]+}}, %lo(bytes)
124 ; SYM32-DAG: addiu [[R2:\$[0-9]+]], ${{[0-9]+}}, %lo(dwords)
125 ; SYM64-DAG: daddiu [[R2:\$[0-9]+]], ${{[0-9]+}}, %lo(dwords)
127 ; The first argument is the same in O32/N32/N64.
128 ; ALL-DAG: sb $4, 1([[R1]])
130 ; The second slot is insufficiently aligned for i64 on O32 so it is skipped.
131 ; Also, i64 occupies two slots on O32 and only one for N32/N64.
132 ; O32-DAG: sw $6, 8([[R2]])
133 ; O32-DAG: sw $7, 12([[R2]])
134 ; NEW-DAG: sd $5, 8([[R2]])
136 ; N32/N64 get an extra four arguments in registers and still have two left from
138 ; O32 starts loading from the stack. The addresses start at 16 because space is
139 ; always reserved for the first four arguments.
140 ; It's not clear why O32 uses lbu for this argument, but it's not wrong so we'll
141 ; accept it for now. The only IR difference is that this argument has
142 ; anyext from i8 and align 8 on it.
143 ; O32-DAG: lw [[R3:\$[0-9]+]], 16($sp)
144 ; O32-DAG: sb [[R3]], 2([[R1]])
145 ; NEW-DAG: sb $6, 2([[R1]])
146 ; O32-DAG: lw [[R3:\$[0-9]+]], 20($sp)
147 ; O32-DAG: sb [[R3]], 3([[R1]])
148 ; NEW-DAG: sb $7, 3([[R1]])
149 ; O32-DAG: lw [[R3:\$[0-9]+]], 24($sp)
150 ; O32-DAG: sb [[R3]], 4([[R1]])
151 ; NEW-DAG: sb $8, 4([[R1]])
152 ; O32-DAG: lw [[R3:\$[0-9]+]], 28($sp)
153 ; O32-DAG: sb [[R3]], 5([[R1]])
154 ; NEW-DAG: sb $9, 5([[R1]])
156 ; O32-DAG: lw [[R3:\$[0-9]+]], 32($sp)
157 ; O32-DAG: sb [[R3]], 6([[R1]])
158 ; NEW-DAG: sb $10, 6([[R1]])
160 ; O32-DAG: lw [[R3:\$[0-9]+]], 40($sp)
161 ; O32-DAG: sw [[R3]], 16([[R2]])
162 ; O32-DAG: lw [[R3:\$[0-9]+]], 44($sp)
163 ; O32-DAG: sw [[R3]], 20([[R2]])
164 ; NEW-DAG: sd $11, 16([[R2]])
166 ; O32/N32/N64 are accessing the stack at this point.
167 ; Unlike O32, N32/N64 do not reserve space for the arguments.
168 ; increase by 4 for O32 and 8 for N32/N64.
169 ; O32-DAG: lw [[R3:\$[0-9]+]], 48($sp)
170 ; O32-DAG: sb [[R3]], 7([[R1]])
171 ; NEW-DAG: ld [[R3:\$[0-9]+]], 0($sp)
172 ; NEW-DAG: sb [[R3]], 7([[R1]])