[PowerPC] Collect some CallLowering arguments into a struct. [NFC]
[llvm-project.git] / compiler-rt / test / builtins / Unit / divdc3_test.c
blob1f3cb225f3532be8abc44c5799a8016c59bc2912
1 // RUN: %clang_builtins %s %librt -o %t && %run %t
2 // REQUIRES: librt_has_divdc3
3 //===-- divdc3_test.c - Test __divdc3 -------------------------------------===//
4 //
5 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
6 // See https://llvm.org/LICENSE.txt for license information.
7 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
8 //
9 //===----------------------------------------------------------------------===//
11 // This file tests __divdc3 for the compiler_rt library.
13 //===----------------------------------------------------------------------===//
15 #include "int_lib.h"
16 #include <math.h>
17 #include <complex.h>
18 #include <stdio.h>
20 // REQUIRES: c99-complex
22 // Returns: the quotient of (a + ib) / (c + id)
24 COMPILER_RT_ABI double _Complex
25 __divdc3(double __a, double __b, double __c, double __d);
27 enum {zero, non_zero, inf, NaN, non_zero_nan};
29 int
30 classify(double _Complex x)
32 if (x == 0)
33 return zero;
34 if (isinf(creal(x)) || isinf(cimag(x)))
35 return inf;
36 if (isnan(creal(x)) && isnan(cimag(x)))
37 return NaN;
38 if (isnan(creal(x)))
40 if (cimag(x) == 0)
41 return NaN;
42 return non_zero_nan;
44 if (isnan(cimag(x)))
46 if (creal(x) == 0)
47 return NaN;
48 return non_zero_nan;
50 return non_zero;
53 int test__divdc3(double a, double b, double c, double d)
55 double _Complex r = __divdc3(a, b, c, d);
56 // printf("test__divdc3(%f, %f, %f, %f) = %f + I%f\n",
57 // a, b, c, d, creal(r), cimag(r));
58 double _Complex dividend;
59 double _Complex divisor;
61 __real__ dividend = a;
62 __imag__ dividend = b;
63 __real__ divisor = c;
64 __imag__ divisor = d;
66 switch (classify(dividend))
68 case zero:
69 switch (classify(divisor))
71 case zero:
72 if (classify(r) != NaN)
73 return 1;
74 break;
75 case non_zero:
76 if (classify(r) != zero)
77 return 1;
78 break;
79 case inf:
80 if (classify(r) != zero)
81 return 1;
82 break;
83 case NaN:
84 if (classify(r) != NaN)
85 return 1;
86 break;
87 case non_zero_nan:
88 if (classify(r) != NaN)
89 return 1;
90 break;
92 break;
93 case non_zero:
94 switch (classify(divisor))
96 case zero:
97 if (classify(r) != inf)
98 return 1;
99 break;
100 case non_zero:
101 if (classify(r) != non_zero)
102 return 1;
104 double _Complex z = (a * c + b * d) / (c * c + d * d)
105 + (b * c - a * d) / (c * c + d * d) * _Complex_I;
106 if (cabs((r-z)/r) > 1.e-6)
107 return 1;
109 break;
110 case inf:
111 if (classify(r) != zero)
112 return 1;
113 break;
114 case NaN:
115 if (classify(r) != NaN)
116 return 1;
117 break;
118 case non_zero_nan:
119 if (classify(r) != NaN)
120 return 1;
121 break;
123 break;
124 case inf:
125 switch (classify(divisor))
127 case zero:
128 if (classify(r) != inf)
129 return 1;
130 break;
131 case non_zero:
132 if (classify(r) != inf)
133 return 1;
134 break;
135 case inf:
136 if (classify(r) != NaN)
137 return 1;
138 break;
139 case NaN:
140 if (classify(r) != NaN)
141 return 1;
142 break;
143 case non_zero_nan:
144 if (classify(r) != NaN)
145 return 1;
146 break;
148 break;
149 case NaN:
150 switch (classify(divisor))
152 case zero:
153 if (classify(r) != NaN)
154 return 1;
155 break;
156 case non_zero:
157 if (classify(r) != NaN)
158 return 1;
159 break;
160 case inf:
161 if (classify(r) != NaN)
162 return 1;
163 break;
164 case NaN:
165 if (classify(r) != NaN)
166 return 1;
167 break;
168 case non_zero_nan:
169 if (classify(r) != NaN)
170 return 1;
171 break;
173 break;
174 case non_zero_nan:
175 switch (classify(divisor))
177 case zero:
178 if (classify(r) != inf)
179 return 1;
180 break;
181 case non_zero:
182 if (classify(r) != NaN)
183 return 1;
184 break;
185 case inf:
186 if (classify(r) != NaN)
187 return 1;
188 break;
189 case NaN:
190 if (classify(r) != NaN)
191 return 1;
192 break;
193 case non_zero_nan:
194 if (classify(r) != NaN)
195 return 1;
196 break;
198 break;
201 return 0;
204 double x[][2] =
206 { 1.e-6, 1.e-6},
207 {-1.e-6, 1.e-6},
208 {-1.e-6, -1.e-6},
209 { 1.e-6, -1.e-6},
211 { 1.e+6, 1.e-6},
212 {-1.e+6, 1.e-6},
213 {-1.e+6, -1.e-6},
214 { 1.e+6, -1.e-6},
216 { 1.e-6, 1.e+6},
217 {-1.e-6, 1.e+6},
218 {-1.e-6, -1.e+6},
219 { 1.e-6, -1.e+6},
221 { 1.e+6, 1.e+6},
222 {-1.e+6, 1.e+6},
223 {-1.e+6, -1.e+6},
224 { 1.e+6, -1.e+6},
226 {NAN, NAN},
227 {-INFINITY, NAN},
228 {-2, NAN},
229 {-1, NAN},
230 {-0.5, NAN},
231 {-0., NAN},
232 {+0., NAN},
233 {0.5, NAN},
234 {1, NAN},
235 {2, NAN},
236 {INFINITY, NAN},
238 {NAN, -INFINITY},
239 {-INFINITY, -INFINITY},
240 {-2, -INFINITY},
241 {-1, -INFINITY},
242 {-0.5, -INFINITY},
243 {-0., -INFINITY},
244 {+0., -INFINITY},
245 {0.5, -INFINITY},
246 {1, -INFINITY},
247 {2, -INFINITY},
248 {INFINITY, -INFINITY},
250 {NAN, -2},
251 {-INFINITY, -2},
252 {-2, -2},
253 {-1, -2},
254 {-0.5, -2},
255 {-0., -2},
256 {+0., -2},
257 {0.5, -2},
258 {1, -2},
259 {2, -2},
260 {INFINITY, -2},
262 {NAN, -1},
263 {-INFINITY, -1},
264 {-2, -1},
265 {-1, -1},
266 {-0.5, -1},
267 {-0., -1},
268 {+0., -1},
269 {0.5, -1},
270 {1, -1},
271 {2, -1},
272 {INFINITY, -1},
274 {NAN, -0.5},
275 {-INFINITY, -0.5},
276 {-2, -0.5},
277 {-1, -0.5},
278 {-0.5, -0.5},
279 {-0., -0.5},
280 {+0., -0.5},
281 {0.5, -0.5},
282 {1, -0.5},
283 {2, -0.5},
284 {INFINITY, -0.5},
286 {NAN, -0.},
287 {-INFINITY, -0.},
288 {-2, -0.},
289 {-1, -0.},
290 {-0.5, -0.},
291 {-0., -0.},
292 {+0., -0.},
293 {0.5, -0.},
294 {1, -0.},
295 {2, -0.},
296 {INFINITY, -0.},
298 {NAN, 0.},
299 {-INFINITY, 0.},
300 {-2, 0.},
301 {-1, 0.},
302 {-0.5, 0.},
303 {-0., 0.},
304 {+0., 0.},
305 {0.5, 0.},
306 {1, 0.},
307 {2, 0.},
308 {INFINITY, 0.},
310 {NAN, 0.5},
311 {-INFINITY, 0.5},
312 {-2, 0.5},
313 {-1, 0.5},
314 {-0.5, 0.5},
315 {-0., 0.5},
316 {+0., 0.5},
317 {0.5, 0.5},
318 {1, 0.5},
319 {2, 0.5},
320 {INFINITY, 0.5},
322 {NAN, 1},
323 {-INFINITY, 1},
324 {-2, 1},
325 {-1, 1},
326 {-0.5, 1},
327 {-0., 1},
328 {+0., 1},
329 {0.5, 1},
330 {1, 1},
331 {2, 1},
332 {INFINITY, 1},
334 {NAN, 2},
335 {-INFINITY, 2},
336 {-2, 2},
337 {-1, 2},
338 {-0.5, 2},
339 {-0., 2},
340 {+0., 2},
341 {0.5, 2},
342 {1, 2},
343 {2, 2},
344 {INFINITY, 2},
346 {NAN, INFINITY},
347 {-INFINITY, INFINITY},
348 {-2, INFINITY},
349 {-1, INFINITY},
350 {-0.5, INFINITY},
351 {-0., INFINITY},
352 {+0., INFINITY},
353 {0.5, INFINITY},
354 {1, INFINITY},
355 {2, INFINITY},
356 {INFINITY, INFINITY}
360 int main()
362 const unsigned N = sizeof(x) / sizeof(x[0]);
363 unsigned i, j;
364 for (i = 0; i < N; ++i)
366 for (j = 0; j < N; ++j)
368 if (test__divdc3(x[i][0], x[i][1], x[j][0], x[j][1]))
369 return 1;
373 return 0;