[PowerPC] Collect some CallLowering arguments into a struct. [NFC]
[llvm-project.git] / llvm / lib / Target / AArch64 / AArch64FrameLowering.cpp
blobde726b326197c563dabaaa20193f2bcc951c6ed7
1 //===- AArch64FrameLowering.cpp - AArch64 Frame Lowering -------*- C++ -*-====//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file contains the AArch64 implementation of TargetFrameLowering class.
11 // On AArch64, stack frames are structured as follows:
13 // The stack grows downward.
15 // All of the individual frame areas on the frame below are optional, i.e. it's
16 // possible to create a function so that the particular area isn't present
17 // in the frame.
19 // At function entry, the "frame" looks as follows:
21 // | | Higher address
22 // |-----------------------------------|
23 // | |
24 // | arguments passed on the stack |
25 // | |
26 // |-----------------------------------| <- sp
27 // | | Lower address
30 // After the prologue has run, the frame has the following general structure.
31 // Note that this doesn't depict the case where a red-zone is used. Also,
32 // technically the last frame area (VLAs) doesn't get created until in the
33 // main function body, after the prologue is run. However, it's depicted here
34 // for completeness.
36 // | | Higher address
37 // |-----------------------------------|
38 // | |
39 // | arguments passed on the stack |
40 // | |
41 // |-----------------------------------|
42 // | |
43 // | (Win64 only) varargs from reg |
44 // | |
45 // |-----------------------------------|
46 // | |
47 // | callee-saved gpr registers | <--.
48 // | | | On Darwin platforms these
49 // |- - - - - - - - - - - - - - - - - -| | callee saves are swapped,
50 // | | | (frame record first)
51 // | prev_fp, prev_lr | <--'
52 // | (a.k.a. "frame record") |
53 // |-----------------------------------| <- fp(=x29)
54 // | |
55 // | callee-saved fp/simd/SVE regs |
56 // | |
57 // |-----------------------------------|
58 // | |
59 // | SVE stack objects |
60 // | |
61 // |-----------------------------------|
62 // |.empty.space.to.make.part.below....|
63 // |.aligned.in.case.it.needs.more.than| (size of this area is unknown at
64 // |.the.standard.16-byte.alignment....| compile time; if present)
65 // |-----------------------------------|
66 // | |
67 // | local variables of fixed size |
68 // | including spill slots |
69 // |-----------------------------------| <- bp(not defined by ABI,
70 // |.variable-sized.local.variables....| LLVM chooses X19)
71 // |.(VLAs)............................| (size of this area is unknown at
72 // |...................................| compile time)
73 // |-----------------------------------| <- sp
74 // | | Lower address
77 // To access the data in a frame, at-compile time, a constant offset must be
78 // computable from one of the pointers (fp, bp, sp) to access it. The size
79 // of the areas with a dotted background cannot be computed at compile-time
80 // if they are present, making it required to have all three of fp, bp and
81 // sp to be set up to be able to access all contents in the frame areas,
82 // assuming all of the frame areas are non-empty.
84 // For most functions, some of the frame areas are empty. For those functions,
85 // it may not be necessary to set up fp or bp:
86 // * A base pointer is definitely needed when there are both VLAs and local
87 // variables with more-than-default alignment requirements.
88 // * A frame pointer is definitely needed when there are local variables with
89 // more-than-default alignment requirements.
91 // For Darwin platforms the frame-record (fp, lr) is stored at the top of the
92 // callee-saved area, since the unwind encoding does not allow for encoding
93 // this dynamically and existing tools depend on this layout. For other
94 // platforms, the frame-record is stored at the bottom of the (gpr) callee-saved
95 // area to allow SVE stack objects (allocated directly below the callee-saves,
96 // if available) to be accessed directly from the framepointer.
97 // The SVE spill/fill instructions have VL-scaled addressing modes such
98 // as:
99 // ldr z8, [fp, #-7 mul vl]
100 // For SVE the size of the vector length (VL) is not known at compile-time, so
101 // '#-7 mul vl' is an offset that can only be evaluated at runtime. With this
102 // layout, we don't need to add an unscaled offset to the framepointer before
103 // accessing the SVE object in the frame.
105 // In some cases when a base pointer is not strictly needed, it is generated
106 // anyway when offsets from the frame pointer to access local variables become
107 // so large that the offset can't be encoded in the immediate fields of loads
108 // or stores.
110 // FIXME: also explain the redzone concept.
111 // FIXME: also explain the concept of reserved call frames.
113 //===----------------------------------------------------------------------===//
115 #include "AArch64FrameLowering.h"
116 #include "AArch64InstrInfo.h"
117 #include "AArch64MachineFunctionInfo.h"
118 #include "AArch64RegisterInfo.h"
119 #include "AArch64StackOffset.h"
120 #include "AArch64Subtarget.h"
121 #include "AArch64TargetMachine.h"
122 #include "MCTargetDesc/AArch64AddressingModes.h"
123 #include "llvm/ADT/ScopeExit.h"
124 #include "llvm/ADT/SmallVector.h"
125 #include "llvm/ADT/Statistic.h"
126 #include "llvm/CodeGen/LivePhysRegs.h"
127 #include "llvm/CodeGen/MachineBasicBlock.h"
128 #include "llvm/CodeGen/MachineFrameInfo.h"
129 #include "llvm/CodeGen/MachineFunction.h"
130 #include "llvm/CodeGen/MachineInstr.h"
131 #include "llvm/CodeGen/MachineInstrBuilder.h"
132 #include "llvm/CodeGen/MachineMemOperand.h"
133 #include "llvm/CodeGen/MachineModuleInfo.h"
134 #include "llvm/CodeGen/MachineOperand.h"
135 #include "llvm/CodeGen/MachineRegisterInfo.h"
136 #include "llvm/CodeGen/RegisterScavenging.h"
137 #include "llvm/CodeGen/TargetInstrInfo.h"
138 #include "llvm/CodeGen/TargetRegisterInfo.h"
139 #include "llvm/CodeGen/TargetSubtargetInfo.h"
140 #include "llvm/CodeGen/WinEHFuncInfo.h"
141 #include "llvm/IR/Attributes.h"
142 #include "llvm/IR/CallingConv.h"
143 #include "llvm/IR/DataLayout.h"
144 #include "llvm/IR/DebugLoc.h"
145 #include "llvm/IR/Function.h"
146 #include "llvm/MC/MCAsmInfo.h"
147 #include "llvm/MC/MCDwarf.h"
148 #include "llvm/Support/CommandLine.h"
149 #include "llvm/Support/Debug.h"
150 #include "llvm/Support/ErrorHandling.h"
151 #include "llvm/Support/MathExtras.h"
152 #include "llvm/Support/raw_ostream.h"
153 #include "llvm/Target/TargetMachine.h"
154 #include "llvm/Target/TargetOptions.h"
155 #include <cassert>
156 #include <cstdint>
157 #include <iterator>
158 #include <vector>
160 using namespace llvm;
162 #define DEBUG_TYPE "frame-info"
164 static cl::opt<bool> EnableRedZone("aarch64-redzone",
165 cl::desc("enable use of redzone on AArch64"),
166 cl::init(false), cl::Hidden);
168 static cl::opt<bool>
169 ReverseCSRRestoreSeq("reverse-csr-restore-seq",
170 cl::desc("reverse the CSR restore sequence"),
171 cl::init(false), cl::Hidden);
173 static cl::opt<bool> StackTaggingMergeSetTag(
174 "stack-tagging-merge-settag",
175 cl::desc("merge settag instruction in function epilog"), cl::init(true),
176 cl::Hidden);
178 STATISTIC(NumRedZoneFunctions, "Number of functions using red zone");
180 /// This is the biggest offset to the stack pointer we can encode in aarch64
181 /// instructions (without using a separate calculation and a temp register).
182 /// Note that the exception here are vector stores/loads which cannot encode any
183 /// displacements (see estimateRSStackSizeLimit(), isAArch64FrameOffsetLegal()).
184 static const unsigned DefaultSafeSPDisplacement = 255;
186 /// Look at each instruction that references stack frames and return the stack
187 /// size limit beyond which some of these instructions will require a scratch
188 /// register during their expansion later.
189 static unsigned estimateRSStackSizeLimit(MachineFunction &MF) {
190 // FIXME: For now, just conservatively guestimate based on unscaled indexing
191 // range. We'll end up allocating an unnecessary spill slot a lot, but
192 // realistically that's not a big deal at this stage of the game.
193 for (MachineBasicBlock &MBB : MF) {
194 for (MachineInstr &MI : MBB) {
195 if (MI.isDebugInstr() || MI.isPseudo() ||
196 MI.getOpcode() == AArch64::ADDXri ||
197 MI.getOpcode() == AArch64::ADDSXri)
198 continue;
200 for (const MachineOperand &MO : MI.operands()) {
201 if (!MO.isFI())
202 continue;
204 StackOffset Offset;
205 if (isAArch64FrameOffsetLegal(MI, Offset, nullptr, nullptr, nullptr) ==
206 AArch64FrameOffsetCannotUpdate)
207 return 0;
211 return DefaultSafeSPDisplacement;
214 TargetStackID::Value
215 AArch64FrameLowering::getStackIDForScalableVectors() const {
216 return TargetStackID::SVEVector;
219 /// Returns the size of the entire SVE stackframe (calleesaves + spills).
220 static StackOffset getSVEStackSize(const MachineFunction &MF) {
221 const AArch64FunctionInfo *AFI = MF.getInfo<AArch64FunctionInfo>();
222 return {(int64_t)AFI->getStackSizeSVE(), MVT::nxv1i8};
225 bool AArch64FrameLowering::canUseRedZone(const MachineFunction &MF) const {
226 if (!EnableRedZone)
227 return false;
228 // Don't use the red zone if the function explicitly asks us not to.
229 // This is typically used for kernel code.
230 if (MF.getFunction().hasFnAttribute(Attribute::NoRedZone))
231 return false;
233 const MachineFrameInfo &MFI = MF.getFrameInfo();
234 const AArch64FunctionInfo *AFI = MF.getInfo<AArch64FunctionInfo>();
235 uint64_t NumBytes = AFI->getLocalStackSize();
237 return !(MFI.hasCalls() || hasFP(MF) || NumBytes > 128 ||
238 getSVEStackSize(MF));
241 /// hasFP - Return true if the specified function should have a dedicated frame
242 /// pointer register.
243 bool AArch64FrameLowering::hasFP(const MachineFunction &MF) const {
244 const MachineFrameInfo &MFI = MF.getFrameInfo();
245 const TargetRegisterInfo *RegInfo = MF.getSubtarget().getRegisterInfo();
246 // Win64 EH requires a frame pointer if funclets are present, as the locals
247 // are accessed off the frame pointer in both the parent function and the
248 // funclets.
249 if (MF.hasEHFunclets())
250 return true;
251 // Retain behavior of always omitting the FP for leaf functions when possible.
252 if (MF.getTarget().Options.DisableFramePointerElim(MF))
253 return true;
254 if (MFI.hasVarSizedObjects() || MFI.isFrameAddressTaken() ||
255 MFI.hasStackMap() || MFI.hasPatchPoint() ||
256 RegInfo->needsStackRealignment(MF))
257 return true;
258 // With large callframes around we may need to use FP to access the scavenging
259 // emergency spillslot.
261 // Unfortunately some calls to hasFP() like machine verifier ->
262 // getReservedReg() -> hasFP in the middle of global isel are too early
263 // to know the max call frame size. Hopefully conservatively returning "true"
264 // in those cases is fine.
265 // DefaultSafeSPDisplacement is fine as we only emergency spill GP regs.
266 if (!MFI.isMaxCallFrameSizeComputed() ||
267 MFI.getMaxCallFrameSize() > DefaultSafeSPDisplacement)
268 return true;
270 return false;
273 /// hasReservedCallFrame - Under normal circumstances, when a frame pointer is
274 /// not required, we reserve argument space for call sites in the function
275 /// immediately on entry to the current function. This eliminates the need for
276 /// add/sub sp brackets around call sites. Returns true if the call frame is
277 /// included as part of the stack frame.
278 bool
279 AArch64FrameLowering::hasReservedCallFrame(const MachineFunction &MF) const {
280 return !MF.getFrameInfo().hasVarSizedObjects();
283 MachineBasicBlock::iterator AArch64FrameLowering::eliminateCallFramePseudoInstr(
284 MachineFunction &MF, MachineBasicBlock &MBB,
285 MachineBasicBlock::iterator I) const {
286 const AArch64InstrInfo *TII =
287 static_cast<const AArch64InstrInfo *>(MF.getSubtarget().getInstrInfo());
288 DebugLoc DL = I->getDebugLoc();
289 unsigned Opc = I->getOpcode();
290 bool IsDestroy = Opc == TII->getCallFrameDestroyOpcode();
291 uint64_t CalleePopAmount = IsDestroy ? I->getOperand(1).getImm() : 0;
293 if (!hasReservedCallFrame(MF)) {
294 unsigned Align = getStackAlignment();
296 int64_t Amount = I->getOperand(0).getImm();
297 Amount = alignTo(Amount, Align);
298 if (!IsDestroy)
299 Amount = -Amount;
301 // N.b. if CalleePopAmount is valid but zero (i.e. callee would pop, but it
302 // doesn't have to pop anything), then the first operand will be zero too so
303 // this adjustment is a no-op.
304 if (CalleePopAmount == 0) {
305 // FIXME: in-function stack adjustment for calls is limited to 24-bits
306 // because there's no guaranteed temporary register available.
308 // ADD/SUB (immediate) has only LSL #0 and LSL #12 available.
309 // 1) For offset <= 12-bit, we use LSL #0
310 // 2) For 12-bit <= offset <= 24-bit, we use two instructions. One uses
311 // LSL #0, and the other uses LSL #12.
313 // Most call frames will be allocated at the start of a function so
314 // this is OK, but it is a limitation that needs dealing with.
315 assert(Amount > -0xffffff && Amount < 0xffffff && "call frame too large");
316 emitFrameOffset(MBB, I, DL, AArch64::SP, AArch64::SP, {Amount, MVT::i8},
317 TII);
319 } else if (CalleePopAmount != 0) {
320 // If the calling convention demands that the callee pops arguments from the
321 // stack, we want to add it back if we have a reserved call frame.
322 assert(CalleePopAmount < 0xffffff && "call frame too large");
323 emitFrameOffset(MBB, I, DL, AArch64::SP, AArch64::SP,
324 {-(int64_t)CalleePopAmount, MVT::i8}, TII);
326 return MBB.erase(I);
329 static bool ShouldSignReturnAddress(MachineFunction &MF) {
330 // The function should be signed in the following situations:
331 // - sign-return-address=all
332 // - sign-return-address=non-leaf and the functions spills the LR
334 const Function &F = MF.getFunction();
335 if (!F.hasFnAttribute("sign-return-address"))
336 return false;
338 StringRef Scope = F.getFnAttribute("sign-return-address").getValueAsString();
339 if (Scope.equals("none"))
340 return false;
342 if (Scope.equals("all"))
343 return true;
345 assert(Scope.equals("non-leaf") && "Expected all, none or non-leaf");
347 for (const auto &Info : MF.getFrameInfo().getCalleeSavedInfo())
348 if (Info.getReg() == AArch64::LR)
349 return true;
351 return false;
354 void AArch64FrameLowering::emitCalleeSavedFrameMoves(
355 MachineBasicBlock &MBB, MachineBasicBlock::iterator MBBI) const {
356 MachineFunction &MF = *MBB.getParent();
357 MachineFrameInfo &MFI = MF.getFrameInfo();
358 const TargetSubtargetInfo &STI = MF.getSubtarget();
359 const MCRegisterInfo *MRI = STI.getRegisterInfo();
360 const TargetInstrInfo *TII = STI.getInstrInfo();
361 DebugLoc DL = MBB.findDebugLoc(MBBI);
363 // Add callee saved registers to move list.
364 const std::vector<CalleeSavedInfo> &CSI = MFI.getCalleeSavedInfo();
365 if (CSI.empty())
366 return;
368 for (const auto &Info : CSI) {
369 unsigned Reg = Info.getReg();
370 int64_t Offset =
371 MFI.getObjectOffset(Info.getFrameIdx()) - getOffsetOfLocalArea();
372 unsigned DwarfReg = MRI->getDwarfRegNum(Reg, true);
373 unsigned CFIIndex = MF.addFrameInst(
374 MCCFIInstruction::createOffset(nullptr, DwarfReg, Offset));
375 BuildMI(MBB, MBBI, DL, TII->get(TargetOpcode::CFI_INSTRUCTION))
376 .addCFIIndex(CFIIndex)
377 .setMIFlags(MachineInstr::FrameSetup);
381 // Find a scratch register that we can use at the start of the prologue to
382 // re-align the stack pointer. We avoid using callee-save registers since they
383 // may appear to be free when this is called from canUseAsPrologue (during
384 // shrink wrapping), but then no longer be free when this is called from
385 // emitPrologue.
387 // FIXME: This is a bit conservative, since in the above case we could use one
388 // of the callee-save registers as a scratch temp to re-align the stack pointer,
389 // but we would then have to make sure that we were in fact saving at least one
390 // callee-save register in the prologue, which is additional complexity that
391 // doesn't seem worth the benefit.
392 static unsigned findScratchNonCalleeSaveRegister(MachineBasicBlock *MBB) {
393 MachineFunction *MF = MBB->getParent();
395 // If MBB is an entry block, use X9 as the scratch register
396 if (&MF->front() == MBB)
397 return AArch64::X9;
399 const AArch64Subtarget &Subtarget = MF->getSubtarget<AArch64Subtarget>();
400 const AArch64RegisterInfo &TRI = *Subtarget.getRegisterInfo();
401 LivePhysRegs LiveRegs(TRI);
402 LiveRegs.addLiveIns(*MBB);
404 // Mark callee saved registers as used so we will not choose them.
405 const MCPhysReg *CSRegs = MF->getRegInfo().getCalleeSavedRegs();
406 for (unsigned i = 0; CSRegs[i]; ++i)
407 LiveRegs.addReg(CSRegs[i]);
409 // Prefer X9 since it was historically used for the prologue scratch reg.
410 const MachineRegisterInfo &MRI = MF->getRegInfo();
411 if (LiveRegs.available(MRI, AArch64::X9))
412 return AArch64::X9;
414 for (unsigned Reg : AArch64::GPR64RegClass) {
415 if (LiveRegs.available(MRI, Reg))
416 return Reg;
418 return AArch64::NoRegister;
421 bool AArch64FrameLowering::canUseAsPrologue(
422 const MachineBasicBlock &MBB) const {
423 const MachineFunction *MF = MBB.getParent();
424 MachineBasicBlock *TmpMBB = const_cast<MachineBasicBlock *>(&MBB);
425 const AArch64Subtarget &Subtarget = MF->getSubtarget<AArch64Subtarget>();
426 const AArch64RegisterInfo *RegInfo = Subtarget.getRegisterInfo();
428 // Don't need a scratch register if we're not going to re-align the stack.
429 if (!RegInfo->needsStackRealignment(*MF))
430 return true;
431 // Otherwise, we can use any block as long as it has a scratch register
432 // available.
433 return findScratchNonCalleeSaveRegister(TmpMBB) != AArch64::NoRegister;
436 static bool windowsRequiresStackProbe(MachineFunction &MF,
437 uint64_t StackSizeInBytes) {
438 const AArch64Subtarget &Subtarget = MF.getSubtarget<AArch64Subtarget>();
439 if (!Subtarget.isTargetWindows())
440 return false;
441 const Function &F = MF.getFunction();
442 // TODO: When implementing stack protectors, take that into account
443 // for the probe threshold.
444 unsigned StackProbeSize = 4096;
445 if (F.hasFnAttribute("stack-probe-size"))
446 F.getFnAttribute("stack-probe-size")
447 .getValueAsString()
448 .getAsInteger(0, StackProbeSize);
449 return (StackSizeInBytes >= StackProbeSize) &&
450 !F.hasFnAttribute("no-stack-arg-probe");
453 bool AArch64FrameLowering::shouldCombineCSRLocalStackBump(
454 MachineFunction &MF, uint64_t StackBumpBytes) const {
455 AArch64FunctionInfo *AFI = MF.getInfo<AArch64FunctionInfo>();
456 const MachineFrameInfo &MFI = MF.getFrameInfo();
457 const AArch64Subtarget &Subtarget = MF.getSubtarget<AArch64Subtarget>();
458 const AArch64RegisterInfo *RegInfo = Subtarget.getRegisterInfo();
460 if (AFI->getLocalStackSize() == 0)
461 return false;
463 // 512 is the maximum immediate for stp/ldp that will be used for
464 // callee-save save/restores
465 if (StackBumpBytes >= 512 || windowsRequiresStackProbe(MF, StackBumpBytes))
466 return false;
468 if (MFI.hasVarSizedObjects())
469 return false;
471 if (RegInfo->needsStackRealignment(MF))
472 return false;
474 // This isn't strictly necessary, but it simplifies things a bit since the
475 // current RedZone handling code assumes the SP is adjusted by the
476 // callee-save save/restore code.
477 if (canUseRedZone(MF))
478 return false;
480 // When there is an SVE area on the stack, always allocate the
481 // callee-saves and spills/locals separately.
482 if (getSVEStackSize(MF))
483 return false;
485 return true;
488 bool AArch64FrameLowering::shouldCombineCSRLocalStackBumpInEpilogue(
489 MachineBasicBlock &MBB, unsigned StackBumpBytes) const {
490 if (!shouldCombineCSRLocalStackBump(*MBB.getParent(), StackBumpBytes))
491 return false;
493 if (MBB.empty())
494 return true;
496 // Disable combined SP bump if the last instruction is an MTE tag store. It
497 // is almost always better to merge SP adjustment into those instructions.
498 MachineBasicBlock::iterator LastI = MBB.getFirstTerminator();
499 MachineBasicBlock::iterator Begin = MBB.begin();
500 while (LastI != Begin) {
501 --LastI;
502 if (LastI->isTransient())
503 continue;
504 if (!LastI->getFlag(MachineInstr::FrameDestroy))
505 break;
507 switch (LastI->getOpcode()) {
508 case AArch64::STGloop:
509 case AArch64::STZGloop:
510 case AArch64::STGOffset:
511 case AArch64::STZGOffset:
512 case AArch64::ST2GOffset:
513 case AArch64::STZ2GOffset:
514 return false;
515 default:
516 return true;
518 llvm_unreachable("unreachable");
521 // Given a load or a store instruction, generate an appropriate unwinding SEH
522 // code on Windows.
523 static MachineBasicBlock::iterator InsertSEH(MachineBasicBlock::iterator MBBI,
524 const TargetInstrInfo &TII,
525 MachineInstr::MIFlag Flag) {
526 unsigned Opc = MBBI->getOpcode();
527 MachineBasicBlock *MBB = MBBI->getParent();
528 MachineFunction &MF = *MBB->getParent();
529 DebugLoc DL = MBBI->getDebugLoc();
530 unsigned ImmIdx = MBBI->getNumOperands() - 1;
531 int Imm = MBBI->getOperand(ImmIdx).getImm();
532 MachineInstrBuilder MIB;
533 const AArch64Subtarget &Subtarget = MF.getSubtarget<AArch64Subtarget>();
534 const AArch64RegisterInfo *RegInfo = Subtarget.getRegisterInfo();
536 switch (Opc) {
537 default:
538 llvm_unreachable("No SEH Opcode for this instruction");
539 case AArch64::LDPDpost:
540 Imm = -Imm;
541 LLVM_FALLTHROUGH;
542 case AArch64::STPDpre: {
543 unsigned Reg0 = RegInfo->getSEHRegNum(MBBI->getOperand(1).getReg());
544 unsigned Reg1 = RegInfo->getSEHRegNum(MBBI->getOperand(2).getReg());
545 MIB = BuildMI(MF, DL, TII.get(AArch64::SEH_SaveFRegP_X))
546 .addImm(Reg0)
547 .addImm(Reg1)
548 .addImm(Imm * 8)
549 .setMIFlag(Flag);
550 break;
552 case AArch64::LDPXpost:
553 Imm = -Imm;
554 LLVM_FALLTHROUGH;
555 case AArch64::STPXpre: {
556 Register Reg0 = MBBI->getOperand(1).getReg();
557 Register Reg1 = MBBI->getOperand(2).getReg();
558 if (Reg0 == AArch64::FP && Reg1 == AArch64::LR)
559 MIB = BuildMI(MF, DL, TII.get(AArch64::SEH_SaveFPLR_X))
560 .addImm(Imm * 8)
561 .setMIFlag(Flag);
562 else
563 MIB = BuildMI(MF, DL, TII.get(AArch64::SEH_SaveRegP_X))
564 .addImm(RegInfo->getSEHRegNum(Reg0))
565 .addImm(RegInfo->getSEHRegNum(Reg1))
566 .addImm(Imm * 8)
567 .setMIFlag(Flag);
568 break;
570 case AArch64::LDRDpost:
571 Imm = -Imm;
572 LLVM_FALLTHROUGH;
573 case AArch64::STRDpre: {
574 unsigned Reg = RegInfo->getSEHRegNum(MBBI->getOperand(1).getReg());
575 MIB = BuildMI(MF, DL, TII.get(AArch64::SEH_SaveFReg_X))
576 .addImm(Reg)
577 .addImm(Imm)
578 .setMIFlag(Flag);
579 break;
581 case AArch64::LDRXpost:
582 Imm = -Imm;
583 LLVM_FALLTHROUGH;
584 case AArch64::STRXpre: {
585 unsigned Reg = RegInfo->getSEHRegNum(MBBI->getOperand(1).getReg());
586 MIB = BuildMI(MF, DL, TII.get(AArch64::SEH_SaveReg_X))
587 .addImm(Reg)
588 .addImm(Imm)
589 .setMIFlag(Flag);
590 break;
592 case AArch64::STPDi:
593 case AArch64::LDPDi: {
594 unsigned Reg0 = RegInfo->getSEHRegNum(MBBI->getOperand(0).getReg());
595 unsigned Reg1 = RegInfo->getSEHRegNum(MBBI->getOperand(1).getReg());
596 MIB = BuildMI(MF, DL, TII.get(AArch64::SEH_SaveFRegP))
597 .addImm(Reg0)
598 .addImm(Reg1)
599 .addImm(Imm * 8)
600 .setMIFlag(Flag);
601 break;
603 case AArch64::STPXi:
604 case AArch64::LDPXi: {
605 Register Reg0 = MBBI->getOperand(0).getReg();
606 Register Reg1 = MBBI->getOperand(1).getReg();
607 if (Reg0 == AArch64::FP && Reg1 == AArch64::LR)
608 MIB = BuildMI(MF, DL, TII.get(AArch64::SEH_SaveFPLR))
609 .addImm(Imm * 8)
610 .setMIFlag(Flag);
611 else
612 MIB = BuildMI(MF, DL, TII.get(AArch64::SEH_SaveRegP))
613 .addImm(RegInfo->getSEHRegNum(Reg0))
614 .addImm(RegInfo->getSEHRegNum(Reg1))
615 .addImm(Imm * 8)
616 .setMIFlag(Flag);
617 break;
619 case AArch64::STRXui:
620 case AArch64::LDRXui: {
621 int Reg = RegInfo->getSEHRegNum(MBBI->getOperand(0).getReg());
622 MIB = BuildMI(MF, DL, TII.get(AArch64::SEH_SaveReg))
623 .addImm(Reg)
624 .addImm(Imm * 8)
625 .setMIFlag(Flag);
626 break;
628 case AArch64::STRDui:
629 case AArch64::LDRDui: {
630 unsigned Reg = RegInfo->getSEHRegNum(MBBI->getOperand(0).getReg());
631 MIB = BuildMI(MF, DL, TII.get(AArch64::SEH_SaveFReg))
632 .addImm(Reg)
633 .addImm(Imm * 8)
634 .setMIFlag(Flag);
635 break;
638 auto I = MBB->insertAfter(MBBI, MIB);
639 return I;
642 // Fix up the SEH opcode associated with the save/restore instruction.
643 static void fixupSEHOpcode(MachineBasicBlock::iterator MBBI,
644 unsigned LocalStackSize) {
645 MachineOperand *ImmOpnd = nullptr;
646 unsigned ImmIdx = MBBI->getNumOperands() - 1;
647 switch (MBBI->getOpcode()) {
648 default:
649 llvm_unreachable("Fix the offset in the SEH instruction");
650 case AArch64::SEH_SaveFPLR:
651 case AArch64::SEH_SaveRegP:
652 case AArch64::SEH_SaveReg:
653 case AArch64::SEH_SaveFRegP:
654 case AArch64::SEH_SaveFReg:
655 ImmOpnd = &MBBI->getOperand(ImmIdx);
656 break;
658 if (ImmOpnd)
659 ImmOpnd->setImm(ImmOpnd->getImm() + LocalStackSize);
662 // Convert callee-save register save/restore instruction to do stack pointer
663 // decrement/increment to allocate/deallocate the callee-save stack area by
664 // converting store/load to use pre/post increment version.
665 static MachineBasicBlock::iterator convertCalleeSaveRestoreToSPPrePostIncDec(
666 MachineBasicBlock &MBB, MachineBasicBlock::iterator MBBI,
667 const DebugLoc &DL, const TargetInstrInfo *TII, int CSStackSizeInc,
668 bool NeedsWinCFI, bool *HasWinCFI, bool InProlog = true) {
669 // Ignore instructions that do not operate on SP, i.e. shadow call stack
670 // instructions and associated CFI instruction.
671 while (MBBI->getOpcode() == AArch64::STRXpost ||
672 MBBI->getOpcode() == AArch64::LDRXpre ||
673 MBBI->getOpcode() == AArch64::CFI_INSTRUCTION) {
674 if (MBBI->getOpcode() != AArch64::CFI_INSTRUCTION)
675 assert(MBBI->getOperand(0).getReg() != AArch64::SP);
676 ++MBBI;
678 unsigned NewOpc;
679 int Scale = 1;
680 switch (MBBI->getOpcode()) {
681 default:
682 llvm_unreachable("Unexpected callee-save save/restore opcode!");
683 case AArch64::STPXi:
684 NewOpc = AArch64::STPXpre;
685 Scale = 8;
686 break;
687 case AArch64::STPDi:
688 NewOpc = AArch64::STPDpre;
689 Scale = 8;
690 break;
691 case AArch64::STPQi:
692 NewOpc = AArch64::STPQpre;
693 Scale = 16;
694 break;
695 case AArch64::STRXui:
696 NewOpc = AArch64::STRXpre;
697 break;
698 case AArch64::STRDui:
699 NewOpc = AArch64::STRDpre;
700 break;
701 case AArch64::STRQui:
702 NewOpc = AArch64::STRQpre;
703 break;
704 case AArch64::LDPXi:
705 NewOpc = AArch64::LDPXpost;
706 Scale = 8;
707 break;
708 case AArch64::LDPDi:
709 NewOpc = AArch64::LDPDpost;
710 Scale = 8;
711 break;
712 case AArch64::LDPQi:
713 NewOpc = AArch64::LDPQpost;
714 Scale = 16;
715 break;
716 case AArch64::LDRXui:
717 NewOpc = AArch64::LDRXpost;
718 break;
719 case AArch64::LDRDui:
720 NewOpc = AArch64::LDRDpost;
721 break;
722 case AArch64::LDRQui:
723 NewOpc = AArch64::LDRQpost;
724 break;
726 // Get rid of the SEH code associated with the old instruction.
727 if (NeedsWinCFI) {
728 auto SEH = std::next(MBBI);
729 if (AArch64InstrInfo::isSEHInstruction(*SEH))
730 SEH->eraseFromParent();
733 MachineInstrBuilder MIB = BuildMI(MBB, MBBI, DL, TII->get(NewOpc));
734 MIB.addReg(AArch64::SP, RegState::Define);
736 // Copy all operands other than the immediate offset.
737 unsigned OpndIdx = 0;
738 for (unsigned OpndEnd = MBBI->getNumOperands() - 1; OpndIdx < OpndEnd;
739 ++OpndIdx)
740 MIB.add(MBBI->getOperand(OpndIdx));
742 assert(MBBI->getOperand(OpndIdx).getImm() == 0 &&
743 "Unexpected immediate offset in first/last callee-save save/restore "
744 "instruction!");
745 assert(MBBI->getOperand(OpndIdx - 1).getReg() == AArch64::SP &&
746 "Unexpected base register in callee-save save/restore instruction!");
747 assert(CSStackSizeInc % Scale == 0);
748 MIB.addImm(CSStackSizeInc / Scale);
750 MIB.setMIFlags(MBBI->getFlags());
751 MIB.setMemRefs(MBBI->memoperands());
753 // Generate a new SEH code that corresponds to the new instruction.
754 if (NeedsWinCFI) {
755 *HasWinCFI = true;
756 InsertSEH(*MIB, *TII,
757 InProlog ? MachineInstr::FrameSetup : MachineInstr::FrameDestroy);
760 return std::prev(MBB.erase(MBBI));
763 // Fixup callee-save register save/restore instructions to take into account
764 // combined SP bump by adding the local stack size to the stack offsets.
765 static void fixupCalleeSaveRestoreStackOffset(MachineInstr &MI,
766 uint64_t LocalStackSize,
767 bool NeedsWinCFI,
768 bool *HasWinCFI) {
769 if (AArch64InstrInfo::isSEHInstruction(MI))
770 return;
772 unsigned Opc = MI.getOpcode();
774 // Ignore instructions that do not operate on SP, i.e. shadow call stack
775 // instructions and associated CFI instruction.
776 if (Opc == AArch64::STRXpost || Opc == AArch64::LDRXpre ||
777 Opc == AArch64::CFI_INSTRUCTION) {
778 if (Opc != AArch64::CFI_INSTRUCTION)
779 assert(MI.getOperand(0).getReg() != AArch64::SP);
780 return;
783 unsigned Scale;
784 switch (Opc) {
785 case AArch64::STPXi:
786 case AArch64::STRXui:
787 case AArch64::STPDi:
788 case AArch64::STRDui:
789 case AArch64::LDPXi:
790 case AArch64::LDRXui:
791 case AArch64::LDPDi:
792 case AArch64::LDRDui:
793 Scale = 8;
794 break;
795 case AArch64::STPQi:
796 case AArch64::STRQui:
797 case AArch64::LDPQi:
798 case AArch64::LDRQui:
799 Scale = 16;
800 break;
801 default:
802 llvm_unreachable("Unexpected callee-save save/restore opcode!");
805 unsigned OffsetIdx = MI.getNumExplicitOperands() - 1;
806 assert(MI.getOperand(OffsetIdx - 1).getReg() == AArch64::SP &&
807 "Unexpected base register in callee-save save/restore instruction!");
808 // Last operand is immediate offset that needs fixing.
809 MachineOperand &OffsetOpnd = MI.getOperand(OffsetIdx);
810 // All generated opcodes have scaled offsets.
811 assert(LocalStackSize % Scale == 0);
812 OffsetOpnd.setImm(OffsetOpnd.getImm() + LocalStackSize / Scale);
814 if (NeedsWinCFI) {
815 *HasWinCFI = true;
816 auto MBBI = std::next(MachineBasicBlock::iterator(MI));
817 assert(MBBI != MI.getParent()->end() && "Expecting a valid instruction");
818 assert(AArch64InstrInfo::isSEHInstruction(*MBBI) &&
819 "Expecting a SEH instruction");
820 fixupSEHOpcode(MBBI, LocalStackSize);
824 static void adaptForLdStOpt(MachineBasicBlock &MBB,
825 MachineBasicBlock::iterator FirstSPPopI,
826 MachineBasicBlock::iterator LastPopI) {
827 // Sometimes (when we restore in the same order as we save), we can end up
828 // with code like this:
830 // ldp x26, x25, [sp]
831 // ldp x24, x23, [sp, #16]
832 // ldp x22, x21, [sp, #32]
833 // ldp x20, x19, [sp, #48]
834 // add sp, sp, #64
836 // In this case, it is always better to put the first ldp at the end, so
837 // that the load-store optimizer can run and merge the ldp and the add into
838 // a post-index ldp.
839 // If we managed to grab the first pop instruction, move it to the end.
840 if (ReverseCSRRestoreSeq)
841 MBB.splice(FirstSPPopI, &MBB, LastPopI);
842 // We should end up with something like this now:
844 // ldp x24, x23, [sp, #16]
845 // ldp x22, x21, [sp, #32]
846 // ldp x20, x19, [sp, #48]
847 // ldp x26, x25, [sp]
848 // add sp, sp, #64
850 // and the load-store optimizer can merge the last two instructions into:
852 // ldp x26, x25, [sp], #64
856 static bool ShouldSignWithAKey(MachineFunction &MF) {
857 const Function &F = MF.getFunction();
858 if (!F.hasFnAttribute("sign-return-address-key"))
859 return true;
861 const StringRef Key =
862 F.getFnAttribute("sign-return-address-key").getValueAsString();
863 assert(Key.equals_lower("a_key") || Key.equals_lower("b_key"));
864 return Key.equals_lower("a_key");
867 static bool needsWinCFI(const MachineFunction &MF) {
868 const Function &F = MF.getFunction();
869 return MF.getTarget().getMCAsmInfo()->usesWindowsCFI() &&
870 F.needsUnwindTableEntry();
873 static bool isTargetDarwin(const MachineFunction &MF) {
874 return MF.getSubtarget<AArch64Subtarget>().isTargetDarwin();
877 static bool isTargetWindows(const MachineFunction &MF) {
878 return MF.getSubtarget<AArch64Subtarget>().isTargetWindows();
881 // Convenience function to determine whether I is an SVE callee save.
882 static bool IsSVECalleeSave(MachineBasicBlock::iterator I) {
883 switch (I->getOpcode()) {
884 default:
885 return false;
886 case AArch64::STR_ZXI:
887 case AArch64::STR_PXI:
888 case AArch64::LDR_ZXI:
889 case AArch64::LDR_PXI:
890 return I->getFlag(MachineInstr::FrameSetup) ||
891 I->getFlag(MachineInstr::FrameDestroy);
895 void AArch64FrameLowering::emitPrologue(MachineFunction &MF,
896 MachineBasicBlock &MBB) const {
897 MachineBasicBlock::iterator MBBI = MBB.begin();
898 const MachineFrameInfo &MFI = MF.getFrameInfo();
899 const Function &F = MF.getFunction();
900 const AArch64Subtarget &Subtarget = MF.getSubtarget<AArch64Subtarget>();
901 const AArch64RegisterInfo *RegInfo = Subtarget.getRegisterInfo();
902 const TargetInstrInfo *TII = Subtarget.getInstrInfo();
903 MachineModuleInfo &MMI = MF.getMMI();
904 AArch64FunctionInfo *AFI = MF.getInfo<AArch64FunctionInfo>();
905 bool needsFrameMoves =
906 MF.needsFrameMoves() && !MF.getTarget().getMCAsmInfo()->usesWindowsCFI();
907 bool HasFP = hasFP(MF);
908 bool NeedsWinCFI = needsWinCFI(MF);
909 bool HasWinCFI = false;
910 auto Cleanup = make_scope_exit([&]() { MF.setHasWinCFI(HasWinCFI); });
912 bool IsFunclet = MBB.isEHFuncletEntry();
914 // At this point, we're going to decide whether or not the function uses a
915 // redzone. In most cases, the function doesn't have a redzone so let's
916 // assume that's false and set it to true in the case that there's a redzone.
917 AFI->setHasRedZone(false);
919 // Debug location must be unknown since the first debug location is used
920 // to determine the end of the prologue.
921 DebugLoc DL;
923 if (ShouldSignReturnAddress(MF)) {
924 if (ShouldSignWithAKey(MF))
925 BuildMI(MBB, MBBI, DL, TII->get(AArch64::PACIASP))
926 .setMIFlag(MachineInstr::FrameSetup);
927 else {
928 BuildMI(MBB, MBBI, DL, TII->get(AArch64::EMITBKEY))
929 .setMIFlag(MachineInstr::FrameSetup);
930 BuildMI(MBB, MBBI, DL, TII->get(AArch64::PACIBSP))
931 .setMIFlag(MachineInstr::FrameSetup);
934 unsigned CFIIndex =
935 MF.addFrameInst(MCCFIInstruction::createNegateRAState(nullptr));
936 BuildMI(MBB, MBBI, DL, TII->get(TargetOpcode::CFI_INSTRUCTION))
937 .addCFIIndex(CFIIndex)
938 .setMIFlags(MachineInstr::FrameSetup);
941 // All calls are tail calls in GHC calling conv, and functions have no
942 // prologue/epilogue.
943 if (MF.getFunction().getCallingConv() == CallingConv::GHC)
944 return;
946 // Set tagged base pointer to the bottom of the stack frame.
947 // Ideally it should match SP value after prologue.
948 AFI->setTaggedBasePointerOffset(MFI.getStackSize());
950 const StackOffset &SVEStackSize = getSVEStackSize(MF);
952 // getStackSize() includes all the locals in its size calculation. We don't
953 // include these locals when computing the stack size of a funclet, as they
954 // are allocated in the parent's stack frame and accessed via the frame
955 // pointer from the funclet. We only save the callee saved registers in the
956 // funclet, which are really the callee saved registers of the parent
957 // function, including the funclet.
958 int64_t NumBytes = IsFunclet ? getWinEHFuncletFrameSize(MF)
959 : MFI.getStackSize();
960 if (!AFI->hasStackFrame() && !windowsRequiresStackProbe(MF, NumBytes)) {
961 assert(!HasFP && "unexpected function without stack frame but with FP");
962 assert(!SVEStackSize &&
963 "unexpected function without stack frame but with SVE objects");
964 // All of the stack allocation is for locals.
965 AFI->setLocalStackSize(NumBytes);
966 if (!NumBytes)
967 return;
968 // REDZONE: If the stack size is less than 128 bytes, we don't need
969 // to actually allocate.
970 if (canUseRedZone(MF)) {
971 AFI->setHasRedZone(true);
972 ++NumRedZoneFunctions;
973 } else {
974 emitFrameOffset(MBB, MBBI, DL, AArch64::SP, AArch64::SP,
975 {-NumBytes, MVT::i8}, TII, MachineInstr::FrameSetup,
976 false, NeedsWinCFI, &HasWinCFI);
977 if (!NeedsWinCFI && needsFrameMoves) {
978 // Label used to tie together the PROLOG_LABEL and the MachineMoves.
979 MCSymbol *FrameLabel = MMI.getContext().createTempSymbol();
980 // Encode the stack size of the leaf function.
981 unsigned CFIIndex = MF.addFrameInst(
982 MCCFIInstruction::createDefCfaOffset(FrameLabel, -NumBytes));
983 BuildMI(MBB, MBBI, DL, TII->get(TargetOpcode::CFI_INSTRUCTION))
984 .addCFIIndex(CFIIndex)
985 .setMIFlags(MachineInstr::FrameSetup);
989 if (NeedsWinCFI) {
990 HasWinCFI = true;
991 BuildMI(MBB, MBBI, DL, TII->get(AArch64::SEH_PrologEnd))
992 .setMIFlag(MachineInstr::FrameSetup);
995 return;
998 bool IsWin64 =
999 Subtarget.isCallingConvWin64(MF.getFunction().getCallingConv());
1000 // Var args are accounted for in the containing function, so don't
1001 // include them for funclets.
1002 unsigned FixedObject = (IsWin64 && !IsFunclet) ?
1003 alignTo(AFI->getVarArgsGPRSize(), 16) : 0;
1005 auto PrologueSaveSize = AFI->getCalleeSavedStackSize() + FixedObject;
1006 // All of the remaining stack allocations are for locals.
1007 AFI->setLocalStackSize(NumBytes - PrologueSaveSize);
1008 bool CombineSPBump = shouldCombineCSRLocalStackBump(MF, NumBytes);
1009 if (CombineSPBump) {
1010 assert(!SVEStackSize && "Cannot combine SP bump with SVE");
1011 emitFrameOffset(MBB, MBBI, DL, AArch64::SP, AArch64::SP,
1012 {-NumBytes, MVT::i8}, TII, MachineInstr::FrameSetup, false,
1013 NeedsWinCFI, &HasWinCFI);
1014 NumBytes = 0;
1015 } else if (PrologueSaveSize != 0) {
1016 MBBI = convertCalleeSaveRestoreToSPPrePostIncDec(
1017 MBB, MBBI, DL, TII, -PrologueSaveSize, NeedsWinCFI, &HasWinCFI);
1018 NumBytes -= PrologueSaveSize;
1020 assert(NumBytes >= 0 && "Negative stack allocation size!?");
1022 // Move past the saves of the callee-saved registers, fixing up the offsets
1023 // and pre-inc if we decided to combine the callee-save and local stack
1024 // pointer bump above.
1025 MachineBasicBlock::iterator End = MBB.end();
1026 while (MBBI != End && MBBI->getFlag(MachineInstr::FrameSetup) &&
1027 !IsSVECalleeSave(MBBI)) {
1028 if (CombineSPBump)
1029 fixupCalleeSaveRestoreStackOffset(*MBBI, AFI->getLocalStackSize(),
1030 NeedsWinCFI, &HasWinCFI);
1031 ++MBBI;
1034 // The code below is not applicable to funclets. We have emitted all the SEH
1035 // opcodes that we needed to emit. The FP and BP belong to the containing
1036 // function.
1037 if (IsFunclet) {
1038 if (NeedsWinCFI) {
1039 HasWinCFI = true;
1040 BuildMI(MBB, MBBI, DL, TII->get(AArch64::SEH_PrologEnd))
1041 .setMIFlag(MachineInstr::FrameSetup);
1044 // SEH funclets are passed the frame pointer in X1. If the parent
1045 // function uses the base register, then the base register is used
1046 // directly, and is not retrieved from X1.
1047 if (F.hasPersonalityFn()) {
1048 EHPersonality Per = classifyEHPersonality(F.getPersonalityFn());
1049 if (isAsynchronousEHPersonality(Per)) {
1050 BuildMI(MBB, MBBI, DL, TII->get(TargetOpcode::COPY), AArch64::FP)
1051 .addReg(AArch64::X1).setMIFlag(MachineInstr::FrameSetup);
1052 MBB.addLiveIn(AArch64::X1);
1056 return;
1059 if (HasFP) {
1060 // Only set up FP if we actually need to.
1061 int64_t FPOffset = isTargetDarwin(MF) ? (AFI->getCalleeSavedStackSize() - 16) : 0;
1063 if (CombineSPBump)
1064 FPOffset += AFI->getLocalStackSize();
1066 // Issue sub fp, sp, FPOffset or
1067 // mov fp,sp when FPOffset is zero.
1068 // Note: All stores of callee-saved registers are marked as "FrameSetup".
1069 // This code marks the instruction(s) that set the FP also.
1070 emitFrameOffset(MBB, MBBI, DL, AArch64::FP, AArch64::SP,
1071 {FPOffset, MVT::i8}, TII, MachineInstr::FrameSetup, false,
1072 NeedsWinCFI, &HasWinCFI);
1075 if (windowsRequiresStackProbe(MF, NumBytes)) {
1076 uint64_t NumWords = NumBytes >> 4;
1077 if (NeedsWinCFI) {
1078 HasWinCFI = true;
1079 // alloc_l can hold at most 256MB, so assume that NumBytes doesn't
1080 // exceed this amount. We need to move at most 2^24 - 1 into x15.
1081 // This is at most two instructions, MOVZ follwed by MOVK.
1082 // TODO: Fix to use multiple stack alloc unwind codes for stacks
1083 // exceeding 256MB in size.
1084 if (NumBytes >= (1 << 28))
1085 report_fatal_error("Stack size cannot exceed 256MB for stack "
1086 "unwinding purposes");
1088 uint32_t LowNumWords = NumWords & 0xFFFF;
1089 BuildMI(MBB, MBBI, DL, TII->get(AArch64::MOVZXi), AArch64::X15)
1090 .addImm(LowNumWords)
1091 .addImm(AArch64_AM::getShifterImm(AArch64_AM::LSL, 0))
1092 .setMIFlag(MachineInstr::FrameSetup);
1093 BuildMI(MBB, MBBI, DL, TII->get(AArch64::SEH_Nop))
1094 .setMIFlag(MachineInstr::FrameSetup);
1095 if ((NumWords & 0xFFFF0000) != 0) {
1096 BuildMI(MBB, MBBI, DL, TII->get(AArch64::MOVKXi), AArch64::X15)
1097 .addReg(AArch64::X15)
1098 .addImm((NumWords & 0xFFFF0000) >> 16) // High half
1099 .addImm(AArch64_AM::getShifterImm(AArch64_AM::LSL, 16))
1100 .setMIFlag(MachineInstr::FrameSetup);
1101 BuildMI(MBB, MBBI, DL, TII->get(AArch64::SEH_Nop))
1102 .setMIFlag(MachineInstr::FrameSetup);
1104 } else {
1105 BuildMI(MBB, MBBI, DL, TII->get(AArch64::MOVi64imm), AArch64::X15)
1106 .addImm(NumWords)
1107 .setMIFlags(MachineInstr::FrameSetup);
1110 switch (MF.getTarget().getCodeModel()) {
1111 case CodeModel::Tiny:
1112 case CodeModel::Small:
1113 case CodeModel::Medium:
1114 case CodeModel::Kernel:
1115 BuildMI(MBB, MBBI, DL, TII->get(AArch64::BL))
1116 .addExternalSymbol("__chkstk")
1117 .addReg(AArch64::X15, RegState::Implicit)
1118 .addReg(AArch64::X16, RegState::Implicit | RegState::Define | RegState::Dead)
1119 .addReg(AArch64::X17, RegState::Implicit | RegState::Define | RegState::Dead)
1120 .addReg(AArch64::NZCV, RegState::Implicit | RegState::Define | RegState::Dead)
1121 .setMIFlags(MachineInstr::FrameSetup);
1122 if (NeedsWinCFI) {
1123 HasWinCFI = true;
1124 BuildMI(MBB, MBBI, DL, TII->get(AArch64::SEH_Nop))
1125 .setMIFlag(MachineInstr::FrameSetup);
1127 break;
1128 case CodeModel::Large:
1129 BuildMI(MBB, MBBI, DL, TII->get(AArch64::MOVaddrEXT))
1130 .addReg(AArch64::X16, RegState::Define)
1131 .addExternalSymbol("__chkstk")
1132 .addExternalSymbol("__chkstk")
1133 .setMIFlags(MachineInstr::FrameSetup);
1134 if (NeedsWinCFI) {
1135 HasWinCFI = true;
1136 BuildMI(MBB, MBBI, DL, TII->get(AArch64::SEH_Nop))
1137 .setMIFlag(MachineInstr::FrameSetup);
1140 BuildMI(MBB, MBBI, DL, TII->get(AArch64::BLR))
1141 .addReg(AArch64::X16, RegState::Kill)
1142 .addReg(AArch64::X15, RegState::Implicit | RegState::Define)
1143 .addReg(AArch64::X16, RegState::Implicit | RegState::Define | RegState::Dead)
1144 .addReg(AArch64::X17, RegState::Implicit | RegState::Define | RegState::Dead)
1145 .addReg(AArch64::NZCV, RegState::Implicit | RegState::Define | RegState::Dead)
1146 .setMIFlags(MachineInstr::FrameSetup);
1147 if (NeedsWinCFI) {
1148 HasWinCFI = true;
1149 BuildMI(MBB, MBBI, DL, TII->get(AArch64::SEH_Nop))
1150 .setMIFlag(MachineInstr::FrameSetup);
1152 break;
1155 BuildMI(MBB, MBBI, DL, TII->get(AArch64::SUBXrx64), AArch64::SP)
1156 .addReg(AArch64::SP, RegState::Kill)
1157 .addReg(AArch64::X15, RegState::Kill)
1158 .addImm(AArch64_AM::getArithExtendImm(AArch64_AM::UXTX, 4))
1159 .setMIFlags(MachineInstr::FrameSetup);
1160 if (NeedsWinCFI) {
1161 HasWinCFI = true;
1162 BuildMI(MBB, MBBI, DL, TII->get(AArch64::SEH_StackAlloc))
1163 .addImm(NumBytes)
1164 .setMIFlag(MachineInstr::FrameSetup);
1166 NumBytes = 0;
1169 StackOffset AllocateBefore = SVEStackSize, AllocateAfter = {};
1170 MachineBasicBlock::iterator CalleeSavesBegin = MBBI, CalleeSavesEnd = MBBI;
1172 // Process the SVE callee-saves to determine what space needs to be
1173 // allocated.
1174 if (AFI->getSVECalleeSavedStackSize()) {
1175 // Find callee save instructions in frame.
1176 CalleeSavesBegin = MBBI;
1177 assert(IsSVECalleeSave(CalleeSavesBegin) && "Unexpected instruction");
1178 while (IsSVECalleeSave(MBBI) && MBBI != MBB.getFirstTerminator())
1179 ++MBBI;
1180 CalleeSavesEnd = MBBI;
1182 int64_t OffsetToFirstCalleeSaveFromSP =
1183 MFI.getObjectOffset(AFI->getMaxSVECSFrameIndex());
1184 StackOffset OffsetToCalleeSavesFromSP =
1185 StackOffset(OffsetToFirstCalleeSaveFromSP, MVT::nxv1i8) + SVEStackSize;
1186 AllocateBefore -= OffsetToCalleeSavesFromSP;
1187 AllocateAfter = SVEStackSize - AllocateBefore;
1190 // Allocate space for the callee saves (if any).
1191 emitFrameOffset(MBB, CalleeSavesBegin, DL, AArch64::SP, AArch64::SP,
1192 -AllocateBefore, TII,
1193 MachineInstr::FrameSetup);
1195 // Finally allocate remaining SVE stack space.
1196 emitFrameOffset(MBB, CalleeSavesEnd, DL, AArch64::SP, AArch64::SP,
1197 -AllocateAfter, TII,
1198 MachineInstr::FrameSetup);
1200 // Allocate space for the rest of the frame.
1201 if (NumBytes) {
1202 const bool NeedsRealignment = RegInfo->needsStackRealignment(MF);
1203 unsigned scratchSPReg = AArch64::SP;
1205 if (NeedsRealignment) {
1206 scratchSPReg = findScratchNonCalleeSaveRegister(&MBB);
1207 assert(scratchSPReg != AArch64::NoRegister);
1210 // If we're a leaf function, try using the red zone.
1211 if (!canUseRedZone(MF))
1212 // FIXME: in the case of dynamic re-alignment, NumBytes doesn't have
1213 // the correct value here, as NumBytes also includes padding bytes,
1214 // which shouldn't be counted here.
1215 emitFrameOffset(MBB, MBBI, DL, scratchSPReg, AArch64::SP,
1216 {-NumBytes, MVT::i8}, TII, MachineInstr::FrameSetup,
1217 false, NeedsWinCFI, &HasWinCFI);
1219 if (NeedsRealignment) {
1220 const unsigned Alignment = MFI.getMaxAlignment();
1221 const unsigned NrBitsToZero = countTrailingZeros(Alignment);
1222 assert(NrBitsToZero > 1);
1223 assert(scratchSPReg != AArch64::SP);
1225 // SUB X9, SP, NumBytes
1226 // -- X9 is temporary register, so shouldn't contain any live data here,
1227 // -- free to use. This is already produced by emitFrameOffset above.
1228 // AND SP, X9, 0b11111...0000
1229 // The logical immediates have a non-trivial encoding. The following
1230 // formula computes the encoded immediate with all ones but
1231 // NrBitsToZero zero bits as least significant bits.
1232 uint32_t andMaskEncoded = (1 << 12) // = N
1233 | ((64 - NrBitsToZero) << 6) // immr
1234 | ((64 - NrBitsToZero - 1) << 0); // imms
1236 BuildMI(MBB, MBBI, DL, TII->get(AArch64::ANDXri), AArch64::SP)
1237 .addReg(scratchSPReg, RegState::Kill)
1238 .addImm(andMaskEncoded);
1239 AFI->setStackRealigned(true);
1240 if (NeedsWinCFI) {
1241 HasWinCFI = true;
1242 BuildMI(MBB, MBBI, DL, TII->get(AArch64::SEH_StackAlloc))
1243 .addImm(NumBytes & andMaskEncoded)
1244 .setMIFlag(MachineInstr::FrameSetup);
1249 // If we need a base pointer, set it up here. It's whatever the value of the
1250 // stack pointer is at this point. Any variable size objects will be allocated
1251 // after this, so we can still use the base pointer to reference locals.
1253 // FIXME: Clarify FrameSetup flags here.
1254 // Note: Use emitFrameOffset() like above for FP if the FrameSetup flag is
1255 // needed.
1256 if (RegInfo->hasBasePointer(MF)) {
1257 TII->copyPhysReg(MBB, MBBI, DL, RegInfo->getBaseRegister(), AArch64::SP,
1258 false);
1259 if (NeedsWinCFI) {
1260 HasWinCFI = true;
1261 BuildMI(MBB, MBBI, DL, TII->get(AArch64::SEH_Nop))
1262 .setMIFlag(MachineInstr::FrameSetup);
1266 // The very last FrameSetup instruction indicates the end of prologue. Emit a
1267 // SEH opcode indicating the prologue end.
1268 if (NeedsWinCFI && HasWinCFI) {
1269 BuildMI(MBB, MBBI, DL, TII->get(AArch64::SEH_PrologEnd))
1270 .setMIFlag(MachineInstr::FrameSetup);
1273 if (needsFrameMoves) {
1274 const DataLayout &TD = MF.getDataLayout();
1275 const int StackGrowth = isTargetDarwin(MF)
1276 ? (2 * -TD.getPointerSize(0))
1277 : -AFI->getCalleeSavedStackSize();
1278 Register FramePtr = RegInfo->getFrameRegister(MF);
1279 // An example of the prologue:
1281 // .globl __foo
1282 // .align 2
1283 // __foo:
1284 // Ltmp0:
1285 // .cfi_startproc
1286 // .cfi_personality 155, ___gxx_personality_v0
1287 // Leh_func_begin:
1288 // .cfi_lsda 16, Lexception33
1290 // stp xa,bx, [sp, -#offset]!
1291 // ...
1292 // stp x28, x27, [sp, #offset-32]
1293 // stp fp, lr, [sp, #offset-16]
1294 // add fp, sp, #offset - 16
1295 // sub sp, sp, #1360
1297 // The Stack:
1298 // +-------------------------------------------+
1299 // 10000 | ........ | ........ | ........ | ........ |
1300 // 10004 | ........ | ........ | ........ | ........ |
1301 // +-------------------------------------------+
1302 // 10008 | ........ | ........ | ........ | ........ |
1303 // 1000c | ........ | ........ | ........ | ........ |
1304 // +===========================================+
1305 // 10010 | X28 Register |
1306 // 10014 | X28 Register |
1307 // +-------------------------------------------+
1308 // 10018 | X27 Register |
1309 // 1001c | X27 Register |
1310 // +===========================================+
1311 // 10020 | Frame Pointer |
1312 // 10024 | Frame Pointer |
1313 // +-------------------------------------------+
1314 // 10028 | Link Register |
1315 // 1002c | Link Register |
1316 // +===========================================+
1317 // 10030 | ........ | ........ | ........ | ........ |
1318 // 10034 | ........ | ........ | ........ | ........ |
1319 // +-------------------------------------------+
1320 // 10038 | ........ | ........ | ........ | ........ |
1321 // 1003c | ........ | ........ | ........ | ........ |
1322 // +-------------------------------------------+
1324 // [sp] = 10030 :: >>initial value<<
1325 // sp = 10020 :: stp fp, lr, [sp, #-16]!
1326 // fp = sp == 10020 :: mov fp, sp
1327 // [sp] == 10020 :: stp x28, x27, [sp, #-16]!
1328 // sp == 10010 :: >>final value<<
1330 // The frame pointer (w29) points to address 10020. If we use an offset of
1331 // '16' from 'w29', we get the CFI offsets of -8 for w30, -16 for w29, -24
1332 // for w27, and -32 for w28:
1334 // Ltmp1:
1335 // .cfi_def_cfa w29, 16
1336 // Ltmp2:
1337 // .cfi_offset w30, -8
1338 // Ltmp3:
1339 // .cfi_offset w29, -16
1340 // Ltmp4:
1341 // .cfi_offset w27, -24
1342 // Ltmp5:
1343 // .cfi_offset w28, -32
1345 if (HasFP) {
1346 // Define the current CFA rule to use the provided FP.
1347 unsigned Reg = RegInfo->getDwarfRegNum(FramePtr, true);
1348 unsigned CFIIndex = MF.addFrameInst(MCCFIInstruction::createDefCfa(
1349 nullptr, Reg, StackGrowth - FixedObject));
1350 BuildMI(MBB, MBBI, DL, TII->get(TargetOpcode::CFI_INSTRUCTION))
1351 .addCFIIndex(CFIIndex)
1352 .setMIFlags(MachineInstr::FrameSetup);
1353 } else {
1354 // Encode the stack size of the leaf function.
1355 unsigned CFIIndex = MF.addFrameInst(
1356 MCCFIInstruction::createDefCfaOffset(nullptr, -MFI.getStackSize()));
1357 BuildMI(MBB, MBBI, DL, TII->get(TargetOpcode::CFI_INSTRUCTION))
1358 .addCFIIndex(CFIIndex)
1359 .setMIFlags(MachineInstr::FrameSetup);
1362 // Now emit the moves for whatever callee saved regs we have (including FP,
1363 // LR if those are saved).
1364 emitCalleeSavedFrameMoves(MBB, MBBI);
1368 static void InsertReturnAddressAuth(MachineFunction &MF,
1369 MachineBasicBlock &MBB) {
1370 if (!ShouldSignReturnAddress(MF))
1371 return;
1372 const AArch64Subtarget &Subtarget = MF.getSubtarget<AArch64Subtarget>();
1373 const TargetInstrInfo *TII = Subtarget.getInstrInfo();
1375 MachineBasicBlock::iterator MBBI = MBB.getFirstTerminator();
1376 DebugLoc DL;
1377 if (MBBI != MBB.end())
1378 DL = MBBI->getDebugLoc();
1380 // The AUTIASP instruction assembles to a hint instruction before v8.3a so
1381 // this instruction can safely used for any v8a architecture.
1382 // From v8.3a onwards there are optimised authenticate LR and return
1383 // instructions, namely RETA{A,B}, that can be used instead.
1384 if (Subtarget.hasV8_3aOps() && MBBI != MBB.end() &&
1385 MBBI->getOpcode() == AArch64::RET_ReallyLR) {
1386 BuildMI(MBB, MBBI, DL,
1387 TII->get(ShouldSignWithAKey(MF) ? AArch64::RETAA : AArch64::RETAB))
1388 .copyImplicitOps(*MBBI);
1389 MBB.erase(MBBI);
1390 } else {
1391 BuildMI(
1392 MBB, MBBI, DL,
1393 TII->get(ShouldSignWithAKey(MF) ? AArch64::AUTIASP : AArch64::AUTIBSP))
1394 .setMIFlag(MachineInstr::FrameDestroy);
1398 static bool isFuncletReturnInstr(const MachineInstr &MI) {
1399 switch (MI.getOpcode()) {
1400 default:
1401 return false;
1402 case AArch64::CATCHRET:
1403 case AArch64::CLEANUPRET:
1404 return true;
1408 void AArch64FrameLowering::emitEpilogue(MachineFunction &MF,
1409 MachineBasicBlock &MBB) const {
1410 MachineBasicBlock::iterator MBBI = MBB.getLastNonDebugInstr();
1411 MachineFrameInfo &MFI = MF.getFrameInfo();
1412 const AArch64Subtarget &Subtarget = MF.getSubtarget<AArch64Subtarget>();
1413 const TargetInstrInfo *TII = Subtarget.getInstrInfo();
1414 DebugLoc DL;
1415 bool IsTailCallReturn = false;
1416 bool NeedsWinCFI = needsWinCFI(MF);
1417 bool HasWinCFI = false;
1418 bool IsFunclet = false;
1419 auto WinCFI = make_scope_exit([&]() {
1420 if (!MF.hasWinCFI())
1421 MF.setHasWinCFI(HasWinCFI);
1424 if (MBB.end() != MBBI) {
1425 DL = MBBI->getDebugLoc();
1426 unsigned RetOpcode = MBBI->getOpcode();
1427 IsTailCallReturn = RetOpcode == AArch64::TCRETURNdi ||
1428 RetOpcode == AArch64::TCRETURNri ||
1429 RetOpcode == AArch64::TCRETURNriBTI;
1430 IsFunclet = isFuncletReturnInstr(*MBBI);
1433 int64_t NumBytes = IsFunclet ? getWinEHFuncletFrameSize(MF)
1434 : MFI.getStackSize();
1435 AArch64FunctionInfo *AFI = MF.getInfo<AArch64FunctionInfo>();
1437 // All calls are tail calls in GHC calling conv, and functions have no
1438 // prologue/epilogue.
1439 if (MF.getFunction().getCallingConv() == CallingConv::GHC)
1440 return;
1442 // Initial and residual are named for consistency with the prologue. Note that
1443 // in the epilogue, the residual adjustment is executed first.
1444 uint64_t ArgumentPopSize = 0;
1445 if (IsTailCallReturn) {
1446 MachineOperand &StackAdjust = MBBI->getOperand(1);
1448 // For a tail-call in a callee-pops-arguments environment, some or all of
1449 // the stack may actually be in use for the call's arguments, this is
1450 // calculated during LowerCall and consumed here...
1451 ArgumentPopSize = StackAdjust.getImm();
1452 } else {
1453 // ... otherwise the amount to pop is *all* of the argument space,
1454 // conveniently stored in the MachineFunctionInfo by
1455 // LowerFormalArguments. This will, of course, be zero for the C calling
1456 // convention.
1457 ArgumentPopSize = AFI->getArgumentStackToRestore();
1460 // The stack frame should be like below,
1462 // ---------------------- ---
1463 // | | |
1464 // | BytesInStackArgArea| CalleeArgStackSize
1465 // | (NumReusableBytes) | (of tail call)
1466 // | | ---
1467 // | | |
1468 // ---------------------| --- |
1469 // | | | |
1470 // | CalleeSavedReg | | |
1471 // | (CalleeSavedStackSize)| | |
1472 // | | | |
1473 // ---------------------| | NumBytes
1474 // | | StackSize (StackAdjustUp)
1475 // | LocalStackSize | | |
1476 // | (covering callee | | |
1477 // | args) | | |
1478 // | | | |
1479 // ---------------------- --- ---
1481 // So NumBytes = StackSize + BytesInStackArgArea - CalleeArgStackSize
1482 // = StackSize + ArgumentPopSize
1484 // AArch64TargetLowering::LowerCall figures out ArgumentPopSize and keeps
1485 // it as the 2nd argument of AArch64ISD::TC_RETURN.
1487 auto Cleanup = make_scope_exit([&] { InsertReturnAddressAuth(MF, MBB); });
1489 bool IsWin64 =
1490 Subtarget.isCallingConvWin64(MF.getFunction().getCallingConv());
1491 // Var args are accounted for in the containing function, so don't
1492 // include them for funclets.
1493 unsigned FixedObject =
1494 (IsWin64 && !IsFunclet) ? alignTo(AFI->getVarArgsGPRSize(), 16) : 0;
1496 uint64_t AfterCSRPopSize = ArgumentPopSize;
1497 auto PrologueSaveSize = AFI->getCalleeSavedStackSize() + FixedObject;
1498 // We cannot rely on the local stack size set in emitPrologue if the function
1499 // has funclets, as funclets have different local stack size requirements, and
1500 // the current value set in emitPrologue may be that of the containing
1501 // function.
1502 if (MF.hasEHFunclets())
1503 AFI->setLocalStackSize(NumBytes - PrologueSaveSize);
1504 bool CombineSPBump = shouldCombineCSRLocalStackBumpInEpilogue(MBB, NumBytes);
1505 // Assume we can't combine the last pop with the sp restore.
1507 if (!CombineSPBump && PrologueSaveSize != 0) {
1508 MachineBasicBlock::iterator Pop = std::prev(MBB.getFirstTerminator());
1509 while (AArch64InstrInfo::isSEHInstruction(*Pop))
1510 Pop = std::prev(Pop);
1511 // Converting the last ldp to a post-index ldp is valid only if the last
1512 // ldp's offset is 0.
1513 const MachineOperand &OffsetOp = Pop->getOperand(Pop->getNumOperands() - 1);
1514 // If the offset is 0, convert it to a post-index ldp.
1515 if (OffsetOp.getImm() == 0)
1516 convertCalleeSaveRestoreToSPPrePostIncDec(
1517 MBB, Pop, DL, TII, PrologueSaveSize, NeedsWinCFI, &HasWinCFI, false);
1518 else {
1519 // If not, make sure to emit an add after the last ldp.
1520 // We're doing this by transfering the size to be restored from the
1521 // adjustment *before* the CSR pops to the adjustment *after* the CSR
1522 // pops.
1523 AfterCSRPopSize += PrologueSaveSize;
1527 // Move past the restores of the callee-saved registers.
1528 // If we plan on combining the sp bump of the local stack size and the callee
1529 // save stack size, we might need to adjust the CSR save and restore offsets.
1530 MachineBasicBlock::iterator LastPopI = MBB.getFirstTerminator();
1531 MachineBasicBlock::iterator Begin = MBB.begin();
1532 while (LastPopI != Begin) {
1533 --LastPopI;
1534 if (!LastPopI->getFlag(MachineInstr::FrameDestroy) ||
1535 IsSVECalleeSave(LastPopI)) {
1536 ++LastPopI;
1537 break;
1538 } else if (CombineSPBump)
1539 fixupCalleeSaveRestoreStackOffset(*LastPopI, AFI->getLocalStackSize(),
1540 NeedsWinCFI, &HasWinCFI);
1543 if (NeedsWinCFI) {
1544 HasWinCFI = true;
1545 BuildMI(MBB, LastPopI, DL, TII->get(AArch64::SEH_EpilogStart))
1546 .setMIFlag(MachineInstr::FrameDestroy);
1549 const StackOffset &SVEStackSize = getSVEStackSize(MF);
1551 // If there is a single SP update, insert it before the ret and we're done.
1552 if (CombineSPBump) {
1553 assert(!SVEStackSize && "Cannot combine SP bump with SVE");
1554 emitFrameOffset(MBB, MBB.getFirstTerminator(), DL, AArch64::SP, AArch64::SP,
1555 {NumBytes + (int64_t)AfterCSRPopSize, MVT::i8}, TII,
1556 MachineInstr::FrameDestroy, false, NeedsWinCFI, &HasWinCFI);
1557 if (NeedsWinCFI && HasWinCFI)
1558 BuildMI(MBB, MBB.getFirstTerminator(), DL,
1559 TII->get(AArch64::SEH_EpilogEnd))
1560 .setMIFlag(MachineInstr::FrameDestroy);
1561 return;
1564 NumBytes -= PrologueSaveSize;
1565 assert(NumBytes >= 0 && "Negative stack allocation size!?");
1567 // Process the SVE callee-saves to determine what space needs to be
1568 // deallocated.
1569 StackOffset DeallocateBefore = {}, DeallocateAfter = SVEStackSize;
1570 MachineBasicBlock::iterator RestoreBegin = LastPopI, RestoreEnd = LastPopI;
1571 if (AFI->getSVECalleeSavedStackSize()) {
1572 RestoreBegin = std::prev(RestoreEnd);;
1573 while (IsSVECalleeSave(RestoreBegin) &&
1574 RestoreBegin != MBB.begin())
1575 --RestoreBegin;
1576 ++RestoreBegin;
1578 assert(IsSVECalleeSave(RestoreBegin) &&
1579 IsSVECalleeSave(std::prev(RestoreEnd)) && "Unexpected instruction");
1581 int64_t OffsetToFirstCalleeSaveFromSP =
1582 MFI.getObjectOffset(AFI->getMaxSVECSFrameIndex());
1583 StackOffset OffsetToCalleeSavesFromSP =
1584 StackOffset(OffsetToFirstCalleeSaveFromSP, MVT::nxv1i8) + SVEStackSize;
1585 DeallocateBefore = OffsetToCalleeSavesFromSP;
1586 DeallocateAfter = SVEStackSize - DeallocateBefore;
1589 // Deallocate the SVE area.
1590 if (SVEStackSize) {
1591 if (AFI->isStackRealigned()) {
1592 if (AFI->getSVECalleeSavedStackSize())
1593 // Set SP to start of SVE area, from which the callee-save reloads
1594 // can be done. The code below will deallocate the stack space
1595 // space by moving FP -> SP.
1596 emitFrameOffset(MBB, RestoreBegin, DL, AArch64::SP, AArch64::FP,
1597 -SVEStackSize, TII, MachineInstr::FrameDestroy);
1598 } else {
1599 if (AFI->getSVECalleeSavedStackSize()) {
1600 // Deallocate the non-SVE locals first before we can deallocate (and
1601 // restore callee saves) from the SVE area.
1602 emitFrameOffset(MBB, RestoreBegin, DL, AArch64::SP, AArch64::SP,
1603 {NumBytes, MVT::i8}, TII, MachineInstr::FrameDestroy);
1604 NumBytes = 0;
1607 emitFrameOffset(MBB, RestoreBegin, DL, AArch64::SP, AArch64::SP,
1608 DeallocateBefore, TII, MachineInstr::FrameDestroy);
1610 emitFrameOffset(MBB, RestoreEnd, DL, AArch64::SP, AArch64::SP,
1611 DeallocateAfter, TII, MachineInstr::FrameDestroy);
1615 if (!hasFP(MF)) {
1616 bool RedZone = canUseRedZone(MF);
1617 // If this was a redzone leaf function, we don't need to restore the
1618 // stack pointer (but we may need to pop stack args for fastcc).
1619 if (RedZone && AfterCSRPopSize == 0)
1620 return;
1622 bool NoCalleeSaveRestore = PrologueSaveSize == 0;
1623 int64_t StackRestoreBytes = RedZone ? 0 : NumBytes;
1624 if (NoCalleeSaveRestore)
1625 StackRestoreBytes += AfterCSRPopSize;
1627 // If we were able to combine the local stack pop with the argument pop,
1628 // then we're done.
1629 bool Done = NoCalleeSaveRestore || AfterCSRPopSize == 0;
1631 // If we're done after this, make sure to help the load store optimizer.
1632 if (Done)
1633 adaptForLdStOpt(MBB, MBB.getFirstTerminator(), LastPopI);
1635 emitFrameOffset(MBB, LastPopI, DL, AArch64::SP, AArch64::SP,
1636 {StackRestoreBytes, MVT::i8}, TII,
1637 MachineInstr::FrameDestroy, false, NeedsWinCFI, &HasWinCFI);
1638 if (Done) {
1639 if (NeedsWinCFI) {
1640 HasWinCFI = true;
1641 BuildMI(MBB, MBB.getFirstTerminator(), DL,
1642 TII->get(AArch64::SEH_EpilogEnd))
1643 .setMIFlag(MachineInstr::FrameDestroy);
1645 return;
1648 NumBytes = 0;
1651 // Restore the original stack pointer.
1652 // FIXME: Rather than doing the math here, we should instead just use
1653 // non-post-indexed loads for the restores if we aren't actually going to
1654 // be able to save any instructions.
1655 if (!IsFunclet && (MFI.hasVarSizedObjects() || AFI->isStackRealigned())) {
1656 int64_t OffsetToFrameRecord =
1657 isTargetDarwin(MF) ? (-(int64_t)AFI->getCalleeSavedStackSize() + 16) : 0;
1658 emitFrameOffset(MBB, LastPopI, DL, AArch64::SP, AArch64::FP,
1659 {OffsetToFrameRecord, MVT::i8},
1660 TII, MachineInstr::FrameDestroy, false, NeedsWinCFI);
1661 } else if (NumBytes)
1662 emitFrameOffset(MBB, LastPopI, DL, AArch64::SP, AArch64::SP,
1663 {NumBytes, MVT::i8}, TII, MachineInstr::FrameDestroy, false,
1664 NeedsWinCFI);
1666 // This must be placed after the callee-save restore code because that code
1667 // assumes the SP is at the same location as it was after the callee-save save
1668 // code in the prologue.
1669 if (AfterCSRPopSize) {
1670 // Find an insertion point for the first ldp so that it goes before the
1671 // shadow call stack epilog instruction. This ensures that the restore of
1672 // lr from x18 is placed after the restore from sp.
1673 auto FirstSPPopI = MBB.getFirstTerminator();
1674 while (FirstSPPopI != Begin) {
1675 auto Prev = std::prev(FirstSPPopI);
1676 if (Prev->getOpcode() != AArch64::LDRXpre ||
1677 Prev->getOperand(0).getReg() == AArch64::SP)
1678 break;
1679 FirstSPPopI = Prev;
1682 adaptForLdStOpt(MBB, FirstSPPopI, LastPopI);
1684 emitFrameOffset(MBB, FirstSPPopI, DL, AArch64::SP, AArch64::SP,
1685 {(int64_t)AfterCSRPopSize, MVT::i8}, TII,
1686 MachineInstr::FrameDestroy, false, NeedsWinCFI, &HasWinCFI);
1688 if (NeedsWinCFI && HasWinCFI)
1689 BuildMI(MBB, MBB.getFirstTerminator(), DL, TII->get(AArch64::SEH_EpilogEnd))
1690 .setMIFlag(MachineInstr::FrameDestroy);
1692 MF.setHasWinCFI(HasWinCFI);
1695 /// getFrameIndexReference - Provide a base+offset reference to an FI slot for
1696 /// debug info. It's the same as what we use for resolving the code-gen
1697 /// references for now. FIXME: This can go wrong when references are
1698 /// SP-relative and simple call frames aren't used.
1699 int AArch64FrameLowering::getFrameIndexReference(const MachineFunction &MF,
1700 int FI,
1701 unsigned &FrameReg) const {
1702 return resolveFrameIndexReference(
1703 MF, FI, FrameReg,
1704 /*PreferFP=*/
1705 MF.getFunction().hasFnAttribute(Attribute::SanitizeHWAddress),
1706 /*ForSimm=*/false)
1707 .getBytes();
1710 int AArch64FrameLowering::getNonLocalFrameIndexReference(
1711 const MachineFunction &MF, int FI) const {
1712 return getSEHFrameIndexOffset(MF, FI);
1715 static StackOffset getFPOffset(const MachineFunction &MF, int64_t ObjectOffset) {
1716 const auto *AFI = MF.getInfo<AArch64FunctionInfo>();
1717 const auto &Subtarget = MF.getSubtarget<AArch64Subtarget>();
1718 bool IsWin64 =
1719 Subtarget.isCallingConvWin64(MF.getFunction().getCallingConv());
1720 unsigned FixedObject = IsWin64 ? alignTo(AFI->getVarArgsGPRSize(), 16) : 0;
1721 unsigned FPAdjust = isTargetDarwin(MF)
1722 ? 16 : AFI->getCalleeSavedStackSize(MF.getFrameInfo());
1723 return {ObjectOffset + FixedObject + FPAdjust, MVT::i8};
1726 static StackOffset getStackOffset(const MachineFunction &MF, int64_t ObjectOffset) {
1727 const auto &MFI = MF.getFrameInfo();
1728 return {ObjectOffset + (int64_t)MFI.getStackSize(), MVT::i8};
1731 int AArch64FrameLowering::getSEHFrameIndexOffset(const MachineFunction &MF,
1732 int FI) const {
1733 const auto *RegInfo = static_cast<const AArch64RegisterInfo *>(
1734 MF.getSubtarget().getRegisterInfo());
1735 int ObjectOffset = MF.getFrameInfo().getObjectOffset(FI);
1736 return RegInfo->getLocalAddressRegister(MF) == AArch64::FP
1737 ? getFPOffset(MF, ObjectOffset).getBytes()
1738 : getStackOffset(MF, ObjectOffset).getBytes();
1741 StackOffset AArch64FrameLowering::resolveFrameIndexReference(
1742 const MachineFunction &MF, int FI, unsigned &FrameReg, bool PreferFP,
1743 bool ForSimm) const {
1744 const auto &MFI = MF.getFrameInfo();
1745 int64_t ObjectOffset = MFI.getObjectOffset(FI);
1746 bool isFixed = MFI.isFixedObjectIndex(FI);
1747 bool isSVE = MFI.getStackID(FI) == TargetStackID::SVEVector;
1748 return resolveFrameOffsetReference(MF, ObjectOffset, isFixed, isSVE, FrameReg,
1749 PreferFP, ForSimm);
1752 StackOffset AArch64FrameLowering::resolveFrameOffsetReference(
1753 const MachineFunction &MF, int64_t ObjectOffset, bool isFixed, bool isSVE,
1754 unsigned &FrameReg, bool PreferFP, bool ForSimm) const {
1755 const auto &MFI = MF.getFrameInfo();
1756 const auto *RegInfo = static_cast<const AArch64RegisterInfo *>(
1757 MF.getSubtarget().getRegisterInfo());
1758 const auto *AFI = MF.getInfo<AArch64FunctionInfo>();
1759 const auto &Subtarget = MF.getSubtarget<AArch64Subtarget>();
1761 int64_t FPOffset = getFPOffset(MF, ObjectOffset).getBytes();
1762 int64_t Offset = getStackOffset(MF, ObjectOffset).getBytes();
1763 bool isCSR =
1764 !isFixed && ObjectOffset >= -((int)AFI->getCalleeSavedStackSize(MFI));
1766 const StackOffset &SVEStackSize = getSVEStackSize(MF);
1768 // Use frame pointer to reference fixed objects. Use it for locals if
1769 // there are VLAs or a dynamically realigned SP (and thus the SP isn't
1770 // reliable as a base). Make sure useFPForScavengingIndex() does the
1771 // right thing for the emergency spill slot.
1772 bool UseFP = false;
1773 if (AFI->hasStackFrame() && !isSVE) {
1774 // We shouldn't prefer using the FP when there is an SVE area
1775 // in between the FP and the non-SVE locals/spills.
1776 PreferFP &= !SVEStackSize;
1778 // Note: Keeping the following as multiple 'if' statements rather than
1779 // merging to a single expression for readability.
1781 // Argument access should always use the FP.
1782 if (isFixed) {
1783 UseFP = hasFP(MF);
1784 } else if (isCSR && RegInfo->needsStackRealignment(MF)) {
1785 // References to the CSR area must use FP if we're re-aligning the stack
1786 // since the dynamically-sized alignment padding is between the SP/BP and
1787 // the CSR area.
1788 assert(hasFP(MF) && "Re-aligned stack must have frame pointer");
1789 UseFP = true;
1790 } else if (hasFP(MF) && !RegInfo->needsStackRealignment(MF)) {
1791 // If the FPOffset is negative and we're producing a signed immediate, we
1792 // have to keep in mind that the available offset range for negative
1793 // offsets is smaller than for positive ones. If an offset is available
1794 // via the FP and the SP, use whichever is closest.
1795 bool FPOffsetFits = !ForSimm || FPOffset >= -256;
1796 PreferFP |= Offset > -FPOffset;
1798 if (MFI.hasVarSizedObjects()) {
1799 // If we have variable sized objects, we can use either FP or BP, as the
1800 // SP offset is unknown. We can use the base pointer if we have one and
1801 // FP is not preferred. If not, we're stuck with using FP.
1802 bool CanUseBP = RegInfo->hasBasePointer(MF);
1803 if (FPOffsetFits && CanUseBP) // Both are ok. Pick the best.
1804 UseFP = PreferFP;
1805 else if (!CanUseBP) { // Can't use BP. Forced to use FP.
1806 assert(!SVEStackSize && "Expected BP to be available");
1807 UseFP = true;
1809 // else we can use BP and FP, but the offset from FP won't fit.
1810 // That will make us scavenge registers which we can probably avoid by
1811 // using BP. If it won't fit for BP either, we'll scavenge anyway.
1812 } else if (FPOffset >= 0) {
1813 // Use SP or FP, whichever gives us the best chance of the offset
1814 // being in range for direct access. If the FPOffset is positive,
1815 // that'll always be best, as the SP will be even further away.
1816 UseFP = true;
1817 } else if (MF.hasEHFunclets() && !RegInfo->hasBasePointer(MF)) {
1818 // Funclets access the locals contained in the parent's stack frame
1819 // via the frame pointer, so we have to use the FP in the parent
1820 // function.
1821 (void) Subtarget;
1822 assert(
1823 Subtarget.isCallingConvWin64(MF.getFunction().getCallingConv()) &&
1824 "Funclets should only be present on Win64");
1825 UseFP = true;
1826 } else {
1827 // We have the choice between FP and (SP or BP).
1828 if (FPOffsetFits && PreferFP) // If FP is the best fit, use it.
1829 UseFP = true;
1834 assert(((isFixed || isCSR) || !RegInfo->needsStackRealignment(MF) || !UseFP) &&
1835 "In the presence of dynamic stack pointer realignment, "
1836 "non-argument/CSR objects cannot be accessed through the frame pointer");
1838 if (isSVE) {
1839 int64_t OffsetToSVEArea =
1840 MFI.getStackSize() - AFI->getCalleeSavedStackSize();
1841 StackOffset FPOffset = {ObjectOffset, MVT::nxv1i8};
1842 StackOffset SPOffset = SVEStackSize +
1843 StackOffset(ObjectOffset, MVT::nxv1i8) +
1844 StackOffset(OffsetToSVEArea, MVT::i8);
1845 // Always use the FP for SVE spills if available and beneficial.
1846 if (hasFP(MF) &&
1847 (SPOffset.getBytes() ||
1848 FPOffset.getScalableBytes() < SPOffset.getScalableBytes() ||
1849 RegInfo->needsStackRealignment(MF))) {
1850 FrameReg = RegInfo->getFrameRegister(MF);
1851 return FPOffset;
1854 FrameReg = RegInfo->hasBasePointer(MF) ? RegInfo->getBaseRegister()
1855 : (unsigned)AArch64::SP;
1856 return SPOffset;
1859 StackOffset ScalableOffset = {};
1860 if (UseFP && !(isFixed || isCSR))
1861 ScalableOffset = -SVEStackSize;
1862 if (!UseFP && (isFixed || isCSR))
1863 ScalableOffset = SVEStackSize;
1865 if (UseFP) {
1866 FrameReg = RegInfo->getFrameRegister(MF);
1867 return StackOffset(FPOffset, MVT::i8) + ScalableOffset;
1870 // Use the base pointer if we have one.
1871 if (RegInfo->hasBasePointer(MF))
1872 FrameReg = RegInfo->getBaseRegister();
1873 else {
1874 assert(!MFI.hasVarSizedObjects() &&
1875 "Can't use SP when we have var sized objects.");
1876 FrameReg = AArch64::SP;
1877 // If we're using the red zone for this function, the SP won't actually
1878 // be adjusted, so the offsets will be negative. They're also all
1879 // within range of the signed 9-bit immediate instructions.
1880 if (canUseRedZone(MF))
1881 Offset -= AFI->getLocalStackSize();
1884 return StackOffset(Offset, MVT::i8) + ScalableOffset;
1887 static unsigned getPrologueDeath(MachineFunction &MF, unsigned Reg) {
1888 // Do not set a kill flag on values that are also marked as live-in. This
1889 // happens with the @llvm-returnaddress intrinsic and with arguments passed in
1890 // callee saved registers.
1891 // Omitting the kill flags is conservatively correct even if the live-in
1892 // is not used after all.
1893 bool IsLiveIn = MF.getRegInfo().isLiveIn(Reg);
1894 return getKillRegState(!IsLiveIn);
1897 static bool produceCompactUnwindFrame(MachineFunction &MF) {
1898 const AArch64Subtarget &Subtarget = MF.getSubtarget<AArch64Subtarget>();
1899 AttributeList Attrs = MF.getFunction().getAttributes();
1900 return Subtarget.isTargetMachO() &&
1901 !(Subtarget.getTargetLowering()->supportSwiftError() &&
1902 Attrs.hasAttrSomewhere(Attribute::SwiftError));
1905 static bool invalidateWindowsRegisterPairing(unsigned Reg1, unsigned Reg2,
1906 bool NeedsWinCFI) {
1907 // If we are generating register pairs for a Windows function that requires
1908 // EH support, then pair consecutive registers only. There are no unwind
1909 // opcodes for saves/restores of non-consectuve register pairs.
1910 // The unwind opcodes are save_regp, save_regp_x, save_fregp, save_frepg_x.
1911 // https://docs.microsoft.com/en-us/cpp/build/arm64-exception-handling
1913 // TODO: LR can be paired with any register. We don't support this yet in
1914 // the MCLayer. We need to add support for the save_lrpair unwind code.
1915 if (Reg2 == AArch64::FP)
1916 return true;
1917 if (!NeedsWinCFI)
1918 return false;
1919 if (Reg2 == Reg1 + 1)
1920 return false;
1921 return true;
1924 /// Returns true if Reg1 and Reg2 cannot be paired using a ldp/stp instruction.
1925 /// WindowsCFI requires that only consecutive registers can be paired.
1926 /// LR and FP need to be allocated together when the frame needs to save
1927 /// the frame-record. This means any other register pairing with LR is invalid.
1928 static bool invalidateRegisterPairing(unsigned Reg1, unsigned Reg2,
1929 bool UsesWinAAPCS, bool NeedsWinCFI, bool NeedsFrameRecord) {
1930 if (UsesWinAAPCS)
1931 return invalidateWindowsRegisterPairing(Reg1, Reg2, NeedsWinCFI);
1933 // If we need to store the frame record, don't pair any register
1934 // with LR other than FP.
1935 if (NeedsFrameRecord)
1936 return Reg2 == AArch64::LR;
1938 return false;
1941 namespace {
1943 struct RegPairInfo {
1944 unsigned Reg1 = AArch64::NoRegister;
1945 unsigned Reg2 = AArch64::NoRegister;
1946 int FrameIdx;
1947 int Offset;
1948 enum RegType { GPR, FPR64, FPR128, PPR, ZPR } Type;
1950 RegPairInfo() = default;
1952 bool isPaired() const { return Reg2 != AArch64::NoRegister; }
1954 unsigned getScale() const {
1955 switch (Type) {
1956 case PPR:
1957 return 2;
1958 case GPR:
1959 case FPR64:
1960 return 8;
1961 case ZPR:
1962 case FPR128:
1963 return 16;
1965 llvm_unreachable("Unsupported type");
1968 bool isScalable() const { return Type == PPR || Type == ZPR; }
1971 } // end anonymous namespace
1973 static void computeCalleeSaveRegisterPairs(
1974 MachineFunction &MF, const std::vector<CalleeSavedInfo> &CSI,
1975 const TargetRegisterInfo *TRI, SmallVectorImpl<RegPairInfo> &RegPairs,
1976 bool &NeedShadowCallStackProlog, bool NeedsFrameRecord) {
1978 if (CSI.empty())
1979 return;
1981 bool IsWindows = isTargetWindows(MF);
1982 bool NeedsWinCFI = needsWinCFI(MF);
1983 AArch64FunctionInfo *AFI = MF.getInfo<AArch64FunctionInfo>();
1984 MachineFrameInfo &MFI = MF.getFrameInfo();
1985 CallingConv::ID CC = MF.getFunction().getCallingConv();
1986 unsigned Count = CSI.size();
1987 (void)CC;
1988 // MachO's compact unwind format relies on all registers being stored in
1989 // pairs.
1990 assert((!produceCompactUnwindFrame(MF) ||
1991 CC == CallingConv::PreserveMost ||
1992 (Count & 1) == 0) &&
1993 "Odd number of callee-saved regs to spill!");
1994 int ByteOffset = AFI->getCalleeSavedStackSize();
1995 int ScalableByteOffset = AFI->getSVECalleeSavedStackSize();
1996 // On Linux, we will have either one or zero non-paired register. On Windows
1997 // with CFI, we can have multiple unpaired registers in order to utilize the
1998 // available unwind codes. This flag assures that the alignment fixup is done
1999 // only once, as intened.
2000 bool FixupDone = false;
2001 for (unsigned i = 0; i < Count; ++i) {
2002 RegPairInfo RPI;
2003 RPI.Reg1 = CSI[i].getReg();
2005 if (AArch64::GPR64RegClass.contains(RPI.Reg1))
2006 RPI.Type = RegPairInfo::GPR;
2007 else if (AArch64::FPR64RegClass.contains(RPI.Reg1))
2008 RPI.Type = RegPairInfo::FPR64;
2009 else if (AArch64::FPR128RegClass.contains(RPI.Reg1))
2010 RPI.Type = RegPairInfo::FPR128;
2011 else if (AArch64::ZPRRegClass.contains(RPI.Reg1))
2012 RPI.Type = RegPairInfo::ZPR;
2013 else if (AArch64::PPRRegClass.contains(RPI.Reg1))
2014 RPI.Type = RegPairInfo::PPR;
2015 else
2016 llvm_unreachable("Unsupported register class.");
2018 // Add the next reg to the pair if it is in the same register class.
2019 if (i + 1 < Count) {
2020 unsigned NextReg = CSI[i + 1].getReg();
2021 switch (RPI.Type) {
2022 case RegPairInfo::GPR:
2023 if (AArch64::GPR64RegClass.contains(NextReg) &&
2024 !invalidateRegisterPairing(RPI.Reg1, NextReg, IsWindows, NeedsWinCFI,
2025 NeedsFrameRecord))
2026 RPI.Reg2 = NextReg;
2027 break;
2028 case RegPairInfo::FPR64:
2029 if (AArch64::FPR64RegClass.contains(NextReg) &&
2030 !invalidateWindowsRegisterPairing(RPI.Reg1, NextReg, NeedsWinCFI))
2031 RPI.Reg2 = NextReg;
2032 break;
2033 case RegPairInfo::FPR128:
2034 if (AArch64::FPR128RegClass.contains(NextReg))
2035 RPI.Reg2 = NextReg;
2036 break;
2037 case RegPairInfo::PPR:
2038 case RegPairInfo::ZPR:
2039 break;
2043 // If either of the registers to be saved is the lr register, it means that
2044 // we also need to save lr in the shadow call stack.
2045 if ((RPI.Reg1 == AArch64::LR || RPI.Reg2 == AArch64::LR) &&
2046 MF.getFunction().hasFnAttribute(Attribute::ShadowCallStack)) {
2047 if (!MF.getSubtarget<AArch64Subtarget>().isXRegisterReserved(18))
2048 report_fatal_error("Must reserve x18 to use shadow call stack");
2049 NeedShadowCallStackProlog = true;
2052 // GPRs and FPRs are saved in pairs of 64-bit regs. We expect the CSI
2053 // list to come in sorted by frame index so that we can issue the store
2054 // pair instructions directly. Assert if we see anything otherwise.
2056 // The order of the registers in the list is controlled by
2057 // getCalleeSavedRegs(), so they will always be in-order, as well.
2058 assert((!RPI.isPaired() ||
2059 (CSI[i].getFrameIdx() + 1 == CSI[i + 1].getFrameIdx())) &&
2060 "Out of order callee saved regs!");
2062 assert((!RPI.isPaired() || !NeedsFrameRecord || RPI.Reg2 != AArch64::FP ||
2063 RPI.Reg1 == AArch64::LR) &&
2064 "FrameRecord must be allocated together with LR");
2066 // Windows AAPCS has FP and LR reversed.
2067 assert((!RPI.isPaired() || !NeedsFrameRecord || RPI.Reg1 != AArch64::FP ||
2068 RPI.Reg2 == AArch64::LR) &&
2069 "FrameRecord must be allocated together with LR");
2071 // MachO's compact unwind format relies on all registers being stored in
2072 // adjacent register pairs.
2073 assert((!produceCompactUnwindFrame(MF) ||
2074 CC == CallingConv::PreserveMost ||
2075 (RPI.isPaired() &&
2076 ((RPI.Reg1 == AArch64::LR && RPI.Reg2 == AArch64::FP) ||
2077 RPI.Reg1 + 1 == RPI.Reg2))) &&
2078 "Callee-save registers not saved as adjacent register pair!");
2080 RPI.FrameIdx = CSI[i].getFrameIdx();
2082 int Scale = RPI.getScale();
2083 if (RPI.isScalable())
2084 ScalableByteOffset -= Scale;
2085 else
2086 ByteOffset -= RPI.isPaired() ? 2 * Scale : Scale;
2088 assert(!(RPI.isScalable() && RPI.isPaired()) &&
2089 "Paired spill/fill instructions don't exist for SVE vectors");
2091 // Round up size of non-pair to pair size if we need to pad the
2092 // callee-save area to ensure 16-byte alignment.
2093 if (AFI->hasCalleeSaveStackFreeSpace() && !FixupDone &&
2094 !RPI.isScalable() && RPI.Type != RegPairInfo::FPR128 &&
2095 !RPI.isPaired()) {
2096 FixupDone = true;
2097 ByteOffset -= 8;
2098 assert(ByteOffset % 16 == 0);
2099 assert(MFI.getObjectAlignment(RPI.FrameIdx) <= 16);
2100 MFI.setObjectAlignment(RPI.FrameIdx, 16);
2103 int Offset = RPI.isScalable() ? ScalableByteOffset : ByteOffset;
2104 assert(Offset % Scale == 0);
2105 RPI.Offset = Offset / Scale;
2107 assert(((!RPI.isScalable() && RPI.Offset >= -64 && RPI.Offset <= 63) ||
2108 (RPI.isScalable() && RPI.Offset >= -256 && RPI.Offset <= 255)) &&
2109 "Offset out of bounds for LDP/STP immediate");
2111 RegPairs.push_back(RPI);
2112 if (RPI.isPaired())
2113 ++i;
2117 bool AArch64FrameLowering::spillCalleeSavedRegisters(
2118 MachineBasicBlock &MBB, MachineBasicBlock::iterator MI,
2119 const std::vector<CalleeSavedInfo> &CSI,
2120 const TargetRegisterInfo *TRI) const {
2121 MachineFunction &MF = *MBB.getParent();
2122 const TargetInstrInfo &TII = *MF.getSubtarget().getInstrInfo();
2123 bool NeedsWinCFI = needsWinCFI(MF);
2124 DebugLoc DL;
2125 SmallVector<RegPairInfo, 8> RegPairs;
2127 bool NeedShadowCallStackProlog = false;
2128 computeCalleeSaveRegisterPairs(MF, CSI, TRI, RegPairs,
2129 NeedShadowCallStackProlog, hasFP(MF));
2130 const MachineRegisterInfo &MRI = MF.getRegInfo();
2132 if (NeedShadowCallStackProlog) {
2133 // Shadow call stack prolog: str x30, [x18], #8
2134 BuildMI(MBB, MI, DL, TII.get(AArch64::STRXpost))
2135 .addReg(AArch64::X18, RegState::Define)
2136 .addReg(AArch64::LR)
2137 .addReg(AArch64::X18)
2138 .addImm(8)
2139 .setMIFlag(MachineInstr::FrameSetup);
2141 if (NeedsWinCFI)
2142 BuildMI(MBB, MI, DL, TII.get(AArch64::SEH_Nop))
2143 .setMIFlag(MachineInstr::FrameSetup);
2145 if (!MF.getFunction().hasFnAttribute(Attribute::NoUnwind)) {
2146 // Emit a CFI instruction that causes 8 to be subtracted from the value of
2147 // x18 when unwinding past this frame.
2148 static const char CFIInst[] = {
2149 dwarf::DW_CFA_val_expression,
2150 18, // register
2151 2, // length
2152 static_cast<char>(unsigned(dwarf::DW_OP_breg18)),
2153 static_cast<char>(-8) & 0x7f, // addend (sleb128)
2155 unsigned CFIIndex = MF.addFrameInst(MCCFIInstruction::createEscape(
2156 nullptr, StringRef(CFIInst, sizeof(CFIInst))));
2157 BuildMI(MBB, MI, DL, TII.get(AArch64::CFI_INSTRUCTION))
2158 .addCFIIndex(CFIIndex)
2159 .setMIFlag(MachineInstr::FrameSetup);
2162 // This instruction also makes x18 live-in to the entry block.
2163 MBB.addLiveIn(AArch64::X18);
2166 for (auto RPII = RegPairs.rbegin(), RPIE = RegPairs.rend(); RPII != RPIE;
2167 ++RPII) {
2168 RegPairInfo RPI = *RPII;
2169 unsigned Reg1 = RPI.Reg1;
2170 unsigned Reg2 = RPI.Reg2;
2171 unsigned StrOpc;
2173 // Issue sequence of spills for cs regs. The first spill may be converted
2174 // to a pre-decrement store later by emitPrologue if the callee-save stack
2175 // area allocation can't be combined with the local stack area allocation.
2176 // For example:
2177 // stp x22, x21, [sp, #0] // addImm(+0)
2178 // stp x20, x19, [sp, #16] // addImm(+2)
2179 // stp fp, lr, [sp, #32] // addImm(+4)
2180 // Rationale: This sequence saves uop updates compared to a sequence of
2181 // pre-increment spills like stp xi,xj,[sp,#-16]!
2182 // Note: Similar rationale and sequence for restores in epilog.
2183 unsigned Size, Align;
2184 switch (RPI.Type) {
2185 case RegPairInfo::GPR:
2186 StrOpc = RPI.isPaired() ? AArch64::STPXi : AArch64::STRXui;
2187 Size = 8;
2188 Align = 8;
2189 break;
2190 case RegPairInfo::FPR64:
2191 StrOpc = RPI.isPaired() ? AArch64::STPDi : AArch64::STRDui;
2192 Size = 8;
2193 Align = 8;
2194 break;
2195 case RegPairInfo::FPR128:
2196 StrOpc = RPI.isPaired() ? AArch64::STPQi : AArch64::STRQui;
2197 Size = 16;
2198 Align = 16;
2199 break;
2200 case RegPairInfo::ZPR:
2201 StrOpc = AArch64::STR_ZXI;
2202 Size = 16;
2203 Align = 16;
2204 break;
2205 case RegPairInfo::PPR:
2206 StrOpc = AArch64::STR_PXI;
2207 Size = 2;
2208 Align = 2;
2209 break;
2211 LLVM_DEBUG(dbgs() << "CSR spill: (" << printReg(Reg1, TRI);
2212 if (RPI.isPaired()) dbgs() << ", " << printReg(Reg2, TRI);
2213 dbgs() << ") -> fi#(" << RPI.FrameIdx;
2214 if (RPI.isPaired()) dbgs() << ", " << RPI.FrameIdx + 1;
2215 dbgs() << ")\n");
2217 assert((!NeedsWinCFI || !(Reg1 == AArch64::LR && Reg2 == AArch64::FP)) &&
2218 "Windows unwdinding requires a consecutive (FP,LR) pair");
2219 // Windows unwind codes require consecutive registers if registers are
2220 // paired. Make the switch here, so that the code below will save (x,x+1)
2221 // and not (x+1,x).
2222 unsigned FrameIdxReg1 = RPI.FrameIdx;
2223 unsigned FrameIdxReg2 = RPI.FrameIdx + 1;
2224 if (NeedsWinCFI && RPI.isPaired()) {
2225 std::swap(Reg1, Reg2);
2226 std::swap(FrameIdxReg1, FrameIdxReg2);
2228 MachineInstrBuilder MIB = BuildMI(MBB, MI, DL, TII.get(StrOpc));
2229 if (!MRI.isReserved(Reg1))
2230 MBB.addLiveIn(Reg1);
2231 if (RPI.isPaired()) {
2232 if (!MRI.isReserved(Reg2))
2233 MBB.addLiveIn(Reg2);
2234 MIB.addReg(Reg2, getPrologueDeath(MF, Reg2));
2235 MIB.addMemOperand(MF.getMachineMemOperand(
2236 MachinePointerInfo::getFixedStack(MF, FrameIdxReg2),
2237 MachineMemOperand::MOStore, Size, Align));
2239 MIB.addReg(Reg1, getPrologueDeath(MF, Reg1))
2240 .addReg(AArch64::SP)
2241 .addImm(RPI.Offset) // [sp, #offset*scale],
2242 // where factor*scale is implicit
2243 .setMIFlag(MachineInstr::FrameSetup);
2244 MIB.addMemOperand(MF.getMachineMemOperand(
2245 MachinePointerInfo::getFixedStack(MF,FrameIdxReg1),
2246 MachineMemOperand::MOStore, Size, Align));
2247 if (NeedsWinCFI)
2248 InsertSEH(MIB, TII, MachineInstr::FrameSetup);
2250 // Update the StackIDs of the SVE stack slots.
2251 MachineFrameInfo &MFI = MF.getFrameInfo();
2252 if (RPI.Type == RegPairInfo::ZPR || RPI.Type == RegPairInfo::PPR)
2253 MFI.setStackID(RPI.FrameIdx, TargetStackID::SVEVector);
2256 return true;
2259 bool AArch64FrameLowering::restoreCalleeSavedRegisters(
2260 MachineBasicBlock &MBB, MachineBasicBlock::iterator MI,
2261 std::vector<CalleeSavedInfo> &CSI,
2262 const TargetRegisterInfo *TRI) const {
2263 MachineFunction &MF = *MBB.getParent();
2264 const TargetInstrInfo &TII = *MF.getSubtarget().getInstrInfo();
2265 DebugLoc DL;
2266 SmallVector<RegPairInfo, 8> RegPairs;
2267 bool NeedsWinCFI = needsWinCFI(MF);
2269 if (MI != MBB.end())
2270 DL = MI->getDebugLoc();
2272 bool NeedShadowCallStackProlog = false;
2273 computeCalleeSaveRegisterPairs(MF, CSI, TRI, RegPairs,
2274 NeedShadowCallStackProlog, hasFP(MF));
2276 auto EmitMI = [&](const RegPairInfo &RPI) {
2277 unsigned Reg1 = RPI.Reg1;
2278 unsigned Reg2 = RPI.Reg2;
2280 // Issue sequence of restores for cs regs. The last restore may be converted
2281 // to a post-increment load later by emitEpilogue if the callee-save stack
2282 // area allocation can't be combined with the local stack area allocation.
2283 // For example:
2284 // ldp fp, lr, [sp, #32] // addImm(+4)
2285 // ldp x20, x19, [sp, #16] // addImm(+2)
2286 // ldp x22, x21, [sp, #0] // addImm(+0)
2287 // Note: see comment in spillCalleeSavedRegisters()
2288 unsigned LdrOpc;
2289 unsigned Size, Align;
2290 switch (RPI.Type) {
2291 case RegPairInfo::GPR:
2292 LdrOpc = RPI.isPaired() ? AArch64::LDPXi : AArch64::LDRXui;
2293 Size = 8;
2294 Align = 8;
2295 break;
2296 case RegPairInfo::FPR64:
2297 LdrOpc = RPI.isPaired() ? AArch64::LDPDi : AArch64::LDRDui;
2298 Size = 8;
2299 Align = 8;
2300 break;
2301 case RegPairInfo::FPR128:
2302 LdrOpc = RPI.isPaired() ? AArch64::LDPQi : AArch64::LDRQui;
2303 Size = 16;
2304 Align = 16;
2305 break;
2306 case RegPairInfo::ZPR:
2307 LdrOpc = AArch64::LDR_ZXI;
2308 Size = 16;
2309 Align = 16;
2310 break;
2311 case RegPairInfo::PPR:
2312 LdrOpc = AArch64::LDR_PXI;
2313 Size = 2;
2314 Align = 2;
2315 break;
2317 LLVM_DEBUG(dbgs() << "CSR restore: (" << printReg(Reg1, TRI);
2318 if (RPI.isPaired()) dbgs() << ", " << printReg(Reg2, TRI);
2319 dbgs() << ") -> fi#(" << RPI.FrameIdx;
2320 if (RPI.isPaired()) dbgs() << ", " << RPI.FrameIdx + 1;
2321 dbgs() << ")\n");
2323 // Windows unwind codes require consecutive registers if registers are
2324 // paired. Make the switch here, so that the code below will save (x,x+1)
2325 // and not (x+1,x).
2326 unsigned FrameIdxReg1 = RPI.FrameIdx;
2327 unsigned FrameIdxReg2 = RPI.FrameIdx + 1;
2328 if (NeedsWinCFI && RPI.isPaired()) {
2329 std::swap(Reg1, Reg2);
2330 std::swap(FrameIdxReg1, FrameIdxReg2);
2332 MachineInstrBuilder MIB = BuildMI(MBB, MI, DL, TII.get(LdrOpc));
2333 if (RPI.isPaired()) {
2334 MIB.addReg(Reg2, getDefRegState(true));
2335 MIB.addMemOperand(MF.getMachineMemOperand(
2336 MachinePointerInfo::getFixedStack(MF, FrameIdxReg2),
2337 MachineMemOperand::MOLoad, Size, Align));
2339 MIB.addReg(Reg1, getDefRegState(true))
2340 .addReg(AArch64::SP)
2341 .addImm(RPI.Offset) // [sp, #offset*scale]
2342 // where factor*scale is implicit
2343 .setMIFlag(MachineInstr::FrameDestroy);
2344 MIB.addMemOperand(MF.getMachineMemOperand(
2345 MachinePointerInfo::getFixedStack(MF, FrameIdxReg1),
2346 MachineMemOperand::MOLoad, Size, Align));
2347 if (NeedsWinCFI)
2348 InsertSEH(MIB, TII, MachineInstr::FrameDestroy);
2351 // SVE objects are always restored in reverse order.
2352 for (const RegPairInfo &RPI : reverse(RegPairs))
2353 if (RPI.isScalable())
2354 EmitMI(RPI);
2356 if (ReverseCSRRestoreSeq) {
2357 for (const RegPairInfo &RPI : reverse(RegPairs))
2358 if (!RPI.isScalable())
2359 EmitMI(RPI);
2360 } else
2361 for (const RegPairInfo &RPI : RegPairs)
2362 if (!RPI.isScalable())
2363 EmitMI(RPI);
2365 if (NeedShadowCallStackProlog) {
2366 // Shadow call stack epilog: ldr x30, [x18, #-8]!
2367 BuildMI(MBB, MI, DL, TII.get(AArch64::LDRXpre))
2368 .addReg(AArch64::X18, RegState::Define)
2369 .addReg(AArch64::LR, RegState::Define)
2370 .addReg(AArch64::X18)
2371 .addImm(-8)
2372 .setMIFlag(MachineInstr::FrameDestroy);
2375 return true;
2378 void AArch64FrameLowering::determineCalleeSaves(MachineFunction &MF,
2379 BitVector &SavedRegs,
2380 RegScavenger *RS) const {
2381 // All calls are tail calls in GHC calling conv, and functions have no
2382 // prologue/epilogue.
2383 if (MF.getFunction().getCallingConv() == CallingConv::GHC)
2384 return;
2386 TargetFrameLowering::determineCalleeSaves(MF, SavedRegs, RS);
2387 const AArch64RegisterInfo *RegInfo = static_cast<const AArch64RegisterInfo *>(
2388 MF.getSubtarget().getRegisterInfo());
2389 AArch64FunctionInfo *AFI = MF.getInfo<AArch64FunctionInfo>();
2390 unsigned UnspilledCSGPR = AArch64::NoRegister;
2391 unsigned UnspilledCSGPRPaired = AArch64::NoRegister;
2393 MachineFrameInfo &MFI = MF.getFrameInfo();
2394 const MCPhysReg *CSRegs = MF.getRegInfo().getCalleeSavedRegs();
2396 unsigned BasePointerReg = RegInfo->hasBasePointer(MF)
2397 ? RegInfo->getBaseRegister()
2398 : (unsigned)AArch64::NoRegister;
2400 unsigned ExtraCSSpill = 0;
2401 // Figure out which callee-saved registers to save/restore.
2402 for (unsigned i = 0; CSRegs[i]; ++i) {
2403 const unsigned Reg = CSRegs[i];
2405 // Add the base pointer register to SavedRegs if it is callee-save.
2406 if (Reg == BasePointerReg)
2407 SavedRegs.set(Reg);
2409 bool RegUsed = SavedRegs.test(Reg);
2410 unsigned PairedReg = AArch64::NoRegister;
2411 if (AArch64::GPR64RegClass.contains(Reg) ||
2412 AArch64::FPR64RegClass.contains(Reg) ||
2413 AArch64::FPR128RegClass.contains(Reg))
2414 PairedReg = CSRegs[i ^ 1];
2416 if (!RegUsed) {
2417 if (AArch64::GPR64RegClass.contains(Reg) &&
2418 !RegInfo->isReservedReg(MF, Reg)) {
2419 UnspilledCSGPR = Reg;
2420 UnspilledCSGPRPaired = PairedReg;
2422 continue;
2425 // MachO's compact unwind format relies on all registers being stored in
2426 // pairs.
2427 // FIXME: the usual format is actually better if unwinding isn't needed.
2428 if (produceCompactUnwindFrame(MF) && PairedReg != AArch64::NoRegister &&
2429 !SavedRegs.test(PairedReg)) {
2430 SavedRegs.set(PairedReg);
2431 if (AArch64::GPR64RegClass.contains(PairedReg) &&
2432 !RegInfo->isReservedReg(MF, PairedReg))
2433 ExtraCSSpill = PairedReg;
2437 // Calculates the callee saved stack size.
2438 unsigned CSStackSize = 0;
2439 unsigned SVECSStackSize = 0;
2440 const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo();
2441 const MachineRegisterInfo &MRI = MF.getRegInfo();
2442 for (unsigned Reg : SavedRegs.set_bits()) {
2443 auto RegSize = TRI->getRegSizeInBits(Reg, MRI) / 8;
2444 if (AArch64::PPRRegClass.contains(Reg) ||
2445 AArch64::ZPRRegClass.contains(Reg))
2446 SVECSStackSize += RegSize;
2447 else
2448 CSStackSize += RegSize;
2451 // Save number of saved regs, so we can easily update CSStackSize later.
2452 unsigned NumSavedRegs = SavedRegs.count();
2454 // The frame record needs to be created by saving the appropriate registers
2455 uint64_t EstimatedStackSize = MFI.estimateStackSize(MF);
2456 if (hasFP(MF) ||
2457 windowsRequiresStackProbe(MF, EstimatedStackSize + CSStackSize + 16)) {
2458 SavedRegs.set(AArch64::FP);
2459 SavedRegs.set(AArch64::LR);
2462 LLVM_DEBUG(dbgs() << "*** determineCalleeSaves\nSaved CSRs:";
2463 for (unsigned Reg
2464 : SavedRegs.set_bits()) dbgs()
2465 << ' ' << printReg(Reg, RegInfo);
2466 dbgs() << "\n";);
2468 // If any callee-saved registers are used, the frame cannot be eliminated.
2469 int64_t SVEStackSize =
2470 alignTo(SVECSStackSize + estimateSVEStackObjectOffsets(MFI), 16);
2471 bool CanEliminateFrame = (SavedRegs.count() == 0) && !SVEStackSize;
2473 // The CSR spill slots have not been allocated yet, so estimateStackSize
2474 // won't include them.
2475 unsigned EstimatedStackSizeLimit = estimateRSStackSizeLimit(MF);
2477 // Conservatively always assume BigStack when there are SVE spills.
2478 bool BigStack = SVEStackSize ||
2479 (EstimatedStackSize + CSStackSize) > EstimatedStackSizeLimit;
2480 if (BigStack || !CanEliminateFrame || RegInfo->cannotEliminateFrame(MF))
2481 AFI->setHasStackFrame(true);
2483 // Estimate if we might need to scavenge a register at some point in order
2484 // to materialize a stack offset. If so, either spill one additional
2485 // callee-saved register or reserve a special spill slot to facilitate
2486 // register scavenging. If we already spilled an extra callee-saved register
2487 // above to keep the number of spills even, we don't need to do anything else
2488 // here.
2489 if (BigStack) {
2490 if (!ExtraCSSpill && UnspilledCSGPR != AArch64::NoRegister) {
2491 LLVM_DEBUG(dbgs() << "Spilling " << printReg(UnspilledCSGPR, RegInfo)
2492 << " to get a scratch register.\n");
2493 SavedRegs.set(UnspilledCSGPR);
2494 // MachO's compact unwind format relies on all registers being stored in
2495 // pairs, so if we need to spill one extra for BigStack, then we need to
2496 // store the pair.
2497 if (produceCompactUnwindFrame(MF))
2498 SavedRegs.set(UnspilledCSGPRPaired);
2499 ExtraCSSpill = UnspilledCSGPR;
2502 // If we didn't find an extra callee-saved register to spill, create
2503 // an emergency spill slot.
2504 if (!ExtraCSSpill || MF.getRegInfo().isPhysRegUsed(ExtraCSSpill)) {
2505 const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo();
2506 const TargetRegisterClass &RC = AArch64::GPR64RegClass;
2507 unsigned Size = TRI->getSpillSize(RC);
2508 unsigned Align = TRI->getSpillAlignment(RC);
2509 int FI = MFI.CreateStackObject(Size, Align, false);
2510 RS->addScavengingFrameIndex(FI);
2511 LLVM_DEBUG(dbgs() << "No available CS registers, allocated fi#" << FI
2512 << " as the emergency spill slot.\n");
2516 // Adding the size of additional 64bit GPR saves.
2517 CSStackSize += 8 * (SavedRegs.count() - NumSavedRegs);
2518 uint64_t AlignedCSStackSize = alignTo(CSStackSize, 16);
2519 LLVM_DEBUG(dbgs() << "Estimated stack frame size: "
2520 << EstimatedStackSize + AlignedCSStackSize
2521 << " bytes.\n");
2523 assert((!MFI.isCalleeSavedInfoValid() ||
2524 AFI->getCalleeSavedStackSize() == AlignedCSStackSize) &&
2525 "Should not invalidate callee saved info");
2527 // Round up to register pair alignment to avoid additional SP adjustment
2528 // instructions.
2529 AFI->setCalleeSavedStackSize(AlignedCSStackSize);
2530 AFI->setCalleeSaveStackHasFreeSpace(AlignedCSStackSize != CSStackSize);
2531 AFI->setSVECalleeSavedStackSize(alignTo(SVECSStackSize, 16));
2534 bool AArch64FrameLowering::enableStackSlotScavenging(
2535 const MachineFunction &MF) const {
2536 const AArch64FunctionInfo *AFI = MF.getInfo<AArch64FunctionInfo>();
2537 return AFI->hasCalleeSaveStackFreeSpace();
2540 /// returns true if there are any SVE callee saves.
2541 static bool getSVECalleeSaveSlotRange(const MachineFrameInfo &MFI,
2542 int &Min, int &Max) {
2543 Min = std::numeric_limits<int>::max();
2544 Max = std::numeric_limits<int>::min();
2546 if (!MFI.isCalleeSavedInfoValid())
2547 return false;
2549 const std::vector<CalleeSavedInfo> &CSI = MFI.getCalleeSavedInfo();
2550 for (auto &CS : CSI) {
2551 if (AArch64::ZPRRegClass.contains(CS.getReg()) ||
2552 AArch64::PPRRegClass.contains(CS.getReg())) {
2553 assert((Max == std::numeric_limits<int>::min() ||
2554 Max + 1 == CS.getFrameIdx()) &&
2555 "SVE CalleeSaves are not consecutive");
2557 Min = std::min(Min, CS.getFrameIdx());
2558 Max = std::max(Max, CS.getFrameIdx());
2561 return Min != std::numeric_limits<int>::max();
2564 // Process all the SVE stack objects and determine offsets for each
2565 // object. If AssignOffsets is true, the offsets get assigned.
2566 // Fills in the first and last callee-saved frame indices into
2567 // Min/MaxCSFrameIndex, respectively.
2568 // Returns the size of the stack.
2569 static int64_t determineSVEStackObjectOffsets(MachineFrameInfo &MFI,
2570 int &MinCSFrameIndex,
2571 int &MaxCSFrameIndex,
2572 bool AssignOffsets) {
2573 // First process all fixed stack objects.
2574 int64_t Offset = 0;
2575 for (int I = MFI.getObjectIndexBegin(); I != 0; ++I)
2576 if (MFI.getStackID(I) == TargetStackID::SVEVector) {
2577 int64_t FixedOffset = -MFI.getObjectOffset(I);
2578 if (FixedOffset > Offset)
2579 Offset = FixedOffset;
2582 auto Assign = [&MFI](int FI, int64_t Offset) {
2583 LLVM_DEBUG(dbgs() << "alloc FI(" << FI << ") at SP[" << Offset << "]\n");
2584 MFI.setObjectOffset(FI, Offset);
2587 // Then process all callee saved slots.
2588 if (getSVECalleeSaveSlotRange(MFI, MinCSFrameIndex, MaxCSFrameIndex)) {
2589 // Make sure to align the last callee save slot.
2590 MFI.setObjectAlignment(MaxCSFrameIndex, 16U);
2592 // Assign offsets to the callee save slots.
2593 for (int I = MinCSFrameIndex; I <= MaxCSFrameIndex; ++I) {
2594 Offset += MFI.getObjectSize(I);
2595 Offset = alignTo(Offset, MFI.getObjectAlignment(I));
2596 if (AssignOffsets)
2597 Assign(I, -Offset);
2601 // Create a buffer of SVE objects to allocate and sort it.
2602 SmallVector<int, 8> ObjectsToAllocate;
2603 for (int I = 0, E = MFI.getObjectIndexEnd(); I != E; ++I) {
2604 unsigned StackID = MFI.getStackID(I);
2605 if (StackID != TargetStackID::SVEVector)
2606 continue;
2607 if (MaxCSFrameIndex >= I && I >= MinCSFrameIndex)
2608 continue;
2609 if (MFI.isDeadObjectIndex(I))
2610 continue;
2612 ObjectsToAllocate.push_back(I);
2615 // Allocate all SVE locals and spills
2616 for (unsigned FI : ObjectsToAllocate) {
2617 unsigned Align = MFI.getObjectAlignment(FI);
2618 // FIXME: Given that the length of SVE vectors is not necessarily a power of
2619 // two, we'd need to align every object dynamically at runtime if the
2620 // alignment is larger than 16. This is not yet supported.
2621 if (Align > 16)
2622 report_fatal_error(
2623 "Alignment of scalable vectors > 16 bytes is not yet supported");
2625 Offset = alignTo(Offset + MFI.getObjectSize(FI), Align);
2626 if (AssignOffsets)
2627 Assign(FI, -Offset);
2630 return Offset;
2633 int64_t AArch64FrameLowering::estimateSVEStackObjectOffsets(
2634 MachineFrameInfo &MFI) const {
2635 int MinCSFrameIndex, MaxCSFrameIndex;
2636 return determineSVEStackObjectOffsets(MFI, MinCSFrameIndex, MaxCSFrameIndex, false);
2639 int64_t AArch64FrameLowering::assignSVEStackObjectOffsets(
2640 MachineFrameInfo &MFI, int &MinCSFrameIndex, int &MaxCSFrameIndex) const {
2641 return determineSVEStackObjectOffsets(MFI, MinCSFrameIndex, MaxCSFrameIndex,
2642 true);
2645 void AArch64FrameLowering::processFunctionBeforeFrameFinalized(
2646 MachineFunction &MF, RegScavenger *RS) const {
2647 MachineFrameInfo &MFI = MF.getFrameInfo();
2649 assert(getStackGrowthDirection() == TargetFrameLowering::StackGrowsDown &&
2650 "Upwards growing stack unsupported");
2652 int MinCSFrameIndex, MaxCSFrameIndex;
2653 int64_t SVEStackSize =
2654 assignSVEStackObjectOffsets(MFI, MinCSFrameIndex, MaxCSFrameIndex);
2656 AArch64FunctionInfo *AFI = MF.getInfo<AArch64FunctionInfo>();
2657 AFI->setStackSizeSVE(alignTo(SVEStackSize, 16U));
2658 AFI->setMinMaxSVECSFrameIndex(MinCSFrameIndex, MaxCSFrameIndex);
2660 // If this function isn't doing Win64-style C++ EH, we don't need to do
2661 // anything.
2662 if (!MF.hasEHFunclets())
2663 return;
2664 const TargetInstrInfo &TII = *MF.getSubtarget().getInstrInfo();
2665 WinEHFuncInfo &EHInfo = *MF.getWinEHFuncInfo();
2667 MachineBasicBlock &MBB = MF.front();
2668 auto MBBI = MBB.begin();
2669 while (MBBI != MBB.end() && MBBI->getFlag(MachineInstr::FrameSetup))
2670 ++MBBI;
2672 // Create an UnwindHelp object.
2673 int UnwindHelpFI =
2674 MFI.CreateStackObject(/*size*/8, /*alignment*/16, false);
2675 EHInfo.UnwindHelpFrameIdx = UnwindHelpFI;
2676 // We need to store -2 into the UnwindHelp object at the start of the
2677 // function.
2678 DebugLoc DL;
2679 RS->enterBasicBlockEnd(MBB);
2680 RS->backward(std::prev(MBBI));
2681 unsigned DstReg = RS->FindUnusedReg(&AArch64::GPR64commonRegClass);
2682 assert(DstReg && "There must be a free register after frame setup");
2683 BuildMI(MBB, MBBI, DL, TII.get(AArch64::MOVi64imm), DstReg).addImm(-2);
2684 BuildMI(MBB, MBBI, DL, TII.get(AArch64::STURXi))
2685 .addReg(DstReg, getKillRegState(true))
2686 .addFrameIndex(UnwindHelpFI)
2687 .addImm(0);
2690 namespace {
2691 struct TagStoreInstr {
2692 MachineInstr *MI;
2693 int64_t Offset, Size;
2694 explicit TagStoreInstr(MachineInstr *MI, int64_t Offset, int64_t Size)
2695 : MI(MI), Offset(Offset), Size(Size) {}
2698 class TagStoreEdit {
2699 MachineFunction *MF;
2700 MachineBasicBlock *MBB;
2701 MachineRegisterInfo *MRI;
2702 // Tag store instructions that are being replaced.
2703 SmallVector<TagStoreInstr, 8> TagStores;
2704 // Combined memref arguments of the above instructions.
2705 SmallVector<MachineMemOperand *, 8> CombinedMemRefs;
2707 // Replace allocation tags in [FrameReg + FrameRegOffset, FrameReg +
2708 // FrameRegOffset + Size) with the address tag of SP.
2709 Register FrameReg;
2710 StackOffset FrameRegOffset;
2711 int64_t Size;
2712 // If not None, move FrameReg to (FrameReg + FrameRegUpdate) at the end.
2713 Optional<int64_t> FrameRegUpdate;
2714 // MIFlags for any FrameReg updating instructions.
2715 unsigned FrameRegUpdateFlags;
2717 // Use zeroing instruction variants.
2718 bool ZeroData;
2719 DebugLoc DL;
2721 void emitUnrolled(MachineBasicBlock::iterator InsertI);
2722 void emitLoop(MachineBasicBlock::iterator InsertI);
2724 public:
2725 TagStoreEdit(MachineBasicBlock *MBB, bool ZeroData)
2726 : MBB(MBB), ZeroData(ZeroData) {
2727 MF = MBB->getParent();
2728 MRI = &MF->getRegInfo();
2730 // Add an instruction to be replaced. Instructions must be added in the
2731 // ascending order of Offset, and have to be adjacent.
2732 void addInstruction(TagStoreInstr I) {
2733 assert((TagStores.empty() ||
2734 TagStores.back().Offset + TagStores.back().Size == I.Offset) &&
2735 "Non-adjacent tag store instructions.");
2736 TagStores.push_back(I);
2738 void clear() { TagStores.clear(); }
2739 // Emit equivalent code at the given location, and erase the current set of
2740 // instructions. May skip if the replacement is not profitable. May invalidate
2741 // the input iterator and replace it with a valid one.
2742 void emitCode(MachineBasicBlock::iterator &InsertI,
2743 const AArch64FrameLowering *TFI, bool IsLast);
2746 void TagStoreEdit::emitUnrolled(MachineBasicBlock::iterator InsertI) {
2747 const AArch64InstrInfo *TII =
2748 MF->getSubtarget<AArch64Subtarget>().getInstrInfo();
2750 const int64_t kMinOffset = -256 * 16;
2751 const int64_t kMaxOffset = 255 * 16;
2753 Register BaseReg = FrameReg;
2754 int64_t BaseRegOffsetBytes = FrameRegOffset.getBytes();
2755 if (BaseRegOffsetBytes < kMinOffset ||
2756 BaseRegOffsetBytes + (Size - Size % 32) > kMaxOffset) {
2757 Register ScratchReg = MRI->createVirtualRegister(&AArch64::GPR64RegClass);
2758 emitFrameOffset(*MBB, InsertI, DL, ScratchReg, BaseReg,
2759 {BaseRegOffsetBytes, MVT::i8}, TII);
2760 BaseReg = ScratchReg;
2761 BaseRegOffsetBytes = 0;
2764 MachineInstr *LastI = nullptr;
2765 while (Size) {
2766 int64_t InstrSize = (Size > 16) ? 32 : 16;
2767 unsigned Opcode =
2768 InstrSize == 16
2769 ? (ZeroData ? AArch64::STZGOffset : AArch64::STGOffset)
2770 : (ZeroData ? AArch64::STZ2GOffset : AArch64::ST2GOffset);
2771 MachineInstr *I = BuildMI(*MBB, InsertI, DL, TII->get(Opcode))
2772 .addReg(AArch64::SP)
2773 .addReg(BaseReg)
2774 .addImm(BaseRegOffsetBytes / 16)
2775 .setMemRefs(CombinedMemRefs);
2776 // A store to [BaseReg, #0] should go last for an opportunity to fold the
2777 // final SP adjustment in the epilogue.
2778 if (BaseRegOffsetBytes == 0)
2779 LastI = I;
2780 BaseRegOffsetBytes += InstrSize;
2781 Size -= InstrSize;
2784 if (LastI)
2785 MBB->splice(InsertI, MBB, LastI);
2788 void TagStoreEdit::emitLoop(MachineBasicBlock::iterator InsertI) {
2789 const AArch64InstrInfo *TII =
2790 MF->getSubtarget<AArch64Subtarget>().getInstrInfo();
2792 Register BaseReg = FrameRegUpdate
2793 ? FrameReg
2794 : MRI->createVirtualRegister(&AArch64::GPR64RegClass);
2795 Register SizeReg = MRI->createVirtualRegister(&AArch64::GPR64RegClass);
2797 emitFrameOffset(*MBB, InsertI, DL, BaseReg, FrameReg, FrameRegOffset, TII);
2799 int64_t LoopSize = Size;
2800 // If the loop size is not a multiple of 32, split off one 16-byte store at
2801 // the end to fold BaseReg update into.
2802 if (FrameRegUpdate && *FrameRegUpdate)
2803 LoopSize -= LoopSize % 32;
2804 MachineInstr *LoopI = BuildMI(*MBB, InsertI, DL,
2805 TII->get(ZeroData ? AArch64::STZGloop_wback
2806 : AArch64::STGloop_wback))
2807 .addDef(SizeReg)
2808 .addDef(BaseReg)
2809 .addImm(LoopSize)
2810 .addReg(BaseReg)
2811 .setMemRefs(CombinedMemRefs);
2812 if (FrameRegUpdate)
2813 LoopI->setFlags(FrameRegUpdateFlags);
2815 int64_t ExtraBaseRegUpdate =
2816 FrameRegUpdate ? (*FrameRegUpdate - FrameRegOffset.getBytes() - Size) : 0;
2817 if (LoopSize < Size) {
2818 assert(FrameRegUpdate);
2819 assert(Size - LoopSize == 16);
2820 // Tag 16 more bytes at BaseReg and update BaseReg.
2821 BuildMI(*MBB, InsertI, DL,
2822 TII->get(ZeroData ? AArch64::STZGPostIndex : AArch64::STGPostIndex))
2823 .addDef(BaseReg)
2824 .addReg(BaseReg)
2825 .addReg(BaseReg)
2826 .addImm(1 + ExtraBaseRegUpdate / 16)
2827 .setMemRefs(CombinedMemRefs)
2828 .setMIFlags(FrameRegUpdateFlags);
2829 } else if (ExtraBaseRegUpdate) {
2830 // Update BaseReg.
2831 BuildMI(
2832 *MBB, InsertI, DL,
2833 TII->get(ExtraBaseRegUpdate > 0 ? AArch64::ADDXri : AArch64::SUBXri))
2834 .addDef(BaseReg)
2835 .addReg(BaseReg)
2836 .addImm(std::abs(ExtraBaseRegUpdate))
2837 .addImm(0)
2838 .setMIFlags(FrameRegUpdateFlags);
2842 // Check if *II is a register update that can be merged into STGloop that ends
2843 // at (Reg + Size). RemainingOffset is the required adjustment to Reg after the
2844 // end of the loop.
2845 bool canMergeRegUpdate(MachineBasicBlock::iterator II, unsigned Reg,
2846 int64_t Size, int64_t *TotalOffset) {
2847 MachineInstr &MI = *II;
2848 if ((MI.getOpcode() == AArch64::ADDXri ||
2849 MI.getOpcode() == AArch64::SUBXri) &&
2850 MI.getOperand(0).getReg() == Reg && MI.getOperand(1).getReg() == Reg) {
2851 unsigned Shift = AArch64_AM::getShiftValue(MI.getOperand(3).getImm());
2852 int64_t Offset = MI.getOperand(2).getImm() << Shift;
2853 if (MI.getOpcode() == AArch64::SUBXri)
2854 Offset = -Offset;
2855 int64_t AbsPostOffset = std::abs(Offset - Size);
2856 const int64_t kMaxOffset =
2857 0xFFF; // Max encoding for unshifted ADDXri / SUBXri
2858 if (AbsPostOffset <= kMaxOffset && AbsPostOffset % 16 == 0) {
2859 *TotalOffset = Offset;
2860 return true;
2863 return false;
2866 void mergeMemRefs(const SmallVectorImpl<TagStoreInstr> &TSE,
2867 SmallVectorImpl<MachineMemOperand *> &MemRefs) {
2868 MemRefs.clear();
2869 for (auto &TS : TSE) {
2870 MachineInstr *MI = TS.MI;
2871 // An instruction without memory operands may access anything. Be
2872 // conservative and return an empty list.
2873 if (MI->memoperands_empty()) {
2874 MemRefs.clear();
2875 return;
2877 MemRefs.append(MI->memoperands_begin(), MI->memoperands_end());
2881 void TagStoreEdit::emitCode(MachineBasicBlock::iterator &InsertI,
2882 const AArch64FrameLowering *TFI, bool IsLast) {
2883 if (TagStores.empty())
2884 return;
2885 TagStoreInstr &FirstTagStore = TagStores[0];
2886 TagStoreInstr &LastTagStore = TagStores[TagStores.size() - 1];
2887 Size = LastTagStore.Offset - FirstTagStore.Offset + LastTagStore.Size;
2888 DL = TagStores[0].MI->getDebugLoc();
2890 unsigned Reg;
2891 FrameRegOffset = TFI->resolveFrameOffsetReference(
2892 *MF, FirstTagStore.Offset, false /*isFixed*/, false /*isSVE*/, Reg,
2893 /*PreferFP=*/false, /*ForSimm=*/true);
2894 FrameReg = Reg;
2895 FrameRegUpdate = None;
2897 mergeMemRefs(TagStores, CombinedMemRefs);
2899 LLVM_DEBUG(dbgs() << "Replacing adjacent STG instructions:\n";
2900 for (const auto &Instr
2901 : TagStores) { dbgs() << " " << *Instr.MI; });
2903 // Size threshold where a loop becomes shorter than a linear sequence of
2904 // tagging instructions.
2905 const int kSetTagLoopThreshold = 176;
2906 if (Size < kSetTagLoopThreshold) {
2907 if (TagStores.size() < 2)
2908 return;
2909 emitUnrolled(InsertI);
2910 } else {
2911 MachineInstr *UpdateInstr = nullptr;
2912 int64_t TotalOffset;
2913 if (IsLast) {
2914 // See if we can merge base register update into the STGloop.
2915 // This is done in AArch64LoadStoreOptimizer for "normal" stores,
2916 // but STGloop is way too unusual for that, and also it only
2917 // realistically happens in function epilogue. Also, STGloop is expanded
2918 // before that pass.
2919 if (InsertI != MBB->end() &&
2920 canMergeRegUpdate(InsertI, FrameReg, FrameRegOffset.getBytes() + Size,
2921 &TotalOffset)) {
2922 UpdateInstr = &*InsertI++;
2923 LLVM_DEBUG(dbgs() << "Folding SP update into loop:\n "
2924 << *UpdateInstr);
2928 if (!UpdateInstr && TagStores.size() < 2)
2929 return;
2931 if (UpdateInstr) {
2932 FrameRegUpdate = TotalOffset;
2933 FrameRegUpdateFlags = UpdateInstr->getFlags();
2935 emitLoop(InsertI);
2936 if (UpdateInstr)
2937 UpdateInstr->eraseFromParent();
2940 for (auto &TS : TagStores)
2941 TS.MI->eraseFromParent();
2944 bool isMergeableStackTaggingInstruction(MachineInstr &MI, int64_t &Offset,
2945 int64_t &Size, bool &ZeroData) {
2946 MachineFunction &MF = *MI.getParent()->getParent();
2947 const MachineFrameInfo &MFI = MF.getFrameInfo();
2949 unsigned Opcode = MI.getOpcode();
2950 ZeroData = (Opcode == AArch64::STZGloop || Opcode == AArch64::STZGOffset ||
2951 Opcode == AArch64::STZ2GOffset);
2953 if (Opcode == AArch64::STGloop || Opcode == AArch64::STZGloop) {
2954 if (!MI.getOperand(0).isDead() || !MI.getOperand(1).isDead())
2955 return false;
2956 if (!MI.getOperand(2).isImm() || !MI.getOperand(3).isFI())
2957 return false;
2958 Offset = MFI.getObjectOffset(MI.getOperand(3).getIndex());
2959 Size = MI.getOperand(2).getImm();
2960 return true;
2963 if (Opcode == AArch64::STGOffset || Opcode == AArch64::STZGOffset)
2964 Size = 16;
2965 else if (Opcode == AArch64::ST2GOffset || Opcode == AArch64::STZ2GOffset)
2966 Size = 32;
2967 else
2968 return false;
2970 if (MI.getOperand(0).getReg() != AArch64::SP || !MI.getOperand(1).isFI())
2971 return false;
2973 Offset = MFI.getObjectOffset(MI.getOperand(1).getIndex()) +
2974 16 * MI.getOperand(2).getImm();
2975 return true;
2978 // Detect a run of memory tagging instructions for adjacent stack frame slots,
2979 // and replace them with a shorter instruction sequence:
2980 // * replace STG + STG with ST2G
2981 // * replace STGloop + STGloop with STGloop
2982 // This code needs to run when stack slot offsets are already known, but before
2983 // FrameIndex operands in STG instructions are eliminated.
2984 MachineBasicBlock::iterator tryMergeAdjacentSTG(MachineBasicBlock::iterator II,
2985 const AArch64FrameLowering *TFI,
2986 RegScavenger *RS) {
2987 bool FirstZeroData;
2988 int64_t Size, Offset;
2989 MachineInstr &MI = *II;
2990 MachineBasicBlock *MBB = MI.getParent();
2991 MachineBasicBlock::iterator NextI = ++II;
2992 if (&MI == &MBB->instr_back())
2993 return II;
2994 if (!isMergeableStackTaggingInstruction(MI, Offset, Size, FirstZeroData))
2995 return II;
2997 SmallVector<TagStoreInstr, 4> Instrs;
2998 Instrs.emplace_back(&MI, Offset, Size);
3000 constexpr int kScanLimit = 10;
3001 int Count = 0;
3002 for (MachineBasicBlock::iterator E = MBB->end();
3003 NextI != E && Count < kScanLimit; ++NextI) {
3004 MachineInstr &MI = *NextI;
3005 bool ZeroData;
3006 int64_t Size, Offset;
3007 // Collect instructions that update memory tags with a FrameIndex operand
3008 // and (when applicable) constant size, and whose output registers are dead
3009 // (the latter is almost always the case in practice). Since these
3010 // instructions effectively have no inputs or outputs, we are free to skip
3011 // any non-aliasing instructions in between without tracking used registers.
3012 if (isMergeableStackTaggingInstruction(MI, Offset, Size, ZeroData)) {
3013 if (ZeroData != FirstZeroData)
3014 break;
3015 Instrs.emplace_back(&MI, Offset, Size);
3016 continue;
3019 // Only count non-transient, non-tagging instructions toward the scan
3020 // limit.
3021 if (!MI.isTransient())
3022 ++Count;
3024 // Just in case, stop before the epilogue code starts.
3025 if (MI.getFlag(MachineInstr::FrameSetup) ||
3026 MI.getFlag(MachineInstr::FrameDestroy))
3027 break;
3029 // Reject anything that may alias the collected instructions.
3030 if (MI.mayLoadOrStore() || MI.hasUnmodeledSideEffects())
3031 break;
3034 // New code will be inserted after the last tagging instruction we've found.
3035 MachineBasicBlock::iterator InsertI = Instrs.back().MI;
3036 InsertI++;
3038 llvm::stable_sort(Instrs,
3039 [](const TagStoreInstr &Left, const TagStoreInstr &Right) {
3040 return Left.Offset < Right.Offset;
3043 // Make sure that we don't have any overlapping stores.
3044 int64_t CurOffset = Instrs[0].Offset;
3045 for (auto &Instr : Instrs) {
3046 if (CurOffset > Instr.Offset)
3047 return NextI;
3048 CurOffset = Instr.Offset + Instr.Size;
3051 // Find contiguous runs of tagged memory and emit shorter instruction
3052 // sequencies for them when possible.
3053 TagStoreEdit TSE(MBB, FirstZeroData);
3054 Optional<int64_t> EndOffset;
3055 for (auto &Instr : Instrs) {
3056 if (EndOffset && *EndOffset != Instr.Offset) {
3057 // Found a gap.
3058 TSE.emitCode(InsertI, TFI, /*IsLast = */ false);
3059 TSE.clear();
3062 TSE.addInstruction(Instr);
3063 EndOffset = Instr.Offset + Instr.Size;
3066 TSE.emitCode(InsertI, TFI, /*IsLast = */ true);
3068 return InsertI;
3070 } // namespace
3072 void AArch64FrameLowering::processFunctionBeforeFrameIndicesReplaced(
3073 MachineFunction &MF, RegScavenger *RS = nullptr) const {
3074 if (StackTaggingMergeSetTag)
3075 for (auto &BB : MF)
3076 for (MachineBasicBlock::iterator II = BB.begin(); II != BB.end();)
3077 II = tryMergeAdjacentSTG(II, this, RS);
3080 /// For Win64 AArch64 EH, the offset to the Unwind object is from the SP
3081 /// before the update. This is easily retrieved as it is exactly the offset
3082 /// that is set in processFunctionBeforeFrameFinalized.
3083 int AArch64FrameLowering::getFrameIndexReferencePreferSP(
3084 const MachineFunction &MF, int FI, unsigned &FrameReg,
3085 bool IgnoreSPUpdates) const {
3086 const MachineFrameInfo &MFI = MF.getFrameInfo();
3087 LLVM_DEBUG(dbgs() << "Offset from the SP for " << FI << " is "
3088 << MFI.getObjectOffset(FI) << "\n");
3089 FrameReg = AArch64::SP;
3090 return MFI.getObjectOffset(FI);
3093 /// The parent frame offset (aka dispFrame) is only used on X86_64 to retrieve
3094 /// the parent's frame pointer
3095 unsigned AArch64FrameLowering::getWinEHParentFrameOffset(
3096 const MachineFunction &MF) const {
3097 return 0;
3100 /// Funclets only need to account for space for the callee saved registers,
3101 /// as the locals are accounted for in the parent's stack frame.
3102 unsigned AArch64FrameLowering::getWinEHFuncletFrameSize(
3103 const MachineFunction &MF) const {
3104 // This is the size of the pushed CSRs.
3105 unsigned CSSize =
3106 MF.getInfo<AArch64FunctionInfo>()->getCalleeSavedStackSize();
3107 // This is the amount of stack a funclet needs to allocate.
3108 return alignTo(CSSize + MF.getFrameInfo().getMaxCallFrameSize(),
3109 getStackAlignment());