1 //===- AArch64FrameLowering.cpp - AArch64 Frame Lowering -------*- C++ -*-====//
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
7 //===----------------------------------------------------------------------===//
9 // This file contains the AArch64 implementation of TargetFrameLowering class.
11 // On AArch64, stack frames are structured as follows:
13 // The stack grows downward.
15 // All of the individual frame areas on the frame below are optional, i.e. it's
16 // possible to create a function so that the particular area isn't present
19 // At function entry, the "frame" looks as follows:
22 // |-----------------------------------|
24 // | arguments passed on the stack |
26 // |-----------------------------------| <- sp
30 // After the prologue has run, the frame has the following general structure.
31 // Note that this doesn't depict the case where a red-zone is used. Also,
32 // technically the last frame area (VLAs) doesn't get created until in the
33 // main function body, after the prologue is run. However, it's depicted here
37 // |-----------------------------------|
39 // | arguments passed on the stack |
41 // |-----------------------------------|
43 // | (Win64 only) varargs from reg |
45 // |-----------------------------------|
47 // | callee-saved gpr registers | <--.
48 // | | | On Darwin platforms these
49 // |- - - - - - - - - - - - - - - - - -| | callee saves are swapped,
50 // | | | (frame record first)
51 // | prev_fp, prev_lr | <--'
52 // | (a.k.a. "frame record") |
53 // |-----------------------------------| <- fp(=x29)
55 // | callee-saved fp/simd/SVE regs |
57 // |-----------------------------------|
59 // | SVE stack objects |
61 // |-----------------------------------|
62 // |.empty.space.to.make.part.below....|
63 // |.aligned.in.case.it.needs.more.than| (size of this area is unknown at
64 // |.the.standard.16-byte.alignment....| compile time; if present)
65 // |-----------------------------------|
67 // | local variables of fixed size |
68 // | including spill slots |
69 // |-----------------------------------| <- bp(not defined by ABI,
70 // |.variable-sized.local.variables....| LLVM chooses X19)
71 // |.(VLAs)............................| (size of this area is unknown at
72 // |...................................| compile time)
73 // |-----------------------------------| <- sp
77 // To access the data in a frame, at-compile time, a constant offset must be
78 // computable from one of the pointers (fp, bp, sp) to access it. The size
79 // of the areas with a dotted background cannot be computed at compile-time
80 // if they are present, making it required to have all three of fp, bp and
81 // sp to be set up to be able to access all contents in the frame areas,
82 // assuming all of the frame areas are non-empty.
84 // For most functions, some of the frame areas are empty. For those functions,
85 // it may not be necessary to set up fp or bp:
86 // * A base pointer is definitely needed when there are both VLAs and local
87 // variables with more-than-default alignment requirements.
88 // * A frame pointer is definitely needed when there are local variables with
89 // more-than-default alignment requirements.
91 // For Darwin platforms the frame-record (fp, lr) is stored at the top of the
92 // callee-saved area, since the unwind encoding does not allow for encoding
93 // this dynamically and existing tools depend on this layout. For other
94 // platforms, the frame-record is stored at the bottom of the (gpr) callee-saved
95 // area to allow SVE stack objects (allocated directly below the callee-saves,
96 // if available) to be accessed directly from the framepointer.
97 // The SVE spill/fill instructions have VL-scaled addressing modes such
99 // ldr z8, [fp, #-7 mul vl]
100 // For SVE the size of the vector length (VL) is not known at compile-time, so
101 // '#-7 mul vl' is an offset that can only be evaluated at runtime. With this
102 // layout, we don't need to add an unscaled offset to the framepointer before
103 // accessing the SVE object in the frame.
105 // In some cases when a base pointer is not strictly needed, it is generated
106 // anyway when offsets from the frame pointer to access local variables become
107 // so large that the offset can't be encoded in the immediate fields of loads
110 // FIXME: also explain the redzone concept.
111 // FIXME: also explain the concept of reserved call frames.
113 //===----------------------------------------------------------------------===//
115 #include "AArch64FrameLowering.h"
116 #include "AArch64InstrInfo.h"
117 #include "AArch64MachineFunctionInfo.h"
118 #include "AArch64RegisterInfo.h"
119 #include "AArch64StackOffset.h"
120 #include "AArch64Subtarget.h"
121 #include "AArch64TargetMachine.h"
122 #include "MCTargetDesc/AArch64AddressingModes.h"
123 #include "llvm/ADT/ScopeExit.h"
124 #include "llvm/ADT/SmallVector.h"
125 #include "llvm/ADT/Statistic.h"
126 #include "llvm/CodeGen/LivePhysRegs.h"
127 #include "llvm/CodeGen/MachineBasicBlock.h"
128 #include "llvm/CodeGen/MachineFrameInfo.h"
129 #include "llvm/CodeGen/MachineFunction.h"
130 #include "llvm/CodeGen/MachineInstr.h"
131 #include "llvm/CodeGen/MachineInstrBuilder.h"
132 #include "llvm/CodeGen/MachineMemOperand.h"
133 #include "llvm/CodeGen/MachineModuleInfo.h"
134 #include "llvm/CodeGen/MachineOperand.h"
135 #include "llvm/CodeGen/MachineRegisterInfo.h"
136 #include "llvm/CodeGen/RegisterScavenging.h"
137 #include "llvm/CodeGen/TargetInstrInfo.h"
138 #include "llvm/CodeGen/TargetRegisterInfo.h"
139 #include "llvm/CodeGen/TargetSubtargetInfo.h"
140 #include "llvm/CodeGen/WinEHFuncInfo.h"
141 #include "llvm/IR/Attributes.h"
142 #include "llvm/IR/CallingConv.h"
143 #include "llvm/IR/DataLayout.h"
144 #include "llvm/IR/DebugLoc.h"
145 #include "llvm/IR/Function.h"
146 #include "llvm/MC/MCAsmInfo.h"
147 #include "llvm/MC/MCDwarf.h"
148 #include "llvm/Support/CommandLine.h"
149 #include "llvm/Support/Debug.h"
150 #include "llvm/Support/ErrorHandling.h"
151 #include "llvm/Support/MathExtras.h"
152 #include "llvm/Support/raw_ostream.h"
153 #include "llvm/Target/TargetMachine.h"
154 #include "llvm/Target/TargetOptions.h"
160 using namespace llvm
;
162 #define DEBUG_TYPE "frame-info"
164 static cl::opt
<bool> EnableRedZone("aarch64-redzone",
165 cl::desc("enable use of redzone on AArch64"),
166 cl::init(false), cl::Hidden
);
169 ReverseCSRRestoreSeq("reverse-csr-restore-seq",
170 cl::desc("reverse the CSR restore sequence"),
171 cl::init(false), cl::Hidden
);
173 static cl::opt
<bool> StackTaggingMergeSetTag(
174 "stack-tagging-merge-settag",
175 cl::desc("merge settag instruction in function epilog"), cl::init(true),
178 STATISTIC(NumRedZoneFunctions
, "Number of functions using red zone");
180 /// This is the biggest offset to the stack pointer we can encode in aarch64
181 /// instructions (without using a separate calculation and a temp register).
182 /// Note that the exception here are vector stores/loads which cannot encode any
183 /// displacements (see estimateRSStackSizeLimit(), isAArch64FrameOffsetLegal()).
184 static const unsigned DefaultSafeSPDisplacement
= 255;
186 /// Look at each instruction that references stack frames and return the stack
187 /// size limit beyond which some of these instructions will require a scratch
188 /// register during their expansion later.
189 static unsigned estimateRSStackSizeLimit(MachineFunction
&MF
) {
190 // FIXME: For now, just conservatively guestimate based on unscaled indexing
191 // range. We'll end up allocating an unnecessary spill slot a lot, but
192 // realistically that's not a big deal at this stage of the game.
193 for (MachineBasicBlock
&MBB
: MF
) {
194 for (MachineInstr
&MI
: MBB
) {
195 if (MI
.isDebugInstr() || MI
.isPseudo() ||
196 MI
.getOpcode() == AArch64::ADDXri
||
197 MI
.getOpcode() == AArch64::ADDSXri
)
200 for (const MachineOperand
&MO
: MI
.operands()) {
205 if (isAArch64FrameOffsetLegal(MI
, Offset
, nullptr, nullptr, nullptr) ==
206 AArch64FrameOffsetCannotUpdate
)
211 return DefaultSafeSPDisplacement
;
215 AArch64FrameLowering::getStackIDForScalableVectors() const {
216 return TargetStackID::SVEVector
;
219 /// Returns the size of the entire SVE stackframe (calleesaves + spills).
220 static StackOffset
getSVEStackSize(const MachineFunction
&MF
) {
221 const AArch64FunctionInfo
*AFI
= MF
.getInfo
<AArch64FunctionInfo
>();
222 return {(int64_t)AFI
->getStackSizeSVE(), MVT::nxv1i8
};
225 bool AArch64FrameLowering::canUseRedZone(const MachineFunction
&MF
) const {
228 // Don't use the red zone if the function explicitly asks us not to.
229 // This is typically used for kernel code.
230 if (MF
.getFunction().hasFnAttribute(Attribute::NoRedZone
))
233 const MachineFrameInfo
&MFI
= MF
.getFrameInfo();
234 const AArch64FunctionInfo
*AFI
= MF
.getInfo
<AArch64FunctionInfo
>();
235 uint64_t NumBytes
= AFI
->getLocalStackSize();
237 return !(MFI
.hasCalls() || hasFP(MF
) || NumBytes
> 128 ||
238 getSVEStackSize(MF
));
241 /// hasFP - Return true if the specified function should have a dedicated frame
242 /// pointer register.
243 bool AArch64FrameLowering::hasFP(const MachineFunction
&MF
) const {
244 const MachineFrameInfo
&MFI
= MF
.getFrameInfo();
245 const TargetRegisterInfo
*RegInfo
= MF
.getSubtarget().getRegisterInfo();
246 // Win64 EH requires a frame pointer if funclets are present, as the locals
247 // are accessed off the frame pointer in both the parent function and the
249 if (MF
.hasEHFunclets())
251 // Retain behavior of always omitting the FP for leaf functions when possible.
252 if (MF
.getTarget().Options
.DisableFramePointerElim(MF
))
254 if (MFI
.hasVarSizedObjects() || MFI
.isFrameAddressTaken() ||
255 MFI
.hasStackMap() || MFI
.hasPatchPoint() ||
256 RegInfo
->needsStackRealignment(MF
))
258 // With large callframes around we may need to use FP to access the scavenging
259 // emergency spillslot.
261 // Unfortunately some calls to hasFP() like machine verifier ->
262 // getReservedReg() -> hasFP in the middle of global isel are too early
263 // to know the max call frame size. Hopefully conservatively returning "true"
264 // in those cases is fine.
265 // DefaultSafeSPDisplacement is fine as we only emergency spill GP regs.
266 if (!MFI
.isMaxCallFrameSizeComputed() ||
267 MFI
.getMaxCallFrameSize() > DefaultSafeSPDisplacement
)
273 /// hasReservedCallFrame - Under normal circumstances, when a frame pointer is
274 /// not required, we reserve argument space for call sites in the function
275 /// immediately on entry to the current function. This eliminates the need for
276 /// add/sub sp brackets around call sites. Returns true if the call frame is
277 /// included as part of the stack frame.
279 AArch64FrameLowering::hasReservedCallFrame(const MachineFunction
&MF
) const {
280 return !MF
.getFrameInfo().hasVarSizedObjects();
283 MachineBasicBlock::iterator
AArch64FrameLowering::eliminateCallFramePseudoInstr(
284 MachineFunction
&MF
, MachineBasicBlock
&MBB
,
285 MachineBasicBlock::iterator I
) const {
286 const AArch64InstrInfo
*TII
=
287 static_cast<const AArch64InstrInfo
*>(MF
.getSubtarget().getInstrInfo());
288 DebugLoc DL
= I
->getDebugLoc();
289 unsigned Opc
= I
->getOpcode();
290 bool IsDestroy
= Opc
== TII
->getCallFrameDestroyOpcode();
291 uint64_t CalleePopAmount
= IsDestroy
? I
->getOperand(1).getImm() : 0;
293 if (!hasReservedCallFrame(MF
)) {
294 unsigned Align
= getStackAlignment();
296 int64_t Amount
= I
->getOperand(0).getImm();
297 Amount
= alignTo(Amount
, Align
);
301 // N.b. if CalleePopAmount is valid but zero (i.e. callee would pop, but it
302 // doesn't have to pop anything), then the first operand will be zero too so
303 // this adjustment is a no-op.
304 if (CalleePopAmount
== 0) {
305 // FIXME: in-function stack adjustment for calls is limited to 24-bits
306 // because there's no guaranteed temporary register available.
308 // ADD/SUB (immediate) has only LSL #0 and LSL #12 available.
309 // 1) For offset <= 12-bit, we use LSL #0
310 // 2) For 12-bit <= offset <= 24-bit, we use two instructions. One uses
311 // LSL #0, and the other uses LSL #12.
313 // Most call frames will be allocated at the start of a function so
314 // this is OK, but it is a limitation that needs dealing with.
315 assert(Amount
> -0xffffff && Amount
< 0xffffff && "call frame too large");
316 emitFrameOffset(MBB
, I
, DL
, AArch64::SP
, AArch64::SP
, {Amount
, MVT::i8
},
319 } else if (CalleePopAmount
!= 0) {
320 // If the calling convention demands that the callee pops arguments from the
321 // stack, we want to add it back if we have a reserved call frame.
322 assert(CalleePopAmount
< 0xffffff && "call frame too large");
323 emitFrameOffset(MBB
, I
, DL
, AArch64::SP
, AArch64::SP
,
324 {-(int64_t)CalleePopAmount
, MVT::i8
}, TII
);
329 static bool ShouldSignReturnAddress(MachineFunction
&MF
) {
330 // The function should be signed in the following situations:
331 // - sign-return-address=all
332 // - sign-return-address=non-leaf and the functions spills the LR
334 const Function
&F
= MF
.getFunction();
335 if (!F
.hasFnAttribute("sign-return-address"))
338 StringRef Scope
= F
.getFnAttribute("sign-return-address").getValueAsString();
339 if (Scope
.equals("none"))
342 if (Scope
.equals("all"))
345 assert(Scope
.equals("non-leaf") && "Expected all, none or non-leaf");
347 for (const auto &Info
: MF
.getFrameInfo().getCalleeSavedInfo())
348 if (Info
.getReg() == AArch64::LR
)
354 void AArch64FrameLowering::emitCalleeSavedFrameMoves(
355 MachineBasicBlock
&MBB
, MachineBasicBlock::iterator MBBI
) const {
356 MachineFunction
&MF
= *MBB
.getParent();
357 MachineFrameInfo
&MFI
= MF
.getFrameInfo();
358 const TargetSubtargetInfo
&STI
= MF
.getSubtarget();
359 const MCRegisterInfo
*MRI
= STI
.getRegisterInfo();
360 const TargetInstrInfo
*TII
= STI
.getInstrInfo();
361 DebugLoc DL
= MBB
.findDebugLoc(MBBI
);
363 // Add callee saved registers to move list.
364 const std::vector
<CalleeSavedInfo
> &CSI
= MFI
.getCalleeSavedInfo();
368 for (const auto &Info
: CSI
) {
369 unsigned Reg
= Info
.getReg();
371 MFI
.getObjectOffset(Info
.getFrameIdx()) - getOffsetOfLocalArea();
372 unsigned DwarfReg
= MRI
->getDwarfRegNum(Reg
, true);
373 unsigned CFIIndex
= MF
.addFrameInst(
374 MCCFIInstruction::createOffset(nullptr, DwarfReg
, Offset
));
375 BuildMI(MBB
, MBBI
, DL
, TII
->get(TargetOpcode::CFI_INSTRUCTION
))
376 .addCFIIndex(CFIIndex
)
377 .setMIFlags(MachineInstr::FrameSetup
);
381 // Find a scratch register that we can use at the start of the prologue to
382 // re-align the stack pointer. We avoid using callee-save registers since they
383 // may appear to be free when this is called from canUseAsPrologue (during
384 // shrink wrapping), but then no longer be free when this is called from
387 // FIXME: This is a bit conservative, since in the above case we could use one
388 // of the callee-save registers as a scratch temp to re-align the stack pointer,
389 // but we would then have to make sure that we were in fact saving at least one
390 // callee-save register in the prologue, which is additional complexity that
391 // doesn't seem worth the benefit.
392 static unsigned findScratchNonCalleeSaveRegister(MachineBasicBlock
*MBB
) {
393 MachineFunction
*MF
= MBB
->getParent();
395 // If MBB is an entry block, use X9 as the scratch register
396 if (&MF
->front() == MBB
)
399 const AArch64Subtarget
&Subtarget
= MF
->getSubtarget
<AArch64Subtarget
>();
400 const AArch64RegisterInfo
&TRI
= *Subtarget
.getRegisterInfo();
401 LivePhysRegs
LiveRegs(TRI
);
402 LiveRegs
.addLiveIns(*MBB
);
404 // Mark callee saved registers as used so we will not choose them.
405 const MCPhysReg
*CSRegs
= MF
->getRegInfo().getCalleeSavedRegs();
406 for (unsigned i
= 0; CSRegs
[i
]; ++i
)
407 LiveRegs
.addReg(CSRegs
[i
]);
409 // Prefer X9 since it was historically used for the prologue scratch reg.
410 const MachineRegisterInfo
&MRI
= MF
->getRegInfo();
411 if (LiveRegs
.available(MRI
, AArch64::X9
))
414 for (unsigned Reg
: AArch64::GPR64RegClass
) {
415 if (LiveRegs
.available(MRI
, Reg
))
418 return AArch64::NoRegister
;
421 bool AArch64FrameLowering::canUseAsPrologue(
422 const MachineBasicBlock
&MBB
) const {
423 const MachineFunction
*MF
= MBB
.getParent();
424 MachineBasicBlock
*TmpMBB
= const_cast<MachineBasicBlock
*>(&MBB
);
425 const AArch64Subtarget
&Subtarget
= MF
->getSubtarget
<AArch64Subtarget
>();
426 const AArch64RegisterInfo
*RegInfo
= Subtarget
.getRegisterInfo();
428 // Don't need a scratch register if we're not going to re-align the stack.
429 if (!RegInfo
->needsStackRealignment(*MF
))
431 // Otherwise, we can use any block as long as it has a scratch register
433 return findScratchNonCalleeSaveRegister(TmpMBB
) != AArch64::NoRegister
;
436 static bool windowsRequiresStackProbe(MachineFunction
&MF
,
437 uint64_t StackSizeInBytes
) {
438 const AArch64Subtarget
&Subtarget
= MF
.getSubtarget
<AArch64Subtarget
>();
439 if (!Subtarget
.isTargetWindows())
441 const Function
&F
= MF
.getFunction();
442 // TODO: When implementing stack protectors, take that into account
443 // for the probe threshold.
444 unsigned StackProbeSize
= 4096;
445 if (F
.hasFnAttribute("stack-probe-size"))
446 F
.getFnAttribute("stack-probe-size")
448 .getAsInteger(0, StackProbeSize
);
449 return (StackSizeInBytes
>= StackProbeSize
) &&
450 !F
.hasFnAttribute("no-stack-arg-probe");
453 bool AArch64FrameLowering::shouldCombineCSRLocalStackBump(
454 MachineFunction
&MF
, uint64_t StackBumpBytes
) const {
455 AArch64FunctionInfo
*AFI
= MF
.getInfo
<AArch64FunctionInfo
>();
456 const MachineFrameInfo
&MFI
= MF
.getFrameInfo();
457 const AArch64Subtarget
&Subtarget
= MF
.getSubtarget
<AArch64Subtarget
>();
458 const AArch64RegisterInfo
*RegInfo
= Subtarget
.getRegisterInfo();
460 if (AFI
->getLocalStackSize() == 0)
463 // 512 is the maximum immediate for stp/ldp that will be used for
464 // callee-save save/restores
465 if (StackBumpBytes
>= 512 || windowsRequiresStackProbe(MF
, StackBumpBytes
))
468 if (MFI
.hasVarSizedObjects())
471 if (RegInfo
->needsStackRealignment(MF
))
474 // This isn't strictly necessary, but it simplifies things a bit since the
475 // current RedZone handling code assumes the SP is adjusted by the
476 // callee-save save/restore code.
477 if (canUseRedZone(MF
))
480 // When there is an SVE area on the stack, always allocate the
481 // callee-saves and spills/locals separately.
482 if (getSVEStackSize(MF
))
488 bool AArch64FrameLowering::shouldCombineCSRLocalStackBumpInEpilogue(
489 MachineBasicBlock
&MBB
, unsigned StackBumpBytes
) const {
490 if (!shouldCombineCSRLocalStackBump(*MBB
.getParent(), StackBumpBytes
))
496 // Disable combined SP bump if the last instruction is an MTE tag store. It
497 // is almost always better to merge SP adjustment into those instructions.
498 MachineBasicBlock::iterator LastI
= MBB
.getFirstTerminator();
499 MachineBasicBlock::iterator Begin
= MBB
.begin();
500 while (LastI
!= Begin
) {
502 if (LastI
->isTransient())
504 if (!LastI
->getFlag(MachineInstr::FrameDestroy
))
507 switch (LastI
->getOpcode()) {
508 case AArch64::STGloop
:
509 case AArch64::STZGloop
:
510 case AArch64::STGOffset
:
511 case AArch64::STZGOffset
:
512 case AArch64::ST2GOffset
:
513 case AArch64::STZ2GOffset
:
518 llvm_unreachable("unreachable");
521 // Given a load or a store instruction, generate an appropriate unwinding SEH
523 static MachineBasicBlock::iterator
InsertSEH(MachineBasicBlock::iterator MBBI
,
524 const TargetInstrInfo
&TII
,
525 MachineInstr::MIFlag Flag
) {
526 unsigned Opc
= MBBI
->getOpcode();
527 MachineBasicBlock
*MBB
= MBBI
->getParent();
528 MachineFunction
&MF
= *MBB
->getParent();
529 DebugLoc DL
= MBBI
->getDebugLoc();
530 unsigned ImmIdx
= MBBI
->getNumOperands() - 1;
531 int Imm
= MBBI
->getOperand(ImmIdx
).getImm();
532 MachineInstrBuilder MIB
;
533 const AArch64Subtarget
&Subtarget
= MF
.getSubtarget
<AArch64Subtarget
>();
534 const AArch64RegisterInfo
*RegInfo
= Subtarget
.getRegisterInfo();
538 llvm_unreachable("No SEH Opcode for this instruction");
539 case AArch64::LDPDpost
:
542 case AArch64::STPDpre
: {
543 unsigned Reg0
= RegInfo
->getSEHRegNum(MBBI
->getOperand(1).getReg());
544 unsigned Reg1
= RegInfo
->getSEHRegNum(MBBI
->getOperand(2).getReg());
545 MIB
= BuildMI(MF
, DL
, TII
.get(AArch64::SEH_SaveFRegP_X
))
552 case AArch64::LDPXpost
:
555 case AArch64::STPXpre
: {
556 Register Reg0
= MBBI
->getOperand(1).getReg();
557 Register Reg1
= MBBI
->getOperand(2).getReg();
558 if (Reg0
== AArch64::FP
&& Reg1
== AArch64::LR
)
559 MIB
= BuildMI(MF
, DL
, TII
.get(AArch64::SEH_SaveFPLR_X
))
563 MIB
= BuildMI(MF
, DL
, TII
.get(AArch64::SEH_SaveRegP_X
))
564 .addImm(RegInfo
->getSEHRegNum(Reg0
))
565 .addImm(RegInfo
->getSEHRegNum(Reg1
))
570 case AArch64::LDRDpost
:
573 case AArch64::STRDpre
: {
574 unsigned Reg
= RegInfo
->getSEHRegNum(MBBI
->getOperand(1).getReg());
575 MIB
= BuildMI(MF
, DL
, TII
.get(AArch64::SEH_SaveFReg_X
))
581 case AArch64::LDRXpost
:
584 case AArch64::STRXpre
: {
585 unsigned Reg
= RegInfo
->getSEHRegNum(MBBI
->getOperand(1).getReg());
586 MIB
= BuildMI(MF
, DL
, TII
.get(AArch64::SEH_SaveReg_X
))
593 case AArch64::LDPDi
: {
594 unsigned Reg0
= RegInfo
->getSEHRegNum(MBBI
->getOperand(0).getReg());
595 unsigned Reg1
= RegInfo
->getSEHRegNum(MBBI
->getOperand(1).getReg());
596 MIB
= BuildMI(MF
, DL
, TII
.get(AArch64::SEH_SaveFRegP
))
604 case AArch64::LDPXi
: {
605 Register Reg0
= MBBI
->getOperand(0).getReg();
606 Register Reg1
= MBBI
->getOperand(1).getReg();
607 if (Reg0
== AArch64::FP
&& Reg1
== AArch64::LR
)
608 MIB
= BuildMI(MF
, DL
, TII
.get(AArch64::SEH_SaveFPLR
))
612 MIB
= BuildMI(MF
, DL
, TII
.get(AArch64::SEH_SaveRegP
))
613 .addImm(RegInfo
->getSEHRegNum(Reg0
))
614 .addImm(RegInfo
->getSEHRegNum(Reg1
))
619 case AArch64::STRXui
:
620 case AArch64::LDRXui
: {
621 int Reg
= RegInfo
->getSEHRegNum(MBBI
->getOperand(0).getReg());
622 MIB
= BuildMI(MF
, DL
, TII
.get(AArch64::SEH_SaveReg
))
628 case AArch64::STRDui
:
629 case AArch64::LDRDui
: {
630 unsigned Reg
= RegInfo
->getSEHRegNum(MBBI
->getOperand(0).getReg());
631 MIB
= BuildMI(MF
, DL
, TII
.get(AArch64::SEH_SaveFReg
))
638 auto I
= MBB
->insertAfter(MBBI
, MIB
);
642 // Fix up the SEH opcode associated with the save/restore instruction.
643 static void fixupSEHOpcode(MachineBasicBlock::iterator MBBI
,
644 unsigned LocalStackSize
) {
645 MachineOperand
*ImmOpnd
= nullptr;
646 unsigned ImmIdx
= MBBI
->getNumOperands() - 1;
647 switch (MBBI
->getOpcode()) {
649 llvm_unreachable("Fix the offset in the SEH instruction");
650 case AArch64::SEH_SaveFPLR
:
651 case AArch64::SEH_SaveRegP
:
652 case AArch64::SEH_SaveReg
:
653 case AArch64::SEH_SaveFRegP
:
654 case AArch64::SEH_SaveFReg
:
655 ImmOpnd
= &MBBI
->getOperand(ImmIdx
);
659 ImmOpnd
->setImm(ImmOpnd
->getImm() + LocalStackSize
);
662 // Convert callee-save register save/restore instruction to do stack pointer
663 // decrement/increment to allocate/deallocate the callee-save stack area by
664 // converting store/load to use pre/post increment version.
665 static MachineBasicBlock::iterator
convertCalleeSaveRestoreToSPPrePostIncDec(
666 MachineBasicBlock
&MBB
, MachineBasicBlock::iterator MBBI
,
667 const DebugLoc
&DL
, const TargetInstrInfo
*TII
, int CSStackSizeInc
,
668 bool NeedsWinCFI
, bool *HasWinCFI
, bool InProlog
= true) {
669 // Ignore instructions that do not operate on SP, i.e. shadow call stack
670 // instructions and associated CFI instruction.
671 while (MBBI
->getOpcode() == AArch64::STRXpost
||
672 MBBI
->getOpcode() == AArch64::LDRXpre
||
673 MBBI
->getOpcode() == AArch64::CFI_INSTRUCTION
) {
674 if (MBBI
->getOpcode() != AArch64::CFI_INSTRUCTION
)
675 assert(MBBI
->getOperand(0).getReg() != AArch64::SP
);
680 switch (MBBI
->getOpcode()) {
682 llvm_unreachable("Unexpected callee-save save/restore opcode!");
684 NewOpc
= AArch64::STPXpre
;
688 NewOpc
= AArch64::STPDpre
;
692 NewOpc
= AArch64::STPQpre
;
695 case AArch64::STRXui
:
696 NewOpc
= AArch64::STRXpre
;
698 case AArch64::STRDui
:
699 NewOpc
= AArch64::STRDpre
;
701 case AArch64::STRQui
:
702 NewOpc
= AArch64::STRQpre
;
705 NewOpc
= AArch64::LDPXpost
;
709 NewOpc
= AArch64::LDPDpost
;
713 NewOpc
= AArch64::LDPQpost
;
716 case AArch64::LDRXui
:
717 NewOpc
= AArch64::LDRXpost
;
719 case AArch64::LDRDui
:
720 NewOpc
= AArch64::LDRDpost
;
722 case AArch64::LDRQui
:
723 NewOpc
= AArch64::LDRQpost
;
726 // Get rid of the SEH code associated with the old instruction.
728 auto SEH
= std::next(MBBI
);
729 if (AArch64InstrInfo::isSEHInstruction(*SEH
))
730 SEH
->eraseFromParent();
733 MachineInstrBuilder MIB
= BuildMI(MBB
, MBBI
, DL
, TII
->get(NewOpc
));
734 MIB
.addReg(AArch64::SP
, RegState::Define
);
736 // Copy all operands other than the immediate offset.
737 unsigned OpndIdx
= 0;
738 for (unsigned OpndEnd
= MBBI
->getNumOperands() - 1; OpndIdx
< OpndEnd
;
740 MIB
.add(MBBI
->getOperand(OpndIdx
));
742 assert(MBBI
->getOperand(OpndIdx
).getImm() == 0 &&
743 "Unexpected immediate offset in first/last callee-save save/restore "
745 assert(MBBI
->getOperand(OpndIdx
- 1).getReg() == AArch64::SP
&&
746 "Unexpected base register in callee-save save/restore instruction!");
747 assert(CSStackSizeInc
% Scale
== 0);
748 MIB
.addImm(CSStackSizeInc
/ Scale
);
750 MIB
.setMIFlags(MBBI
->getFlags());
751 MIB
.setMemRefs(MBBI
->memoperands());
753 // Generate a new SEH code that corresponds to the new instruction.
756 InsertSEH(*MIB
, *TII
,
757 InProlog
? MachineInstr::FrameSetup
: MachineInstr::FrameDestroy
);
760 return std::prev(MBB
.erase(MBBI
));
763 // Fixup callee-save register save/restore instructions to take into account
764 // combined SP bump by adding the local stack size to the stack offsets.
765 static void fixupCalleeSaveRestoreStackOffset(MachineInstr
&MI
,
766 uint64_t LocalStackSize
,
769 if (AArch64InstrInfo::isSEHInstruction(MI
))
772 unsigned Opc
= MI
.getOpcode();
774 // Ignore instructions that do not operate on SP, i.e. shadow call stack
775 // instructions and associated CFI instruction.
776 if (Opc
== AArch64::STRXpost
|| Opc
== AArch64::LDRXpre
||
777 Opc
== AArch64::CFI_INSTRUCTION
) {
778 if (Opc
!= AArch64::CFI_INSTRUCTION
)
779 assert(MI
.getOperand(0).getReg() != AArch64::SP
);
786 case AArch64::STRXui
:
788 case AArch64::STRDui
:
790 case AArch64::LDRXui
:
792 case AArch64::LDRDui
:
796 case AArch64::STRQui
:
798 case AArch64::LDRQui
:
802 llvm_unreachable("Unexpected callee-save save/restore opcode!");
805 unsigned OffsetIdx
= MI
.getNumExplicitOperands() - 1;
806 assert(MI
.getOperand(OffsetIdx
- 1).getReg() == AArch64::SP
&&
807 "Unexpected base register in callee-save save/restore instruction!");
808 // Last operand is immediate offset that needs fixing.
809 MachineOperand
&OffsetOpnd
= MI
.getOperand(OffsetIdx
);
810 // All generated opcodes have scaled offsets.
811 assert(LocalStackSize
% Scale
== 0);
812 OffsetOpnd
.setImm(OffsetOpnd
.getImm() + LocalStackSize
/ Scale
);
816 auto MBBI
= std::next(MachineBasicBlock::iterator(MI
));
817 assert(MBBI
!= MI
.getParent()->end() && "Expecting a valid instruction");
818 assert(AArch64InstrInfo::isSEHInstruction(*MBBI
) &&
819 "Expecting a SEH instruction");
820 fixupSEHOpcode(MBBI
, LocalStackSize
);
824 static void adaptForLdStOpt(MachineBasicBlock
&MBB
,
825 MachineBasicBlock::iterator FirstSPPopI
,
826 MachineBasicBlock::iterator LastPopI
) {
827 // Sometimes (when we restore in the same order as we save), we can end up
828 // with code like this:
830 // ldp x26, x25, [sp]
831 // ldp x24, x23, [sp, #16]
832 // ldp x22, x21, [sp, #32]
833 // ldp x20, x19, [sp, #48]
836 // In this case, it is always better to put the first ldp at the end, so
837 // that the load-store optimizer can run and merge the ldp and the add into
839 // If we managed to grab the first pop instruction, move it to the end.
840 if (ReverseCSRRestoreSeq
)
841 MBB
.splice(FirstSPPopI
, &MBB
, LastPopI
);
842 // We should end up with something like this now:
844 // ldp x24, x23, [sp, #16]
845 // ldp x22, x21, [sp, #32]
846 // ldp x20, x19, [sp, #48]
847 // ldp x26, x25, [sp]
850 // and the load-store optimizer can merge the last two instructions into:
852 // ldp x26, x25, [sp], #64
856 static bool ShouldSignWithAKey(MachineFunction
&MF
) {
857 const Function
&F
= MF
.getFunction();
858 if (!F
.hasFnAttribute("sign-return-address-key"))
861 const StringRef Key
=
862 F
.getFnAttribute("sign-return-address-key").getValueAsString();
863 assert(Key
.equals_lower("a_key") || Key
.equals_lower("b_key"));
864 return Key
.equals_lower("a_key");
867 static bool needsWinCFI(const MachineFunction
&MF
) {
868 const Function
&F
= MF
.getFunction();
869 return MF
.getTarget().getMCAsmInfo()->usesWindowsCFI() &&
870 F
.needsUnwindTableEntry();
873 static bool isTargetDarwin(const MachineFunction
&MF
) {
874 return MF
.getSubtarget
<AArch64Subtarget
>().isTargetDarwin();
877 static bool isTargetWindows(const MachineFunction
&MF
) {
878 return MF
.getSubtarget
<AArch64Subtarget
>().isTargetWindows();
881 // Convenience function to determine whether I is an SVE callee save.
882 static bool IsSVECalleeSave(MachineBasicBlock::iterator I
) {
883 switch (I
->getOpcode()) {
886 case AArch64::STR_ZXI
:
887 case AArch64::STR_PXI
:
888 case AArch64::LDR_ZXI
:
889 case AArch64::LDR_PXI
:
890 return I
->getFlag(MachineInstr::FrameSetup
) ||
891 I
->getFlag(MachineInstr::FrameDestroy
);
895 void AArch64FrameLowering::emitPrologue(MachineFunction
&MF
,
896 MachineBasicBlock
&MBB
) const {
897 MachineBasicBlock::iterator MBBI
= MBB
.begin();
898 const MachineFrameInfo
&MFI
= MF
.getFrameInfo();
899 const Function
&F
= MF
.getFunction();
900 const AArch64Subtarget
&Subtarget
= MF
.getSubtarget
<AArch64Subtarget
>();
901 const AArch64RegisterInfo
*RegInfo
= Subtarget
.getRegisterInfo();
902 const TargetInstrInfo
*TII
= Subtarget
.getInstrInfo();
903 MachineModuleInfo
&MMI
= MF
.getMMI();
904 AArch64FunctionInfo
*AFI
= MF
.getInfo
<AArch64FunctionInfo
>();
905 bool needsFrameMoves
=
906 MF
.needsFrameMoves() && !MF
.getTarget().getMCAsmInfo()->usesWindowsCFI();
907 bool HasFP
= hasFP(MF
);
908 bool NeedsWinCFI
= needsWinCFI(MF
);
909 bool HasWinCFI
= false;
910 auto Cleanup
= make_scope_exit([&]() { MF
.setHasWinCFI(HasWinCFI
); });
912 bool IsFunclet
= MBB
.isEHFuncletEntry();
914 // At this point, we're going to decide whether or not the function uses a
915 // redzone. In most cases, the function doesn't have a redzone so let's
916 // assume that's false and set it to true in the case that there's a redzone.
917 AFI
->setHasRedZone(false);
919 // Debug location must be unknown since the first debug location is used
920 // to determine the end of the prologue.
923 if (ShouldSignReturnAddress(MF
)) {
924 if (ShouldSignWithAKey(MF
))
925 BuildMI(MBB
, MBBI
, DL
, TII
->get(AArch64::PACIASP
))
926 .setMIFlag(MachineInstr::FrameSetup
);
928 BuildMI(MBB
, MBBI
, DL
, TII
->get(AArch64::EMITBKEY
))
929 .setMIFlag(MachineInstr::FrameSetup
);
930 BuildMI(MBB
, MBBI
, DL
, TII
->get(AArch64::PACIBSP
))
931 .setMIFlag(MachineInstr::FrameSetup
);
935 MF
.addFrameInst(MCCFIInstruction::createNegateRAState(nullptr));
936 BuildMI(MBB
, MBBI
, DL
, TII
->get(TargetOpcode::CFI_INSTRUCTION
))
937 .addCFIIndex(CFIIndex
)
938 .setMIFlags(MachineInstr::FrameSetup
);
941 // All calls are tail calls in GHC calling conv, and functions have no
942 // prologue/epilogue.
943 if (MF
.getFunction().getCallingConv() == CallingConv::GHC
)
946 // Set tagged base pointer to the bottom of the stack frame.
947 // Ideally it should match SP value after prologue.
948 AFI
->setTaggedBasePointerOffset(MFI
.getStackSize());
950 const StackOffset
&SVEStackSize
= getSVEStackSize(MF
);
952 // getStackSize() includes all the locals in its size calculation. We don't
953 // include these locals when computing the stack size of a funclet, as they
954 // are allocated in the parent's stack frame and accessed via the frame
955 // pointer from the funclet. We only save the callee saved registers in the
956 // funclet, which are really the callee saved registers of the parent
957 // function, including the funclet.
958 int64_t NumBytes
= IsFunclet
? getWinEHFuncletFrameSize(MF
)
959 : MFI
.getStackSize();
960 if (!AFI
->hasStackFrame() && !windowsRequiresStackProbe(MF
, NumBytes
)) {
961 assert(!HasFP
&& "unexpected function without stack frame but with FP");
962 assert(!SVEStackSize
&&
963 "unexpected function without stack frame but with SVE objects");
964 // All of the stack allocation is for locals.
965 AFI
->setLocalStackSize(NumBytes
);
968 // REDZONE: If the stack size is less than 128 bytes, we don't need
969 // to actually allocate.
970 if (canUseRedZone(MF
)) {
971 AFI
->setHasRedZone(true);
972 ++NumRedZoneFunctions
;
974 emitFrameOffset(MBB
, MBBI
, DL
, AArch64::SP
, AArch64::SP
,
975 {-NumBytes
, MVT::i8
}, TII
, MachineInstr::FrameSetup
,
976 false, NeedsWinCFI
, &HasWinCFI
);
977 if (!NeedsWinCFI
&& needsFrameMoves
) {
978 // Label used to tie together the PROLOG_LABEL and the MachineMoves.
979 MCSymbol
*FrameLabel
= MMI
.getContext().createTempSymbol();
980 // Encode the stack size of the leaf function.
981 unsigned CFIIndex
= MF
.addFrameInst(
982 MCCFIInstruction::createDefCfaOffset(FrameLabel
, -NumBytes
));
983 BuildMI(MBB
, MBBI
, DL
, TII
->get(TargetOpcode::CFI_INSTRUCTION
))
984 .addCFIIndex(CFIIndex
)
985 .setMIFlags(MachineInstr::FrameSetup
);
991 BuildMI(MBB
, MBBI
, DL
, TII
->get(AArch64::SEH_PrologEnd
))
992 .setMIFlag(MachineInstr::FrameSetup
);
999 Subtarget
.isCallingConvWin64(MF
.getFunction().getCallingConv());
1000 // Var args are accounted for in the containing function, so don't
1001 // include them for funclets.
1002 unsigned FixedObject
= (IsWin64
&& !IsFunclet
) ?
1003 alignTo(AFI
->getVarArgsGPRSize(), 16) : 0;
1005 auto PrologueSaveSize
= AFI
->getCalleeSavedStackSize() + FixedObject
;
1006 // All of the remaining stack allocations are for locals.
1007 AFI
->setLocalStackSize(NumBytes
- PrologueSaveSize
);
1008 bool CombineSPBump
= shouldCombineCSRLocalStackBump(MF
, NumBytes
);
1009 if (CombineSPBump
) {
1010 assert(!SVEStackSize
&& "Cannot combine SP bump with SVE");
1011 emitFrameOffset(MBB
, MBBI
, DL
, AArch64::SP
, AArch64::SP
,
1012 {-NumBytes
, MVT::i8
}, TII
, MachineInstr::FrameSetup
, false,
1013 NeedsWinCFI
, &HasWinCFI
);
1015 } else if (PrologueSaveSize
!= 0) {
1016 MBBI
= convertCalleeSaveRestoreToSPPrePostIncDec(
1017 MBB
, MBBI
, DL
, TII
, -PrologueSaveSize
, NeedsWinCFI
, &HasWinCFI
);
1018 NumBytes
-= PrologueSaveSize
;
1020 assert(NumBytes
>= 0 && "Negative stack allocation size!?");
1022 // Move past the saves of the callee-saved registers, fixing up the offsets
1023 // and pre-inc if we decided to combine the callee-save and local stack
1024 // pointer bump above.
1025 MachineBasicBlock::iterator End
= MBB
.end();
1026 while (MBBI
!= End
&& MBBI
->getFlag(MachineInstr::FrameSetup
) &&
1027 !IsSVECalleeSave(MBBI
)) {
1029 fixupCalleeSaveRestoreStackOffset(*MBBI
, AFI
->getLocalStackSize(),
1030 NeedsWinCFI
, &HasWinCFI
);
1034 // The code below is not applicable to funclets. We have emitted all the SEH
1035 // opcodes that we needed to emit. The FP and BP belong to the containing
1040 BuildMI(MBB
, MBBI
, DL
, TII
->get(AArch64::SEH_PrologEnd
))
1041 .setMIFlag(MachineInstr::FrameSetup
);
1044 // SEH funclets are passed the frame pointer in X1. If the parent
1045 // function uses the base register, then the base register is used
1046 // directly, and is not retrieved from X1.
1047 if (F
.hasPersonalityFn()) {
1048 EHPersonality Per
= classifyEHPersonality(F
.getPersonalityFn());
1049 if (isAsynchronousEHPersonality(Per
)) {
1050 BuildMI(MBB
, MBBI
, DL
, TII
->get(TargetOpcode::COPY
), AArch64::FP
)
1051 .addReg(AArch64::X1
).setMIFlag(MachineInstr::FrameSetup
);
1052 MBB
.addLiveIn(AArch64::X1
);
1060 // Only set up FP if we actually need to.
1061 int64_t FPOffset
= isTargetDarwin(MF
) ? (AFI
->getCalleeSavedStackSize() - 16) : 0;
1064 FPOffset
+= AFI
->getLocalStackSize();
1066 // Issue sub fp, sp, FPOffset or
1067 // mov fp,sp when FPOffset is zero.
1068 // Note: All stores of callee-saved registers are marked as "FrameSetup".
1069 // This code marks the instruction(s) that set the FP also.
1070 emitFrameOffset(MBB
, MBBI
, DL
, AArch64::FP
, AArch64::SP
,
1071 {FPOffset
, MVT::i8
}, TII
, MachineInstr::FrameSetup
, false,
1072 NeedsWinCFI
, &HasWinCFI
);
1075 if (windowsRequiresStackProbe(MF
, NumBytes
)) {
1076 uint64_t NumWords
= NumBytes
>> 4;
1079 // alloc_l can hold at most 256MB, so assume that NumBytes doesn't
1080 // exceed this amount. We need to move at most 2^24 - 1 into x15.
1081 // This is at most two instructions, MOVZ follwed by MOVK.
1082 // TODO: Fix to use multiple stack alloc unwind codes for stacks
1083 // exceeding 256MB in size.
1084 if (NumBytes
>= (1 << 28))
1085 report_fatal_error("Stack size cannot exceed 256MB for stack "
1086 "unwinding purposes");
1088 uint32_t LowNumWords
= NumWords
& 0xFFFF;
1089 BuildMI(MBB
, MBBI
, DL
, TII
->get(AArch64::MOVZXi
), AArch64::X15
)
1090 .addImm(LowNumWords
)
1091 .addImm(AArch64_AM::getShifterImm(AArch64_AM::LSL
, 0))
1092 .setMIFlag(MachineInstr::FrameSetup
);
1093 BuildMI(MBB
, MBBI
, DL
, TII
->get(AArch64::SEH_Nop
))
1094 .setMIFlag(MachineInstr::FrameSetup
);
1095 if ((NumWords
& 0xFFFF0000) != 0) {
1096 BuildMI(MBB
, MBBI
, DL
, TII
->get(AArch64::MOVKXi
), AArch64::X15
)
1097 .addReg(AArch64::X15
)
1098 .addImm((NumWords
& 0xFFFF0000) >> 16) // High half
1099 .addImm(AArch64_AM::getShifterImm(AArch64_AM::LSL
, 16))
1100 .setMIFlag(MachineInstr::FrameSetup
);
1101 BuildMI(MBB
, MBBI
, DL
, TII
->get(AArch64::SEH_Nop
))
1102 .setMIFlag(MachineInstr::FrameSetup
);
1105 BuildMI(MBB
, MBBI
, DL
, TII
->get(AArch64::MOVi64imm
), AArch64::X15
)
1107 .setMIFlags(MachineInstr::FrameSetup
);
1110 switch (MF
.getTarget().getCodeModel()) {
1111 case CodeModel::Tiny
:
1112 case CodeModel::Small
:
1113 case CodeModel::Medium
:
1114 case CodeModel::Kernel
:
1115 BuildMI(MBB
, MBBI
, DL
, TII
->get(AArch64::BL
))
1116 .addExternalSymbol("__chkstk")
1117 .addReg(AArch64::X15
, RegState::Implicit
)
1118 .addReg(AArch64::X16
, RegState::Implicit
| RegState::Define
| RegState::Dead
)
1119 .addReg(AArch64::X17
, RegState::Implicit
| RegState::Define
| RegState::Dead
)
1120 .addReg(AArch64::NZCV
, RegState::Implicit
| RegState::Define
| RegState::Dead
)
1121 .setMIFlags(MachineInstr::FrameSetup
);
1124 BuildMI(MBB
, MBBI
, DL
, TII
->get(AArch64::SEH_Nop
))
1125 .setMIFlag(MachineInstr::FrameSetup
);
1128 case CodeModel::Large
:
1129 BuildMI(MBB
, MBBI
, DL
, TII
->get(AArch64::MOVaddrEXT
))
1130 .addReg(AArch64::X16
, RegState::Define
)
1131 .addExternalSymbol("__chkstk")
1132 .addExternalSymbol("__chkstk")
1133 .setMIFlags(MachineInstr::FrameSetup
);
1136 BuildMI(MBB
, MBBI
, DL
, TII
->get(AArch64::SEH_Nop
))
1137 .setMIFlag(MachineInstr::FrameSetup
);
1140 BuildMI(MBB
, MBBI
, DL
, TII
->get(AArch64::BLR
))
1141 .addReg(AArch64::X16
, RegState::Kill
)
1142 .addReg(AArch64::X15
, RegState::Implicit
| RegState::Define
)
1143 .addReg(AArch64::X16
, RegState::Implicit
| RegState::Define
| RegState::Dead
)
1144 .addReg(AArch64::X17
, RegState::Implicit
| RegState::Define
| RegState::Dead
)
1145 .addReg(AArch64::NZCV
, RegState::Implicit
| RegState::Define
| RegState::Dead
)
1146 .setMIFlags(MachineInstr::FrameSetup
);
1149 BuildMI(MBB
, MBBI
, DL
, TII
->get(AArch64::SEH_Nop
))
1150 .setMIFlag(MachineInstr::FrameSetup
);
1155 BuildMI(MBB
, MBBI
, DL
, TII
->get(AArch64::SUBXrx64
), AArch64::SP
)
1156 .addReg(AArch64::SP
, RegState::Kill
)
1157 .addReg(AArch64::X15
, RegState::Kill
)
1158 .addImm(AArch64_AM::getArithExtendImm(AArch64_AM::UXTX
, 4))
1159 .setMIFlags(MachineInstr::FrameSetup
);
1162 BuildMI(MBB
, MBBI
, DL
, TII
->get(AArch64::SEH_StackAlloc
))
1164 .setMIFlag(MachineInstr::FrameSetup
);
1169 StackOffset AllocateBefore
= SVEStackSize
, AllocateAfter
= {};
1170 MachineBasicBlock::iterator CalleeSavesBegin
= MBBI
, CalleeSavesEnd
= MBBI
;
1172 // Process the SVE callee-saves to determine what space needs to be
1174 if (AFI
->getSVECalleeSavedStackSize()) {
1175 // Find callee save instructions in frame.
1176 CalleeSavesBegin
= MBBI
;
1177 assert(IsSVECalleeSave(CalleeSavesBegin
) && "Unexpected instruction");
1178 while (IsSVECalleeSave(MBBI
) && MBBI
!= MBB
.getFirstTerminator())
1180 CalleeSavesEnd
= MBBI
;
1182 int64_t OffsetToFirstCalleeSaveFromSP
=
1183 MFI
.getObjectOffset(AFI
->getMaxSVECSFrameIndex());
1184 StackOffset OffsetToCalleeSavesFromSP
=
1185 StackOffset(OffsetToFirstCalleeSaveFromSP
, MVT::nxv1i8
) + SVEStackSize
;
1186 AllocateBefore
-= OffsetToCalleeSavesFromSP
;
1187 AllocateAfter
= SVEStackSize
- AllocateBefore
;
1190 // Allocate space for the callee saves (if any).
1191 emitFrameOffset(MBB
, CalleeSavesBegin
, DL
, AArch64::SP
, AArch64::SP
,
1192 -AllocateBefore
, TII
,
1193 MachineInstr::FrameSetup
);
1195 // Finally allocate remaining SVE stack space.
1196 emitFrameOffset(MBB
, CalleeSavesEnd
, DL
, AArch64::SP
, AArch64::SP
,
1197 -AllocateAfter
, TII
,
1198 MachineInstr::FrameSetup
);
1200 // Allocate space for the rest of the frame.
1202 const bool NeedsRealignment
= RegInfo
->needsStackRealignment(MF
);
1203 unsigned scratchSPReg
= AArch64::SP
;
1205 if (NeedsRealignment
) {
1206 scratchSPReg
= findScratchNonCalleeSaveRegister(&MBB
);
1207 assert(scratchSPReg
!= AArch64::NoRegister
);
1210 // If we're a leaf function, try using the red zone.
1211 if (!canUseRedZone(MF
))
1212 // FIXME: in the case of dynamic re-alignment, NumBytes doesn't have
1213 // the correct value here, as NumBytes also includes padding bytes,
1214 // which shouldn't be counted here.
1215 emitFrameOffset(MBB
, MBBI
, DL
, scratchSPReg
, AArch64::SP
,
1216 {-NumBytes
, MVT::i8
}, TII
, MachineInstr::FrameSetup
,
1217 false, NeedsWinCFI
, &HasWinCFI
);
1219 if (NeedsRealignment
) {
1220 const unsigned Alignment
= MFI
.getMaxAlignment();
1221 const unsigned NrBitsToZero
= countTrailingZeros(Alignment
);
1222 assert(NrBitsToZero
> 1);
1223 assert(scratchSPReg
!= AArch64::SP
);
1225 // SUB X9, SP, NumBytes
1226 // -- X9 is temporary register, so shouldn't contain any live data here,
1227 // -- free to use. This is already produced by emitFrameOffset above.
1228 // AND SP, X9, 0b11111...0000
1229 // The logical immediates have a non-trivial encoding. The following
1230 // formula computes the encoded immediate with all ones but
1231 // NrBitsToZero zero bits as least significant bits.
1232 uint32_t andMaskEncoded
= (1 << 12) // = N
1233 | ((64 - NrBitsToZero
) << 6) // immr
1234 | ((64 - NrBitsToZero
- 1) << 0); // imms
1236 BuildMI(MBB
, MBBI
, DL
, TII
->get(AArch64::ANDXri
), AArch64::SP
)
1237 .addReg(scratchSPReg
, RegState::Kill
)
1238 .addImm(andMaskEncoded
);
1239 AFI
->setStackRealigned(true);
1242 BuildMI(MBB
, MBBI
, DL
, TII
->get(AArch64::SEH_StackAlloc
))
1243 .addImm(NumBytes
& andMaskEncoded
)
1244 .setMIFlag(MachineInstr::FrameSetup
);
1249 // If we need a base pointer, set it up here. It's whatever the value of the
1250 // stack pointer is at this point. Any variable size objects will be allocated
1251 // after this, so we can still use the base pointer to reference locals.
1253 // FIXME: Clarify FrameSetup flags here.
1254 // Note: Use emitFrameOffset() like above for FP if the FrameSetup flag is
1256 if (RegInfo
->hasBasePointer(MF
)) {
1257 TII
->copyPhysReg(MBB
, MBBI
, DL
, RegInfo
->getBaseRegister(), AArch64::SP
,
1261 BuildMI(MBB
, MBBI
, DL
, TII
->get(AArch64::SEH_Nop
))
1262 .setMIFlag(MachineInstr::FrameSetup
);
1266 // The very last FrameSetup instruction indicates the end of prologue. Emit a
1267 // SEH opcode indicating the prologue end.
1268 if (NeedsWinCFI
&& HasWinCFI
) {
1269 BuildMI(MBB
, MBBI
, DL
, TII
->get(AArch64::SEH_PrologEnd
))
1270 .setMIFlag(MachineInstr::FrameSetup
);
1273 if (needsFrameMoves
) {
1274 const DataLayout
&TD
= MF
.getDataLayout();
1275 const int StackGrowth
= isTargetDarwin(MF
)
1276 ? (2 * -TD
.getPointerSize(0))
1277 : -AFI
->getCalleeSavedStackSize();
1278 Register FramePtr
= RegInfo
->getFrameRegister(MF
);
1279 // An example of the prologue:
1286 // .cfi_personality 155, ___gxx_personality_v0
1288 // .cfi_lsda 16, Lexception33
1290 // stp xa,bx, [sp, -#offset]!
1292 // stp x28, x27, [sp, #offset-32]
1293 // stp fp, lr, [sp, #offset-16]
1294 // add fp, sp, #offset - 16
1295 // sub sp, sp, #1360
1298 // +-------------------------------------------+
1299 // 10000 | ........ | ........ | ........ | ........ |
1300 // 10004 | ........ | ........ | ........ | ........ |
1301 // +-------------------------------------------+
1302 // 10008 | ........ | ........ | ........ | ........ |
1303 // 1000c | ........ | ........ | ........ | ........ |
1304 // +===========================================+
1305 // 10010 | X28 Register |
1306 // 10014 | X28 Register |
1307 // +-------------------------------------------+
1308 // 10018 | X27 Register |
1309 // 1001c | X27 Register |
1310 // +===========================================+
1311 // 10020 | Frame Pointer |
1312 // 10024 | Frame Pointer |
1313 // +-------------------------------------------+
1314 // 10028 | Link Register |
1315 // 1002c | Link Register |
1316 // +===========================================+
1317 // 10030 | ........ | ........ | ........ | ........ |
1318 // 10034 | ........ | ........ | ........ | ........ |
1319 // +-------------------------------------------+
1320 // 10038 | ........ | ........ | ........ | ........ |
1321 // 1003c | ........ | ........ | ........ | ........ |
1322 // +-------------------------------------------+
1324 // [sp] = 10030 :: >>initial value<<
1325 // sp = 10020 :: stp fp, lr, [sp, #-16]!
1326 // fp = sp == 10020 :: mov fp, sp
1327 // [sp] == 10020 :: stp x28, x27, [sp, #-16]!
1328 // sp == 10010 :: >>final value<<
1330 // The frame pointer (w29) points to address 10020. If we use an offset of
1331 // '16' from 'w29', we get the CFI offsets of -8 for w30, -16 for w29, -24
1332 // for w27, and -32 for w28:
1335 // .cfi_def_cfa w29, 16
1337 // .cfi_offset w30, -8
1339 // .cfi_offset w29, -16
1341 // .cfi_offset w27, -24
1343 // .cfi_offset w28, -32
1346 // Define the current CFA rule to use the provided FP.
1347 unsigned Reg
= RegInfo
->getDwarfRegNum(FramePtr
, true);
1348 unsigned CFIIndex
= MF
.addFrameInst(MCCFIInstruction::createDefCfa(
1349 nullptr, Reg
, StackGrowth
- FixedObject
));
1350 BuildMI(MBB
, MBBI
, DL
, TII
->get(TargetOpcode::CFI_INSTRUCTION
))
1351 .addCFIIndex(CFIIndex
)
1352 .setMIFlags(MachineInstr::FrameSetup
);
1354 // Encode the stack size of the leaf function.
1355 unsigned CFIIndex
= MF
.addFrameInst(
1356 MCCFIInstruction::createDefCfaOffset(nullptr, -MFI
.getStackSize()));
1357 BuildMI(MBB
, MBBI
, DL
, TII
->get(TargetOpcode::CFI_INSTRUCTION
))
1358 .addCFIIndex(CFIIndex
)
1359 .setMIFlags(MachineInstr::FrameSetup
);
1362 // Now emit the moves for whatever callee saved regs we have (including FP,
1363 // LR if those are saved).
1364 emitCalleeSavedFrameMoves(MBB
, MBBI
);
1368 static void InsertReturnAddressAuth(MachineFunction
&MF
,
1369 MachineBasicBlock
&MBB
) {
1370 if (!ShouldSignReturnAddress(MF
))
1372 const AArch64Subtarget
&Subtarget
= MF
.getSubtarget
<AArch64Subtarget
>();
1373 const TargetInstrInfo
*TII
= Subtarget
.getInstrInfo();
1375 MachineBasicBlock::iterator MBBI
= MBB
.getFirstTerminator();
1377 if (MBBI
!= MBB
.end())
1378 DL
= MBBI
->getDebugLoc();
1380 // The AUTIASP instruction assembles to a hint instruction before v8.3a so
1381 // this instruction can safely used for any v8a architecture.
1382 // From v8.3a onwards there are optimised authenticate LR and return
1383 // instructions, namely RETA{A,B}, that can be used instead.
1384 if (Subtarget
.hasV8_3aOps() && MBBI
!= MBB
.end() &&
1385 MBBI
->getOpcode() == AArch64::RET_ReallyLR
) {
1386 BuildMI(MBB
, MBBI
, DL
,
1387 TII
->get(ShouldSignWithAKey(MF
) ? AArch64::RETAA
: AArch64::RETAB
))
1388 .copyImplicitOps(*MBBI
);
1393 TII
->get(ShouldSignWithAKey(MF
) ? AArch64::AUTIASP
: AArch64::AUTIBSP
))
1394 .setMIFlag(MachineInstr::FrameDestroy
);
1398 static bool isFuncletReturnInstr(const MachineInstr
&MI
) {
1399 switch (MI
.getOpcode()) {
1402 case AArch64::CATCHRET
:
1403 case AArch64::CLEANUPRET
:
1408 void AArch64FrameLowering::emitEpilogue(MachineFunction
&MF
,
1409 MachineBasicBlock
&MBB
) const {
1410 MachineBasicBlock::iterator MBBI
= MBB
.getLastNonDebugInstr();
1411 MachineFrameInfo
&MFI
= MF
.getFrameInfo();
1412 const AArch64Subtarget
&Subtarget
= MF
.getSubtarget
<AArch64Subtarget
>();
1413 const TargetInstrInfo
*TII
= Subtarget
.getInstrInfo();
1415 bool IsTailCallReturn
= false;
1416 bool NeedsWinCFI
= needsWinCFI(MF
);
1417 bool HasWinCFI
= false;
1418 bool IsFunclet
= false;
1419 auto WinCFI
= make_scope_exit([&]() {
1420 if (!MF
.hasWinCFI())
1421 MF
.setHasWinCFI(HasWinCFI
);
1424 if (MBB
.end() != MBBI
) {
1425 DL
= MBBI
->getDebugLoc();
1426 unsigned RetOpcode
= MBBI
->getOpcode();
1427 IsTailCallReturn
= RetOpcode
== AArch64::TCRETURNdi
||
1428 RetOpcode
== AArch64::TCRETURNri
||
1429 RetOpcode
== AArch64::TCRETURNriBTI
;
1430 IsFunclet
= isFuncletReturnInstr(*MBBI
);
1433 int64_t NumBytes
= IsFunclet
? getWinEHFuncletFrameSize(MF
)
1434 : MFI
.getStackSize();
1435 AArch64FunctionInfo
*AFI
= MF
.getInfo
<AArch64FunctionInfo
>();
1437 // All calls are tail calls in GHC calling conv, and functions have no
1438 // prologue/epilogue.
1439 if (MF
.getFunction().getCallingConv() == CallingConv::GHC
)
1442 // Initial and residual are named for consistency with the prologue. Note that
1443 // in the epilogue, the residual adjustment is executed first.
1444 uint64_t ArgumentPopSize
= 0;
1445 if (IsTailCallReturn
) {
1446 MachineOperand
&StackAdjust
= MBBI
->getOperand(1);
1448 // For a tail-call in a callee-pops-arguments environment, some or all of
1449 // the stack may actually be in use for the call's arguments, this is
1450 // calculated during LowerCall and consumed here...
1451 ArgumentPopSize
= StackAdjust
.getImm();
1453 // ... otherwise the amount to pop is *all* of the argument space,
1454 // conveniently stored in the MachineFunctionInfo by
1455 // LowerFormalArguments. This will, of course, be zero for the C calling
1457 ArgumentPopSize
= AFI
->getArgumentStackToRestore();
1460 // The stack frame should be like below,
1462 // ---------------------- ---
1464 // | BytesInStackArgArea| CalleeArgStackSize
1465 // | (NumReusableBytes) | (of tail call)
1468 // ---------------------| --- |
1470 // | CalleeSavedReg | | |
1471 // | (CalleeSavedStackSize)| | |
1473 // ---------------------| | NumBytes
1474 // | | StackSize (StackAdjustUp)
1475 // | LocalStackSize | | |
1476 // | (covering callee | | |
1479 // ---------------------- --- ---
1481 // So NumBytes = StackSize + BytesInStackArgArea - CalleeArgStackSize
1482 // = StackSize + ArgumentPopSize
1484 // AArch64TargetLowering::LowerCall figures out ArgumentPopSize and keeps
1485 // it as the 2nd argument of AArch64ISD::TC_RETURN.
1487 auto Cleanup
= make_scope_exit([&] { InsertReturnAddressAuth(MF
, MBB
); });
1490 Subtarget
.isCallingConvWin64(MF
.getFunction().getCallingConv());
1491 // Var args are accounted for in the containing function, so don't
1492 // include them for funclets.
1493 unsigned FixedObject
=
1494 (IsWin64
&& !IsFunclet
) ? alignTo(AFI
->getVarArgsGPRSize(), 16) : 0;
1496 uint64_t AfterCSRPopSize
= ArgumentPopSize
;
1497 auto PrologueSaveSize
= AFI
->getCalleeSavedStackSize() + FixedObject
;
1498 // We cannot rely on the local stack size set in emitPrologue if the function
1499 // has funclets, as funclets have different local stack size requirements, and
1500 // the current value set in emitPrologue may be that of the containing
1502 if (MF
.hasEHFunclets())
1503 AFI
->setLocalStackSize(NumBytes
- PrologueSaveSize
);
1504 bool CombineSPBump
= shouldCombineCSRLocalStackBumpInEpilogue(MBB
, NumBytes
);
1505 // Assume we can't combine the last pop with the sp restore.
1507 if (!CombineSPBump
&& PrologueSaveSize
!= 0) {
1508 MachineBasicBlock::iterator Pop
= std::prev(MBB
.getFirstTerminator());
1509 while (AArch64InstrInfo::isSEHInstruction(*Pop
))
1510 Pop
= std::prev(Pop
);
1511 // Converting the last ldp to a post-index ldp is valid only if the last
1512 // ldp's offset is 0.
1513 const MachineOperand
&OffsetOp
= Pop
->getOperand(Pop
->getNumOperands() - 1);
1514 // If the offset is 0, convert it to a post-index ldp.
1515 if (OffsetOp
.getImm() == 0)
1516 convertCalleeSaveRestoreToSPPrePostIncDec(
1517 MBB
, Pop
, DL
, TII
, PrologueSaveSize
, NeedsWinCFI
, &HasWinCFI
, false);
1519 // If not, make sure to emit an add after the last ldp.
1520 // We're doing this by transfering the size to be restored from the
1521 // adjustment *before* the CSR pops to the adjustment *after* the CSR
1523 AfterCSRPopSize
+= PrologueSaveSize
;
1527 // Move past the restores of the callee-saved registers.
1528 // If we plan on combining the sp bump of the local stack size and the callee
1529 // save stack size, we might need to adjust the CSR save and restore offsets.
1530 MachineBasicBlock::iterator LastPopI
= MBB
.getFirstTerminator();
1531 MachineBasicBlock::iterator Begin
= MBB
.begin();
1532 while (LastPopI
!= Begin
) {
1534 if (!LastPopI
->getFlag(MachineInstr::FrameDestroy
) ||
1535 IsSVECalleeSave(LastPopI
)) {
1538 } else if (CombineSPBump
)
1539 fixupCalleeSaveRestoreStackOffset(*LastPopI
, AFI
->getLocalStackSize(),
1540 NeedsWinCFI
, &HasWinCFI
);
1545 BuildMI(MBB
, LastPopI
, DL
, TII
->get(AArch64::SEH_EpilogStart
))
1546 .setMIFlag(MachineInstr::FrameDestroy
);
1549 const StackOffset
&SVEStackSize
= getSVEStackSize(MF
);
1551 // If there is a single SP update, insert it before the ret and we're done.
1552 if (CombineSPBump
) {
1553 assert(!SVEStackSize
&& "Cannot combine SP bump with SVE");
1554 emitFrameOffset(MBB
, MBB
.getFirstTerminator(), DL
, AArch64::SP
, AArch64::SP
,
1555 {NumBytes
+ (int64_t)AfterCSRPopSize
, MVT::i8
}, TII
,
1556 MachineInstr::FrameDestroy
, false, NeedsWinCFI
, &HasWinCFI
);
1557 if (NeedsWinCFI
&& HasWinCFI
)
1558 BuildMI(MBB
, MBB
.getFirstTerminator(), DL
,
1559 TII
->get(AArch64::SEH_EpilogEnd
))
1560 .setMIFlag(MachineInstr::FrameDestroy
);
1564 NumBytes
-= PrologueSaveSize
;
1565 assert(NumBytes
>= 0 && "Negative stack allocation size!?");
1567 // Process the SVE callee-saves to determine what space needs to be
1569 StackOffset DeallocateBefore
= {}, DeallocateAfter
= SVEStackSize
;
1570 MachineBasicBlock::iterator RestoreBegin
= LastPopI
, RestoreEnd
= LastPopI
;
1571 if (AFI
->getSVECalleeSavedStackSize()) {
1572 RestoreBegin
= std::prev(RestoreEnd
);;
1573 while (IsSVECalleeSave(RestoreBegin
) &&
1574 RestoreBegin
!= MBB
.begin())
1578 assert(IsSVECalleeSave(RestoreBegin
) &&
1579 IsSVECalleeSave(std::prev(RestoreEnd
)) && "Unexpected instruction");
1581 int64_t OffsetToFirstCalleeSaveFromSP
=
1582 MFI
.getObjectOffset(AFI
->getMaxSVECSFrameIndex());
1583 StackOffset OffsetToCalleeSavesFromSP
=
1584 StackOffset(OffsetToFirstCalleeSaveFromSP
, MVT::nxv1i8
) + SVEStackSize
;
1585 DeallocateBefore
= OffsetToCalleeSavesFromSP
;
1586 DeallocateAfter
= SVEStackSize
- DeallocateBefore
;
1589 // Deallocate the SVE area.
1591 if (AFI
->isStackRealigned()) {
1592 if (AFI
->getSVECalleeSavedStackSize())
1593 // Set SP to start of SVE area, from which the callee-save reloads
1594 // can be done. The code below will deallocate the stack space
1595 // space by moving FP -> SP.
1596 emitFrameOffset(MBB
, RestoreBegin
, DL
, AArch64::SP
, AArch64::FP
,
1597 -SVEStackSize
, TII
, MachineInstr::FrameDestroy
);
1599 if (AFI
->getSVECalleeSavedStackSize()) {
1600 // Deallocate the non-SVE locals first before we can deallocate (and
1601 // restore callee saves) from the SVE area.
1602 emitFrameOffset(MBB
, RestoreBegin
, DL
, AArch64::SP
, AArch64::SP
,
1603 {NumBytes
, MVT::i8
}, TII
, MachineInstr::FrameDestroy
);
1607 emitFrameOffset(MBB
, RestoreBegin
, DL
, AArch64::SP
, AArch64::SP
,
1608 DeallocateBefore
, TII
, MachineInstr::FrameDestroy
);
1610 emitFrameOffset(MBB
, RestoreEnd
, DL
, AArch64::SP
, AArch64::SP
,
1611 DeallocateAfter
, TII
, MachineInstr::FrameDestroy
);
1616 bool RedZone
= canUseRedZone(MF
);
1617 // If this was a redzone leaf function, we don't need to restore the
1618 // stack pointer (but we may need to pop stack args for fastcc).
1619 if (RedZone
&& AfterCSRPopSize
== 0)
1622 bool NoCalleeSaveRestore
= PrologueSaveSize
== 0;
1623 int64_t StackRestoreBytes
= RedZone
? 0 : NumBytes
;
1624 if (NoCalleeSaveRestore
)
1625 StackRestoreBytes
+= AfterCSRPopSize
;
1627 // If we were able to combine the local stack pop with the argument pop,
1629 bool Done
= NoCalleeSaveRestore
|| AfterCSRPopSize
== 0;
1631 // If we're done after this, make sure to help the load store optimizer.
1633 adaptForLdStOpt(MBB
, MBB
.getFirstTerminator(), LastPopI
);
1635 emitFrameOffset(MBB
, LastPopI
, DL
, AArch64::SP
, AArch64::SP
,
1636 {StackRestoreBytes
, MVT::i8
}, TII
,
1637 MachineInstr::FrameDestroy
, false, NeedsWinCFI
, &HasWinCFI
);
1641 BuildMI(MBB
, MBB
.getFirstTerminator(), DL
,
1642 TII
->get(AArch64::SEH_EpilogEnd
))
1643 .setMIFlag(MachineInstr::FrameDestroy
);
1651 // Restore the original stack pointer.
1652 // FIXME: Rather than doing the math here, we should instead just use
1653 // non-post-indexed loads for the restores if we aren't actually going to
1654 // be able to save any instructions.
1655 if (!IsFunclet
&& (MFI
.hasVarSizedObjects() || AFI
->isStackRealigned())) {
1656 int64_t OffsetToFrameRecord
=
1657 isTargetDarwin(MF
) ? (-(int64_t)AFI
->getCalleeSavedStackSize() + 16) : 0;
1658 emitFrameOffset(MBB
, LastPopI
, DL
, AArch64::SP
, AArch64::FP
,
1659 {OffsetToFrameRecord
, MVT::i8
},
1660 TII
, MachineInstr::FrameDestroy
, false, NeedsWinCFI
);
1661 } else if (NumBytes
)
1662 emitFrameOffset(MBB
, LastPopI
, DL
, AArch64::SP
, AArch64::SP
,
1663 {NumBytes
, MVT::i8
}, TII
, MachineInstr::FrameDestroy
, false,
1666 // This must be placed after the callee-save restore code because that code
1667 // assumes the SP is at the same location as it was after the callee-save save
1668 // code in the prologue.
1669 if (AfterCSRPopSize
) {
1670 // Find an insertion point for the first ldp so that it goes before the
1671 // shadow call stack epilog instruction. This ensures that the restore of
1672 // lr from x18 is placed after the restore from sp.
1673 auto FirstSPPopI
= MBB
.getFirstTerminator();
1674 while (FirstSPPopI
!= Begin
) {
1675 auto Prev
= std::prev(FirstSPPopI
);
1676 if (Prev
->getOpcode() != AArch64::LDRXpre
||
1677 Prev
->getOperand(0).getReg() == AArch64::SP
)
1682 adaptForLdStOpt(MBB
, FirstSPPopI
, LastPopI
);
1684 emitFrameOffset(MBB
, FirstSPPopI
, DL
, AArch64::SP
, AArch64::SP
,
1685 {(int64_t)AfterCSRPopSize
, MVT::i8
}, TII
,
1686 MachineInstr::FrameDestroy
, false, NeedsWinCFI
, &HasWinCFI
);
1688 if (NeedsWinCFI
&& HasWinCFI
)
1689 BuildMI(MBB
, MBB
.getFirstTerminator(), DL
, TII
->get(AArch64::SEH_EpilogEnd
))
1690 .setMIFlag(MachineInstr::FrameDestroy
);
1692 MF
.setHasWinCFI(HasWinCFI
);
1695 /// getFrameIndexReference - Provide a base+offset reference to an FI slot for
1696 /// debug info. It's the same as what we use for resolving the code-gen
1697 /// references for now. FIXME: This can go wrong when references are
1698 /// SP-relative and simple call frames aren't used.
1699 int AArch64FrameLowering::getFrameIndexReference(const MachineFunction
&MF
,
1701 unsigned &FrameReg
) const {
1702 return resolveFrameIndexReference(
1705 MF
.getFunction().hasFnAttribute(Attribute::SanitizeHWAddress
),
1710 int AArch64FrameLowering::getNonLocalFrameIndexReference(
1711 const MachineFunction
&MF
, int FI
) const {
1712 return getSEHFrameIndexOffset(MF
, FI
);
1715 static StackOffset
getFPOffset(const MachineFunction
&MF
, int64_t ObjectOffset
) {
1716 const auto *AFI
= MF
.getInfo
<AArch64FunctionInfo
>();
1717 const auto &Subtarget
= MF
.getSubtarget
<AArch64Subtarget
>();
1719 Subtarget
.isCallingConvWin64(MF
.getFunction().getCallingConv());
1720 unsigned FixedObject
= IsWin64
? alignTo(AFI
->getVarArgsGPRSize(), 16) : 0;
1721 unsigned FPAdjust
= isTargetDarwin(MF
)
1722 ? 16 : AFI
->getCalleeSavedStackSize(MF
.getFrameInfo());
1723 return {ObjectOffset
+ FixedObject
+ FPAdjust
, MVT::i8
};
1726 static StackOffset
getStackOffset(const MachineFunction
&MF
, int64_t ObjectOffset
) {
1727 const auto &MFI
= MF
.getFrameInfo();
1728 return {ObjectOffset
+ (int64_t)MFI
.getStackSize(), MVT::i8
};
1731 int AArch64FrameLowering::getSEHFrameIndexOffset(const MachineFunction
&MF
,
1733 const auto *RegInfo
= static_cast<const AArch64RegisterInfo
*>(
1734 MF
.getSubtarget().getRegisterInfo());
1735 int ObjectOffset
= MF
.getFrameInfo().getObjectOffset(FI
);
1736 return RegInfo
->getLocalAddressRegister(MF
) == AArch64::FP
1737 ? getFPOffset(MF
, ObjectOffset
).getBytes()
1738 : getStackOffset(MF
, ObjectOffset
).getBytes();
1741 StackOffset
AArch64FrameLowering::resolveFrameIndexReference(
1742 const MachineFunction
&MF
, int FI
, unsigned &FrameReg
, bool PreferFP
,
1743 bool ForSimm
) const {
1744 const auto &MFI
= MF
.getFrameInfo();
1745 int64_t ObjectOffset
= MFI
.getObjectOffset(FI
);
1746 bool isFixed
= MFI
.isFixedObjectIndex(FI
);
1747 bool isSVE
= MFI
.getStackID(FI
) == TargetStackID::SVEVector
;
1748 return resolveFrameOffsetReference(MF
, ObjectOffset
, isFixed
, isSVE
, FrameReg
,
1752 StackOffset
AArch64FrameLowering::resolveFrameOffsetReference(
1753 const MachineFunction
&MF
, int64_t ObjectOffset
, bool isFixed
, bool isSVE
,
1754 unsigned &FrameReg
, bool PreferFP
, bool ForSimm
) const {
1755 const auto &MFI
= MF
.getFrameInfo();
1756 const auto *RegInfo
= static_cast<const AArch64RegisterInfo
*>(
1757 MF
.getSubtarget().getRegisterInfo());
1758 const auto *AFI
= MF
.getInfo
<AArch64FunctionInfo
>();
1759 const auto &Subtarget
= MF
.getSubtarget
<AArch64Subtarget
>();
1761 int64_t FPOffset
= getFPOffset(MF
, ObjectOffset
).getBytes();
1762 int64_t Offset
= getStackOffset(MF
, ObjectOffset
).getBytes();
1764 !isFixed
&& ObjectOffset
>= -((int)AFI
->getCalleeSavedStackSize(MFI
));
1766 const StackOffset
&SVEStackSize
= getSVEStackSize(MF
);
1768 // Use frame pointer to reference fixed objects. Use it for locals if
1769 // there are VLAs or a dynamically realigned SP (and thus the SP isn't
1770 // reliable as a base). Make sure useFPForScavengingIndex() does the
1771 // right thing for the emergency spill slot.
1773 if (AFI
->hasStackFrame() && !isSVE
) {
1774 // We shouldn't prefer using the FP when there is an SVE area
1775 // in between the FP and the non-SVE locals/spills.
1776 PreferFP
&= !SVEStackSize
;
1778 // Note: Keeping the following as multiple 'if' statements rather than
1779 // merging to a single expression for readability.
1781 // Argument access should always use the FP.
1784 } else if (isCSR
&& RegInfo
->needsStackRealignment(MF
)) {
1785 // References to the CSR area must use FP if we're re-aligning the stack
1786 // since the dynamically-sized alignment padding is between the SP/BP and
1788 assert(hasFP(MF
) && "Re-aligned stack must have frame pointer");
1790 } else if (hasFP(MF
) && !RegInfo
->needsStackRealignment(MF
)) {
1791 // If the FPOffset is negative and we're producing a signed immediate, we
1792 // have to keep in mind that the available offset range for negative
1793 // offsets is smaller than for positive ones. If an offset is available
1794 // via the FP and the SP, use whichever is closest.
1795 bool FPOffsetFits
= !ForSimm
|| FPOffset
>= -256;
1796 PreferFP
|= Offset
> -FPOffset
;
1798 if (MFI
.hasVarSizedObjects()) {
1799 // If we have variable sized objects, we can use either FP or BP, as the
1800 // SP offset is unknown. We can use the base pointer if we have one and
1801 // FP is not preferred. If not, we're stuck with using FP.
1802 bool CanUseBP
= RegInfo
->hasBasePointer(MF
);
1803 if (FPOffsetFits
&& CanUseBP
) // Both are ok. Pick the best.
1805 else if (!CanUseBP
) { // Can't use BP. Forced to use FP.
1806 assert(!SVEStackSize
&& "Expected BP to be available");
1809 // else we can use BP and FP, but the offset from FP won't fit.
1810 // That will make us scavenge registers which we can probably avoid by
1811 // using BP. If it won't fit for BP either, we'll scavenge anyway.
1812 } else if (FPOffset
>= 0) {
1813 // Use SP or FP, whichever gives us the best chance of the offset
1814 // being in range for direct access. If the FPOffset is positive,
1815 // that'll always be best, as the SP will be even further away.
1817 } else if (MF
.hasEHFunclets() && !RegInfo
->hasBasePointer(MF
)) {
1818 // Funclets access the locals contained in the parent's stack frame
1819 // via the frame pointer, so we have to use the FP in the parent
1823 Subtarget
.isCallingConvWin64(MF
.getFunction().getCallingConv()) &&
1824 "Funclets should only be present on Win64");
1827 // We have the choice between FP and (SP or BP).
1828 if (FPOffsetFits
&& PreferFP
) // If FP is the best fit, use it.
1834 assert(((isFixed
|| isCSR
) || !RegInfo
->needsStackRealignment(MF
) || !UseFP
) &&
1835 "In the presence of dynamic stack pointer realignment, "
1836 "non-argument/CSR objects cannot be accessed through the frame pointer");
1839 int64_t OffsetToSVEArea
=
1840 MFI
.getStackSize() - AFI
->getCalleeSavedStackSize();
1841 StackOffset FPOffset
= {ObjectOffset
, MVT::nxv1i8
};
1842 StackOffset SPOffset
= SVEStackSize
+
1843 StackOffset(ObjectOffset
, MVT::nxv1i8
) +
1844 StackOffset(OffsetToSVEArea
, MVT::i8
);
1845 // Always use the FP for SVE spills if available and beneficial.
1847 (SPOffset
.getBytes() ||
1848 FPOffset
.getScalableBytes() < SPOffset
.getScalableBytes() ||
1849 RegInfo
->needsStackRealignment(MF
))) {
1850 FrameReg
= RegInfo
->getFrameRegister(MF
);
1854 FrameReg
= RegInfo
->hasBasePointer(MF
) ? RegInfo
->getBaseRegister()
1855 : (unsigned)AArch64::SP
;
1859 StackOffset ScalableOffset
= {};
1860 if (UseFP
&& !(isFixed
|| isCSR
))
1861 ScalableOffset
= -SVEStackSize
;
1862 if (!UseFP
&& (isFixed
|| isCSR
))
1863 ScalableOffset
= SVEStackSize
;
1866 FrameReg
= RegInfo
->getFrameRegister(MF
);
1867 return StackOffset(FPOffset
, MVT::i8
) + ScalableOffset
;
1870 // Use the base pointer if we have one.
1871 if (RegInfo
->hasBasePointer(MF
))
1872 FrameReg
= RegInfo
->getBaseRegister();
1874 assert(!MFI
.hasVarSizedObjects() &&
1875 "Can't use SP when we have var sized objects.");
1876 FrameReg
= AArch64::SP
;
1877 // If we're using the red zone for this function, the SP won't actually
1878 // be adjusted, so the offsets will be negative. They're also all
1879 // within range of the signed 9-bit immediate instructions.
1880 if (canUseRedZone(MF
))
1881 Offset
-= AFI
->getLocalStackSize();
1884 return StackOffset(Offset
, MVT::i8
) + ScalableOffset
;
1887 static unsigned getPrologueDeath(MachineFunction
&MF
, unsigned Reg
) {
1888 // Do not set a kill flag on values that are also marked as live-in. This
1889 // happens with the @llvm-returnaddress intrinsic and with arguments passed in
1890 // callee saved registers.
1891 // Omitting the kill flags is conservatively correct even if the live-in
1892 // is not used after all.
1893 bool IsLiveIn
= MF
.getRegInfo().isLiveIn(Reg
);
1894 return getKillRegState(!IsLiveIn
);
1897 static bool produceCompactUnwindFrame(MachineFunction
&MF
) {
1898 const AArch64Subtarget
&Subtarget
= MF
.getSubtarget
<AArch64Subtarget
>();
1899 AttributeList Attrs
= MF
.getFunction().getAttributes();
1900 return Subtarget
.isTargetMachO() &&
1901 !(Subtarget
.getTargetLowering()->supportSwiftError() &&
1902 Attrs
.hasAttrSomewhere(Attribute::SwiftError
));
1905 static bool invalidateWindowsRegisterPairing(unsigned Reg1
, unsigned Reg2
,
1907 // If we are generating register pairs for a Windows function that requires
1908 // EH support, then pair consecutive registers only. There are no unwind
1909 // opcodes for saves/restores of non-consectuve register pairs.
1910 // The unwind opcodes are save_regp, save_regp_x, save_fregp, save_frepg_x.
1911 // https://docs.microsoft.com/en-us/cpp/build/arm64-exception-handling
1913 // TODO: LR can be paired with any register. We don't support this yet in
1914 // the MCLayer. We need to add support for the save_lrpair unwind code.
1915 if (Reg2
== AArch64::FP
)
1919 if (Reg2
== Reg1
+ 1)
1924 /// Returns true if Reg1 and Reg2 cannot be paired using a ldp/stp instruction.
1925 /// WindowsCFI requires that only consecutive registers can be paired.
1926 /// LR and FP need to be allocated together when the frame needs to save
1927 /// the frame-record. This means any other register pairing with LR is invalid.
1928 static bool invalidateRegisterPairing(unsigned Reg1
, unsigned Reg2
,
1929 bool UsesWinAAPCS
, bool NeedsWinCFI
, bool NeedsFrameRecord
) {
1931 return invalidateWindowsRegisterPairing(Reg1
, Reg2
, NeedsWinCFI
);
1933 // If we need to store the frame record, don't pair any register
1934 // with LR other than FP.
1935 if (NeedsFrameRecord
)
1936 return Reg2
== AArch64::LR
;
1943 struct RegPairInfo
{
1944 unsigned Reg1
= AArch64::NoRegister
;
1945 unsigned Reg2
= AArch64::NoRegister
;
1948 enum RegType
{ GPR
, FPR64
, FPR128
, PPR
, ZPR
} Type
;
1950 RegPairInfo() = default;
1952 bool isPaired() const { return Reg2
!= AArch64::NoRegister
; }
1954 unsigned getScale() const {
1965 llvm_unreachable("Unsupported type");
1968 bool isScalable() const { return Type
== PPR
|| Type
== ZPR
; }
1971 } // end anonymous namespace
1973 static void computeCalleeSaveRegisterPairs(
1974 MachineFunction
&MF
, const std::vector
<CalleeSavedInfo
> &CSI
,
1975 const TargetRegisterInfo
*TRI
, SmallVectorImpl
<RegPairInfo
> &RegPairs
,
1976 bool &NeedShadowCallStackProlog
, bool NeedsFrameRecord
) {
1981 bool IsWindows
= isTargetWindows(MF
);
1982 bool NeedsWinCFI
= needsWinCFI(MF
);
1983 AArch64FunctionInfo
*AFI
= MF
.getInfo
<AArch64FunctionInfo
>();
1984 MachineFrameInfo
&MFI
= MF
.getFrameInfo();
1985 CallingConv::ID CC
= MF
.getFunction().getCallingConv();
1986 unsigned Count
= CSI
.size();
1988 // MachO's compact unwind format relies on all registers being stored in
1990 assert((!produceCompactUnwindFrame(MF
) ||
1991 CC
== CallingConv::PreserveMost
||
1992 (Count
& 1) == 0) &&
1993 "Odd number of callee-saved regs to spill!");
1994 int ByteOffset
= AFI
->getCalleeSavedStackSize();
1995 int ScalableByteOffset
= AFI
->getSVECalleeSavedStackSize();
1996 // On Linux, we will have either one or zero non-paired register. On Windows
1997 // with CFI, we can have multiple unpaired registers in order to utilize the
1998 // available unwind codes. This flag assures that the alignment fixup is done
1999 // only once, as intened.
2000 bool FixupDone
= false;
2001 for (unsigned i
= 0; i
< Count
; ++i
) {
2003 RPI
.Reg1
= CSI
[i
].getReg();
2005 if (AArch64::GPR64RegClass
.contains(RPI
.Reg1
))
2006 RPI
.Type
= RegPairInfo::GPR
;
2007 else if (AArch64::FPR64RegClass
.contains(RPI
.Reg1
))
2008 RPI
.Type
= RegPairInfo::FPR64
;
2009 else if (AArch64::FPR128RegClass
.contains(RPI
.Reg1
))
2010 RPI
.Type
= RegPairInfo::FPR128
;
2011 else if (AArch64::ZPRRegClass
.contains(RPI
.Reg1
))
2012 RPI
.Type
= RegPairInfo::ZPR
;
2013 else if (AArch64::PPRRegClass
.contains(RPI
.Reg1
))
2014 RPI
.Type
= RegPairInfo::PPR
;
2016 llvm_unreachable("Unsupported register class.");
2018 // Add the next reg to the pair if it is in the same register class.
2019 if (i
+ 1 < Count
) {
2020 unsigned NextReg
= CSI
[i
+ 1].getReg();
2022 case RegPairInfo::GPR
:
2023 if (AArch64::GPR64RegClass
.contains(NextReg
) &&
2024 !invalidateRegisterPairing(RPI
.Reg1
, NextReg
, IsWindows
, NeedsWinCFI
,
2028 case RegPairInfo::FPR64
:
2029 if (AArch64::FPR64RegClass
.contains(NextReg
) &&
2030 !invalidateWindowsRegisterPairing(RPI
.Reg1
, NextReg
, NeedsWinCFI
))
2033 case RegPairInfo::FPR128
:
2034 if (AArch64::FPR128RegClass
.contains(NextReg
))
2037 case RegPairInfo::PPR
:
2038 case RegPairInfo::ZPR
:
2043 // If either of the registers to be saved is the lr register, it means that
2044 // we also need to save lr in the shadow call stack.
2045 if ((RPI
.Reg1
== AArch64::LR
|| RPI
.Reg2
== AArch64::LR
) &&
2046 MF
.getFunction().hasFnAttribute(Attribute::ShadowCallStack
)) {
2047 if (!MF
.getSubtarget
<AArch64Subtarget
>().isXRegisterReserved(18))
2048 report_fatal_error("Must reserve x18 to use shadow call stack");
2049 NeedShadowCallStackProlog
= true;
2052 // GPRs and FPRs are saved in pairs of 64-bit regs. We expect the CSI
2053 // list to come in sorted by frame index so that we can issue the store
2054 // pair instructions directly. Assert if we see anything otherwise.
2056 // The order of the registers in the list is controlled by
2057 // getCalleeSavedRegs(), so they will always be in-order, as well.
2058 assert((!RPI
.isPaired() ||
2059 (CSI
[i
].getFrameIdx() + 1 == CSI
[i
+ 1].getFrameIdx())) &&
2060 "Out of order callee saved regs!");
2062 assert((!RPI
.isPaired() || !NeedsFrameRecord
|| RPI
.Reg2
!= AArch64::FP
||
2063 RPI
.Reg1
== AArch64::LR
) &&
2064 "FrameRecord must be allocated together with LR");
2066 // Windows AAPCS has FP and LR reversed.
2067 assert((!RPI
.isPaired() || !NeedsFrameRecord
|| RPI
.Reg1
!= AArch64::FP
||
2068 RPI
.Reg2
== AArch64::LR
) &&
2069 "FrameRecord must be allocated together with LR");
2071 // MachO's compact unwind format relies on all registers being stored in
2072 // adjacent register pairs.
2073 assert((!produceCompactUnwindFrame(MF
) ||
2074 CC
== CallingConv::PreserveMost
||
2076 ((RPI
.Reg1
== AArch64::LR
&& RPI
.Reg2
== AArch64::FP
) ||
2077 RPI
.Reg1
+ 1 == RPI
.Reg2
))) &&
2078 "Callee-save registers not saved as adjacent register pair!");
2080 RPI
.FrameIdx
= CSI
[i
].getFrameIdx();
2082 int Scale
= RPI
.getScale();
2083 if (RPI
.isScalable())
2084 ScalableByteOffset
-= Scale
;
2086 ByteOffset
-= RPI
.isPaired() ? 2 * Scale
: Scale
;
2088 assert(!(RPI
.isScalable() && RPI
.isPaired()) &&
2089 "Paired spill/fill instructions don't exist for SVE vectors");
2091 // Round up size of non-pair to pair size if we need to pad the
2092 // callee-save area to ensure 16-byte alignment.
2093 if (AFI
->hasCalleeSaveStackFreeSpace() && !FixupDone
&&
2094 !RPI
.isScalable() && RPI
.Type
!= RegPairInfo::FPR128
&&
2098 assert(ByteOffset
% 16 == 0);
2099 assert(MFI
.getObjectAlignment(RPI
.FrameIdx
) <= 16);
2100 MFI
.setObjectAlignment(RPI
.FrameIdx
, 16);
2103 int Offset
= RPI
.isScalable() ? ScalableByteOffset
: ByteOffset
;
2104 assert(Offset
% Scale
== 0);
2105 RPI
.Offset
= Offset
/ Scale
;
2107 assert(((!RPI
.isScalable() && RPI
.Offset
>= -64 && RPI
.Offset
<= 63) ||
2108 (RPI
.isScalable() && RPI
.Offset
>= -256 && RPI
.Offset
<= 255)) &&
2109 "Offset out of bounds for LDP/STP immediate");
2111 RegPairs
.push_back(RPI
);
2117 bool AArch64FrameLowering::spillCalleeSavedRegisters(
2118 MachineBasicBlock
&MBB
, MachineBasicBlock::iterator MI
,
2119 const std::vector
<CalleeSavedInfo
> &CSI
,
2120 const TargetRegisterInfo
*TRI
) const {
2121 MachineFunction
&MF
= *MBB
.getParent();
2122 const TargetInstrInfo
&TII
= *MF
.getSubtarget().getInstrInfo();
2123 bool NeedsWinCFI
= needsWinCFI(MF
);
2125 SmallVector
<RegPairInfo
, 8> RegPairs
;
2127 bool NeedShadowCallStackProlog
= false;
2128 computeCalleeSaveRegisterPairs(MF
, CSI
, TRI
, RegPairs
,
2129 NeedShadowCallStackProlog
, hasFP(MF
));
2130 const MachineRegisterInfo
&MRI
= MF
.getRegInfo();
2132 if (NeedShadowCallStackProlog
) {
2133 // Shadow call stack prolog: str x30, [x18], #8
2134 BuildMI(MBB
, MI
, DL
, TII
.get(AArch64::STRXpost
))
2135 .addReg(AArch64::X18
, RegState::Define
)
2136 .addReg(AArch64::LR
)
2137 .addReg(AArch64::X18
)
2139 .setMIFlag(MachineInstr::FrameSetup
);
2142 BuildMI(MBB
, MI
, DL
, TII
.get(AArch64::SEH_Nop
))
2143 .setMIFlag(MachineInstr::FrameSetup
);
2145 if (!MF
.getFunction().hasFnAttribute(Attribute::NoUnwind
)) {
2146 // Emit a CFI instruction that causes 8 to be subtracted from the value of
2147 // x18 when unwinding past this frame.
2148 static const char CFIInst
[] = {
2149 dwarf::DW_CFA_val_expression
,
2152 static_cast<char>(unsigned(dwarf::DW_OP_breg18
)),
2153 static_cast<char>(-8) & 0x7f, // addend (sleb128)
2155 unsigned CFIIndex
= MF
.addFrameInst(MCCFIInstruction::createEscape(
2156 nullptr, StringRef(CFIInst
, sizeof(CFIInst
))));
2157 BuildMI(MBB
, MI
, DL
, TII
.get(AArch64::CFI_INSTRUCTION
))
2158 .addCFIIndex(CFIIndex
)
2159 .setMIFlag(MachineInstr::FrameSetup
);
2162 // This instruction also makes x18 live-in to the entry block.
2163 MBB
.addLiveIn(AArch64::X18
);
2166 for (auto RPII
= RegPairs
.rbegin(), RPIE
= RegPairs
.rend(); RPII
!= RPIE
;
2168 RegPairInfo RPI
= *RPII
;
2169 unsigned Reg1
= RPI
.Reg1
;
2170 unsigned Reg2
= RPI
.Reg2
;
2173 // Issue sequence of spills for cs regs. The first spill may be converted
2174 // to a pre-decrement store later by emitPrologue if the callee-save stack
2175 // area allocation can't be combined with the local stack area allocation.
2177 // stp x22, x21, [sp, #0] // addImm(+0)
2178 // stp x20, x19, [sp, #16] // addImm(+2)
2179 // stp fp, lr, [sp, #32] // addImm(+4)
2180 // Rationale: This sequence saves uop updates compared to a sequence of
2181 // pre-increment spills like stp xi,xj,[sp,#-16]!
2182 // Note: Similar rationale and sequence for restores in epilog.
2183 unsigned Size
, Align
;
2185 case RegPairInfo::GPR
:
2186 StrOpc
= RPI
.isPaired() ? AArch64::STPXi
: AArch64::STRXui
;
2190 case RegPairInfo::FPR64
:
2191 StrOpc
= RPI
.isPaired() ? AArch64::STPDi
: AArch64::STRDui
;
2195 case RegPairInfo::FPR128
:
2196 StrOpc
= RPI
.isPaired() ? AArch64::STPQi
: AArch64::STRQui
;
2200 case RegPairInfo::ZPR
:
2201 StrOpc
= AArch64::STR_ZXI
;
2205 case RegPairInfo::PPR
:
2206 StrOpc
= AArch64::STR_PXI
;
2211 LLVM_DEBUG(dbgs() << "CSR spill: (" << printReg(Reg1
, TRI
);
2212 if (RPI
.isPaired()) dbgs() << ", " << printReg(Reg2
, TRI
);
2213 dbgs() << ") -> fi#(" << RPI
.FrameIdx
;
2214 if (RPI
.isPaired()) dbgs() << ", " << RPI
.FrameIdx
+ 1;
2217 assert((!NeedsWinCFI
|| !(Reg1
== AArch64::LR
&& Reg2
== AArch64::FP
)) &&
2218 "Windows unwdinding requires a consecutive (FP,LR) pair");
2219 // Windows unwind codes require consecutive registers if registers are
2220 // paired. Make the switch here, so that the code below will save (x,x+1)
2222 unsigned FrameIdxReg1
= RPI
.FrameIdx
;
2223 unsigned FrameIdxReg2
= RPI
.FrameIdx
+ 1;
2224 if (NeedsWinCFI
&& RPI
.isPaired()) {
2225 std::swap(Reg1
, Reg2
);
2226 std::swap(FrameIdxReg1
, FrameIdxReg2
);
2228 MachineInstrBuilder MIB
= BuildMI(MBB
, MI
, DL
, TII
.get(StrOpc
));
2229 if (!MRI
.isReserved(Reg1
))
2230 MBB
.addLiveIn(Reg1
);
2231 if (RPI
.isPaired()) {
2232 if (!MRI
.isReserved(Reg2
))
2233 MBB
.addLiveIn(Reg2
);
2234 MIB
.addReg(Reg2
, getPrologueDeath(MF
, Reg2
));
2235 MIB
.addMemOperand(MF
.getMachineMemOperand(
2236 MachinePointerInfo::getFixedStack(MF
, FrameIdxReg2
),
2237 MachineMemOperand::MOStore
, Size
, Align
));
2239 MIB
.addReg(Reg1
, getPrologueDeath(MF
, Reg1
))
2240 .addReg(AArch64::SP
)
2241 .addImm(RPI
.Offset
) // [sp, #offset*scale],
2242 // where factor*scale is implicit
2243 .setMIFlag(MachineInstr::FrameSetup
);
2244 MIB
.addMemOperand(MF
.getMachineMemOperand(
2245 MachinePointerInfo::getFixedStack(MF
,FrameIdxReg1
),
2246 MachineMemOperand::MOStore
, Size
, Align
));
2248 InsertSEH(MIB
, TII
, MachineInstr::FrameSetup
);
2250 // Update the StackIDs of the SVE stack slots.
2251 MachineFrameInfo
&MFI
= MF
.getFrameInfo();
2252 if (RPI
.Type
== RegPairInfo::ZPR
|| RPI
.Type
== RegPairInfo::PPR
)
2253 MFI
.setStackID(RPI
.FrameIdx
, TargetStackID::SVEVector
);
2259 bool AArch64FrameLowering::restoreCalleeSavedRegisters(
2260 MachineBasicBlock
&MBB
, MachineBasicBlock::iterator MI
,
2261 std::vector
<CalleeSavedInfo
> &CSI
,
2262 const TargetRegisterInfo
*TRI
) const {
2263 MachineFunction
&MF
= *MBB
.getParent();
2264 const TargetInstrInfo
&TII
= *MF
.getSubtarget().getInstrInfo();
2266 SmallVector
<RegPairInfo
, 8> RegPairs
;
2267 bool NeedsWinCFI
= needsWinCFI(MF
);
2269 if (MI
!= MBB
.end())
2270 DL
= MI
->getDebugLoc();
2272 bool NeedShadowCallStackProlog
= false;
2273 computeCalleeSaveRegisterPairs(MF
, CSI
, TRI
, RegPairs
,
2274 NeedShadowCallStackProlog
, hasFP(MF
));
2276 auto EmitMI
= [&](const RegPairInfo
&RPI
) {
2277 unsigned Reg1
= RPI
.Reg1
;
2278 unsigned Reg2
= RPI
.Reg2
;
2280 // Issue sequence of restores for cs regs. The last restore may be converted
2281 // to a post-increment load later by emitEpilogue if the callee-save stack
2282 // area allocation can't be combined with the local stack area allocation.
2284 // ldp fp, lr, [sp, #32] // addImm(+4)
2285 // ldp x20, x19, [sp, #16] // addImm(+2)
2286 // ldp x22, x21, [sp, #0] // addImm(+0)
2287 // Note: see comment in spillCalleeSavedRegisters()
2289 unsigned Size
, Align
;
2291 case RegPairInfo::GPR
:
2292 LdrOpc
= RPI
.isPaired() ? AArch64::LDPXi
: AArch64::LDRXui
;
2296 case RegPairInfo::FPR64
:
2297 LdrOpc
= RPI
.isPaired() ? AArch64::LDPDi
: AArch64::LDRDui
;
2301 case RegPairInfo::FPR128
:
2302 LdrOpc
= RPI
.isPaired() ? AArch64::LDPQi
: AArch64::LDRQui
;
2306 case RegPairInfo::ZPR
:
2307 LdrOpc
= AArch64::LDR_ZXI
;
2311 case RegPairInfo::PPR
:
2312 LdrOpc
= AArch64::LDR_PXI
;
2317 LLVM_DEBUG(dbgs() << "CSR restore: (" << printReg(Reg1
, TRI
);
2318 if (RPI
.isPaired()) dbgs() << ", " << printReg(Reg2
, TRI
);
2319 dbgs() << ") -> fi#(" << RPI
.FrameIdx
;
2320 if (RPI
.isPaired()) dbgs() << ", " << RPI
.FrameIdx
+ 1;
2323 // Windows unwind codes require consecutive registers if registers are
2324 // paired. Make the switch here, so that the code below will save (x,x+1)
2326 unsigned FrameIdxReg1
= RPI
.FrameIdx
;
2327 unsigned FrameIdxReg2
= RPI
.FrameIdx
+ 1;
2328 if (NeedsWinCFI
&& RPI
.isPaired()) {
2329 std::swap(Reg1
, Reg2
);
2330 std::swap(FrameIdxReg1
, FrameIdxReg2
);
2332 MachineInstrBuilder MIB
= BuildMI(MBB
, MI
, DL
, TII
.get(LdrOpc
));
2333 if (RPI
.isPaired()) {
2334 MIB
.addReg(Reg2
, getDefRegState(true));
2335 MIB
.addMemOperand(MF
.getMachineMemOperand(
2336 MachinePointerInfo::getFixedStack(MF
, FrameIdxReg2
),
2337 MachineMemOperand::MOLoad
, Size
, Align
));
2339 MIB
.addReg(Reg1
, getDefRegState(true))
2340 .addReg(AArch64::SP
)
2341 .addImm(RPI
.Offset
) // [sp, #offset*scale]
2342 // where factor*scale is implicit
2343 .setMIFlag(MachineInstr::FrameDestroy
);
2344 MIB
.addMemOperand(MF
.getMachineMemOperand(
2345 MachinePointerInfo::getFixedStack(MF
, FrameIdxReg1
),
2346 MachineMemOperand::MOLoad
, Size
, Align
));
2348 InsertSEH(MIB
, TII
, MachineInstr::FrameDestroy
);
2351 // SVE objects are always restored in reverse order.
2352 for (const RegPairInfo
&RPI
: reverse(RegPairs
))
2353 if (RPI
.isScalable())
2356 if (ReverseCSRRestoreSeq
) {
2357 for (const RegPairInfo
&RPI
: reverse(RegPairs
))
2358 if (!RPI
.isScalable())
2361 for (const RegPairInfo
&RPI
: RegPairs
)
2362 if (!RPI
.isScalable())
2365 if (NeedShadowCallStackProlog
) {
2366 // Shadow call stack epilog: ldr x30, [x18, #-8]!
2367 BuildMI(MBB
, MI
, DL
, TII
.get(AArch64::LDRXpre
))
2368 .addReg(AArch64::X18
, RegState::Define
)
2369 .addReg(AArch64::LR
, RegState::Define
)
2370 .addReg(AArch64::X18
)
2372 .setMIFlag(MachineInstr::FrameDestroy
);
2378 void AArch64FrameLowering::determineCalleeSaves(MachineFunction
&MF
,
2379 BitVector
&SavedRegs
,
2380 RegScavenger
*RS
) const {
2381 // All calls are tail calls in GHC calling conv, and functions have no
2382 // prologue/epilogue.
2383 if (MF
.getFunction().getCallingConv() == CallingConv::GHC
)
2386 TargetFrameLowering::determineCalleeSaves(MF
, SavedRegs
, RS
);
2387 const AArch64RegisterInfo
*RegInfo
= static_cast<const AArch64RegisterInfo
*>(
2388 MF
.getSubtarget().getRegisterInfo());
2389 AArch64FunctionInfo
*AFI
= MF
.getInfo
<AArch64FunctionInfo
>();
2390 unsigned UnspilledCSGPR
= AArch64::NoRegister
;
2391 unsigned UnspilledCSGPRPaired
= AArch64::NoRegister
;
2393 MachineFrameInfo
&MFI
= MF
.getFrameInfo();
2394 const MCPhysReg
*CSRegs
= MF
.getRegInfo().getCalleeSavedRegs();
2396 unsigned BasePointerReg
= RegInfo
->hasBasePointer(MF
)
2397 ? RegInfo
->getBaseRegister()
2398 : (unsigned)AArch64::NoRegister
;
2400 unsigned ExtraCSSpill
= 0;
2401 // Figure out which callee-saved registers to save/restore.
2402 for (unsigned i
= 0; CSRegs
[i
]; ++i
) {
2403 const unsigned Reg
= CSRegs
[i
];
2405 // Add the base pointer register to SavedRegs if it is callee-save.
2406 if (Reg
== BasePointerReg
)
2409 bool RegUsed
= SavedRegs
.test(Reg
);
2410 unsigned PairedReg
= AArch64::NoRegister
;
2411 if (AArch64::GPR64RegClass
.contains(Reg
) ||
2412 AArch64::FPR64RegClass
.contains(Reg
) ||
2413 AArch64::FPR128RegClass
.contains(Reg
))
2414 PairedReg
= CSRegs
[i
^ 1];
2417 if (AArch64::GPR64RegClass
.contains(Reg
) &&
2418 !RegInfo
->isReservedReg(MF
, Reg
)) {
2419 UnspilledCSGPR
= Reg
;
2420 UnspilledCSGPRPaired
= PairedReg
;
2425 // MachO's compact unwind format relies on all registers being stored in
2427 // FIXME: the usual format is actually better if unwinding isn't needed.
2428 if (produceCompactUnwindFrame(MF
) && PairedReg
!= AArch64::NoRegister
&&
2429 !SavedRegs
.test(PairedReg
)) {
2430 SavedRegs
.set(PairedReg
);
2431 if (AArch64::GPR64RegClass
.contains(PairedReg
) &&
2432 !RegInfo
->isReservedReg(MF
, PairedReg
))
2433 ExtraCSSpill
= PairedReg
;
2437 // Calculates the callee saved stack size.
2438 unsigned CSStackSize
= 0;
2439 unsigned SVECSStackSize
= 0;
2440 const TargetRegisterInfo
*TRI
= MF
.getSubtarget().getRegisterInfo();
2441 const MachineRegisterInfo
&MRI
= MF
.getRegInfo();
2442 for (unsigned Reg
: SavedRegs
.set_bits()) {
2443 auto RegSize
= TRI
->getRegSizeInBits(Reg
, MRI
) / 8;
2444 if (AArch64::PPRRegClass
.contains(Reg
) ||
2445 AArch64::ZPRRegClass
.contains(Reg
))
2446 SVECSStackSize
+= RegSize
;
2448 CSStackSize
+= RegSize
;
2451 // Save number of saved regs, so we can easily update CSStackSize later.
2452 unsigned NumSavedRegs
= SavedRegs
.count();
2454 // The frame record needs to be created by saving the appropriate registers
2455 uint64_t EstimatedStackSize
= MFI
.estimateStackSize(MF
);
2457 windowsRequiresStackProbe(MF
, EstimatedStackSize
+ CSStackSize
+ 16)) {
2458 SavedRegs
.set(AArch64::FP
);
2459 SavedRegs
.set(AArch64::LR
);
2462 LLVM_DEBUG(dbgs() << "*** determineCalleeSaves\nSaved CSRs:";
2464 : SavedRegs
.set_bits()) dbgs()
2465 << ' ' << printReg(Reg
, RegInfo
);
2468 // If any callee-saved registers are used, the frame cannot be eliminated.
2469 int64_t SVEStackSize
=
2470 alignTo(SVECSStackSize
+ estimateSVEStackObjectOffsets(MFI
), 16);
2471 bool CanEliminateFrame
= (SavedRegs
.count() == 0) && !SVEStackSize
;
2473 // The CSR spill slots have not been allocated yet, so estimateStackSize
2474 // won't include them.
2475 unsigned EstimatedStackSizeLimit
= estimateRSStackSizeLimit(MF
);
2477 // Conservatively always assume BigStack when there are SVE spills.
2478 bool BigStack
= SVEStackSize
||
2479 (EstimatedStackSize
+ CSStackSize
) > EstimatedStackSizeLimit
;
2480 if (BigStack
|| !CanEliminateFrame
|| RegInfo
->cannotEliminateFrame(MF
))
2481 AFI
->setHasStackFrame(true);
2483 // Estimate if we might need to scavenge a register at some point in order
2484 // to materialize a stack offset. If so, either spill one additional
2485 // callee-saved register or reserve a special spill slot to facilitate
2486 // register scavenging. If we already spilled an extra callee-saved register
2487 // above to keep the number of spills even, we don't need to do anything else
2490 if (!ExtraCSSpill
&& UnspilledCSGPR
!= AArch64::NoRegister
) {
2491 LLVM_DEBUG(dbgs() << "Spilling " << printReg(UnspilledCSGPR
, RegInfo
)
2492 << " to get a scratch register.\n");
2493 SavedRegs
.set(UnspilledCSGPR
);
2494 // MachO's compact unwind format relies on all registers being stored in
2495 // pairs, so if we need to spill one extra for BigStack, then we need to
2497 if (produceCompactUnwindFrame(MF
))
2498 SavedRegs
.set(UnspilledCSGPRPaired
);
2499 ExtraCSSpill
= UnspilledCSGPR
;
2502 // If we didn't find an extra callee-saved register to spill, create
2503 // an emergency spill slot.
2504 if (!ExtraCSSpill
|| MF
.getRegInfo().isPhysRegUsed(ExtraCSSpill
)) {
2505 const TargetRegisterInfo
*TRI
= MF
.getSubtarget().getRegisterInfo();
2506 const TargetRegisterClass
&RC
= AArch64::GPR64RegClass
;
2507 unsigned Size
= TRI
->getSpillSize(RC
);
2508 unsigned Align
= TRI
->getSpillAlignment(RC
);
2509 int FI
= MFI
.CreateStackObject(Size
, Align
, false);
2510 RS
->addScavengingFrameIndex(FI
);
2511 LLVM_DEBUG(dbgs() << "No available CS registers, allocated fi#" << FI
2512 << " as the emergency spill slot.\n");
2516 // Adding the size of additional 64bit GPR saves.
2517 CSStackSize
+= 8 * (SavedRegs
.count() - NumSavedRegs
);
2518 uint64_t AlignedCSStackSize
= alignTo(CSStackSize
, 16);
2519 LLVM_DEBUG(dbgs() << "Estimated stack frame size: "
2520 << EstimatedStackSize
+ AlignedCSStackSize
2523 assert((!MFI
.isCalleeSavedInfoValid() ||
2524 AFI
->getCalleeSavedStackSize() == AlignedCSStackSize
) &&
2525 "Should not invalidate callee saved info");
2527 // Round up to register pair alignment to avoid additional SP adjustment
2529 AFI
->setCalleeSavedStackSize(AlignedCSStackSize
);
2530 AFI
->setCalleeSaveStackHasFreeSpace(AlignedCSStackSize
!= CSStackSize
);
2531 AFI
->setSVECalleeSavedStackSize(alignTo(SVECSStackSize
, 16));
2534 bool AArch64FrameLowering::enableStackSlotScavenging(
2535 const MachineFunction
&MF
) const {
2536 const AArch64FunctionInfo
*AFI
= MF
.getInfo
<AArch64FunctionInfo
>();
2537 return AFI
->hasCalleeSaveStackFreeSpace();
2540 /// returns true if there are any SVE callee saves.
2541 static bool getSVECalleeSaveSlotRange(const MachineFrameInfo
&MFI
,
2542 int &Min
, int &Max
) {
2543 Min
= std::numeric_limits
<int>::max();
2544 Max
= std::numeric_limits
<int>::min();
2546 if (!MFI
.isCalleeSavedInfoValid())
2549 const std::vector
<CalleeSavedInfo
> &CSI
= MFI
.getCalleeSavedInfo();
2550 for (auto &CS
: CSI
) {
2551 if (AArch64::ZPRRegClass
.contains(CS
.getReg()) ||
2552 AArch64::PPRRegClass
.contains(CS
.getReg())) {
2553 assert((Max
== std::numeric_limits
<int>::min() ||
2554 Max
+ 1 == CS
.getFrameIdx()) &&
2555 "SVE CalleeSaves are not consecutive");
2557 Min
= std::min(Min
, CS
.getFrameIdx());
2558 Max
= std::max(Max
, CS
.getFrameIdx());
2561 return Min
!= std::numeric_limits
<int>::max();
2564 // Process all the SVE stack objects and determine offsets for each
2565 // object. If AssignOffsets is true, the offsets get assigned.
2566 // Fills in the first and last callee-saved frame indices into
2567 // Min/MaxCSFrameIndex, respectively.
2568 // Returns the size of the stack.
2569 static int64_t determineSVEStackObjectOffsets(MachineFrameInfo
&MFI
,
2570 int &MinCSFrameIndex
,
2571 int &MaxCSFrameIndex
,
2572 bool AssignOffsets
) {
2573 // First process all fixed stack objects.
2575 for (int I
= MFI
.getObjectIndexBegin(); I
!= 0; ++I
)
2576 if (MFI
.getStackID(I
) == TargetStackID::SVEVector
) {
2577 int64_t FixedOffset
= -MFI
.getObjectOffset(I
);
2578 if (FixedOffset
> Offset
)
2579 Offset
= FixedOffset
;
2582 auto Assign
= [&MFI
](int FI
, int64_t Offset
) {
2583 LLVM_DEBUG(dbgs() << "alloc FI(" << FI
<< ") at SP[" << Offset
<< "]\n");
2584 MFI
.setObjectOffset(FI
, Offset
);
2587 // Then process all callee saved slots.
2588 if (getSVECalleeSaveSlotRange(MFI
, MinCSFrameIndex
, MaxCSFrameIndex
)) {
2589 // Make sure to align the last callee save slot.
2590 MFI
.setObjectAlignment(MaxCSFrameIndex
, 16U);
2592 // Assign offsets to the callee save slots.
2593 for (int I
= MinCSFrameIndex
; I
<= MaxCSFrameIndex
; ++I
) {
2594 Offset
+= MFI
.getObjectSize(I
);
2595 Offset
= alignTo(Offset
, MFI
.getObjectAlignment(I
));
2601 // Create a buffer of SVE objects to allocate and sort it.
2602 SmallVector
<int, 8> ObjectsToAllocate
;
2603 for (int I
= 0, E
= MFI
.getObjectIndexEnd(); I
!= E
; ++I
) {
2604 unsigned StackID
= MFI
.getStackID(I
);
2605 if (StackID
!= TargetStackID::SVEVector
)
2607 if (MaxCSFrameIndex
>= I
&& I
>= MinCSFrameIndex
)
2609 if (MFI
.isDeadObjectIndex(I
))
2612 ObjectsToAllocate
.push_back(I
);
2615 // Allocate all SVE locals and spills
2616 for (unsigned FI
: ObjectsToAllocate
) {
2617 unsigned Align
= MFI
.getObjectAlignment(FI
);
2618 // FIXME: Given that the length of SVE vectors is not necessarily a power of
2619 // two, we'd need to align every object dynamically at runtime if the
2620 // alignment is larger than 16. This is not yet supported.
2623 "Alignment of scalable vectors > 16 bytes is not yet supported");
2625 Offset
= alignTo(Offset
+ MFI
.getObjectSize(FI
), Align
);
2627 Assign(FI
, -Offset
);
2633 int64_t AArch64FrameLowering::estimateSVEStackObjectOffsets(
2634 MachineFrameInfo
&MFI
) const {
2635 int MinCSFrameIndex
, MaxCSFrameIndex
;
2636 return determineSVEStackObjectOffsets(MFI
, MinCSFrameIndex
, MaxCSFrameIndex
, false);
2639 int64_t AArch64FrameLowering::assignSVEStackObjectOffsets(
2640 MachineFrameInfo
&MFI
, int &MinCSFrameIndex
, int &MaxCSFrameIndex
) const {
2641 return determineSVEStackObjectOffsets(MFI
, MinCSFrameIndex
, MaxCSFrameIndex
,
2645 void AArch64FrameLowering::processFunctionBeforeFrameFinalized(
2646 MachineFunction
&MF
, RegScavenger
*RS
) const {
2647 MachineFrameInfo
&MFI
= MF
.getFrameInfo();
2649 assert(getStackGrowthDirection() == TargetFrameLowering::StackGrowsDown
&&
2650 "Upwards growing stack unsupported");
2652 int MinCSFrameIndex
, MaxCSFrameIndex
;
2653 int64_t SVEStackSize
=
2654 assignSVEStackObjectOffsets(MFI
, MinCSFrameIndex
, MaxCSFrameIndex
);
2656 AArch64FunctionInfo
*AFI
= MF
.getInfo
<AArch64FunctionInfo
>();
2657 AFI
->setStackSizeSVE(alignTo(SVEStackSize
, 16U));
2658 AFI
->setMinMaxSVECSFrameIndex(MinCSFrameIndex
, MaxCSFrameIndex
);
2660 // If this function isn't doing Win64-style C++ EH, we don't need to do
2662 if (!MF
.hasEHFunclets())
2664 const TargetInstrInfo
&TII
= *MF
.getSubtarget().getInstrInfo();
2665 WinEHFuncInfo
&EHInfo
= *MF
.getWinEHFuncInfo();
2667 MachineBasicBlock
&MBB
= MF
.front();
2668 auto MBBI
= MBB
.begin();
2669 while (MBBI
!= MBB
.end() && MBBI
->getFlag(MachineInstr::FrameSetup
))
2672 // Create an UnwindHelp object.
2674 MFI
.CreateStackObject(/*size*/8, /*alignment*/16, false);
2675 EHInfo
.UnwindHelpFrameIdx
= UnwindHelpFI
;
2676 // We need to store -2 into the UnwindHelp object at the start of the
2679 RS
->enterBasicBlockEnd(MBB
);
2680 RS
->backward(std::prev(MBBI
));
2681 unsigned DstReg
= RS
->FindUnusedReg(&AArch64::GPR64commonRegClass
);
2682 assert(DstReg
&& "There must be a free register after frame setup");
2683 BuildMI(MBB
, MBBI
, DL
, TII
.get(AArch64::MOVi64imm
), DstReg
).addImm(-2);
2684 BuildMI(MBB
, MBBI
, DL
, TII
.get(AArch64::STURXi
))
2685 .addReg(DstReg
, getKillRegState(true))
2686 .addFrameIndex(UnwindHelpFI
)
2691 struct TagStoreInstr
{
2693 int64_t Offset
, Size
;
2694 explicit TagStoreInstr(MachineInstr
*MI
, int64_t Offset
, int64_t Size
)
2695 : MI(MI
), Offset(Offset
), Size(Size
) {}
2698 class TagStoreEdit
{
2699 MachineFunction
*MF
;
2700 MachineBasicBlock
*MBB
;
2701 MachineRegisterInfo
*MRI
;
2702 // Tag store instructions that are being replaced.
2703 SmallVector
<TagStoreInstr
, 8> TagStores
;
2704 // Combined memref arguments of the above instructions.
2705 SmallVector
<MachineMemOperand
*, 8> CombinedMemRefs
;
2707 // Replace allocation tags in [FrameReg + FrameRegOffset, FrameReg +
2708 // FrameRegOffset + Size) with the address tag of SP.
2710 StackOffset FrameRegOffset
;
2712 // If not None, move FrameReg to (FrameReg + FrameRegUpdate) at the end.
2713 Optional
<int64_t> FrameRegUpdate
;
2714 // MIFlags for any FrameReg updating instructions.
2715 unsigned FrameRegUpdateFlags
;
2717 // Use zeroing instruction variants.
2721 void emitUnrolled(MachineBasicBlock::iterator InsertI
);
2722 void emitLoop(MachineBasicBlock::iterator InsertI
);
2725 TagStoreEdit(MachineBasicBlock
*MBB
, bool ZeroData
)
2726 : MBB(MBB
), ZeroData(ZeroData
) {
2727 MF
= MBB
->getParent();
2728 MRI
= &MF
->getRegInfo();
2730 // Add an instruction to be replaced. Instructions must be added in the
2731 // ascending order of Offset, and have to be adjacent.
2732 void addInstruction(TagStoreInstr I
) {
2733 assert((TagStores
.empty() ||
2734 TagStores
.back().Offset
+ TagStores
.back().Size
== I
.Offset
) &&
2735 "Non-adjacent tag store instructions.");
2736 TagStores
.push_back(I
);
2738 void clear() { TagStores
.clear(); }
2739 // Emit equivalent code at the given location, and erase the current set of
2740 // instructions. May skip if the replacement is not profitable. May invalidate
2741 // the input iterator and replace it with a valid one.
2742 void emitCode(MachineBasicBlock::iterator
&InsertI
,
2743 const AArch64FrameLowering
*TFI
, bool IsLast
);
2746 void TagStoreEdit::emitUnrolled(MachineBasicBlock::iterator InsertI
) {
2747 const AArch64InstrInfo
*TII
=
2748 MF
->getSubtarget
<AArch64Subtarget
>().getInstrInfo();
2750 const int64_t kMinOffset
= -256 * 16;
2751 const int64_t kMaxOffset
= 255 * 16;
2753 Register BaseReg
= FrameReg
;
2754 int64_t BaseRegOffsetBytes
= FrameRegOffset
.getBytes();
2755 if (BaseRegOffsetBytes
< kMinOffset
||
2756 BaseRegOffsetBytes
+ (Size
- Size
% 32) > kMaxOffset
) {
2757 Register ScratchReg
= MRI
->createVirtualRegister(&AArch64::GPR64RegClass
);
2758 emitFrameOffset(*MBB
, InsertI
, DL
, ScratchReg
, BaseReg
,
2759 {BaseRegOffsetBytes
, MVT::i8
}, TII
);
2760 BaseReg
= ScratchReg
;
2761 BaseRegOffsetBytes
= 0;
2764 MachineInstr
*LastI
= nullptr;
2766 int64_t InstrSize
= (Size
> 16) ? 32 : 16;
2769 ? (ZeroData
? AArch64::STZGOffset
: AArch64::STGOffset
)
2770 : (ZeroData
? AArch64::STZ2GOffset
: AArch64::ST2GOffset
);
2771 MachineInstr
*I
= BuildMI(*MBB
, InsertI
, DL
, TII
->get(Opcode
))
2772 .addReg(AArch64::SP
)
2774 .addImm(BaseRegOffsetBytes
/ 16)
2775 .setMemRefs(CombinedMemRefs
);
2776 // A store to [BaseReg, #0] should go last for an opportunity to fold the
2777 // final SP adjustment in the epilogue.
2778 if (BaseRegOffsetBytes
== 0)
2780 BaseRegOffsetBytes
+= InstrSize
;
2785 MBB
->splice(InsertI
, MBB
, LastI
);
2788 void TagStoreEdit::emitLoop(MachineBasicBlock::iterator InsertI
) {
2789 const AArch64InstrInfo
*TII
=
2790 MF
->getSubtarget
<AArch64Subtarget
>().getInstrInfo();
2792 Register BaseReg
= FrameRegUpdate
2794 : MRI
->createVirtualRegister(&AArch64::GPR64RegClass
);
2795 Register SizeReg
= MRI
->createVirtualRegister(&AArch64::GPR64RegClass
);
2797 emitFrameOffset(*MBB
, InsertI
, DL
, BaseReg
, FrameReg
, FrameRegOffset
, TII
);
2799 int64_t LoopSize
= Size
;
2800 // If the loop size is not a multiple of 32, split off one 16-byte store at
2801 // the end to fold BaseReg update into.
2802 if (FrameRegUpdate
&& *FrameRegUpdate
)
2803 LoopSize
-= LoopSize
% 32;
2804 MachineInstr
*LoopI
= BuildMI(*MBB
, InsertI
, DL
,
2805 TII
->get(ZeroData
? AArch64::STZGloop_wback
2806 : AArch64::STGloop_wback
))
2811 .setMemRefs(CombinedMemRefs
);
2813 LoopI
->setFlags(FrameRegUpdateFlags
);
2815 int64_t ExtraBaseRegUpdate
=
2816 FrameRegUpdate
? (*FrameRegUpdate
- FrameRegOffset
.getBytes() - Size
) : 0;
2817 if (LoopSize
< Size
) {
2818 assert(FrameRegUpdate
);
2819 assert(Size
- LoopSize
== 16);
2820 // Tag 16 more bytes at BaseReg and update BaseReg.
2821 BuildMI(*MBB
, InsertI
, DL
,
2822 TII
->get(ZeroData
? AArch64::STZGPostIndex
: AArch64::STGPostIndex
))
2826 .addImm(1 + ExtraBaseRegUpdate
/ 16)
2827 .setMemRefs(CombinedMemRefs
)
2828 .setMIFlags(FrameRegUpdateFlags
);
2829 } else if (ExtraBaseRegUpdate
) {
2833 TII
->get(ExtraBaseRegUpdate
> 0 ? AArch64::ADDXri
: AArch64::SUBXri
))
2836 .addImm(std::abs(ExtraBaseRegUpdate
))
2838 .setMIFlags(FrameRegUpdateFlags
);
2842 // Check if *II is a register update that can be merged into STGloop that ends
2843 // at (Reg + Size). RemainingOffset is the required adjustment to Reg after the
2845 bool canMergeRegUpdate(MachineBasicBlock::iterator II
, unsigned Reg
,
2846 int64_t Size
, int64_t *TotalOffset
) {
2847 MachineInstr
&MI
= *II
;
2848 if ((MI
.getOpcode() == AArch64::ADDXri
||
2849 MI
.getOpcode() == AArch64::SUBXri
) &&
2850 MI
.getOperand(0).getReg() == Reg
&& MI
.getOperand(1).getReg() == Reg
) {
2851 unsigned Shift
= AArch64_AM::getShiftValue(MI
.getOperand(3).getImm());
2852 int64_t Offset
= MI
.getOperand(2).getImm() << Shift
;
2853 if (MI
.getOpcode() == AArch64::SUBXri
)
2855 int64_t AbsPostOffset
= std::abs(Offset
- Size
);
2856 const int64_t kMaxOffset
=
2857 0xFFF; // Max encoding for unshifted ADDXri / SUBXri
2858 if (AbsPostOffset
<= kMaxOffset
&& AbsPostOffset
% 16 == 0) {
2859 *TotalOffset
= Offset
;
2866 void mergeMemRefs(const SmallVectorImpl
<TagStoreInstr
> &TSE
,
2867 SmallVectorImpl
<MachineMemOperand
*> &MemRefs
) {
2869 for (auto &TS
: TSE
) {
2870 MachineInstr
*MI
= TS
.MI
;
2871 // An instruction without memory operands may access anything. Be
2872 // conservative and return an empty list.
2873 if (MI
->memoperands_empty()) {
2877 MemRefs
.append(MI
->memoperands_begin(), MI
->memoperands_end());
2881 void TagStoreEdit::emitCode(MachineBasicBlock::iterator
&InsertI
,
2882 const AArch64FrameLowering
*TFI
, bool IsLast
) {
2883 if (TagStores
.empty())
2885 TagStoreInstr
&FirstTagStore
= TagStores
[0];
2886 TagStoreInstr
&LastTagStore
= TagStores
[TagStores
.size() - 1];
2887 Size
= LastTagStore
.Offset
- FirstTagStore
.Offset
+ LastTagStore
.Size
;
2888 DL
= TagStores
[0].MI
->getDebugLoc();
2891 FrameRegOffset
= TFI
->resolveFrameOffsetReference(
2892 *MF
, FirstTagStore
.Offset
, false /*isFixed*/, false /*isSVE*/, Reg
,
2893 /*PreferFP=*/false, /*ForSimm=*/true);
2895 FrameRegUpdate
= None
;
2897 mergeMemRefs(TagStores
, CombinedMemRefs
);
2899 LLVM_DEBUG(dbgs() << "Replacing adjacent STG instructions:\n";
2900 for (const auto &Instr
2901 : TagStores
) { dbgs() << " " << *Instr
.MI
; });
2903 // Size threshold where a loop becomes shorter than a linear sequence of
2904 // tagging instructions.
2905 const int kSetTagLoopThreshold
= 176;
2906 if (Size
< kSetTagLoopThreshold
) {
2907 if (TagStores
.size() < 2)
2909 emitUnrolled(InsertI
);
2911 MachineInstr
*UpdateInstr
= nullptr;
2912 int64_t TotalOffset
;
2914 // See if we can merge base register update into the STGloop.
2915 // This is done in AArch64LoadStoreOptimizer for "normal" stores,
2916 // but STGloop is way too unusual for that, and also it only
2917 // realistically happens in function epilogue. Also, STGloop is expanded
2918 // before that pass.
2919 if (InsertI
!= MBB
->end() &&
2920 canMergeRegUpdate(InsertI
, FrameReg
, FrameRegOffset
.getBytes() + Size
,
2922 UpdateInstr
= &*InsertI
++;
2923 LLVM_DEBUG(dbgs() << "Folding SP update into loop:\n "
2928 if (!UpdateInstr
&& TagStores
.size() < 2)
2932 FrameRegUpdate
= TotalOffset
;
2933 FrameRegUpdateFlags
= UpdateInstr
->getFlags();
2937 UpdateInstr
->eraseFromParent();
2940 for (auto &TS
: TagStores
)
2941 TS
.MI
->eraseFromParent();
2944 bool isMergeableStackTaggingInstruction(MachineInstr
&MI
, int64_t &Offset
,
2945 int64_t &Size
, bool &ZeroData
) {
2946 MachineFunction
&MF
= *MI
.getParent()->getParent();
2947 const MachineFrameInfo
&MFI
= MF
.getFrameInfo();
2949 unsigned Opcode
= MI
.getOpcode();
2950 ZeroData
= (Opcode
== AArch64::STZGloop
|| Opcode
== AArch64::STZGOffset
||
2951 Opcode
== AArch64::STZ2GOffset
);
2953 if (Opcode
== AArch64::STGloop
|| Opcode
== AArch64::STZGloop
) {
2954 if (!MI
.getOperand(0).isDead() || !MI
.getOperand(1).isDead())
2956 if (!MI
.getOperand(2).isImm() || !MI
.getOperand(3).isFI())
2958 Offset
= MFI
.getObjectOffset(MI
.getOperand(3).getIndex());
2959 Size
= MI
.getOperand(2).getImm();
2963 if (Opcode
== AArch64::STGOffset
|| Opcode
== AArch64::STZGOffset
)
2965 else if (Opcode
== AArch64::ST2GOffset
|| Opcode
== AArch64::STZ2GOffset
)
2970 if (MI
.getOperand(0).getReg() != AArch64::SP
|| !MI
.getOperand(1).isFI())
2973 Offset
= MFI
.getObjectOffset(MI
.getOperand(1).getIndex()) +
2974 16 * MI
.getOperand(2).getImm();
2978 // Detect a run of memory tagging instructions for adjacent stack frame slots,
2979 // and replace them with a shorter instruction sequence:
2980 // * replace STG + STG with ST2G
2981 // * replace STGloop + STGloop with STGloop
2982 // This code needs to run when stack slot offsets are already known, but before
2983 // FrameIndex operands in STG instructions are eliminated.
2984 MachineBasicBlock::iterator
tryMergeAdjacentSTG(MachineBasicBlock::iterator II
,
2985 const AArch64FrameLowering
*TFI
,
2988 int64_t Size
, Offset
;
2989 MachineInstr
&MI
= *II
;
2990 MachineBasicBlock
*MBB
= MI
.getParent();
2991 MachineBasicBlock::iterator NextI
= ++II
;
2992 if (&MI
== &MBB
->instr_back())
2994 if (!isMergeableStackTaggingInstruction(MI
, Offset
, Size
, FirstZeroData
))
2997 SmallVector
<TagStoreInstr
, 4> Instrs
;
2998 Instrs
.emplace_back(&MI
, Offset
, Size
);
3000 constexpr int kScanLimit
= 10;
3002 for (MachineBasicBlock::iterator E
= MBB
->end();
3003 NextI
!= E
&& Count
< kScanLimit
; ++NextI
) {
3004 MachineInstr
&MI
= *NextI
;
3006 int64_t Size
, Offset
;
3007 // Collect instructions that update memory tags with a FrameIndex operand
3008 // and (when applicable) constant size, and whose output registers are dead
3009 // (the latter is almost always the case in practice). Since these
3010 // instructions effectively have no inputs or outputs, we are free to skip
3011 // any non-aliasing instructions in between without tracking used registers.
3012 if (isMergeableStackTaggingInstruction(MI
, Offset
, Size
, ZeroData
)) {
3013 if (ZeroData
!= FirstZeroData
)
3015 Instrs
.emplace_back(&MI
, Offset
, Size
);
3019 // Only count non-transient, non-tagging instructions toward the scan
3021 if (!MI
.isTransient())
3024 // Just in case, stop before the epilogue code starts.
3025 if (MI
.getFlag(MachineInstr::FrameSetup
) ||
3026 MI
.getFlag(MachineInstr::FrameDestroy
))
3029 // Reject anything that may alias the collected instructions.
3030 if (MI
.mayLoadOrStore() || MI
.hasUnmodeledSideEffects())
3034 // New code will be inserted after the last tagging instruction we've found.
3035 MachineBasicBlock::iterator InsertI
= Instrs
.back().MI
;
3038 llvm::stable_sort(Instrs
,
3039 [](const TagStoreInstr
&Left
, const TagStoreInstr
&Right
) {
3040 return Left
.Offset
< Right
.Offset
;
3043 // Make sure that we don't have any overlapping stores.
3044 int64_t CurOffset
= Instrs
[0].Offset
;
3045 for (auto &Instr
: Instrs
) {
3046 if (CurOffset
> Instr
.Offset
)
3048 CurOffset
= Instr
.Offset
+ Instr
.Size
;
3051 // Find contiguous runs of tagged memory and emit shorter instruction
3052 // sequencies for them when possible.
3053 TagStoreEdit
TSE(MBB
, FirstZeroData
);
3054 Optional
<int64_t> EndOffset
;
3055 for (auto &Instr
: Instrs
) {
3056 if (EndOffset
&& *EndOffset
!= Instr
.Offset
) {
3058 TSE
.emitCode(InsertI
, TFI
, /*IsLast = */ false);
3062 TSE
.addInstruction(Instr
);
3063 EndOffset
= Instr
.Offset
+ Instr
.Size
;
3066 TSE
.emitCode(InsertI
, TFI
, /*IsLast = */ true);
3072 void AArch64FrameLowering::processFunctionBeforeFrameIndicesReplaced(
3073 MachineFunction
&MF
, RegScavenger
*RS
= nullptr) const {
3074 if (StackTaggingMergeSetTag
)
3076 for (MachineBasicBlock::iterator II
= BB
.begin(); II
!= BB
.end();)
3077 II
= tryMergeAdjacentSTG(II
, this, RS
);
3080 /// For Win64 AArch64 EH, the offset to the Unwind object is from the SP
3081 /// before the update. This is easily retrieved as it is exactly the offset
3082 /// that is set in processFunctionBeforeFrameFinalized.
3083 int AArch64FrameLowering::getFrameIndexReferencePreferSP(
3084 const MachineFunction
&MF
, int FI
, unsigned &FrameReg
,
3085 bool IgnoreSPUpdates
) const {
3086 const MachineFrameInfo
&MFI
= MF
.getFrameInfo();
3087 LLVM_DEBUG(dbgs() << "Offset from the SP for " << FI
<< " is "
3088 << MFI
.getObjectOffset(FI
) << "\n");
3089 FrameReg
= AArch64::SP
;
3090 return MFI
.getObjectOffset(FI
);
3093 /// The parent frame offset (aka dispFrame) is only used on X86_64 to retrieve
3094 /// the parent's frame pointer
3095 unsigned AArch64FrameLowering::getWinEHParentFrameOffset(
3096 const MachineFunction
&MF
) const {
3100 /// Funclets only need to account for space for the callee saved registers,
3101 /// as the locals are accounted for in the parent's stack frame.
3102 unsigned AArch64FrameLowering::getWinEHFuncletFrameSize(
3103 const MachineFunction
&MF
) const {
3104 // This is the size of the pushed CSRs.
3106 MF
.getInfo
<AArch64FunctionInfo
>()->getCalleeSavedStackSize();
3107 // This is the amount of stack a funclet needs to allocate.
3108 return alignTo(CSSize
+ MF
.getFrameInfo().getMaxCallFrameSize(),
3109 getStackAlignment());