[PowerPC] Collect some CallLowering arguments into a struct. [NFC]
[llvm-project.git] / compiler-rt / lib / xray / xray_basic_logging.cpp
blob6e8e931314515c9e077bd382b1655fcf4704ec14
1 //===-- xray_basic_logging.cpp ----------------------------------*- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file is a part of XRay, a dynamic runtime instrumentation system.
11 // Implementation of a simple in-memory log of XRay events. This defines a
12 // logging function that's compatible with the XRay handler interface, and
13 // routines for exporting data to files.
15 //===----------------------------------------------------------------------===//
17 #include <errno.h>
18 #include <fcntl.h>
19 #include <pthread.h>
20 #include <sys/stat.h>
21 #if SANITIZER_FREEBSD || SANITIZER_NETBSD || SANITIZER_OPENBSD || SANITIZER_MAC
22 #include <sys/syscall.h>
23 #endif
24 #include <sys/types.h>
25 #include <time.h>
26 #include <unistd.h>
28 #include "sanitizer_common/sanitizer_allocator_internal.h"
29 #include "sanitizer_common/sanitizer_libc.h"
30 #include "xray/xray_records.h"
31 #include "xray_recursion_guard.h"
32 #include "xray_basic_flags.h"
33 #include "xray_basic_logging.h"
34 #include "xray_defs.h"
35 #include "xray_flags.h"
36 #include "xray_interface_internal.h"
37 #include "xray_tsc.h"
38 #include "xray_utils.h"
40 namespace __xray {
42 static SpinMutex LogMutex;
44 namespace {
45 // We use elements of this type to record the entry TSC of every function ID we
46 // see as we're tracing a particular thread's execution.
47 struct alignas(16) StackEntry {
48 int32_t FuncId;
49 uint16_t Type;
50 uint8_t CPU;
51 uint8_t Padding;
52 uint64_t TSC;
55 static_assert(sizeof(StackEntry) == 16, "Wrong size for StackEntry");
57 struct XRAY_TLS_ALIGNAS(64) ThreadLocalData {
58 void *InMemoryBuffer = nullptr;
59 size_t BufferSize = 0;
60 size_t BufferOffset = 0;
61 void *ShadowStack = nullptr;
62 size_t StackSize = 0;
63 size_t StackEntries = 0;
64 __xray::LogWriter *LogWriter = nullptr;
67 struct BasicLoggingOptions {
68 int DurationFilterMicros = 0;
69 size_t MaxStackDepth = 0;
70 size_t ThreadBufferSize = 0;
72 } // namespace
74 static pthread_key_t PThreadKey;
76 static atomic_uint8_t BasicInitialized{0};
78 struct BasicLoggingOptions GlobalOptions;
80 thread_local atomic_uint8_t Guard{0};
82 static atomic_uint8_t UseRealTSC{0};
83 static atomic_uint64_t ThresholdTicks{0};
84 static atomic_uint64_t TicksPerSec{0};
85 static atomic_uint64_t CycleFrequency{NanosecondsPerSecond};
87 static LogWriter *getLog() XRAY_NEVER_INSTRUMENT {
88 LogWriter* LW = LogWriter::Open();
89 if (LW == nullptr)
90 return LW;
92 static pthread_once_t DetectOnce = PTHREAD_ONCE_INIT;
93 pthread_once(&DetectOnce, +[] {
94 if (atomic_load(&UseRealTSC, memory_order_acquire))
95 atomic_store(&CycleFrequency, getTSCFrequency(), memory_order_release);
96 });
98 // Since we're here, we get to write the header. We set it up so that the
99 // header will only be written once, at the start, and let the threads
100 // logging do writes which just append.
101 XRayFileHeader Header;
102 // Version 2 includes tail exit records.
103 // Version 3 includes pid inside records.
104 Header.Version = 3;
105 Header.Type = FileTypes::NAIVE_LOG;
106 Header.CycleFrequency = atomic_load(&CycleFrequency, memory_order_acquire);
108 // FIXME: Actually check whether we have 'constant_tsc' and 'nonstop_tsc'
109 // before setting the values in the header.
110 Header.ConstantTSC = 1;
111 Header.NonstopTSC = 1;
112 LW->WriteAll(reinterpret_cast<char *>(&Header),
113 reinterpret_cast<char *>(&Header) + sizeof(Header));
114 return LW;
117 static LogWriter *getGlobalLog() XRAY_NEVER_INSTRUMENT {
118 static pthread_once_t OnceInit = PTHREAD_ONCE_INIT;
119 static LogWriter *LW = nullptr;
120 pthread_once(&OnceInit, +[] { LW = getLog(); });
121 return LW;
124 static ThreadLocalData &getThreadLocalData() XRAY_NEVER_INSTRUMENT {
125 thread_local ThreadLocalData TLD;
126 thread_local bool UNUSED TOnce = [] {
127 if (GlobalOptions.ThreadBufferSize == 0) {
128 if (Verbosity())
129 Report("Not initializing TLD since ThreadBufferSize == 0.\n");
130 return false;
132 pthread_setspecific(PThreadKey, &TLD);
133 TLD.LogWriter = getGlobalLog();
134 TLD.InMemoryBuffer = reinterpret_cast<XRayRecord *>(
135 InternalAlloc(sizeof(XRayRecord) * GlobalOptions.ThreadBufferSize,
136 nullptr, alignof(XRayRecord)));
137 TLD.BufferSize = GlobalOptions.ThreadBufferSize;
138 TLD.BufferOffset = 0;
139 if (GlobalOptions.MaxStackDepth == 0) {
140 if (Verbosity())
141 Report("Not initializing the ShadowStack since MaxStackDepth == 0.\n");
142 TLD.StackSize = 0;
143 TLD.StackEntries = 0;
144 TLD.ShadowStack = nullptr;
145 return false;
147 TLD.ShadowStack = reinterpret_cast<StackEntry *>(
148 InternalAlloc(sizeof(StackEntry) * GlobalOptions.MaxStackDepth, nullptr,
149 alignof(StackEntry)));
150 TLD.StackSize = GlobalOptions.MaxStackDepth;
151 TLD.StackEntries = 0;
152 return false;
153 }();
154 return TLD;
157 template <class RDTSC>
158 void InMemoryRawLog(int32_t FuncId, XRayEntryType Type,
159 RDTSC ReadTSC) XRAY_NEVER_INSTRUMENT {
160 auto &TLD = getThreadLocalData();
161 LogWriter *LW = getGlobalLog();
162 if (LW == nullptr)
163 return;
165 // Use a simple recursion guard, to handle cases where we're already logging
166 // and for one reason or another, this function gets called again in the same
167 // thread.
168 RecursionGuard G(Guard);
169 if (!G)
170 return;
172 uint8_t CPU = 0;
173 uint64_t TSC = ReadTSC(CPU);
175 switch (Type) {
176 case XRayEntryType::ENTRY:
177 case XRayEntryType::LOG_ARGS_ENTRY: {
178 // Short circuit if we've reached the maximum depth of the stack.
179 if (TLD.StackEntries++ >= TLD.StackSize)
180 return;
182 // When we encounter an entry event, we keep track of the TSC and the CPU,
183 // and put it in the stack.
184 StackEntry E;
185 E.FuncId = FuncId;
186 E.CPU = CPU;
187 E.Type = Type;
188 E.TSC = TSC;
189 auto StackEntryPtr = static_cast<char *>(TLD.ShadowStack) +
190 (sizeof(StackEntry) * (TLD.StackEntries - 1));
191 internal_memcpy(StackEntryPtr, &E, sizeof(StackEntry));
192 break;
194 case XRayEntryType::EXIT:
195 case XRayEntryType::TAIL: {
196 if (TLD.StackEntries == 0)
197 break;
199 if (--TLD.StackEntries >= TLD.StackSize)
200 return;
202 // When we encounter an exit event, we check whether all the following are
203 // true:
205 // - The Function ID is the same as the most recent entry in the stack.
206 // - The CPU is the same as the most recent entry in the stack.
207 // - The Delta of the TSCs is less than the threshold amount of time we're
208 // looking to record.
210 // If all of these conditions are true, we pop the stack and don't write a
211 // record and move the record offset back.
212 StackEntry StackTop;
213 auto StackEntryPtr = static_cast<char *>(TLD.ShadowStack) +
214 (sizeof(StackEntry) * TLD.StackEntries);
215 internal_memcpy(&StackTop, StackEntryPtr, sizeof(StackEntry));
216 if (StackTop.FuncId == FuncId && StackTop.CPU == CPU &&
217 StackTop.TSC < TSC) {
218 auto Delta = TSC - StackTop.TSC;
219 if (Delta < atomic_load(&ThresholdTicks, memory_order_relaxed)) {
220 DCHECK(TLD.BufferOffset > 0);
221 TLD.BufferOffset -= StackTop.Type == XRayEntryType::ENTRY ? 1 : 2;
222 return;
225 break;
227 default:
228 // Should be unreachable.
229 DCHECK(false && "Unsupported XRayEntryType encountered.");
230 break;
233 // First determine whether the delta between the function's enter record and
234 // the exit record is higher than the threshold.
235 XRayRecord R;
236 R.RecordType = RecordTypes::NORMAL;
237 R.CPU = CPU;
238 R.TSC = TSC;
239 R.TId = GetTid();
240 R.PId = internal_getpid();
241 R.Type = Type;
242 R.FuncId = FuncId;
243 auto FirstEntry = reinterpret_cast<XRayRecord *>(TLD.InMemoryBuffer);
244 internal_memcpy(FirstEntry + TLD.BufferOffset, &R, sizeof(R));
245 if (++TLD.BufferOffset == TLD.BufferSize) {
246 SpinMutexLock Lock(&LogMutex);
247 LW->WriteAll(reinterpret_cast<char *>(FirstEntry),
248 reinterpret_cast<char *>(FirstEntry + TLD.BufferOffset));
249 TLD.BufferOffset = 0;
250 TLD.StackEntries = 0;
254 template <class RDTSC>
255 void InMemoryRawLogWithArg(int32_t FuncId, XRayEntryType Type, uint64_t Arg1,
256 RDTSC ReadTSC) XRAY_NEVER_INSTRUMENT {
257 auto &TLD = getThreadLocalData();
258 auto FirstEntry =
259 reinterpret_cast<XRayArgPayload *>(TLD.InMemoryBuffer);
260 const auto &BuffLen = TLD.BufferSize;
261 LogWriter *LW = getGlobalLog();
262 if (LW == nullptr)
263 return;
265 // First we check whether there's enough space to write the data consecutively
266 // in the thread-local buffer. If not, we first flush the buffer before
267 // attempting to write the two records that must be consecutive.
268 if (TLD.BufferOffset + 2 > BuffLen) {
269 SpinMutexLock Lock(&LogMutex);
270 LW->WriteAll(reinterpret_cast<char *>(FirstEntry),
271 reinterpret_cast<char *>(FirstEntry + TLD.BufferOffset));
272 TLD.BufferOffset = 0;
273 TLD.StackEntries = 0;
276 // Then we write the "we have an argument" record.
277 InMemoryRawLog(FuncId, Type, ReadTSC);
279 RecursionGuard G(Guard);
280 if (!G)
281 return;
283 // And, from here on write the arg payload.
284 XRayArgPayload R;
285 R.RecordType = RecordTypes::ARG_PAYLOAD;
286 R.FuncId = FuncId;
287 R.TId = GetTid();
288 R.PId = internal_getpid();
289 R.Arg = Arg1;
290 internal_memcpy(FirstEntry + TLD.BufferOffset, &R, sizeof(R));
291 if (++TLD.BufferOffset == BuffLen) {
292 SpinMutexLock Lock(&LogMutex);
293 LW->WriteAll(reinterpret_cast<char *>(FirstEntry),
294 reinterpret_cast<char *>(FirstEntry + TLD.BufferOffset));
295 TLD.BufferOffset = 0;
296 TLD.StackEntries = 0;
300 void basicLoggingHandleArg0RealTSC(int32_t FuncId,
301 XRayEntryType Type) XRAY_NEVER_INSTRUMENT {
302 InMemoryRawLog(FuncId, Type, readTSC);
305 void basicLoggingHandleArg0EmulateTSC(int32_t FuncId, XRayEntryType Type)
306 XRAY_NEVER_INSTRUMENT {
307 InMemoryRawLog(FuncId, Type, [](uint8_t &CPU) XRAY_NEVER_INSTRUMENT {
308 timespec TS;
309 int result = clock_gettime(CLOCK_REALTIME, &TS);
310 if (result != 0) {
311 Report("clock_gettimg(2) return %d, errno=%d.", result, int(errno));
312 TS = {0, 0};
314 CPU = 0;
315 return TS.tv_sec * NanosecondsPerSecond + TS.tv_nsec;
319 void basicLoggingHandleArg1RealTSC(int32_t FuncId, XRayEntryType Type,
320 uint64_t Arg1) XRAY_NEVER_INSTRUMENT {
321 InMemoryRawLogWithArg(FuncId, Type, Arg1, readTSC);
324 void basicLoggingHandleArg1EmulateTSC(int32_t FuncId, XRayEntryType Type,
325 uint64_t Arg1) XRAY_NEVER_INSTRUMENT {
326 InMemoryRawLogWithArg(
327 FuncId, Type, Arg1, [](uint8_t &CPU) XRAY_NEVER_INSTRUMENT {
328 timespec TS;
329 int result = clock_gettime(CLOCK_REALTIME, &TS);
330 if (result != 0) {
331 Report("clock_gettimg(2) return %d, errno=%d.", result, int(errno));
332 TS = {0, 0};
334 CPU = 0;
335 return TS.tv_sec * NanosecondsPerSecond + TS.tv_nsec;
339 static void TLDDestructor(void *P) XRAY_NEVER_INSTRUMENT {
340 ThreadLocalData &TLD = *reinterpret_cast<ThreadLocalData *>(P);
341 auto ExitGuard = at_scope_exit([&TLD] {
342 // Clean up dynamic resources.
343 if (TLD.InMemoryBuffer)
344 InternalFree(TLD.InMemoryBuffer);
345 if (TLD.ShadowStack)
346 InternalFree(TLD.ShadowStack);
347 if (Verbosity())
348 Report("Cleaned up log for TID: %d\n", GetTid());
351 if (TLD.LogWriter == nullptr || TLD.BufferOffset == 0) {
352 if (Verbosity())
353 Report("Skipping buffer for TID: %d; Offset = %llu\n", GetTid(),
354 TLD.BufferOffset);
355 return;
359 SpinMutexLock L(&LogMutex);
360 TLD.LogWriter->WriteAll(reinterpret_cast<char *>(TLD.InMemoryBuffer),
361 reinterpret_cast<char *>(TLD.InMemoryBuffer) +
362 (sizeof(XRayRecord) * TLD.BufferOffset));
365 // Because this thread's exit could be the last one trying to write to
366 // the file and that we're not able to close out the file properly, we
367 // sync instead and hope that the pending writes are flushed as the
368 // thread exits.
369 TLD.LogWriter->Flush();
372 XRayLogInitStatus basicLoggingInit(UNUSED size_t BufferSize,
373 UNUSED size_t BufferMax, void *Options,
374 size_t OptionsSize) XRAY_NEVER_INSTRUMENT {
375 uint8_t Expected = 0;
376 if (!atomic_compare_exchange_strong(&BasicInitialized, &Expected, 1,
377 memory_order_acq_rel)) {
378 if (Verbosity())
379 Report("Basic logging already initialized.\n");
380 return XRayLogInitStatus::XRAY_LOG_INITIALIZED;
383 static pthread_once_t OnceInit = PTHREAD_ONCE_INIT;
384 pthread_once(&OnceInit, +[] {
385 pthread_key_create(&PThreadKey, TLDDestructor);
386 atomic_store(&UseRealTSC, probeRequiredCPUFeatures(), memory_order_release);
387 // Initialize the global TicksPerSec value.
388 atomic_store(&TicksPerSec,
389 probeRequiredCPUFeatures() ? getTSCFrequency()
390 : NanosecondsPerSecond,
391 memory_order_release);
392 if (!atomic_load(&UseRealTSC, memory_order_relaxed) && Verbosity())
393 Report("WARNING: Required CPU features missing for XRay instrumentation, "
394 "using emulation instead.\n");
397 FlagParser P;
398 BasicFlags F;
399 F.setDefaults();
400 registerXRayBasicFlags(&P, &F);
401 P.ParseString(useCompilerDefinedBasicFlags());
402 auto *EnvOpts = GetEnv("XRAY_BASIC_OPTIONS");
403 if (EnvOpts == nullptr)
404 EnvOpts = "";
406 P.ParseString(EnvOpts);
408 // If XRAY_BASIC_OPTIONS was not defined, then we use the deprecated options
409 // set through XRAY_OPTIONS instead.
410 if (internal_strlen(EnvOpts) == 0) {
411 F.func_duration_threshold_us =
412 flags()->xray_naive_log_func_duration_threshold_us;
413 F.max_stack_depth = flags()->xray_naive_log_max_stack_depth;
414 F.thread_buffer_size = flags()->xray_naive_log_thread_buffer_size;
417 P.ParseString(static_cast<const char *>(Options));
418 GlobalOptions.ThreadBufferSize = F.thread_buffer_size;
419 GlobalOptions.DurationFilterMicros = F.func_duration_threshold_us;
420 GlobalOptions.MaxStackDepth = F.max_stack_depth;
421 *basicFlags() = F;
423 atomic_store(&ThresholdTicks,
424 atomic_load(&TicksPerSec, memory_order_acquire) *
425 GlobalOptions.DurationFilterMicros / 1000000,
426 memory_order_release);
427 __xray_set_handler_arg1(atomic_load(&UseRealTSC, memory_order_acquire)
428 ? basicLoggingHandleArg1RealTSC
429 : basicLoggingHandleArg1EmulateTSC);
430 __xray_set_handler(atomic_load(&UseRealTSC, memory_order_acquire)
431 ? basicLoggingHandleArg0RealTSC
432 : basicLoggingHandleArg0EmulateTSC);
434 // TODO: Implement custom event and typed event handling support in Basic
435 // Mode.
436 __xray_remove_customevent_handler();
437 __xray_remove_typedevent_handler();
439 return XRayLogInitStatus::XRAY_LOG_INITIALIZED;
442 XRayLogInitStatus basicLoggingFinalize() XRAY_NEVER_INSTRUMENT {
443 uint8_t Expected = 0;
444 if (!atomic_compare_exchange_strong(&BasicInitialized, &Expected, 0,
445 memory_order_acq_rel) &&
446 Verbosity())
447 Report("Basic logging already finalized.\n");
449 // Nothing really to do aside from marking state of the global to be
450 // uninitialized.
452 return XRayLogInitStatus::XRAY_LOG_FINALIZED;
455 XRayLogFlushStatus basicLoggingFlush() XRAY_NEVER_INSTRUMENT {
456 // This really does nothing, since flushing the logs happen at the end of a
457 // thread's lifetime, or when the buffers are full.
458 return XRayLogFlushStatus::XRAY_LOG_FLUSHED;
461 // This is a handler that, effectively, does nothing.
462 void basicLoggingHandleArg0Empty(int32_t, XRayEntryType) XRAY_NEVER_INSTRUMENT {
465 bool basicLogDynamicInitializer() XRAY_NEVER_INSTRUMENT {
466 XRayLogImpl Impl{
467 basicLoggingInit,
468 basicLoggingFinalize,
469 basicLoggingHandleArg0Empty,
470 basicLoggingFlush,
472 auto RegistrationResult = __xray_log_register_mode("xray-basic", Impl);
473 if (RegistrationResult != XRayLogRegisterStatus::XRAY_REGISTRATION_OK &&
474 Verbosity())
475 Report("Cannot register XRay Basic Mode to 'xray-basic'; error = %d\n",
476 RegistrationResult);
477 if (flags()->xray_naive_log ||
478 !internal_strcmp(flags()->xray_mode, "xray-basic")) {
479 auto SelectResult = __xray_log_select_mode("xray-basic");
480 if (SelectResult != XRayLogRegisterStatus::XRAY_REGISTRATION_OK) {
481 if (Verbosity())
482 Report("Failed selecting XRay Basic Mode; error = %d\n", SelectResult);
483 return false;
486 // We initialize the implementation using the data we get from the
487 // XRAY_BASIC_OPTIONS environment variable, at this point of the
488 // implementation.
489 auto *Env = GetEnv("XRAY_BASIC_OPTIONS");
490 auto InitResult =
491 __xray_log_init_mode("xray-basic", Env == nullptr ? "" : Env);
492 if (InitResult != XRayLogInitStatus::XRAY_LOG_INITIALIZED) {
493 if (Verbosity())
494 Report("Failed initializing XRay Basic Mode; error = %d\n", InitResult);
495 return false;
498 // At this point we know that we've successfully initialized Basic mode
499 // tracing, and the only chance we're going to get for the current thread to
500 // clean-up may be at thread/program exit. To ensure that we're going to get
501 // the cleanup even without calling the finalization routines, we're
502 // registering a program exit function that will do the cleanup.
503 static pthread_once_t DynamicOnce = PTHREAD_ONCE_INIT;
504 pthread_once(&DynamicOnce, +[] {
505 static void *FakeTLD = nullptr;
506 FakeTLD = &getThreadLocalData();
507 Atexit(+[] { TLDDestructor(FakeTLD); });
510 return true;
513 } // namespace __xray
515 static auto UNUSED Unused = __xray::basicLogDynamicInitializer();