1 //===---------- llvm/unittest/Support/Casting.cpp - Casting tests ---------===//
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
7 //===----------------------------------------------------------------------===//
9 #include "llvm/Support/Casting.h"
10 #include "llvm/IR/User.h"
11 #include "llvm/Support/Debug.h"
12 #include "llvm/Support/raw_ostream.h"
13 #include "gtest/gtest.h"
17 // Used to test illegal cast. If a cast doesn't match any of the "real" ones,
18 // it will match this one.
20 template <typename T
> IllegalCast
*cast(...) { return nullptr; }
22 // set up two example classes
23 // with conversion facility
44 struct derived
: public base
{
45 static bool classof(const base
*B
) { return true; }
48 template <> struct isa_impl
<foo
, bar
> {
49 static inline bool doit(const bar
&Val
) {
50 dbgs() << "Classof: " << &Val
<< "\n";
55 // Note for the future - please don't do this. isa_impl is an internal template
56 // for the implementation of `isa` and should not be exposed this way.
57 // Completely unrelated types *should* result in compiler errors if you try to
59 template <typename T
> struct isa_impl
<foo
, T
> {
60 static inline bool doit(const T
&Val
) { return false; }
63 foo
*bar::baz() { return cast
<foo
>(this); }
65 foo
*bar::caz() { return cast_or_null
<foo
>(this); }
67 foo
*bar::daz() { return dyn_cast
<foo
>(this); }
69 foo
*bar::naz() { return dyn_cast_or_null
<foo
>(this); }
73 template <> struct simplify_type
<foo
> {
74 typedef int SimpleType
;
75 static SimpleType
getSimplifiedValue(foo
&Val
) { return 0; }
82 static bool classof(const T1
*x
) { return true; }
85 template <> struct CastInfo
<T2
, T1
> : public OptionalValueCast
<T2
, T1
> {};
88 T3(const T1
*x
) : hasValue(x
!= nullptr) {}
90 static bool classof(const T1
*x
) { return true; }
91 bool hasValue
= false;
94 // T3 is convertible from a pointer to T1.
95 template <> struct CastInfo
<T3
, T1
*> : public ValueFromPointerCast
<T3
, T1
> {};
98 T4() : hasValue(false) {}
99 T4(const T3
&x
) : hasValue(true) {}
101 static bool classof(const T3
*x
) { return true; }
102 bool hasValue
= false;
105 template <> struct ValueIsPresent
<T3
> {
106 using UnwrappedType
= T3
;
107 static inline bool isPresent(const T3
&t
) { return t
.hasValue
; }
108 static inline const T3
&unwrapValue(const T3
&t
) { return t
; }
111 template <> struct CastInfo
<T4
, T3
> {
112 using CastResultType
= T4
;
113 static inline CastResultType
doCast(const T3
&t
) { return T4(t
); }
114 static inline CastResultType
castFailed() { return CastResultType(); }
115 static inline CastResultType
doCastIfPossible(const T3
&f
) {
122 using namespace llvm
;
124 // Test the peculiar behavior of Use in simplify_type.
125 static_assert(std::is_same
<simplify_type
<Use
>::SimpleType
, Value
*>::value
,
126 "Use doesn't simplify correctly!");
127 static_assert(std::is_same
<simplify_type
<Use
*>::SimpleType
, Value
*>::value
,
128 "Use doesn't simplify correctly!");
130 // Test that a regular class behaves as expected.
131 static_assert(std::is_same
<simplify_type
<foo
>::SimpleType
, int>::value
,
132 "Unexpected simplify_type result!");
133 static_assert(std::is_same
<simplify_type
<foo
*>::SimpleType
, foo
*>::value
,
134 "Unexpected simplify_type result!");
138 const foo
*null_foo
= nullptr;
143 extern const bar
*B2
;
144 // test various configurations of const
146 const bar
*const B4
= B2
;
148 TEST(CastingTest
, isa
) {
149 EXPECT_TRUE(isa
<foo
>(B1
));
150 EXPECT_TRUE(isa
<foo
>(B2
));
151 EXPECT_TRUE(isa
<foo
>(B3
));
152 EXPECT_TRUE(isa
<foo
>(B4
));
155 TEST(CastingTest
, isa_and_nonnull
) {
156 EXPECT_TRUE(isa_and_nonnull
<foo
>(B2
));
157 EXPECT_TRUE(isa_and_nonnull
<foo
>(B4
));
158 EXPECT_FALSE(isa_and_nonnull
<foo
>(fub()));
161 TEST(CastingTest
, cast
) {
162 foo
&F1
= cast
<foo
>(B1
);
163 EXPECT_NE(&F1
, null_foo
);
164 const foo
*F3
= cast
<foo
>(B2
);
165 EXPECT_NE(F3
, null_foo
);
166 const foo
*F4
= cast
<foo
>(B2
);
167 EXPECT_NE(F4
, null_foo
);
168 const foo
&F5
= cast
<foo
>(B3
);
169 EXPECT_NE(&F5
, null_foo
);
170 const foo
*F6
= cast
<foo
>(B4
);
171 EXPECT_NE(F6
, null_foo
);
172 // Can't pass null pointer to cast<>.
173 // foo *F7 = cast<foo>(fub());
174 // EXPECT_EQ(F7, null_foo);
176 EXPECT_NE(F8
, null_foo
);
178 std::unique_ptr
<const bar
> BP(B2
);
179 auto FP
= cast
<foo
>(std::move(BP
));
180 static_assert(std::is_same
<std::unique_ptr
<const foo
>, decltype(FP
)>::value
,
181 "Incorrect deduced return type!");
182 EXPECT_NE(FP
.get(), null_foo
);
186 TEST(CastingTest
, cast_or_null
) {
187 const foo
*F11
= cast_or_null
<foo
>(B2
);
188 EXPECT_NE(F11
, null_foo
);
189 const foo
*F12
= cast_or_null
<foo
>(B2
);
190 EXPECT_NE(F12
, null_foo
);
191 const foo
*F13
= cast_or_null
<foo
>(B4
);
192 EXPECT_NE(F13
, null_foo
);
193 const foo
*F14
= cast_or_null
<foo
>(fub()); // Shouldn't print.
194 EXPECT_EQ(F14
, null_foo
);
196 EXPECT_NE(F15
, null_foo
);
198 std::unique_ptr
<const bar
> BP(fub());
199 auto FP
= cast_or_null
<foo
>(std::move(BP
));
200 EXPECT_EQ(FP
.get(), null_foo
);
203 TEST(CastingTest
, dyn_cast
) {
204 const foo
*F1
= dyn_cast
<foo
>(B2
);
205 EXPECT_NE(F1
, null_foo
);
206 const foo
*F2
= dyn_cast
<foo
>(B2
);
207 EXPECT_NE(F2
, null_foo
);
208 const foo
*F3
= dyn_cast
<foo
>(B4
);
209 EXPECT_NE(F3
, null_foo
);
210 // Can't pass null pointer to dyn_cast<>.
211 // foo *F4 = dyn_cast<foo>(fub());
212 // EXPECT_EQ(F4, null_foo);
214 EXPECT_NE(F5
, null_foo
);
217 // All these tests forward to dyn_cast_if_present, so they also provde an
218 // effective test for its use cases.
219 TEST(CastingTest
, dyn_cast_or_null
) {
220 const foo
*F1
= dyn_cast_or_null
<foo
>(B2
);
221 EXPECT_NE(F1
, null_foo
);
222 const foo
*F2
= dyn_cast_or_null
<foo
>(B2
);
223 EXPECT_NE(F2
, null_foo
);
224 const foo
*F3
= dyn_cast_or_null
<foo
>(B4
);
225 EXPECT_NE(F3
, null_foo
);
226 foo
*F4
= dyn_cast_or_null
<foo
>(fub());
227 EXPECT_EQ(F4
, null_foo
);
229 EXPECT_NE(F5
, null_foo
);
230 // dyn_cast_if_present should have exactly the same behavior as
232 const foo
*F6
= dyn_cast_if_present
<foo
>(B2
);
236 TEST(CastingTest
, dyn_cast_value_types
) {
238 Optional
<T2
> t2
= dyn_cast
<T2
>(t1
);
241 T2
*t2ptr
= dyn_cast
<T2
>(&t1
);
242 EXPECT_TRUE(t2ptr
!= nullptr);
244 T3 t3
= dyn_cast
<T3
>(&t1
);
245 EXPECT_TRUE(t3
.hasValue
);
248 TEST(CastingTest
, dyn_cast_if_present
) {
249 Optional
<T1
> empty
{};
250 Optional
<T2
> F1
= dyn_cast_if_present
<T2
>(empty
);
251 EXPECT_FALSE(F1
.has_value());
254 Optional
<T2
> F2
= dyn_cast_if_present
<T2
>(t1
);
255 EXPECT_TRUE(F2
.has_value());
257 T1
*t1Null
= nullptr;
259 // T3 should have hasValue == false because t1Null is nullptr.
260 T3 t3
= dyn_cast_if_present
<T3
>(t1Null
);
261 EXPECT_FALSE(t3
.hasValue
);
263 // Now because of that, T4 should receive the castFailed implementation of its
264 // FallibleCastTraits, which default-constructs a T4, which has no value.
265 T4 t4
= dyn_cast_if_present
<T4
>(t3
);
266 EXPECT_FALSE(t4
.hasValue
);
269 std::unique_ptr
<derived
> newd() { return std::make_unique
<derived
>(); }
270 std::unique_ptr
<base
> newb() { return std::make_unique
<derived
>(); }
272 TEST(CastingTest
, unique_dyn_cast
) {
273 derived
*OrigD
= nullptr;
274 auto D
= std::make_unique
<derived
>();
277 // Converting from D to itself is valid, it should return a new unique_ptr
278 // and the old one should become nullptr.
279 auto NewD
= unique_dyn_cast
<derived
>(D
);
280 ASSERT_EQ(OrigD
, NewD
.get());
281 ASSERT_EQ(nullptr, D
);
283 // Converting from D to B is valid, B should have a value and D should be
285 auto B
= unique_dyn_cast
<base
>(NewD
);
286 ASSERT_EQ(OrigD
, B
.get());
287 ASSERT_EQ(nullptr, NewD
);
289 // Converting from B to itself is valid, it should return a new unique_ptr
290 // and the old one should become nullptr.
291 auto NewB
= unique_dyn_cast
<base
>(B
);
292 ASSERT_EQ(OrigD
, NewB
.get());
293 ASSERT_EQ(nullptr, B
);
295 // Converting from B to D is valid, D should have a value and B should be
297 D
= unique_dyn_cast
<derived
>(NewB
);
298 ASSERT_EQ(OrigD
, D
.get());
299 ASSERT_EQ(nullptr, NewB
);
301 // This is a very contrived test, casting between completely unrelated types
302 // should generally fail to compile. See the classof shenanigans we have in
303 // the definition of `foo` above.
304 auto F
= unique_dyn_cast
<foo
>(D
);
305 ASSERT_EQ(nullptr, F
);
306 ASSERT_EQ(OrigD
, D
.get());
308 // All of the above should also hold for temporaries.
309 auto D2
= unique_dyn_cast
<derived
>(newd());
310 EXPECT_NE(nullptr, D2
);
312 auto B2
= unique_dyn_cast
<derived
>(newb());
313 EXPECT_NE(nullptr, B2
);
315 auto B3
= unique_dyn_cast
<base
>(newb());
316 EXPECT_NE(nullptr, B3
);
318 // This is a very contrived test, casting between completely unrelated types
319 // should generally fail to compile. See the classof shenanigans we have in
320 // the definition of `foo` above.
321 auto F2
= unique_dyn_cast
<foo
>(newb());
322 EXPECT_EQ(nullptr, F2
);
325 // These lines are errors...
326 // foo *F20 = cast<foo>(B2); // Yields const foo*
327 // foo &F21 = cast<foo>(B3); // Yields const foo&
328 // foo *F22 = cast<foo>(B4); // Yields const foo*
329 // foo &F23 = cast_or_null<foo>(B1);
330 // const foo &F24 = cast_or_null<foo>(B3);
333 } // anonymous namespace
335 bar
*llvm::fub() { return nullptr; }
338 namespace inferred_upcasting
{
339 // This test case verifies correct behavior of inferred upcasts when the
340 // types are statically known to be OK to upcast. This is the case when,
341 // for example, Derived inherits from Base, and we do `isa<Base>(Derived)`.
343 // Note: This test will actually fail to compile without inferred
348 // No classof. We are testing that the upcast is inferred.
352 class Derived
: public Base
{
357 // Even with no explicit classof() in Base, we should still be able to cast
358 // Derived to its base class.
359 TEST(CastingTest
, UpcastIsInferred
) {
361 EXPECT_TRUE(isa
<Base
>(D
));
362 Base
*BP
= dyn_cast
<Base
>(&D
);
363 EXPECT_NE(BP
, nullptr);
366 // This test verifies that the inferred upcast takes precedence over an
367 // explicitly written one. This is important because it verifies that the
368 // dynamic check gets optimized away.
369 class UseInferredUpcast
{
372 static bool classof(const UseInferredUpcast
*) { return false; }
375 TEST(CastingTest
, InferredUpcastTakesPrecedence
) {
376 UseInferredUpcast UIU
;
377 // Since the explicit classof() returns false, this will fail if the
378 // explicit one is used.
379 EXPECT_TRUE(isa
<UseInferredUpcast
>(&UIU
));
382 } // end namespace inferred_upcasting
383 } // end anonymous namespace
386 namespace pointer_wrappers
{
390 Base(bool IsDerived
= false) : IsDerived(IsDerived
) {}
393 struct Derived
: Base
{
394 Derived() : Base(true) {}
395 static bool classof(const Base
*B
) { return B
->IsDerived
; }
402 PTy(Base
*B
) : B(B
) {}
403 explicit operator bool() const { return get(); }
404 Base
*get() const { return B
; }
407 } // end namespace pointer_wrappers
412 template <> struct ValueIsPresent
<pointer_wrappers::PTy
> {
413 using UnwrappedType
= pointer_wrappers::PTy
;
414 static inline bool isPresent(const pointer_wrappers::PTy
&P
) {
415 return P
.get() != nullptr;
417 static UnwrappedType
&unwrapValue(pointer_wrappers::PTy
&P
) { return P
; }
420 template <> struct ValueIsPresent
<const pointer_wrappers::PTy
> {
421 using UnwrappedType
= pointer_wrappers::PTy
;
422 static inline bool isPresent(const pointer_wrappers::PTy
&P
) {
423 return P
.get() != nullptr;
426 static UnwrappedType
&unwrapValue(const pointer_wrappers::PTy
&P
) {
427 return const_cast<UnwrappedType
&>(P
);
431 template <> struct simplify_type
<pointer_wrappers::PTy
> {
432 typedef pointer_wrappers::Base
*SimpleType
;
433 static SimpleType
getSimplifiedValue(pointer_wrappers::PTy
&P
) {
437 template <> struct simplify_type
<const pointer_wrappers::PTy
> {
438 typedef pointer_wrappers::Base
*SimpleType
;
439 static SimpleType
getSimplifiedValue(const pointer_wrappers::PTy
&P
) {
444 } // end namespace llvm
447 namespace pointer_wrappers
{
450 pointer_wrappers::Base B
;
451 pointer_wrappers::Derived D
;
453 // Mutable "smart" pointers.
454 pointer_wrappers::PTy
MN(nullptr);
455 pointer_wrappers::PTy
MB(&B
);
456 pointer_wrappers::PTy
MD(&D
);
458 // Const "smart" pointers.
459 const pointer_wrappers::PTy
CN(nullptr);
460 const pointer_wrappers::PTy
CB(&B
);
461 const pointer_wrappers::PTy
CD(&D
);
463 TEST(CastingTest
, smart_isa
) {
464 EXPECT_TRUE(!isa
<pointer_wrappers::Derived
>(MB
));
465 EXPECT_TRUE(!isa
<pointer_wrappers::Derived
>(CB
));
466 EXPECT_TRUE(isa
<pointer_wrappers::Derived
>(MD
));
467 EXPECT_TRUE(isa
<pointer_wrappers::Derived
>(CD
));
470 TEST(CastingTest
, smart_cast
) {
471 EXPECT_EQ(cast
<pointer_wrappers::Derived
>(MD
), &D
);
472 EXPECT_EQ(cast
<pointer_wrappers::Derived
>(CD
), &D
);
475 TEST(CastingTest
, smart_cast_or_null
) {
476 EXPECT_EQ(cast_or_null
<pointer_wrappers::Derived
>(MN
), nullptr);
477 EXPECT_EQ(cast_or_null
<pointer_wrappers::Derived
>(CN
), nullptr);
478 EXPECT_EQ(cast_or_null
<pointer_wrappers::Derived
>(MD
), &D
);
479 EXPECT_EQ(cast_or_null
<pointer_wrappers::Derived
>(CD
), &D
);
482 TEST(CastingTest
, smart_dyn_cast
) {
483 EXPECT_EQ(dyn_cast
<pointer_wrappers::Derived
>(MB
), nullptr);
484 EXPECT_EQ(dyn_cast
<pointer_wrappers::Derived
>(CB
), nullptr);
485 EXPECT_EQ(dyn_cast
<pointer_wrappers::Derived
>(MD
), &D
);
486 EXPECT_EQ(dyn_cast
<pointer_wrappers::Derived
>(CD
), &D
);
489 TEST(CastingTest
, smart_dyn_cast_or_null
) {
490 EXPECT_EQ(dyn_cast_or_null
<pointer_wrappers::Derived
>(MN
), nullptr);
491 EXPECT_EQ(dyn_cast_or_null
<pointer_wrappers::Derived
>(CN
), nullptr);
492 EXPECT_EQ(dyn_cast_or_null
<pointer_wrappers::Derived
>(MB
), nullptr);
493 EXPECT_EQ(dyn_cast_or_null
<pointer_wrappers::Derived
>(CB
), nullptr);
494 EXPECT_EQ(dyn_cast_or_null
<pointer_wrappers::Derived
>(MD
), &D
);
495 EXPECT_EQ(dyn_cast_or_null
<pointer_wrappers::Derived
>(CD
), &D
);
498 } // end namespace pointer_wrappers
501 namespace assertion_checks
{
506 struct Derived
: public Base
{
507 static bool classof(const Base
*B
) { return false; }
510 TEST(CastingTest
, assertion_check_const_ref
) {
512 EXPECT_DEATH((void)cast
<Derived
>(B
), "argument of incompatible type")
513 << "Invalid cast of const ref did not cause an abort()";
516 TEST(CastingTest
, assertion_check_ref
) {
518 EXPECT_DEATH((void)cast
<Derived
>(B
), "argument of incompatible type")
519 << "Invalid cast of const ref did not cause an abort()";
522 TEST(CastingTest
, assertion_check_ptr
) {
524 EXPECT_DEATH((void)cast
<Derived
>(&B
), "argument of incompatible type")
525 << "Invalid cast of const ref did not cause an abort()";
528 TEST(CastingTest
, assertion_check_unique_ptr
) {
529 auto B
= std::make_unique
<Base
>();
530 EXPECT_DEATH((void)cast
<Derived
>(std::move(B
)),
531 "argument of incompatible type")
532 << "Invalid cast of const ref did not cause an abort()";
535 } // end namespace assertion_checks