[PowerPC] Collect some CallLowering arguments into a struct. [NFC]
[llvm-project.git] / llvm / lib / Target / AArch64 / AArch64ISelDAGToDAG.cpp
blobacb1335b2487eadc951253ffac688b6a8cec8dad
1 //===-- AArch64ISelDAGToDAG.cpp - A dag to dag inst selector for AArch64 --===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file defines an instruction selector for the AArch64 target.
11 //===----------------------------------------------------------------------===//
13 #include "AArch64TargetMachine.h"
14 #include "MCTargetDesc/AArch64AddressingModes.h"
15 #include "llvm/ADT/APSInt.h"
16 #include "llvm/CodeGen/SelectionDAGISel.h"
17 #include "llvm/IR/Function.h" // To access function attributes.
18 #include "llvm/IR/GlobalValue.h"
19 #include "llvm/IR/Intrinsics.h"
20 #include "llvm/IR/IntrinsicsAArch64.h"
21 #include "llvm/Support/Debug.h"
22 #include "llvm/Support/ErrorHandling.h"
23 #include "llvm/Support/KnownBits.h"
24 #include "llvm/Support/MathExtras.h"
25 #include "llvm/Support/raw_ostream.h"
27 using namespace llvm;
29 #define DEBUG_TYPE "aarch64-isel"
31 //===--------------------------------------------------------------------===//
32 /// AArch64DAGToDAGISel - AArch64 specific code to select AArch64 machine
33 /// instructions for SelectionDAG operations.
34 ///
35 namespace {
37 class AArch64DAGToDAGISel : public SelectionDAGISel {
39 /// Subtarget - Keep a pointer to the AArch64Subtarget around so that we can
40 /// make the right decision when generating code for different targets.
41 const AArch64Subtarget *Subtarget;
43 public:
44 explicit AArch64DAGToDAGISel(AArch64TargetMachine &tm,
45 CodeGenOpt::Level OptLevel)
46 : SelectionDAGISel(tm, OptLevel), Subtarget(nullptr) {}
48 StringRef getPassName() const override {
49 return "AArch64 Instruction Selection";
52 bool runOnMachineFunction(MachineFunction &MF) override {
53 Subtarget = &MF.getSubtarget<AArch64Subtarget>();
54 return SelectionDAGISel::runOnMachineFunction(MF);
57 void Select(SDNode *Node) override;
59 /// SelectInlineAsmMemoryOperand - Implement addressing mode selection for
60 /// inline asm expressions.
61 bool SelectInlineAsmMemoryOperand(const SDValue &Op,
62 unsigned ConstraintID,
63 std::vector<SDValue> &OutOps) override;
65 template <signed Low, signed High, signed Scale>
66 bool SelectRDVLImm(SDValue N, SDValue &Imm);
68 bool tryMLAV64LaneV128(SDNode *N);
69 bool tryMULLV64LaneV128(unsigned IntNo, SDNode *N);
70 bool SelectArithExtendedRegister(SDValue N, SDValue &Reg, SDValue &Shift);
71 bool SelectArithImmed(SDValue N, SDValue &Val, SDValue &Shift);
72 bool SelectNegArithImmed(SDValue N, SDValue &Val, SDValue &Shift);
73 bool SelectArithShiftedRegister(SDValue N, SDValue &Reg, SDValue &Shift) {
74 return SelectShiftedRegister(N, false, Reg, Shift);
76 bool SelectLogicalShiftedRegister(SDValue N, SDValue &Reg, SDValue &Shift) {
77 return SelectShiftedRegister(N, true, Reg, Shift);
79 bool SelectAddrModeIndexed7S8(SDValue N, SDValue &Base, SDValue &OffImm) {
80 return SelectAddrModeIndexed7S(N, 1, Base, OffImm);
82 bool SelectAddrModeIndexed7S16(SDValue N, SDValue &Base, SDValue &OffImm) {
83 return SelectAddrModeIndexed7S(N, 2, Base, OffImm);
85 bool SelectAddrModeIndexed7S32(SDValue N, SDValue &Base, SDValue &OffImm) {
86 return SelectAddrModeIndexed7S(N, 4, Base, OffImm);
88 bool SelectAddrModeIndexed7S64(SDValue N, SDValue &Base, SDValue &OffImm) {
89 return SelectAddrModeIndexed7S(N, 8, Base, OffImm);
91 bool SelectAddrModeIndexed7S128(SDValue N, SDValue &Base, SDValue &OffImm) {
92 return SelectAddrModeIndexed7S(N, 16, Base, OffImm);
94 bool SelectAddrModeIndexedS9S128(SDValue N, SDValue &Base, SDValue &OffImm) {
95 return SelectAddrModeIndexedBitWidth(N, true, 9, 16, Base, OffImm);
97 bool SelectAddrModeIndexedU6S128(SDValue N, SDValue &Base, SDValue &OffImm) {
98 return SelectAddrModeIndexedBitWidth(N, false, 6, 16, Base, OffImm);
100 bool SelectAddrModeIndexed8(SDValue N, SDValue &Base, SDValue &OffImm) {
101 return SelectAddrModeIndexed(N, 1, Base, OffImm);
103 bool SelectAddrModeIndexed16(SDValue N, SDValue &Base, SDValue &OffImm) {
104 return SelectAddrModeIndexed(N, 2, Base, OffImm);
106 bool SelectAddrModeIndexed32(SDValue N, SDValue &Base, SDValue &OffImm) {
107 return SelectAddrModeIndexed(N, 4, Base, OffImm);
109 bool SelectAddrModeIndexed64(SDValue N, SDValue &Base, SDValue &OffImm) {
110 return SelectAddrModeIndexed(N, 8, Base, OffImm);
112 bool SelectAddrModeIndexed128(SDValue N, SDValue &Base, SDValue &OffImm) {
113 return SelectAddrModeIndexed(N, 16, Base, OffImm);
115 bool SelectAddrModeUnscaled8(SDValue N, SDValue &Base, SDValue &OffImm) {
116 return SelectAddrModeUnscaled(N, 1, Base, OffImm);
118 bool SelectAddrModeUnscaled16(SDValue N, SDValue &Base, SDValue &OffImm) {
119 return SelectAddrModeUnscaled(N, 2, Base, OffImm);
121 bool SelectAddrModeUnscaled32(SDValue N, SDValue &Base, SDValue &OffImm) {
122 return SelectAddrModeUnscaled(N, 4, Base, OffImm);
124 bool SelectAddrModeUnscaled64(SDValue N, SDValue &Base, SDValue &OffImm) {
125 return SelectAddrModeUnscaled(N, 8, Base, OffImm);
127 bool SelectAddrModeUnscaled128(SDValue N, SDValue &Base, SDValue &OffImm) {
128 return SelectAddrModeUnscaled(N, 16, Base, OffImm);
131 template<int Width>
132 bool SelectAddrModeWRO(SDValue N, SDValue &Base, SDValue &Offset,
133 SDValue &SignExtend, SDValue &DoShift) {
134 return SelectAddrModeWRO(N, Width / 8, Base, Offset, SignExtend, DoShift);
137 template<int Width>
138 bool SelectAddrModeXRO(SDValue N, SDValue &Base, SDValue &Offset,
139 SDValue &SignExtend, SDValue &DoShift) {
140 return SelectAddrModeXRO(N, Width / 8, Base, Offset, SignExtend, DoShift);
143 bool SelectDupZeroOrUndef(SDValue N) {
144 switch(N->getOpcode()) {
145 case ISD::UNDEF:
146 return true;
147 case AArch64ISD::DUP:
148 case ISD::SPLAT_VECTOR: {
149 auto Opnd0 = N->getOperand(0);
150 if (auto CN = dyn_cast<ConstantSDNode>(Opnd0))
151 if (CN->isNullValue())
152 return true;
153 if (auto CN = dyn_cast<ConstantFPSDNode>(Opnd0))
154 if (CN->isZero())
155 return true;
156 break;
158 default:
159 break;
162 return false;
165 template<MVT::SimpleValueType VT>
166 bool SelectSVEAddSubImm(SDValue N, SDValue &Imm, SDValue &Shift) {
167 return SelectSVEAddSubImm(N, VT, Imm, Shift);
170 template<MVT::SimpleValueType VT>
171 bool SelectSVELogicalImm(SDValue N, SDValue &Imm) {
172 return SelectSVELogicalImm(N, VT, Imm);
175 // Returns a suitable CNT/INC/DEC/RDVL multiplier to calculate VSCALE*N.
176 template<signed Min, signed Max, signed Scale, bool Shift>
177 bool SelectCntImm(SDValue N, SDValue &Imm) {
178 if (!isa<ConstantSDNode>(N))
179 return false;
181 int64_t MulImm = cast<ConstantSDNode>(N)->getSExtValue();
182 if (Shift)
183 MulImm = 1LL << MulImm;
185 if ((MulImm % std::abs(Scale)) != 0)
186 return false;
188 MulImm /= Scale;
189 if ((MulImm >= Min) && (MulImm <= Max)) {
190 Imm = CurDAG->getTargetConstant(MulImm, SDLoc(N), MVT::i32);
191 return true;
194 return false;
197 /// Form sequences of consecutive 64/128-bit registers for use in NEON
198 /// instructions making use of a vector-list (e.g. ldN, tbl). Vecs must have
199 /// between 1 and 4 elements. If it contains a single element that is returned
200 /// unchanged; otherwise a REG_SEQUENCE value is returned.
201 SDValue createDTuple(ArrayRef<SDValue> Vecs);
202 SDValue createQTuple(ArrayRef<SDValue> Vecs);
204 /// Generic helper for the createDTuple/createQTuple
205 /// functions. Those should almost always be called instead.
206 SDValue createTuple(ArrayRef<SDValue> Vecs, const unsigned RegClassIDs[],
207 const unsigned SubRegs[]);
209 void SelectTable(SDNode *N, unsigned NumVecs, unsigned Opc, bool isExt);
211 bool tryIndexedLoad(SDNode *N);
213 bool trySelectStackSlotTagP(SDNode *N);
214 void SelectTagP(SDNode *N);
216 void SelectLoad(SDNode *N, unsigned NumVecs, unsigned Opc,
217 unsigned SubRegIdx);
218 void SelectPostLoad(SDNode *N, unsigned NumVecs, unsigned Opc,
219 unsigned SubRegIdx);
220 void SelectLoadLane(SDNode *N, unsigned NumVecs, unsigned Opc);
221 void SelectPostLoadLane(SDNode *N, unsigned NumVecs, unsigned Opc);
223 bool SelectAddrModeFrameIndexSVE(SDValue N, SDValue &Base, SDValue &OffImm);
225 void SelectStore(SDNode *N, unsigned NumVecs, unsigned Opc);
226 void SelectPostStore(SDNode *N, unsigned NumVecs, unsigned Opc);
227 void SelectStoreLane(SDNode *N, unsigned NumVecs, unsigned Opc);
228 void SelectPostStoreLane(SDNode *N, unsigned NumVecs, unsigned Opc);
230 bool tryBitfieldExtractOp(SDNode *N);
231 bool tryBitfieldExtractOpFromSExt(SDNode *N);
232 bool tryBitfieldInsertOp(SDNode *N);
233 bool tryBitfieldInsertInZeroOp(SDNode *N);
234 bool tryShiftAmountMod(SDNode *N);
235 bool tryHighFPExt(SDNode *N);
237 bool tryReadRegister(SDNode *N);
238 bool tryWriteRegister(SDNode *N);
240 // Include the pieces autogenerated from the target description.
241 #include "AArch64GenDAGISel.inc"
243 private:
244 bool SelectShiftedRegister(SDValue N, bool AllowROR, SDValue &Reg,
245 SDValue &Shift);
246 bool SelectAddrModeIndexed7S(SDValue N, unsigned Size, SDValue &Base,
247 SDValue &OffImm) {
248 return SelectAddrModeIndexedBitWidth(N, true, 7, Size, Base, OffImm);
250 bool SelectAddrModeIndexedBitWidth(SDValue N, bool IsSignedImm, unsigned BW,
251 unsigned Size, SDValue &Base,
252 SDValue &OffImm);
253 bool SelectAddrModeIndexed(SDValue N, unsigned Size, SDValue &Base,
254 SDValue &OffImm);
255 bool SelectAddrModeUnscaled(SDValue N, unsigned Size, SDValue &Base,
256 SDValue &OffImm);
257 bool SelectAddrModeWRO(SDValue N, unsigned Size, SDValue &Base,
258 SDValue &Offset, SDValue &SignExtend,
259 SDValue &DoShift);
260 bool SelectAddrModeXRO(SDValue N, unsigned Size, SDValue &Base,
261 SDValue &Offset, SDValue &SignExtend,
262 SDValue &DoShift);
263 bool isWorthFolding(SDValue V) const;
264 bool SelectExtendedSHL(SDValue N, unsigned Size, bool WantExtend,
265 SDValue &Offset, SDValue &SignExtend);
267 template<unsigned RegWidth>
268 bool SelectCVTFixedPosOperand(SDValue N, SDValue &FixedPos) {
269 return SelectCVTFixedPosOperand(N, FixedPos, RegWidth);
272 bool SelectCVTFixedPosOperand(SDValue N, SDValue &FixedPos, unsigned Width);
274 bool SelectCMP_SWAP(SDNode *N);
276 bool SelectSVEAddSubImm(SDValue N, MVT VT, SDValue &Imm, SDValue &Shift);
278 bool SelectSVELogicalImm(SDValue N, MVT VT, SDValue &Imm);
280 bool SelectSVESignedArithImm(SDValue N, SDValue &Imm);
282 bool SelectSVEArithImm(SDValue N, SDValue &Imm);
284 } // end anonymous namespace
286 /// isIntImmediate - This method tests to see if the node is a constant
287 /// operand. If so Imm will receive the 32-bit value.
288 static bool isIntImmediate(const SDNode *N, uint64_t &Imm) {
289 if (const ConstantSDNode *C = dyn_cast<const ConstantSDNode>(N)) {
290 Imm = C->getZExtValue();
291 return true;
293 return false;
296 // isIntImmediate - This method tests to see if a constant operand.
297 // If so Imm will receive the value.
298 static bool isIntImmediate(SDValue N, uint64_t &Imm) {
299 return isIntImmediate(N.getNode(), Imm);
302 // isOpcWithIntImmediate - This method tests to see if the node is a specific
303 // opcode and that it has a immediate integer right operand.
304 // If so Imm will receive the 32 bit value.
305 static bool isOpcWithIntImmediate(const SDNode *N, unsigned Opc,
306 uint64_t &Imm) {
307 return N->getOpcode() == Opc &&
308 isIntImmediate(N->getOperand(1).getNode(), Imm);
311 bool AArch64DAGToDAGISel::SelectInlineAsmMemoryOperand(
312 const SDValue &Op, unsigned ConstraintID, std::vector<SDValue> &OutOps) {
313 switch(ConstraintID) {
314 default:
315 llvm_unreachable("Unexpected asm memory constraint");
316 case InlineAsm::Constraint_m:
317 case InlineAsm::Constraint_Q:
318 // We need to make sure that this one operand does not end up in XZR, thus
319 // require the address to be in a PointerRegClass register.
320 const TargetRegisterInfo *TRI = Subtarget->getRegisterInfo();
321 const TargetRegisterClass *TRC = TRI->getPointerRegClass(*MF);
322 SDLoc dl(Op);
323 SDValue RC = CurDAG->getTargetConstant(TRC->getID(), dl, MVT::i64);
324 SDValue NewOp =
325 SDValue(CurDAG->getMachineNode(TargetOpcode::COPY_TO_REGCLASS,
326 dl, Op.getValueType(),
327 Op, RC), 0);
328 OutOps.push_back(NewOp);
329 return false;
331 return true;
334 /// SelectArithImmed - Select an immediate value that can be represented as
335 /// a 12-bit value shifted left by either 0 or 12. If so, return true with
336 /// Val set to the 12-bit value and Shift set to the shifter operand.
337 bool AArch64DAGToDAGISel::SelectArithImmed(SDValue N, SDValue &Val,
338 SDValue &Shift) {
339 // This function is called from the addsub_shifted_imm ComplexPattern,
340 // which lists [imm] as the list of opcode it's interested in, however
341 // we still need to check whether the operand is actually an immediate
342 // here because the ComplexPattern opcode list is only used in
343 // root-level opcode matching.
344 if (!isa<ConstantSDNode>(N.getNode()))
345 return false;
347 uint64_t Immed = cast<ConstantSDNode>(N.getNode())->getZExtValue();
348 unsigned ShiftAmt;
350 if (Immed >> 12 == 0) {
351 ShiftAmt = 0;
352 } else if ((Immed & 0xfff) == 0 && Immed >> 24 == 0) {
353 ShiftAmt = 12;
354 Immed = Immed >> 12;
355 } else
356 return false;
358 unsigned ShVal = AArch64_AM::getShifterImm(AArch64_AM::LSL, ShiftAmt);
359 SDLoc dl(N);
360 Val = CurDAG->getTargetConstant(Immed, dl, MVT::i32);
361 Shift = CurDAG->getTargetConstant(ShVal, dl, MVT::i32);
362 return true;
365 /// SelectNegArithImmed - As above, but negates the value before trying to
366 /// select it.
367 bool AArch64DAGToDAGISel::SelectNegArithImmed(SDValue N, SDValue &Val,
368 SDValue &Shift) {
369 // This function is called from the addsub_shifted_imm ComplexPattern,
370 // which lists [imm] as the list of opcode it's interested in, however
371 // we still need to check whether the operand is actually an immediate
372 // here because the ComplexPattern opcode list is only used in
373 // root-level opcode matching.
374 if (!isa<ConstantSDNode>(N.getNode()))
375 return false;
377 // The immediate operand must be a 24-bit zero-extended immediate.
378 uint64_t Immed = cast<ConstantSDNode>(N.getNode())->getZExtValue();
380 // This negation is almost always valid, but "cmp wN, #0" and "cmn wN, #0"
381 // have the opposite effect on the C flag, so this pattern mustn't match under
382 // those circumstances.
383 if (Immed == 0)
384 return false;
386 if (N.getValueType() == MVT::i32)
387 Immed = ~((uint32_t)Immed) + 1;
388 else
389 Immed = ~Immed + 1ULL;
390 if (Immed & 0xFFFFFFFFFF000000ULL)
391 return false;
393 Immed &= 0xFFFFFFULL;
394 return SelectArithImmed(CurDAG->getConstant(Immed, SDLoc(N), MVT::i32), Val,
395 Shift);
398 /// getShiftTypeForNode - Translate a shift node to the corresponding
399 /// ShiftType value.
400 static AArch64_AM::ShiftExtendType getShiftTypeForNode(SDValue N) {
401 switch (N.getOpcode()) {
402 default:
403 return AArch64_AM::InvalidShiftExtend;
404 case ISD::SHL:
405 return AArch64_AM::LSL;
406 case ISD::SRL:
407 return AArch64_AM::LSR;
408 case ISD::SRA:
409 return AArch64_AM::ASR;
410 case ISD::ROTR:
411 return AArch64_AM::ROR;
415 /// Determine whether it is worth it to fold SHL into the addressing
416 /// mode.
417 static bool isWorthFoldingSHL(SDValue V) {
418 assert(V.getOpcode() == ISD::SHL && "invalid opcode");
419 // It is worth folding logical shift of up to three places.
420 auto *CSD = dyn_cast<ConstantSDNode>(V.getOperand(1));
421 if (!CSD)
422 return false;
423 unsigned ShiftVal = CSD->getZExtValue();
424 if (ShiftVal > 3)
425 return false;
427 // Check if this particular node is reused in any non-memory related
428 // operation. If yes, do not try to fold this node into the address
429 // computation, since the computation will be kept.
430 const SDNode *Node = V.getNode();
431 for (SDNode *UI : Node->uses())
432 if (!isa<MemSDNode>(*UI))
433 for (SDNode *UII : UI->uses())
434 if (!isa<MemSDNode>(*UII))
435 return false;
436 return true;
439 /// Determine whether it is worth to fold V into an extended register.
440 bool AArch64DAGToDAGISel::isWorthFolding(SDValue V) const {
441 // Trivial if we are optimizing for code size or if there is only
442 // one use of the value.
443 if (CurDAG->shouldOptForSize() || V.hasOneUse())
444 return true;
445 // If a subtarget has a fastpath LSL we can fold a logical shift into
446 // the addressing mode and save a cycle.
447 if (Subtarget->hasLSLFast() && V.getOpcode() == ISD::SHL &&
448 isWorthFoldingSHL(V))
449 return true;
450 if (Subtarget->hasLSLFast() && V.getOpcode() == ISD::ADD) {
451 const SDValue LHS = V.getOperand(0);
452 const SDValue RHS = V.getOperand(1);
453 if (LHS.getOpcode() == ISD::SHL && isWorthFoldingSHL(LHS))
454 return true;
455 if (RHS.getOpcode() == ISD::SHL && isWorthFoldingSHL(RHS))
456 return true;
459 // It hurts otherwise, since the value will be reused.
460 return false;
463 /// SelectShiftedRegister - Select a "shifted register" operand. If the value
464 /// is not shifted, set the Shift operand to default of "LSL 0". The logical
465 /// instructions allow the shifted register to be rotated, but the arithmetic
466 /// instructions do not. The AllowROR parameter specifies whether ROR is
467 /// supported.
468 bool AArch64DAGToDAGISel::SelectShiftedRegister(SDValue N, bool AllowROR,
469 SDValue &Reg, SDValue &Shift) {
470 AArch64_AM::ShiftExtendType ShType = getShiftTypeForNode(N);
471 if (ShType == AArch64_AM::InvalidShiftExtend)
472 return false;
473 if (!AllowROR && ShType == AArch64_AM::ROR)
474 return false;
476 if (ConstantSDNode *RHS = dyn_cast<ConstantSDNode>(N.getOperand(1))) {
477 unsigned BitSize = N.getValueSizeInBits();
478 unsigned Val = RHS->getZExtValue() & (BitSize - 1);
479 unsigned ShVal = AArch64_AM::getShifterImm(ShType, Val);
481 Reg = N.getOperand(0);
482 Shift = CurDAG->getTargetConstant(ShVal, SDLoc(N), MVT::i32);
483 return isWorthFolding(N);
486 return false;
489 /// getExtendTypeForNode - Translate an extend node to the corresponding
490 /// ExtendType value.
491 static AArch64_AM::ShiftExtendType
492 getExtendTypeForNode(SDValue N, bool IsLoadStore = false) {
493 if (N.getOpcode() == ISD::SIGN_EXTEND ||
494 N.getOpcode() == ISD::SIGN_EXTEND_INREG) {
495 EVT SrcVT;
496 if (N.getOpcode() == ISD::SIGN_EXTEND_INREG)
497 SrcVT = cast<VTSDNode>(N.getOperand(1))->getVT();
498 else
499 SrcVT = N.getOperand(0).getValueType();
501 if (!IsLoadStore && SrcVT == MVT::i8)
502 return AArch64_AM::SXTB;
503 else if (!IsLoadStore && SrcVT == MVT::i16)
504 return AArch64_AM::SXTH;
505 else if (SrcVT == MVT::i32)
506 return AArch64_AM::SXTW;
507 assert(SrcVT != MVT::i64 && "extend from 64-bits?");
509 return AArch64_AM::InvalidShiftExtend;
510 } else if (N.getOpcode() == ISD::ZERO_EXTEND ||
511 N.getOpcode() == ISD::ANY_EXTEND) {
512 EVT SrcVT = N.getOperand(0).getValueType();
513 if (!IsLoadStore && SrcVT == MVT::i8)
514 return AArch64_AM::UXTB;
515 else if (!IsLoadStore && SrcVT == MVT::i16)
516 return AArch64_AM::UXTH;
517 else if (SrcVT == MVT::i32)
518 return AArch64_AM::UXTW;
519 assert(SrcVT != MVT::i64 && "extend from 64-bits?");
521 return AArch64_AM::InvalidShiftExtend;
522 } else if (N.getOpcode() == ISD::AND) {
523 ConstantSDNode *CSD = dyn_cast<ConstantSDNode>(N.getOperand(1));
524 if (!CSD)
525 return AArch64_AM::InvalidShiftExtend;
526 uint64_t AndMask = CSD->getZExtValue();
528 switch (AndMask) {
529 default:
530 return AArch64_AM::InvalidShiftExtend;
531 case 0xFF:
532 return !IsLoadStore ? AArch64_AM::UXTB : AArch64_AM::InvalidShiftExtend;
533 case 0xFFFF:
534 return !IsLoadStore ? AArch64_AM::UXTH : AArch64_AM::InvalidShiftExtend;
535 case 0xFFFFFFFF:
536 return AArch64_AM::UXTW;
540 return AArch64_AM::InvalidShiftExtend;
543 // Helper for SelectMLAV64LaneV128 - Recognize high lane extracts.
544 static bool checkHighLaneIndex(SDNode *DL, SDValue &LaneOp, int &LaneIdx) {
545 if (DL->getOpcode() != AArch64ISD::DUPLANE16 &&
546 DL->getOpcode() != AArch64ISD::DUPLANE32)
547 return false;
549 SDValue SV = DL->getOperand(0);
550 if (SV.getOpcode() != ISD::INSERT_SUBVECTOR)
551 return false;
553 SDValue EV = SV.getOperand(1);
554 if (EV.getOpcode() != ISD::EXTRACT_SUBVECTOR)
555 return false;
557 ConstantSDNode *DLidx = cast<ConstantSDNode>(DL->getOperand(1).getNode());
558 ConstantSDNode *EVidx = cast<ConstantSDNode>(EV.getOperand(1).getNode());
559 LaneIdx = DLidx->getSExtValue() + EVidx->getSExtValue();
560 LaneOp = EV.getOperand(0);
562 return true;
565 // Helper for SelectOpcV64LaneV128 - Recognize operations where one operand is a
566 // high lane extract.
567 static bool checkV64LaneV128(SDValue Op0, SDValue Op1, SDValue &StdOp,
568 SDValue &LaneOp, int &LaneIdx) {
570 if (!checkHighLaneIndex(Op0.getNode(), LaneOp, LaneIdx)) {
571 std::swap(Op0, Op1);
572 if (!checkHighLaneIndex(Op0.getNode(), LaneOp, LaneIdx))
573 return false;
575 StdOp = Op1;
576 return true;
579 /// SelectMLAV64LaneV128 - AArch64 supports vector MLAs where one multiplicand
580 /// is a lane in the upper half of a 128-bit vector. Recognize and select this
581 /// so that we don't emit unnecessary lane extracts.
582 bool AArch64DAGToDAGISel::tryMLAV64LaneV128(SDNode *N) {
583 SDLoc dl(N);
584 SDValue Op0 = N->getOperand(0);
585 SDValue Op1 = N->getOperand(1);
586 SDValue MLAOp1; // Will hold ordinary multiplicand for MLA.
587 SDValue MLAOp2; // Will hold lane-accessed multiplicand for MLA.
588 int LaneIdx = -1; // Will hold the lane index.
590 if (Op1.getOpcode() != ISD::MUL ||
591 !checkV64LaneV128(Op1.getOperand(0), Op1.getOperand(1), MLAOp1, MLAOp2,
592 LaneIdx)) {
593 std::swap(Op0, Op1);
594 if (Op1.getOpcode() != ISD::MUL ||
595 !checkV64LaneV128(Op1.getOperand(0), Op1.getOperand(1), MLAOp1, MLAOp2,
596 LaneIdx))
597 return false;
600 SDValue LaneIdxVal = CurDAG->getTargetConstant(LaneIdx, dl, MVT::i64);
602 SDValue Ops[] = { Op0, MLAOp1, MLAOp2, LaneIdxVal };
604 unsigned MLAOpc = ~0U;
606 switch (N->getSimpleValueType(0).SimpleTy) {
607 default:
608 llvm_unreachable("Unrecognized MLA.");
609 case MVT::v4i16:
610 MLAOpc = AArch64::MLAv4i16_indexed;
611 break;
612 case MVT::v8i16:
613 MLAOpc = AArch64::MLAv8i16_indexed;
614 break;
615 case MVT::v2i32:
616 MLAOpc = AArch64::MLAv2i32_indexed;
617 break;
618 case MVT::v4i32:
619 MLAOpc = AArch64::MLAv4i32_indexed;
620 break;
623 ReplaceNode(N, CurDAG->getMachineNode(MLAOpc, dl, N->getValueType(0), Ops));
624 return true;
627 bool AArch64DAGToDAGISel::tryMULLV64LaneV128(unsigned IntNo, SDNode *N) {
628 SDLoc dl(N);
629 SDValue SMULLOp0;
630 SDValue SMULLOp1;
631 int LaneIdx;
633 if (!checkV64LaneV128(N->getOperand(1), N->getOperand(2), SMULLOp0, SMULLOp1,
634 LaneIdx))
635 return false;
637 SDValue LaneIdxVal = CurDAG->getTargetConstant(LaneIdx, dl, MVT::i64);
639 SDValue Ops[] = { SMULLOp0, SMULLOp1, LaneIdxVal };
641 unsigned SMULLOpc = ~0U;
643 if (IntNo == Intrinsic::aarch64_neon_smull) {
644 switch (N->getSimpleValueType(0).SimpleTy) {
645 default:
646 llvm_unreachable("Unrecognized SMULL.");
647 case MVT::v4i32:
648 SMULLOpc = AArch64::SMULLv4i16_indexed;
649 break;
650 case MVT::v2i64:
651 SMULLOpc = AArch64::SMULLv2i32_indexed;
652 break;
654 } else if (IntNo == Intrinsic::aarch64_neon_umull) {
655 switch (N->getSimpleValueType(0).SimpleTy) {
656 default:
657 llvm_unreachable("Unrecognized SMULL.");
658 case MVT::v4i32:
659 SMULLOpc = AArch64::UMULLv4i16_indexed;
660 break;
661 case MVT::v2i64:
662 SMULLOpc = AArch64::UMULLv2i32_indexed;
663 break;
665 } else
666 llvm_unreachable("Unrecognized intrinsic.");
668 ReplaceNode(N, CurDAG->getMachineNode(SMULLOpc, dl, N->getValueType(0), Ops));
669 return true;
672 /// Instructions that accept extend modifiers like UXTW expect the register
673 /// being extended to be a GPR32, but the incoming DAG might be acting on a
674 /// GPR64 (either via SEXT_INREG or AND). Extract the appropriate low bits if
675 /// this is the case.
676 static SDValue narrowIfNeeded(SelectionDAG *CurDAG, SDValue N) {
677 if (N.getValueType() == MVT::i32)
678 return N;
680 SDLoc dl(N);
681 SDValue SubReg = CurDAG->getTargetConstant(AArch64::sub_32, dl, MVT::i32);
682 MachineSDNode *Node = CurDAG->getMachineNode(TargetOpcode::EXTRACT_SUBREG,
683 dl, MVT::i32, N, SubReg);
684 return SDValue(Node, 0);
687 // Returns a suitable CNT/INC/DEC/RDVL multiplier to calculate VSCALE*N.
688 template<signed Low, signed High, signed Scale>
689 bool AArch64DAGToDAGISel::SelectRDVLImm(SDValue N, SDValue &Imm) {
690 if (!isa<ConstantSDNode>(N))
691 return false;
693 int64_t MulImm = cast<ConstantSDNode>(N)->getSExtValue();
694 if ((MulImm % std::abs(Scale)) == 0) {
695 int64_t RDVLImm = MulImm / Scale;
696 if ((RDVLImm >= Low) && (RDVLImm <= High)) {
697 Imm = CurDAG->getTargetConstant(RDVLImm, SDLoc(N), MVT::i32);
698 return true;
702 return false;
705 /// SelectArithExtendedRegister - Select a "extended register" operand. This
706 /// operand folds in an extend followed by an optional left shift.
707 bool AArch64DAGToDAGISel::SelectArithExtendedRegister(SDValue N, SDValue &Reg,
708 SDValue &Shift) {
709 unsigned ShiftVal = 0;
710 AArch64_AM::ShiftExtendType Ext;
712 if (N.getOpcode() == ISD::SHL) {
713 ConstantSDNode *CSD = dyn_cast<ConstantSDNode>(N.getOperand(1));
714 if (!CSD)
715 return false;
716 ShiftVal = CSD->getZExtValue();
717 if (ShiftVal > 4)
718 return false;
720 Ext = getExtendTypeForNode(N.getOperand(0));
721 if (Ext == AArch64_AM::InvalidShiftExtend)
722 return false;
724 Reg = N.getOperand(0).getOperand(0);
725 } else {
726 Ext = getExtendTypeForNode(N);
727 if (Ext == AArch64_AM::InvalidShiftExtend)
728 return false;
730 Reg = N.getOperand(0);
732 // Don't match if free 32-bit -> 64-bit zext can be used instead.
733 if (Ext == AArch64_AM::UXTW &&
734 Reg->getValueType(0).getSizeInBits() == 32 && isDef32(*Reg.getNode()))
735 return false;
738 // AArch64 mandates that the RHS of the operation must use the smallest
739 // register class that could contain the size being extended from. Thus,
740 // if we're folding a (sext i8), we need the RHS to be a GPR32, even though
741 // there might not be an actual 32-bit value in the program. We can
742 // (harmlessly) synthesize one by injected an EXTRACT_SUBREG here.
743 assert(Ext != AArch64_AM::UXTX && Ext != AArch64_AM::SXTX);
744 Reg = narrowIfNeeded(CurDAG, Reg);
745 Shift = CurDAG->getTargetConstant(getArithExtendImm(Ext, ShiftVal), SDLoc(N),
746 MVT::i32);
747 return isWorthFolding(N);
750 /// If there's a use of this ADDlow that's not itself a load/store then we'll
751 /// need to create a real ADD instruction from it anyway and there's no point in
752 /// folding it into the mem op. Theoretically, it shouldn't matter, but there's
753 /// a single pseudo-instruction for an ADRP/ADD pair so over-aggressive folding
754 /// leads to duplicated ADRP instructions.
755 static bool isWorthFoldingADDlow(SDValue N) {
756 for (auto Use : N->uses()) {
757 if (Use->getOpcode() != ISD::LOAD && Use->getOpcode() != ISD::STORE &&
758 Use->getOpcode() != ISD::ATOMIC_LOAD &&
759 Use->getOpcode() != ISD::ATOMIC_STORE)
760 return false;
762 // ldar and stlr have much more restrictive addressing modes (just a
763 // register).
764 if (isStrongerThanMonotonic(cast<MemSDNode>(Use)->getOrdering()))
765 return false;
768 return true;
771 /// SelectAddrModeIndexedBitWidth - Select a "register plus scaled (un)signed BW-bit
772 /// immediate" address. The "Size" argument is the size in bytes of the memory
773 /// reference, which determines the scale.
774 bool AArch64DAGToDAGISel::SelectAddrModeIndexedBitWidth(SDValue N, bool IsSignedImm,
775 unsigned BW, unsigned Size,
776 SDValue &Base,
777 SDValue &OffImm) {
778 SDLoc dl(N);
779 const DataLayout &DL = CurDAG->getDataLayout();
780 const TargetLowering *TLI = getTargetLowering();
781 if (N.getOpcode() == ISD::FrameIndex) {
782 int FI = cast<FrameIndexSDNode>(N)->getIndex();
783 Base = CurDAG->getTargetFrameIndex(FI, TLI->getPointerTy(DL));
784 OffImm = CurDAG->getTargetConstant(0, dl, MVT::i64);
785 return true;
788 // As opposed to the (12-bit) Indexed addressing mode below, the 7/9-bit signed
789 // selected here doesn't support labels/immediates, only base+offset.
790 if (CurDAG->isBaseWithConstantOffset(N)) {
791 if (ConstantSDNode *RHS = dyn_cast<ConstantSDNode>(N.getOperand(1))) {
792 if (IsSignedImm) {
793 int64_t RHSC = RHS->getSExtValue();
794 unsigned Scale = Log2_32(Size);
795 int64_t Range = 0x1LL << (BW - 1);
797 if ((RHSC & (Size - 1)) == 0 && RHSC >= -(Range << Scale) &&
798 RHSC < (Range << Scale)) {
799 Base = N.getOperand(0);
800 if (Base.getOpcode() == ISD::FrameIndex) {
801 int FI = cast<FrameIndexSDNode>(Base)->getIndex();
802 Base = CurDAG->getTargetFrameIndex(FI, TLI->getPointerTy(DL));
804 OffImm = CurDAG->getTargetConstant(RHSC >> Scale, dl, MVT::i64);
805 return true;
807 } else {
808 // unsigned Immediate
809 uint64_t RHSC = RHS->getZExtValue();
810 unsigned Scale = Log2_32(Size);
811 uint64_t Range = 0x1ULL << BW;
813 if ((RHSC & (Size - 1)) == 0 && RHSC < (Range << Scale)) {
814 Base = N.getOperand(0);
815 if (Base.getOpcode() == ISD::FrameIndex) {
816 int FI = cast<FrameIndexSDNode>(Base)->getIndex();
817 Base = CurDAG->getTargetFrameIndex(FI, TLI->getPointerTy(DL));
819 OffImm = CurDAG->getTargetConstant(RHSC >> Scale, dl, MVT::i64);
820 return true;
825 // Base only. The address will be materialized into a register before
826 // the memory is accessed.
827 // add x0, Xbase, #offset
828 // stp x1, x2, [x0]
829 Base = N;
830 OffImm = CurDAG->getTargetConstant(0, dl, MVT::i64);
831 return true;
834 /// SelectAddrModeIndexed - Select a "register plus scaled unsigned 12-bit
835 /// immediate" address. The "Size" argument is the size in bytes of the memory
836 /// reference, which determines the scale.
837 bool AArch64DAGToDAGISel::SelectAddrModeIndexed(SDValue N, unsigned Size,
838 SDValue &Base, SDValue &OffImm) {
839 SDLoc dl(N);
840 const DataLayout &DL = CurDAG->getDataLayout();
841 const TargetLowering *TLI = getTargetLowering();
842 if (N.getOpcode() == ISD::FrameIndex) {
843 int FI = cast<FrameIndexSDNode>(N)->getIndex();
844 Base = CurDAG->getTargetFrameIndex(FI, TLI->getPointerTy(DL));
845 OffImm = CurDAG->getTargetConstant(0, dl, MVT::i64);
846 return true;
849 if (N.getOpcode() == AArch64ISD::ADDlow && isWorthFoldingADDlow(N)) {
850 GlobalAddressSDNode *GAN =
851 dyn_cast<GlobalAddressSDNode>(N.getOperand(1).getNode());
852 Base = N.getOperand(0);
853 OffImm = N.getOperand(1);
854 if (!GAN)
855 return true;
857 if (GAN->getOffset() % Size == 0) {
858 const GlobalValue *GV = GAN->getGlobal();
859 unsigned Alignment = GV->getAlignment();
860 Type *Ty = GV->getValueType();
861 if (Alignment == 0 && Ty->isSized())
862 Alignment = DL.getABITypeAlignment(Ty);
864 if (Alignment >= Size)
865 return true;
869 if (CurDAG->isBaseWithConstantOffset(N)) {
870 if (ConstantSDNode *RHS = dyn_cast<ConstantSDNode>(N.getOperand(1))) {
871 int64_t RHSC = (int64_t)RHS->getZExtValue();
872 unsigned Scale = Log2_32(Size);
873 if ((RHSC & (Size - 1)) == 0 && RHSC >= 0 && RHSC < (0x1000 << Scale)) {
874 Base = N.getOperand(0);
875 if (Base.getOpcode() == ISD::FrameIndex) {
876 int FI = cast<FrameIndexSDNode>(Base)->getIndex();
877 Base = CurDAG->getTargetFrameIndex(FI, TLI->getPointerTy(DL));
879 OffImm = CurDAG->getTargetConstant(RHSC >> Scale, dl, MVT::i64);
880 return true;
885 // Before falling back to our general case, check if the unscaled
886 // instructions can handle this. If so, that's preferable.
887 if (SelectAddrModeUnscaled(N, Size, Base, OffImm))
888 return false;
890 // Base only. The address will be materialized into a register before
891 // the memory is accessed.
892 // add x0, Xbase, #offset
893 // ldr x0, [x0]
894 Base = N;
895 OffImm = CurDAG->getTargetConstant(0, dl, MVT::i64);
896 return true;
899 /// SelectAddrModeUnscaled - Select a "register plus unscaled signed 9-bit
900 /// immediate" address. This should only match when there is an offset that
901 /// is not valid for a scaled immediate addressing mode. The "Size" argument
902 /// is the size in bytes of the memory reference, which is needed here to know
903 /// what is valid for a scaled immediate.
904 bool AArch64DAGToDAGISel::SelectAddrModeUnscaled(SDValue N, unsigned Size,
905 SDValue &Base,
906 SDValue &OffImm) {
907 if (!CurDAG->isBaseWithConstantOffset(N))
908 return false;
909 if (ConstantSDNode *RHS = dyn_cast<ConstantSDNode>(N.getOperand(1))) {
910 int64_t RHSC = RHS->getSExtValue();
911 // If the offset is valid as a scaled immediate, don't match here.
912 if ((RHSC & (Size - 1)) == 0 && RHSC >= 0 &&
913 RHSC < (0x1000 << Log2_32(Size)))
914 return false;
915 if (RHSC >= -256 && RHSC < 256) {
916 Base = N.getOperand(0);
917 if (Base.getOpcode() == ISD::FrameIndex) {
918 int FI = cast<FrameIndexSDNode>(Base)->getIndex();
919 const TargetLowering *TLI = getTargetLowering();
920 Base = CurDAG->getTargetFrameIndex(
921 FI, TLI->getPointerTy(CurDAG->getDataLayout()));
923 OffImm = CurDAG->getTargetConstant(RHSC, SDLoc(N), MVT::i64);
924 return true;
927 return false;
930 static SDValue Widen(SelectionDAG *CurDAG, SDValue N) {
931 SDLoc dl(N);
932 SDValue SubReg = CurDAG->getTargetConstant(AArch64::sub_32, dl, MVT::i32);
933 SDValue ImpDef = SDValue(
934 CurDAG->getMachineNode(TargetOpcode::IMPLICIT_DEF, dl, MVT::i64), 0);
935 MachineSDNode *Node = CurDAG->getMachineNode(
936 TargetOpcode::INSERT_SUBREG, dl, MVT::i64, ImpDef, N, SubReg);
937 return SDValue(Node, 0);
940 /// Check if the given SHL node (\p N), can be used to form an
941 /// extended register for an addressing mode.
942 bool AArch64DAGToDAGISel::SelectExtendedSHL(SDValue N, unsigned Size,
943 bool WantExtend, SDValue &Offset,
944 SDValue &SignExtend) {
945 assert(N.getOpcode() == ISD::SHL && "Invalid opcode.");
946 ConstantSDNode *CSD = dyn_cast<ConstantSDNode>(N.getOperand(1));
947 if (!CSD || (CSD->getZExtValue() & 0x7) != CSD->getZExtValue())
948 return false;
950 SDLoc dl(N);
951 if (WantExtend) {
952 AArch64_AM::ShiftExtendType Ext =
953 getExtendTypeForNode(N.getOperand(0), true);
954 if (Ext == AArch64_AM::InvalidShiftExtend)
955 return false;
957 Offset = narrowIfNeeded(CurDAG, N.getOperand(0).getOperand(0));
958 SignExtend = CurDAG->getTargetConstant(Ext == AArch64_AM::SXTW, dl,
959 MVT::i32);
960 } else {
961 Offset = N.getOperand(0);
962 SignExtend = CurDAG->getTargetConstant(0, dl, MVT::i32);
965 unsigned LegalShiftVal = Log2_32(Size);
966 unsigned ShiftVal = CSD->getZExtValue();
968 if (ShiftVal != 0 && ShiftVal != LegalShiftVal)
969 return false;
971 return isWorthFolding(N);
974 bool AArch64DAGToDAGISel::SelectAddrModeWRO(SDValue N, unsigned Size,
975 SDValue &Base, SDValue &Offset,
976 SDValue &SignExtend,
977 SDValue &DoShift) {
978 if (N.getOpcode() != ISD::ADD)
979 return false;
980 SDValue LHS = N.getOperand(0);
981 SDValue RHS = N.getOperand(1);
982 SDLoc dl(N);
984 // We don't want to match immediate adds here, because they are better lowered
985 // to the register-immediate addressing modes.
986 if (isa<ConstantSDNode>(LHS) || isa<ConstantSDNode>(RHS))
987 return false;
989 // Check if this particular node is reused in any non-memory related
990 // operation. If yes, do not try to fold this node into the address
991 // computation, since the computation will be kept.
992 const SDNode *Node = N.getNode();
993 for (SDNode *UI : Node->uses()) {
994 if (!isa<MemSDNode>(*UI))
995 return false;
998 // Remember if it is worth folding N when it produces extended register.
999 bool IsExtendedRegisterWorthFolding = isWorthFolding(N);
1001 // Try to match a shifted extend on the RHS.
1002 if (IsExtendedRegisterWorthFolding && RHS.getOpcode() == ISD::SHL &&
1003 SelectExtendedSHL(RHS, Size, true, Offset, SignExtend)) {
1004 Base = LHS;
1005 DoShift = CurDAG->getTargetConstant(true, dl, MVT::i32);
1006 return true;
1009 // Try to match a shifted extend on the LHS.
1010 if (IsExtendedRegisterWorthFolding && LHS.getOpcode() == ISD::SHL &&
1011 SelectExtendedSHL(LHS, Size, true, Offset, SignExtend)) {
1012 Base = RHS;
1013 DoShift = CurDAG->getTargetConstant(true, dl, MVT::i32);
1014 return true;
1017 // There was no shift, whatever else we find.
1018 DoShift = CurDAG->getTargetConstant(false, dl, MVT::i32);
1020 AArch64_AM::ShiftExtendType Ext = AArch64_AM::InvalidShiftExtend;
1021 // Try to match an unshifted extend on the LHS.
1022 if (IsExtendedRegisterWorthFolding &&
1023 (Ext = getExtendTypeForNode(LHS, true)) !=
1024 AArch64_AM::InvalidShiftExtend) {
1025 Base = RHS;
1026 Offset = narrowIfNeeded(CurDAG, LHS.getOperand(0));
1027 SignExtend = CurDAG->getTargetConstant(Ext == AArch64_AM::SXTW, dl,
1028 MVT::i32);
1029 if (isWorthFolding(LHS))
1030 return true;
1033 // Try to match an unshifted extend on the RHS.
1034 if (IsExtendedRegisterWorthFolding &&
1035 (Ext = getExtendTypeForNode(RHS, true)) !=
1036 AArch64_AM::InvalidShiftExtend) {
1037 Base = LHS;
1038 Offset = narrowIfNeeded(CurDAG, RHS.getOperand(0));
1039 SignExtend = CurDAG->getTargetConstant(Ext == AArch64_AM::SXTW, dl,
1040 MVT::i32);
1041 if (isWorthFolding(RHS))
1042 return true;
1045 return false;
1048 // Check if the given immediate is preferred by ADD. If an immediate can be
1049 // encoded in an ADD, or it can be encoded in an "ADD LSL #12" and can not be
1050 // encoded by one MOVZ, return true.
1051 static bool isPreferredADD(int64_t ImmOff) {
1052 // Constant in [0x0, 0xfff] can be encoded in ADD.
1053 if ((ImmOff & 0xfffffffffffff000LL) == 0x0LL)
1054 return true;
1055 // Check if it can be encoded in an "ADD LSL #12".
1056 if ((ImmOff & 0xffffffffff000fffLL) == 0x0LL)
1057 // As a single MOVZ is faster than a "ADD of LSL #12", ignore such constant.
1058 return (ImmOff & 0xffffffffff00ffffLL) != 0x0LL &&
1059 (ImmOff & 0xffffffffffff0fffLL) != 0x0LL;
1060 return false;
1063 bool AArch64DAGToDAGISel::SelectAddrModeXRO(SDValue N, unsigned Size,
1064 SDValue &Base, SDValue &Offset,
1065 SDValue &SignExtend,
1066 SDValue &DoShift) {
1067 if (N.getOpcode() != ISD::ADD)
1068 return false;
1069 SDValue LHS = N.getOperand(0);
1070 SDValue RHS = N.getOperand(1);
1071 SDLoc DL(N);
1073 // Check if this particular node is reused in any non-memory related
1074 // operation. If yes, do not try to fold this node into the address
1075 // computation, since the computation will be kept.
1076 const SDNode *Node = N.getNode();
1077 for (SDNode *UI : Node->uses()) {
1078 if (!isa<MemSDNode>(*UI))
1079 return false;
1082 // Watch out if RHS is a wide immediate, it can not be selected into
1083 // [BaseReg+Imm] addressing mode. Also it may not be able to be encoded into
1084 // ADD/SUB. Instead it will use [BaseReg + 0] address mode and generate
1085 // instructions like:
1086 // MOV X0, WideImmediate
1087 // ADD X1, BaseReg, X0
1088 // LDR X2, [X1, 0]
1089 // For such situation, using [BaseReg, XReg] addressing mode can save one
1090 // ADD/SUB:
1091 // MOV X0, WideImmediate
1092 // LDR X2, [BaseReg, X0]
1093 if (isa<ConstantSDNode>(RHS)) {
1094 int64_t ImmOff = (int64_t)cast<ConstantSDNode>(RHS)->getZExtValue();
1095 unsigned Scale = Log2_32(Size);
1096 // Skip the immediate can be selected by load/store addressing mode.
1097 // Also skip the immediate can be encoded by a single ADD (SUB is also
1098 // checked by using -ImmOff).
1099 if ((ImmOff % Size == 0 && ImmOff >= 0 && ImmOff < (0x1000 << Scale)) ||
1100 isPreferredADD(ImmOff) || isPreferredADD(-ImmOff))
1101 return false;
1103 SDValue Ops[] = { RHS };
1104 SDNode *MOVI =
1105 CurDAG->getMachineNode(AArch64::MOVi64imm, DL, MVT::i64, Ops);
1106 SDValue MOVIV = SDValue(MOVI, 0);
1107 // This ADD of two X register will be selected into [Reg+Reg] mode.
1108 N = CurDAG->getNode(ISD::ADD, DL, MVT::i64, LHS, MOVIV);
1111 // Remember if it is worth folding N when it produces extended register.
1112 bool IsExtendedRegisterWorthFolding = isWorthFolding(N);
1114 // Try to match a shifted extend on the RHS.
1115 if (IsExtendedRegisterWorthFolding && RHS.getOpcode() == ISD::SHL &&
1116 SelectExtendedSHL(RHS, Size, false, Offset, SignExtend)) {
1117 Base = LHS;
1118 DoShift = CurDAG->getTargetConstant(true, DL, MVT::i32);
1119 return true;
1122 // Try to match a shifted extend on the LHS.
1123 if (IsExtendedRegisterWorthFolding && LHS.getOpcode() == ISD::SHL &&
1124 SelectExtendedSHL(LHS, Size, false, Offset, SignExtend)) {
1125 Base = RHS;
1126 DoShift = CurDAG->getTargetConstant(true, DL, MVT::i32);
1127 return true;
1130 // Match any non-shifted, non-extend, non-immediate add expression.
1131 Base = LHS;
1132 Offset = RHS;
1133 SignExtend = CurDAG->getTargetConstant(false, DL, MVT::i32);
1134 DoShift = CurDAG->getTargetConstant(false, DL, MVT::i32);
1135 // Reg1 + Reg2 is free: no check needed.
1136 return true;
1139 SDValue AArch64DAGToDAGISel::createDTuple(ArrayRef<SDValue> Regs) {
1140 static const unsigned RegClassIDs[] = {
1141 AArch64::DDRegClassID, AArch64::DDDRegClassID, AArch64::DDDDRegClassID};
1142 static const unsigned SubRegs[] = {AArch64::dsub0, AArch64::dsub1,
1143 AArch64::dsub2, AArch64::dsub3};
1145 return createTuple(Regs, RegClassIDs, SubRegs);
1148 SDValue AArch64DAGToDAGISel::createQTuple(ArrayRef<SDValue> Regs) {
1149 static const unsigned RegClassIDs[] = {
1150 AArch64::QQRegClassID, AArch64::QQQRegClassID, AArch64::QQQQRegClassID};
1151 static const unsigned SubRegs[] = {AArch64::qsub0, AArch64::qsub1,
1152 AArch64::qsub2, AArch64::qsub3};
1154 return createTuple(Regs, RegClassIDs, SubRegs);
1157 SDValue AArch64DAGToDAGISel::createTuple(ArrayRef<SDValue> Regs,
1158 const unsigned RegClassIDs[],
1159 const unsigned SubRegs[]) {
1160 // There's no special register-class for a vector-list of 1 element: it's just
1161 // a vector.
1162 if (Regs.size() == 1)
1163 return Regs[0];
1165 assert(Regs.size() >= 2 && Regs.size() <= 4);
1167 SDLoc DL(Regs[0]);
1169 SmallVector<SDValue, 4> Ops;
1171 // First operand of REG_SEQUENCE is the desired RegClass.
1172 Ops.push_back(
1173 CurDAG->getTargetConstant(RegClassIDs[Regs.size() - 2], DL, MVT::i32));
1175 // Then we get pairs of source & subregister-position for the components.
1176 for (unsigned i = 0; i < Regs.size(); ++i) {
1177 Ops.push_back(Regs[i]);
1178 Ops.push_back(CurDAG->getTargetConstant(SubRegs[i], DL, MVT::i32));
1181 SDNode *N =
1182 CurDAG->getMachineNode(TargetOpcode::REG_SEQUENCE, DL, MVT::Untyped, Ops);
1183 return SDValue(N, 0);
1186 void AArch64DAGToDAGISel::SelectTable(SDNode *N, unsigned NumVecs, unsigned Opc,
1187 bool isExt) {
1188 SDLoc dl(N);
1189 EVT VT = N->getValueType(0);
1191 unsigned ExtOff = isExt;
1193 // Form a REG_SEQUENCE to force register allocation.
1194 unsigned Vec0Off = ExtOff + 1;
1195 SmallVector<SDValue, 4> Regs(N->op_begin() + Vec0Off,
1196 N->op_begin() + Vec0Off + NumVecs);
1197 SDValue RegSeq = createQTuple(Regs);
1199 SmallVector<SDValue, 6> Ops;
1200 if (isExt)
1201 Ops.push_back(N->getOperand(1));
1202 Ops.push_back(RegSeq);
1203 Ops.push_back(N->getOperand(NumVecs + ExtOff + 1));
1204 ReplaceNode(N, CurDAG->getMachineNode(Opc, dl, VT, Ops));
1207 bool AArch64DAGToDAGISel::tryIndexedLoad(SDNode *N) {
1208 LoadSDNode *LD = cast<LoadSDNode>(N);
1209 if (LD->isUnindexed())
1210 return false;
1211 EVT VT = LD->getMemoryVT();
1212 EVT DstVT = N->getValueType(0);
1213 ISD::MemIndexedMode AM = LD->getAddressingMode();
1214 bool IsPre = AM == ISD::PRE_INC || AM == ISD::PRE_DEC;
1216 // We're not doing validity checking here. That was done when checking
1217 // if we should mark the load as indexed or not. We're just selecting
1218 // the right instruction.
1219 unsigned Opcode = 0;
1221 ISD::LoadExtType ExtType = LD->getExtensionType();
1222 bool InsertTo64 = false;
1223 if (VT == MVT::i64)
1224 Opcode = IsPre ? AArch64::LDRXpre : AArch64::LDRXpost;
1225 else if (VT == MVT::i32) {
1226 if (ExtType == ISD::NON_EXTLOAD)
1227 Opcode = IsPre ? AArch64::LDRWpre : AArch64::LDRWpost;
1228 else if (ExtType == ISD::SEXTLOAD)
1229 Opcode = IsPre ? AArch64::LDRSWpre : AArch64::LDRSWpost;
1230 else {
1231 Opcode = IsPre ? AArch64::LDRWpre : AArch64::LDRWpost;
1232 InsertTo64 = true;
1233 // The result of the load is only i32. It's the subreg_to_reg that makes
1234 // it into an i64.
1235 DstVT = MVT::i32;
1237 } else if (VT == MVT::i16) {
1238 if (ExtType == ISD::SEXTLOAD) {
1239 if (DstVT == MVT::i64)
1240 Opcode = IsPre ? AArch64::LDRSHXpre : AArch64::LDRSHXpost;
1241 else
1242 Opcode = IsPre ? AArch64::LDRSHWpre : AArch64::LDRSHWpost;
1243 } else {
1244 Opcode = IsPre ? AArch64::LDRHHpre : AArch64::LDRHHpost;
1245 InsertTo64 = DstVT == MVT::i64;
1246 // The result of the load is only i32. It's the subreg_to_reg that makes
1247 // it into an i64.
1248 DstVT = MVT::i32;
1250 } else if (VT == MVT::i8) {
1251 if (ExtType == ISD::SEXTLOAD) {
1252 if (DstVT == MVT::i64)
1253 Opcode = IsPre ? AArch64::LDRSBXpre : AArch64::LDRSBXpost;
1254 else
1255 Opcode = IsPre ? AArch64::LDRSBWpre : AArch64::LDRSBWpost;
1256 } else {
1257 Opcode = IsPre ? AArch64::LDRBBpre : AArch64::LDRBBpost;
1258 InsertTo64 = DstVT == MVT::i64;
1259 // The result of the load is only i32. It's the subreg_to_reg that makes
1260 // it into an i64.
1261 DstVT = MVT::i32;
1263 } else if (VT == MVT::f16) {
1264 Opcode = IsPre ? AArch64::LDRHpre : AArch64::LDRHpost;
1265 } else if (VT == MVT::f32) {
1266 Opcode = IsPre ? AArch64::LDRSpre : AArch64::LDRSpost;
1267 } else if (VT == MVT::f64 || VT.is64BitVector()) {
1268 Opcode = IsPre ? AArch64::LDRDpre : AArch64::LDRDpost;
1269 } else if (VT.is128BitVector()) {
1270 Opcode = IsPre ? AArch64::LDRQpre : AArch64::LDRQpost;
1271 } else
1272 return false;
1273 SDValue Chain = LD->getChain();
1274 SDValue Base = LD->getBasePtr();
1275 ConstantSDNode *OffsetOp = cast<ConstantSDNode>(LD->getOffset());
1276 int OffsetVal = (int)OffsetOp->getZExtValue();
1277 SDLoc dl(N);
1278 SDValue Offset = CurDAG->getTargetConstant(OffsetVal, dl, MVT::i64);
1279 SDValue Ops[] = { Base, Offset, Chain };
1280 SDNode *Res = CurDAG->getMachineNode(Opcode, dl, MVT::i64, DstVT,
1281 MVT::Other, Ops);
1282 // Either way, we're replacing the node, so tell the caller that.
1283 SDValue LoadedVal = SDValue(Res, 1);
1284 if (InsertTo64) {
1285 SDValue SubReg = CurDAG->getTargetConstant(AArch64::sub_32, dl, MVT::i32);
1286 LoadedVal =
1287 SDValue(CurDAG->getMachineNode(
1288 AArch64::SUBREG_TO_REG, dl, MVT::i64,
1289 CurDAG->getTargetConstant(0, dl, MVT::i64), LoadedVal,
1290 SubReg),
1294 ReplaceUses(SDValue(N, 0), LoadedVal);
1295 ReplaceUses(SDValue(N, 1), SDValue(Res, 0));
1296 ReplaceUses(SDValue(N, 2), SDValue(Res, 2));
1297 CurDAG->RemoveDeadNode(N);
1298 return true;
1301 void AArch64DAGToDAGISel::SelectLoad(SDNode *N, unsigned NumVecs, unsigned Opc,
1302 unsigned SubRegIdx) {
1303 SDLoc dl(N);
1304 EVT VT = N->getValueType(0);
1305 SDValue Chain = N->getOperand(0);
1307 SDValue Ops[] = {N->getOperand(2), // Mem operand;
1308 Chain};
1310 const EVT ResTys[] = {MVT::Untyped, MVT::Other};
1312 SDNode *Ld = CurDAG->getMachineNode(Opc, dl, ResTys, Ops);
1313 SDValue SuperReg = SDValue(Ld, 0);
1314 for (unsigned i = 0; i < NumVecs; ++i)
1315 ReplaceUses(SDValue(N, i),
1316 CurDAG->getTargetExtractSubreg(SubRegIdx + i, dl, VT, SuperReg));
1318 ReplaceUses(SDValue(N, NumVecs), SDValue(Ld, 1));
1320 // Transfer memoperands.
1321 MachineMemOperand *MemOp = cast<MemIntrinsicSDNode>(N)->getMemOperand();
1322 CurDAG->setNodeMemRefs(cast<MachineSDNode>(Ld), {MemOp});
1324 CurDAG->RemoveDeadNode(N);
1327 void AArch64DAGToDAGISel::SelectPostLoad(SDNode *N, unsigned NumVecs,
1328 unsigned Opc, unsigned SubRegIdx) {
1329 SDLoc dl(N);
1330 EVT VT = N->getValueType(0);
1331 SDValue Chain = N->getOperand(0);
1333 SDValue Ops[] = {N->getOperand(1), // Mem operand
1334 N->getOperand(2), // Incremental
1335 Chain};
1337 const EVT ResTys[] = {MVT::i64, // Type of the write back register
1338 MVT::Untyped, MVT::Other};
1340 SDNode *Ld = CurDAG->getMachineNode(Opc, dl, ResTys, Ops);
1342 // Update uses of write back register
1343 ReplaceUses(SDValue(N, NumVecs), SDValue(Ld, 0));
1345 // Update uses of vector list
1346 SDValue SuperReg = SDValue(Ld, 1);
1347 if (NumVecs == 1)
1348 ReplaceUses(SDValue(N, 0), SuperReg);
1349 else
1350 for (unsigned i = 0; i < NumVecs; ++i)
1351 ReplaceUses(SDValue(N, i),
1352 CurDAG->getTargetExtractSubreg(SubRegIdx + i, dl, VT, SuperReg));
1354 // Update the chain
1355 ReplaceUses(SDValue(N, NumVecs + 1), SDValue(Ld, 2));
1356 CurDAG->RemoveDeadNode(N);
1359 void AArch64DAGToDAGISel::SelectStore(SDNode *N, unsigned NumVecs,
1360 unsigned Opc) {
1361 SDLoc dl(N);
1362 EVT VT = N->getOperand(2)->getValueType(0);
1364 // Form a REG_SEQUENCE to force register allocation.
1365 bool Is128Bit = VT.getSizeInBits() == 128;
1366 SmallVector<SDValue, 4> Regs(N->op_begin() + 2, N->op_begin() + 2 + NumVecs);
1367 SDValue RegSeq = Is128Bit ? createQTuple(Regs) : createDTuple(Regs);
1369 SDValue Ops[] = {RegSeq, N->getOperand(NumVecs + 2), N->getOperand(0)};
1370 SDNode *St = CurDAG->getMachineNode(Opc, dl, N->getValueType(0), Ops);
1372 // Transfer memoperands.
1373 MachineMemOperand *MemOp = cast<MemIntrinsicSDNode>(N)->getMemOperand();
1374 CurDAG->setNodeMemRefs(cast<MachineSDNode>(St), {MemOp});
1376 ReplaceNode(N, St);
1379 bool AArch64DAGToDAGISel::SelectAddrModeFrameIndexSVE(SDValue N, SDValue &Base,
1380 SDValue &OffImm) {
1381 SDLoc dl(N);
1382 const DataLayout &DL = CurDAG->getDataLayout();
1383 const TargetLowering *TLI = getTargetLowering();
1385 // Try to match it for the frame address
1386 if (auto FINode = dyn_cast<FrameIndexSDNode>(N)) {
1387 int FI = FINode->getIndex();
1388 Base = CurDAG->getTargetFrameIndex(FI, TLI->getPointerTy(DL));
1389 OffImm = CurDAG->getTargetConstant(0, dl, MVT::i64);
1390 return true;
1393 return false;
1396 void AArch64DAGToDAGISel::SelectPostStore(SDNode *N, unsigned NumVecs,
1397 unsigned Opc) {
1398 SDLoc dl(N);
1399 EVT VT = N->getOperand(2)->getValueType(0);
1400 const EVT ResTys[] = {MVT::i64, // Type of the write back register
1401 MVT::Other}; // Type for the Chain
1403 // Form a REG_SEQUENCE to force register allocation.
1404 bool Is128Bit = VT.getSizeInBits() == 128;
1405 SmallVector<SDValue, 4> Regs(N->op_begin() + 1, N->op_begin() + 1 + NumVecs);
1406 SDValue RegSeq = Is128Bit ? createQTuple(Regs) : createDTuple(Regs);
1408 SDValue Ops[] = {RegSeq,
1409 N->getOperand(NumVecs + 1), // base register
1410 N->getOperand(NumVecs + 2), // Incremental
1411 N->getOperand(0)}; // Chain
1412 SDNode *St = CurDAG->getMachineNode(Opc, dl, ResTys, Ops);
1414 ReplaceNode(N, St);
1417 namespace {
1418 /// WidenVector - Given a value in the V64 register class, produce the
1419 /// equivalent value in the V128 register class.
1420 class WidenVector {
1421 SelectionDAG &DAG;
1423 public:
1424 WidenVector(SelectionDAG &DAG) : DAG(DAG) {}
1426 SDValue operator()(SDValue V64Reg) {
1427 EVT VT = V64Reg.getValueType();
1428 unsigned NarrowSize = VT.getVectorNumElements();
1429 MVT EltTy = VT.getVectorElementType().getSimpleVT();
1430 MVT WideTy = MVT::getVectorVT(EltTy, 2 * NarrowSize);
1431 SDLoc DL(V64Reg);
1433 SDValue Undef =
1434 SDValue(DAG.getMachineNode(TargetOpcode::IMPLICIT_DEF, DL, WideTy), 0);
1435 return DAG.getTargetInsertSubreg(AArch64::dsub, DL, WideTy, Undef, V64Reg);
1438 } // namespace
1440 /// NarrowVector - Given a value in the V128 register class, produce the
1441 /// equivalent value in the V64 register class.
1442 static SDValue NarrowVector(SDValue V128Reg, SelectionDAG &DAG) {
1443 EVT VT = V128Reg.getValueType();
1444 unsigned WideSize = VT.getVectorNumElements();
1445 MVT EltTy = VT.getVectorElementType().getSimpleVT();
1446 MVT NarrowTy = MVT::getVectorVT(EltTy, WideSize / 2);
1448 return DAG.getTargetExtractSubreg(AArch64::dsub, SDLoc(V128Reg), NarrowTy,
1449 V128Reg);
1452 void AArch64DAGToDAGISel::SelectLoadLane(SDNode *N, unsigned NumVecs,
1453 unsigned Opc) {
1454 SDLoc dl(N);
1455 EVT VT = N->getValueType(0);
1456 bool Narrow = VT.getSizeInBits() == 64;
1458 // Form a REG_SEQUENCE to force register allocation.
1459 SmallVector<SDValue, 4> Regs(N->op_begin() + 2, N->op_begin() + 2 + NumVecs);
1461 if (Narrow)
1462 transform(Regs, Regs.begin(),
1463 WidenVector(*CurDAG));
1465 SDValue RegSeq = createQTuple(Regs);
1467 const EVT ResTys[] = {MVT::Untyped, MVT::Other};
1469 unsigned LaneNo =
1470 cast<ConstantSDNode>(N->getOperand(NumVecs + 2))->getZExtValue();
1472 SDValue Ops[] = {RegSeq, CurDAG->getTargetConstant(LaneNo, dl, MVT::i64),
1473 N->getOperand(NumVecs + 3), N->getOperand(0)};
1474 SDNode *Ld = CurDAG->getMachineNode(Opc, dl, ResTys, Ops);
1475 SDValue SuperReg = SDValue(Ld, 0);
1477 EVT WideVT = RegSeq.getOperand(1)->getValueType(0);
1478 static const unsigned QSubs[] = { AArch64::qsub0, AArch64::qsub1,
1479 AArch64::qsub2, AArch64::qsub3 };
1480 for (unsigned i = 0; i < NumVecs; ++i) {
1481 SDValue NV = CurDAG->getTargetExtractSubreg(QSubs[i], dl, WideVT, SuperReg);
1482 if (Narrow)
1483 NV = NarrowVector(NV, *CurDAG);
1484 ReplaceUses(SDValue(N, i), NV);
1487 ReplaceUses(SDValue(N, NumVecs), SDValue(Ld, 1));
1488 CurDAG->RemoveDeadNode(N);
1491 void AArch64DAGToDAGISel::SelectPostLoadLane(SDNode *N, unsigned NumVecs,
1492 unsigned Opc) {
1493 SDLoc dl(N);
1494 EVT VT = N->getValueType(0);
1495 bool Narrow = VT.getSizeInBits() == 64;
1497 // Form a REG_SEQUENCE to force register allocation.
1498 SmallVector<SDValue, 4> Regs(N->op_begin() + 1, N->op_begin() + 1 + NumVecs);
1500 if (Narrow)
1501 transform(Regs, Regs.begin(),
1502 WidenVector(*CurDAG));
1504 SDValue RegSeq = createQTuple(Regs);
1506 const EVT ResTys[] = {MVT::i64, // Type of the write back register
1507 RegSeq->getValueType(0), MVT::Other};
1509 unsigned LaneNo =
1510 cast<ConstantSDNode>(N->getOperand(NumVecs + 1))->getZExtValue();
1512 SDValue Ops[] = {RegSeq,
1513 CurDAG->getTargetConstant(LaneNo, dl,
1514 MVT::i64), // Lane Number
1515 N->getOperand(NumVecs + 2), // Base register
1516 N->getOperand(NumVecs + 3), // Incremental
1517 N->getOperand(0)};
1518 SDNode *Ld = CurDAG->getMachineNode(Opc, dl, ResTys, Ops);
1520 // Update uses of the write back register
1521 ReplaceUses(SDValue(N, NumVecs), SDValue(Ld, 0));
1523 // Update uses of the vector list
1524 SDValue SuperReg = SDValue(Ld, 1);
1525 if (NumVecs == 1) {
1526 ReplaceUses(SDValue(N, 0),
1527 Narrow ? NarrowVector(SuperReg, *CurDAG) : SuperReg);
1528 } else {
1529 EVT WideVT = RegSeq.getOperand(1)->getValueType(0);
1530 static const unsigned QSubs[] = { AArch64::qsub0, AArch64::qsub1,
1531 AArch64::qsub2, AArch64::qsub3 };
1532 for (unsigned i = 0; i < NumVecs; ++i) {
1533 SDValue NV = CurDAG->getTargetExtractSubreg(QSubs[i], dl, WideVT,
1534 SuperReg);
1535 if (Narrow)
1536 NV = NarrowVector(NV, *CurDAG);
1537 ReplaceUses(SDValue(N, i), NV);
1541 // Update the Chain
1542 ReplaceUses(SDValue(N, NumVecs + 1), SDValue(Ld, 2));
1543 CurDAG->RemoveDeadNode(N);
1546 void AArch64DAGToDAGISel::SelectStoreLane(SDNode *N, unsigned NumVecs,
1547 unsigned Opc) {
1548 SDLoc dl(N);
1549 EVT VT = N->getOperand(2)->getValueType(0);
1550 bool Narrow = VT.getSizeInBits() == 64;
1552 // Form a REG_SEQUENCE to force register allocation.
1553 SmallVector<SDValue, 4> Regs(N->op_begin() + 2, N->op_begin() + 2 + NumVecs);
1555 if (Narrow)
1556 transform(Regs, Regs.begin(),
1557 WidenVector(*CurDAG));
1559 SDValue RegSeq = createQTuple(Regs);
1561 unsigned LaneNo =
1562 cast<ConstantSDNode>(N->getOperand(NumVecs + 2))->getZExtValue();
1564 SDValue Ops[] = {RegSeq, CurDAG->getTargetConstant(LaneNo, dl, MVT::i64),
1565 N->getOperand(NumVecs + 3), N->getOperand(0)};
1566 SDNode *St = CurDAG->getMachineNode(Opc, dl, MVT::Other, Ops);
1568 // Transfer memoperands.
1569 MachineMemOperand *MemOp = cast<MemIntrinsicSDNode>(N)->getMemOperand();
1570 CurDAG->setNodeMemRefs(cast<MachineSDNode>(St), {MemOp});
1572 ReplaceNode(N, St);
1575 void AArch64DAGToDAGISel::SelectPostStoreLane(SDNode *N, unsigned NumVecs,
1576 unsigned Opc) {
1577 SDLoc dl(N);
1578 EVT VT = N->getOperand(2)->getValueType(0);
1579 bool Narrow = VT.getSizeInBits() == 64;
1581 // Form a REG_SEQUENCE to force register allocation.
1582 SmallVector<SDValue, 4> Regs(N->op_begin() + 1, N->op_begin() + 1 + NumVecs);
1584 if (Narrow)
1585 transform(Regs, Regs.begin(),
1586 WidenVector(*CurDAG));
1588 SDValue RegSeq = createQTuple(Regs);
1590 const EVT ResTys[] = {MVT::i64, // Type of the write back register
1591 MVT::Other};
1593 unsigned LaneNo =
1594 cast<ConstantSDNode>(N->getOperand(NumVecs + 1))->getZExtValue();
1596 SDValue Ops[] = {RegSeq, CurDAG->getTargetConstant(LaneNo, dl, MVT::i64),
1597 N->getOperand(NumVecs + 2), // Base Register
1598 N->getOperand(NumVecs + 3), // Incremental
1599 N->getOperand(0)};
1600 SDNode *St = CurDAG->getMachineNode(Opc, dl, ResTys, Ops);
1602 // Transfer memoperands.
1603 MachineMemOperand *MemOp = cast<MemIntrinsicSDNode>(N)->getMemOperand();
1604 CurDAG->setNodeMemRefs(cast<MachineSDNode>(St), {MemOp});
1606 ReplaceNode(N, St);
1609 static bool isBitfieldExtractOpFromAnd(SelectionDAG *CurDAG, SDNode *N,
1610 unsigned &Opc, SDValue &Opd0,
1611 unsigned &LSB, unsigned &MSB,
1612 unsigned NumberOfIgnoredLowBits,
1613 bool BiggerPattern) {
1614 assert(N->getOpcode() == ISD::AND &&
1615 "N must be a AND operation to call this function");
1617 EVT VT = N->getValueType(0);
1619 // Here we can test the type of VT and return false when the type does not
1620 // match, but since it is done prior to that call in the current context
1621 // we turned that into an assert to avoid redundant code.
1622 assert((VT == MVT::i32 || VT == MVT::i64) &&
1623 "Type checking must have been done before calling this function");
1625 // FIXME: simplify-demanded-bits in DAGCombine will probably have
1626 // changed the AND node to a 32-bit mask operation. We'll have to
1627 // undo that as part of the transform here if we want to catch all
1628 // the opportunities.
1629 // Currently the NumberOfIgnoredLowBits argument helps to recover
1630 // form these situations when matching bigger pattern (bitfield insert).
1632 // For unsigned extracts, check for a shift right and mask
1633 uint64_t AndImm = 0;
1634 if (!isOpcWithIntImmediate(N, ISD::AND, AndImm))
1635 return false;
1637 const SDNode *Op0 = N->getOperand(0).getNode();
1639 // Because of simplify-demanded-bits in DAGCombine, the mask may have been
1640 // simplified. Try to undo that
1641 AndImm |= maskTrailingOnes<uint64_t>(NumberOfIgnoredLowBits);
1643 // The immediate is a mask of the low bits iff imm & (imm+1) == 0
1644 if (AndImm & (AndImm + 1))
1645 return false;
1647 bool ClampMSB = false;
1648 uint64_t SrlImm = 0;
1649 // Handle the SRL + ANY_EXTEND case.
1650 if (VT == MVT::i64 && Op0->getOpcode() == ISD::ANY_EXTEND &&
1651 isOpcWithIntImmediate(Op0->getOperand(0).getNode(), ISD::SRL, SrlImm)) {
1652 // Extend the incoming operand of the SRL to 64-bit.
1653 Opd0 = Widen(CurDAG, Op0->getOperand(0).getOperand(0));
1654 // Make sure to clamp the MSB so that we preserve the semantics of the
1655 // original operations.
1656 ClampMSB = true;
1657 } else if (VT == MVT::i32 && Op0->getOpcode() == ISD::TRUNCATE &&
1658 isOpcWithIntImmediate(Op0->getOperand(0).getNode(), ISD::SRL,
1659 SrlImm)) {
1660 // If the shift result was truncated, we can still combine them.
1661 Opd0 = Op0->getOperand(0).getOperand(0);
1663 // Use the type of SRL node.
1664 VT = Opd0->getValueType(0);
1665 } else if (isOpcWithIntImmediate(Op0, ISD::SRL, SrlImm)) {
1666 Opd0 = Op0->getOperand(0);
1667 } else if (BiggerPattern) {
1668 // Let's pretend a 0 shift right has been performed.
1669 // The resulting code will be at least as good as the original one
1670 // plus it may expose more opportunities for bitfield insert pattern.
1671 // FIXME: Currently we limit this to the bigger pattern, because
1672 // some optimizations expect AND and not UBFM.
1673 Opd0 = N->getOperand(0);
1674 } else
1675 return false;
1677 // Bail out on large immediates. This happens when no proper
1678 // combining/constant folding was performed.
1679 if (!BiggerPattern && (SrlImm <= 0 || SrlImm >= VT.getSizeInBits())) {
1680 LLVM_DEBUG(
1681 (dbgs() << N
1682 << ": Found large shift immediate, this should not happen\n"));
1683 return false;
1686 LSB = SrlImm;
1687 MSB = SrlImm + (VT == MVT::i32 ? countTrailingOnes<uint32_t>(AndImm)
1688 : countTrailingOnes<uint64_t>(AndImm)) -
1690 if (ClampMSB)
1691 // Since we're moving the extend before the right shift operation, we need
1692 // to clamp the MSB to make sure we don't shift in undefined bits instead of
1693 // the zeros which would get shifted in with the original right shift
1694 // operation.
1695 MSB = MSB > 31 ? 31 : MSB;
1697 Opc = VT == MVT::i32 ? AArch64::UBFMWri : AArch64::UBFMXri;
1698 return true;
1701 static bool isBitfieldExtractOpFromSExtInReg(SDNode *N, unsigned &Opc,
1702 SDValue &Opd0, unsigned &Immr,
1703 unsigned &Imms) {
1704 assert(N->getOpcode() == ISD::SIGN_EXTEND_INREG);
1706 EVT VT = N->getValueType(0);
1707 unsigned BitWidth = VT.getSizeInBits();
1708 assert((VT == MVT::i32 || VT == MVT::i64) &&
1709 "Type checking must have been done before calling this function");
1711 SDValue Op = N->getOperand(0);
1712 if (Op->getOpcode() == ISD::TRUNCATE) {
1713 Op = Op->getOperand(0);
1714 VT = Op->getValueType(0);
1715 BitWidth = VT.getSizeInBits();
1718 uint64_t ShiftImm;
1719 if (!isOpcWithIntImmediate(Op.getNode(), ISD::SRL, ShiftImm) &&
1720 !isOpcWithIntImmediate(Op.getNode(), ISD::SRA, ShiftImm))
1721 return false;
1723 unsigned Width = cast<VTSDNode>(N->getOperand(1))->getVT().getSizeInBits();
1724 if (ShiftImm + Width > BitWidth)
1725 return false;
1727 Opc = (VT == MVT::i32) ? AArch64::SBFMWri : AArch64::SBFMXri;
1728 Opd0 = Op.getOperand(0);
1729 Immr = ShiftImm;
1730 Imms = ShiftImm + Width - 1;
1731 return true;
1734 static bool isSeveralBitsExtractOpFromShr(SDNode *N, unsigned &Opc,
1735 SDValue &Opd0, unsigned &LSB,
1736 unsigned &MSB) {
1737 // We are looking for the following pattern which basically extracts several
1738 // continuous bits from the source value and places it from the LSB of the
1739 // destination value, all other bits of the destination value or set to zero:
1741 // Value2 = AND Value, MaskImm
1742 // SRL Value2, ShiftImm
1744 // with MaskImm >> ShiftImm to search for the bit width.
1746 // This gets selected into a single UBFM:
1748 // UBFM Value, ShiftImm, BitWide + SrlImm -1
1751 if (N->getOpcode() != ISD::SRL)
1752 return false;
1754 uint64_t AndMask = 0;
1755 if (!isOpcWithIntImmediate(N->getOperand(0).getNode(), ISD::AND, AndMask))
1756 return false;
1758 Opd0 = N->getOperand(0).getOperand(0);
1760 uint64_t SrlImm = 0;
1761 if (!isIntImmediate(N->getOperand(1), SrlImm))
1762 return false;
1764 // Check whether we really have several bits extract here.
1765 unsigned BitWide = 64 - countLeadingOnes(~(AndMask >> SrlImm));
1766 if (BitWide && isMask_64(AndMask >> SrlImm)) {
1767 if (N->getValueType(0) == MVT::i32)
1768 Opc = AArch64::UBFMWri;
1769 else
1770 Opc = AArch64::UBFMXri;
1772 LSB = SrlImm;
1773 MSB = BitWide + SrlImm - 1;
1774 return true;
1777 return false;
1780 static bool isBitfieldExtractOpFromShr(SDNode *N, unsigned &Opc, SDValue &Opd0,
1781 unsigned &Immr, unsigned &Imms,
1782 bool BiggerPattern) {
1783 assert((N->getOpcode() == ISD::SRA || N->getOpcode() == ISD::SRL) &&
1784 "N must be a SHR/SRA operation to call this function");
1786 EVT VT = N->getValueType(0);
1788 // Here we can test the type of VT and return false when the type does not
1789 // match, but since it is done prior to that call in the current context
1790 // we turned that into an assert to avoid redundant code.
1791 assert((VT == MVT::i32 || VT == MVT::i64) &&
1792 "Type checking must have been done before calling this function");
1794 // Check for AND + SRL doing several bits extract.
1795 if (isSeveralBitsExtractOpFromShr(N, Opc, Opd0, Immr, Imms))
1796 return true;
1798 // We're looking for a shift of a shift.
1799 uint64_t ShlImm = 0;
1800 uint64_t TruncBits = 0;
1801 if (isOpcWithIntImmediate(N->getOperand(0).getNode(), ISD::SHL, ShlImm)) {
1802 Opd0 = N->getOperand(0).getOperand(0);
1803 } else if (VT == MVT::i32 && N->getOpcode() == ISD::SRL &&
1804 N->getOperand(0).getNode()->getOpcode() == ISD::TRUNCATE) {
1805 // We are looking for a shift of truncate. Truncate from i64 to i32 could
1806 // be considered as setting high 32 bits as zero. Our strategy here is to
1807 // always generate 64bit UBFM. This consistency will help the CSE pass
1808 // later find more redundancy.
1809 Opd0 = N->getOperand(0).getOperand(0);
1810 TruncBits = Opd0->getValueType(0).getSizeInBits() - VT.getSizeInBits();
1811 VT = Opd0.getValueType();
1812 assert(VT == MVT::i64 && "the promoted type should be i64");
1813 } else if (BiggerPattern) {
1814 // Let's pretend a 0 shift left has been performed.
1815 // FIXME: Currently we limit this to the bigger pattern case,
1816 // because some optimizations expect AND and not UBFM
1817 Opd0 = N->getOperand(0);
1818 } else
1819 return false;
1821 // Missing combines/constant folding may have left us with strange
1822 // constants.
1823 if (ShlImm >= VT.getSizeInBits()) {
1824 LLVM_DEBUG(
1825 (dbgs() << N
1826 << ": Found large shift immediate, this should not happen\n"));
1827 return false;
1830 uint64_t SrlImm = 0;
1831 if (!isIntImmediate(N->getOperand(1), SrlImm))
1832 return false;
1834 assert(SrlImm > 0 && SrlImm < VT.getSizeInBits() &&
1835 "bad amount in shift node!");
1836 int immr = SrlImm - ShlImm;
1837 Immr = immr < 0 ? immr + VT.getSizeInBits() : immr;
1838 Imms = VT.getSizeInBits() - ShlImm - TruncBits - 1;
1839 // SRA requires a signed extraction
1840 if (VT == MVT::i32)
1841 Opc = N->getOpcode() == ISD::SRA ? AArch64::SBFMWri : AArch64::UBFMWri;
1842 else
1843 Opc = N->getOpcode() == ISD::SRA ? AArch64::SBFMXri : AArch64::UBFMXri;
1844 return true;
1847 bool AArch64DAGToDAGISel::tryBitfieldExtractOpFromSExt(SDNode *N) {
1848 assert(N->getOpcode() == ISD::SIGN_EXTEND);
1850 EVT VT = N->getValueType(0);
1851 EVT NarrowVT = N->getOperand(0)->getValueType(0);
1852 if (VT != MVT::i64 || NarrowVT != MVT::i32)
1853 return false;
1855 uint64_t ShiftImm;
1856 SDValue Op = N->getOperand(0);
1857 if (!isOpcWithIntImmediate(Op.getNode(), ISD::SRA, ShiftImm))
1858 return false;
1860 SDLoc dl(N);
1861 // Extend the incoming operand of the shift to 64-bits.
1862 SDValue Opd0 = Widen(CurDAG, Op.getOperand(0));
1863 unsigned Immr = ShiftImm;
1864 unsigned Imms = NarrowVT.getSizeInBits() - 1;
1865 SDValue Ops[] = {Opd0, CurDAG->getTargetConstant(Immr, dl, VT),
1866 CurDAG->getTargetConstant(Imms, dl, VT)};
1867 CurDAG->SelectNodeTo(N, AArch64::SBFMXri, VT, Ops);
1868 return true;
1871 /// Try to form fcvtl2 instructions from a floating-point extend of a high-half
1872 /// extract of a subvector.
1873 bool AArch64DAGToDAGISel::tryHighFPExt(SDNode *N) {
1874 assert(N->getOpcode() == ISD::FP_EXTEND);
1876 // There are 2 forms of fcvtl2 - extend to double or extend to float.
1877 SDValue Extract = N->getOperand(0);
1878 EVT VT = N->getValueType(0);
1879 EVT NarrowVT = Extract.getValueType();
1880 if ((VT != MVT::v2f64 || NarrowVT != MVT::v2f32) &&
1881 (VT != MVT::v4f32 || NarrowVT != MVT::v4f16))
1882 return false;
1884 // Optionally look past a bitcast.
1885 Extract = peekThroughBitcasts(Extract);
1886 if (Extract.getOpcode() != ISD::EXTRACT_SUBVECTOR)
1887 return false;
1889 // Match extract from start of high half index.
1890 // Example: v8i16 -> v4i16 means the extract must begin at index 4.
1891 unsigned ExtractIndex = Extract.getConstantOperandVal(1);
1892 if (ExtractIndex != Extract.getValueType().getVectorNumElements())
1893 return false;
1895 auto Opcode = VT == MVT::v2f64 ? AArch64::FCVTLv4i32 : AArch64::FCVTLv8i16;
1896 CurDAG->SelectNodeTo(N, Opcode, VT, Extract.getOperand(0));
1897 return true;
1900 static bool isBitfieldExtractOp(SelectionDAG *CurDAG, SDNode *N, unsigned &Opc,
1901 SDValue &Opd0, unsigned &Immr, unsigned &Imms,
1902 unsigned NumberOfIgnoredLowBits = 0,
1903 bool BiggerPattern = false) {
1904 if (N->getValueType(0) != MVT::i32 && N->getValueType(0) != MVT::i64)
1905 return false;
1907 switch (N->getOpcode()) {
1908 default:
1909 if (!N->isMachineOpcode())
1910 return false;
1911 break;
1912 case ISD::AND:
1913 return isBitfieldExtractOpFromAnd(CurDAG, N, Opc, Opd0, Immr, Imms,
1914 NumberOfIgnoredLowBits, BiggerPattern);
1915 case ISD::SRL:
1916 case ISD::SRA:
1917 return isBitfieldExtractOpFromShr(N, Opc, Opd0, Immr, Imms, BiggerPattern);
1919 case ISD::SIGN_EXTEND_INREG:
1920 return isBitfieldExtractOpFromSExtInReg(N, Opc, Opd0, Immr, Imms);
1923 unsigned NOpc = N->getMachineOpcode();
1924 switch (NOpc) {
1925 default:
1926 return false;
1927 case AArch64::SBFMWri:
1928 case AArch64::UBFMWri:
1929 case AArch64::SBFMXri:
1930 case AArch64::UBFMXri:
1931 Opc = NOpc;
1932 Opd0 = N->getOperand(0);
1933 Immr = cast<ConstantSDNode>(N->getOperand(1).getNode())->getZExtValue();
1934 Imms = cast<ConstantSDNode>(N->getOperand(2).getNode())->getZExtValue();
1935 return true;
1937 // Unreachable
1938 return false;
1941 bool AArch64DAGToDAGISel::tryBitfieldExtractOp(SDNode *N) {
1942 unsigned Opc, Immr, Imms;
1943 SDValue Opd0;
1944 if (!isBitfieldExtractOp(CurDAG, N, Opc, Opd0, Immr, Imms))
1945 return false;
1947 EVT VT = N->getValueType(0);
1948 SDLoc dl(N);
1950 // If the bit extract operation is 64bit but the original type is 32bit, we
1951 // need to add one EXTRACT_SUBREG.
1952 if ((Opc == AArch64::SBFMXri || Opc == AArch64::UBFMXri) && VT == MVT::i32) {
1953 SDValue Ops64[] = {Opd0, CurDAG->getTargetConstant(Immr, dl, MVT::i64),
1954 CurDAG->getTargetConstant(Imms, dl, MVT::i64)};
1956 SDNode *BFM = CurDAG->getMachineNode(Opc, dl, MVT::i64, Ops64);
1957 SDValue SubReg = CurDAG->getTargetConstant(AArch64::sub_32, dl, MVT::i32);
1958 ReplaceNode(N, CurDAG->getMachineNode(TargetOpcode::EXTRACT_SUBREG, dl,
1959 MVT::i32, SDValue(BFM, 0), SubReg));
1960 return true;
1963 SDValue Ops[] = {Opd0, CurDAG->getTargetConstant(Immr, dl, VT),
1964 CurDAG->getTargetConstant(Imms, dl, VT)};
1965 CurDAG->SelectNodeTo(N, Opc, VT, Ops);
1966 return true;
1969 /// Does DstMask form a complementary pair with the mask provided by
1970 /// BitsToBeInserted, suitable for use in a BFI instruction. Roughly speaking,
1971 /// this asks whether DstMask zeroes precisely those bits that will be set by
1972 /// the other half.
1973 static bool isBitfieldDstMask(uint64_t DstMask, const APInt &BitsToBeInserted,
1974 unsigned NumberOfIgnoredHighBits, EVT VT) {
1975 assert((VT == MVT::i32 || VT == MVT::i64) &&
1976 "i32 or i64 mask type expected!");
1977 unsigned BitWidth = VT.getSizeInBits() - NumberOfIgnoredHighBits;
1979 APInt SignificantDstMask = APInt(BitWidth, DstMask);
1980 APInt SignificantBitsToBeInserted = BitsToBeInserted.zextOrTrunc(BitWidth);
1982 return (SignificantDstMask & SignificantBitsToBeInserted) == 0 &&
1983 (SignificantDstMask | SignificantBitsToBeInserted).isAllOnesValue();
1986 // Look for bits that will be useful for later uses.
1987 // A bit is consider useless as soon as it is dropped and never used
1988 // before it as been dropped.
1989 // E.g., looking for useful bit of x
1990 // 1. y = x & 0x7
1991 // 2. z = y >> 2
1992 // After #1, x useful bits are 0x7, then the useful bits of x, live through
1993 // y.
1994 // After #2, the useful bits of x are 0x4.
1995 // However, if x is used on an unpredicatable instruction, then all its bits
1996 // are useful.
1997 // E.g.
1998 // 1. y = x & 0x7
1999 // 2. z = y >> 2
2000 // 3. str x, [@x]
2001 static void getUsefulBits(SDValue Op, APInt &UsefulBits, unsigned Depth = 0);
2003 static void getUsefulBitsFromAndWithImmediate(SDValue Op, APInt &UsefulBits,
2004 unsigned Depth) {
2005 uint64_t Imm =
2006 cast<const ConstantSDNode>(Op.getOperand(1).getNode())->getZExtValue();
2007 Imm = AArch64_AM::decodeLogicalImmediate(Imm, UsefulBits.getBitWidth());
2008 UsefulBits &= APInt(UsefulBits.getBitWidth(), Imm);
2009 getUsefulBits(Op, UsefulBits, Depth + 1);
2012 static void getUsefulBitsFromBitfieldMoveOpd(SDValue Op, APInt &UsefulBits,
2013 uint64_t Imm, uint64_t MSB,
2014 unsigned Depth) {
2015 // inherit the bitwidth value
2016 APInt OpUsefulBits(UsefulBits);
2017 OpUsefulBits = 1;
2019 if (MSB >= Imm) {
2020 OpUsefulBits <<= MSB - Imm + 1;
2021 --OpUsefulBits;
2022 // The interesting part will be in the lower part of the result
2023 getUsefulBits(Op, OpUsefulBits, Depth + 1);
2024 // The interesting part was starting at Imm in the argument
2025 OpUsefulBits <<= Imm;
2026 } else {
2027 OpUsefulBits <<= MSB + 1;
2028 --OpUsefulBits;
2029 // The interesting part will be shifted in the result
2030 OpUsefulBits <<= OpUsefulBits.getBitWidth() - Imm;
2031 getUsefulBits(Op, OpUsefulBits, Depth + 1);
2032 // The interesting part was at zero in the argument
2033 OpUsefulBits.lshrInPlace(OpUsefulBits.getBitWidth() - Imm);
2036 UsefulBits &= OpUsefulBits;
2039 static void getUsefulBitsFromUBFM(SDValue Op, APInt &UsefulBits,
2040 unsigned Depth) {
2041 uint64_t Imm =
2042 cast<const ConstantSDNode>(Op.getOperand(1).getNode())->getZExtValue();
2043 uint64_t MSB =
2044 cast<const ConstantSDNode>(Op.getOperand(2).getNode())->getZExtValue();
2046 getUsefulBitsFromBitfieldMoveOpd(Op, UsefulBits, Imm, MSB, Depth);
2049 static void getUsefulBitsFromOrWithShiftedReg(SDValue Op, APInt &UsefulBits,
2050 unsigned Depth) {
2051 uint64_t ShiftTypeAndValue =
2052 cast<const ConstantSDNode>(Op.getOperand(2).getNode())->getZExtValue();
2053 APInt Mask(UsefulBits);
2054 Mask.clearAllBits();
2055 Mask.flipAllBits();
2057 if (AArch64_AM::getShiftType(ShiftTypeAndValue) == AArch64_AM::LSL) {
2058 // Shift Left
2059 uint64_t ShiftAmt = AArch64_AM::getShiftValue(ShiftTypeAndValue);
2060 Mask <<= ShiftAmt;
2061 getUsefulBits(Op, Mask, Depth + 1);
2062 Mask.lshrInPlace(ShiftAmt);
2063 } else if (AArch64_AM::getShiftType(ShiftTypeAndValue) == AArch64_AM::LSR) {
2064 // Shift Right
2065 // We do not handle AArch64_AM::ASR, because the sign will change the
2066 // number of useful bits
2067 uint64_t ShiftAmt = AArch64_AM::getShiftValue(ShiftTypeAndValue);
2068 Mask.lshrInPlace(ShiftAmt);
2069 getUsefulBits(Op, Mask, Depth + 1);
2070 Mask <<= ShiftAmt;
2071 } else
2072 return;
2074 UsefulBits &= Mask;
2077 static void getUsefulBitsFromBFM(SDValue Op, SDValue Orig, APInt &UsefulBits,
2078 unsigned Depth) {
2079 uint64_t Imm =
2080 cast<const ConstantSDNode>(Op.getOperand(2).getNode())->getZExtValue();
2081 uint64_t MSB =
2082 cast<const ConstantSDNode>(Op.getOperand(3).getNode())->getZExtValue();
2084 APInt OpUsefulBits(UsefulBits);
2085 OpUsefulBits = 1;
2087 APInt ResultUsefulBits(UsefulBits.getBitWidth(), 0);
2088 ResultUsefulBits.flipAllBits();
2089 APInt Mask(UsefulBits.getBitWidth(), 0);
2091 getUsefulBits(Op, ResultUsefulBits, Depth + 1);
2093 if (MSB >= Imm) {
2094 // The instruction is a BFXIL.
2095 uint64_t Width = MSB - Imm + 1;
2096 uint64_t LSB = Imm;
2098 OpUsefulBits <<= Width;
2099 --OpUsefulBits;
2101 if (Op.getOperand(1) == Orig) {
2102 // Copy the low bits from the result to bits starting from LSB.
2103 Mask = ResultUsefulBits & OpUsefulBits;
2104 Mask <<= LSB;
2107 if (Op.getOperand(0) == Orig)
2108 // Bits starting from LSB in the input contribute to the result.
2109 Mask |= (ResultUsefulBits & ~OpUsefulBits);
2110 } else {
2111 // The instruction is a BFI.
2112 uint64_t Width = MSB + 1;
2113 uint64_t LSB = UsefulBits.getBitWidth() - Imm;
2115 OpUsefulBits <<= Width;
2116 --OpUsefulBits;
2117 OpUsefulBits <<= LSB;
2119 if (Op.getOperand(1) == Orig) {
2120 // Copy the bits from the result to the zero bits.
2121 Mask = ResultUsefulBits & OpUsefulBits;
2122 Mask.lshrInPlace(LSB);
2125 if (Op.getOperand(0) == Orig)
2126 Mask |= (ResultUsefulBits & ~OpUsefulBits);
2129 UsefulBits &= Mask;
2132 static void getUsefulBitsForUse(SDNode *UserNode, APInt &UsefulBits,
2133 SDValue Orig, unsigned Depth) {
2135 // Users of this node should have already been instruction selected
2136 // FIXME: Can we turn that into an assert?
2137 if (!UserNode->isMachineOpcode())
2138 return;
2140 switch (UserNode->getMachineOpcode()) {
2141 default:
2142 return;
2143 case AArch64::ANDSWri:
2144 case AArch64::ANDSXri:
2145 case AArch64::ANDWri:
2146 case AArch64::ANDXri:
2147 // We increment Depth only when we call the getUsefulBits
2148 return getUsefulBitsFromAndWithImmediate(SDValue(UserNode, 0), UsefulBits,
2149 Depth);
2150 case AArch64::UBFMWri:
2151 case AArch64::UBFMXri:
2152 return getUsefulBitsFromUBFM(SDValue(UserNode, 0), UsefulBits, Depth);
2154 case AArch64::ORRWrs:
2155 case AArch64::ORRXrs:
2156 if (UserNode->getOperand(1) != Orig)
2157 return;
2158 return getUsefulBitsFromOrWithShiftedReg(SDValue(UserNode, 0), UsefulBits,
2159 Depth);
2160 case AArch64::BFMWri:
2161 case AArch64::BFMXri:
2162 return getUsefulBitsFromBFM(SDValue(UserNode, 0), Orig, UsefulBits, Depth);
2164 case AArch64::STRBBui:
2165 case AArch64::STURBBi:
2166 if (UserNode->getOperand(0) != Orig)
2167 return;
2168 UsefulBits &= APInt(UsefulBits.getBitWidth(), 0xff);
2169 return;
2171 case AArch64::STRHHui:
2172 case AArch64::STURHHi:
2173 if (UserNode->getOperand(0) != Orig)
2174 return;
2175 UsefulBits &= APInt(UsefulBits.getBitWidth(), 0xffff);
2176 return;
2180 static void getUsefulBits(SDValue Op, APInt &UsefulBits, unsigned Depth) {
2181 if (Depth >= SelectionDAG::MaxRecursionDepth)
2182 return;
2183 // Initialize UsefulBits
2184 if (!Depth) {
2185 unsigned Bitwidth = Op.getScalarValueSizeInBits();
2186 // At the beginning, assume every produced bits is useful
2187 UsefulBits = APInt(Bitwidth, 0);
2188 UsefulBits.flipAllBits();
2190 APInt UsersUsefulBits(UsefulBits.getBitWidth(), 0);
2192 for (SDNode *Node : Op.getNode()->uses()) {
2193 // A use cannot produce useful bits
2194 APInt UsefulBitsForUse = APInt(UsefulBits);
2195 getUsefulBitsForUse(Node, UsefulBitsForUse, Op, Depth);
2196 UsersUsefulBits |= UsefulBitsForUse;
2198 // UsefulBits contains the produced bits that are meaningful for the
2199 // current definition, thus a user cannot make a bit meaningful at
2200 // this point
2201 UsefulBits &= UsersUsefulBits;
2204 /// Create a machine node performing a notional SHL of Op by ShlAmount. If
2205 /// ShlAmount is negative, do a (logical) right-shift instead. If ShlAmount is
2206 /// 0, return Op unchanged.
2207 static SDValue getLeftShift(SelectionDAG *CurDAG, SDValue Op, int ShlAmount) {
2208 if (ShlAmount == 0)
2209 return Op;
2211 EVT VT = Op.getValueType();
2212 SDLoc dl(Op);
2213 unsigned BitWidth = VT.getSizeInBits();
2214 unsigned UBFMOpc = BitWidth == 32 ? AArch64::UBFMWri : AArch64::UBFMXri;
2216 SDNode *ShiftNode;
2217 if (ShlAmount > 0) {
2218 // LSL wD, wN, #Amt == UBFM wD, wN, #32-Amt, #31-Amt
2219 ShiftNode = CurDAG->getMachineNode(
2220 UBFMOpc, dl, VT, Op,
2221 CurDAG->getTargetConstant(BitWidth - ShlAmount, dl, VT),
2222 CurDAG->getTargetConstant(BitWidth - 1 - ShlAmount, dl, VT));
2223 } else {
2224 // LSR wD, wN, #Amt == UBFM wD, wN, #Amt, #32-1
2225 assert(ShlAmount < 0 && "expected right shift");
2226 int ShrAmount = -ShlAmount;
2227 ShiftNode = CurDAG->getMachineNode(
2228 UBFMOpc, dl, VT, Op, CurDAG->getTargetConstant(ShrAmount, dl, VT),
2229 CurDAG->getTargetConstant(BitWidth - 1, dl, VT));
2232 return SDValue(ShiftNode, 0);
2235 /// Does this tree qualify as an attempt to move a bitfield into position,
2236 /// essentially "(and (shl VAL, N), Mask)".
2237 static bool isBitfieldPositioningOp(SelectionDAG *CurDAG, SDValue Op,
2238 bool BiggerPattern,
2239 SDValue &Src, int &ShiftAmount,
2240 int &MaskWidth) {
2241 EVT VT = Op.getValueType();
2242 unsigned BitWidth = VT.getSizeInBits();
2243 (void)BitWidth;
2244 assert(BitWidth == 32 || BitWidth == 64);
2246 KnownBits Known = CurDAG->computeKnownBits(Op);
2248 // Non-zero in the sense that they're not provably zero, which is the key
2249 // point if we want to use this value
2250 uint64_t NonZeroBits = (~Known.Zero).getZExtValue();
2252 // Discard a constant AND mask if present. It's safe because the node will
2253 // already have been factored into the computeKnownBits calculation above.
2254 uint64_t AndImm;
2255 if (isOpcWithIntImmediate(Op.getNode(), ISD::AND, AndImm)) {
2256 assert((~APInt(BitWidth, AndImm) & ~Known.Zero) == 0);
2257 Op = Op.getOperand(0);
2260 // Don't match if the SHL has more than one use, since then we'll end up
2261 // generating SHL+UBFIZ instead of just keeping SHL+AND.
2262 if (!BiggerPattern && !Op.hasOneUse())
2263 return false;
2265 uint64_t ShlImm;
2266 if (!isOpcWithIntImmediate(Op.getNode(), ISD::SHL, ShlImm))
2267 return false;
2268 Op = Op.getOperand(0);
2270 if (!isShiftedMask_64(NonZeroBits))
2271 return false;
2273 ShiftAmount = countTrailingZeros(NonZeroBits);
2274 MaskWidth = countTrailingOnes(NonZeroBits >> ShiftAmount);
2276 // BFI encompasses sufficiently many nodes that it's worth inserting an extra
2277 // LSL/LSR if the mask in NonZeroBits doesn't quite match up with the ISD::SHL
2278 // amount. BiggerPattern is true when this pattern is being matched for BFI,
2279 // BiggerPattern is false when this pattern is being matched for UBFIZ, in
2280 // which case it is not profitable to insert an extra shift.
2281 if (ShlImm - ShiftAmount != 0 && !BiggerPattern)
2282 return false;
2283 Src = getLeftShift(CurDAG, Op, ShlImm - ShiftAmount);
2285 return true;
2288 static bool isShiftedMask(uint64_t Mask, EVT VT) {
2289 assert(VT == MVT::i32 || VT == MVT::i64);
2290 if (VT == MVT::i32)
2291 return isShiftedMask_32(Mask);
2292 return isShiftedMask_64(Mask);
2295 // Generate a BFI/BFXIL from 'or (and X, MaskImm), OrImm' iff the value being
2296 // inserted only sets known zero bits.
2297 static bool tryBitfieldInsertOpFromOrAndImm(SDNode *N, SelectionDAG *CurDAG) {
2298 assert(N->getOpcode() == ISD::OR && "Expect a OR operation");
2300 EVT VT = N->getValueType(0);
2301 if (VT != MVT::i32 && VT != MVT::i64)
2302 return false;
2304 unsigned BitWidth = VT.getSizeInBits();
2306 uint64_t OrImm;
2307 if (!isOpcWithIntImmediate(N, ISD::OR, OrImm))
2308 return false;
2310 // Skip this transformation if the ORR immediate can be encoded in the ORR.
2311 // Otherwise, we'll trade an AND+ORR for ORR+BFI/BFXIL, which is most likely
2312 // performance neutral.
2313 if (AArch64_AM::isLogicalImmediate(OrImm, BitWidth))
2314 return false;
2316 uint64_t MaskImm;
2317 SDValue And = N->getOperand(0);
2318 // Must be a single use AND with an immediate operand.
2319 if (!And.hasOneUse() ||
2320 !isOpcWithIntImmediate(And.getNode(), ISD::AND, MaskImm))
2321 return false;
2323 // Compute the Known Zero for the AND as this allows us to catch more general
2324 // cases than just looking for AND with imm.
2325 KnownBits Known = CurDAG->computeKnownBits(And);
2327 // Non-zero in the sense that they're not provably zero, which is the key
2328 // point if we want to use this value.
2329 uint64_t NotKnownZero = (~Known.Zero).getZExtValue();
2331 // The KnownZero mask must be a shifted mask (e.g., 1110..011, 11100..00).
2332 if (!isShiftedMask(Known.Zero.getZExtValue(), VT))
2333 return false;
2335 // The bits being inserted must only set those bits that are known to be zero.
2336 if ((OrImm & NotKnownZero) != 0) {
2337 // FIXME: It's okay if the OrImm sets NotKnownZero bits to 1, but we don't
2338 // currently handle this case.
2339 return false;
2342 // BFI/BFXIL dst, src, #lsb, #width.
2343 int LSB = countTrailingOnes(NotKnownZero);
2344 int Width = BitWidth - APInt(BitWidth, NotKnownZero).countPopulation();
2346 // BFI/BFXIL is an alias of BFM, so translate to BFM operands.
2347 unsigned ImmR = (BitWidth - LSB) % BitWidth;
2348 unsigned ImmS = Width - 1;
2350 // If we're creating a BFI instruction avoid cases where we need more
2351 // instructions to materialize the BFI constant as compared to the original
2352 // ORR. A BFXIL will use the same constant as the original ORR, so the code
2353 // should be no worse in this case.
2354 bool IsBFI = LSB != 0;
2355 uint64_t BFIImm = OrImm >> LSB;
2356 if (IsBFI && !AArch64_AM::isLogicalImmediate(BFIImm, BitWidth)) {
2357 // We have a BFI instruction and we know the constant can't be materialized
2358 // with a ORR-immediate with the zero register.
2359 unsigned OrChunks = 0, BFIChunks = 0;
2360 for (unsigned Shift = 0; Shift < BitWidth; Shift += 16) {
2361 if (((OrImm >> Shift) & 0xFFFF) != 0)
2362 ++OrChunks;
2363 if (((BFIImm >> Shift) & 0xFFFF) != 0)
2364 ++BFIChunks;
2366 if (BFIChunks > OrChunks)
2367 return false;
2370 // Materialize the constant to be inserted.
2371 SDLoc DL(N);
2372 unsigned MOVIOpc = VT == MVT::i32 ? AArch64::MOVi32imm : AArch64::MOVi64imm;
2373 SDNode *MOVI = CurDAG->getMachineNode(
2374 MOVIOpc, DL, VT, CurDAG->getTargetConstant(BFIImm, DL, VT));
2376 // Create the BFI/BFXIL instruction.
2377 SDValue Ops[] = {And.getOperand(0), SDValue(MOVI, 0),
2378 CurDAG->getTargetConstant(ImmR, DL, VT),
2379 CurDAG->getTargetConstant(ImmS, DL, VT)};
2380 unsigned Opc = (VT == MVT::i32) ? AArch64::BFMWri : AArch64::BFMXri;
2381 CurDAG->SelectNodeTo(N, Opc, VT, Ops);
2382 return true;
2385 static bool tryBitfieldInsertOpFromOr(SDNode *N, const APInt &UsefulBits,
2386 SelectionDAG *CurDAG) {
2387 assert(N->getOpcode() == ISD::OR && "Expect a OR operation");
2389 EVT VT = N->getValueType(0);
2390 if (VT != MVT::i32 && VT != MVT::i64)
2391 return false;
2393 unsigned BitWidth = VT.getSizeInBits();
2395 // Because of simplify-demanded-bits in DAGCombine, involved masks may not
2396 // have the expected shape. Try to undo that.
2398 unsigned NumberOfIgnoredLowBits = UsefulBits.countTrailingZeros();
2399 unsigned NumberOfIgnoredHighBits = UsefulBits.countLeadingZeros();
2401 // Given a OR operation, check if we have the following pattern
2402 // ubfm c, b, imm, imm2 (or something that does the same jobs, see
2403 // isBitfieldExtractOp)
2404 // d = e & mask2 ; where mask is a binary sequence of 1..10..0 and
2405 // countTrailingZeros(mask2) == imm2 - imm + 1
2406 // f = d | c
2407 // if yes, replace the OR instruction with:
2408 // f = BFM Opd0, Opd1, LSB, MSB ; where LSB = imm, and MSB = imm2
2410 // OR is commutative, check all combinations of operand order and values of
2411 // BiggerPattern, i.e.
2412 // Opd0, Opd1, BiggerPattern=false
2413 // Opd1, Opd0, BiggerPattern=false
2414 // Opd0, Opd1, BiggerPattern=true
2415 // Opd1, Opd0, BiggerPattern=true
2416 // Several of these combinations may match, so check with BiggerPattern=false
2417 // first since that will produce better results by matching more instructions
2418 // and/or inserting fewer extra instructions.
2419 for (int I = 0; I < 4; ++I) {
2421 SDValue Dst, Src;
2422 unsigned ImmR, ImmS;
2423 bool BiggerPattern = I / 2;
2424 SDValue OrOpd0Val = N->getOperand(I % 2);
2425 SDNode *OrOpd0 = OrOpd0Val.getNode();
2426 SDValue OrOpd1Val = N->getOperand((I + 1) % 2);
2427 SDNode *OrOpd1 = OrOpd1Val.getNode();
2429 unsigned BFXOpc;
2430 int DstLSB, Width;
2431 if (isBitfieldExtractOp(CurDAG, OrOpd0, BFXOpc, Src, ImmR, ImmS,
2432 NumberOfIgnoredLowBits, BiggerPattern)) {
2433 // Check that the returned opcode is compatible with the pattern,
2434 // i.e., same type and zero extended (U and not S)
2435 if ((BFXOpc != AArch64::UBFMXri && VT == MVT::i64) ||
2436 (BFXOpc != AArch64::UBFMWri && VT == MVT::i32))
2437 continue;
2439 // Compute the width of the bitfield insertion
2440 DstLSB = 0;
2441 Width = ImmS - ImmR + 1;
2442 // FIXME: This constraint is to catch bitfield insertion we may
2443 // want to widen the pattern if we want to grab general bitfied
2444 // move case
2445 if (Width <= 0)
2446 continue;
2448 // If the mask on the insertee is correct, we have a BFXIL operation. We
2449 // can share the ImmR and ImmS values from the already-computed UBFM.
2450 } else if (isBitfieldPositioningOp(CurDAG, OrOpd0Val,
2451 BiggerPattern,
2452 Src, DstLSB, Width)) {
2453 ImmR = (BitWidth - DstLSB) % BitWidth;
2454 ImmS = Width - 1;
2455 } else
2456 continue;
2458 // Check the second part of the pattern
2459 EVT VT = OrOpd1Val.getValueType();
2460 assert((VT == MVT::i32 || VT == MVT::i64) && "unexpected OR operand");
2462 // Compute the Known Zero for the candidate of the first operand.
2463 // This allows to catch more general case than just looking for
2464 // AND with imm. Indeed, simplify-demanded-bits may have removed
2465 // the AND instruction because it proves it was useless.
2466 KnownBits Known = CurDAG->computeKnownBits(OrOpd1Val);
2468 // Check if there is enough room for the second operand to appear
2469 // in the first one
2470 APInt BitsToBeInserted =
2471 APInt::getBitsSet(Known.getBitWidth(), DstLSB, DstLSB + Width);
2473 if ((BitsToBeInserted & ~Known.Zero) != 0)
2474 continue;
2476 // Set the first operand
2477 uint64_t Imm;
2478 if (isOpcWithIntImmediate(OrOpd1, ISD::AND, Imm) &&
2479 isBitfieldDstMask(Imm, BitsToBeInserted, NumberOfIgnoredHighBits, VT))
2480 // In that case, we can eliminate the AND
2481 Dst = OrOpd1->getOperand(0);
2482 else
2483 // Maybe the AND has been removed by simplify-demanded-bits
2484 // or is useful because it discards more bits
2485 Dst = OrOpd1Val;
2487 // both parts match
2488 SDLoc DL(N);
2489 SDValue Ops[] = {Dst, Src, CurDAG->getTargetConstant(ImmR, DL, VT),
2490 CurDAG->getTargetConstant(ImmS, DL, VT)};
2491 unsigned Opc = (VT == MVT::i32) ? AArch64::BFMWri : AArch64::BFMXri;
2492 CurDAG->SelectNodeTo(N, Opc, VT, Ops);
2493 return true;
2496 // Generate a BFXIL from 'or (and X, Mask0Imm), (and Y, Mask1Imm)' iff
2497 // Mask0Imm and ~Mask1Imm are equivalent and one of the MaskImms is a shifted
2498 // mask (e.g., 0x000ffff0).
2499 uint64_t Mask0Imm, Mask1Imm;
2500 SDValue And0 = N->getOperand(0);
2501 SDValue And1 = N->getOperand(1);
2502 if (And0.hasOneUse() && And1.hasOneUse() &&
2503 isOpcWithIntImmediate(And0.getNode(), ISD::AND, Mask0Imm) &&
2504 isOpcWithIntImmediate(And1.getNode(), ISD::AND, Mask1Imm) &&
2505 APInt(BitWidth, Mask0Imm) == ~APInt(BitWidth, Mask1Imm) &&
2506 (isShiftedMask(Mask0Imm, VT) || isShiftedMask(Mask1Imm, VT))) {
2508 // ORR is commutative, so canonicalize to the form 'or (and X, Mask0Imm),
2509 // (and Y, Mask1Imm)' where Mask1Imm is the shifted mask masking off the
2510 // bits to be inserted.
2511 if (isShiftedMask(Mask0Imm, VT)) {
2512 std::swap(And0, And1);
2513 std::swap(Mask0Imm, Mask1Imm);
2516 SDValue Src = And1->getOperand(0);
2517 SDValue Dst = And0->getOperand(0);
2518 unsigned LSB = countTrailingZeros(Mask1Imm);
2519 int Width = BitWidth - APInt(BitWidth, Mask0Imm).countPopulation();
2521 // The BFXIL inserts the low-order bits from a source register, so right
2522 // shift the needed bits into place.
2523 SDLoc DL(N);
2524 unsigned ShiftOpc = (VT == MVT::i32) ? AArch64::UBFMWri : AArch64::UBFMXri;
2525 SDNode *LSR = CurDAG->getMachineNode(
2526 ShiftOpc, DL, VT, Src, CurDAG->getTargetConstant(LSB, DL, VT),
2527 CurDAG->getTargetConstant(BitWidth - 1, DL, VT));
2529 // BFXIL is an alias of BFM, so translate to BFM operands.
2530 unsigned ImmR = (BitWidth - LSB) % BitWidth;
2531 unsigned ImmS = Width - 1;
2533 // Create the BFXIL instruction.
2534 SDValue Ops[] = {Dst, SDValue(LSR, 0),
2535 CurDAG->getTargetConstant(ImmR, DL, VT),
2536 CurDAG->getTargetConstant(ImmS, DL, VT)};
2537 unsigned Opc = (VT == MVT::i32) ? AArch64::BFMWri : AArch64::BFMXri;
2538 CurDAG->SelectNodeTo(N, Opc, VT, Ops);
2539 return true;
2542 return false;
2545 bool AArch64DAGToDAGISel::tryBitfieldInsertOp(SDNode *N) {
2546 if (N->getOpcode() != ISD::OR)
2547 return false;
2549 APInt NUsefulBits;
2550 getUsefulBits(SDValue(N, 0), NUsefulBits);
2552 // If all bits are not useful, just return UNDEF.
2553 if (!NUsefulBits) {
2554 CurDAG->SelectNodeTo(N, TargetOpcode::IMPLICIT_DEF, N->getValueType(0));
2555 return true;
2558 if (tryBitfieldInsertOpFromOr(N, NUsefulBits, CurDAG))
2559 return true;
2561 return tryBitfieldInsertOpFromOrAndImm(N, CurDAG);
2564 /// SelectBitfieldInsertInZeroOp - Match a UBFIZ instruction that is the
2565 /// equivalent of a left shift by a constant amount followed by an and masking
2566 /// out a contiguous set of bits.
2567 bool AArch64DAGToDAGISel::tryBitfieldInsertInZeroOp(SDNode *N) {
2568 if (N->getOpcode() != ISD::AND)
2569 return false;
2571 EVT VT = N->getValueType(0);
2572 if (VT != MVT::i32 && VT != MVT::i64)
2573 return false;
2575 SDValue Op0;
2576 int DstLSB, Width;
2577 if (!isBitfieldPositioningOp(CurDAG, SDValue(N, 0), /*BiggerPattern=*/false,
2578 Op0, DstLSB, Width))
2579 return false;
2581 // ImmR is the rotate right amount.
2582 unsigned ImmR = (VT.getSizeInBits() - DstLSB) % VT.getSizeInBits();
2583 // ImmS is the most significant bit of the source to be moved.
2584 unsigned ImmS = Width - 1;
2586 SDLoc DL(N);
2587 SDValue Ops[] = {Op0, CurDAG->getTargetConstant(ImmR, DL, VT),
2588 CurDAG->getTargetConstant(ImmS, DL, VT)};
2589 unsigned Opc = (VT == MVT::i32) ? AArch64::UBFMWri : AArch64::UBFMXri;
2590 CurDAG->SelectNodeTo(N, Opc, VT, Ops);
2591 return true;
2594 /// tryShiftAmountMod - Take advantage of built-in mod of shift amount in
2595 /// variable shift/rotate instructions.
2596 bool AArch64DAGToDAGISel::tryShiftAmountMod(SDNode *N) {
2597 EVT VT = N->getValueType(0);
2599 unsigned Opc;
2600 switch (N->getOpcode()) {
2601 case ISD::ROTR:
2602 Opc = (VT == MVT::i32) ? AArch64::RORVWr : AArch64::RORVXr;
2603 break;
2604 case ISD::SHL:
2605 Opc = (VT == MVT::i32) ? AArch64::LSLVWr : AArch64::LSLVXr;
2606 break;
2607 case ISD::SRL:
2608 Opc = (VT == MVT::i32) ? AArch64::LSRVWr : AArch64::LSRVXr;
2609 break;
2610 case ISD::SRA:
2611 Opc = (VT == MVT::i32) ? AArch64::ASRVWr : AArch64::ASRVXr;
2612 break;
2613 default:
2614 return false;
2617 uint64_t Size;
2618 uint64_t Bits;
2619 if (VT == MVT::i32) {
2620 Bits = 5;
2621 Size = 32;
2622 } else if (VT == MVT::i64) {
2623 Bits = 6;
2624 Size = 64;
2625 } else
2626 return false;
2628 SDValue ShiftAmt = N->getOperand(1);
2629 SDLoc DL(N);
2630 SDValue NewShiftAmt;
2632 // Skip over an extend of the shift amount.
2633 if (ShiftAmt->getOpcode() == ISD::ZERO_EXTEND ||
2634 ShiftAmt->getOpcode() == ISD::ANY_EXTEND)
2635 ShiftAmt = ShiftAmt->getOperand(0);
2637 if (ShiftAmt->getOpcode() == ISD::ADD || ShiftAmt->getOpcode() == ISD::SUB) {
2638 SDValue Add0 = ShiftAmt->getOperand(0);
2639 SDValue Add1 = ShiftAmt->getOperand(1);
2640 uint64_t Add0Imm;
2641 uint64_t Add1Imm;
2642 // If we are shifting by X+/-N where N == 0 mod Size, then just shift by X
2643 // to avoid the ADD/SUB.
2644 if (isIntImmediate(Add1, Add1Imm) && (Add1Imm % Size == 0))
2645 NewShiftAmt = Add0;
2646 // If we are shifting by N-X where N == 0 mod Size, then just shift by -X to
2647 // generate a NEG instead of a SUB of a constant.
2648 else if (ShiftAmt->getOpcode() == ISD::SUB &&
2649 isIntImmediate(Add0, Add0Imm) && Add0Imm != 0 &&
2650 (Add0Imm % Size == 0)) {
2651 unsigned NegOpc;
2652 unsigned ZeroReg;
2653 EVT SubVT = ShiftAmt->getValueType(0);
2654 if (SubVT == MVT::i32) {
2655 NegOpc = AArch64::SUBWrr;
2656 ZeroReg = AArch64::WZR;
2657 } else {
2658 assert(SubVT == MVT::i64);
2659 NegOpc = AArch64::SUBXrr;
2660 ZeroReg = AArch64::XZR;
2662 SDValue Zero =
2663 CurDAG->getCopyFromReg(CurDAG->getEntryNode(), DL, ZeroReg, SubVT);
2664 MachineSDNode *Neg =
2665 CurDAG->getMachineNode(NegOpc, DL, SubVT, Zero, Add1);
2666 NewShiftAmt = SDValue(Neg, 0);
2667 } else
2668 return false;
2669 } else {
2670 // If the shift amount is masked with an AND, check that the mask covers the
2671 // bits that are implicitly ANDed off by the above opcodes and if so, skip
2672 // the AND.
2673 uint64_t MaskImm;
2674 if (!isOpcWithIntImmediate(ShiftAmt.getNode(), ISD::AND, MaskImm))
2675 return false;
2677 if (countTrailingOnes(MaskImm) < Bits)
2678 return false;
2680 NewShiftAmt = ShiftAmt->getOperand(0);
2683 // Narrow/widen the shift amount to match the size of the shift operation.
2684 if (VT == MVT::i32)
2685 NewShiftAmt = narrowIfNeeded(CurDAG, NewShiftAmt);
2686 else if (VT == MVT::i64 && NewShiftAmt->getValueType(0) == MVT::i32) {
2687 SDValue SubReg = CurDAG->getTargetConstant(AArch64::sub_32, DL, MVT::i32);
2688 MachineSDNode *Ext = CurDAG->getMachineNode(
2689 AArch64::SUBREG_TO_REG, DL, VT,
2690 CurDAG->getTargetConstant(0, DL, MVT::i64), NewShiftAmt, SubReg);
2691 NewShiftAmt = SDValue(Ext, 0);
2694 SDValue Ops[] = {N->getOperand(0), NewShiftAmt};
2695 CurDAG->SelectNodeTo(N, Opc, VT, Ops);
2696 return true;
2699 bool
2700 AArch64DAGToDAGISel::SelectCVTFixedPosOperand(SDValue N, SDValue &FixedPos,
2701 unsigned RegWidth) {
2702 APFloat FVal(0.0);
2703 if (ConstantFPSDNode *CN = dyn_cast<ConstantFPSDNode>(N))
2704 FVal = CN->getValueAPF();
2705 else if (LoadSDNode *LN = dyn_cast<LoadSDNode>(N)) {
2706 // Some otherwise illegal constants are allowed in this case.
2707 if (LN->getOperand(1).getOpcode() != AArch64ISD::ADDlow ||
2708 !isa<ConstantPoolSDNode>(LN->getOperand(1)->getOperand(1)))
2709 return false;
2711 ConstantPoolSDNode *CN =
2712 dyn_cast<ConstantPoolSDNode>(LN->getOperand(1)->getOperand(1));
2713 FVal = cast<ConstantFP>(CN->getConstVal())->getValueAPF();
2714 } else
2715 return false;
2717 // An FCVT[SU] instruction performs: convertToInt(Val * 2^fbits) where fbits
2718 // is between 1 and 32 for a destination w-register, or 1 and 64 for an
2719 // x-register.
2721 // By this stage, we've detected (fp_to_[su]int (fmul Val, THIS_NODE)) so we
2722 // want THIS_NODE to be 2^fbits. This is much easier to deal with using
2723 // integers.
2724 bool IsExact;
2726 // fbits is between 1 and 64 in the worst-case, which means the fmul
2727 // could have 2^64 as an actual operand. Need 65 bits of precision.
2728 APSInt IntVal(65, true);
2729 FVal.convertToInteger(IntVal, APFloat::rmTowardZero, &IsExact);
2731 // N.b. isPowerOf2 also checks for > 0.
2732 if (!IsExact || !IntVal.isPowerOf2()) return false;
2733 unsigned FBits = IntVal.logBase2();
2735 // Checks above should have guaranteed that we haven't lost information in
2736 // finding FBits, but it must still be in range.
2737 if (FBits == 0 || FBits > RegWidth) return false;
2739 FixedPos = CurDAG->getTargetConstant(FBits, SDLoc(N), MVT::i32);
2740 return true;
2743 // Inspects a register string of the form o0:op1:CRn:CRm:op2 gets the fields
2744 // of the string and obtains the integer values from them and combines these
2745 // into a single value to be used in the MRS/MSR instruction.
2746 static int getIntOperandFromRegisterString(StringRef RegString) {
2747 SmallVector<StringRef, 5> Fields;
2748 RegString.split(Fields, ':');
2750 if (Fields.size() == 1)
2751 return -1;
2753 assert(Fields.size() == 5
2754 && "Invalid number of fields in read register string");
2756 SmallVector<int, 5> Ops;
2757 bool AllIntFields = true;
2759 for (StringRef Field : Fields) {
2760 unsigned IntField;
2761 AllIntFields &= !Field.getAsInteger(10, IntField);
2762 Ops.push_back(IntField);
2765 assert(AllIntFields &&
2766 "Unexpected non-integer value in special register string.");
2768 // Need to combine the integer fields of the string into a single value
2769 // based on the bit encoding of MRS/MSR instruction.
2770 return (Ops[0] << 14) | (Ops[1] << 11) | (Ops[2] << 7) |
2771 (Ops[3] << 3) | (Ops[4]);
2774 // Lower the read_register intrinsic to an MRS instruction node if the special
2775 // register string argument is either of the form detailed in the ALCE (the
2776 // form described in getIntOperandsFromRegsterString) or is a named register
2777 // known by the MRS SysReg mapper.
2778 bool AArch64DAGToDAGISel::tryReadRegister(SDNode *N) {
2779 const MDNodeSDNode *MD = dyn_cast<MDNodeSDNode>(N->getOperand(1));
2780 const MDString *RegString = dyn_cast<MDString>(MD->getMD()->getOperand(0));
2781 SDLoc DL(N);
2783 int Reg = getIntOperandFromRegisterString(RegString->getString());
2784 if (Reg != -1) {
2785 ReplaceNode(N, CurDAG->getMachineNode(
2786 AArch64::MRS, DL, N->getSimpleValueType(0), MVT::Other,
2787 CurDAG->getTargetConstant(Reg, DL, MVT::i32),
2788 N->getOperand(0)));
2789 return true;
2792 // Use the sysreg mapper to map the remaining possible strings to the
2793 // value for the register to be used for the instruction operand.
2794 auto TheReg = AArch64SysReg::lookupSysRegByName(RegString->getString());
2795 if (TheReg && TheReg->Readable &&
2796 TheReg->haveFeatures(Subtarget->getFeatureBits()))
2797 Reg = TheReg->Encoding;
2798 else
2799 Reg = AArch64SysReg::parseGenericRegister(RegString->getString());
2801 if (Reg != -1) {
2802 ReplaceNode(N, CurDAG->getMachineNode(
2803 AArch64::MRS, DL, N->getSimpleValueType(0), MVT::Other,
2804 CurDAG->getTargetConstant(Reg, DL, MVT::i32),
2805 N->getOperand(0)));
2806 return true;
2809 if (RegString->getString() == "pc") {
2810 ReplaceNode(N, CurDAG->getMachineNode(
2811 AArch64::ADR, DL, N->getSimpleValueType(0), MVT::Other,
2812 CurDAG->getTargetConstant(0, DL, MVT::i32),
2813 N->getOperand(0)));
2814 return true;
2817 return false;
2820 // Lower the write_register intrinsic to an MSR instruction node if the special
2821 // register string argument is either of the form detailed in the ALCE (the
2822 // form described in getIntOperandsFromRegsterString) or is a named register
2823 // known by the MSR SysReg mapper.
2824 bool AArch64DAGToDAGISel::tryWriteRegister(SDNode *N) {
2825 const MDNodeSDNode *MD = dyn_cast<MDNodeSDNode>(N->getOperand(1));
2826 const MDString *RegString = dyn_cast<MDString>(MD->getMD()->getOperand(0));
2827 SDLoc DL(N);
2829 int Reg = getIntOperandFromRegisterString(RegString->getString());
2830 if (Reg != -1) {
2831 ReplaceNode(
2832 N, CurDAG->getMachineNode(AArch64::MSR, DL, MVT::Other,
2833 CurDAG->getTargetConstant(Reg, DL, MVT::i32),
2834 N->getOperand(2), N->getOperand(0)));
2835 return true;
2838 // Check if the register was one of those allowed as the pstatefield value in
2839 // the MSR (immediate) instruction. To accept the values allowed in the
2840 // pstatefield for the MSR (immediate) instruction, we also require that an
2841 // immediate value has been provided as an argument, we know that this is
2842 // the case as it has been ensured by semantic checking.
2843 auto PMapper = AArch64PState::lookupPStateByName(RegString->getString());
2844 if (PMapper) {
2845 assert (isa<ConstantSDNode>(N->getOperand(2))
2846 && "Expected a constant integer expression.");
2847 unsigned Reg = PMapper->Encoding;
2848 uint64_t Immed = cast<ConstantSDNode>(N->getOperand(2))->getZExtValue();
2849 unsigned State;
2850 if (Reg == AArch64PState::PAN || Reg == AArch64PState::UAO || Reg == AArch64PState::SSBS) {
2851 assert(Immed < 2 && "Bad imm");
2852 State = AArch64::MSRpstateImm1;
2853 } else {
2854 assert(Immed < 16 && "Bad imm");
2855 State = AArch64::MSRpstateImm4;
2857 ReplaceNode(N, CurDAG->getMachineNode(
2858 State, DL, MVT::Other,
2859 CurDAG->getTargetConstant(Reg, DL, MVT::i32),
2860 CurDAG->getTargetConstant(Immed, DL, MVT::i16),
2861 N->getOperand(0)));
2862 return true;
2865 // Use the sysreg mapper to attempt to map the remaining possible strings
2866 // to the value for the register to be used for the MSR (register)
2867 // instruction operand.
2868 auto TheReg = AArch64SysReg::lookupSysRegByName(RegString->getString());
2869 if (TheReg && TheReg->Writeable &&
2870 TheReg->haveFeatures(Subtarget->getFeatureBits()))
2871 Reg = TheReg->Encoding;
2872 else
2873 Reg = AArch64SysReg::parseGenericRegister(RegString->getString());
2874 if (Reg != -1) {
2875 ReplaceNode(N, CurDAG->getMachineNode(
2876 AArch64::MSR, DL, MVT::Other,
2877 CurDAG->getTargetConstant(Reg, DL, MVT::i32),
2878 N->getOperand(2), N->getOperand(0)));
2879 return true;
2882 return false;
2885 /// We've got special pseudo-instructions for these
2886 bool AArch64DAGToDAGISel::SelectCMP_SWAP(SDNode *N) {
2887 unsigned Opcode;
2888 EVT MemTy = cast<MemSDNode>(N)->getMemoryVT();
2890 // Leave IR for LSE if subtarget supports it.
2891 if (Subtarget->hasLSE()) return false;
2893 if (MemTy == MVT::i8)
2894 Opcode = AArch64::CMP_SWAP_8;
2895 else if (MemTy == MVT::i16)
2896 Opcode = AArch64::CMP_SWAP_16;
2897 else if (MemTy == MVT::i32)
2898 Opcode = AArch64::CMP_SWAP_32;
2899 else if (MemTy == MVT::i64)
2900 Opcode = AArch64::CMP_SWAP_64;
2901 else
2902 llvm_unreachable("Unknown AtomicCmpSwap type");
2904 MVT RegTy = MemTy == MVT::i64 ? MVT::i64 : MVT::i32;
2905 SDValue Ops[] = {N->getOperand(1), N->getOperand(2), N->getOperand(3),
2906 N->getOperand(0)};
2907 SDNode *CmpSwap = CurDAG->getMachineNode(
2908 Opcode, SDLoc(N),
2909 CurDAG->getVTList(RegTy, MVT::i32, MVT::Other), Ops);
2911 MachineMemOperand *MemOp = cast<MemSDNode>(N)->getMemOperand();
2912 CurDAG->setNodeMemRefs(cast<MachineSDNode>(CmpSwap), {MemOp});
2914 ReplaceUses(SDValue(N, 0), SDValue(CmpSwap, 0));
2915 ReplaceUses(SDValue(N, 1), SDValue(CmpSwap, 2));
2916 CurDAG->RemoveDeadNode(N);
2918 return true;
2921 bool AArch64DAGToDAGISel::SelectSVEAddSubImm(SDValue N, MVT VT, SDValue &Imm, SDValue &Shift) {
2922 if (auto CNode = dyn_cast<ConstantSDNode>(N)) {
2923 const int64_t ImmVal = CNode->getZExtValue();
2924 SDLoc DL(N);
2926 switch (VT.SimpleTy) {
2927 case MVT::i8:
2928 if ((ImmVal & 0xFF) == ImmVal) {
2929 Shift = CurDAG->getTargetConstant(0, DL, MVT::i32);
2930 Imm = CurDAG->getTargetConstant(ImmVal, DL, MVT::i32);
2931 return true;
2933 break;
2934 case MVT::i16:
2935 case MVT::i32:
2936 case MVT::i64:
2937 if ((ImmVal & 0xFF) == ImmVal) {
2938 Shift = CurDAG->getTargetConstant(0, DL, MVT::i32);
2939 Imm = CurDAG->getTargetConstant(ImmVal, DL, MVT::i32);
2940 return true;
2941 } else if ((ImmVal & 0xFF00) == ImmVal) {
2942 Shift = CurDAG->getTargetConstant(8, DL, MVT::i32);
2943 Imm = CurDAG->getTargetConstant(ImmVal >> 8, DL, MVT::i32);
2944 return true;
2946 break;
2947 default:
2948 break;
2952 return false;
2955 bool AArch64DAGToDAGISel::SelectSVESignedArithImm(SDValue N, SDValue &Imm) {
2956 if (auto CNode = dyn_cast<ConstantSDNode>(N)) {
2957 int64_t ImmVal = CNode->getSExtValue();
2958 SDLoc DL(N);
2959 if (ImmVal >= -127 && ImmVal < 127) {
2960 Imm = CurDAG->getTargetConstant(ImmVal, DL, MVT::i32);
2961 return true;
2964 return false;
2967 bool AArch64DAGToDAGISel::SelectSVEArithImm(SDValue N, SDValue &Imm) {
2968 if (auto CNode = dyn_cast<ConstantSDNode>(N)) {
2969 uint64_t ImmVal = CNode->getSExtValue();
2970 SDLoc DL(N);
2971 ImmVal = ImmVal & 0xFF;
2972 if (ImmVal < 256) {
2973 Imm = CurDAG->getTargetConstant(ImmVal, DL, MVT::i32);
2974 return true;
2977 return false;
2980 bool AArch64DAGToDAGISel::SelectSVELogicalImm(SDValue N, MVT VT, SDValue &Imm) {
2981 if (auto CNode = dyn_cast<ConstantSDNode>(N)) {
2982 uint64_t ImmVal = CNode->getZExtValue();
2983 SDLoc DL(N);
2985 // Shift mask depending on type size.
2986 switch (VT.SimpleTy) {
2987 case MVT::i8:
2988 ImmVal &= 0xFF;
2989 ImmVal |= ImmVal << 8;
2990 ImmVal |= ImmVal << 16;
2991 ImmVal |= ImmVal << 32;
2992 break;
2993 case MVT::i16:
2994 ImmVal &= 0xFFFF;
2995 ImmVal |= ImmVal << 16;
2996 ImmVal |= ImmVal << 32;
2997 break;
2998 case MVT::i32:
2999 ImmVal &= 0xFFFFFFFF;
3000 ImmVal |= ImmVal << 32;
3001 break;
3002 case MVT::i64:
3003 break;
3004 default:
3005 llvm_unreachable("Unexpected type");
3008 uint64_t encoding;
3009 if (AArch64_AM::processLogicalImmediate(ImmVal, 64, encoding)) {
3010 Imm = CurDAG->getTargetConstant(encoding, DL, MVT::i64);
3011 return true;
3014 return false;
3017 bool AArch64DAGToDAGISel::trySelectStackSlotTagP(SDNode *N) {
3018 // tagp(FrameIndex, IRGstack, tag_offset):
3019 // since the offset between FrameIndex and IRGstack is a compile-time
3020 // constant, this can be lowered to a single ADDG instruction.
3021 if (!(isa<FrameIndexSDNode>(N->getOperand(1)))) {
3022 return false;
3025 SDValue IRG_SP = N->getOperand(2);
3026 if (IRG_SP->getOpcode() != ISD::INTRINSIC_W_CHAIN ||
3027 cast<ConstantSDNode>(IRG_SP->getOperand(1))->getZExtValue() !=
3028 Intrinsic::aarch64_irg_sp) {
3029 return false;
3032 const TargetLowering *TLI = getTargetLowering();
3033 SDLoc DL(N);
3034 int FI = cast<FrameIndexSDNode>(N->getOperand(1))->getIndex();
3035 SDValue FiOp = CurDAG->getTargetFrameIndex(
3036 FI, TLI->getPointerTy(CurDAG->getDataLayout()));
3037 int TagOffset = cast<ConstantSDNode>(N->getOperand(3))->getZExtValue();
3039 SDNode *Out = CurDAG->getMachineNode(
3040 AArch64::TAGPstack, DL, MVT::i64,
3041 {FiOp, CurDAG->getTargetConstant(0, DL, MVT::i64), N->getOperand(2),
3042 CurDAG->getTargetConstant(TagOffset, DL, MVT::i64)});
3043 ReplaceNode(N, Out);
3044 return true;
3047 void AArch64DAGToDAGISel::SelectTagP(SDNode *N) {
3048 assert(isa<ConstantSDNode>(N->getOperand(3)) &&
3049 "llvm.aarch64.tagp third argument must be an immediate");
3050 if (trySelectStackSlotTagP(N))
3051 return;
3052 // FIXME: above applies in any case when offset between Op1 and Op2 is a
3053 // compile-time constant, not just for stack allocations.
3055 // General case for unrelated pointers in Op1 and Op2.
3056 SDLoc DL(N);
3057 int TagOffset = cast<ConstantSDNode>(N->getOperand(3))->getZExtValue();
3058 SDNode *N1 = CurDAG->getMachineNode(AArch64::SUBP, DL, MVT::i64,
3059 {N->getOperand(1), N->getOperand(2)});
3060 SDNode *N2 = CurDAG->getMachineNode(AArch64::ADDXrr, DL, MVT::i64,
3061 {SDValue(N1, 0), N->getOperand(2)});
3062 SDNode *N3 = CurDAG->getMachineNode(
3063 AArch64::ADDG, DL, MVT::i64,
3064 {SDValue(N2, 0), CurDAG->getTargetConstant(0, DL, MVT::i64),
3065 CurDAG->getTargetConstant(TagOffset, DL, MVT::i64)});
3066 ReplaceNode(N, N3);
3069 void AArch64DAGToDAGISel::Select(SDNode *Node) {
3070 // If we have a custom node, we already have selected!
3071 if (Node->isMachineOpcode()) {
3072 LLVM_DEBUG(errs() << "== "; Node->dump(CurDAG); errs() << "\n");
3073 Node->setNodeId(-1);
3074 return;
3077 // Few custom selection stuff.
3078 EVT VT = Node->getValueType(0);
3080 switch (Node->getOpcode()) {
3081 default:
3082 break;
3084 case ISD::ATOMIC_CMP_SWAP:
3085 if (SelectCMP_SWAP(Node))
3086 return;
3087 break;
3089 case ISD::READ_REGISTER:
3090 if (tryReadRegister(Node))
3091 return;
3092 break;
3094 case ISD::WRITE_REGISTER:
3095 if (tryWriteRegister(Node))
3096 return;
3097 break;
3099 case ISD::ADD:
3100 if (tryMLAV64LaneV128(Node))
3101 return;
3102 break;
3104 case ISD::LOAD: {
3105 // Try to select as an indexed load. Fall through to normal processing
3106 // if we can't.
3107 if (tryIndexedLoad(Node))
3108 return;
3109 break;
3112 case ISD::SRL:
3113 case ISD::AND:
3114 case ISD::SRA:
3115 case ISD::SIGN_EXTEND_INREG:
3116 if (tryBitfieldExtractOp(Node))
3117 return;
3118 if (tryBitfieldInsertInZeroOp(Node))
3119 return;
3120 LLVM_FALLTHROUGH;
3121 case ISD::ROTR:
3122 case ISD::SHL:
3123 if (tryShiftAmountMod(Node))
3124 return;
3125 break;
3127 case ISD::SIGN_EXTEND:
3128 if (tryBitfieldExtractOpFromSExt(Node))
3129 return;
3130 break;
3132 case ISD::FP_EXTEND:
3133 if (tryHighFPExt(Node))
3134 return;
3135 break;
3137 case ISD::OR:
3138 if (tryBitfieldInsertOp(Node))
3139 return;
3140 break;
3142 case ISD::Constant: {
3143 // Materialize zero constants as copies from WZR/XZR. This allows
3144 // the coalescer to propagate these into other instructions.
3145 ConstantSDNode *ConstNode = cast<ConstantSDNode>(Node);
3146 if (ConstNode->isNullValue()) {
3147 if (VT == MVT::i32) {
3148 SDValue New = CurDAG->getCopyFromReg(
3149 CurDAG->getEntryNode(), SDLoc(Node), AArch64::WZR, MVT::i32);
3150 ReplaceNode(Node, New.getNode());
3151 return;
3152 } else if (VT == MVT::i64) {
3153 SDValue New = CurDAG->getCopyFromReg(
3154 CurDAG->getEntryNode(), SDLoc(Node), AArch64::XZR, MVT::i64);
3155 ReplaceNode(Node, New.getNode());
3156 return;
3159 break;
3162 case ISD::FrameIndex: {
3163 // Selects to ADDXri FI, 0 which in turn will become ADDXri SP, imm.
3164 int FI = cast<FrameIndexSDNode>(Node)->getIndex();
3165 unsigned Shifter = AArch64_AM::getShifterImm(AArch64_AM::LSL, 0);
3166 const TargetLowering *TLI = getTargetLowering();
3167 SDValue TFI = CurDAG->getTargetFrameIndex(
3168 FI, TLI->getPointerTy(CurDAG->getDataLayout()));
3169 SDLoc DL(Node);
3170 SDValue Ops[] = { TFI, CurDAG->getTargetConstant(0, DL, MVT::i32),
3171 CurDAG->getTargetConstant(Shifter, DL, MVT::i32) };
3172 CurDAG->SelectNodeTo(Node, AArch64::ADDXri, MVT::i64, Ops);
3173 return;
3175 case ISD::INTRINSIC_W_CHAIN: {
3176 unsigned IntNo = cast<ConstantSDNode>(Node->getOperand(1))->getZExtValue();
3177 switch (IntNo) {
3178 default:
3179 break;
3180 case Intrinsic::aarch64_ldaxp:
3181 case Intrinsic::aarch64_ldxp: {
3182 unsigned Op =
3183 IntNo == Intrinsic::aarch64_ldaxp ? AArch64::LDAXPX : AArch64::LDXPX;
3184 SDValue MemAddr = Node->getOperand(2);
3185 SDLoc DL(Node);
3186 SDValue Chain = Node->getOperand(0);
3188 SDNode *Ld = CurDAG->getMachineNode(Op, DL, MVT::i64, MVT::i64,
3189 MVT::Other, MemAddr, Chain);
3191 // Transfer memoperands.
3192 MachineMemOperand *MemOp =
3193 cast<MemIntrinsicSDNode>(Node)->getMemOperand();
3194 CurDAG->setNodeMemRefs(cast<MachineSDNode>(Ld), {MemOp});
3195 ReplaceNode(Node, Ld);
3196 return;
3198 case Intrinsic::aarch64_stlxp:
3199 case Intrinsic::aarch64_stxp: {
3200 unsigned Op =
3201 IntNo == Intrinsic::aarch64_stlxp ? AArch64::STLXPX : AArch64::STXPX;
3202 SDLoc DL(Node);
3203 SDValue Chain = Node->getOperand(0);
3204 SDValue ValLo = Node->getOperand(2);
3205 SDValue ValHi = Node->getOperand(3);
3206 SDValue MemAddr = Node->getOperand(4);
3208 // Place arguments in the right order.
3209 SDValue Ops[] = {ValLo, ValHi, MemAddr, Chain};
3211 SDNode *St = CurDAG->getMachineNode(Op, DL, MVT::i32, MVT::Other, Ops);
3212 // Transfer memoperands.
3213 MachineMemOperand *MemOp =
3214 cast<MemIntrinsicSDNode>(Node)->getMemOperand();
3215 CurDAG->setNodeMemRefs(cast<MachineSDNode>(St), {MemOp});
3217 ReplaceNode(Node, St);
3218 return;
3220 case Intrinsic::aarch64_neon_ld1x2:
3221 if (VT == MVT::v8i8) {
3222 SelectLoad(Node, 2, AArch64::LD1Twov8b, AArch64::dsub0);
3223 return;
3224 } else if (VT == MVT::v16i8) {
3225 SelectLoad(Node, 2, AArch64::LD1Twov16b, AArch64::qsub0);
3226 return;
3227 } else if (VT == MVT::v4i16 || VT == MVT::v4f16) {
3228 SelectLoad(Node, 2, AArch64::LD1Twov4h, AArch64::dsub0);
3229 return;
3230 } else if (VT == MVT::v8i16 || VT == MVT::v8f16) {
3231 SelectLoad(Node, 2, AArch64::LD1Twov8h, AArch64::qsub0);
3232 return;
3233 } else if (VT == MVT::v2i32 || VT == MVT::v2f32) {
3234 SelectLoad(Node, 2, AArch64::LD1Twov2s, AArch64::dsub0);
3235 return;
3236 } else if (VT == MVT::v4i32 || VT == MVT::v4f32) {
3237 SelectLoad(Node, 2, AArch64::LD1Twov4s, AArch64::qsub0);
3238 return;
3239 } else if (VT == MVT::v1i64 || VT == MVT::v1f64) {
3240 SelectLoad(Node, 2, AArch64::LD1Twov1d, AArch64::dsub0);
3241 return;
3242 } else if (VT == MVT::v2i64 || VT == MVT::v2f64) {
3243 SelectLoad(Node, 2, AArch64::LD1Twov2d, AArch64::qsub0);
3244 return;
3246 break;
3247 case Intrinsic::aarch64_neon_ld1x3:
3248 if (VT == MVT::v8i8) {
3249 SelectLoad(Node, 3, AArch64::LD1Threev8b, AArch64::dsub0);
3250 return;
3251 } else if (VT == MVT::v16i8) {
3252 SelectLoad(Node, 3, AArch64::LD1Threev16b, AArch64::qsub0);
3253 return;
3254 } else if (VT == MVT::v4i16 || VT == MVT::v4f16) {
3255 SelectLoad(Node, 3, AArch64::LD1Threev4h, AArch64::dsub0);
3256 return;
3257 } else if (VT == MVT::v8i16 || VT == MVT::v8f16) {
3258 SelectLoad(Node, 3, AArch64::LD1Threev8h, AArch64::qsub0);
3259 return;
3260 } else if (VT == MVT::v2i32 || VT == MVT::v2f32) {
3261 SelectLoad(Node, 3, AArch64::LD1Threev2s, AArch64::dsub0);
3262 return;
3263 } else if (VT == MVT::v4i32 || VT == MVT::v4f32) {
3264 SelectLoad(Node, 3, AArch64::LD1Threev4s, AArch64::qsub0);
3265 return;
3266 } else if (VT == MVT::v1i64 || VT == MVT::v1f64) {
3267 SelectLoad(Node, 3, AArch64::LD1Threev1d, AArch64::dsub0);
3268 return;
3269 } else if (VT == MVT::v2i64 || VT == MVT::v2f64) {
3270 SelectLoad(Node, 3, AArch64::LD1Threev2d, AArch64::qsub0);
3271 return;
3273 break;
3274 case Intrinsic::aarch64_neon_ld1x4:
3275 if (VT == MVT::v8i8) {
3276 SelectLoad(Node, 4, AArch64::LD1Fourv8b, AArch64::dsub0);
3277 return;
3278 } else if (VT == MVT::v16i8) {
3279 SelectLoad(Node, 4, AArch64::LD1Fourv16b, AArch64::qsub0);
3280 return;
3281 } else if (VT == MVT::v4i16 || VT == MVT::v4f16) {
3282 SelectLoad(Node, 4, AArch64::LD1Fourv4h, AArch64::dsub0);
3283 return;
3284 } else if (VT == MVT::v8i16 || VT == MVT::v8f16) {
3285 SelectLoad(Node, 4, AArch64::LD1Fourv8h, AArch64::qsub0);
3286 return;
3287 } else if (VT == MVT::v2i32 || VT == MVT::v2f32) {
3288 SelectLoad(Node, 4, AArch64::LD1Fourv2s, AArch64::dsub0);
3289 return;
3290 } else if (VT == MVT::v4i32 || VT == MVT::v4f32) {
3291 SelectLoad(Node, 4, AArch64::LD1Fourv4s, AArch64::qsub0);
3292 return;
3293 } else if (VT == MVT::v1i64 || VT == MVT::v1f64) {
3294 SelectLoad(Node, 4, AArch64::LD1Fourv1d, AArch64::dsub0);
3295 return;
3296 } else if (VT == MVT::v2i64 || VT == MVT::v2f64) {
3297 SelectLoad(Node, 4, AArch64::LD1Fourv2d, AArch64::qsub0);
3298 return;
3300 break;
3301 case Intrinsic::aarch64_neon_ld2:
3302 if (VT == MVT::v8i8) {
3303 SelectLoad(Node, 2, AArch64::LD2Twov8b, AArch64::dsub0);
3304 return;
3305 } else if (VT == MVT::v16i8) {
3306 SelectLoad(Node, 2, AArch64::LD2Twov16b, AArch64::qsub0);
3307 return;
3308 } else if (VT == MVT::v4i16 || VT == MVT::v4f16) {
3309 SelectLoad(Node, 2, AArch64::LD2Twov4h, AArch64::dsub0);
3310 return;
3311 } else if (VT == MVT::v8i16 || VT == MVT::v8f16) {
3312 SelectLoad(Node, 2, AArch64::LD2Twov8h, AArch64::qsub0);
3313 return;
3314 } else if (VT == MVT::v2i32 || VT == MVT::v2f32) {
3315 SelectLoad(Node, 2, AArch64::LD2Twov2s, AArch64::dsub0);
3316 return;
3317 } else if (VT == MVT::v4i32 || VT == MVT::v4f32) {
3318 SelectLoad(Node, 2, AArch64::LD2Twov4s, AArch64::qsub0);
3319 return;
3320 } else if (VT == MVT::v1i64 || VT == MVT::v1f64) {
3321 SelectLoad(Node, 2, AArch64::LD1Twov1d, AArch64::dsub0);
3322 return;
3323 } else if (VT == MVT::v2i64 || VT == MVT::v2f64) {
3324 SelectLoad(Node, 2, AArch64::LD2Twov2d, AArch64::qsub0);
3325 return;
3327 break;
3328 case Intrinsic::aarch64_neon_ld3:
3329 if (VT == MVT::v8i8) {
3330 SelectLoad(Node, 3, AArch64::LD3Threev8b, AArch64::dsub0);
3331 return;
3332 } else if (VT == MVT::v16i8) {
3333 SelectLoad(Node, 3, AArch64::LD3Threev16b, AArch64::qsub0);
3334 return;
3335 } else if (VT == MVT::v4i16 || VT == MVT::v4f16) {
3336 SelectLoad(Node, 3, AArch64::LD3Threev4h, AArch64::dsub0);
3337 return;
3338 } else if (VT == MVT::v8i16 || VT == MVT::v8f16) {
3339 SelectLoad(Node, 3, AArch64::LD3Threev8h, AArch64::qsub0);
3340 return;
3341 } else if (VT == MVT::v2i32 || VT == MVT::v2f32) {
3342 SelectLoad(Node, 3, AArch64::LD3Threev2s, AArch64::dsub0);
3343 return;
3344 } else if (VT == MVT::v4i32 || VT == MVT::v4f32) {
3345 SelectLoad(Node, 3, AArch64::LD3Threev4s, AArch64::qsub0);
3346 return;
3347 } else if (VT == MVT::v1i64 || VT == MVT::v1f64) {
3348 SelectLoad(Node, 3, AArch64::LD1Threev1d, AArch64::dsub0);
3349 return;
3350 } else if (VT == MVT::v2i64 || VT == MVT::v2f64) {
3351 SelectLoad(Node, 3, AArch64::LD3Threev2d, AArch64::qsub0);
3352 return;
3354 break;
3355 case Intrinsic::aarch64_neon_ld4:
3356 if (VT == MVT::v8i8) {
3357 SelectLoad(Node, 4, AArch64::LD4Fourv8b, AArch64::dsub0);
3358 return;
3359 } else if (VT == MVT::v16i8) {
3360 SelectLoad(Node, 4, AArch64::LD4Fourv16b, AArch64::qsub0);
3361 return;
3362 } else if (VT == MVT::v4i16 || VT == MVT::v4f16) {
3363 SelectLoad(Node, 4, AArch64::LD4Fourv4h, AArch64::dsub0);
3364 return;
3365 } else if (VT == MVT::v8i16 || VT == MVT::v8f16) {
3366 SelectLoad(Node, 4, AArch64::LD4Fourv8h, AArch64::qsub0);
3367 return;
3368 } else if (VT == MVT::v2i32 || VT == MVT::v2f32) {
3369 SelectLoad(Node, 4, AArch64::LD4Fourv2s, AArch64::dsub0);
3370 return;
3371 } else if (VT == MVT::v4i32 || VT == MVT::v4f32) {
3372 SelectLoad(Node, 4, AArch64::LD4Fourv4s, AArch64::qsub0);
3373 return;
3374 } else if (VT == MVT::v1i64 || VT == MVT::v1f64) {
3375 SelectLoad(Node, 4, AArch64::LD1Fourv1d, AArch64::dsub0);
3376 return;
3377 } else if (VT == MVT::v2i64 || VT == MVT::v2f64) {
3378 SelectLoad(Node, 4, AArch64::LD4Fourv2d, AArch64::qsub0);
3379 return;
3381 break;
3382 case Intrinsic::aarch64_neon_ld2r:
3383 if (VT == MVT::v8i8) {
3384 SelectLoad(Node, 2, AArch64::LD2Rv8b, AArch64::dsub0);
3385 return;
3386 } else if (VT == MVT::v16i8) {
3387 SelectLoad(Node, 2, AArch64::LD2Rv16b, AArch64::qsub0);
3388 return;
3389 } else if (VT == MVT::v4i16 || VT == MVT::v4f16) {
3390 SelectLoad(Node, 2, AArch64::LD2Rv4h, AArch64::dsub0);
3391 return;
3392 } else if (VT == MVT::v8i16 || VT == MVT::v8f16) {
3393 SelectLoad(Node, 2, AArch64::LD2Rv8h, AArch64::qsub0);
3394 return;
3395 } else if (VT == MVT::v2i32 || VT == MVT::v2f32) {
3396 SelectLoad(Node, 2, AArch64::LD2Rv2s, AArch64::dsub0);
3397 return;
3398 } else if (VT == MVT::v4i32 || VT == MVT::v4f32) {
3399 SelectLoad(Node, 2, AArch64::LD2Rv4s, AArch64::qsub0);
3400 return;
3401 } else if (VT == MVT::v1i64 || VT == MVT::v1f64) {
3402 SelectLoad(Node, 2, AArch64::LD2Rv1d, AArch64::dsub0);
3403 return;
3404 } else if (VT == MVT::v2i64 || VT == MVT::v2f64) {
3405 SelectLoad(Node, 2, AArch64::LD2Rv2d, AArch64::qsub0);
3406 return;
3408 break;
3409 case Intrinsic::aarch64_neon_ld3r:
3410 if (VT == MVT::v8i8) {
3411 SelectLoad(Node, 3, AArch64::LD3Rv8b, AArch64::dsub0);
3412 return;
3413 } else if (VT == MVT::v16i8) {
3414 SelectLoad(Node, 3, AArch64::LD3Rv16b, AArch64::qsub0);
3415 return;
3416 } else if (VT == MVT::v4i16 || VT == MVT::v4f16) {
3417 SelectLoad(Node, 3, AArch64::LD3Rv4h, AArch64::dsub0);
3418 return;
3419 } else if (VT == MVT::v8i16 || VT == MVT::v8f16) {
3420 SelectLoad(Node, 3, AArch64::LD3Rv8h, AArch64::qsub0);
3421 return;
3422 } else if (VT == MVT::v2i32 || VT == MVT::v2f32) {
3423 SelectLoad(Node, 3, AArch64::LD3Rv2s, AArch64::dsub0);
3424 return;
3425 } else if (VT == MVT::v4i32 || VT == MVT::v4f32) {
3426 SelectLoad(Node, 3, AArch64::LD3Rv4s, AArch64::qsub0);
3427 return;
3428 } else if (VT == MVT::v1i64 || VT == MVT::v1f64) {
3429 SelectLoad(Node, 3, AArch64::LD3Rv1d, AArch64::dsub0);
3430 return;
3431 } else if (VT == MVT::v2i64 || VT == MVT::v2f64) {
3432 SelectLoad(Node, 3, AArch64::LD3Rv2d, AArch64::qsub0);
3433 return;
3435 break;
3436 case Intrinsic::aarch64_neon_ld4r:
3437 if (VT == MVT::v8i8) {
3438 SelectLoad(Node, 4, AArch64::LD4Rv8b, AArch64::dsub0);
3439 return;
3440 } else if (VT == MVT::v16i8) {
3441 SelectLoad(Node, 4, AArch64::LD4Rv16b, AArch64::qsub0);
3442 return;
3443 } else if (VT == MVT::v4i16 || VT == MVT::v4f16) {
3444 SelectLoad(Node, 4, AArch64::LD4Rv4h, AArch64::dsub0);
3445 return;
3446 } else if (VT == MVT::v8i16 || VT == MVT::v8f16) {
3447 SelectLoad(Node, 4, AArch64::LD4Rv8h, AArch64::qsub0);
3448 return;
3449 } else if (VT == MVT::v2i32 || VT == MVT::v2f32) {
3450 SelectLoad(Node, 4, AArch64::LD4Rv2s, AArch64::dsub0);
3451 return;
3452 } else if (VT == MVT::v4i32 || VT == MVT::v4f32) {
3453 SelectLoad(Node, 4, AArch64::LD4Rv4s, AArch64::qsub0);
3454 return;
3455 } else if (VT == MVT::v1i64 || VT == MVT::v1f64) {
3456 SelectLoad(Node, 4, AArch64::LD4Rv1d, AArch64::dsub0);
3457 return;
3458 } else if (VT == MVT::v2i64 || VT == MVT::v2f64) {
3459 SelectLoad(Node, 4, AArch64::LD4Rv2d, AArch64::qsub0);
3460 return;
3462 break;
3463 case Intrinsic::aarch64_neon_ld2lane:
3464 if (VT == MVT::v16i8 || VT == MVT::v8i8) {
3465 SelectLoadLane(Node, 2, AArch64::LD2i8);
3466 return;
3467 } else if (VT == MVT::v8i16 || VT == MVT::v4i16 || VT == MVT::v4f16 ||
3468 VT == MVT::v8f16) {
3469 SelectLoadLane(Node, 2, AArch64::LD2i16);
3470 return;
3471 } else if (VT == MVT::v4i32 || VT == MVT::v2i32 || VT == MVT::v4f32 ||
3472 VT == MVT::v2f32) {
3473 SelectLoadLane(Node, 2, AArch64::LD2i32);
3474 return;
3475 } else if (VT == MVT::v2i64 || VT == MVT::v1i64 || VT == MVT::v2f64 ||
3476 VT == MVT::v1f64) {
3477 SelectLoadLane(Node, 2, AArch64::LD2i64);
3478 return;
3480 break;
3481 case Intrinsic::aarch64_neon_ld3lane:
3482 if (VT == MVT::v16i8 || VT == MVT::v8i8) {
3483 SelectLoadLane(Node, 3, AArch64::LD3i8);
3484 return;
3485 } else if (VT == MVT::v8i16 || VT == MVT::v4i16 || VT == MVT::v4f16 ||
3486 VT == MVT::v8f16) {
3487 SelectLoadLane(Node, 3, AArch64::LD3i16);
3488 return;
3489 } else if (VT == MVT::v4i32 || VT == MVT::v2i32 || VT == MVT::v4f32 ||
3490 VT == MVT::v2f32) {
3491 SelectLoadLane(Node, 3, AArch64::LD3i32);
3492 return;
3493 } else if (VT == MVT::v2i64 || VT == MVT::v1i64 || VT == MVT::v2f64 ||
3494 VT == MVT::v1f64) {
3495 SelectLoadLane(Node, 3, AArch64::LD3i64);
3496 return;
3498 break;
3499 case Intrinsic::aarch64_neon_ld4lane:
3500 if (VT == MVT::v16i8 || VT == MVT::v8i8) {
3501 SelectLoadLane(Node, 4, AArch64::LD4i8);
3502 return;
3503 } else if (VT == MVT::v8i16 || VT == MVT::v4i16 || VT == MVT::v4f16 ||
3504 VT == MVT::v8f16) {
3505 SelectLoadLane(Node, 4, AArch64::LD4i16);
3506 return;
3507 } else if (VT == MVT::v4i32 || VT == MVT::v2i32 || VT == MVT::v4f32 ||
3508 VT == MVT::v2f32) {
3509 SelectLoadLane(Node, 4, AArch64::LD4i32);
3510 return;
3511 } else if (VT == MVT::v2i64 || VT == MVT::v1i64 || VT == MVT::v2f64 ||
3512 VT == MVT::v1f64) {
3513 SelectLoadLane(Node, 4, AArch64::LD4i64);
3514 return;
3516 break;
3518 } break;
3519 case ISD::INTRINSIC_WO_CHAIN: {
3520 unsigned IntNo = cast<ConstantSDNode>(Node->getOperand(0))->getZExtValue();
3521 switch (IntNo) {
3522 default:
3523 break;
3524 case Intrinsic::aarch64_tagp:
3525 SelectTagP(Node);
3526 return;
3527 case Intrinsic::aarch64_neon_tbl2:
3528 SelectTable(Node, 2,
3529 VT == MVT::v8i8 ? AArch64::TBLv8i8Two : AArch64::TBLv16i8Two,
3530 false);
3531 return;
3532 case Intrinsic::aarch64_neon_tbl3:
3533 SelectTable(Node, 3, VT == MVT::v8i8 ? AArch64::TBLv8i8Three
3534 : AArch64::TBLv16i8Three,
3535 false);
3536 return;
3537 case Intrinsic::aarch64_neon_tbl4:
3538 SelectTable(Node, 4, VT == MVT::v8i8 ? AArch64::TBLv8i8Four
3539 : AArch64::TBLv16i8Four,
3540 false);
3541 return;
3542 case Intrinsic::aarch64_neon_tbx2:
3543 SelectTable(Node, 2,
3544 VT == MVT::v8i8 ? AArch64::TBXv8i8Two : AArch64::TBXv16i8Two,
3545 true);
3546 return;
3547 case Intrinsic::aarch64_neon_tbx3:
3548 SelectTable(Node, 3, VT == MVT::v8i8 ? AArch64::TBXv8i8Three
3549 : AArch64::TBXv16i8Three,
3550 true);
3551 return;
3552 case Intrinsic::aarch64_neon_tbx4:
3553 SelectTable(Node, 4, VT == MVT::v8i8 ? AArch64::TBXv8i8Four
3554 : AArch64::TBXv16i8Four,
3555 true);
3556 return;
3557 case Intrinsic::aarch64_neon_smull:
3558 case Intrinsic::aarch64_neon_umull:
3559 if (tryMULLV64LaneV128(IntNo, Node))
3560 return;
3561 break;
3563 break;
3565 case ISD::INTRINSIC_VOID: {
3566 unsigned IntNo = cast<ConstantSDNode>(Node->getOperand(1))->getZExtValue();
3567 if (Node->getNumOperands() >= 3)
3568 VT = Node->getOperand(2)->getValueType(0);
3569 switch (IntNo) {
3570 default:
3571 break;
3572 case Intrinsic::aarch64_neon_st1x2: {
3573 if (VT == MVT::v8i8) {
3574 SelectStore(Node, 2, AArch64::ST1Twov8b);
3575 return;
3576 } else if (VT == MVT::v16i8) {
3577 SelectStore(Node, 2, AArch64::ST1Twov16b);
3578 return;
3579 } else if (VT == MVT::v4i16 || VT == MVT::v4f16) {
3580 SelectStore(Node, 2, AArch64::ST1Twov4h);
3581 return;
3582 } else if (VT == MVT::v8i16 || VT == MVT::v8f16) {
3583 SelectStore(Node, 2, AArch64::ST1Twov8h);
3584 return;
3585 } else if (VT == MVT::v2i32 || VT == MVT::v2f32) {
3586 SelectStore(Node, 2, AArch64::ST1Twov2s);
3587 return;
3588 } else if (VT == MVT::v4i32 || VT == MVT::v4f32) {
3589 SelectStore(Node, 2, AArch64::ST1Twov4s);
3590 return;
3591 } else if (VT == MVT::v2i64 || VT == MVT::v2f64) {
3592 SelectStore(Node, 2, AArch64::ST1Twov2d);
3593 return;
3594 } else if (VT == MVT::v1i64 || VT == MVT::v1f64) {
3595 SelectStore(Node, 2, AArch64::ST1Twov1d);
3596 return;
3598 break;
3600 case Intrinsic::aarch64_neon_st1x3: {
3601 if (VT == MVT::v8i8) {
3602 SelectStore(Node, 3, AArch64::ST1Threev8b);
3603 return;
3604 } else if (VT == MVT::v16i8) {
3605 SelectStore(Node, 3, AArch64::ST1Threev16b);
3606 return;
3607 } else if (VT == MVT::v4i16 || VT == MVT::v4f16) {
3608 SelectStore(Node, 3, AArch64::ST1Threev4h);
3609 return;
3610 } else if (VT == MVT::v8i16 || VT == MVT::v8f16) {
3611 SelectStore(Node, 3, AArch64::ST1Threev8h);
3612 return;
3613 } else if (VT == MVT::v2i32 || VT == MVT::v2f32) {
3614 SelectStore(Node, 3, AArch64::ST1Threev2s);
3615 return;
3616 } else if (VT == MVT::v4i32 || VT == MVT::v4f32) {
3617 SelectStore(Node, 3, AArch64::ST1Threev4s);
3618 return;
3619 } else if (VT == MVT::v2i64 || VT == MVT::v2f64) {
3620 SelectStore(Node, 3, AArch64::ST1Threev2d);
3621 return;
3622 } else if (VT == MVT::v1i64 || VT == MVT::v1f64) {
3623 SelectStore(Node, 3, AArch64::ST1Threev1d);
3624 return;
3626 break;
3628 case Intrinsic::aarch64_neon_st1x4: {
3629 if (VT == MVT::v8i8) {
3630 SelectStore(Node, 4, AArch64::ST1Fourv8b);
3631 return;
3632 } else if (VT == MVT::v16i8) {
3633 SelectStore(Node, 4, AArch64::ST1Fourv16b);
3634 return;
3635 } else if (VT == MVT::v4i16 || VT == MVT::v4f16) {
3636 SelectStore(Node, 4, AArch64::ST1Fourv4h);
3637 return;
3638 } else if (VT == MVT::v8i16 || VT == MVT::v8f16) {
3639 SelectStore(Node, 4, AArch64::ST1Fourv8h);
3640 return;
3641 } else if (VT == MVT::v2i32 || VT == MVT::v2f32) {
3642 SelectStore(Node, 4, AArch64::ST1Fourv2s);
3643 return;
3644 } else if (VT == MVT::v4i32 || VT == MVT::v4f32) {
3645 SelectStore(Node, 4, AArch64::ST1Fourv4s);
3646 return;
3647 } else if (VT == MVT::v2i64 || VT == MVT::v2f64) {
3648 SelectStore(Node, 4, AArch64::ST1Fourv2d);
3649 return;
3650 } else if (VT == MVT::v1i64 || VT == MVT::v1f64) {
3651 SelectStore(Node, 4, AArch64::ST1Fourv1d);
3652 return;
3654 break;
3656 case Intrinsic::aarch64_neon_st2: {
3657 if (VT == MVT::v8i8) {
3658 SelectStore(Node, 2, AArch64::ST2Twov8b);
3659 return;
3660 } else if (VT == MVT::v16i8) {
3661 SelectStore(Node, 2, AArch64::ST2Twov16b);
3662 return;
3663 } else if (VT == MVT::v4i16 || VT == MVT::v4f16) {
3664 SelectStore(Node, 2, AArch64::ST2Twov4h);
3665 return;
3666 } else if (VT == MVT::v8i16 || VT == MVT::v8f16) {
3667 SelectStore(Node, 2, AArch64::ST2Twov8h);
3668 return;
3669 } else if (VT == MVT::v2i32 || VT == MVT::v2f32) {
3670 SelectStore(Node, 2, AArch64::ST2Twov2s);
3671 return;
3672 } else if (VT == MVT::v4i32 || VT == MVT::v4f32) {
3673 SelectStore(Node, 2, AArch64::ST2Twov4s);
3674 return;
3675 } else if (VT == MVT::v2i64 || VT == MVT::v2f64) {
3676 SelectStore(Node, 2, AArch64::ST2Twov2d);
3677 return;
3678 } else if (VT == MVT::v1i64 || VT == MVT::v1f64) {
3679 SelectStore(Node, 2, AArch64::ST1Twov1d);
3680 return;
3682 break;
3684 case Intrinsic::aarch64_neon_st3: {
3685 if (VT == MVT::v8i8) {
3686 SelectStore(Node, 3, AArch64::ST3Threev8b);
3687 return;
3688 } else if (VT == MVT::v16i8) {
3689 SelectStore(Node, 3, AArch64::ST3Threev16b);
3690 return;
3691 } else if (VT == MVT::v4i16 || VT == MVT::v4f16) {
3692 SelectStore(Node, 3, AArch64::ST3Threev4h);
3693 return;
3694 } else if (VT == MVT::v8i16 || VT == MVT::v8f16) {
3695 SelectStore(Node, 3, AArch64::ST3Threev8h);
3696 return;
3697 } else if (VT == MVT::v2i32 || VT == MVT::v2f32) {
3698 SelectStore(Node, 3, AArch64::ST3Threev2s);
3699 return;
3700 } else if (VT == MVT::v4i32 || VT == MVT::v4f32) {
3701 SelectStore(Node, 3, AArch64::ST3Threev4s);
3702 return;
3703 } else if (VT == MVT::v2i64 || VT == MVT::v2f64) {
3704 SelectStore(Node, 3, AArch64::ST3Threev2d);
3705 return;
3706 } else if (VT == MVT::v1i64 || VT == MVT::v1f64) {
3707 SelectStore(Node, 3, AArch64::ST1Threev1d);
3708 return;
3710 break;
3712 case Intrinsic::aarch64_neon_st4: {
3713 if (VT == MVT::v8i8) {
3714 SelectStore(Node, 4, AArch64::ST4Fourv8b);
3715 return;
3716 } else if (VT == MVT::v16i8) {
3717 SelectStore(Node, 4, AArch64::ST4Fourv16b);
3718 return;
3719 } else if (VT == MVT::v4i16 || VT == MVT::v4f16) {
3720 SelectStore(Node, 4, AArch64::ST4Fourv4h);
3721 return;
3722 } else if (VT == MVT::v8i16 || VT == MVT::v8f16) {
3723 SelectStore(Node, 4, AArch64::ST4Fourv8h);
3724 return;
3725 } else if (VT == MVT::v2i32 || VT == MVT::v2f32) {
3726 SelectStore(Node, 4, AArch64::ST4Fourv2s);
3727 return;
3728 } else if (VT == MVT::v4i32 || VT == MVT::v4f32) {
3729 SelectStore(Node, 4, AArch64::ST4Fourv4s);
3730 return;
3731 } else if (VT == MVT::v2i64 || VT == MVT::v2f64) {
3732 SelectStore(Node, 4, AArch64::ST4Fourv2d);
3733 return;
3734 } else if (VT == MVT::v1i64 || VT == MVT::v1f64) {
3735 SelectStore(Node, 4, AArch64::ST1Fourv1d);
3736 return;
3738 break;
3740 case Intrinsic::aarch64_neon_st2lane: {
3741 if (VT == MVT::v16i8 || VT == MVT::v8i8) {
3742 SelectStoreLane(Node, 2, AArch64::ST2i8);
3743 return;
3744 } else if (VT == MVT::v8i16 || VT == MVT::v4i16 || VT == MVT::v4f16 ||
3745 VT == MVT::v8f16) {
3746 SelectStoreLane(Node, 2, AArch64::ST2i16);
3747 return;
3748 } else if (VT == MVT::v4i32 || VT == MVT::v2i32 || VT == MVT::v4f32 ||
3749 VT == MVT::v2f32) {
3750 SelectStoreLane(Node, 2, AArch64::ST2i32);
3751 return;
3752 } else if (VT == MVT::v2i64 || VT == MVT::v1i64 || VT == MVT::v2f64 ||
3753 VT == MVT::v1f64) {
3754 SelectStoreLane(Node, 2, AArch64::ST2i64);
3755 return;
3757 break;
3759 case Intrinsic::aarch64_neon_st3lane: {
3760 if (VT == MVT::v16i8 || VT == MVT::v8i8) {
3761 SelectStoreLane(Node, 3, AArch64::ST3i8);
3762 return;
3763 } else if (VT == MVT::v8i16 || VT == MVT::v4i16 || VT == MVT::v4f16 ||
3764 VT == MVT::v8f16) {
3765 SelectStoreLane(Node, 3, AArch64::ST3i16);
3766 return;
3767 } else if (VT == MVT::v4i32 || VT == MVT::v2i32 || VT == MVT::v4f32 ||
3768 VT == MVT::v2f32) {
3769 SelectStoreLane(Node, 3, AArch64::ST3i32);
3770 return;
3771 } else if (VT == MVT::v2i64 || VT == MVT::v1i64 || VT == MVT::v2f64 ||
3772 VT == MVT::v1f64) {
3773 SelectStoreLane(Node, 3, AArch64::ST3i64);
3774 return;
3776 break;
3778 case Intrinsic::aarch64_neon_st4lane: {
3779 if (VT == MVT::v16i8 || VT == MVT::v8i8) {
3780 SelectStoreLane(Node, 4, AArch64::ST4i8);
3781 return;
3782 } else if (VT == MVT::v8i16 || VT == MVT::v4i16 || VT == MVT::v4f16 ||
3783 VT == MVT::v8f16) {
3784 SelectStoreLane(Node, 4, AArch64::ST4i16);
3785 return;
3786 } else if (VT == MVT::v4i32 || VT == MVT::v2i32 || VT == MVT::v4f32 ||
3787 VT == MVT::v2f32) {
3788 SelectStoreLane(Node, 4, AArch64::ST4i32);
3789 return;
3790 } else if (VT == MVT::v2i64 || VT == MVT::v1i64 || VT == MVT::v2f64 ||
3791 VT == MVT::v1f64) {
3792 SelectStoreLane(Node, 4, AArch64::ST4i64);
3793 return;
3795 break;
3798 break;
3800 case AArch64ISD::LD2post: {
3801 if (VT == MVT::v8i8) {
3802 SelectPostLoad(Node, 2, AArch64::LD2Twov8b_POST, AArch64::dsub0);
3803 return;
3804 } else if (VT == MVT::v16i8) {
3805 SelectPostLoad(Node, 2, AArch64::LD2Twov16b_POST, AArch64::qsub0);
3806 return;
3807 } else if (VT == MVT::v4i16 || VT == MVT::v4f16) {
3808 SelectPostLoad(Node, 2, AArch64::LD2Twov4h_POST, AArch64::dsub0);
3809 return;
3810 } else if (VT == MVT::v8i16 || VT == MVT::v8f16) {
3811 SelectPostLoad(Node, 2, AArch64::LD2Twov8h_POST, AArch64::qsub0);
3812 return;
3813 } else if (VT == MVT::v2i32 || VT == MVT::v2f32) {
3814 SelectPostLoad(Node, 2, AArch64::LD2Twov2s_POST, AArch64::dsub0);
3815 return;
3816 } else if (VT == MVT::v4i32 || VT == MVT::v4f32) {
3817 SelectPostLoad(Node, 2, AArch64::LD2Twov4s_POST, AArch64::qsub0);
3818 return;
3819 } else if (VT == MVT::v1i64 || VT == MVT::v1f64) {
3820 SelectPostLoad(Node, 2, AArch64::LD1Twov1d_POST, AArch64::dsub0);
3821 return;
3822 } else if (VT == MVT::v2i64 || VT == MVT::v2f64) {
3823 SelectPostLoad(Node, 2, AArch64::LD2Twov2d_POST, AArch64::qsub0);
3824 return;
3826 break;
3828 case AArch64ISD::LD3post: {
3829 if (VT == MVT::v8i8) {
3830 SelectPostLoad(Node, 3, AArch64::LD3Threev8b_POST, AArch64::dsub0);
3831 return;
3832 } else if (VT == MVT::v16i8) {
3833 SelectPostLoad(Node, 3, AArch64::LD3Threev16b_POST, AArch64::qsub0);
3834 return;
3835 } else if (VT == MVT::v4i16 || VT == MVT::v4f16) {
3836 SelectPostLoad(Node, 3, AArch64::LD3Threev4h_POST, AArch64::dsub0);
3837 return;
3838 } else if (VT == MVT::v8i16 || VT == MVT::v8f16) {
3839 SelectPostLoad(Node, 3, AArch64::LD3Threev8h_POST, AArch64::qsub0);
3840 return;
3841 } else if (VT == MVT::v2i32 || VT == MVT::v2f32) {
3842 SelectPostLoad(Node, 3, AArch64::LD3Threev2s_POST, AArch64::dsub0);
3843 return;
3844 } else if (VT == MVT::v4i32 || VT == MVT::v4f32) {
3845 SelectPostLoad(Node, 3, AArch64::LD3Threev4s_POST, AArch64::qsub0);
3846 return;
3847 } else if (VT == MVT::v1i64 || VT == MVT::v1f64) {
3848 SelectPostLoad(Node, 3, AArch64::LD1Threev1d_POST, AArch64::dsub0);
3849 return;
3850 } else if (VT == MVT::v2i64 || VT == MVT::v2f64) {
3851 SelectPostLoad(Node, 3, AArch64::LD3Threev2d_POST, AArch64::qsub0);
3852 return;
3854 break;
3856 case AArch64ISD::LD4post: {
3857 if (VT == MVT::v8i8) {
3858 SelectPostLoad(Node, 4, AArch64::LD4Fourv8b_POST, AArch64::dsub0);
3859 return;
3860 } else if (VT == MVT::v16i8) {
3861 SelectPostLoad(Node, 4, AArch64::LD4Fourv16b_POST, AArch64::qsub0);
3862 return;
3863 } else if (VT == MVT::v4i16 || VT == MVT::v4f16) {
3864 SelectPostLoad(Node, 4, AArch64::LD4Fourv4h_POST, AArch64::dsub0);
3865 return;
3866 } else if (VT == MVT::v8i16 || VT == MVT::v8f16) {
3867 SelectPostLoad(Node, 4, AArch64::LD4Fourv8h_POST, AArch64::qsub0);
3868 return;
3869 } else if (VT == MVT::v2i32 || VT == MVT::v2f32) {
3870 SelectPostLoad(Node, 4, AArch64::LD4Fourv2s_POST, AArch64::dsub0);
3871 return;
3872 } else if (VT == MVT::v4i32 || VT == MVT::v4f32) {
3873 SelectPostLoad(Node, 4, AArch64::LD4Fourv4s_POST, AArch64::qsub0);
3874 return;
3875 } else if (VT == MVT::v1i64 || VT == MVT::v1f64) {
3876 SelectPostLoad(Node, 4, AArch64::LD1Fourv1d_POST, AArch64::dsub0);
3877 return;
3878 } else if (VT == MVT::v2i64 || VT == MVT::v2f64) {
3879 SelectPostLoad(Node, 4, AArch64::LD4Fourv2d_POST, AArch64::qsub0);
3880 return;
3882 break;
3884 case AArch64ISD::LD1x2post: {
3885 if (VT == MVT::v8i8) {
3886 SelectPostLoad(Node, 2, AArch64::LD1Twov8b_POST, AArch64::dsub0);
3887 return;
3888 } else if (VT == MVT::v16i8) {
3889 SelectPostLoad(Node, 2, AArch64::LD1Twov16b_POST, AArch64::qsub0);
3890 return;
3891 } else if (VT == MVT::v4i16 || VT == MVT::v4f16) {
3892 SelectPostLoad(Node, 2, AArch64::LD1Twov4h_POST, AArch64::dsub0);
3893 return;
3894 } else if (VT == MVT::v8i16 || VT == MVT::v8f16) {
3895 SelectPostLoad(Node, 2, AArch64::LD1Twov8h_POST, AArch64::qsub0);
3896 return;
3897 } else if (VT == MVT::v2i32 || VT == MVT::v2f32) {
3898 SelectPostLoad(Node, 2, AArch64::LD1Twov2s_POST, AArch64::dsub0);
3899 return;
3900 } else if (VT == MVT::v4i32 || VT == MVT::v4f32) {
3901 SelectPostLoad(Node, 2, AArch64::LD1Twov4s_POST, AArch64::qsub0);
3902 return;
3903 } else if (VT == MVT::v1i64 || VT == MVT::v1f64) {
3904 SelectPostLoad(Node, 2, AArch64::LD1Twov1d_POST, AArch64::dsub0);
3905 return;
3906 } else if (VT == MVT::v2i64 || VT == MVT::v2f64) {
3907 SelectPostLoad(Node, 2, AArch64::LD1Twov2d_POST, AArch64::qsub0);
3908 return;
3910 break;
3912 case AArch64ISD::LD1x3post: {
3913 if (VT == MVT::v8i8) {
3914 SelectPostLoad(Node, 3, AArch64::LD1Threev8b_POST, AArch64::dsub0);
3915 return;
3916 } else if (VT == MVT::v16i8) {
3917 SelectPostLoad(Node, 3, AArch64::LD1Threev16b_POST, AArch64::qsub0);
3918 return;
3919 } else if (VT == MVT::v4i16 || VT == MVT::v4f16) {
3920 SelectPostLoad(Node, 3, AArch64::LD1Threev4h_POST, AArch64::dsub0);
3921 return;
3922 } else if (VT == MVT::v8i16 || VT == MVT::v8f16) {
3923 SelectPostLoad(Node, 3, AArch64::LD1Threev8h_POST, AArch64::qsub0);
3924 return;
3925 } else if (VT == MVT::v2i32 || VT == MVT::v2f32) {
3926 SelectPostLoad(Node, 3, AArch64::LD1Threev2s_POST, AArch64::dsub0);
3927 return;
3928 } else if (VT == MVT::v4i32 || VT == MVT::v4f32) {
3929 SelectPostLoad(Node, 3, AArch64::LD1Threev4s_POST, AArch64::qsub0);
3930 return;
3931 } else if (VT == MVT::v1i64 || VT == MVT::v1f64) {
3932 SelectPostLoad(Node, 3, AArch64::LD1Threev1d_POST, AArch64::dsub0);
3933 return;
3934 } else if (VT == MVT::v2i64 || VT == MVT::v2f64) {
3935 SelectPostLoad(Node, 3, AArch64::LD1Threev2d_POST, AArch64::qsub0);
3936 return;
3938 break;
3940 case AArch64ISD::LD1x4post: {
3941 if (VT == MVT::v8i8) {
3942 SelectPostLoad(Node, 4, AArch64::LD1Fourv8b_POST, AArch64::dsub0);
3943 return;
3944 } else if (VT == MVT::v16i8) {
3945 SelectPostLoad(Node, 4, AArch64::LD1Fourv16b_POST, AArch64::qsub0);
3946 return;
3947 } else if (VT == MVT::v4i16 || VT == MVT::v4f16) {
3948 SelectPostLoad(Node, 4, AArch64::LD1Fourv4h_POST, AArch64::dsub0);
3949 return;
3950 } else if (VT == MVT::v8i16 || VT == MVT::v8f16) {
3951 SelectPostLoad(Node, 4, AArch64::LD1Fourv8h_POST, AArch64::qsub0);
3952 return;
3953 } else if (VT == MVT::v2i32 || VT == MVT::v2f32) {
3954 SelectPostLoad(Node, 4, AArch64::LD1Fourv2s_POST, AArch64::dsub0);
3955 return;
3956 } else if (VT == MVT::v4i32 || VT == MVT::v4f32) {
3957 SelectPostLoad(Node, 4, AArch64::LD1Fourv4s_POST, AArch64::qsub0);
3958 return;
3959 } else if (VT == MVT::v1i64 || VT == MVT::v1f64) {
3960 SelectPostLoad(Node, 4, AArch64::LD1Fourv1d_POST, AArch64::dsub0);
3961 return;
3962 } else if (VT == MVT::v2i64 || VT == MVT::v2f64) {
3963 SelectPostLoad(Node, 4, AArch64::LD1Fourv2d_POST, AArch64::qsub0);
3964 return;
3966 break;
3968 case AArch64ISD::LD1DUPpost: {
3969 if (VT == MVT::v8i8) {
3970 SelectPostLoad(Node, 1, AArch64::LD1Rv8b_POST, AArch64::dsub0);
3971 return;
3972 } else if (VT == MVT::v16i8) {
3973 SelectPostLoad(Node, 1, AArch64::LD1Rv16b_POST, AArch64::qsub0);
3974 return;
3975 } else if (VT == MVT::v4i16 || VT == MVT::v4f16) {
3976 SelectPostLoad(Node, 1, AArch64::LD1Rv4h_POST, AArch64::dsub0);
3977 return;
3978 } else if (VT == MVT::v8i16 || VT == MVT::v8f16) {
3979 SelectPostLoad(Node, 1, AArch64::LD1Rv8h_POST, AArch64::qsub0);
3980 return;
3981 } else if (VT == MVT::v2i32 || VT == MVT::v2f32) {
3982 SelectPostLoad(Node, 1, AArch64::LD1Rv2s_POST, AArch64::dsub0);
3983 return;
3984 } else if (VT == MVT::v4i32 || VT == MVT::v4f32) {
3985 SelectPostLoad(Node, 1, AArch64::LD1Rv4s_POST, AArch64::qsub0);
3986 return;
3987 } else if (VT == MVT::v1i64 || VT == MVT::v1f64) {
3988 SelectPostLoad(Node, 1, AArch64::LD1Rv1d_POST, AArch64::dsub0);
3989 return;
3990 } else if (VT == MVT::v2i64 || VT == MVT::v2f64) {
3991 SelectPostLoad(Node, 1, AArch64::LD1Rv2d_POST, AArch64::qsub0);
3992 return;
3994 break;
3996 case AArch64ISD::LD2DUPpost: {
3997 if (VT == MVT::v8i8) {
3998 SelectPostLoad(Node, 2, AArch64::LD2Rv8b_POST, AArch64::dsub0);
3999 return;
4000 } else if (VT == MVT::v16i8) {
4001 SelectPostLoad(Node, 2, AArch64::LD2Rv16b_POST, AArch64::qsub0);
4002 return;
4003 } else if (VT == MVT::v4i16 || VT == MVT::v4f16) {
4004 SelectPostLoad(Node, 2, AArch64::LD2Rv4h_POST, AArch64::dsub0);
4005 return;
4006 } else if (VT == MVT::v8i16 || VT == MVT::v8f16) {
4007 SelectPostLoad(Node, 2, AArch64::LD2Rv8h_POST, AArch64::qsub0);
4008 return;
4009 } else if (VT == MVT::v2i32 || VT == MVT::v2f32) {
4010 SelectPostLoad(Node, 2, AArch64::LD2Rv2s_POST, AArch64::dsub0);
4011 return;
4012 } else if (VT == MVT::v4i32 || VT == MVT::v4f32) {
4013 SelectPostLoad(Node, 2, AArch64::LD2Rv4s_POST, AArch64::qsub0);
4014 return;
4015 } else if (VT == MVT::v1i64 || VT == MVT::v1f64) {
4016 SelectPostLoad(Node, 2, AArch64::LD2Rv1d_POST, AArch64::dsub0);
4017 return;
4018 } else if (VT == MVT::v2i64 || VT == MVT::v2f64) {
4019 SelectPostLoad(Node, 2, AArch64::LD2Rv2d_POST, AArch64::qsub0);
4020 return;
4022 break;
4024 case AArch64ISD::LD3DUPpost: {
4025 if (VT == MVT::v8i8) {
4026 SelectPostLoad(Node, 3, AArch64::LD3Rv8b_POST, AArch64::dsub0);
4027 return;
4028 } else if (VT == MVT::v16i8) {
4029 SelectPostLoad(Node, 3, AArch64::LD3Rv16b_POST, AArch64::qsub0);
4030 return;
4031 } else if (VT == MVT::v4i16 || VT == MVT::v4f16) {
4032 SelectPostLoad(Node, 3, AArch64::LD3Rv4h_POST, AArch64::dsub0);
4033 return;
4034 } else if (VT == MVT::v8i16 || VT == MVT::v8f16) {
4035 SelectPostLoad(Node, 3, AArch64::LD3Rv8h_POST, AArch64::qsub0);
4036 return;
4037 } else if (VT == MVT::v2i32 || VT == MVT::v2f32) {
4038 SelectPostLoad(Node, 3, AArch64::LD3Rv2s_POST, AArch64::dsub0);
4039 return;
4040 } else if (VT == MVT::v4i32 || VT == MVT::v4f32) {
4041 SelectPostLoad(Node, 3, AArch64::LD3Rv4s_POST, AArch64::qsub0);
4042 return;
4043 } else if (VT == MVT::v1i64 || VT == MVT::v1f64) {
4044 SelectPostLoad(Node, 3, AArch64::LD3Rv1d_POST, AArch64::dsub0);
4045 return;
4046 } else if (VT == MVT::v2i64 || VT == MVT::v2f64) {
4047 SelectPostLoad(Node, 3, AArch64::LD3Rv2d_POST, AArch64::qsub0);
4048 return;
4050 break;
4052 case AArch64ISD::LD4DUPpost: {
4053 if (VT == MVT::v8i8) {
4054 SelectPostLoad(Node, 4, AArch64::LD4Rv8b_POST, AArch64::dsub0);
4055 return;
4056 } else if (VT == MVT::v16i8) {
4057 SelectPostLoad(Node, 4, AArch64::LD4Rv16b_POST, AArch64::qsub0);
4058 return;
4059 } else if (VT == MVT::v4i16 || VT == MVT::v4f16) {
4060 SelectPostLoad(Node, 4, AArch64::LD4Rv4h_POST, AArch64::dsub0);
4061 return;
4062 } else if (VT == MVT::v8i16 || VT == MVT::v8f16) {
4063 SelectPostLoad(Node, 4, AArch64::LD4Rv8h_POST, AArch64::qsub0);
4064 return;
4065 } else if (VT == MVT::v2i32 || VT == MVT::v2f32) {
4066 SelectPostLoad(Node, 4, AArch64::LD4Rv2s_POST, AArch64::dsub0);
4067 return;
4068 } else if (VT == MVT::v4i32 || VT == MVT::v4f32) {
4069 SelectPostLoad(Node, 4, AArch64::LD4Rv4s_POST, AArch64::qsub0);
4070 return;
4071 } else if (VT == MVT::v1i64 || VT == MVT::v1f64) {
4072 SelectPostLoad(Node, 4, AArch64::LD4Rv1d_POST, AArch64::dsub0);
4073 return;
4074 } else if (VT == MVT::v2i64 || VT == MVT::v2f64) {
4075 SelectPostLoad(Node, 4, AArch64::LD4Rv2d_POST, AArch64::qsub0);
4076 return;
4078 break;
4080 case AArch64ISD::LD1LANEpost: {
4081 if (VT == MVT::v16i8 || VT == MVT::v8i8) {
4082 SelectPostLoadLane(Node, 1, AArch64::LD1i8_POST);
4083 return;
4084 } else if (VT == MVT::v8i16 || VT == MVT::v4i16 || VT == MVT::v4f16 ||
4085 VT == MVT::v8f16) {
4086 SelectPostLoadLane(Node, 1, AArch64::LD1i16_POST);
4087 return;
4088 } else if (VT == MVT::v4i32 || VT == MVT::v2i32 || VT == MVT::v4f32 ||
4089 VT == MVT::v2f32) {
4090 SelectPostLoadLane(Node, 1, AArch64::LD1i32_POST);
4091 return;
4092 } else if (VT == MVT::v2i64 || VT == MVT::v1i64 || VT == MVT::v2f64 ||
4093 VT == MVT::v1f64) {
4094 SelectPostLoadLane(Node, 1, AArch64::LD1i64_POST);
4095 return;
4097 break;
4099 case AArch64ISD::LD2LANEpost: {
4100 if (VT == MVT::v16i8 || VT == MVT::v8i8) {
4101 SelectPostLoadLane(Node, 2, AArch64::LD2i8_POST);
4102 return;
4103 } else if (VT == MVT::v8i16 || VT == MVT::v4i16 || VT == MVT::v4f16 ||
4104 VT == MVT::v8f16) {
4105 SelectPostLoadLane(Node, 2, AArch64::LD2i16_POST);
4106 return;
4107 } else if (VT == MVT::v4i32 || VT == MVT::v2i32 || VT == MVT::v4f32 ||
4108 VT == MVT::v2f32) {
4109 SelectPostLoadLane(Node, 2, AArch64::LD2i32_POST);
4110 return;
4111 } else if (VT == MVT::v2i64 || VT == MVT::v1i64 || VT == MVT::v2f64 ||
4112 VT == MVT::v1f64) {
4113 SelectPostLoadLane(Node, 2, AArch64::LD2i64_POST);
4114 return;
4116 break;
4118 case AArch64ISD::LD3LANEpost: {
4119 if (VT == MVT::v16i8 || VT == MVT::v8i8) {
4120 SelectPostLoadLane(Node, 3, AArch64::LD3i8_POST);
4121 return;
4122 } else if (VT == MVT::v8i16 || VT == MVT::v4i16 || VT == MVT::v4f16 ||
4123 VT == MVT::v8f16) {
4124 SelectPostLoadLane(Node, 3, AArch64::LD3i16_POST);
4125 return;
4126 } else if (VT == MVT::v4i32 || VT == MVT::v2i32 || VT == MVT::v4f32 ||
4127 VT == MVT::v2f32) {
4128 SelectPostLoadLane(Node, 3, AArch64::LD3i32_POST);
4129 return;
4130 } else if (VT == MVT::v2i64 || VT == MVT::v1i64 || VT == MVT::v2f64 ||
4131 VT == MVT::v1f64) {
4132 SelectPostLoadLane(Node, 3, AArch64::LD3i64_POST);
4133 return;
4135 break;
4137 case AArch64ISD::LD4LANEpost: {
4138 if (VT == MVT::v16i8 || VT == MVT::v8i8) {
4139 SelectPostLoadLane(Node, 4, AArch64::LD4i8_POST);
4140 return;
4141 } else if (VT == MVT::v8i16 || VT == MVT::v4i16 || VT == MVT::v4f16 ||
4142 VT == MVT::v8f16) {
4143 SelectPostLoadLane(Node, 4, AArch64::LD4i16_POST);
4144 return;
4145 } else if (VT == MVT::v4i32 || VT == MVT::v2i32 || VT == MVT::v4f32 ||
4146 VT == MVT::v2f32) {
4147 SelectPostLoadLane(Node, 4, AArch64::LD4i32_POST);
4148 return;
4149 } else if (VT == MVT::v2i64 || VT == MVT::v1i64 || VT == MVT::v2f64 ||
4150 VT == MVT::v1f64) {
4151 SelectPostLoadLane(Node, 4, AArch64::LD4i64_POST);
4152 return;
4154 break;
4156 case AArch64ISD::ST2post: {
4157 VT = Node->getOperand(1).getValueType();
4158 if (VT == MVT::v8i8) {
4159 SelectPostStore(Node, 2, AArch64::ST2Twov8b_POST);
4160 return;
4161 } else if (VT == MVT::v16i8) {
4162 SelectPostStore(Node, 2, AArch64::ST2Twov16b_POST);
4163 return;
4164 } else if (VT == MVT::v4i16 || VT == MVT::v4f16) {
4165 SelectPostStore(Node, 2, AArch64::ST2Twov4h_POST);
4166 return;
4167 } else if (VT == MVT::v8i16 || VT == MVT::v8f16) {
4168 SelectPostStore(Node, 2, AArch64::ST2Twov8h_POST);
4169 return;
4170 } else if (VT == MVT::v2i32 || VT == MVT::v2f32) {
4171 SelectPostStore(Node, 2, AArch64::ST2Twov2s_POST);
4172 return;
4173 } else if (VT == MVT::v4i32 || VT == MVT::v4f32) {
4174 SelectPostStore(Node, 2, AArch64::ST2Twov4s_POST);
4175 return;
4176 } else if (VT == MVT::v2i64 || VT == MVT::v2f64) {
4177 SelectPostStore(Node, 2, AArch64::ST2Twov2d_POST);
4178 return;
4179 } else if (VT == MVT::v1i64 || VT == MVT::v1f64) {
4180 SelectPostStore(Node, 2, AArch64::ST1Twov1d_POST);
4181 return;
4183 break;
4185 case AArch64ISD::ST3post: {
4186 VT = Node->getOperand(1).getValueType();
4187 if (VT == MVT::v8i8) {
4188 SelectPostStore(Node, 3, AArch64::ST3Threev8b_POST);
4189 return;
4190 } else if (VT == MVT::v16i8) {
4191 SelectPostStore(Node, 3, AArch64::ST3Threev16b_POST);
4192 return;
4193 } else if (VT == MVT::v4i16 || VT == MVT::v4f16) {
4194 SelectPostStore(Node, 3, AArch64::ST3Threev4h_POST);
4195 return;
4196 } else if (VT == MVT::v8i16 || VT == MVT::v8f16) {
4197 SelectPostStore(Node, 3, AArch64::ST3Threev8h_POST);
4198 return;
4199 } else if (VT == MVT::v2i32 || VT == MVT::v2f32) {
4200 SelectPostStore(Node, 3, AArch64::ST3Threev2s_POST);
4201 return;
4202 } else if (VT == MVT::v4i32 || VT == MVT::v4f32) {
4203 SelectPostStore(Node, 3, AArch64::ST3Threev4s_POST);
4204 return;
4205 } else if (VT == MVT::v2i64 || VT == MVT::v2f64) {
4206 SelectPostStore(Node, 3, AArch64::ST3Threev2d_POST);
4207 return;
4208 } else if (VT == MVT::v1i64 || VT == MVT::v1f64) {
4209 SelectPostStore(Node, 3, AArch64::ST1Threev1d_POST);
4210 return;
4212 break;
4214 case AArch64ISD::ST4post: {
4215 VT = Node->getOperand(1).getValueType();
4216 if (VT == MVT::v8i8) {
4217 SelectPostStore(Node, 4, AArch64::ST4Fourv8b_POST);
4218 return;
4219 } else if (VT == MVT::v16i8) {
4220 SelectPostStore(Node, 4, AArch64::ST4Fourv16b_POST);
4221 return;
4222 } else if (VT == MVT::v4i16 || VT == MVT::v4f16) {
4223 SelectPostStore(Node, 4, AArch64::ST4Fourv4h_POST);
4224 return;
4225 } else if (VT == MVT::v8i16 || VT == MVT::v8f16) {
4226 SelectPostStore(Node, 4, AArch64::ST4Fourv8h_POST);
4227 return;
4228 } else if (VT == MVT::v2i32 || VT == MVT::v2f32) {
4229 SelectPostStore(Node, 4, AArch64::ST4Fourv2s_POST);
4230 return;
4231 } else if (VT == MVT::v4i32 || VT == MVT::v4f32) {
4232 SelectPostStore(Node, 4, AArch64::ST4Fourv4s_POST);
4233 return;
4234 } else if (VT == MVT::v2i64 || VT == MVT::v2f64) {
4235 SelectPostStore(Node, 4, AArch64::ST4Fourv2d_POST);
4236 return;
4237 } else if (VT == MVT::v1i64 || VT == MVT::v1f64) {
4238 SelectPostStore(Node, 4, AArch64::ST1Fourv1d_POST);
4239 return;
4241 break;
4243 case AArch64ISD::ST1x2post: {
4244 VT = Node->getOperand(1).getValueType();
4245 if (VT == MVT::v8i8) {
4246 SelectPostStore(Node, 2, AArch64::ST1Twov8b_POST);
4247 return;
4248 } else if (VT == MVT::v16i8) {
4249 SelectPostStore(Node, 2, AArch64::ST1Twov16b_POST);
4250 return;
4251 } else if (VT == MVT::v4i16 || VT == MVT::v4f16) {
4252 SelectPostStore(Node, 2, AArch64::ST1Twov4h_POST);
4253 return;
4254 } else if (VT == MVT::v8i16 || VT == MVT::v8f16) {
4255 SelectPostStore(Node, 2, AArch64::ST1Twov8h_POST);
4256 return;
4257 } else if (VT == MVT::v2i32 || VT == MVT::v2f32) {
4258 SelectPostStore(Node, 2, AArch64::ST1Twov2s_POST);
4259 return;
4260 } else if (VT == MVT::v4i32 || VT == MVT::v4f32) {
4261 SelectPostStore(Node, 2, AArch64::ST1Twov4s_POST);
4262 return;
4263 } else if (VT == MVT::v1i64 || VT == MVT::v1f64) {
4264 SelectPostStore(Node, 2, AArch64::ST1Twov1d_POST);
4265 return;
4266 } else if (VT == MVT::v2i64 || VT == MVT::v2f64) {
4267 SelectPostStore(Node, 2, AArch64::ST1Twov2d_POST);
4268 return;
4270 break;
4272 case AArch64ISD::ST1x3post: {
4273 VT = Node->getOperand(1).getValueType();
4274 if (VT == MVT::v8i8) {
4275 SelectPostStore(Node, 3, AArch64::ST1Threev8b_POST);
4276 return;
4277 } else if (VT == MVT::v16i8) {
4278 SelectPostStore(Node, 3, AArch64::ST1Threev16b_POST);
4279 return;
4280 } else if (VT == MVT::v4i16 || VT == MVT::v4f16) {
4281 SelectPostStore(Node, 3, AArch64::ST1Threev4h_POST);
4282 return;
4283 } else if (VT == MVT::v8i16 || VT == MVT::v8f16) {
4284 SelectPostStore(Node, 3, AArch64::ST1Threev8h_POST);
4285 return;
4286 } else if (VT == MVT::v2i32 || VT == MVT::v2f32) {
4287 SelectPostStore(Node, 3, AArch64::ST1Threev2s_POST);
4288 return;
4289 } else if (VT == MVT::v4i32 || VT == MVT::v4f32) {
4290 SelectPostStore(Node, 3, AArch64::ST1Threev4s_POST);
4291 return;
4292 } else if (VT == MVT::v1i64 || VT == MVT::v1f64) {
4293 SelectPostStore(Node, 3, AArch64::ST1Threev1d_POST);
4294 return;
4295 } else if (VT == MVT::v2i64 || VT == MVT::v2f64) {
4296 SelectPostStore(Node, 3, AArch64::ST1Threev2d_POST);
4297 return;
4299 break;
4301 case AArch64ISD::ST1x4post: {
4302 VT = Node->getOperand(1).getValueType();
4303 if (VT == MVT::v8i8) {
4304 SelectPostStore(Node, 4, AArch64::ST1Fourv8b_POST);
4305 return;
4306 } else if (VT == MVT::v16i8) {
4307 SelectPostStore(Node, 4, AArch64::ST1Fourv16b_POST);
4308 return;
4309 } else if (VT == MVT::v4i16 || VT == MVT::v4f16) {
4310 SelectPostStore(Node, 4, AArch64::ST1Fourv4h_POST);
4311 return;
4312 } else if (VT == MVT::v8i16 || VT == MVT::v8f16) {
4313 SelectPostStore(Node, 4, AArch64::ST1Fourv8h_POST);
4314 return;
4315 } else if (VT == MVT::v2i32 || VT == MVT::v2f32) {
4316 SelectPostStore(Node, 4, AArch64::ST1Fourv2s_POST);
4317 return;
4318 } else if (VT == MVT::v4i32 || VT == MVT::v4f32) {
4319 SelectPostStore(Node, 4, AArch64::ST1Fourv4s_POST);
4320 return;
4321 } else if (VT == MVT::v1i64 || VT == MVT::v1f64) {
4322 SelectPostStore(Node, 4, AArch64::ST1Fourv1d_POST);
4323 return;
4324 } else if (VT == MVT::v2i64 || VT == MVT::v2f64) {
4325 SelectPostStore(Node, 4, AArch64::ST1Fourv2d_POST);
4326 return;
4328 break;
4330 case AArch64ISD::ST2LANEpost: {
4331 VT = Node->getOperand(1).getValueType();
4332 if (VT == MVT::v16i8 || VT == MVT::v8i8) {
4333 SelectPostStoreLane(Node, 2, AArch64::ST2i8_POST);
4334 return;
4335 } else if (VT == MVT::v8i16 || VT == MVT::v4i16 || VT == MVT::v4f16 ||
4336 VT == MVT::v8f16) {
4337 SelectPostStoreLane(Node, 2, AArch64::ST2i16_POST);
4338 return;
4339 } else if (VT == MVT::v4i32 || VT == MVT::v2i32 || VT == MVT::v4f32 ||
4340 VT == MVT::v2f32) {
4341 SelectPostStoreLane(Node, 2, AArch64::ST2i32_POST);
4342 return;
4343 } else if (VT == MVT::v2i64 || VT == MVT::v1i64 || VT == MVT::v2f64 ||
4344 VT == MVT::v1f64) {
4345 SelectPostStoreLane(Node, 2, AArch64::ST2i64_POST);
4346 return;
4348 break;
4350 case AArch64ISD::ST3LANEpost: {
4351 VT = Node->getOperand(1).getValueType();
4352 if (VT == MVT::v16i8 || VT == MVT::v8i8) {
4353 SelectPostStoreLane(Node, 3, AArch64::ST3i8_POST);
4354 return;
4355 } else if (VT == MVT::v8i16 || VT == MVT::v4i16 || VT == MVT::v4f16 ||
4356 VT == MVT::v8f16) {
4357 SelectPostStoreLane(Node, 3, AArch64::ST3i16_POST);
4358 return;
4359 } else if (VT == MVT::v4i32 || VT == MVT::v2i32 || VT == MVT::v4f32 ||
4360 VT == MVT::v2f32) {
4361 SelectPostStoreLane(Node, 3, AArch64::ST3i32_POST);
4362 return;
4363 } else if (VT == MVT::v2i64 || VT == MVT::v1i64 || VT == MVT::v2f64 ||
4364 VT == MVT::v1f64) {
4365 SelectPostStoreLane(Node, 3, AArch64::ST3i64_POST);
4366 return;
4368 break;
4370 case AArch64ISD::ST4LANEpost: {
4371 VT = Node->getOperand(1).getValueType();
4372 if (VT == MVT::v16i8 || VT == MVT::v8i8) {
4373 SelectPostStoreLane(Node, 4, AArch64::ST4i8_POST);
4374 return;
4375 } else if (VT == MVT::v8i16 || VT == MVT::v4i16 || VT == MVT::v4f16 ||
4376 VT == MVT::v8f16) {
4377 SelectPostStoreLane(Node, 4, AArch64::ST4i16_POST);
4378 return;
4379 } else if (VT == MVT::v4i32 || VT == MVT::v2i32 || VT == MVT::v4f32 ||
4380 VT == MVT::v2f32) {
4381 SelectPostStoreLane(Node, 4, AArch64::ST4i32_POST);
4382 return;
4383 } else if (VT == MVT::v2i64 || VT == MVT::v1i64 || VT == MVT::v2f64 ||
4384 VT == MVT::v1f64) {
4385 SelectPostStoreLane(Node, 4, AArch64::ST4i64_POST);
4386 return;
4388 break;
4392 // Select the default instruction
4393 SelectCode(Node);
4396 /// createAArch64ISelDag - This pass converts a legalized DAG into a
4397 /// AArch64-specific DAG, ready for instruction scheduling.
4398 FunctionPass *llvm::createAArch64ISelDag(AArch64TargetMachine &TM,
4399 CodeGenOpt::Level OptLevel) {
4400 return new AArch64DAGToDAGISel(TM, OptLevel);