1 //===-- AArch64ISelLowering.cpp - AArch64 DAG Lowering Implementation ----===//
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
7 //===----------------------------------------------------------------------===//
9 // This file implements the AArch64TargetLowering class.
11 //===----------------------------------------------------------------------===//
13 #include "AArch64ISelLowering.h"
14 #include "AArch64CallingConvention.h"
15 #include "AArch64ExpandImm.h"
16 #include "AArch64MachineFunctionInfo.h"
17 #include "AArch64PerfectShuffle.h"
18 #include "AArch64RegisterInfo.h"
19 #include "AArch64Subtarget.h"
20 #include "MCTargetDesc/AArch64AddressingModes.h"
21 #include "Utils/AArch64BaseInfo.h"
22 #include "llvm/ADT/APFloat.h"
23 #include "llvm/ADT/APInt.h"
24 #include "llvm/ADT/ArrayRef.h"
25 #include "llvm/ADT/STLExtras.h"
26 #include "llvm/ADT/SmallSet.h"
27 #include "llvm/ADT/SmallVector.h"
28 #include "llvm/ADT/Statistic.h"
29 #include "llvm/ADT/StringRef.h"
30 #include "llvm/ADT/StringSwitch.h"
31 #include "llvm/ADT/Triple.h"
32 #include "llvm/ADT/Twine.h"
33 #include "llvm/Analysis/VectorUtils.h"
34 #include "llvm/CodeGen/CallingConvLower.h"
35 #include "llvm/CodeGen/MachineBasicBlock.h"
36 #include "llvm/CodeGen/MachineFrameInfo.h"
37 #include "llvm/CodeGen/MachineFunction.h"
38 #include "llvm/CodeGen/MachineInstr.h"
39 #include "llvm/CodeGen/MachineInstrBuilder.h"
40 #include "llvm/CodeGen/MachineMemOperand.h"
41 #include "llvm/CodeGen/MachineRegisterInfo.h"
42 #include "llvm/CodeGen/RuntimeLibcalls.h"
43 #include "llvm/CodeGen/SelectionDAG.h"
44 #include "llvm/CodeGen/SelectionDAGNodes.h"
45 #include "llvm/CodeGen/TargetCallingConv.h"
46 #include "llvm/CodeGen/TargetInstrInfo.h"
47 #include "llvm/CodeGen/ValueTypes.h"
48 #include "llvm/IR/Attributes.h"
49 #include "llvm/IR/Constants.h"
50 #include "llvm/IR/DataLayout.h"
51 #include "llvm/IR/DebugLoc.h"
52 #include "llvm/IR/DerivedTypes.h"
53 #include "llvm/IR/Function.h"
54 #include "llvm/IR/GetElementPtrTypeIterator.h"
55 #include "llvm/IR/GlobalValue.h"
56 #include "llvm/IR/IRBuilder.h"
57 #include "llvm/IR/Instruction.h"
58 #include "llvm/IR/Instructions.h"
59 #include "llvm/IR/IntrinsicInst.h"
60 #include "llvm/IR/Intrinsics.h"
61 #include "llvm/IR/IntrinsicsAArch64.h"
62 #include "llvm/IR/Module.h"
63 #include "llvm/IR/OperandTraits.h"
64 #include "llvm/IR/PatternMatch.h"
65 #include "llvm/IR/Type.h"
66 #include "llvm/IR/Use.h"
67 #include "llvm/IR/Value.h"
68 #include "llvm/MC/MCRegisterInfo.h"
69 #include "llvm/Support/Casting.h"
70 #include "llvm/Support/CodeGen.h"
71 #include "llvm/Support/CommandLine.h"
72 #include "llvm/Support/Compiler.h"
73 #include "llvm/Support/Debug.h"
74 #include "llvm/Support/ErrorHandling.h"
75 #include "llvm/Support/KnownBits.h"
76 #include "llvm/Support/MachineValueType.h"
77 #include "llvm/Support/MathExtras.h"
78 #include "llvm/Support/raw_ostream.h"
79 #include "llvm/Target/TargetMachine.h"
80 #include "llvm/Target/TargetOptions.h"
94 using namespace llvm::PatternMatch
;
96 #define DEBUG_TYPE "aarch64-lower"
98 STATISTIC(NumTailCalls
, "Number of tail calls");
99 STATISTIC(NumShiftInserts
, "Number of vector shift inserts");
100 STATISTIC(NumOptimizedImms
, "Number of times immediates were optimized");
103 EnableAArch64SlrGeneration("aarch64-shift-insert-generation", cl::Hidden
,
104 cl::desc("Allow AArch64 SLI/SRI formation"),
107 // FIXME: The necessary dtprel relocations don't seem to be supported
108 // well in the GNU bfd and gold linkers at the moment. Therefore, by
109 // default, for now, fall back to GeneralDynamic code generation.
110 cl::opt
<bool> EnableAArch64ELFLocalDynamicTLSGeneration(
111 "aarch64-elf-ldtls-generation", cl::Hidden
,
112 cl::desc("Allow AArch64 Local Dynamic TLS code generation"),
116 EnableOptimizeLogicalImm("aarch64-enable-logical-imm", cl::Hidden
,
117 cl::desc("Enable AArch64 logical imm instruction "
121 /// Value type used for condition codes.
122 static const MVT MVT_CC
= MVT::i32
;
124 AArch64TargetLowering::AArch64TargetLowering(const TargetMachine
&TM
,
125 const AArch64Subtarget
&STI
)
126 : TargetLowering(TM
), Subtarget(&STI
) {
127 // AArch64 doesn't have comparisons which set GPRs or setcc instructions, so
128 // we have to make something up. Arbitrarily, choose ZeroOrOne.
129 setBooleanContents(ZeroOrOneBooleanContent
);
130 // When comparing vectors the result sets the different elements in the
131 // vector to all-one or all-zero.
132 setBooleanVectorContents(ZeroOrNegativeOneBooleanContent
);
134 // Set up the register classes.
135 addRegisterClass(MVT::i32
, &AArch64::GPR32allRegClass
);
136 addRegisterClass(MVT::i64
, &AArch64::GPR64allRegClass
);
138 if (Subtarget
->hasFPARMv8()) {
139 addRegisterClass(MVT::f16
, &AArch64::FPR16RegClass
);
140 addRegisterClass(MVT::f32
, &AArch64::FPR32RegClass
);
141 addRegisterClass(MVT::f64
, &AArch64::FPR64RegClass
);
142 addRegisterClass(MVT::f128
, &AArch64::FPR128RegClass
);
145 if (Subtarget
->hasNEON()) {
146 addRegisterClass(MVT::v16i8
, &AArch64::FPR8RegClass
);
147 addRegisterClass(MVT::v8i16
, &AArch64::FPR16RegClass
);
148 // Someone set us up the NEON.
149 addDRTypeForNEON(MVT::v2f32
);
150 addDRTypeForNEON(MVT::v8i8
);
151 addDRTypeForNEON(MVT::v4i16
);
152 addDRTypeForNEON(MVT::v2i32
);
153 addDRTypeForNEON(MVT::v1i64
);
154 addDRTypeForNEON(MVT::v1f64
);
155 addDRTypeForNEON(MVT::v4f16
);
157 addQRTypeForNEON(MVT::v4f32
);
158 addQRTypeForNEON(MVT::v2f64
);
159 addQRTypeForNEON(MVT::v16i8
);
160 addQRTypeForNEON(MVT::v8i16
);
161 addQRTypeForNEON(MVT::v4i32
);
162 addQRTypeForNEON(MVT::v2i64
);
163 addQRTypeForNEON(MVT::v8f16
);
166 if (Subtarget
->hasSVE()) {
167 // Add legal sve predicate types
168 addRegisterClass(MVT::nxv2i1
, &AArch64::PPRRegClass
);
169 addRegisterClass(MVT::nxv4i1
, &AArch64::PPRRegClass
);
170 addRegisterClass(MVT::nxv8i1
, &AArch64::PPRRegClass
);
171 addRegisterClass(MVT::nxv16i1
, &AArch64::PPRRegClass
);
173 // Add legal sve data types
174 addRegisterClass(MVT::nxv16i8
, &AArch64::ZPRRegClass
);
175 addRegisterClass(MVT::nxv8i16
, &AArch64::ZPRRegClass
);
176 addRegisterClass(MVT::nxv4i32
, &AArch64::ZPRRegClass
);
177 addRegisterClass(MVT::nxv2i64
, &AArch64::ZPRRegClass
);
179 addRegisterClass(MVT::nxv2f16
, &AArch64::ZPRRegClass
);
180 addRegisterClass(MVT::nxv4f16
, &AArch64::ZPRRegClass
);
181 addRegisterClass(MVT::nxv8f16
, &AArch64::ZPRRegClass
);
182 addRegisterClass(MVT::nxv2f32
, &AArch64::ZPRRegClass
);
183 addRegisterClass(MVT::nxv4f32
, &AArch64::ZPRRegClass
);
184 addRegisterClass(MVT::nxv2f64
, &AArch64::ZPRRegClass
);
186 for (auto VT
: { MVT::nxv16i8
, MVT::nxv8i16
, MVT::nxv4i32
, MVT::nxv2i64
}) {
187 setOperationAction(ISD::SADDSAT
, VT
, Legal
);
188 setOperationAction(ISD::UADDSAT
, VT
, Legal
);
189 setOperationAction(ISD::SSUBSAT
, VT
, Legal
);
190 setOperationAction(ISD::USUBSAT
, VT
, Legal
);
191 setOperationAction(ISD::SMAX
, VT
, Legal
);
192 setOperationAction(ISD::UMAX
, VT
, Legal
);
193 setOperationAction(ISD::SMIN
, VT
, Legal
);
194 setOperationAction(ISD::UMIN
, VT
, Legal
);
198 { MVT::nxv2i8
, MVT::nxv2i16
, MVT::nxv2i32
, MVT::nxv2i64
, MVT::nxv4i8
,
199 MVT::nxv4i16
, MVT::nxv4i32
, MVT::nxv8i8
, MVT::nxv8i16
})
200 setOperationAction(ISD::SIGN_EXTEND_INREG
, VT
, Legal
);
203 // Compute derived properties from the register classes
204 computeRegisterProperties(Subtarget
->getRegisterInfo());
206 // Provide all sorts of operation actions
207 setOperationAction(ISD::GlobalAddress
, MVT::i64
, Custom
);
208 setOperationAction(ISD::GlobalTLSAddress
, MVT::i64
, Custom
);
209 setOperationAction(ISD::SETCC
, MVT::i32
, Custom
);
210 setOperationAction(ISD::SETCC
, MVT::i64
, Custom
);
211 setOperationAction(ISD::SETCC
, MVT::f16
, Custom
);
212 setOperationAction(ISD::SETCC
, MVT::f32
, Custom
);
213 setOperationAction(ISD::SETCC
, MVT::f64
, Custom
);
214 setOperationAction(ISD::BITREVERSE
, MVT::i32
, Legal
);
215 setOperationAction(ISD::BITREVERSE
, MVT::i64
, Legal
);
216 setOperationAction(ISD::BRCOND
, MVT::Other
, Expand
);
217 setOperationAction(ISD::BR_CC
, MVT::i32
, Custom
);
218 setOperationAction(ISD::BR_CC
, MVT::i64
, Custom
);
219 setOperationAction(ISD::BR_CC
, MVT::f16
, Custom
);
220 setOperationAction(ISD::BR_CC
, MVT::f32
, Custom
);
221 setOperationAction(ISD::BR_CC
, MVT::f64
, Custom
);
222 setOperationAction(ISD::SELECT
, MVT::i32
, Custom
);
223 setOperationAction(ISD::SELECT
, MVT::i64
, Custom
);
224 setOperationAction(ISD::SELECT
, MVT::f16
, Custom
);
225 setOperationAction(ISD::SELECT
, MVT::f32
, Custom
);
226 setOperationAction(ISD::SELECT
, MVT::f64
, Custom
);
227 setOperationAction(ISD::SELECT_CC
, MVT::i32
, Custom
);
228 setOperationAction(ISD::SELECT_CC
, MVT::i64
, Custom
);
229 setOperationAction(ISD::SELECT_CC
, MVT::f16
, Custom
);
230 setOperationAction(ISD::SELECT_CC
, MVT::f32
, Custom
);
231 setOperationAction(ISD::SELECT_CC
, MVT::f64
, Custom
);
232 setOperationAction(ISD::BR_JT
, MVT::Other
, Custom
);
233 setOperationAction(ISD::JumpTable
, MVT::i64
, Custom
);
235 setOperationAction(ISD::SHL_PARTS
, MVT::i64
, Custom
);
236 setOperationAction(ISD::SRA_PARTS
, MVT::i64
, Custom
);
237 setOperationAction(ISD::SRL_PARTS
, MVT::i64
, Custom
);
239 setOperationAction(ISD::FREM
, MVT::f32
, Expand
);
240 setOperationAction(ISD::FREM
, MVT::f64
, Expand
);
241 setOperationAction(ISD::FREM
, MVT::f80
, Expand
);
243 setOperationAction(ISD::BUILD_PAIR
, MVT::i64
, Expand
);
245 // Custom lowering hooks are needed for XOR
246 // to fold it into CSINC/CSINV.
247 setOperationAction(ISD::XOR
, MVT::i32
, Custom
);
248 setOperationAction(ISD::XOR
, MVT::i64
, Custom
);
250 // Virtually no operation on f128 is legal, but LLVM can't expand them when
251 // there's a valid register class, so we need custom operations in most cases.
252 setOperationAction(ISD::FABS
, MVT::f128
, Expand
);
253 setOperationAction(ISD::FADD
, MVT::f128
, Custom
);
254 setOperationAction(ISD::FCOPYSIGN
, MVT::f128
, Expand
);
255 setOperationAction(ISD::FCOS
, MVT::f128
, Expand
);
256 setOperationAction(ISD::FDIV
, MVT::f128
, Custom
);
257 setOperationAction(ISD::FMA
, MVT::f128
, Expand
);
258 setOperationAction(ISD::FMUL
, MVT::f128
, Custom
);
259 setOperationAction(ISD::FNEG
, MVT::f128
, Expand
);
260 setOperationAction(ISD::FPOW
, MVT::f128
, Expand
);
261 setOperationAction(ISD::FREM
, MVT::f128
, Expand
);
262 setOperationAction(ISD::FRINT
, MVT::f128
, Expand
);
263 setOperationAction(ISD::FSIN
, MVT::f128
, Expand
);
264 setOperationAction(ISD::FSINCOS
, MVT::f128
, Expand
);
265 setOperationAction(ISD::FSQRT
, MVT::f128
, Expand
);
266 setOperationAction(ISD::FSUB
, MVT::f128
, Custom
);
267 setOperationAction(ISD::FTRUNC
, MVT::f128
, Expand
);
268 setOperationAction(ISD::SETCC
, MVT::f128
, Custom
);
269 setOperationAction(ISD::BR_CC
, MVT::f128
, Custom
);
270 setOperationAction(ISD::SELECT
, MVT::f128
, Custom
);
271 setOperationAction(ISD::SELECT_CC
, MVT::f128
, Custom
);
272 setOperationAction(ISD::FP_EXTEND
, MVT::f128
, Custom
);
274 // Lowering for many of the conversions is actually specified by the non-f128
275 // type. The LowerXXX function will be trivial when f128 isn't involved.
276 setOperationAction(ISD::FP_TO_SINT
, MVT::i32
, Custom
);
277 setOperationAction(ISD::FP_TO_SINT
, MVT::i64
, Custom
);
278 setOperationAction(ISD::FP_TO_SINT
, MVT::i128
, Custom
);
279 setOperationAction(ISD::FP_TO_UINT
, MVT::i32
, Custom
);
280 setOperationAction(ISD::FP_TO_UINT
, MVT::i64
, Custom
);
281 setOperationAction(ISD::FP_TO_UINT
, MVT::i128
, Custom
);
282 setOperationAction(ISD::SINT_TO_FP
, MVT::i32
, Custom
);
283 setOperationAction(ISD::SINT_TO_FP
, MVT::i64
, Custom
);
284 setOperationAction(ISD::SINT_TO_FP
, MVT::i128
, Custom
);
285 setOperationAction(ISD::UINT_TO_FP
, MVT::i32
, Custom
);
286 setOperationAction(ISD::UINT_TO_FP
, MVT::i64
, Custom
);
287 setOperationAction(ISD::UINT_TO_FP
, MVT::i128
, Custom
);
288 setOperationAction(ISD::FP_ROUND
, MVT::f32
, Custom
);
289 setOperationAction(ISD::FP_ROUND
, MVT::f64
, Custom
);
291 // Variable arguments.
292 setOperationAction(ISD::VASTART
, MVT::Other
, Custom
);
293 setOperationAction(ISD::VAARG
, MVT::Other
, Custom
);
294 setOperationAction(ISD::VACOPY
, MVT::Other
, Custom
);
295 setOperationAction(ISD::VAEND
, MVT::Other
, Expand
);
297 // Variable-sized objects.
298 setOperationAction(ISD::STACKSAVE
, MVT::Other
, Expand
);
299 setOperationAction(ISD::STACKRESTORE
, MVT::Other
, Expand
);
301 if (Subtarget
->isTargetWindows())
302 setOperationAction(ISD::DYNAMIC_STACKALLOC
, MVT::i64
, Custom
);
304 setOperationAction(ISD::DYNAMIC_STACKALLOC
, MVT::i64
, Expand
);
306 // Constant pool entries
307 setOperationAction(ISD::ConstantPool
, MVT::i64
, Custom
);
310 setOperationAction(ISD::BlockAddress
, MVT::i64
, Custom
);
312 // Add/Sub overflow ops with MVT::Glues are lowered to NZCV dependences.
313 setOperationAction(ISD::ADDC
, MVT::i32
, Custom
);
314 setOperationAction(ISD::ADDE
, MVT::i32
, Custom
);
315 setOperationAction(ISD::SUBC
, MVT::i32
, Custom
);
316 setOperationAction(ISD::SUBE
, MVT::i32
, Custom
);
317 setOperationAction(ISD::ADDC
, MVT::i64
, Custom
);
318 setOperationAction(ISD::ADDE
, MVT::i64
, Custom
);
319 setOperationAction(ISD::SUBC
, MVT::i64
, Custom
);
320 setOperationAction(ISD::SUBE
, MVT::i64
, Custom
);
322 // AArch64 lacks both left-rotate and popcount instructions.
323 setOperationAction(ISD::ROTL
, MVT::i32
, Expand
);
324 setOperationAction(ISD::ROTL
, MVT::i64
, Expand
);
325 for (MVT VT
: MVT::fixedlen_vector_valuetypes()) {
326 setOperationAction(ISD::ROTL
, VT
, Expand
);
327 setOperationAction(ISD::ROTR
, VT
, Expand
);
330 // AArch64 doesn't have {U|S}MUL_LOHI.
331 setOperationAction(ISD::UMUL_LOHI
, MVT::i64
, Expand
);
332 setOperationAction(ISD::SMUL_LOHI
, MVT::i64
, Expand
);
334 setOperationAction(ISD::CTPOP
, MVT::i32
, Custom
);
335 setOperationAction(ISD::CTPOP
, MVT::i64
, Custom
);
337 setOperationAction(ISD::SDIVREM
, MVT::i32
, Expand
);
338 setOperationAction(ISD::SDIVREM
, MVT::i64
, Expand
);
339 for (MVT VT
: MVT::fixedlen_vector_valuetypes()) {
340 setOperationAction(ISD::SDIVREM
, VT
, Expand
);
341 setOperationAction(ISD::UDIVREM
, VT
, Expand
);
343 setOperationAction(ISD::SREM
, MVT::i32
, Expand
);
344 setOperationAction(ISD::SREM
, MVT::i64
, Expand
);
345 setOperationAction(ISD::UDIVREM
, MVT::i32
, Expand
);
346 setOperationAction(ISD::UDIVREM
, MVT::i64
, Expand
);
347 setOperationAction(ISD::UREM
, MVT::i32
, Expand
);
348 setOperationAction(ISD::UREM
, MVT::i64
, Expand
);
350 // Custom lower Add/Sub/Mul with overflow.
351 setOperationAction(ISD::SADDO
, MVT::i32
, Custom
);
352 setOperationAction(ISD::SADDO
, MVT::i64
, Custom
);
353 setOperationAction(ISD::UADDO
, MVT::i32
, Custom
);
354 setOperationAction(ISD::UADDO
, MVT::i64
, Custom
);
355 setOperationAction(ISD::SSUBO
, MVT::i32
, Custom
);
356 setOperationAction(ISD::SSUBO
, MVT::i64
, Custom
);
357 setOperationAction(ISD::USUBO
, MVT::i32
, Custom
);
358 setOperationAction(ISD::USUBO
, MVT::i64
, Custom
);
359 setOperationAction(ISD::SMULO
, MVT::i32
, Custom
);
360 setOperationAction(ISD::SMULO
, MVT::i64
, Custom
);
361 setOperationAction(ISD::UMULO
, MVT::i32
, Custom
);
362 setOperationAction(ISD::UMULO
, MVT::i64
, Custom
);
364 setOperationAction(ISD::FSIN
, MVT::f32
, Expand
);
365 setOperationAction(ISD::FSIN
, MVT::f64
, Expand
);
366 setOperationAction(ISD::FCOS
, MVT::f32
, Expand
);
367 setOperationAction(ISD::FCOS
, MVT::f64
, Expand
);
368 setOperationAction(ISD::FPOW
, MVT::f32
, Expand
);
369 setOperationAction(ISD::FPOW
, MVT::f64
, Expand
);
370 setOperationAction(ISD::FCOPYSIGN
, MVT::f64
, Custom
);
371 setOperationAction(ISD::FCOPYSIGN
, MVT::f32
, Custom
);
372 if (Subtarget
->hasFullFP16())
373 setOperationAction(ISD::FCOPYSIGN
, MVT::f16
, Custom
);
375 setOperationAction(ISD::FCOPYSIGN
, MVT::f16
, Promote
);
377 setOperationAction(ISD::FREM
, MVT::f16
, Promote
);
378 setOperationAction(ISD::FREM
, MVT::v4f16
, Expand
);
379 setOperationAction(ISD::FREM
, MVT::v8f16
, Expand
);
380 setOperationAction(ISD::FPOW
, MVT::f16
, Promote
);
381 setOperationAction(ISD::FPOW
, MVT::v4f16
, Expand
);
382 setOperationAction(ISD::FPOW
, MVT::v8f16
, Expand
);
383 setOperationAction(ISD::FPOWI
, MVT::f16
, Promote
);
384 setOperationAction(ISD::FPOWI
, MVT::v4f16
, Expand
);
385 setOperationAction(ISD::FPOWI
, MVT::v8f16
, Expand
);
386 setOperationAction(ISD::FCOS
, MVT::f16
, Promote
);
387 setOperationAction(ISD::FCOS
, MVT::v4f16
, Expand
);
388 setOperationAction(ISD::FCOS
, MVT::v8f16
, Expand
);
389 setOperationAction(ISD::FSIN
, MVT::f16
, Promote
);
390 setOperationAction(ISD::FSIN
, MVT::v4f16
, Expand
);
391 setOperationAction(ISD::FSIN
, MVT::v8f16
, Expand
);
392 setOperationAction(ISD::FSINCOS
, MVT::f16
, Promote
);
393 setOperationAction(ISD::FSINCOS
, MVT::v4f16
, Expand
);
394 setOperationAction(ISD::FSINCOS
, MVT::v8f16
, Expand
);
395 setOperationAction(ISD::FEXP
, MVT::f16
, Promote
);
396 setOperationAction(ISD::FEXP
, MVT::v4f16
, Expand
);
397 setOperationAction(ISD::FEXP
, MVT::v8f16
, Expand
);
398 setOperationAction(ISD::FEXP2
, MVT::f16
, Promote
);
399 setOperationAction(ISD::FEXP2
, MVT::v4f16
, Expand
);
400 setOperationAction(ISD::FEXP2
, MVT::v8f16
, Expand
);
401 setOperationAction(ISD::FLOG
, MVT::f16
, Promote
);
402 setOperationAction(ISD::FLOG
, MVT::v4f16
, Expand
);
403 setOperationAction(ISD::FLOG
, MVT::v8f16
, Expand
);
404 setOperationAction(ISD::FLOG2
, MVT::f16
, Promote
);
405 setOperationAction(ISD::FLOG2
, MVT::v4f16
, Expand
);
406 setOperationAction(ISD::FLOG2
, MVT::v8f16
, Expand
);
407 setOperationAction(ISD::FLOG10
, MVT::f16
, Promote
);
408 setOperationAction(ISD::FLOG10
, MVT::v4f16
, Expand
);
409 setOperationAction(ISD::FLOG10
, MVT::v8f16
, Expand
);
411 if (!Subtarget
->hasFullFP16()) {
412 setOperationAction(ISD::SELECT
, MVT::f16
, Promote
);
413 setOperationAction(ISD::SELECT_CC
, MVT::f16
, Promote
);
414 setOperationAction(ISD::SETCC
, MVT::f16
, Promote
);
415 setOperationAction(ISD::BR_CC
, MVT::f16
, Promote
);
416 setOperationAction(ISD::FADD
, MVT::f16
, Promote
);
417 setOperationAction(ISD::FSUB
, MVT::f16
, Promote
);
418 setOperationAction(ISD::FMUL
, MVT::f16
, Promote
);
419 setOperationAction(ISD::FDIV
, MVT::f16
, Promote
);
420 setOperationAction(ISD::FMA
, MVT::f16
, Promote
);
421 setOperationAction(ISD::FNEG
, MVT::f16
, Promote
);
422 setOperationAction(ISD::FABS
, MVT::f16
, Promote
);
423 setOperationAction(ISD::FCEIL
, MVT::f16
, Promote
);
424 setOperationAction(ISD::FSQRT
, MVT::f16
, Promote
);
425 setOperationAction(ISD::FFLOOR
, MVT::f16
, Promote
);
426 setOperationAction(ISD::FNEARBYINT
, MVT::f16
, Promote
);
427 setOperationAction(ISD::FRINT
, MVT::f16
, Promote
);
428 setOperationAction(ISD::FROUND
, MVT::f16
, Promote
);
429 setOperationAction(ISD::FTRUNC
, MVT::f16
, Promote
);
430 setOperationAction(ISD::FMINNUM
, MVT::f16
, Promote
);
431 setOperationAction(ISD::FMAXNUM
, MVT::f16
, Promote
);
432 setOperationAction(ISD::FMINIMUM
, MVT::f16
, Promote
);
433 setOperationAction(ISD::FMAXIMUM
, MVT::f16
, Promote
);
435 // promote v4f16 to v4f32 when that is known to be safe.
436 setOperationAction(ISD::FADD
, MVT::v4f16
, Promote
);
437 setOperationAction(ISD::FSUB
, MVT::v4f16
, Promote
);
438 setOperationAction(ISD::FMUL
, MVT::v4f16
, Promote
);
439 setOperationAction(ISD::FDIV
, MVT::v4f16
, Promote
);
440 AddPromotedToType(ISD::FADD
, MVT::v4f16
, MVT::v4f32
);
441 AddPromotedToType(ISD::FSUB
, MVT::v4f16
, MVT::v4f32
);
442 AddPromotedToType(ISD::FMUL
, MVT::v4f16
, MVT::v4f32
);
443 AddPromotedToType(ISD::FDIV
, MVT::v4f16
, MVT::v4f32
);
445 setOperationAction(ISD::FABS
, MVT::v4f16
, Expand
);
446 setOperationAction(ISD::FNEG
, MVT::v4f16
, Expand
);
447 setOperationAction(ISD::FROUND
, MVT::v4f16
, Expand
);
448 setOperationAction(ISD::FMA
, MVT::v4f16
, Expand
);
449 setOperationAction(ISD::SETCC
, MVT::v4f16
, Expand
);
450 setOperationAction(ISD::BR_CC
, MVT::v4f16
, Expand
);
451 setOperationAction(ISD::SELECT
, MVT::v4f16
, Expand
);
452 setOperationAction(ISD::SELECT_CC
, MVT::v4f16
, Expand
);
453 setOperationAction(ISD::FTRUNC
, MVT::v4f16
, Expand
);
454 setOperationAction(ISD::FCOPYSIGN
, MVT::v4f16
, Expand
);
455 setOperationAction(ISD::FFLOOR
, MVT::v4f16
, Expand
);
456 setOperationAction(ISD::FCEIL
, MVT::v4f16
, Expand
);
457 setOperationAction(ISD::FRINT
, MVT::v4f16
, Expand
);
458 setOperationAction(ISD::FNEARBYINT
, MVT::v4f16
, Expand
);
459 setOperationAction(ISD::FSQRT
, MVT::v4f16
, Expand
);
461 setOperationAction(ISD::FABS
, MVT::v8f16
, Expand
);
462 setOperationAction(ISD::FADD
, MVT::v8f16
, Expand
);
463 setOperationAction(ISD::FCEIL
, MVT::v8f16
, Expand
);
464 setOperationAction(ISD::FCOPYSIGN
, MVT::v8f16
, Expand
);
465 setOperationAction(ISD::FDIV
, MVT::v8f16
, Expand
);
466 setOperationAction(ISD::FFLOOR
, MVT::v8f16
, Expand
);
467 setOperationAction(ISD::FMA
, MVT::v8f16
, Expand
);
468 setOperationAction(ISD::FMUL
, MVT::v8f16
, Expand
);
469 setOperationAction(ISD::FNEARBYINT
, MVT::v8f16
, Expand
);
470 setOperationAction(ISD::FNEG
, MVT::v8f16
, Expand
);
471 setOperationAction(ISD::FROUND
, MVT::v8f16
, Expand
);
472 setOperationAction(ISD::FRINT
, MVT::v8f16
, Expand
);
473 setOperationAction(ISD::FSQRT
, MVT::v8f16
, Expand
);
474 setOperationAction(ISD::FSUB
, MVT::v8f16
, Expand
);
475 setOperationAction(ISD::FTRUNC
, MVT::v8f16
, Expand
);
476 setOperationAction(ISD::SETCC
, MVT::v8f16
, Expand
);
477 setOperationAction(ISD::BR_CC
, MVT::v8f16
, Expand
);
478 setOperationAction(ISD::SELECT
, MVT::v8f16
, Expand
);
479 setOperationAction(ISD::SELECT_CC
, MVT::v8f16
, Expand
);
480 setOperationAction(ISD::FP_EXTEND
, MVT::v8f16
, Expand
);
483 // AArch64 has implementations of a lot of rounding-like FP operations.
484 for (MVT Ty
: {MVT::f32
, MVT::f64
}) {
485 setOperationAction(ISD::FFLOOR
, Ty
, Legal
);
486 setOperationAction(ISD::FNEARBYINT
, Ty
, Legal
);
487 setOperationAction(ISD::FCEIL
, Ty
, Legal
);
488 setOperationAction(ISD::FRINT
, Ty
, Legal
);
489 setOperationAction(ISD::FTRUNC
, Ty
, Legal
);
490 setOperationAction(ISD::FROUND
, Ty
, Legal
);
491 setOperationAction(ISD::FMINNUM
, Ty
, Legal
);
492 setOperationAction(ISD::FMAXNUM
, Ty
, Legal
);
493 setOperationAction(ISD::FMINIMUM
, Ty
, Legal
);
494 setOperationAction(ISD::FMAXIMUM
, Ty
, Legal
);
495 setOperationAction(ISD::LROUND
, Ty
, Legal
);
496 setOperationAction(ISD::LLROUND
, Ty
, Legal
);
497 setOperationAction(ISD::LRINT
, Ty
, Legal
);
498 setOperationAction(ISD::LLRINT
, Ty
, Legal
);
501 if (Subtarget
->hasFullFP16()) {
502 setOperationAction(ISD::FNEARBYINT
, MVT::f16
, Legal
);
503 setOperationAction(ISD::FFLOOR
, MVT::f16
, Legal
);
504 setOperationAction(ISD::FCEIL
, MVT::f16
, Legal
);
505 setOperationAction(ISD::FRINT
, MVT::f16
, Legal
);
506 setOperationAction(ISD::FTRUNC
, MVT::f16
, Legal
);
507 setOperationAction(ISD::FROUND
, MVT::f16
, Legal
);
508 setOperationAction(ISD::FMINNUM
, MVT::f16
, Legal
);
509 setOperationAction(ISD::FMAXNUM
, MVT::f16
, Legal
);
510 setOperationAction(ISD::FMINIMUM
, MVT::f16
, Legal
);
511 setOperationAction(ISD::FMAXIMUM
, MVT::f16
, Legal
);
514 setOperationAction(ISD::PREFETCH
, MVT::Other
, Custom
);
516 setOperationAction(ISD::FLT_ROUNDS_
, MVT::i32
, Custom
);
518 setOperationAction(ISD::ATOMIC_CMP_SWAP
, MVT::i128
, Custom
);
519 setOperationAction(ISD::ATOMIC_LOAD_SUB
, MVT::i32
, Custom
);
520 setOperationAction(ISD::ATOMIC_LOAD_SUB
, MVT::i64
, Custom
);
521 setOperationAction(ISD::ATOMIC_LOAD_AND
, MVT::i32
, Custom
);
522 setOperationAction(ISD::ATOMIC_LOAD_AND
, MVT::i64
, Custom
);
524 // 128-bit loads and stores can be done without expanding
525 setOperationAction(ISD::LOAD
, MVT::i128
, Custom
);
526 setOperationAction(ISD::STORE
, MVT::i128
, Custom
);
528 // 256 bit non-temporal stores can be lowered to STNP. Do this as part of the
529 // custom lowering, as there are no un-paired non-temporal stores and
530 // legalization will break up 256 bit inputs.
531 setOperationAction(ISD::STORE
, MVT::v32i8
, Custom
);
532 setOperationAction(ISD::STORE
, MVT::v16i16
, Custom
);
533 setOperationAction(ISD::STORE
, MVT::v16f16
, Custom
);
534 setOperationAction(ISD::STORE
, MVT::v8i32
, Custom
);
535 setOperationAction(ISD::STORE
, MVT::v8f32
, Custom
);
536 setOperationAction(ISD::STORE
, MVT::v4f64
, Custom
);
537 setOperationAction(ISD::STORE
, MVT::v4i64
, Custom
);
539 // Lower READCYCLECOUNTER using an mrs from PMCCNTR_EL0.
540 // This requires the Performance Monitors extension.
541 if (Subtarget
->hasPerfMon())
542 setOperationAction(ISD::READCYCLECOUNTER
, MVT::i64
, Legal
);
544 if (getLibcallName(RTLIB::SINCOS_STRET_F32
) != nullptr &&
545 getLibcallName(RTLIB::SINCOS_STRET_F64
) != nullptr) {
546 // Issue __sincos_stret if available.
547 setOperationAction(ISD::FSINCOS
, MVT::f64
, Custom
);
548 setOperationAction(ISD::FSINCOS
, MVT::f32
, Custom
);
550 setOperationAction(ISD::FSINCOS
, MVT::f64
, Expand
);
551 setOperationAction(ISD::FSINCOS
, MVT::f32
, Expand
);
554 if (Subtarget
->getTargetTriple().isOSMSVCRT()) {
555 // MSVCRT doesn't have powi; fall back to pow
556 setLibcallName(RTLIB::POWI_F32
, nullptr);
557 setLibcallName(RTLIB::POWI_F64
, nullptr);
560 // Make floating-point constants legal for the large code model, so they don't
561 // become loads from the constant pool.
562 if (Subtarget
->isTargetMachO() && TM
.getCodeModel() == CodeModel::Large
) {
563 setOperationAction(ISD::ConstantFP
, MVT::f32
, Legal
);
564 setOperationAction(ISD::ConstantFP
, MVT::f64
, Legal
);
567 // AArch64 does not have floating-point extending loads, i1 sign-extending
568 // load, floating-point truncating stores, or v2i32->v2i16 truncating store.
569 for (MVT VT
: MVT::fp_valuetypes()) {
570 setLoadExtAction(ISD::EXTLOAD
, VT
, MVT::f16
, Expand
);
571 setLoadExtAction(ISD::EXTLOAD
, VT
, MVT::f32
, Expand
);
572 setLoadExtAction(ISD::EXTLOAD
, VT
, MVT::f64
, Expand
);
573 setLoadExtAction(ISD::EXTLOAD
, VT
, MVT::f80
, Expand
);
575 for (MVT VT
: MVT::integer_valuetypes())
576 setLoadExtAction(ISD::SEXTLOAD
, VT
, MVT::i1
, Expand
);
578 setTruncStoreAction(MVT::f32
, MVT::f16
, Expand
);
579 setTruncStoreAction(MVT::f64
, MVT::f32
, Expand
);
580 setTruncStoreAction(MVT::f64
, MVT::f16
, Expand
);
581 setTruncStoreAction(MVT::f128
, MVT::f80
, Expand
);
582 setTruncStoreAction(MVT::f128
, MVT::f64
, Expand
);
583 setTruncStoreAction(MVT::f128
, MVT::f32
, Expand
);
584 setTruncStoreAction(MVT::f128
, MVT::f16
, Expand
);
586 setOperationAction(ISD::BITCAST
, MVT::i16
, Custom
);
587 setOperationAction(ISD::BITCAST
, MVT::f16
, Custom
);
589 // Indexed loads and stores are supported.
590 for (unsigned im
= (unsigned)ISD::PRE_INC
;
591 im
!= (unsigned)ISD::LAST_INDEXED_MODE
; ++im
) {
592 setIndexedLoadAction(im
, MVT::i8
, Legal
);
593 setIndexedLoadAction(im
, MVT::i16
, Legal
);
594 setIndexedLoadAction(im
, MVT::i32
, Legal
);
595 setIndexedLoadAction(im
, MVT::i64
, Legal
);
596 setIndexedLoadAction(im
, MVT::f64
, Legal
);
597 setIndexedLoadAction(im
, MVT::f32
, Legal
);
598 setIndexedLoadAction(im
, MVT::f16
, Legal
);
599 setIndexedStoreAction(im
, MVT::i8
, Legal
);
600 setIndexedStoreAction(im
, MVT::i16
, Legal
);
601 setIndexedStoreAction(im
, MVT::i32
, Legal
);
602 setIndexedStoreAction(im
, MVT::i64
, Legal
);
603 setIndexedStoreAction(im
, MVT::f64
, Legal
);
604 setIndexedStoreAction(im
, MVT::f32
, Legal
);
605 setIndexedStoreAction(im
, MVT::f16
, Legal
);
609 setOperationAction(ISD::TRAP
, MVT::Other
, Legal
);
610 if (Subtarget
->isTargetWindows())
611 setOperationAction(ISD::DEBUGTRAP
, MVT::Other
, Legal
);
613 // We combine OR nodes for bitfield operations.
614 setTargetDAGCombine(ISD::OR
);
615 // Try to create BICs for vector ANDs.
616 setTargetDAGCombine(ISD::AND
);
618 // Vector add and sub nodes may conceal a high-half opportunity.
619 // Also, try to fold ADD into CSINC/CSINV..
620 setTargetDAGCombine(ISD::ADD
);
621 setTargetDAGCombine(ISD::SUB
);
622 setTargetDAGCombine(ISD::SRL
);
623 setTargetDAGCombine(ISD::XOR
);
624 setTargetDAGCombine(ISD::SINT_TO_FP
);
625 setTargetDAGCombine(ISD::UINT_TO_FP
);
627 setTargetDAGCombine(ISD::FP_TO_SINT
);
628 setTargetDAGCombine(ISD::FP_TO_UINT
);
629 setTargetDAGCombine(ISD::FDIV
);
631 setTargetDAGCombine(ISD::INTRINSIC_WO_CHAIN
);
633 setTargetDAGCombine(ISD::ANY_EXTEND
);
634 setTargetDAGCombine(ISD::ZERO_EXTEND
);
635 setTargetDAGCombine(ISD::SIGN_EXTEND
);
636 setTargetDAGCombine(ISD::SIGN_EXTEND_INREG
);
637 setTargetDAGCombine(ISD::CONCAT_VECTORS
);
638 setTargetDAGCombine(ISD::STORE
);
639 if (Subtarget
->supportsAddressTopByteIgnored())
640 setTargetDAGCombine(ISD::LOAD
);
642 setTargetDAGCombine(ISD::MUL
);
644 setTargetDAGCombine(ISD::SELECT
);
645 setTargetDAGCombine(ISD::VSELECT
);
647 setTargetDAGCombine(ISD::INTRINSIC_VOID
);
648 setTargetDAGCombine(ISD::INTRINSIC_W_CHAIN
);
649 setTargetDAGCombine(ISD::INSERT_VECTOR_ELT
);
651 setTargetDAGCombine(ISD::GlobalAddress
);
653 // In case of strict alignment, avoid an excessive number of byte wide stores.
654 MaxStoresPerMemsetOptSize
= 8;
655 MaxStoresPerMemset
= Subtarget
->requiresStrictAlign()
656 ? MaxStoresPerMemsetOptSize
: 32;
658 MaxGluedStoresPerMemcpy
= 4;
659 MaxStoresPerMemcpyOptSize
= 4;
660 MaxStoresPerMemcpy
= Subtarget
->requiresStrictAlign()
661 ? MaxStoresPerMemcpyOptSize
: 16;
663 MaxStoresPerMemmoveOptSize
= MaxStoresPerMemmove
= 4;
665 MaxLoadsPerMemcmpOptSize
= 4;
666 MaxLoadsPerMemcmp
= Subtarget
->requiresStrictAlign()
667 ? MaxLoadsPerMemcmpOptSize
: 8;
669 setStackPointerRegisterToSaveRestore(AArch64::SP
);
671 setSchedulingPreference(Sched::Hybrid
);
673 EnableExtLdPromotion
= true;
675 // Set required alignment.
676 setMinFunctionAlignment(Align(4));
677 // Set preferred alignments.
678 setPrefLoopAlignment(Align(1ULL << STI
.getPrefLoopLogAlignment()));
679 setPrefFunctionAlignment(Align(1ULL << STI
.getPrefFunctionLogAlignment()));
681 // Only change the limit for entries in a jump table if specified by
682 // the sub target, but not at the command line.
683 unsigned MaxJT
= STI
.getMaximumJumpTableSize();
684 if (MaxJT
&& getMaximumJumpTableSize() == UINT_MAX
)
685 setMaximumJumpTableSize(MaxJT
);
687 setHasExtractBitsInsn(true);
689 setOperationAction(ISD::INTRINSIC_WO_CHAIN
, MVT::Other
, Custom
);
691 if (Subtarget
->hasNEON()) {
692 // FIXME: v1f64 shouldn't be legal if we can avoid it, because it leads to
693 // silliness like this:
694 setOperationAction(ISD::FABS
, MVT::v1f64
, Expand
);
695 setOperationAction(ISD::FADD
, MVT::v1f64
, Expand
);
696 setOperationAction(ISD::FCEIL
, MVT::v1f64
, Expand
);
697 setOperationAction(ISD::FCOPYSIGN
, MVT::v1f64
, Expand
);
698 setOperationAction(ISD::FCOS
, MVT::v1f64
, Expand
);
699 setOperationAction(ISD::FDIV
, MVT::v1f64
, Expand
);
700 setOperationAction(ISD::FFLOOR
, MVT::v1f64
, Expand
);
701 setOperationAction(ISD::FMA
, MVT::v1f64
, Expand
);
702 setOperationAction(ISD::FMUL
, MVT::v1f64
, Expand
);
703 setOperationAction(ISD::FNEARBYINT
, MVT::v1f64
, Expand
);
704 setOperationAction(ISD::FNEG
, MVT::v1f64
, Expand
);
705 setOperationAction(ISD::FPOW
, MVT::v1f64
, Expand
);
706 setOperationAction(ISD::FREM
, MVT::v1f64
, Expand
);
707 setOperationAction(ISD::FROUND
, MVT::v1f64
, Expand
);
708 setOperationAction(ISD::FRINT
, MVT::v1f64
, Expand
);
709 setOperationAction(ISD::FSIN
, MVT::v1f64
, Expand
);
710 setOperationAction(ISD::FSINCOS
, MVT::v1f64
, Expand
);
711 setOperationAction(ISD::FSQRT
, MVT::v1f64
, Expand
);
712 setOperationAction(ISD::FSUB
, MVT::v1f64
, Expand
);
713 setOperationAction(ISD::FTRUNC
, MVT::v1f64
, Expand
);
714 setOperationAction(ISD::SETCC
, MVT::v1f64
, Expand
);
715 setOperationAction(ISD::BR_CC
, MVT::v1f64
, Expand
);
716 setOperationAction(ISD::SELECT
, MVT::v1f64
, Expand
);
717 setOperationAction(ISD::SELECT_CC
, MVT::v1f64
, Expand
);
718 setOperationAction(ISD::FP_EXTEND
, MVT::v1f64
, Expand
);
720 setOperationAction(ISD::FP_TO_SINT
, MVT::v1i64
, Expand
);
721 setOperationAction(ISD::FP_TO_UINT
, MVT::v1i64
, Expand
);
722 setOperationAction(ISD::SINT_TO_FP
, MVT::v1i64
, Expand
);
723 setOperationAction(ISD::UINT_TO_FP
, MVT::v1i64
, Expand
);
724 setOperationAction(ISD::FP_ROUND
, MVT::v1f64
, Expand
);
726 setOperationAction(ISD::MUL
, MVT::v1i64
, Expand
);
728 // AArch64 doesn't have a direct vector ->f32 conversion instructions for
729 // elements smaller than i32, so promote the input to i32 first.
730 setOperationPromotedToType(ISD::UINT_TO_FP
, MVT::v4i8
, MVT::v4i32
);
731 setOperationPromotedToType(ISD::SINT_TO_FP
, MVT::v4i8
, MVT::v4i32
);
732 // i8 vector elements also need promotion to i32 for v8i8
733 setOperationPromotedToType(ISD::SINT_TO_FP
, MVT::v8i8
, MVT::v8i32
);
734 setOperationPromotedToType(ISD::UINT_TO_FP
, MVT::v8i8
, MVT::v8i32
);
735 // Similarly, there is no direct i32 -> f64 vector conversion instruction.
736 setOperationAction(ISD::SINT_TO_FP
, MVT::v2i32
, Custom
);
737 setOperationAction(ISD::UINT_TO_FP
, MVT::v2i32
, Custom
);
738 setOperationAction(ISD::SINT_TO_FP
, MVT::v2i64
, Custom
);
739 setOperationAction(ISD::UINT_TO_FP
, MVT::v2i64
, Custom
);
740 // Or, direct i32 -> f16 vector conversion. Set it so custom, so the
741 // conversion happens in two steps: v4i32 -> v4f32 -> v4f16
742 setOperationAction(ISD::SINT_TO_FP
, MVT::v4i32
, Custom
);
743 setOperationAction(ISD::UINT_TO_FP
, MVT::v4i32
, Custom
);
745 if (Subtarget
->hasFullFP16()) {
746 setOperationAction(ISD::SINT_TO_FP
, MVT::v4i16
, Custom
);
747 setOperationAction(ISD::UINT_TO_FP
, MVT::v4i16
, Custom
);
748 setOperationAction(ISD::SINT_TO_FP
, MVT::v8i16
, Custom
);
749 setOperationAction(ISD::UINT_TO_FP
, MVT::v8i16
, Custom
);
751 // when AArch64 doesn't have fullfp16 support, promote the input
753 setOperationPromotedToType(ISD::UINT_TO_FP
, MVT::v4i16
, MVT::v4i32
);
754 setOperationPromotedToType(ISD::SINT_TO_FP
, MVT::v4i16
, MVT::v4i32
);
755 setOperationPromotedToType(ISD::SINT_TO_FP
, MVT::v8i16
, MVT::v8i32
);
756 setOperationPromotedToType(ISD::UINT_TO_FP
, MVT::v8i16
, MVT::v8i32
);
759 setOperationAction(ISD::CTLZ
, MVT::v1i64
, Expand
);
760 setOperationAction(ISD::CTLZ
, MVT::v2i64
, Expand
);
762 // AArch64 doesn't have MUL.2d:
763 setOperationAction(ISD::MUL
, MVT::v2i64
, Expand
);
764 // Custom handling for some quad-vector types to detect MULL.
765 setOperationAction(ISD::MUL
, MVT::v8i16
, Custom
);
766 setOperationAction(ISD::MUL
, MVT::v4i32
, Custom
);
767 setOperationAction(ISD::MUL
, MVT::v2i64
, Custom
);
769 for (MVT VT
: { MVT::v8i8
, MVT::v4i16
, MVT::v2i32
,
770 MVT::v16i8
, MVT::v8i16
, MVT::v4i32
, MVT::v2i64
}) {
772 setOperationAction(ISD::VECREDUCE_ADD
, VT
, Custom
);
773 setOperationAction(ISD::VECREDUCE_SMAX
, VT
, Custom
);
774 setOperationAction(ISD::VECREDUCE_SMIN
, VT
, Custom
);
775 setOperationAction(ISD::VECREDUCE_UMAX
, VT
, Custom
);
776 setOperationAction(ISD::VECREDUCE_UMIN
, VT
, Custom
);
779 setOperationAction(ISD::SADDSAT
, VT
, Legal
);
780 setOperationAction(ISD::UADDSAT
, VT
, Legal
);
781 setOperationAction(ISD::SSUBSAT
, VT
, Legal
);
782 setOperationAction(ISD::USUBSAT
, VT
, Legal
);
784 for (MVT VT
: { MVT::v4f16
, MVT::v2f32
,
785 MVT::v8f16
, MVT::v4f32
, MVT::v2f64
}) {
786 setOperationAction(ISD::VECREDUCE_FMAX
, VT
, Custom
);
787 setOperationAction(ISD::VECREDUCE_FMIN
, VT
, Custom
);
790 setOperationAction(ISD::ANY_EXTEND
, MVT::v4i32
, Legal
);
791 setTruncStoreAction(MVT::v2i32
, MVT::v2i16
, Expand
);
792 // Likewise, narrowing and extending vector loads/stores aren't handled
794 for (MVT VT
: MVT::fixedlen_vector_valuetypes()) {
795 setOperationAction(ISD::SIGN_EXTEND_INREG
, VT
, Expand
);
797 if (VT
== MVT::v16i8
|| VT
== MVT::v8i16
|| VT
== MVT::v4i32
) {
798 setOperationAction(ISD::MULHS
, VT
, Legal
);
799 setOperationAction(ISD::MULHU
, VT
, Legal
);
801 setOperationAction(ISD::MULHS
, VT
, Expand
);
802 setOperationAction(ISD::MULHU
, VT
, Expand
);
804 setOperationAction(ISD::SMUL_LOHI
, VT
, Expand
);
805 setOperationAction(ISD::UMUL_LOHI
, VT
, Expand
);
807 setOperationAction(ISD::BSWAP
, VT
, Expand
);
808 setOperationAction(ISD::CTTZ
, VT
, Expand
);
810 for (MVT InnerVT
: MVT::fixedlen_vector_valuetypes()) {
811 setTruncStoreAction(VT
, InnerVT
, Expand
);
812 setLoadExtAction(ISD::SEXTLOAD
, VT
, InnerVT
, Expand
);
813 setLoadExtAction(ISD::ZEXTLOAD
, VT
, InnerVT
, Expand
);
814 setLoadExtAction(ISD::EXTLOAD
, VT
, InnerVT
, Expand
);
818 // AArch64 has implementations of a lot of rounding-like FP operations.
819 for (MVT Ty
: {MVT::v2f32
, MVT::v4f32
, MVT::v2f64
}) {
820 setOperationAction(ISD::FFLOOR
, Ty
, Legal
);
821 setOperationAction(ISD::FNEARBYINT
, Ty
, Legal
);
822 setOperationAction(ISD::FCEIL
, Ty
, Legal
);
823 setOperationAction(ISD::FRINT
, Ty
, Legal
);
824 setOperationAction(ISD::FTRUNC
, Ty
, Legal
);
825 setOperationAction(ISD::FROUND
, Ty
, Legal
);
828 if (Subtarget
->hasFullFP16()) {
829 for (MVT Ty
: {MVT::v4f16
, MVT::v8f16
}) {
830 setOperationAction(ISD::FFLOOR
, Ty
, Legal
);
831 setOperationAction(ISD::FNEARBYINT
, Ty
, Legal
);
832 setOperationAction(ISD::FCEIL
, Ty
, Legal
);
833 setOperationAction(ISD::FRINT
, Ty
, Legal
);
834 setOperationAction(ISD::FTRUNC
, Ty
, Legal
);
835 setOperationAction(ISD::FROUND
, Ty
, Legal
);
839 if (Subtarget
->hasSVE())
840 setOperationAction(ISD::VSCALE
, MVT::i32
, Custom
);
842 setTruncStoreAction(MVT::v4i16
, MVT::v4i8
, Custom
);
845 if (Subtarget
->hasSVE()) {
846 // FIXME: Add custom lowering of MLOAD to handle different passthrus (not a
847 // splat of 0 or undef) once vector selects supported in SVE codegen. See
848 // D68877 for more details.
849 for (MVT VT
: MVT::integer_scalable_vector_valuetypes()) {
851 setOperationAction(ISD::SPLAT_VECTOR
, VT
, Custom
);
853 setOperationAction(ISD::INTRINSIC_WO_CHAIN
, MVT::i8
, Custom
);
854 setOperationAction(ISD::INTRINSIC_WO_CHAIN
, MVT::i16
, Custom
);
857 PredictableSelectIsExpensive
= Subtarget
->predictableSelectIsExpensive();
860 void AArch64TargetLowering::addTypeForNEON(MVT VT
, MVT PromotedBitwiseVT
) {
861 assert(VT
.isVector() && "VT should be a vector type");
863 if (VT
.isFloatingPoint()) {
864 MVT PromoteTo
= EVT(VT
).changeVectorElementTypeToInteger().getSimpleVT();
865 setOperationPromotedToType(ISD::LOAD
, VT
, PromoteTo
);
866 setOperationPromotedToType(ISD::STORE
, VT
, PromoteTo
);
869 // Mark vector float intrinsics as expand.
870 if (VT
== MVT::v2f32
|| VT
== MVT::v4f32
|| VT
== MVT::v2f64
) {
871 setOperationAction(ISD::FSIN
, VT
, Expand
);
872 setOperationAction(ISD::FCOS
, VT
, Expand
);
873 setOperationAction(ISD::FPOW
, VT
, Expand
);
874 setOperationAction(ISD::FLOG
, VT
, Expand
);
875 setOperationAction(ISD::FLOG2
, VT
, Expand
);
876 setOperationAction(ISD::FLOG10
, VT
, Expand
);
877 setOperationAction(ISD::FEXP
, VT
, Expand
);
878 setOperationAction(ISD::FEXP2
, VT
, Expand
);
880 // But we do support custom-lowering for FCOPYSIGN.
881 setOperationAction(ISD::FCOPYSIGN
, VT
, Custom
);
884 setOperationAction(ISD::EXTRACT_VECTOR_ELT
, VT
, Custom
);
885 setOperationAction(ISD::INSERT_VECTOR_ELT
, VT
, Custom
);
886 setOperationAction(ISD::BUILD_VECTOR
, VT
, Custom
);
887 setOperationAction(ISD::VECTOR_SHUFFLE
, VT
, Custom
);
888 setOperationAction(ISD::EXTRACT_SUBVECTOR
, VT
, Custom
);
889 setOperationAction(ISD::SRA
, VT
, Custom
);
890 setOperationAction(ISD::SRL
, VT
, Custom
);
891 setOperationAction(ISD::SHL
, VT
, Custom
);
892 setOperationAction(ISD::OR
, VT
, Custom
);
893 setOperationAction(ISD::SETCC
, VT
, Custom
);
894 setOperationAction(ISD::CONCAT_VECTORS
, VT
, Legal
);
896 setOperationAction(ISD::SELECT
, VT
, Expand
);
897 setOperationAction(ISD::SELECT_CC
, VT
, Expand
);
898 setOperationAction(ISD::VSELECT
, VT
, Expand
);
899 for (MVT InnerVT
: MVT::all_valuetypes())
900 setLoadExtAction(ISD::EXTLOAD
, InnerVT
, VT
, Expand
);
902 // CNT supports only B element sizes, then use UADDLP to widen.
903 if (VT
!= MVT::v8i8
&& VT
!= MVT::v16i8
)
904 setOperationAction(ISD::CTPOP
, VT
, Custom
);
906 setOperationAction(ISD::UDIV
, VT
, Expand
);
907 setOperationAction(ISD::SDIV
, VT
, Expand
);
908 setOperationAction(ISD::UREM
, VT
, Expand
);
909 setOperationAction(ISD::SREM
, VT
, Expand
);
910 setOperationAction(ISD::FREM
, VT
, Expand
);
912 setOperationAction(ISD::FP_TO_SINT
, VT
, Custom
);
913 setOperationAction(ISD::FP_TO_UINT
, VT
, Custom
);
915 if (!VT
.isFloatingPoint())
916 setOperationAction(ISD::ABS
, VT
, Legal
);
918 // [SU][MIN|MAX] are available for all NEON types apart from i64.
919 if (!VT
.isFloatingPoint() && VT
!= MVT::v2i64
&& VT
!= MVT::v1i64
)
920 for (unsigned Opcode
: {ISD::SMIN
, ISD::SMAX
, ISD::UMIN
, ISD::UMAX
})
921 setOperationAction(Opcode
, VT
, Legal
);
923 // F[MIN|MAX][NUM|NAN] are available for all FP NEON types.
924 if (VT
.isFloatingPoint() &&
925 (VT
.getVectorElementType() != MVT::f16
|| Subtarget
->hasFullFP16()))
926 for (unsigned Opcode
:
927 {ISD::FMINIMUM
, ISD::FMAXIMUM
, ISD::FMINNUM
, ISD::FMAXNUM
})
928 setOperationAction(Opcode
, VT
, Legal
);
930 if (Subtarget
->isLittleEndian()) {
931 for (unsigned im
= (unsigned)ISD::PRE_INC
;
932 im
!= (unsigned)ISD::LAST_INDEXED_MODE
; ++im
) {
933 setIndexedLoadAction(im
, VT
, Legal
);
934 setIndexedStoreAction(im
, VT
, Legal
);
939 void AArch64TargetLowering::addDRTypeForNEON(MVT VT
) {
940 addRegisterClass(VT
, &AArch64::FPR64RegClass
);
941 addTypeForNEON(VT
, MVT::v2i32
);
944 void AArch64TargetLowering::addQRTypeForNEON(MVT VT
) {
945 addRegisterClass(VT
, &AArch64::FPR128RegClass
);
946 addTypeForNEON(VT
, MVT::v4i32
);
949 EVT
AArch64TargetLowering::getSetCCResultType(const DataLayout
&, LLVMContext
&,
953 return VT
.changeVectorElementTypeToInteger();
956 static bool optimizeLogicalImm(SDValue Op
, unsigned Size
, uint64_t Imm
,
957 const APInt
&Demanded
,
958 TargetLowering::TargetLoweringOpt
&TLO
,
960 uint64_t OldImm
= Imm
, NewImm
, Enc
;
961 uint64_t Mask
= ((uint64_t)(-1LL) >> (64 - Size
)), OrigMask
= Mask
;
963 // Return if the immediate is already all zeros, all ones, a bimm32 or a
965 if (Imm
== 0 || Imm
== Mask
||
966 AArch64_AM::isLogicalImmediate(Imm
& Mask
, Size
))
969 unsigned EltSize
= Size
;
970 uint64_t DemandedBits
= Demanded
.getZExtValue();
972 // Clear bits that are not demanded.
976 // The goal here is to set the non-demanded bits in a way that minimizes
977 // the number of switching between 0 and 1. In order to achieve this goal,
978 // we set the non-demanded bits to the value of the preceding demanded bits.
979 // For example, if we have an immediate 0bx10xx0x1 ('x' indicates a
980 // non-demanded bit), we copy bit0 (1) to the least significant 'x',
981 // bit2 (0) to 'xx', and bit6 (1) to the most significant 'x'.
982 // The final result is 0b11000011.
983 uint64_t NonDemandedBits
= ~DemandedBits
;
984 uint64_t InvertedImm
= ~Imm
& DemandedBits
;
985 uint64_t RotatedImm
=
986 ((InvertedImm
<< 1) | (InvertedImm
>> (EltSize
- 1) & 1)) &
988 uint64_t Sum
= RotatedImm
+ NonDemandedBits
;
989 bool Carry
= NonDemandedBits
& ~Sum
& (1ULL << (EltSize
- 1));
990 uint64_t Ones
= (Sum
+ Carry
) & NonDemandedBits
;
991 NewImm
= (Imm
| Ones
) & Mask
;
993 // If NewImm or its bitwise NOT is a shifted mask, it is a bitmask immediate
994 // or all-ones or all-zeros, in which case we can stop searching. Otherwise,
995 // we halve the element size and continue the search.
996 if (isShiftedMask_64(NewImm
) || isShiftedMask_64(~(NewImm
| ~Mask
)))
999 // We cannot shrink the element size any further if it is 2-bits.
1005 uint64_t Hi
= Imm
>> EltSize
, DemandedBitsHi
= DemandedBits
>> EltSize
;
1007 // Return if there is mismatch in any of the demanded bits of Imm and Hi.
1008 if (((Imm
^ Hi
) & (DemandedBits
& DemandedBitsHi
) & Mask
) != 0)
1011 // Merge the upper and lower halves of Imm and DemandedBits.
1013 DemandedBits
|= DemandedBitsHi
;
1018 // Replicate the element across the register width.
1019 while (EltSize
< Size
) {
1020 NewImm
|= NewImm
<< EltSize
;
1025 assert(((OldImm
^ NewImm
) & Demanded
.getZExtValue()) == 0 &&
1026 "demanded bits should never be altered");
1027 assert(OldImm
!= NewImm
&& "the new imm shouldn't be equal to the old imm");
1029 // Create the new constant immediate node.
1030 EVT VT
= Op
.getValueType();
1034 // If the new constant immediate is all-zeros or all-ones, let the target
1035 // independent DAG combine optimize this node.
1036 if (NewImm
== 0 || NewImm
== OrigMask
) {
1037 New
= TLO
.DAG
.getNode(Op
.getOpcode(), DL
, VT
, Op
.getOperand(0),
1038 TLO
.DAG
.getConstant(NewImm
, DL
, VT
));
1039 // Otherwise, create a machine node so that target independent DAG combine
1040 // doesn't undo this optimization.
1042 Enc
= AArch64_AM::encodeLogicalImmediate(NewImm
, Size
);
1043 SDValue EncConst
= TLO
.DAG
.getTargetConstant(Enc
, DL
, VT
);
1045 TLO
.DAG
.getMachineNode(NewOpc
, DL
, VT
, Op
.getOperand(0), EncConst
), 0);
1048 return TLO
.CombineTo(Op
, New
);
1051 bool AArch64TargetLowering::targetShrinkDemandedConstant(
1052 SDValue Op
, const APInt
&Demanded
, TargetLoweringOpt
&TLO
) const {
1053 // Delay this optimization to as late as possible.
1057 if (!EnableOptimizeLogicalImm
)
1060 EVT VT
= Op
.getValueType();
1064 unsigned Size
= VT
.getSizeInBits();
1065 assert((Size
== 32 || Size
== 64) &&
1066 "i32 or i64 is expected after legalization.");
1068 // Exit early if we demand all bits.
1069 if (Demanded
.countPopulation() == Size
)
1073 switch (Op
.getOpcode()) {
1077 NewOpc
= Size
== 32 ? AArch64::ANDWri
: AArch64::ANDXri
;
1080 NewOpc
= Size
== 32 ? AArch64::ORRWri
: AArch64::ORRXri
;
1083 NewOpc
= Size
== 32 ? AArch64::EORWri
: AArch64::EORXri
;
1086 ConstantSDNode
*C
= dyn_cast
<ConstantSDNode
>(Op
.getOperand(1));
1089 uint64_t Imm
= C
->getZExtValue();
1090 return optimizeLogicalImm(Op
, Size
, Imm
, Demanded
, TLO
, NewOpc
);
1093 /// computeKnownBitsForTargetNode - Determine which of the bits specified in
1094 /// Mask are known to be either zero or one and return them Known.
1095 void AArch64TargetLowering::computeKnownBitsForTargetNode(
1096 const SDValue Op
, KnownBits
&Known
,
1097 const APInt
&DemandedElts
, const SelectionDAG
&DAG
, unsigned Depth
) const {
1098 switch (Op
.getOpcode()) {
1101 case AArch64ISD::CSEL
: {
1103 Known
= DAG
.computeKnownBits(Op
->getOperand(0), Depth
+ 1);
1104 Known2
= DAG
.computeKnownBits(Op
->getOperand(1), Depth
+ 1);
1105 Known
.Zero
&= Known2
.Zero
;
1106 Known
.One
&= Known2
.One
;
1109 case AArch64ISD::LOADgot
:
1110 case AArch64ISD::ADDlow
: {
1111 if (!Subtarget
->isTargetILP32())
1113 // In ILP32 mode all valid pointers are in the low 4GB of the address-space.
1114 Known
.Zero
= APInt::getHighBitsSet(64, 32);
1117 case ISD::INTRINSIC_W_CHAIN
: {
1118 ConstantSDNode
*CN
= cast
<ConstantSDNode
>(Op
->getOperand(1));
1119 Intrinsic::ID IntID
= static_cast<Intrinsic::ID
>(CN
->getZExtValue());
1122 case Intrinsic::aarch64_ldaxr
:
1123 case Intrinsic::aarch64_ldxr
: {
1124 unsigned BitWidth
= Known
.getBitWidth();
1125 EVT VT
= cast
<MemIntrinsicSDNode
>(Op
)->getMemoryVT();
1126 unsigned MemBits
= VT
.getScalarSizeInBits();
1127 Known
.Zero
|= APInt::getHighBitsSet(BitWidth
, BitWidth
- MemBits
);
1133 case ISD::INTRINSIC_WO_CHAIN
:
1134 case ISD::INTRINSIC_VOID
: {
1135 unsigned IntNo
= cast
<ConstantSDNode
>(Op
.getOperand(0))->getZExtValue();
1139 case Intrinsic::aarch64_neon_umaxv
:
1140 case Intrinsic::aarch64_neon_uminv
: {
1141 // Figure out the datatype of the vector operand. The UMINV instruction
1142 // will zero extend the result, so we can mark as known zero all the
1143 // bits larger than the element datatype. 32-bit or larget doesn't need
1144 // this as those are legal types and will be handled by isel directly.
1145 MVT VT
= Op
.getOperand(1).getValueType().getSimpleVT();
1146 unsigned BitWidth
= Known
.getBitWidth();
1147 if (VT
== MVT::v8i8
|| VT
== MVT::v16i8
) {
1148 assert(BitWidth
>= 8 && "Unexpected width!");
1149 APInt Mask
= APInt::getHighBitsSet(BitWidth
, BitWidth
- 8);
1151 } else if (VT
== MVT::v4i16
|| VT
== MVT::v8i16
) {
1152 assert(BitWidth
>= 16 && "Unexpected width!");
1153 APInt Mask
= APInt::getHighBitsSet(BitWidth
, BitWidth
- 16);
1163 MVT
AArch64TargetLowering::getScalarShiftAmountTy(const DataLayout
&DL
,
1168 bool AArch64TargetLowering::allowsMisalignedMemoryAccesses(
1169 EVT VT
, unsigned AddrSpace
, unsigned Align
, MachineMemOperand::Flags Flags
,
1171 if (Subtarget
->requiresStrictAlign())
1175 // Some CPUs are fine with unaligned stores except for 128-bit ones.
1176 *Fast
= !Subtarget
->isMisaligned128StoreSlow() || VT
.getStoreSize() != 16 ||
1177 // See comments in performSTORECombine() for more details about
1178 // these conditions.
1180 // Code that uses clang vector extensions can mark that it
1181 // wants unaligned accesses to be treated as fast by
1182 // underspecifying alignment to be 1 or 2.
1185 // Disregard v2i64. Memcpy lowering produces those and splitting
1186 // them regresses performance on micro-benchmarks and olden/bh.
1192 // Same as above but handling LLTs instead.
1193 bool AArch64TargetLowering::allowsMisalignedMemoryAccesses(
1194 LLT Ty
, unsigned AddrSpace
, unsigned Align
, MachineMemOperand::Flags Flags
,
1196 if (Subtarget
->requiresStrictAlign())
1200 // Some CPUs are fine with unaligned stores except for 128-bit ones.
1201 *Fast
= !Subtarget
->isMisaligned128StoreSlow() ||
1202 Ty
.getSizeInBytes() != 16 ||
1203 // See comments in performSTORECombine() for more details about
1204 // these conditions.
1206 // Code that uses clang vector extensions can mark that it
1207 // wants unaligned accesses to be treated as fast by
1208 // underspecifying alignment to be 1 or 2.
1211 // Disregard v2i64. Memcpy lowering produces those and splitting
1212 // them regresses performance on micro-benchmarks and olden/bh.
1213 Ty
== LLT::vector(2, 64);
1219 AArch64TargetLowering::createFastISel(FunctionLoweringInfo
&funcInfo
,
1220 const TargetLibraryInfo
*libInfo
) const {
1221 return AArch64::createFastISel(funcInfo
, libInfo
);
1224 const char *AArch64TargetLowering::getTargetNodeName(unsigned Opcode
) const {
1225 switch ((AArch64ISD::NodeType
)Opcode
) {
1226 case AArch64ISD::FIRST_NUMBER
: break;
1227 case AArch64ISD::CALL
: return "AArch64ISD::CALL";
1228 case AArch64ISD::ADRP
: return "AArch64ISD::ADRP";
1229 case AArch64ISD::ADR
: return "AArch64ISD::ADR";
1230 case AArch64ISD::ADDlow
: return "AArch64ISD::ADDlow";
1231 case AArch64ISD::LOADgot
: return "AArch64ISD::LOADgot";
1232 case AArch64ISD::RET_FLAG
: return "AArch64ISD::RET_FLAG";
1233 case AArch64ISD::BRCOND
: return "AArch64ISD::BRCOND";
1234 case AArch64ISD::CSEL
: return "AArch64ISD::CSEL";
1235 case AArch64ISD::FCSEL
: return "AArch64ISD::FCSEL";
1236 case AArch64ISD::CSINV
: return "AArch64ISD::CSINV";
1237 case AArch64ISD::CSNEG
: return "AArch64ISD::CSNEG";
1238 case AArch64ISD::CSINC
: return "AArch64ISD::CSINC";
1239 case AArch64ISD::THREAD_POINTER
: return "AArch64ISD::THREAD_POINTER";
1240 case AArch64ISD::TLSDESC_CALLSEQ
: return "AArch64ISD::TLSDESC_CALLSEQ";
1241 case AArch64ISD::ADC
: return "AArch64ISD::ADC";
1242 case AArch64ISD::SBC
: return "AArch64ISD::SBC";
1243 case AArch64ISD::ADDS
: return "AArch64ISD::ADDS";
1244 case AArch64ISD::SUBS
: return "AArch64ISD::SUBS";
1245 case AArch64ISD::ADCS
: return "AArch64ISD::ADCS";
1246 case AArch64ISD::SBCS
: return "AArch64ISD::SBCS";
1247 case AArch64ISD::ANDS
: return "AArch64ISD::ANDS";
1248 case AArch64ISD::CCMP
: return "AArch64ISD::CCMP";
1249 case AArch64ISD::CCMN
: return "AArch64ISD::CCMN";
1250 case AArch64ISD::FCCMP
: return "AArch64ISD::FCCMP";
1251 case AArch64ISD::FCMP
: return "AArch64ISD::FCMP";
1252 case AArch64ISD::DUP
: return "AArch64ISD::DUP";
1253 case AArch64ISD::DUPLANE8
: return "AArch64ISD::DUPLANE8";
1254 case AArch64ISD::DUPLANE16
: return "AArch64ISD::DUPLANE16";
1255 case AArch64ISD::DUPLANE32
: return "AArch64ISD::DUPLANE32";
1256 case AArch64ISD::DUPLANE64
: return "AArch64ISD::DUPLANE64";
1257 case AArch64ISD::MOVI
: return "AArch64ISD::MOVI";
1258 case AArch64ISD::MOVIshift
: return "AArch64ISD::MOVIshift";
1259 case AArch64ISD::MOVIedit
: return "AArch64ISD::MOVIedit";
1260 case AArch64ISD::MOVImsl
: return "AArch64ISD::MOVImsl";
1261 case AArch64ISD::FMOV
: return "AArch64ISD::FMOV";
1262 case AArch64ISD::MVNIshift
: return "AArch64ISD::MVNIshift";
1263 case AArch64ISD::MVNImsl
: return "AArch64ISD::MVNImsl";
1264 case AArch64ISD::BICi
: return "AArch64ISD::BICi";
1265 case AArch64ISD::ORRi
: return "AArch64ISD::ORRi";
1266 case AArch64ISD::BSL
: return "AArch64ISD::BSL";
1267 case AArch64ISD::NEG
: return "AArch64ISD::NEG";
1268 case AArch64ISD::EXTR
: return "AArch64ISD::EXTR";
1269 case AArch64ISD::ZIP1
: return "AArch64ISD::ZIP1";
1270 case AArch64ISD::ZIP2
: return "AArch64ISD::ZIP2";
1271 case AArch64ISD::UZP1
: return "AArch64ISD::UZP1";
1272 case AArch64ISD::UZP2
: return "AArch64ISD::UZP2";
1273 case AArch64ISD::TRN1
: return "AArch64ISD::TRN1";
1274 case AArch64ISD::TRN2
: return "AArch64ISD::TRN2";
1275 case AArch64ISD::REV16
: return "AArch64ISD::REV16";
1276 case AArch64ISD::REV32
: return "AArch64ISD::REV32";
1277 case AArch64ISD::REV64
: return "AArch64ISD::REV64";
1278 case AArch64ISD::EXT
: return "AArch64ISD::EXT";
1279 case AArch64ISD::VSHL
: return "AArch64ISD::VSHL";
1280 case AArch64ISD::VLSHR
: return "AArch64ISD::VLSHR";
1281 case AArch64ISD::VASHR
: return "AArch64ISD::VASHR";
1282 case AArch64ISD::CMEQ
: return "AArch64ISD::CMEQ";
1283 case AArch64ISD::CMGE
: return "AArch64ISD::CMGE";
1284 case AArch64ISD::CMGT
: return "AArch64ISD::CMGT";
1285 case AArch64ISD::CMHI
: return "AArch64ISD::CMHI";
1286 case AArch64ISD::CMHS
: return "AArch64ISD::CMHS";
1287 case AArch64ISD::FCMEQ
: return "AArch64ISD::FCMEQ";
1288 case AArch64ISD::FCMGE
: return "AArch64ISD::FCMGE";
1289 case AArch64ISD::FCMGT
: return "AArch64ISD::FCMGT";
1290 case AArch64ISD::CMEQz
: return "AArch64ISD::CMEQz";
1291 case AArch64ISD::CMGEz
: return "AArch64ISD::CMGEz";
1292 case AArch64ISD::CMGTz
: return "AArch64ISD::CMGTz";
1293 case AArch64ISD::CMLEz
: return "AArch64ISD::CMLEz";
1294 case AArch64ISD::CMLTz
: return "AArch64ISD::CMLTz";
1295 case AArch64ISD::FCMEQz
: return "AArch64ISD::FCMEQz";
1296 case AArch64ISD::FCMGEz
: return "AArch64ISD::FCMGEz";
1297 case AArch64ISD::FCMGTz
: return "AArch64ISD::FCMGTz";
1298 case AArch64ISD::FCMLEz
: return "AArch64ISD::FCMLEz";
1299 case AArch64ISD::FCMLTz
: return "AArch64ISD::FCMLTz";
1300 case AArch64ISD::SADDV
: return "AArch64ISD::SADDV";
1301 case AArch64ISD::UADDV
: return "AArch64ISD::UADDV";
1302 case AArch64ISD::SMINV
: return "AArch64ISD::SMINV";
1303 case AArch64ISD::UMINV
: return "AArch64ISD::UMINV";
1304 case AArch64ISD::SMAXV
: return "AArch64ISD::SMAXV";
1305 case AArch64ISD::UMAXV
: return "AArch64ISD::UMAXV";
1306 case AArch64ISD::SMAXV_PRED
: return "AArch64ISD::SMAXV_PRED";
1307 case AArch64ISD::UMAXV_PRED
: return "AArch64ISD::UMAXV_PRED";
1308 case AArch64ISD::SMINV_PRED
: return "AArch64ISD::SMINV_PRED";
1309 case AArch64ISD::UMINV_PRED
: return "AArch64ISD::UMINV_PRED";
1310 case AArch64ISD::ORV_PRED
: return "AArch64ISD::ORV_PRED";
1311 case AArch64ISD::EORV_PRED
: return "AArch64ISD::EORV_PRED";
1312 case AArch64ISD::ANDV_PRED
: return "AArch64ISD::ANDV_PRED";
1313 case AArch64ISD::CLASTA_N
: return "AArch64ISD::CLASTA_N";
1314 case AArch64ISD::CLASTB_N
: return "AArch64ISD::CLASTB_N";
1315 case AArch64ISD::LASTA
: return "AArch64ISD::LASTA";
1316 case AArch64ISD::LASTB
: return "AArch64ISD::LASTB";
1317 case AArch64ISD::REV
: return "AArch64ISD::REV";
1318 case AArch64ISD::TBL
: return "AArch64ISD::TBL";
1319 case AArch64ISD::NOT
: return "AArch64ISD::NOT";
1320 case AArch64ISD::BIT
: return "AArch64ISD::BIT";
1321 case AArch64ISD::CBZ
: return "AArch64ISD::CBZ";
1322 case AArch64ISD::CBNZ
: return "AArch64ISD::CBNZ";
1323 case AArch64ISD::TBZ
: return "AArch64ISD::TBZ";
1324 case AArch64ISD::TBNZ
: return "AArch64ISD::TBNZ";
1325 case AArch64ISD::TC_RETURN
: return "AArch64ISD::TC_RETURN";
1326 case AArch64ISD::PREFETCH
: return "AArch64ISD::PREFETCH";
1327 case AArch64ISD::SITOF
: return "AArch64ISD::SITOF";
1328 case AArch64ISD::UITOF
: return "AArch64ISD::UITOF";
1329 case AArch64ISD::NVCAST
: return "AArch64ISD::NVCAST";
1330 case AArch64ISD::SQSHL_I
: return "AArch64ISD::SQSHL_I";
1331 case AArch64ISD::UQSHL_I
: return "AArch64ISD::UQSHL_I";
1332 case AArch64ISD::SRSHR_I
: return "AArch64ISD::SRSHR_I";
1333 case AArch64ISD::URSHR_I
: return "AArch64ISD::URSHR_I";
1334 case AArch64ISD::SQSHLU_I
: return "AArch64ISD::SQSHLU_I";
1335 case AArch64ISD::WrapperLarge
: return "AArch64ISD::WrapperLarge";
1336 case AArch64ISD::LD2post
: return "AArch64ISD::LD2post";
1337 case AArch64ISD::LD3post
: return "AArch64ISD::LD3post";
1338 case AArch64ISD::LD4post
: return "AArch64ISD::LD4post";
1339 case AArch64ISD::ST2post
: return "AArch64ISD::ST2post";
1340 case AArch64ISD::ST3post
: return "AArch64ISD::ST3post";
1341 case AArch64ISD::ST4post
: return "AArch64ISD::ST4post";
1342 case AArch64ISD::LD1x2post
: return "AArch64ISD::LD1x2post";
1343 case AArch64ISD::LD1x3post
: return "AArch64ISD::LD1x3post";
1344 case AArch64ISD::LD1x4post
: return "AArch64ISD::LD1x4post";
1345 case AArch64ISD::ST1x2post
: return "AArch64ISD::ST1x2post";
1346 case AArch64ISD::ST1x3post
: return "AArch64ISD::ST1x3post";
1347 case AArch64ISD::ST1x4post
: return "AArch64ISD::ST1x4post";
1348 case AArch64ISD::LD1DUPpost
: return "AArch64ISD::LD1DUPpost";
1349 case AArch64ISD::LD2DUPpost
: return "AArch64ISD::LD2DUPpost";
1350 case AArch64ISD::LD3DUPpost
: return "AArch64ISD::LD3DUPpost";
1351 case AArch64ISD::LD4DUPpost
: return "AArch64ISD::LD4DUPpost";
1352 case AArch64ISD::LD1LANEpost
: return "AArch64ISD::LD1LANEpost";
1353 case AArch64ISD::LD2LANEpost
: return "AArch64ISD::LD2LANEpost";
1354 case AArch64ISD::LD3LANEpost
: return "AArch64ISD::LD3LANEpost";
1355 case AArch64ISD::LD4LANEpost
: return "AArch64ISD::LD4LANEpost";
1356 case AArch64ISD::ST2LANEpost
: return "AArch64ISD::ST2LANEpost";
1357 case AArch64ISD::ST3LANEpost
: return "AArch64ISD::ST3LANEpost";
1358 case AArch64ISD::ST4LANEpost
: return "AArch64ISD::ST4LANEpost";
1359 case AArch64ISD::SMULL
: return "AArch64ISD::SMULL";
1360 case AArch64ISD::UMULL
: return "AArch64ISD::UMULL";
1361 case AArch64ISD::FRECPE
: return "AArch64ISD::FRECPE";
1362 case AArch64ISD::FRECPS
: return "AArch64ISD::FRECPS";
1363 case AArch64ISD::FRSQRTE
: return "AArch64ISD::FRSQRTE";
1364 case AArch64ISD::FRSQRTS
: return "AArch64ISD::FRSQRTS";
1365 case AArch64ISD::STG
: return "AArch64ISD::STG";
1366 case AArch64ISD::STZG
: return "AArch64ISD::STZG";
1367 case AArch64ISD::ST2G
: return "AArch64ISD::ST2G";
1368 case AArch64ISD::STZ2G
: return "AArch64ISD::STZ2G";
1369 case AArch64ISD::SUNPKHI
: return "AArch64ISD::SUNPKHI";
1370 case AArch64ISD::SUNPKLO
: return "AArch64ISD::SUNPKLO";
1371 case AArch64ISD::UUNPKHI
: return "AArch64ISD::UUNPKHI";
1372 case AArch64ISD::UUNPKLO
: return "AArch64ISD::UUNPKLO";
1373 case AArch64ISD::INSR
: return "AArch64ISD::INSR";
1374 case AArch64ISD::PTEST
: return "AArch64ISD::PTEST";
1375 case AArch64ISD::PTRUE
: return "AArch64ISD::PTRUE";
1376 case AArch64ISD::LDNF1
: return "AArch64ISD::LDNF1";
1377 case AArch64ISD::LDNF1S
: return "AArch64ISD::LDNF1S";
1378 case AArch64ISD::GLD1
: return "AArch64ISD::GLD1";
1379 case AArch64ISD::GLD1_SCALED
: return "AArch64ISD::GLD1_SCALED";
1380 case AArch64ISD::GLD1_SXTW
: return "AArch64ISD::GLD1_SXTW";
1381 case AArch64ISD::GLD1_UXTW
: return "AArch64ISD::GLD1_UXTW";
1382 case AArch64ISD::GLD1_SXTW_SCALED
: return "AArch64ISD::GLD1_SXTW_SCALED";
1383 case AArch64ISD::GLD1_UXTW_SCALED
: return "AArch64ISD::GLD1_UXTW_SCALED";
1384 case AArch64ISD::GLD1_IMM
: return "AArch64ISD::GLD1_IMM";
1385 case AArch64ISD::GLD1S
: return "AArch64ISD::GLD1S";
1386 case AArch64ISD::GLD1S_SCALED
: return "AArch64ISD::GLD1S_SCALED";
1387 case AArch64ISD::GLD1S_SXTW
: return "AArch64ISD::GLD1S_SXTW";
1388 case AArch64ISD::GLD1S_UXTW
: return "AArch64ISD::GLD1S_UXTW";
1389 case AArch64ISD::GLD1S_SXTW_SCALED
: return "AArch64ISD::GLD1S_SXTW_SCALED";
1390 case AArch64ISD::GLD1S_UXTW_SCALED
: return "AArch64ISD::GLD1S_UXTW_SCALED";
1391 case AArch64ISD::GLD1S_IMM
: return "AArch64ISD::GLD1S_IMM";
1392 case AArch64ISD::SST1
: return "AArch64ISD::SST1";
1393 case AArch64ISD::SST1_SCALED
: return "AArch64ISD::SST1_SCALED";
1394 case AArch64ISD::SST1_SXTW
: return "AArch64ISD::SST1_SXTW";
1395 case AArch64ISD::SST1_UXTW
: return "AArch64ISD::SST1_UXTW";
1396 case AArch64ISD::SST1_SXTW_SCALED
: return "AArch64ISD::SST1_SXTW_SCALED";
1397 case AArch64ISD::SST1_UXTW_SCALED
: return "AArch64ISD::SST1_UXTW_SCALED";
1398 case AArch64ISD::SST1_IMM
: return "AArch64ISD::SST1_IMM";
1399 case AArch64ISD::LDP
: return "AArch64ISD::LDP";
1400 case AArch64ISD::STP
: return "AArch64ISD::STP";
1401 case AArch64ISD::STNP
: return "AArch64ISD::STNP";
1407 AArch64TargetLowering::EmitF128CSEL(MachineInstr
&MI
,
1408 MachineBasicBlock
*MBB
) const {
1409 // We materialise the F128CSEL pseudo-instruction as some control flow and a
1413 // [... previous instrs leading to comparison ...]
1419 // Dest = PHI [IfTrue, TrueBB], [IfFalse, OrigBB]
1421 MachineFunction
*MF
= MBB
->getParent();
1422 const TargetInstrInfo
*TII
= Subtarget
->getInstrInfo();
1423 const BasicBlock
*LLVM_BB
= MBB
->getBasicBlock();
1424 DebugLoc DL
= MI
.getDebugLoc();
1425 MachineFunction::iterator It
= ++MBB
->getIterator();
1427 Register DestReg
= MI
.getOperand(0).getReg();
1428 Register IfTrueReg
= MI
.getOperand(1).getReg();
1429 Register IfFalseReg
= MI
.getOperand(2).getReg();
1430 unsigned CondCode
= MI
.getOperand(3).getImm();
1431 bool NZCVKilled
= MI
.getOperand(4).isKill();
1433 MachineBasicBlock
*TrueBB
= MF
->CreateMachineBasicBlock(LLVM_BB
);
1434 MachineBasicBlock
*EndBB
= MF
->CreateMachineBasicBlock(LLVM_BB
);
1435 MF
->insert(It
, TrueBB
);
1436 MF
->insert(It
, EndBB
);
1438 // Transfer rest of current basic-block to EndBB
1439 EndBB
->splice(EndBB
->begin(), MBB
, std::next(MachineBasicBlock::iterator(MI
)),
1441 EndBB
->transferSuccessorsAndUpdatePHIs(MBB
);
1443 BuildMI(MBB
, DL
, TII
->get(AArch64::Bcc
)).addImm(CondCode
).addMBB(TrueBB
);
1444 BuildMI(MBB
, DL
, TII
->get(AArch64::B
)).addMBB(EndBB
);
1445 MBB
->addSuccessor(TrueBB
);
1446 MBB
->addSuccessor(EndBB
);
1448 // TrueBB falls through to the end.
1449 TrueBB
->addSuccessor(EndBB
);
1452 TrueBB
->addLiveIn(AArch64::NZCV
);
1453 EndBB
->addLiveIn(AArch64::NZCV
);
1456 BuildMI(*EndBB
, EndBB
->begin(), DL
, TII
->get(AArch64::PHI
), DestReg
)
1462 MI
.eraseFromParent();
1466 MachineBasicBlock
*AArch64TargetLowering::EmitLoweredCatchRet(
1467 MachineInstr
&MI
, MachineBasicBlock
*BB
) const {
1468 assert(!isAsynchronousEHPersonality(classifyEHPersonality(
1469 BB
->getParent()->getFunction().getPersonalityFn())) &&
1470 "SEH does not use catchret!");
1474 MachineBasicBlock
*AArch64TargetLowering::EmitLoweredCatchPad(
1475 MachineInstr
&MI
, MachineBasicBlock
*BB
) const {
1476 MI
.eraseFromParent();
1480 MachineBasicBlock
*AArch64TargetLowering::EmitInstrWithCustomInserter(
1481 MachineInstr
&MI
, MachineBasicBlock
*BB
) const {
1482 switch (MI
.getOpcode()) {
1487 llvm_unreachable("Unexpected instruction for custom inserter!");
1489 case AArch64::F128CSEL
:
1490 return EmitF128CSEL(MI
, BB
);
1492 case TargetOpcode::STACKMAP
:
1493 case TargetOpcode::PATCHPOINT
:
1494 return emitPatchPoint(MI
, BB
);
1496 case AArch64::CATCHRET
:
1497 return EmitLoweredCatchRet(MI
, BB
);
1498 case AArch64::CATCHPAD
:
1499 return EmitLoweredCatchPad(MI
, BB
);
1503 //===----------------------------------------------------------------------===//
1504 // AArch64 Lowering private implementation.
1505 //===----------------------------------------------------------------------===//
1507 //===----------------------------------------------------------------------===//
1509 //===----------------------------------------------------------------------===//
1511 /// changeIntCCToAArch64CC - Convert a DAG integer condition code to an AArch64
1513 static AArch64CC::CondCode
changeIntCCToAArch64CC(ISD::CondCode CC
) {
1516 llvm_unreachable("Unknown condition code!");
1518 return AArch64CC::NE
;
1520 return AArch64CC::EQ
;
1522 return AArch64CC::GT
;
1524 return AArch64CC::GE
;
1526 return AArch64CC::LT
;
1528 return AArch64CC::LE
;
1530 return AArch64CC::HI
;
1532 return AArch64CC::HS
;
1534 return AArch64CC::LO
;
1536 return AArch64CC::LS
;
1540 /// changeFPCCToAArch64CC - Convert a DAG fp condition code to an AArch64 CC.
1541 static void changeFPCCToAArch64CC(ISD::CondCode CC
,
1542 AArch64CC::CondCode
&CondCode
,
1543 AArch64CC::CondCode
&CondCode2
) {
1544 CondCode2
= AArch64CC::AL
;
1547 llvm_unreachable("Unknown FP condition!");
1550 CondCode
= AArch64CC::EQ
;
1554 CondCode
= AArch64CC::GT
;
1558 CondCode
= AArch64CC::GE
;
1561 CondCode
= AArch64CC::MI
;
1564 CondCode
= AArch64CC::LS
;
1567 CondCode
= AArch64CC::MI
;
1568 CondCode2
= AArch64CC::GT
;
1571 CondCode
= AArch64CC::VC
;
1574 CondCode
= AArch64CC::VS
;
1577 CondCode
= AArch64CC::EQ
;
1578 CondCode2
= AArch64CC::VS
;
1581 CondCode
= AArch64CC::HI
;
1584 CondCode
= AArch64CC::PL
;
1588 CondCode
= AArch64CC::LT
;
1592 CondCode
= AArch64CC::LE
;
1596 CondCode
= AArch64CC::NE
;
1601 /// Convert a DAG fp condition code to an AArch64 CC.
1602 /// This differs from changeFPCCToAArch64CC in that it returns cond codes that
1603 /// should be AND'ed instead of OR'ed.
1604 static void changeFPCCToANDAArch64CC(ISD::CondCode CC
,
1605 AArch64CC::CondCode
&CondCode
,
1606 AArch64CC::CondCode
&CondCode2
) {
1607 CondCode2
= AArch64CC::AL
;
1610 changeFPCCToAArch64CC(CC
, CondCode
, CondCode2
);
1611 assert(CondCode2
== AArch64CC::AL
);
1615 // == ((a olt b) || (a ogt b))
1616 // == ((a ord b) && (a une b))
1617 CondCode
= AArch64CC::VC
;
1618 CondCode2
= AArch64CC::NE
;
1622 // == ((a uno b) || (a oeq b))
1623 // == ((a ule b) && (a uge b))
1624 CondCode
= AArch64CC::PL
;
1625 CondCode2
= AArch64CC::LE
;
1630 /// changeVectorFPCCToAArch64CC - Convert a DAG fp condition code to an AArch64
1631 /// CC usable with the vector instructions. Fewer operations are available
1632 /// without a real NZCV register, so we have to use less efficient combinations
1633 /// to get the same effect.
1634 static void changeVectorFPCCToAArch64CC(ISD::CondCode CC
,
1635 AArch64CC::CondCode
&CondCode
,
1636 AArch64CC::CondCode
&CondCode2
,
1641 // Mostly the scalar mappings work fine.
1642 changeFPCCToAArch64CC(CC
, CondCode
, CondCode2
);
1648 CondCode
= AArch64CC::MI
;
1649 CondCode2
= AArch64CC::GE
;
1656 // All of the compare-mask comparisons are ordered, but we can switch
1657 // between the two by a double inversion. E.g. ULE == !OGT.
1659 changeFPCCToAArch64CC(getSetCCInverse(CC
, /* FP inverse */ MVT::f32
),
1660 CondCode
, CondCode2
);
1665 static bool isLegalArithImmed(uint64_t C
) {
1666 // Matches AArch64DAGToDAGISel::SelectArithImmed().
1667 bool IsLegal
= (C
>> 12 == 0) || ((C
& 0xFFFULL
) == 0 && C
>> 24 == 0);
1668 LLVM_DEBUG(dbgs() << "Is imm " << C
1669 << " legal: " << (IsLegal
? "yes\n" : "no\n"));
1673 // Can a (CMP op1, (sub 0, op2) be turned into a CMN instruction on
1674 // the grounds that "op1 - (-op2) == op1 + op2" ? Not always, the C and V flags
1675 // can be set differently by this operation. It comes down to whether
1676 // "SInt(~op2)+1 == SInt(~op2+1)" (and the same for UInt). If they are then
1677 // everything is fine. If not then the optimization is wrong. Thus general
1678 // comparisons are only valid if op2 != 0.
1680 // So, finally, the only LLVM-native comparisons that don't mention C and V
1681 // are SETEQ and SETNE. They're the only ones we can safely use CMN for in
1682 // the absence of information about op2.
1683 static bool isCMN(SDValue Op
, ISD::CondCode CC
) {
1684 return Op
.getOpcode() == ISD::SUB
&& isNullConstant(Op
.getOperand(0)) &&
1685 (CC
== ISD::SETEQ
|| CC
== ISD::SETNE
);
1688 static SDValue
emitComparison(SDValue LHS
, SDValue RHS
, ISD::CondCode CC
,
1689 const SDLoc
&dl
, SelectionDAG
&DAG
) {
1690 EVT VT
= LHS
.getValueType();
1691 const bool FullFP16
=
1692 static_cast<const AArch64Subtarget
&>(DAG
.getSubtarget()).hasFullFP16();
1694 if (VT
.isFloatingPoint()) {
1695 assert(VT
!= MVT::f128
);
1696 if (VT
== MVT::f16
&& !FullFP16
) {
1697 LHS
= DAG
.getNode(ISD::FP_EXTEND
, dl
, MVT::f32
, LHS
);
1698 RHS
= DAG
.getNode(ISD::FP_EXTEND
, dl
, MVT::f32
, RHS
);
1701 return DAG
.getNode(AArch64ISD::FCMP
, dl
, VT
, LHS
, RHS
);
1704 // The CMP instruction is just an alias for SUBS, and representing it as
1705 // SUBS means that it's possible to get CSE with subtract operations.
1706 // A later phase can perform the optimization of setting the destination
1707 // register to WZR/XZR if it ends up being unused.
1708 unsigned Opcode
= AArch64ISD::SUBS
;
1710 if (isCMN(RHS
, CC
)) {
1711 // Can we combine a (CMP op1, (sub 0, op2) into a CMN instruction ?
1712 Opcode
= AArch64ISD::ADDS
;
1713 RHS
= RHS
.getOperand(1);
1714 } else if (isCMN(LHS
, CC
)) {
1715 // As we are looking for EQ/NE compares, the operands can be commuted ; can
1716 // we combine a (CMP (sub 0, op1), op2) into a CMN instruction ?
1717 Opcode
= AArch64ISD::ADDS
;
1718 LHS
= LHS
.getOperand(1);
1719 } else if (LHS
.getOpcode() == ISD::AND
&& isNullConstant(RHS
) &&
1720 !isUnsignedIntSetCC(CC
)) {
1721 // Similarly, (CMP (and X, Y), 0) can be implemented with a TST
1722 // (a.k.a. ANDS) except that the flags are only guaranteed to work for one
1723 // of the signed comparisons.
1724 Opcode
= AArch64ISD::ANDS
;
1725 RHS
= LHS
.getOperand(1);
1726 LHS
= LHS
.getOperand(0);
1729 return DAG
.getNode(Opcode
, dl
, DAG
.getVTList(VT
, MVT_CC
), LHS
, RHS
)
1733 /// \defgroup AArch64CCMP CMP;CCMP matching
1735 /// These functions deal with the formation of CMP;CCMP;... sequences.
1736 /// The CCMP/CCMN/FCCMP/FCCMPE instructions allow the conditional execution of
1737 /// a comparison. They set the NZCV flags to a predefined value if their
1738 /// predicate is false. This allows to express arbitrary conjunctions, for
1739 /// example "cmp 0 (and (setCA (cmp A)) (setCB (cmp B)))"
1742 /// ccmp B, inv(CB), CA
1743 /// check for CB flags
1745 /// This naturally lets us implement chains of AND operations with SETCC
1746 /// operands. And we can even implement some other situations by transforming
1748 /// - We can implement (NEG SETCC) i.e. negating a single comparison by
1749 /// negating the flags used in a CCMP/FCCMP operations.
1750 /// - We can negate the result of a whole chain of CMP/CCMP/FCCMP operations
1751 /// by negating the flags we test for afterwards. i.e.
1752 /// NEG (CMP CCMP CCCMP ...) can be implemented.
1753 /// - Note that we can only ever negate all previously processed results.
1754 /// What we can not implement by flipping the flags to test is a negation
1755 /// of two sub-trees (because the negation affects all sub-trees emitted so
1756 /// far, so the 2nd sub-tree we emit would also affect the first).
1757 /// With those tools we can implement some OR operations:
1758 /// - (OR (SETCC A) (SETCC B)) can be implemented via:
1759 /// NEG (AND (NEG (SETCC A)) (NEG (SETCC B)))
1760 /// - After transforming OR to NEG/AND combinations we may be able to use NEG
1761 /// elimination rules from earlier to implement the whole thing as a
1762 /// CCMP/FCCMP chain.
1764 /// As complete example:
1765 /// or (or (setCA (cmp A)) (setCB (cmp B)))
1766 /// (and (setCC (cmp C)) (setCD (cmp D)))"
1767 /// can be reassociated to:
1768 /// or (and (setCC (cmp C)) setCD (cmp D))
1769 // (or (setCA (cmp A)) (setCB (cmp B)))
1770 /// can be transformed to:
1771 /// not (and (not (and (setCC (cmp C)) (setCD (cmp D))))
1772 /// (and (not (setCA (cmp A)) (not (setCB (cmp B))))))"
1773 /// which can be implemented as:
1775 /// ccmp D, inv(CD), CC
1776 /// ccmp A, CA, inv(CD)
1777 /// ccmp B, CB, inv(CA)
1778 /// check for CB flags
1780 /// A counterexample is "or (and A B) (and C D)" which translates to
1781 /// not (and (not (and (not A) (not B))) (not (and (not C) (not D)))), we
1782 /// can only implement 1 of the inner (not) operations, but not both!
1785 /// Create a conditional comparison; Use CCMP, CCMN or FCCMP as appropriate.
1786 static SDValue
emitConditionalComparison(SDValue LHS
, SDValue RHS
,
1787 ISD::CondCode CC
, SDValue CCOp
,
1788 AArch64CC::CondCode Predicate
,
1789 AArch64CC::CondCode OutCC
,
1790 const SDLoc
&DL
, SelectionDAG
&DAG
) {
1791 unsigned Opcode
= 0;
1792 const bool FullFP16
=
1793 static_cast<const AArch64Subtarget
&>(DAG
.getSubtarget()).hasFullFP16();
1795 if (LHS
.getValueType().isFloatingPoint()) {
1796 assert(LHS
.getValueType() != MVT::f128
);
1797 if (LHS
.getValueType() == MVT::f16
&& !FullFP16
) {
1798 LHS
= DAG
.getNode(ISD::FP_EXTEND
, DL
, MVT::f32
, LHS
);
1799 RHS
= DAG
.getNode(ISD::FP_EXTEND
, DL
, MVT::f32
, RHS
);
1801 Opcode
= AArch64ISD::FCCMP
;
1802 } else if (RHS
.getOpcode() == ISD::SUB
) {
1803 SDValue SubOp0
= RHS
.getOperand(0);
1804 if (isNullConstant(SubOp0
) && (CC
== ISD::SETEQ
|| CC
== ISD::SETNE
)) {
1805 // See emitComparison() on why we can only do this for SETEQ and SETNE.
1806 Opcode
= AArch64ISD::CCMN
;
1807 RHS
= RHS
.getOperand(1);
1811 Opcode
= AArch64ISD::CCMP
;
1813 SDValue Condition
= DAG
.getConstant(Predicate
, DL
, MVT_CC
);
1814 AArch64CC::CondCode InvOutCC
= AArch64CC::getInvertedCondCode(OutCC
);
1815 unsigned NZCV
= AArch64CC::getNZCVToSatisfyCondCode(InvOutCC
);
1816 SDValue NZCVOp
= DAG
.getConstant(NZCV
, DL
, MVT::i32
);
1817 return DAG
.getNode(Opcode
, DL
, MVT_CC
, LHS
, RHS
, NZCVOp
, Condition
, CCOp
);
1820 /// Returns true if @p Val is a tree of AND/OR/SETCC operations that can be
1821 /// expressed as a conjunction. See \ref AArch64CCMP.
1822 /// \param CanNegate Set to true if we can negate the whole sub-tree just by
1823 /// changing the conditions on the SETCC tests.
1824 /// (this means we can call emitConjunctionRec() with
1825 /// Negate==true on this sub-tree)
1826 /// \param MustBeFirst Set to true if this subtree needs to be negated and we
1827 /// cannot do the negation naturally. We are required to
1828 /// emit the subtree first in this case.
1829 /// \param WillNegate Is true if are called when the result of this
1830 /// subexpression must be negated. This happens when the
1831 /// outer expression is an OR. We can use this fact to know
1832 /// that we have a double negation (or (or ...) ...) that
1833 /// can be implemented for free.
1834 static bool canEmitConjunction(const SDValue Val
, bool &CanNegate
,
1835 bool &MustBeFirst
, bool WillNegate
,
1836 unsigned Depth
= 0) {
1837 if (!Val
.hasOneUse())
1839 unsigned Opcode
= Val
->getOpcode();
1840 if (Opcode
== ISD::SETCC
) {
1841 if (Val
->getOperand(0).getValueType() == MVT::f128
)
1844 MustBeFirst
= false;
1847 // Protect against exponential runtime and stack overflow.
1850 if (Opcode
== ISD::AND
|| Opcode
== ISD::OR
) {
1851 bool IsOR
= Opcode
== ISD::OR
;
1852 SDValue O0
= Val
->getOperand(0);
1853 SDValue O1
= Val
->getOperand(1);
1856 if (!canEmitConjunction(O0
, CanNegateL
, MustBeFirstL
, IsOR
, Depth
+1))
1860 if (!canEmitConjunction(O1
, CanNegateR
, MustBeFirstR
, IsOR
, Depth
+1))
1863 if (MustBeFirstL
&& MustBeFirstR
)
1867 // For an OR expression we need to be able to naturally negate at least
1868 // one side or we cannot do the transformation at all.
1869 if (!CanNegateL
&& !CanNegateR
)
1871 // If we the result of the OR will be negated and we can naturally negate
1872 // the leafs, then this sub-tree as a whole negates naturally.
1873 CanNegate
= WillNegate
&& CanNegateL
&& CanNegateR
;
1874 // If we cannot naturally negate the whole sub-tree, then this must be
1876 MustBeFirst
= !CanNegate
;
1878 assert(Opcode
== ISD::AND
&& "Must be OR or AND");
1879 // We cannot naturally negate an AND operation.
1881 MustBeFirst
= MustBeFirstL
|| MustBeFirstR
;
1888 /// Emit conjunction or disjunction tree with the CMP/FCMP followed by a chain
1889 /// of CCMP/CFCMP ops. See @ref AArch64CCMP.
1890 /// Tries to transform the given i1 producing node @p Val to a series compare
1891 /// and conditional compare operations. @returns an NZCV flags producing node
1892 /// and sets @p OutCC to the flags that should be tested or returns SDValue() if
1893 /// transformation was not possible.
1894 /// \p Negate is true if we want this sub-tree being negated just by changing
1895 /// SETCC conditions.
1896 static SDValue
emitConjunctionRec(SelectionDAG
&DAG
, SDValue Val
,
1897 AArch64CC::CondCode
&OutCC
, bool Negate
, SDValue CCOp
,
1898 AArch64CC::CondCode Predicate
) {
1899 // We're at a tree leaf, produce a conditional comparison operation.
1900 unsigned Opcode
= Val
->getOpcode();
1901 if (Opcode
== ISD::SETCC
) {
1902 SDValue LHS
= Val
->getOperand(0);
1903 SDValue RHS
= Val
->getOperand(1);
1904 ISD::CondCode CC
= cast
<CondCodeSDNode
>(Val
->getOperand(2))->get();
1905 bool isInteger
= LHS
.getValueType().isInteger();
1907 CC
= getSetCCInverse(CC
, LHS
.getValueType());
1909 // Determine OutCC and handle FP special case.
1911 OutCC
= changeIntCCToAArch64CC(CC
);
1913 assert(LHS
.getValueType().isFloatingPoint());
1914 AArch64CC::CondCode ExtraCC
;
1915 changeFPCCToANDAArch64CC(CC
, OutCC
, ExtraCC
);
1916 // Some floating point conditions can't be tested with a single condition
1917 // code. Construct an additional comparison in this case.
1918 if (ExtraCC
!= AArch64CC::AL
) {
1920 if (!CCOp
.getNode())
1921 ExtraCmp
= emitComparison(LHS
, RHS
, CC
, DL
, DAG
);
1923 ExtraCmp
= emitConditionalComparison(LHS
, RHS
, CC
, CCOp
, Predicate
,
1926 Predicate
= ExtraCC
;
1930 // Produce a normal comparison if we are first in the chain
1932 return emitComparison(LHS
, RHS
, CC
, DL
, DAG
);
1933 // Otherwise produce a ccmp.
1934 return emitConditionalComparison(LHS
, RHS
, CC
, CCOp
, Predicate
, OutCC
, DL
,
1937 assert(Val
->hasOneUse() && "Valid conjunction/disjunction tree");
1939 bool IsOR
= Opcode
== ISD::OR
;
1941 SDValue LHS
= Val
->getOperand(0);
1944 bool ValidL
= canEmitConjunction(LHS
, CanNegateL
, MustBeFirstL
, IsOR
);
1945 assert(ValidL
&& "Valid conjunction/disjunction tree");
1948 SDValue RHS
= Val
->getOperand(1);
1951 bool ValidR
= canEmitConjunction(RHS
, CanNegateR
, MustBeFirstR
, IsOR
);
1952 assert(ValidR
&& "Valid conjunction/disjunction tree");
1955 // Swap sub-tree that must come first to the right side.
1957 assert(!MustBeFirstR
&& "Valid conjunction/disjunction tree");
1958 std::swap(LHS
, RHS
);
1959 std::swap(CanNegateL
, CanNegateR
);
1960 std::swap(MustBeFirstL
, MustBeFirstR
);
1966 bool NegateAfterAll
;
1967 if (Opcode
== ISD::OR
) {
1968 // Swap the sub-tree that we can negate naturally to the left.
1970 assert(CanNegateR
&& "at least one side must be negatable");
1971 assert(!MustBeFirstR
&& "invalid conjunction/disjunction tree");
1973 std::swap(LHS
, RHS
);
1975 NegateAfterR
= true;
1977 // Negate the left sub-tree if possible, otherwise negate the result.
1978 NegateR
= CanNegateR
;
1979 NegateAfterR
= !CanNegateR
;
1982 NegateAfterAll
= !Negate
;
1984 assert(Opcode
== ISD::AND
&& "Valid conjunction/disjunction tree");
1985 assert(!Negate
&& "Valid conjunction/disjunction tree");
1989 NegateAfterR
= false;
1990 NegateAfterAll
= false;
1994 AArch64CC::CondCode RHSCC
;
1995 SDValue CmpR
= emitConjunctionRec(DAG
, RHS
, RHSCC
, NegateR
, CCOp
, Predicate
);
1997 RHSCC
= AArch64CC::getInvertedCondCode(RHSCC
);
1998 SDValue CmpL
= emitConjunctionRec(DAG
, LHS
, OutCC
, NegateL
, CmpR
, RHSCC
);
2000 OutCC
= AArch64CC::getInvertedCondCode(OutCC
);
2004 /// Emit expression as a conjunction (a series of CCMP/CFCMP ops).
2005 /// In some cases this is even possible with OR operations in the expression.
2006 /// See \ref AArch64CCMP.
2007 /// \see emitConjunctionRec().
2008 static SDValue
emitConjunction(SelectionDAG
&DAG
, SDValue Val
,
2009 AArch64CC::CondCode
&OutCC
) {
2010 bool DummyCanNegate
;
2011 bool DummyMustBeFirst
;
2012 if (!canEmitConjunction(Val
, DummyCanNegate
, DummyMustBeFirst
, false))
2015 return emitConjunctionRec(DAG
, Val
, OutCC
, false, SDValue(), AArch64CC::AL
);
2020 /// Returns how profitable it is to fold a comparison's operand's shift and/or
2021 /// extension operations.
2022 static unsigned getCmpOperandFoldingProfit(SDValue Op
) {
2023 auto isSupportedExtend
= [&](SDValue V
) {
2024 if (V
.getOpcode() == ISD::SIGN_EXTEND_INREG
)
2027 if (V
.getOpcode() == ISD::AND
)
2028 if (ConstantSDNode
*MaskCst
= dyn_cast
<ConstantSDNode
>(V
.getOperand(1))) {
2029 uint64_t Mask
= MaskCst
->getZExtValue();
2030 return (Mask
== 0xFF || Mask
== 0xFFFF || Mask
== 0xFFFFFFFF);
2036 if (!Op
.hasOneUse())
2039 if (isSupportedExtend(Op
))
2042 unsigned Opc
= Op
.getOpcode();
2043 if (Opc
== ISD::SHL
|| Opc
== ISD::SRL
|| Opc
== ISD::SRA
)
2044 if (ConstantSDNode
*ShiftCst
= dyn_cast
<ConstantSDNode
>(Op
.getOperand(1))) {
2045 uint64_t Shift
= ShiftCst
->getZExtValue();
2046 if (isSupportedExtend(Op
.getOperand(0)))
2047 return (Shift
<= 4) ? 2 : 1;
2048 EVT VT
= Op
.getValueType();
2049 if ((VT
== MVT::i32
&& Shift
<= 31) || (VT
== MVT::i64
&& Shift
<= 63))
2056 static SDValue
getAArch64Cmp(SDValue LHS
, SDValue RHS
, ISD::CondCode CC
,
2057 SDValue
&AArch64cc
, SelectionDAG
&DAG
,
2059 if (ConstantSDNode
*RHSC
= dyn_cast
<ConstantSDNode
>(RHS
.getNode())) {
2060 EVT VT
= RHS
.getValueType();
2061 uint64_t C
= RHSC
->getZExtValue();
2062 if (!isLegalArithImmed(C
)) {
2063 // Constant does not fit, try adjusting it by one?
2069 if ((VT
== MVT::i32
&& C
!= 0x80000000 &&
2070 isLegalArithImmed((uint32_t)(C
- 1))) ||
2071 (VT
== MVT::i64
&& C
!= 0x80000000ULL
&&
2072 isLegalArithImmed(C
- 1ULL))) {
2073 CC
= (CC
== ISD::SETLT
) ? ISD::SETLE
: ISD::SETGT
;
2074 C
= (VT
== MVT::i32
) ? (uint32_t)(C
- 1) : C
- 1;
2075 RHS
= DAG
.getConstant(C
, dl
, VT
);
2080 if ((VT
== MVT::i32
&& C
!= 0 &&
2081 isLegalArithImmed((uint32_t)(C
- 1))) ||
2082 (VT
== MVT::i64
&& C
!= 0ULL && isLegalArithImmed(C
- 1ULL))) {
2083 CC
= (CC
== ISD::SETULT
) ? ISD::SETULE
: ISD::SETUGT
;
2084 C
= (VT
== MVT::i32
) ? (uint32_t)(C
- 1) : C
- 1;
2085 RHS
= DAG
.getConstant(C
, dl
, VT
);
2090 if ((VT
== MVT::i32
&& C
!= INT32_MAX
&&
2091 isLegalArithImmed((uint32_t)(C
+ 1))) ||
2092 (VT
== MVT::i64
&& C
!= INT64_MAX
&&
2093 isLegalArithImmed(C
+ 1ULL))) {
2094 CC
= (CC
== ISD::SETLE
) ? ISD::SETLT
: ISD::SETGE
;
2095 C
= (VT
== MVT::i32
) ? (uint32_t)(C
+ 1) : C
+ 1;
2096 RHS
= DAG
.getConstant(C
, dl
, VT
);
2101 if ((VT
== MVT::i32
&& C
!= UINT32_MAX
&&
2102 isLegalArithImmed((uint32_t)(C
+ 1))) ||
2103 (VT
== MVT::i64
&& C
!= UINT64_MAX
&&
2104 isLegalArithImmed(C
+ 1ULL))) {
2105 CC
= (CC
== ISD::SETULE
) ? ISD::SETULT
: ISD::SETUGE
;
2106 C
= (VT
== MVT::i32
) ? (uint32_t)(C
+ 1) : C
+ 1;
2107 RHS
= DAG
.getConstant(C
, dl
, VT
);
2114 // Comparisons are canonicalized so that the RHS operand is simpler than the
2115 // LHS one, the extreme case being when RHS is an immediate. However, AArch64
2116 // can fold some shift+extend operations on the RHS operand, so swap the
2117 // operands if that can be done.
2122 // can be turned into:
2123 // cmp w12, w11, lsl #1
2124 if (!isa
<ConstantSDNode
>(RHS
) ||
2125 !isLegalArithImmed(cast
<ConstantSDNode
>(RHS
)->getZExtValue())) {
2126 SDValue TheLHS
= isCMN(LHS
, CC
) ? LHS
.getOperand(1) : LHS
;
2128 if (getCmpOperandFoldingProfit(TheLHS
) > getCmpOperandFoldingProfit(RHS
)) {
2129 std::swap(LHS
, RHS
);
2130 CC
= ISD::getSetCCSwappedOperands(CC
);
2135 AArch64CC::CondCode AArch64CC
;
2136 if ((CC
== ISD::SETEQ
|| CC
== ISD::SETNE
) && isa
<ConstantSDNode
>(RHS
)) {
2137 const ConstantSDNode
*RHSC
= cast
<ConstantSDNode
>(RHS
);
2139 // The imm operand of ADDS is an unsigned immediate, in the range 0 to 4095.
2140 // For the i8 operand, the largest immediate is 255, so this can be easily
2141 // encoded in the compare instruction. For the i16 operand, however, the
2142 // largest immediate cannot be encoded in the compare.
2143 // Therefore, use a sign extending load and cmn to avoid materializing the
2144 // -1 constant. For example,
2146 // ldrh w0, [x0, #0]
2149 // ldrsh w0, [x0, #0]
2151 // Fundamental, we're relying on the property that (zext LHS) == (zext RHS)
2152 // if and only if (sext LHS) == (sext RHS). The checks are in place to
2153 // ensure both the LHS and RHS are truly zero extended and to make sure the
2154 // transformation is profitable.
2155 if ((RHSC
->getZExtValue() >> 16 == 0) && isa
<LoadSDNode
>(LHS
) &&
2156 cast
<LoadSDNode
>(LHS
)->getExtensionType() == ISD::ZEXTLOAD
&&
2157 cast
<LoadSDNode
>(LHS
)->getMemoryVT() == MVT::i16
&&
2158 LHS
.getNode()->hasNUsesOfValue(1, 0)) {
2159 int16_t ValueofRHS
= cast
<ConstantSDNode
>(RHS
)->getZExtValue();
2160 if (ValueofRHS
< 0 && isLegalArithImmed(-ValueofRHS
)) {
2162 DAG
.getNode(ISD::SIGN_EXTEND_INREG
, dl
, LHS
.getValueType(), LHS
,
2163 DAG
.getValueType(MVT::i16
));
2164 Cmp
= emitComparison(SExt
, DAG
.getConstant(ValueofRHS
, dl
,
2165 RHS
.getValueType()),
2167 AArch64CC
= changeIntCCToAArch64CC(CC
);
2171 if (!Cmp
&& (RHSC
->isNullValue() || RHSC
->isOne())) {
2172 if ((Cmp
= emitConjunction(DAG
, LHS
, AArch64CC
))) {
2173 if ((CC
== ISD::SETNE
) ^ RHSC
->isNullValue())
2174 AArch64CC
= AArch64CC::getInvertedCondCode(AArch64CC
);
2180 Cmp
= emitComparison(LHS
, RHS
, CC
, dl
, DAG
);
2181 AArch64CC
= changeIntCCToAArch64CC(CC
);
2183 AArch64cc
= DAG
.getConstant(AArch64CC
, dl
, MVT_CC
);
2187 static std::pair
<SDValue
, SDValue
>
2188 getAArch64XALUOOp(AArch64CC::CondCode
&CC
, SDValue Op
, SelectionDAG
&DAG
) {
2189 assert((Op
.getValueType() == MVT::i32
|| Op
.getValueType() == MVT::i64
) &&
2190 "Unsupported value type");
2191 SDValue Value
, Overflow
;
2193 SDValue LHS
= Op
.getOperand(0);
2194 SDValue RHS
= Op
.getOperand(1);
2196 switch (Op
.getOpcode()) {
2198 llvm_unreachable("Unknown overflow instruction!");
2200 Opc
= AArch64ISD::ADDS
;
2204 Opc
= AArch64ISD::ADDS
;
2208 Opc
= AArch64ISD::SUBS
;
2212 Opc
= AArch64ISD::SUBS
;
2215 // Multiply needs a little bit extra work.
2219 bool IsSigned
= Op
.getOpcode() == ISD::SMULO
;
2220 if (Op
.getValueType() == MVT::i32
) {
2221 unsigned ExtendOpc
= IsSigned
? ISD::SIGN_EXTEND
: ISD::ZERO_EXTEND
;
2222 // For a 32 bit multiply with overflow check we want the instruction
2223 // selector to generate a widening multiply (SMADDL/UMADDL). For that we
2224 // need to generate the following pattern:
2225 // (i64 add 0, (i64 mul (i64 sext|zext i32 %a), (i64 sext|zext i32 %b))
2226 LHS
= DAG
.getNode(ExtendOpc
, DL
, MVT::i64
, LHS
);
2227 RHS
= DAG
.getNode(ExtendOpc
, DL
, MVT::i64
, RHS
);
2228 SDValue Mul
= DAG
.getNode(ISD::MUL
, DL
, MVT::i64
, LHS
, RHS
);
2229 SDValue Add
= DAG
.getNode(ISD::ADD
, DL
, MVT::i64
, Mul
,
2230 DAG
.getConstant(0, DL
, MVT::i64
));
2231 // On AArch64 the upper 32 bits are always zero extended for a 32 bit
2232 // operation. We need to clear out the upper 32 bits, because we used a
2233 // widening multiply that wrote all 64 bits. In the end this should be a
2235 Value
= DAG
.getNode(ISD::TRUNCATE
, DL
, MVT::i32
, Add
);
2237 // The signed overflow check requires more than just a simple check for
2238 // any bit set in the upper 32 bits of the result. These bits could be
2239 // just the sign bits of a negative number. To perform the overflow
2240 // check we have to arithmetic shift right the 32nd bit of the result by
2241 // 31 bits. Then we compare the result to the upper 32 bits.
2242 SDValue UpperBits
= DAG
.getNode(ISD::SRL
, DL
, MVT::i64
, Add
,
2243 DAG
.getConstant(32, DL
, MVT::i64
));
2244 UpperBits
= DAG
.getNode(ISD::TRUNCATE
, DL
, MVT::i32
, UpperBits
);
2245 SDValue LowerBits
= DAG
.getNode(ISD::SRA
, DL
, MVT::i32
, Value
,
2246 DAG
.getConstant(31, DL
, MVT::i64
));
2247 // It is important that LowerBits is last, otherwise the arithmetic
2248 // shift will not be folded into the compare (SUBS).
2249 SDVTList VTs
= DAG
.getVTList(MVT::i32
, MVT::i32
);
2250 Overflow
= DAG
.getNode(AArch64ISD::SUBS
, DL
, VTs
, UpperBits
, LowerBits
)
2253 // The overflow check for unsigned multiply is easy. We only need to
2254 // check if any of the upper 32 bits are set. This can be done with a
2255 // CMP (shifted register). For that we need to generate the following
2257 // (i64 AArch64ISD::SUBS i64 0, (i64 srl i64 %Mul, i64 32)
2258 SDValue UpperBits
= DAG
.getNode(ISD::SRL
, DL
, MVT::i64
, Mul
,
2259 DAG
.getConstant(32, DL
, MVT::i64
));
2260 SDVTList VTs
= DAG
.getVTList(MVT::i64
, MVT::i32
);
2262 DAG
.getNode(AArch64ISD::SUBS
, DL
, VTs
,
2263 DAG
.getConstant(0, DL
, MVT::i64
),
2264 UpperBits
).getValue(1);
2268 assert(Op
.getValueType() == MVT::i64
&& "Expected an i64 value type");
2269 // For the 64 bit multiply
2270 Value
= DAG
.getNode(ISD::MUL
, DL
, MVT::i64
, LHS
, RHS
);
2272 SDValue UpperBits
= DAG
.getNode(ISD::MULHS
, DL
, MVT::i64
, LHS
, RHS
);
2273 SDValue LowerBits
= DAG
.getNode(ISD::SRA
, DL
, MVT::i64
, Value
,
2274 DAG
.getConstant(63, DL
, MVT::i64
));
2275 // It is important that LowerBits is last, otherwise the arithmetic
2276 // shift will not be folded into the compare (SUBS).
2277 SDVTList VTs
= DAG
.getVTList(MVT::i64
, MVT::i32
);
2278 Overflow
= DAG
.getNode(AArch64ISD::SUBS
, DL
, VTs
, UpperBits
, LowerBits
)
2281 SDValue UpperBits
= DAG
.getNode(ISD::MULHU
, DL
, MVT::i64
, LHS
, RHS
);
2282 SDVTList VTs
= DAG
.getVTList(MVT::i64
, MVT::i32
);
2284 DAG
.getNode(AArch64ISD::SUBS
, DL
, VTs
,
2285 DAG
.getConstant(0, DL
, MVT::i64
),
2286 UpperBits
).getValue(1);
2293 SDVTList VTs
= DAG
.getVTList(Op
->getValueType(0), MVT::i32
);
2295 // Emit the AArch64 operation with overflow check.
2296 Value
= DAG
.getNode(Opc
, DL
, VTs
, LHS
, RHS
);
2297 Overflow
= Value
.getValue(1);
2299 return std::make_pair(Value
, Overflow
);
2302 SDValue
AArch64TargetLowering::LowerF128Call(SDValue Op
, SelectionDAG
&DAG
,
2303 RTLIB::Libcall Call
) const {
2304 SmallVector
<SDValue
, 2> Ops(Op
->op_begin(), Op
->op_end());
2305 MakeLibCallOptions CallOptions
;
2306 return makeLibCall(DAG
, Call
, MVT::f128
, Ops
, CallOptions
, SDLoc(Op
)).first
;
2309 // Returns true if the given Op is the overflow flag result of an overflow
2310 // intrinsic operation.
2311 static bool isOverflowIntrOpRes(SDValue Op
) {
2312 unsigned Opc
= Op
.getOpcode();
2313 return (Op
.getResNo() == 1 &&
2314 (Opc
== ISD::SADDO
|| Opc
== ISD::UADDO
|| Opc
== ISD::SSUBO
||
2315 Opc
== ISD::USUBO
|| Opc
== ISD::SMULO
|| Opc
== ISD::UMULO
));
2318 static SDValue
LowerXOR(SDValue Op
, SelectionDAG
&DAG
) {
2319 SDValue Sel
= Op
.getOperand(0);
2320 SDValue Other
= Op
.getOperand(1);
2323 // If the operand is an overflow checking operation, invert the condition
2324 // code and kill the Not operation. I.e., transform:
2325 // (xor (overflow_op_bool, 1))
2327 // (csel 1, 0, invert(cc), overflow_op_bool)
2328 // ... which later gets transformed to just a cset instruction with an
2329 // inverted condition code, rather than a cset + eor sequence.
2330 if (isOneConstant(Other
) && isOverflowIntrOpRes(Sel
)) {
2331 // Only lower legal XALUO ops.
2332 if (!DAG
.getTargetLoweringInfo().isTypeLegal(Sel
->getValueType(0)))
2335 SDValue TVal
= DAG
.getConstant(1, dl
, MVT::i32
);
2336 SDValue FVal
= DAG
.getConstant(0, dl
, MVT::i32
);
2337 AArch64CC::CondCode CC
;
2338 SDValue Value
, Overflow
;
2339 std::tie(Value
, Overflow
) = getAArch64XALUOOp(CC
, Sel
.getValue(0), DAG
);
2340 SDValue CCVal
= DAG
.getConstant(getInvertedCondCode(CC
), dl
, MVT::i32
);
2341 return DAG
.getNode(AArch64ISD::CSEL
, dl
, Op
.getValueType(), TVal
, FVal
,
2344 // If neither operand is a SELECT_CC, give up.
2345 if (Sel
.getOpcode() != ISD::SELECT_CC
)
2346 std::swap(Sel
, Other
);
2347 if (Sel
.getOpcode() != ISD::SELECT_CC
)
2350 // The folding we want to perform is:
2351 // (xor x, (select_cc a, b, cc, 0, -1) )
2353 // (csel x, (xor x, -1), cc ...)
2355 // The latter will get matched to a CSINV instruction.
2357 ISD::CondCode CC
= cast
<CondCodeSDNode
>(Sel
.getOperand(4))->get();
2358 SDValue LHS
= Sel
.getOperand(0);
2359 SDValue RHS
= Sel
.getOperand(1);
2360 SDValue TVal
= Sel
.getOperand(2);
2361 SDValue FVal
= Sel
.getOperand(3);
2363 // FIXME: This could be generalized to non-integer comparisons.
2364 if (LHS
.getValueType() != MVT::i32
&& LHS
.getValueType() != MVT::i64
)
2367 ConstantSDNode
*CFVal
= dyn_cast
<ConstantSDNode
>(FVal
);
2368 ConstantSDNode
*CTVal
= dyn_cast
<ConstantSDNode
>(TVal
);
2370 // The values aren't constants, this isn't the pattern we're looking for.
2371 if (!CFVal
|| !CTVal
)
2374 // We can commute the SELECT_CC by inverting the condition. This
2375 // might be needed to make this fit into a CSINV pattern.
2376 if (CTVal
->isAllOnesValue() && CFVal
->isNullValue()) {
2377 std::swap(TVal
, FVal
);
2378 std::swap(CTVal
, CFVal
);
2379 CC
= ISD::getSetCCInverse(CC
, LHS
.getValueType());
2382 // If the constants line up, perform the transform!
2383 if (CTVal
->isNullValue() && CFVal
->isAllOnesValue()) {
2385 SDValue Cmp
= getAArch64Cmp(LHS
, RHS
, CC
, CCVal
, DAG
, dl
);
2388 TVal
= DAG
.getNode(ISD::XOR
, dl
, Other
.getValueType(), Other
,
2389 DAG
.getConstant(-1ULL, dl
, Other
.getValueType()));
2391 return DAG
.getNode(AArch64ISD::CSEL
, dl
, Sel
.getValueType(), FVal
, TVal
,
2398 static SDValue
LowerADDC_ADDE_SUBC_SUBE(SDValue Op
, SelectionDAG
&DAG
) {
2399 EVT VT
= Op
.getValueType();
2401 // Let legalize expand this if it isn't a legal type yet.
2402 if (!DAG
.getTargetLoweringInfo().isTypeLegal(VT
))
2405 SDVTList VTs
= DAG
.getVTList(VT
, MVT::i32
);
2408 bool ExtraOp
= false;
2409 switch (Op
.getOpcode()) {
2411 llvm_unreachable("Invalid code");
2413 Opc
= AArch64ISD::ADDS
;
2416 Opc
= AArch64ISD::SUBS
;
2419 Opc
= AArch64ISD::ADCS
;
2423 Opc
= AArch64ISD::SBCS
;
2429 return DAG
.getNode(Opc
, SDLoc(Op
), VTs
, Op
.getOperand(0), Op
.getOperand(1));
2430 return DAG
.getNode(Opc
, SDLoc(Op
), VTs
, Op
.getOperand(0), Op
.getOperand(1),
2434 static SDValue
LowerXALUO(SDValue Op
, SelectionDAG
&DAG
) {
2435 // Let legalize expand this if it isn't a legal type yet.
2436 if (!DAG
.getTargetLoweringInfo().isTypeLegal(Op
.getValueType()))
2440 AArch64CC::CondCode CC
;
2441 // The actual operation that sets the overflow or carry flag.
2442 SDValue Value
, Overflow
;
2443 std::tie(Value
, Overflow
) = getAArch64XALUOOp(CC
, Op
, DAG
);
2445 // We use 0 and 1 as false and true values.
2446 SDValue TVal
= DAG
.getConstant(1, dl
, MVT::i32
);
2447 SDValue FVal
= DAG
.getConstant(0, dl
, MVT::i32
);
2449 // We use an inverted condition, because the conditional select is inverted
2450 // too. This will allow it to be selected to a single instruction:
2451 // CSINC Wd, WZR, WZR, invert(cond).
2452 SDValue CCVal
= DAG
.getConstant(getInvertedCondCode(CC
), dl
, MVT::i32
);
2453 Overflow
= DAG
.getNode(AArch64ISD::CSEL
, dl
, MVT::i32
, FVal
, TVal
,
2456 SDVTList VTs
= DAG
.getVTList(Op
.getValueType(), MVT::i32
);
2457 return DAG
.getNode(ISD::MERGE_VALUES
, dl
, VTs
, Value
, Overflow
);
2460 // Prefetch operands are:
2461 // 1: Address to prefetch
2463 // 3: int locality (0 = no locality ... 3 = extreme locality)
2464 // 4: bool isDataCache
2465 static SDValue
LowerPREFETCH(SDValue Op
, SelectionDAG
&DAG
) {
2467 unsigned IsWrite
= cast
<ConstantSDNode
>(Op
.getOperand(2))->getZExtValue();
2468 unsigned Locality
= cast
<ConstantSDNode
>(Op
.getOperand(3))->getZExtValue();
2469 unsigned IsData
= cast
<ConstantSDNode
>(Op
.getOperand(4))->getZExtValue();
2471 bool IsStream
= !Locality
;
2472 // When the locality number is set
2474 // The front-end should have filtered out the out-of-range values
2475 assert(Locality
<= 3 && "Prefetch locality out-of-range");
2476 // The locality degree is the opposite of the cache speed.
2477 // Put the number the other way around.
2478 // The encoding starts at 0 for level 1
2479 Locality
= 3 - Locality
;
2482 // built the mask value encoding the expected behavior.
2483 unsigned PrfOp
= (IsWrite
<< 4) | // Load/Store bit
2484 (!IsData
<< 3) | // IsDataCache bit
2485 (Locality
<< 1) | // Cache level bits
2486 (unsigned)IsStream
; // Stream bit
2487 return DAG
.getNode(AArch64ISD::PREFETCH
, DL
, MVT::Other
, Op
.getOperand(0),
2488 DAG
.getConstant(PrfOp
, DL
, MVT::i32
), Op
.getOperand(1));
2491 SDValue
AArch64TargetLowering::LowerFP_EXTEND(SDValue Op
,
2492 SelectionDAG
&DAG
) const {
2493 assert(Op
.getValueType() == MVT::f128
&& "Unexpected lowering");
2496 LC
= RTLIB::getFPEXT(Op
.getOperand(0).getValueType(), Op
.getValueType());
2498 return LowerF128Call(Op
, DAG
, LC
);
2501 SDValue
AArch64TargetLowering::LowerFP_ROUND(SDValue Op
,
2502 SelectionDAG
&DAG
) const {
2503 if (Op
.getOperand(0).getValueType() != MVT::f128
) {
2504 // It's legal except when f128 is involved
2509 LC
= RTLIB::getFPROUND(Op
.getOperand(0).getValueType(), Op
.getValueType());
2511 // FP_ROUND node has a second operand indicating whether it is known to be
2512 // precise. That doesn't take part in the LibCall so we can't directly use
2514 SDValue SrcVal
= Op
.getOperand(0);
2515 MakeLibCallOptions CallOptions
;
2516 return makeLibCall(DAG
, LC
, Op
.getValueType(), SrcVal
, CallOptions
,
2520 SDValue
AArch64TargetLowering::LowerVectorFP_TO_INT(SDValue Op
,
2521 SelectionDAG
&DAG
) const {
2522 // Warning: We maintain cost tables in AArch64TargetTransformInfo.cpp.
2523 // Any additional optimization in this function should be recorded
2524 // in the cost tables.
2525 EVT InVT
= Op
.getOperand(0).getValueType();
2526 EVT VT
= Op
.getValueType();
2527 unsigned NumElts
= InVT
.getVectorNumElements();
2529 // f16 conversions are promoted to f32 when full fp16 is not supported.
2530 if (InVT
.getVectorElementType() == MVT::f16
&&
2531 !Subtarget
->hasFullFP16()) {
2532 MVT NewVT
= MVT::getVectorVT(MVT::f32
, NumElts
);
2535 Op
.getOpcode(), dl
, Op
.getValueType(),
2536 DAG
.getNode(ISD::FP_EXTEND
, dl
, NewVT
, Op
.getOperand(0)));
2539 if (VT
.getSizeInBits() < InVT
.getSizeInBits()) {
2542 DAG
.getNode(Op
.getOpcode(), dl
, InVT
.changeVectorElementTypeToInteger(),
2544 return DAG
.getNode(ISD::TRUNCATE
, dl
, VT
, Cv
);
2547 if (VT
.getSizeInBits() > InVT
.getSizeInBits()) {
2550 MVT::getVectorVT(MVT::getFloatingPointVT(VT
.getScalarSizeInBits()),
2551 VT
.getVectorNumElements());
2552 SDValue Ext
= DAG
.getNode(ISD::FP_EXTEND
, dl
, ExtVT
, Op
.getOperand(0));
2553 return DAG
.getNode(Op
.getOpcode(), dl
, VT
, Ext
);
2556 // Type changing conversions are illegal.
2560 SDValue
AArch64TargetLowering::LowerFP_TO_INT(SDValue Op
,
2561 SelectionDAG
&DAG
) const {
2562 if (Op
.getOperand(0).getValueType().isVector())
2563 return LowerVectorFP_TO_INT(Op
, DAG
);
2565 // f16 conversions are promoted to f32 when full fp16 is not supported.
2566 if (Op
.getOperand(0).getValueType() == MVT::f16
&&
2567 !Subtarget
->hasFullFP16()) {
2570 Op
.getOpcode(), dl
, Op
.getValueType(),
2571 DAG
.getNode(ISD::FP_EXTEND
, dl
, MVT::f32
, Op
.getOperand(0)));
2574 if (Op
.getOperand(0).getValueType() != MVT::f128
) {
2575 // It's legal except when f128 is involved
2580 if (Op
.getOpcode() == ISD::FP_TO_SINT
)
2581 LC
= RTLIB::getFPTOSINT(Op
.getOperand(0).getValueType(), Op
.getValueType());
2583 LC
= RTLIB::getFPTOUINT(Op
.getOperand(0).getValueType(), Op
.getValueType());
2585 SmallVector
<SDValue
, 2> Ops(Op
->op_begin(), Op
->op_end());
2586 MakeLibCallOptions CallOptions
;
2587 return makeLibCall(DAG
, LC
, Op
.getValueType(), Ops
, CallOptions
, SDLoc(Op
)).first
;
2590 static SDValue
LowerVectorINT_TO_FP(SDValue Op
, SelectionDAG
&DAG
) {
2591 // Warning: We maintain cost tables in AArch64TargetTransformInfo.cpp.
2592 // Any additional optimization in this function should be recorded
2593 // in the cost tables.
2594 EVT VT
= Op
.getValueType();
2596 SDValue In
= Op
.getOperand(0);
2597 EVT InVT
= In
.getValueType();
2599 if (VT
.getSizeInBits() < InVT
.getSizeInBits()) {
2601 MVT::getVectorVT(MVT::getFloatingPointVT(InVT
.getScalarSizeInBits()),
2602 InVT
.getVectorNumElements());
2603 In
= DAG
.getNode(Op
.getOpcode(), dl
, CastVT
, In
);
2604 return DAG
.getNode(ISD::FP_ROUND
, dl
, VT
, In
, DAG
.getIntPtrConstant(0, dl
));
2607 if (VT
.getSizeInBits() > InVT
.getSizeInBits()) {
2609 Op
.getOpcode() == ISD::SINT_TO_FP
? ISD::SIGN_EXTEND
: ISD::ZERO_EXTEND
;
2610 EVT CastVT
= VT
.changeVectorElementTypeToInteger();
2611 In
= DAG
.getNode(CastOpc
, dl
, CastVT
, In
);
2612 return DAG
.getNode(Op
.getOpcode(), dl
, VT
, In
);
2618 SDValue
AArch64TargetLowering::LowerINT_TO_FP(SDValue Op
,
2619 SelectionDAG
&DAG
) const {
2620 if (Op
.getValueType().isVector())
2621 return LowerVectorINT_TO_FP(Op
, DAG
);
2623 // f16 conversions are promoted to f32 when full fp16 is not supported.
2624 if (Op
.getValueType() == MVT::f16
&&
2625 !Subtarget
->hasFullFP16()) {
2628 ISD::FP_ROUND
, dl
, MVT::f16
,
2629 DAG
.getNode(Op
.getOpcode(), dl
, MVT::f32
, Op
.getOperand(0)),
2630 DAG
.getIntPtrConstant(0, dl
));
2633 // i128 conversions are libcalls.
2634 if (Op
.getOperand(0).getValueType() == MVT::i128
)
2637 // Other conversions are legal, unless it's to the completely software-based
2639 if (Op
.getValueType() != MVT::f128
)
2643 if (Op
.getOpcode() == ISD::SINT_TO_FP
)
2644 LC
= RTLIB::getSINTTOFP(Op
.getOperand(0).getValueType(), Op
.getValueType());
2646 LC
= RTLIB::getUINTTOFP(Op
.getOperand(0).getValueType(), Op
.getValueType());
2648 return LowerF128Call(Op
, DAG
, LC
);
2651 SDValue
AArch64TargetLowering::LowerFSINCOS(SDValue Op
,
2652 SelectionDAG
&DAG
) const {
2653 // For iOS, we want to call an alternative entry point: __sincos_stret,
2654 // which returns the values in two S / D registers.
2656 SDValue Arg
= Op
.getOperand(0);
2657 EVT ArgVT
= Arg
.getValueType();
2658 Type
*ArgTy
= ArgVT
.getTypeForEVT(*DAG
.getContext());
2665 Entry
.IsSExt
= false;
2666 Entry
.IsZExt
= false;
2667 Args
.push_back(Entry
);
2669 RTLIB::Libcall LC
= ArgVT
== MVT::f64
? RTLIB::SINCOS_STRET_F64
2670 : RTLIB::SINCOS_STRET_F32
;
2671 const char *LibcallName
= getLibcallName(LC
);
2673 DAG
.getExternalSymbol(LibcallName
, getPointerTy(DAG
.getDataLayout()));
2675 StructType
*RetTy
= StructType::get(ArgTy
, ArgTy
);
2676 TargetLowering::CallLoweringInfo
CLI(DAG
);
2678 .setChain(DAG
.getEntryNode())
2679 .setLibCallee(CallingConv::Fast
, RetTy
, Callee
, std::move(Args
));
2681 std::pair
<SDValue
, SDValue
> CallResult
= LowerCallTo(CLI
);
2682 return CallResult
.first
;
2685 static SDValue
LowerBITCAST(SDValue Op
, SelectionDAG
&DAG
) {
2686 if (Op
.getValueType() != MVT::f16
)
2689 assert(Op
.getOperand(0).getValueType() == MVT::i16
);
2692 Op
= DAG
.getNode(ISD::ANY_EXTEND
, DL
, MVT::i32
, Op
.getOperand(0));
2693 Op
= DAG
.getNode(ISD::BITCAST
, DL
, MVT::f32
, Op
);
2695 DAG
.getMachineNode(TargetOpcode::EXTRACT_SUBREG
, DL
, MVT::f16
, Op
,
2696 DAG
.getTargetConstant(AArch64::hsub
, DL
, MVT::i32
)),
2700 static EVT
getExtensionTo64Bits(const EVT
&OrigVT
) {
2701 if (OrigVT
.getSizeInBits() >= 64)
2704 assert(OrigVT
.isSimple() && "Expecting a simple value type");
2706 MVT::SimpleValueType OrigSimpleTy
= OrigVT
.getSimpleVT().SimpleTy
;
2707 switch (OrigSimpleTy
) {
2708 default: llvm_unreachable("Unexpected Vector Type");
2717 static SDValue
addRequiredExtensionForVectorMULL(SDValue N
, SelectionDAG
&DAG
,
2720 unsigned ExtOpcode
) {
2721 // The vector originally had a size of OrigTy. It was then extended to ExtTy.
2722 // We expect the ExtTy to be 128-bits total. If the OrigTy is less than
2723 // 64-bits we need to insert a new extension so that it will be 64-bits.
2724 assert(ExtTy
.is128BitVector() && "Unexpected extension size");
2725 if (OrigTy
.getSizeInBits() >= 64)
2728 // Must extend size to at least 64 bits to be used as an operand for VMULL.
2729 EVT NewVT
= getExtensionTo64Bits(OrigTy
);
2731 return DAG
.getNode(ExtOpcode
, SDLoc(N
), NewVT
, N
);
2734 static bool isExtendedBUILD_VECTOR(SDNode
*N
, SelectionDAG
&DAG
,
2736 EVT VT
= N
->getValueType(0);
2738 if (N
->getOpcode() != ISD::BUILD_VECTOR
)
2741 for (const SDValue
&Elt
: N
->op_values()) {
2742 if (ConstantSDNode
*C
= dyn_cast
<ConstantSDNode
>(Elt
)) {
2743 unsigned EltSize
= VT
.getScalarSizeInBits();
2744 unsigned HalfSize
= EltSize
/ 2;
2746 if (!isIntN(HalfSize
, C
->getSExtValue()))
2749 if (!isUIntN(HalfSize
, C
->getZExtValue()))
2760 static SDValue
skipExtensionForVectorMULL(SDNode
*N
, SelectionDAG
&DAG
) {
2761 if (N
->getOpcode() == ISD::SIGN_EXTEND
|| N
->getOpcode() == ISD::ZERO_EXTEND
)
2762 return addRequiredExtensionForVectorMULL(N
->getOperand(0), DAG
,
2763 N
->getOperand(0)->getValueType(0),
2767 assert(N
->getOpcode() == ISD::BUILD_VECTOR
&& "expected BUILD_VECTOR");
2768 EVT VT
= N
->getValueType(0);
2770 unsigned EltSize
= VT
.getScalarSizeInBits() / 2;
2771 unsigned NumElts
= VT
.getVectorNumElements();
2772 MVT TruncVT
= MVT::getIntegerVT(EltSize
);
2773 SmallVector
<SDValue
, 8> Ops
;
2774 for (unsigned i
= 0; i
!= NumElts
; ++i
) {
2775 ConstantSDNode
*C
= cast
<ConstantSDNode
>(N
->getOperand(i
));
2776 const APInt
&CInt
= C
->getAPIntValue();
2777 // Element types smaller than 32 bits are not legal, so use i32 elements.
2778 // The values are implicitly truncated so sext vs. zext doesn't matter.
2779 Ops
.push_back(DAG
.getConstant(CInt
.zextOrTrunc(32), dl
, MVT::i32
));
2781 return DAG
.getBuildVector(MVT::getVectorVT(TruncVT
, NumElts
), dl
, Ops
);
2784 static bool isSignExtended(SDNode
*N
, SelectionDAG
&DAG
) {
2785 return N
->getOpcode() == ISD::SIGN_EXTEND
||
2786 isExtendedBUILD_VECTOR(N
, DAG
, true);
2789 static bool isZeroExtended(SDNode
*N
, SelectionDAG
&DAG
) {
2790 return N
->getOpcode() == ISD::ZERO_EXTEND
||
2791 isExtendedBUILD_VECTOR(N
, DAG
, false);
2794 static bool isAddSubSExt(SDNode
*N
, SelectionDAG
&DAG
) {
2795 unsigned Opcode
= N
->getOpcode();
2796 if (Opcode
== ISD::ADD
|| Opcode
== ISD::SUB
) {
2797 SDNode
*N0
= N
->getOperand(0).getNode();
2798 SDNode
*N1
= N
->getOperand(1).getNode();
2799 return N0
->hasOneUse() && N1
->hasOneUse() &&
2800 isSignExtended(N0
, DAG
) && isSignExtended(N1
, DAG
);
2805 static bool isAddSubZExt(SDNode
*N
, SelectionDAG
&DAG
) {
2806 unsigned Opcode
= N
->getOpcode();
2807 if (Opcode
== ISD::ADD
|| Opcode
== ISD::SUB
) {
2808 SDNode
*N0
= N
->getOperand(0).getNode();
2809 SDNode
*N1
= N
->getOperand(1).getNode();
2810 return N0
->hasOneUse() && N1
->hasOneUse() &&
2811 isZeroExtended(N0
, DAG
) && isZeroExtended(N1
, DAG
);
2816 SDValue
AArch64TargetLowering::LowerFLT_ROUNDS_(SDValue Op
,
2817 SelectionDAG
&DAG
) const {
2818 // The rounding mode is in bits 23:22 of the FPSCR.
2819 // The ARM rounding mode value to FLT_ROUNDS mapping is 0->1, 1->2, 2->3, 3->0
2820 // The formula we use to implement this is (((FPSCR + 1 << 22) >> 22) & 3)
2821 // so that the shift + and get folded into a bitfield extract.
2824 SDValue FPCR_64
= DAG
.getNode(ISD::INTRINSIC_WO_CHAIN
, dl
, MVT::i64
,
2825 DAG
.getConstant(Intrinsic::aarch64_get_fpcr
, dl
,
2827 SDValue FPCR_32
= DAG
.getNode(ISD::TRUNCATE
, dl
, MVT::i32
, FPCR_64
);
2828 SDValue FltRounds
= DAG
.getNode(ISD::ADD
, dl
, MVT::i32
, FPCR_32
,
2829 DAG
.getConstant(1U << 22, dl
, MVT::i32
));
2830 SDValue RMODE
= DAG
.getNode(ISD::SRL
, dl
, MVT::i32
, FltRounds
,
2831 DAG
.getConstant(22, dl
, MVT::i32
));
2832 return DAG
.getNode(ISD::AND
, dl
, MVT::i32
, RMODE
,
2833 DAG
.getConstant(3, dl
, MVT::i32
));
2836 static SDValue
LowerMUL(SDValue Op
, SelectionDAG
&DAG
) {
2837 // Multiplications are only custom-lowered for 128-bit vectors so that
2838 // VMULL can be detected. Otherwise v2i64 multiplications are not legal.
2839 EVT VT
= Op
.getValueType();
2840 assert(VT
.is128BitVector() && VT
.isInteger() &&
2841 "unexpected type for custom-lowering ISD::MUL");
2842 SDNode
*N0
= Op
.getOperand(0).getNode();
2843 SDNode
*N1
= Op
.getOperand(1).getNode();
2844 unsigned NewOpc
= 0;
2846 bool isN0SExt
= isSignExtended(N0
, DAG
);
2847 bool isN1SExt
= isSignExtended(N1
, DAG
);
2848 if (isN0SExt
&& isN1SExt
)
2849 NewOpc
= AArch64ISD::SMULL
;
2851 bool isN0ZExt
= isZeroExtended(N0
, DAG
);
2852 bool isN1ZExt
= isZeroExtended(N1
, DAG
);
2853 if (isN0ZExt
&& isN1ZExt
)
2854 NewOpc
= AArch64ISD::UMULL
;
2855 else if (isN1SExt
|| isN1ZExt
) {
2856 // Look for (s/zext A + s/zext B) * (s/zext C). We want to turn these
2857 // into (s/zext A * s/zext C) + (s/zext B * s/zext C)
2858 if (isN1SExt
&& isAddSubSExt(N0
, DAG
)) {
2859 NewOpc
= AArch64ISD::SMULL
;
2861 } else if (isN1ZExt
&& isAddSubZExt(N0
, DAG
)) {
2862 NewOpc
= AArch64ISD::UMULL
;
2864 } else if (isN0ZExt
&& isAddSubZExt(N1
, DAG
)) {
2866 NewOpc
= AArch64ISD::UMULL
;
2872 if (VT
== MVT::v2i64
)
2873 // Fall through to expand this. It is not legal.
2876 // Other vector multiplications are legal.
2881 // Legalize to a S/UMULL instruction
2884 SDValue Op1
= skipExtensionForVectorMULL(N1
, DAG
);
2886 Op0
= skipExtensionForVectorMULL(N0
, DAG
);
2887 assert(Op0
.getValueType().is64BitVector() &&
2888 Op1
.getValueType().is64BitVector() &&
2889 "unexpected types for extended operands to VMULL");
2890 return DAG
.getNode(NewOpc
, DL
, VT
, Op0
, Op1
);
2892 // Optimizing (zext A + zext B) * C, to (S/UMULL A, C) + (S/UMULL B, C) during
2893 // isel lowering to take advantage of no-stall back to back s/umul + s/umla.
2894 // This is true for CPUs with accumulate forwarding such as Cortex-A53/A57
2895 SDValue N00
= skipExtensionForVectorMULL(N0
->getOperand(0).getNode(), DAG
);
2896 SDValue N01
= skipExtensionForVectorMULL(N0
->getOperand(1).getNode(), DAG
);
2897 EVT Op1VT
= Op1
.getValueType();
2898 return DAG
.getNode(N0
->getOpcode(), DL
, VT
,
2899 DAG
.getNode(NewOpc
, DL
, VT
,
2900 DAG
.getNode(ISD::BITCAST
, DL
, Op1VT
, N00
), Op1
),
2901 DAG
.getNode(NewOpc
, DL
, VT
,
2902 DAG
.getNode(ISD::BITCAST
, DL
, Op1VT
, N01
), Op1
));
2905 SDValue
AArch64TargetLowering::LowerINTRINSIC_WO_CHAIN(SDValue Op
,
2906 SelectionDAG
&DAG
) const {
2907 unsigned IntNo
= cast
<ConstantSDNode
>(Op
.getOperand(0))->getZExtValue();
2910 default: return SDValue(); // Don't custom lower most intrinsics.
2911 case Intrinsic::thread_pointer
: {
2912 EVT PtrVT
= getPointerTy(DAG
.getDataLayout());
2913 return DAG
.getNode(AArch64ISD::THREAD_POINTER
, dl
, PtrVT
);
2915 case Intrinsic::aarch64_neon_abs
: {
2916 EVT Ty
= Op
.getValueType();
2917 if (Ty
== MVT::i64
) {
2918 SDValue Result
= DAG
.getNode(ISD::BITCAST
, dl
, MVT::v1i64
,
2920 Result
= DAG
.getNode(ISD::ABS
, dl
, MVT::v1i64
, Result
);
2921 return DAG
.getNode(ISD::BITCAST
, dl
, MVT::i64
, Result
);
2922 } else if (Ty
.isVector() && Ty
.isInteger() && isTypeLegal(Ty
)) {
2923 return DAG
.getNode(ISD::ABS
, dl
, Ty
, Op
.getOperand(1));
2925 report_fatal_error("Unexpected type for AArch64 NEON intrinic");
2928 case Intrinsic::aarch64_neon_smax
:
2929 return DAG
.getNode(ISD::SMAX
, dl
, Op
.getValueType(),
2930 Op
.getOperand(1), Op
.getOperand(2));
2931 case Intrinsic::aarch64_neon_umax
:
2932 return DAG
.getNode(ISD::UMAX
, dl
, Op
.getValueType(),
2933 Op
.getOperand(1), Op
.getOperand(2));
2934 case Intrinsic::aarch64_neon_smin
:
2935 return DAG
.getNode(ISD::SMIN
, dl
, Op
.getValueType(),
2936 Op
.getOperand(1), Op
.getOperand(2));
2937 case Intrinsic::aarch64_neon_umin
:
2938 return DAG
.getNode(ISD::UMIN
, dl
, Op
.getValueType(),
2939 Op
.getOperand(1), Op
.getOperand(2));
2941 case Intrinsic::aarch64_sve_sunpkhi
:
2942 return DAG
.getNode(AArch64ISD::SUNPKHI
, dl
, Op
.getValueType(),
2944 case Intrinsic::aarch64_sve_sunpklo
:
2945 return DAG
.getNode(AArch64ISD::SUNPKLO
, dl
, Op
.getValueType(),
2947 case Intrinsic::aarch64_sve_uunpkhi
:
2948 return DAG
.getNode(AArch64ISD::UUNPKHI
, dl
, Op
.getValueType(),
2950 case Intrinsic::aarch64_sve_uunpklo
:
2951 return DAG
.getNode(AArch64ISD::UUNPKLO
, dl
, Op
.getValueType(),
2953 case Intrinsic::aarch64_sve_clasta_n
:
2954 return DAG
.getNode(AArch64ISD::CLASTA_N
, dl
, Op
.getValueType(),
2955 Op
.getOperand(1), Op
.getOperand(2), Op
.getOperand(3));
2956 case Intrinsic::aarch64_sve_clastb_n
:
2957 return DAG
.getNode(AArch64ISD::CLASTB_N
, dl
, Op
.getValueType(),
2958 Op
.getOperand(1), Op
.getOperand(2), Op
.getOperand(3));
2959 case Intrinsic::aarch64_sve_lasta
:
2960 return DAG
.getNode(AArch64ISD::LASTA
, dl
, Op
.getValueType(),
2961 Op
.getOperand(1), Op
.getOperand(2));
2962 case Intrinsic::aarch64_sve_lastb
:
2963 return DAG
.getNode(AArch64ISD::LASTB
, dl
, Op
.getValueType(),
2964 Op
.getOperand(1), Op
.getOperand(2));
2965 case Intrinsic::aarch64_sve_rev
:
2966 return DAG
.getNode(AArch64ISD::REV
, dl
, Op
.getValueType(),
2968 case Intrinsic::aarch64_sve_tbl
:
2969 return DAG
.getNode(AArch64ISD::TBL
, dl
, Op
.getValueType(),
2970 Op
.getOperand(1), Op
.getOperand(2));
2971 case Intrinsic::aarch64_sve_trn1
:
2972 return DAG
.getNode(AArch64ISD::TRN1
, dl
, Op
.getValueType(),
2973 Op
.getOperand(1), Op
.getOperand(2));
2974 case Intrinsic::aarch64_sve_trn2
:
2975 return DAG
.getNode(AArch64ISD::TRN2
, dl
, Op
.getValueType(),
2976 Op
.getOperand(1), Op
.getOperand(2));
2977 case Intrinsic::aarch64_sve_uzp1
:
2978 return DAG
.getNode(AArch64ISD::UZP1
, dl
, Op
.getValueType(),
2979 Op
.getOperand(1), Op
.getOperand(2));
2980 case Intrinsic::aarch64_sve_uzp2
:
2981 return DAG
.getNode(AArch64ISD::UZP2
, dl
, Op
.getValueType(),
2982 Op
.getOperand(1), Op
.getOperand(2));
2983 case Intrinsic::aarch64_sve_zip1
:
2984 return DAG
.getNode(AArch64ISD::ZIP1
, dl
, Op
.getValueType(),
2985 Op
.getOperand(1), Op
.getOperand(2));
2986 case Intrinsic::aarch64_sve_zip2
:
2987 return DAG
.getNode(AArch64ISD::ZIP2
, dl
, Op
.getValueType(),
2988 Op
.getOperand(1), Op
.getOperand(2));
2989 case Intrinsic::aarch64_sve_ptrue
:
2990 return DAG
.getNode(AArch64ISD::PTRUE
, dl
, Op
.getValueType(),
2993 case Intrinsic::aarch64_sve_insr
: {
2994 SDValue Scalar
= Op
.getOperand(2);
2995 EVT ScalarTy
= Scalar
.getValueType();
2996 if ((ScalarTy
== MVT::i8
) || (ScalarTy
== MVT::i16
))
2997 Scalar
= DAG
.getNode(ISD::ANY_EXTEND
, dl
, MVT::i32
, Scalar
);
2999 return DAG
.getNode(AArch64ISD::INSR
, dl
, Op
.getValueType(),
3000 Op
.getOperand(1), Scalar
);
3003 case Intrinsic::localaddress
: {
3004 const auto &MF
= DAG
.getMachineFunction();
3005 const auto *RegInfo
= Subtarget
->getRegisterInfo();
3006 unsigned Reg
= RegInfo
->getLocalAddressRegister(MF
);
3007 return DAG
.getCopyFromReg(DAG
.getEntryNode(), dl
, Reg
,
3008 Op
.getSimpleValueType());
3011 case Intrinsic::eh_recoverfp
: {
3012 // FIXME: This needs to be implemented to correctly handle highly aligned
3013 // stack objects. For now we simply return the incoming FP. Refer D53541
3014 // for more details.
3015 SDValue FnOp
= Op
.getOperand(1);
3016 SDValue IncomingFPOp
= Op
.getOperand(2);
3017 GlobalAddressSDNode
*GSD
= dyn_cast
<GlobalAddressSDNode
>(FnOp
);
3018 auto *Fn
= dyn_cast_or_null
<Function
>(GSD
? GSD
->getGlobal() : nullptr);
3021 "llvm.eh.recoverfp must take a function as the first argument");
3022 return IncomingFPOp
;
3027 bool AArch64TargetLowering::isVectorLoadExtDesirable(SDValue ExtVal
) const {
3028 return ExtVal
.getValueType().isScalableVector();
3031 // Custom lower trunc store for v4i8 vectors, since it is promoted to v4i16.
3032 static SDValue
LowerTruncateVectorStore(SDLoc DL
, StoreSDNode
*ST
,
3034 SelectionDAG
&DAG
) {
3035 assert(VT
.isVector() && "VT should be a vector type");
3036 assert(MemVT
== MVT::v4i8
&& VT
== MVT::v4i16
);
3038 SDValue Value
= ST
->getValue();
3040 // It first extend the promoted v4i16 to v8i16, truncate to v8i8, and extract
3041 // the word lane which represent the v4i8 subvector. It optimizes the store
3047 SDValue Undef
= DAG
.getUNDEF(MVT::i16
);
3048 SDValue UndefVec
= DAG
.getBuildVector(MVT::v4i16
, DL
,
3049 {Undef
, Undef
, Undef
, Undef
});
3051 SDValue TruncExt
= DAG
.getNode(ISD::CONCAT_VECTORS
, DL
, MVT::v8i16
,
3053 SDValue Trunc
= DAG
.getNode(ISD::TRUNCATE
, DL
, MVT::v8i8
, TruncExt
);
3055 Trunc
= DAG
.getNode(ISD::BITCAST
, DL
, MVT::v2i32
, Trunc
);
3056 SDValue ExtractTrunc
= DAG
.getNode(ISD::EXTRACT_VECTOR_ELT
, DL
, MVT::i32
,
3057 Trunc
, DAG
.getConstant(0, DL
, MVT::i64
));
3059 return DAG
.getStore(ST
->getChain(), DL
, ExtractTrunc
,
3060 ST
->getBasePtr(), ST
->getMemOperand());
3063 // Custom lowering for any store, vector or scalar and/or default or with
3064 // a truncate operations. Currently only custom lower truncate operation
3065 // from vector v4i16 to v4i8 or volatile stores of i128.
3066 SDValue
AArch64TargetLowering::LowerSTORE(SDValue Op
,
3067 SelectionDAG
&DAG
) const {
3069 StoreSDNode
*StoreNode
= cast
<StoreSDNode
>(Op
);
3070 assert (StoreNode
&& "Can only custom lower store nodes");
3072 SDValue Value
= StoreNode
->getValue();
3074 EVT VT
= Value
.getValueType();
3075 EVT MemVT
= StoreNode
->getMemoryVT();
3077 if (VT
.isVector()) {
3078 unsigned AS
= StoreNode
->getAddressSpace();
3079 unsigned Align
= StoreNode
->getAlignment();
3080 if (Align
< MemVT
.getStoreSize() &&
3081 !allowsMisalignedMemoryAccesses(MemVT
, AS
, Align
,
3082 StoreNode
->getMemOperand()->getFlags(),
3084 return scalarizeVectorStore(StoreNode
, DAG
);
3087 if (StoreNode
->isTruncatingStore()) {
3088 return LowerTruncateVectorStore(Dl
, StoreNode
, VT
, MemVT
, DAG
);
3090 // 256 bit non-temporal stores can be lowered to STNP. Do this as part of
3091 // the custom lowering, as there are no un-paired non-temporal stores and
3092 // legalization will break up 256 bit inputs.
3093 if (StoreNode
->isNonTemporal() && MemVT
.getSizeInBits() == 256u &&
3094 MemVT
.getVectorElementCount().Min
% 2u == 0 &&
3095 ((MemVT
.getScalarSizeInBits() == 8u ||
3096 MemVT
.getScalarSizeInBits() == 16u ||
3097 MemVT
.getScalarSizeInBits() == 32u ||
3098 MemVT
.getScalarSizeInBits() == 64u))) {
3100 DAG
.getNode(ISD::EXTRACT_SUBVECTOR
, Dl
,
3101 MemVT
.getHalfNumVectorElementsVT(*DAG
.getContext()),
3102 StoreNode
->getValue(), DAG
.getConstant(0, Dl
, MVT::i64
));
3103 SDValue Hi
= DAG
.getNode(
3104 ISD::EXTRACT_SUBVECTOR
, Dl
,
3105 MemVT
.getHalfNumVectorElementsVT(*DAG
.getContext()),
3106 StoreNode
->getValue(),
3107 DAG
.getConstant(MemVT
.getVectorElementCount().Min
/ 2, Dl
, MVT::i64
));
3108 SDValue Result
= DAG
.getMemIntrinsicNode(
3109 AArch64ISD::STNP
, Dl
, DAG
.getVTList(MVT::Other
),
3110 {StoreNode
->getChain(), Lo
, Hi
, StoreNode
->getBasePtr()},
3111 StoreNode
->getMemoryVT(), StoreNode
->getMemOperand());
3114 } else if (MemVT
== MVT::i128
&& StoreNode
->isVolatile()) {
3115 assert(StoreNode
->getValue()->getValueType(0) == MVT::i128
);
3117 DAG
.getNode(ISD::EXTRACT_ELEMENT
, Dl
, MVT::i64
, StoreNode
->getValue(),
3118 DAG
.getConstant(0, Dl
, MVT::i64
));
3120 DAG
.getNode(ISD::EXTRACT_ELEMENT
, Dl
, MVT::i64
, StoreNode
->getValue(),
3121 DAG
.getConstant(1, Dl
, MVT::i64
));
3122 SDValue Result
= DAG
.getMemIntrinsicNode(
3123 AArch64ISD::STP
, Dl
, DAG
.getVTList(MVT::Other
),
3124 {StoreNode
->getChain(), Lo
, Hi
, StoreNode
->getBasePtr()},
3125 StoreNode
->getMemoryVT(), StoreNode
->getMemOperand());
3132 SDValue
AArch64TargetLowering::LowerOperation(SDValue Op
,
3133 SelectionDAG
&DAG
) const {
3134 LLVM_DEBUG(dbgs() << "Custom lowering: ");
3135 LLVM_DEBUG(Op
.dump());
3137 switch (Op
.getOpcode()) {
3139 llvm_unreachable("unimplemented operand");
3142 return LowerBITCAST(Op
, DAG
);
3143 case ISD::GlobalAddress
:
3144 return LowerGlobalAddress(Op
, DAG
);
3145 case ISD::GlobalTLSAddress
:
3146 return LowerGlobalTLSAddress(Op
, DAG
);
3148 return LowerSETCC(Op
, DAG
);
3150 return LowerBR_CC(Op
, DAG
);
3152 return LowerSELECT(Op
, DAG
);
3153 case ISD::SELECT_CC
:
3154 return LowerSELECT_CC(Op
, DAG
);
3155 case ISD::JumpTable
:
3156 return LowerJumpTable(Op
, DAG
);
3158 return LowerBR_JT(Op
, DAG
);
3159 case ISD::ConstantPool
:
3160 return LowerConstantPool(Op
, DAG
);
3161 case ISD::BlockAddress
:
3162 return LowerBlockAddress(Op
, DAG
);
3164 return LowerVASTART(Op
, DAG
);
3166 return LowerVACOPY(Op
, DAG
);
3168 return LowerVAARG(Op
, DAG
);
3173 return LowerADDC_ADDE_SUBC_SUBE(Op
, DAG
);
3180 return LowerXALUO(Op
, DAG
);
3182 return LowerF128Call(Op
, DAG
, RTLIB::ADD_F128
);
3184 return LowerF128Call(Op
, DAG
, RTLIB::SUB_F128
);
3186 return LowerF128Call(Op
, DAG
, RTLIB::MUL_F128
);
3188 return LowerF128Call(Op
, DAG
, RTLIB::DIV_F128
);
3190 return LowerFP_ROUND(Op
, DAG
);
3191 case ISD::FP_EXTEND
:
3192 return LowerFP_EXTEND(Op
, DAG
);
3193 case ISD::FRAMEADDR
:
3194 return LowerFRAMEADDR(Op
, DAG
);
3195 case ISD::SPONENTRY
:
3196 return LowerSPONENTRY(Op
, DAG
);
3197 case ISD::RETURNADDR
:
3198 return LowerRETURNADDR(Op
, DAG
);
3199 case ISD::ADDROFRETURNADDR
:
3200 return LowerADDROFRETURNADDR(Op
, DAG
);
3201 case ISD::INSERT_VECTOR_ELT
:
3202 return LowerINSERT_VECTOR_ELT(Op
, DAG
);
3203 case ISD::EXTRACT_VECTOR_ELT
:
3204 return LowerEXTRACT_VECTOR_ELT(Op
, DAG
);
3205 case ISD::BUILD_VECTOR
:
3206 return LowerBUILD_VECTOR(Op
, DAG
);
3207 case ISD::VECTOR_SHUFFLE
:
3208 return LowerVECTOR_SHUFFLE(Op
, DAG
);
3209 case ISD::SPLAT_VECTOR
:
3210 return LowerSPLAT_VECTOR(Op
, DAG
);
3211 case ISD::EXTRACT_SUBVECTOR
:
3212 return LowerEXTRACT_SUBVECTOR(Op
, DAG
);
3216 return LowerVectorSRA_SRL_SHL(Op
, DAG
);
3217 case ISD::SHL_PARTS
:
3218 return LowerShiftLeftParts(Op
, DAG
);
3219 case ISD::SRL_PARTS
:
3220 case ISD::SRA_PARTS
:
3221 return LowerShiftRightParts(Op
, DAG
);
3223 return LowerCTPOP(Op
, DAG
);
3224 case ISD::FCOPYSIGN
:
3225 return LowerFCOPYSIGN(Op
, DAG
);
3227 return LowerVectorOR(Op
, DAG
);
3229 return LowerXOR(Op
, DAG
);
3231 return LowerPREFETCH(Op
, DAG
);
3232 case ISD::SINT_TO_FP
:
3233 case ISD::UINT_TO_FP
:
3234 return LowerINT_TO_FP(Op
, DAG
);
3235 case ISD::FP_TO_SINT
:
3236 case ISD::FP_TO_UINT
:
3237 return LowerFP_TO_INT(Op
, DAG
);
3239 return LowerFSINCOS(Op
, DAG
);
3240 case ISD::FLT_ROUNDS_
:
3241 return LowerFLT_ROUNDS_(Op
, DAG
);
3243 return LowerMUL(Op
, DAG
);
3244 case ISD::INTRINSIC_WO_CHAIN
:
3245 return LowerINTRINSIC_WO_CHAIN(Op
, DAG
);
3247 return LowerSTORE(Op
, DAG
);
3248 case ISD::VECREDUCE_ADD
:
3249 case ISD::VECREDUCE_SMAX
:
3250 case ISD::VECREDUCE_SMIN
:
3251 case ISD::VECREDUCE_UMAX
:
3252 case ISD::VECREDUCE_UMIN
:
3253 case ISD::VECREDUCE_FMAX
:
3254 case ISD::VECREDUCE_FMIN
:
3255 return LowerVECREDUCE(Op
, DAG
);
3256 case ISD::ATOMIC_LOAD_SUB
:
3257 return LowerATOMIC_LOAD_SUB(Op
, DAG
);
3258 case ISD::ATOMIC_LOAD_AND
:
3259 return LowerATOMIC_LOAD_AND(Op
, DAG
);
3260 case ISD::DYNAMIC_STACKALLOC
:
3261 return LowerDYNAMIC_STACKALLOC(Op
, DAG
);
3263 return LowerVSCALE(Op
, DAG
);
3267 //===----------------------------------------------------------------------===//
3268 // Calling Convention Implementation
3269 //===----------------------------------------------------------------------===//
3271 /// Selects the correct CCAssignFn for a given CallingConvention value.
3272 CCAssignFn
*AArch64TargetLowering::CCAssignFnForCall(CallingConv::ID CC
,
3273 bool IsVarArg
) const {
3276 report_fatal_error("Unsupported calling convention.");
3277 case CallingConv::AArch64_SVE_VectorCall
:
3278 // Calling SVE functions is currently not yet supported.
3279 report_fatal_error("Unsupported calling convention.");
3280 case CallingConv::WebKit_JS
:
3281 return CC_AArch64_WebKit_JS
;
3282 case CallingConv::GHC
:
3283 return CC_AArch64_GHC
;
3284 case CallingConv::C
:
3285 case CallingConv::Fast
:
3286 case CallingConv::PreserveMost
:
3287 case CallingConv::CXX_FAST_TLS
:
3288 case CallingConv::Swift
:
3289 if (Subtarget
->isTargetWindows() && IsVarArg
)
3290 return CC_AArch64_Win64_VarArg
;
3291 if (!Subtarget
->isTargetDarwin())
3292 return CC_AArch64_AAPCS
;
3294 return CC_AArch64_DarwinPCS
;
3295 return Subtarget
->isTargetILP32() ? CC_AArch64_DarwinPCS_ILP32_VarArg
3296 : CC_AArch64_DarwinPCS_VarArg
;
3297 case CallingConv::Win64
:
3298 return IsVarArg
? CC_AArch64_Win64_VarArg
: CC_AArch64_AAPCS
;
3299 case CallingConv::CFGuard_Check
:
3300 return CC_AArch64_Win64_CFGuard_Check
;
3301 case CallingConv::AArch64_VectorCall
:
3302 return CC_AArch64_AAPCS
;
3307 AArch64TargetLowering::CCAssignFnForReturn(CallingConv::ID CC
) const {
3308 return CC
== CallingConv::WebKit_JS
? RetCC_AArch64_WebKit_JS
3309 : RetCC_AArch64_AAPCS
;
3312 SDValue
AArch64TargetLowering::LowerFormalArguments(
3313 SDValue Chain
, CallingConv::ID CallConv
, bool isVarArg
,
3314 const SmallVectorImpl
<ISD::InputArg
> &Ins
, const SDLoc
&DL
,
3315 SelectionDAG
&DAG
, SmallVectorImpl
<SDValue
> &InVals
) const {
3316 MachineFunction
&MF
= DAG
.getMachineFunction();
3317 MachineFrameInfo
&MFI
= MF
.getFrameInfo();
3318 bool IsWin64
= Subtarget
->isCallingConvWin64(MF
.getFunction().getCallingConv());
3320 // Assign locations to all of the incoming arguments.
3321 SmallVector
<CCValAssign
, 16> ArgLocs
;
3322 DenseMap
<unsigned, SDValue
> CopiedRegs
;
3323 CCState
CCInfo(CallConv
, isVarArg
, DAG
.getMachineFunction(), ArgLocs
,
3326 // At this point, Ins[].VT may already be promoted to i32. To correctly
3327 // handle passing i8 as i8 instead of i32 on stack, we pass in both i32 and
3328 // i8 to CC_AArch64_AAPCS with i32 being ValVT and i8 being LocVT.
3329 // Since AnalyzeFormalArguments uses Ins[].VT for both ValVT and LocVT, here
3330 // we use a special version of AnalyzeFormalArguments to pass in ValVT and
3332 unsigned NumArgs
= Ins
.size();
3333 Function::const_arg_iterator CurOrigArg
= MF
.getFunction().arg_begin();
3334 unsigned CurArgIdx
= 0;
3335 for (unsigned i
= 0; i
!= NumArgs
; ++i
) {
3336 MVT ValVT
= Ins
[i
].VT
;
3337 if (Ins
[i
].isOrigArg()) {
3338 std::advance(CurOrigArg
, Ins
[i
].getOrigArgIndex() - CurArgIdx
);
3339 CurArgIdx
= Ins
[i
].getOrigArgIndex();
3341 // Get type of the original argument.
3342 EVT ActualVT
= getValueType(DAG
.getDataLayout(), CurOrigArg
->getType(),
3343 /*AllowUnknown*/ true);
3344 MVT ActualMVT
= ActualVT
.isSimple() ? ActualVT
.getSimpleVT() : MVT::Other
;
3345 // If ActualMVT is i1/i8/i16, we should set LocVT to i8/i8/i16.
3346 if (ActualMVT
== MVT::i1
|| ActualMVT
== MVT::i8
)
3348 else if (ActualMVT
== MVT::i16
)
3351 CCAssignFn
*AssignFn
= CCAssignFnForCall(CallConv
, /*IsVarArg=*/false);
3353 AssignFn(i
, ValVT
, ValVT
, CCValAssign::Full
, Ins
[i
].Flags
, CCInfo
);
3354 assert(!Res
&& "Call operand has unhandled type");
3357 assert(ArgLocs
.size() == Ins
.size());
3358 SmallVector
<SDValue
, 16> ArgValues
;
3359 for (unsigned i
= 0, e
= ArgLocs
.size(); i
!= e
; ++i
) {
3360 CCValAssign
&VA
= ArgLocs
[i
];
3362 if (Ins
[i
].Flags
.isByVal()) {
3363 // Byval is used for HFAs in the PCS, but the system should work in a
3364 // non-compliant manner for larger structs.
3365 EVT PtrVT
= getPointerTy(DAG
.getDataLayout());
3366 int Size
= Ins
[i
].Flags
.getByValSize();
3367 unsigned NumRegs
= (Size
+ 7) / 8;
3369 // FIXME: This works on big-endian for composite byvals, which are the common
3370 // case. It should also work for fundamental types too.
3372 MFI
.CreateFixedObject(8 * NumRegs
, VA
.getLocMemOffset(), false);
3373 SDValue FrameIdxN
= DAG
.getFrameIndex(FrameIdx
, PtrVT
);
3374 InVals
.push_back(FrameIdxN
);
3380 if (VA
.isRegLoc()) {
3381 // Arguments stored in registers.
3382 EVT RegVT
= VA
.getLocVT();
3383 const TargetRegisterClass
*RC
;
3385 if (RegVT
== MVT::i32
)
3386 RC
= &AArch64::GPR32RegClass
;
3387 else if (RegVT
== MVT::i64
)
3388 RC
= &AArch64::GPR64RegClass
;
3389 else if (RegVT
== MVT::f16
)
3390 RC
= &AArch64::FPR16RegClass
;
3391 else if (RegVT
== MVT::f32
)
3392 RC
= &AArch64::FPR32RegClass
;
3393 else if (RegVT
== MVT::f64
|| RegVT
.is64BitVector())
3394 RC
= &AArch64::FPR64RegClass
;
3395 else if (RegVT
== MVT::f128
|| RegVT
.is128BitVector())
3396 RC
= &AArch64::FPR128RegClass
;
3397 else if (RegVT
.isScalableVector() &&
3398 RegVT
.getVectorElementType() == MVT::i1
)
3399 RC
= &AArch64::PPRRegClass
;
3400 else if (RegVT
.isScalableVector())
3401 RC
= &AArch64::ZPRRegClass
;
3403 llvm_unreachable("RegVT not supported by FORMAL_ARGUMENTS Lowering");
3405 // Transform the arguments in physical registers into virtual ones.
3406 unsigned Reg
= MF
.addLiveIn(VA
.getLocReg(), RC
);
3407 ArgValue
= DAG
.getCopyFromReg(Chain
, DL
, Reg
, RegVT
);
3409 // If this is an 8, 16 or 32-bit value, it is really passed promoted
3410 // to 64 bits. Insert an assert[sz]ext to capture this, then
3411 // truncate to the right size.
3412 switch (VA
.getLocInfo()) {
3414 llvm_unreachable("Unknown loc info!");
3415 case CCValAssign::Full
:
3417 case CCValAssign::Indirect
:
3418 assert(VA
.getValVT().isScalableVector() &&
3419 "Only scalable vectors can be passed indirectly");
3420 llvm_unreachable("Spilling of SVE vectors not yet implemented");
3421 case CCValAssign::BCvt
:
3422 ArgValue
= DAG
.getNode(ISD::BITCAST
, DL
, VA
.getValVT(), ArgValue
);
3424 case CCValAssign::AExt
:
3425 case CCValAssign::SExt
:
3426 case CCValAssign::ZExt
:
3428 case CCValAssign::AExtUpper
:
3429 ArgValue
= DAG
.getNode(ISD::SRL
, DL
, RegVT
, ArgValue
,
3430 DAG
.getConstant(32, DL
, RegVT
));
3431 ArgValue
= DAG
.getZExtOrTrunc(ArgValue
, DL
, VA
.getValVT());
3434 } else { // VA.isRegLoc()
3435 assert(VA
.isMemLoc() && "CCValAssign is neither reg nor mem");
3436 unsigned ArgOffset
= VA
.getLocMemOffset();
3437 unsigned ArgSize
= VA
.getValVT().getSizeInBits() / 8;
3439 uint32_t BEAlign
= 0;
3440 if (!Subtarget
->isLittleEndian() && ArgSize
< 8 &&
3441 !Ins
[i
].Flags
.isInConsecutiveRegs())
3442 BEAlign
= 8 - ArgSize
;
3444 int FI
= MFI
.CreateFixedObject(ArgSize
, ArgOffset
+ BEAlign
, true);
3446 // Create load nodes to retrieve arguments from the stack.
3447 SDValue FIN
= DAG
.getFrameIndex(FI
, getPointerTy(DAG
.getDataLayout()));
3449 // For NON_EXTLOAD, generic code in getLoad assert(ValVT == MemVT)
3450 ISD::LoadExtType ExtType
= ISD::NON_EXTLOAD
;
3451 MVT MemVT
= VA
.getValVT();
3453 switch (VA
.getLocInfo()) {
3456 case CCValAssign::Trunc
:
3457 case CCValAssign::BCvt
:
3458 MemVT
= VA
.getLocVT();
3460 case CCValAssign::Indirect
:
3461 assert(VA
.getValVT().isScalableVector() &&
3462 "Only scalable vectors can be passed indirectly");
3463 llvm_unreachable("Spilling of SVE vectors not yet implemented");
3464 case CCValAssign::SExt
:
3465 ExtType
= ISD::SEXTLOAD
;
3467 case CCValAssign::ZExt
:
3468 ExtType
= ISD::ZEXTLOAD
;
3470 case CCValAssign::AExt
:
3471 ExtType
= ISD::EXTLOAD
;
3475 ArgValue
= DAG
.getExtLoad(
3476 ExtType
, DL
, VA
.getLocVT(), Chain
, FIN
,
3477 MachinePointerInfo::getFixedStack(DAG
.getMachineFunction(), FI
),
3481 if (Subtarget
->isTargetILP32() && Ins
[i
].Flags
.isPointer())
3482 ArgValue
= DAG
.getNode(ISD::AssertZext
, DL
, ArgValue
.getValueType(),
3483 ArgValue
, DAG
.getValueType(MVT::i32
));
3484 InVals
.push_back(ArgValue
);
3488 AArch64FunctionInfo
*FuncInfo
= MF
.getInfo
<AArch64FunctionInfo
>();
3490 if (!Subtarget
->isTargetDarwin() || IsWin64
) {
3491 // The AAPCS variadic function ABI is identical to the non-variadic
3492 // one. As a result there may be more arguments in registers and we should
3493 // save them for future reference.
3494 // Win64 variadic functions also pass arguments in registers, but all float
3495 // arguments are passed in integer registers.
3496 saveVarArgRegisters(CCInfo
, DAG
, DL
, Chain
);
3499 // This will point to the next argument passed via stack.
3500 unsigned StackOffset
= CCInfo
.getNextStackOffset();
3501 // We currently pass all varargs at 8-byte alignment, or 4 for ILP32
3502 StackOffset
= alignTo(StackOffset
, Subtarget
->isTargetILP32() ? 4 : 8);
3503 FuncInfo
->setVarArgsStackIndex(MFI
.CreateFixedObject(4, StackOffset
, true));
3505 if (MFI
.hasMustTailInVarArgFunc()) {
3506 SmallVector
<MVT
, 2> RegParmTypes
;
3507 RegParmTypes
.push_back(MVT::i64
);
3508 RegParmTypes
.push_back(MVT::f128
);
3509 // Compute the set of forwarded registers. The rest are scratch.
3510 SmallVectorImpl
<ForwardedRegister
> &Forwards
=
3511 FuncInfo
->getForwardedMustTailRegParms();
3512 CCInfo
.analyzeMustTailForwardedRegisters(Forwards
, RegParmTypes
,
3515 // Conservatively forward X8, since it might be used for aggregate return.
3516 if (!CCInfo
.isAllocated(AArch64::X8
)) {
3517 unsigned X8VReg
= MF
.addLiveIn(AArch64::X8
, &AArch64::GPR64RegClass
);
3518 Forwards
.push_back(ForwardedRegister(X8VReg
, AArch64::X8
, MVT::i64
));
3523 // On Windows, InReg pointers must be returned, so record the pointer in a
3524 // virtual register at the start of the function so it can be returned in the
3527 for (unsigned I
= 0, E
= Ins
.size(); I
!= E
; ++I
) {
3528 if (Ins
[I
].Flags
.isInReg()) {
3529 assert(!FuncInfo
->getSRetReturnReg());
3531 MVT PtrTy
= getPointerTy(DAG
.getDataLayout());
3533 MF
.getRegInfo().createVirtualRegister(getRegClassFor(PtrTy
));
3534 FuncInfo
->setSRetReturnReg(Reg
);
3536 SDValue Copy
= DAG
.getCopyToReg(DAG
.getEntryNode(), DL
, Reg
, InVals
[I
]);
3537 Chain
= DAG
.getNode(ISD::TokenFactor
, DL
, MVT::Other
, Copy
, Chain
);
3543 unsigned StackArgSize
= CCInfo
.getNextStackOffset();
3544 bool TailCallOpt
= MF
.getTarget().Options
.GuaranteedTailCallOpt
;
3545 if (DoesCalleeRestoreStack(CallConv
, TailCallOpt
)) {
3546 // This is a non-standard ABI so by fiat I say we're allowed to make full
3547 // use of the stack area to be popped, which must be aligned to 16 bytes in
3549 StackArgSize
= alignTo(StackArgSize
, 16);
3551 // If we're expected to restore the stack (e.g. fastcc) then we'll be adding
3552 // a multiple of 16.
3553 FuncInfo
->setArgumentStackToRestore(StackArgSize
);
3555 // This realignment carries over to the available bytes below. Our own
3556 // callers will guarantee the space is free by giving an aligned value to
3559 // Even if we're not expected to free up the space, it's useful to know how
3560 // much is there while considering tail calls (because we can reuse it).
3561 FuncInfo
->setBytesInStackArgArea(StackArgSize
);
3563 if (Subtarget
->hasCustomCallingConv())
3564 Subtarget
->getRegisterInfo()->UpdateCustomCalleeSavedRegs(MF
);
3569 void AArch64TargetLowering::saveVarArgRegisters(CCState
&CCInfo
,
3572 SDValue
&Chain
) const {
3573 MachineFunction
&MF
= DAG
.getMachineFunction();
3574 MachineFrameInfo
&MFI
= MF
.getFrameInfo();
3575 AArch64FunctionInfo
*FuncInfo
= MF
.getInfo
<AArch64FunctionInfo
>();
3576 auto PtrVT
= getPointerTy(DAG
.getDataLayout());
3577 bool IsWin64
= Subtarget
->isCallingConvWin64(MF
.getFunction().getCallingConv());
3579 SmallVector
<SDValue
, 8> MemOps
;
3581 static const MCPhysReg GPRArgRegs
[] = { AArch64::X0
, AArch64::X1
, AArch64::X2
,
3582 AArch64::X3
, AArch64::X4
, AArch64::X5
,
3583 AArch64::X6
, AArch64::X7
};
3584 static const unsigned NumGPRArgRegs
= array_lengthof(GPRArgRegs
);
3585 unsigned FirstVariadicGPR
= CCInfo
.getFirstUnallocated(GPRArgRegs
);
3587 unsigned GPRSaveSize
= 8 * (NumGPRArgRegs
- FirstVariadicGPR
);
3589 if (GPRSaveSize
!= 0) {
3591 GPRIdx
= MFI
.CreateFixedObject(GPRSaveSize
, -(int)GPRSaveSize
, false);
3592 if (GPRSaveSize
& 15)
3593 // The extra size here, if triggered, will always be 8.
3594 MFI
.CreateFixedObject(16 - (GPRSaveSize
& 15), -(int)alignTo(GPRSaveSize
, 16), false);
3596 GPRIdx
= MFI
.CreateStackObject(GPRSaveSize
, 8, false);
3598 SDValue FIN
= DAG
.getFrameIndex(GPRIdx
, PtrVT
);
3600 for (unsigned i
= FirstVariadicGPR
; i
< NumGPRArgRegs
; ++i
) {
3601 unsigned VReg
= MF
.addLiveIn(GPRArgRegs
[i
], &AArch64::GPR64RegClass
);
3602 SDValue Val
= DAG
.getCopyFromReg(Chain
, DL
, VReg
, MVT::i64
);
3603 SDValue Store
= DAG
.getStore(
3604 Val
.getValue(1), DL
, Val
, FIN
,
3606 ? MachinePointerInfo::getFixedStack(DAG
.getMachineFunction(),
3608 (i
- FirstVariadicGPR
) * 8)
3609 : MachinePointerInfo::getStack(DAG
.getMachineFunction(), i
* 8));
3610 MemOps
.push_back(Store
);
3612 DAG
.getNode(ISD::ADD
, DL
, PtrVT
, FIN
, DAG
.getConstant(8, DL
, PtrVT
));
3615 FuncInfo
->setVarArgsGPRIndex(GPRIdx
);
3616 FuncInfo
->setVarArgsGPRSize(GPRSaveSize
);
3618 if (Subtarget
->hasFPARMv8() && !IsWin64
) {
3619 static const MCPhysReg FPRArgRegs
[] = {
3620 AArch64::Q0
, AArch64::Q1
, AArch64::Q2
, AArch64::Q3
,
3621 AArch64::Q4
, AArch64::Q5
, AArch64::Q6
, AArch64::Q7
};
3622 static const unsigned NumFPRArgRegs
= array_lengthof(FPRArgRegs
);
3623 unsigned FirstVariadicFPR
= CCInfo
.getFirstUnallocated(FPRArgRegs
);
3625 unsigned FPRSaveSize
= 16 * (NumFPRArgRegs
- FirstVariadicFPR
);
3627 if (FPRSaveSize
!= 0) {
3628 FPRIdx
= MFI
.CreateStackObject(FPRSaveSize
, 16, false);
3630 SDValue FIN
= DAG
.getFrameIndex(FPRIdx
, PtrVT
);
3632 for (unsigned i
= FirstVariadicFPR
; i
< NumFPRArgRegs
; ++i
) {
3633 unsigned VReg
= MF
.addLiveIn(FPRArgRegs
[i
], &AArch64::FPR128RegClass
);
3634 SDValue Val
= DAG
.getCopyFromReg(Chain
, DL
, VReg
, MVT::f128
);
3636 SDValue Store
= DAG
.getStore(
3637 Val
.getValue(1), DL
, Val
, FIN
,
3638 MachinePointerInfo::getStack(DAG
.getMachineFunction(), i
* 16));
3639 MemOps
.push_back(Store
);
3640 FIN
= DAG
.getNode(ISD::ADD
, DL
, PtrVT
, FIN
,
3641 DAG
.getConstant(16, DL
, PtrVT
));
3644 FuncInfo
->setVarArgsFPRIndex(FPRIdx
);
3645 FuncInfo
->setVarArgsFPRSize(FPRSaveSize
);
3648 if (!MemOps
.empty()) {
3649 Chain
= DAG
.getNode(ISD::TokenFactor
, DL
, MVT::Other
, MemOps
);
3653 /// LowerCallResult - Lower the result values of a call into the
3654 /// appropriate copies out of appropriate physical registers.
3655 SDValue
AArch64TargetLowering::LowerCallResult(
3656 SDValue Chain
, SDValue InFlag
, CallingConv::ID CallConv
, bool isVarArg
,
3657 const SmallVectorImpl
<ISD::InputArg
> &Ins
, const SDLoc
&DL
,
3658 SelectionDAG
&DAG
, SmallVectorImpl
<SDValue
> &InVals
, bool isThisReturn
,
3659 SDValue ThisVal
) const {
3660 CCAssignFn
*RetCC
= CallConv
== CallingConv::WebKit_JS
3661 ? RetCC_AArch64_WebKit_JS
3662 : RetCC_AArch64_AAPCS
;
3663 // Assign locations to each value returned by this call.
3664 SmallVector
<CCValAssign
, 16> RVLocs
;
3665 DenseMap
<unsigned, SDValue
> CopiedRegs
;
3666 CCState
CCInfo(CallConv
, isVarArg
, DAG
.getMachineFunction(), RVLocs
,
3668 CCInfo
.AnalyzeCallResult(Ins
, RetCC
);
3670 // Copy all of the result registers out of their specified physreg.
3671 for (unsigned i
= 0; i
!= RVLocs
.size(); ++i
) {
3672 CCValAssign VA
= RVLocs
[i
];
3674 // Pass 'this' value directly from the argument to return value, to avoid
3675 // reg unit interference
3676 if (i
== 0 && isThisReturn
) {
3677 assert(!VA
.needsCustom() && VA
.getLocVT() == MVT::i64
&&
3678 "unexpected return calling convention register assignment");
3679 InVals
.push_back(ThisVal
);
3683 // Avoid copying a physreg twice since RegAllocFast is incompetent and only
3684 // allows one use of a physreg per block.
3685 SDValue Val
= CopiedRegs
.lookup(VA
.getLocReg());
3688 DAG
.getCopyFromReg(Chain
, DL
, VA
.getLocReg(), VA
.getLocVT(), InFlag
);
3689 Chain
= Val
.getValue(1);
3690 InFlag
= Val
.getValue(2);
3691 CopiedRegs
[VA
.getLocReg()] = Val
;
3694 switch (VA
.getLocInfo()) {
3696 llvm_unreachable("Unknown loc info!");
3697 case CCValAssign::Full
:
3699 case CCValAssign::BCvt
:
3700 Val
= DAG
.getNode(ISD::BITCAST
, DL
, VA
.getValVT(), Val
);
3702 case CCValAssign::AExtUpper
:
3703 Val
= DAG
.getNode(ISD::SRL
, DL
, VA
.getLocVT(), Val
,
3704 DAG
.getConstant(32, DL
, VA
.getLocVT()));
3706 case CCValAssign::AExt
:
3708 case CCValAssign::ZExt
:
3709 Val
= DAG
.getZExtOrTrunc(Val
, DL
, VA
.getValVT());
3713 InVals
.push_back(Val
);
3719 /// Return true if the calling convention is one that we can guarantee TCO for.
3720 static bool canGuaranteeTCO(CallingConv::ID CC
) {
3721 return CC
== CallingConv::Fast
;
3724 /// Return true if we might ever do TCO for calls with this calling convention.
3725 static bool mayTailCallThisCC(CallingConv::ID CC
) {
3727 case CallingConv::C
:
3728 case CallingConv::PreserveMost
:
3729 case CallingConv::Swift
:
3732 return canGuaranteeTCO(CC
);
3736 bool AArch64TargetLowering::isEligibleForTailCallOptimization(
3737 SDValue Callee
, CallingConv::ID CalleeCC
, bool isVarArg
,
3738 const SmallVectorImpl
<ISD::OutputArg
> &Outs
,
3739 const SmallVectorImpl
<SDValue
> &OutVals
,
3740 const SmallVectorImpl
<ISD::InputArg
> &Ins
, SelectionDAG
&DAG
) const {
3741 if (!mayTailCallThisCC(CalleeCC
))
3744 MachineFunction
&MF
= DAG
.getMachineFunction();
3745 const Function
&CallerF
= MF
.getFunction();
3746 CallingConv::ID CallerCC
= CallerF
.getCallingConv();
3747 bool CCMatch
= CallerCC
== CalleeCC
;
3749 // Byval parameters hand the function a pointer directly into the stack area
3750 // we want to reuse during a tail call. Working around this *is* possible (see
3751 // X86) but less efficient and uglier in LowerCall.
3752 for (Function::const_arg_iterator i
= CallerF
.arg_begin(),
3753 e
= CallerF
.arg_end();
3755 if (i
->hasByValAttr())
3758 // On Windows, "inreg" attributes signify non-aggregate indirect returns.
3759 // In this case, it is necessary to save/restore X0 in the callee. Tail
3760 // call opt interferes with this. So we disable tail call opt when the
3761 // caller has an argument with "inreg" attribute.
3763 // FIXME: Check whether the callee also has an "inreg" argument.
3764 if (i
->hasInRegAttr())
3768 if (getTargetMachine().Options
.GuaranteedTailCallOpt
)
3769 return canGuaranteeTCO(CalleeCC
) && CCMatch
;
3771 // Externally-defined functions with weak linkage should not be
3772 // tail-called on AArch64 when the OS does not support dynamic
3773 // pre-emption of symbols, as the AAELF spec requires normal calls
3774 // to undefined weak functions to be replaced with a NOP or jump to the
3775 // next instruction. The behaviour of branch instructions in this
3776 // situation (as used for tail calls) is implementation-defined, so we
3777 // cannot rely on the linker replacing the tail call with a return.
3778 if (GlobalAddressSDNode
*G
= dyn_cast
<GlobalAddressSDNode
>(Callee
)) {
3779 const GlobalValue
*GV
= G
->getGlobal();
3780 const Triple
&TT
= getTargetMachine().getTargetTriple();
3781 if (GV
->hasExternalWeakLinkage() &&
3782 (!TT
.isOSWindows() || TT
.isOSBinFormatELF() || TT
.isOSBinFormatMachO()))
3786 // Now we search for cases where we can use a tail call without changing the
3787 // ABI. Sibcall is used in some places (particularly gcc) to refer to this
3790 // I want anyone implementing a new calling convention to think long and hard
3791 // about this assert.
3792 assert((!isVarArg
|| CalleeCC
== CallingConv::C
) &&
3793 "Unexpected variadic calling convention");
3795 LLVMContext
&C
= *DAG
.getContext();
3796 if (isVarArg
&& !Outs
.empty()) {
3797 // At least two cases here: if caller is fastcc then we can't have any
3798 // memory arguments (we'd be expected to clean up the stack afterwards). If
3799 // caller is C then we could potentially use its argument area.
3801 // FIXME: for now we take the most conservative of these in both cases:
3802 // disallow all variadic memory operands.
3803 SmallVector
<CCValAssign
, 16> ArgLocs
;
3804 CCState
CCInfo(CalleeCC
, isVarArg
, MF
, ArgLocs
, C
);
3806 CCInfo
.AnalyzeCallOperands(Outs
, CCAssignFnForCall(CalleeCC
, true));
3807 for (const CCValAssign
&ArgLoc
: ArgLocs
)
3808 if (!ArgLoc
.isRegLoc())
3812 // Check that the call results are passed in the same way.
3813 if (!CCState::resultsCompatible(CalleeCC
, CallerCC
, MF
, C
, Ins
,
3814 CCAssignFnForCall(CalleeCC
, isVarArg
),
3815 CCAssignFnForCall(CallerCC
, isVarArg
)))
3817 // The callee has to preserve all registers the caller needs to preserve.
3818 const AArch64RegisterInfo
*TRI
= Subtarget
->getRegisterInfo();
3819 const uint32_t *CallerPreserved
= TRI
->getCallPreservedMask(MF
, CallerCC
);
3821 const uint32_t *CalleePreserved
= TRI
->getCallPreservedMask(MF
, CalleeCC
);
3822 if (Subtarget
->hasCustomCallingConv()) {
3823 TRI
->UpdateCustomCallPreservedMask(MF
, &CallerPreserved
);
3824 TRI
->UpdateCustomCallPreservedMask(MF
, &CalleePreserved
);
3826 if (!TRI
->regmaskSubsetEqual(CallerPreserved
, CalleePreserved
))
3830 // Nothing more to check if the callee is taking no arguments
3834 SmallVector
<CCValAssign
, 16> ArgLocs
;
3835 CCState
CCInfo(CalleeCC
, isVarArg
, MF
, ArgLocs
, C
);
3837 CCInfo
.AnalyzeCallOperands(Outs
, CCAssignFnForCall(CalleeCC
, isVarArg
));
3839 const AArch64FunctionInfo
*FuncInfo
= MF
.getInfo
<AArch64FunctionInfo
>();
3841 // If the stack arguments for this call do not fit into our own save area then
3842 // the call cannot be made tail.
3843 if (CCInfo
.getNextStackOffset() > FuncInfo
->getBytesInStackArgArea())
3846 const MachineRegisterInfo
&MRI
= MF
.getRegInfo();
3847 if (!parametersInCSRMatch(MRI
, CallerPreserved
, ArgLocs
, OutVals
))
3853 SDValue
AArch64TargetLowering::addTokenForArgument(SDValue Chain
,
3855 MachineFrameInfo
&MFI
,
3856 int ClobberedFI
) const {
3857 SmallVector
<SDValue
, 8> ArgChains
;
3858 int64_t FirstByte
= MFI
.getObjectOffset(ClobberedFI
);
3859 int64_t LastByte
= FirstByte
+ MFI
.getObjectSize(ClobberedFI
) - 1;
3861 // Include the original chain at the beginning of the list. When this is
3862 // used by target LowerCall hooks, this helps legalize find the
3863 // CALLSEQ_BEGIN node.
3864 ArgChains
.push_back(Chain
);
3866 // Add a chain value for each stack argument corresponding
3867 for (SDNode::use_iterator U
= DAG
.getEntryNode().getNode()->use_begin(),
3868 UE
= DAG
.getEntryNode().getNode()->use_end();
3870 if (LoadSDNode
*L
= dyn_cast
<LoadSDNode
>(*U
))
3871 if (FrameIndexSDNode
*FI
= dyn_cast
<FrameIndexSDNode
>(L
->getBasePtr()))
3872 if (FI
->getIndex() < 0) {
3873 int64_t InFirstByte
= MFI
.getObjectOffset(FI
->getIndex());
3874 int64_t InLastByte
= InFirstByte
;
3875 InLastByte
+= MFI
.getObjectSize(FI
->getIndex()) - 1;
3877 if ((InFirstByte
<= FirstByte
&& FirstByte
<= InLastByte
) ||
3878 (FirstByte
<= InFirstByte
&& InFirstByte
<= LastByte
))
3879 ArgChains
.push_back(SDValue(L
, 1));
3882 // Build a tokenfactor for all the chains.
3883 return DAG
.getNode(ISD::TokenFactor
, SDLoc(Chain
), MVT::Other
, ArgChains
);
3886 bool AArch64TargetLowering::DoesCalleeRestoreStack(CallingConv::ID CallCC
,
3887 bool TailCallOpt
) const {
3888 return CallCC
== CallingConv::Fast
&& TailCallOpt
;
3891 /// LowerCall - Lower a call to a callseq_start + CALL + callseq_end chain,
3892 /// and add input and output parameter nodes.
3894 AArch64TargetLowering::LowerCall(CallLoweringInfo
&CLI
,
3895 SmallVectorImpl
<SDValue
> &InVals
) const {
3896 SelectionDAG
&DAG
= CLI
.DAG
;
3898 SmallVector
<ISD::OutputArg
, 32> &Outs
= CLI
.Outs
;
3899 SmallVector
<SDValue
, 32> &OutVals
= CLI
.OutVals
;
3900 SmallVector
<ISD::InputArg
, 32> &Ins
= CLI
.Ins
;
3901 SDValue Chain
= CLI
.Chain
;
3902 SDValue Callee
= CLI
.Callee
;
3903 bool &IsTailCall
= CLI
.IsTailCall
;
3904 CallingConv::ID CallConv
= CLI
.CallConv
;
3905 bool IsVarArg
= CLI
.IsVarArg
;
3907 MachineFunction
&MF
= DAG
.getMachineFunction();
3908 MachineFunction::CallSiteInfo CSInfo
;
3909 bool IsThisReturn
= false;
3911 AArch64FunctionInfo
*FuncInfo
= MF
.getInfo
<AArch64FunctionInfo
>();
3912 bool TailCallOpt
= MF
.getTarget().Options
.GuaranteedTailCallOpt
;
3913 bool IsSibCall
= false;
3916 // Check if it's really possible to do a tail call.
3917 IsTailCall
= isEligibleForTailCallOptimization(
3918 Callee
, CallConv
, IsVarArg
, Outs
, OutVals
, Ins
, DAG
);
3919 if (!IsTailCall
&& CLI
.CS
&& CLI
.CS
.isMustTailCall())
3920 report_fatal_error("failed to perform tail call elimination on a call "
3921 "site marked musttail");
3923 // A sibling call is one where we're under the usual C ABI and not planning
3924 // to change that but can still do a tail call:
3925 if (!TailCallOpt
&& IsTailCall
)
3932 // Analyze operands of the call, assigning locations to each operand.
3933 SmallVector
<CCValAssign
, 16> ArgLocs
;
3934 CCState
CCInfo(CallConv
, IsVarArg
, DAG
.getMachineFunction(), ArgLocs
,
3938 // Handle fixed and variable vector arguments differently.
3939 // Variable vector arguments always go into memory.
3940 unsigned NumArgs
= Outs
.size();
3942 for (unsigned i
= 0; i
!= NumArgs
; ++i
) {
3943 MVT ArgVT
= Outs
[i
].VT
;
3944 ISD::ArgFlagsTy ArgFlags
= Outs
[i
].Flags
;
3945 CCAssignFn
*AssignFn
= CCAssignFnForCall(CallConv
,
3946 /*IsVarArg=*/ !Outs
[i
].IsFixed
);
3947 bool Res
= AssignFn(i
, ArgVT
, ArgVT
, CCValAssign::Full
, ArgFlags
, CCInfo
);
3948 assert(!Res
&& "Call operand has unhandled type");
3952 // At this point, Outs[].VT may already be promoted to i32. To correctly
3953 // handle passing i8 as i8 instead of i32 on stack, we pass in both i32 and
3954 // i8 to CC_AArch64_AAPCS with i32 being ValVT and i8 being LocVT.
3955 // Since AnalyzeCallOperands uses Ins[].VT for both ValVT and LocVT, here
3956 // we use a special version of AnalyzeCallOperands to pass in ValVT and
3958 unsigned NumArgs
= Outs
.size();
3959 for (unsigned i
= 0; i
!= NumArgs
; ++i
) {
3960 MVT ValVT
= Outs
[i
].VT
;
3961 // Get type of the original argument.
3962 EVT ActualVT
= getValueType(DAG
.getDataLayout(),
3963 CLI
.getArgs()[Outs
[i
].OrigArgIndex
].Ty
,
3964 /*AllowUnknown*/ true);
3965 MVT ActualMVT
= ActualVT
.isSimple() ? ActualVT
.getSimpleVT() : ValVT
;
3966 ISD::ArgFlagsTy ArgFlags
= Outs
[i
].Flags
;
3967 // If ActualMVT is i1/i8/i16, we should set LocVT to i8/i8/i16.
3968 if (ActualMVT
== MVT::i1
|| ActualMVT
== MVT::i8
)
3970 else if (ActualMVT
== MVT::i16
)
3973 CCAssignFn
*AssignFn
= CCAssignFnForCall(CallConv
, /*IsVarArg=*/false);
3974 bool Res
= AssignFn(i
, ValVT
, ValVT
, CCValAssign::Full
, ArgFlags
, CCInfo
);
3975 assert(!Res
&& "Call operand has unhandled type");
3980 // Get a count of how many bytes are to be pushed on the stack.
3981 unsigned NumBytes
= CCInfo
.getNextStackOffset();
3984 // Since we're not changing the ABI to make this a tail call, the memory
3985 // operands are already available in the caller's incoming argument space.
3989 // FPDiff is the byte offset of the call's argument area from the callee's.
3990 // Stores to callee stack arguments will be placed in FixedStackSlots offset
3991 // by this amount for a tail call. In a sibling call it must be 0 because the
3992 // caller will deallocate the entire stack and the callee still expects its
3993 // arguments to begin at SP+0. Completely unused for non-tail calls.
3996 if (IsTailCall
&& !IsSibCall
) {
3997 unsigned NumReusableBytes
= FuncInfo
->getBytesInStackArgArea();
3999 // Since callee will pop argument stack as a tail call, we must keep the
4000 // popped size 16-byte aligned.
4001 NumBytes
= alignTo(NumBytes
, 16);
4003 // FPDiff will be negative if this tail call requires more space than we
4004 // would automatically have in our incoming argument space. Positive if we
4005 // can actually shrink the stack.
4006 FPDiff
= NumReusableBytes
- NumBytes
;
4008 // The stack pointer must be 16-byte aligned at all times it's used for a
4009 // memory operation, which in practice means at *all* times and in
4010 // particular across call boundaries. Therefore our own arguments started at
4011 // a 16-byte aligned SP and the delta applied for the tail call should
4012 // satisfy the same constraint.
4013 assert(FPDiff
% 16 == 0 && "unaligned stack on tail call");
4016 // Adjust the stack pointer for the new arguments...
4017 // These operations are automatically eliminated by the prolog/epilog pass
4019 Chain
= DAG
.getCALLSEQ_START(Chain
, NumBytes
, 0, DL
);
4021 SDValue StackPtr
= DAG
.getCopyFromReg(Chain
, DL
, AArch64::SP
,
4022 getPointerTy(DAG
.getDataLayout()));
4024 SmallVector
<std::pair
<unsigned, SDValue
>, 8> RegsToPass
;
4025 SmallSet
<unsigned, 8> RegsUsed
;
4026 SmallVector
<SDValue
, 8> MemOpChains
;
4027 auto PtrVT
= getPointerTy(DAG
.getDataLayout());
4029 if (IsVarArg
&& CLI
.CS
&& CLI
.CS
.isMustTailCall()) {
4030 const auto &Forwards
= FuncInfo
->getForwardedMustTailRegParms();
4031 for (const auto &F
: Forwards
) {
4032 SDValue Val
= DAG
.getCopyFromReg(Chain
, DL
, F
.VReg
, F
.VT
);
4033 RegsToPass
.emplace_back(F
.PReg
, Val
);
4037 // Walk the register/memloc assignments, inserting copies/loads.
4038 for (unsigned i
= 0, e
= ArgLocs
.size(); i
!= e
; ++i
) {
4039 CCValAssign
&VA
= ArgLocs
[i
];
4040 SDValue Arg
= OutVals
[i
];
4041 ISD::ArgFlagsTy Flags
= Outs
[i
].Flags
;
4043 // Promote the value if needed.
4044 switch (VA
.getLocInfo()) {
4046 llvm_unreachable("Unknown loc info!");
4047 case CCValAssign::Full
:
4049 case CCValAssign::SExt
:
4050 Arg
= DAG
.getNode(ISD::SIGN_EXTEND
, DL
, VA
.getLocVT(), Arg
);
4052 case CCValAssign::ZExt
:
4053 Arg
= DAG
.getNode(ISD::ZERO_EXTEND
, DL
, VA
.getLocVT(), Arg
);
4055 case CCValAssign::AExt
:
4056 if (Outs
[i
].ArgVT
== MVT::i1
) {
4057 // AAPCS requires i1 to be zero-extended to 8-bits by the caller.
4058 Arg
= DAG
.getNode(ISD::TRUNCATE
, DL
, MVT::i1
, Arg
);
4059 Arg
= DAG
.getNode(ISD::ZERO_EXTEND
, DL
, MVT::i8
, Arg
);
4061 Arg
= DAG
.getNode(ISD::ANY_EXTEND
, DL
, VA
.getLocVT(), Arg
);
4063 case CCValAssign::AExtUpper
:
4064 assert(VA
.getValVT() == MVT::i32
&& "only expect 32 -> 64 upper bits");
4065 Arg
= DAG
.getNode(ISD::ANY_EXTEND
, DL
, VA
.getLocVT(), Arg
);
4066 Arg
= DAG
.getNode(ISD::SHL
, DL
, VA
.getLocVT(), Arg
,
4067 DAG
.getConstant(32, DL
, VA
.getLocVT()));
4069 case CCValAssign::BCvt
:
4070 Arg
= DAG
.getBitcast(VA
.getLocVT(), Arg
);
4072 case CCValAssign::Trunc
:
4073 Arg
= DAG
.getZExtOrTrunc(Arg
, DL
, VA
.getLocVT());
4075 case CCValAssign::FPExt
:
4076 Arg
= DAG
.getNode(ISD::FP_EXTEND
, DL
, VA
.getLocVT(), Arg
);
4078 case CCValAssign::Indirect
:
4079 assert(VA
.getValVT().isScalableVector() &&
4080 "Only scalable vectors can be passed indirectly");
4081 llvm_unreachable("Spilling of SVE vectors not yet implemented");
4084 if (VA
.isRegLoc()) {
4085 if (i
== 0 && Flags
.isReturned() && !Flags
.isSwiftSelf() &&
4086 Outs
[0].VT
== MVT::i64
) {
4087 assert(VA
.getLocVT() == MVT::i64
&&
4088 "unexpected calling convention register assignment");
4089 assert(!Ins
.empty() && Ins
[0].VT
== MVT::i64
&&
4090 "unexpected use of 'returned'");
4091 IsThisReturn
= true;
4093 if (RegsUsed
.count(VA
.getLocReg())) {
4094 // If this register has already been used then we're trying to pack
4095 // parts of an [N x i32] into an X-register. The extension type will
4096 // take care of putting the two halves in the right place but we have to
4099 std::find_if(RegsToPass
.begin(), RegsToPass
.end(),
4100 [=](const std::pair
<unsigned, SDValue
> &Elt
) {
4101 return Elt
.first
== VA
.getLocReg();
4104 Bits
= DAG
.getNode(ISD::OR
, DL
, Bits
.getValueType(), Bits
, Arg
);
4105 // Call site info is used for function's parameter entry value
4106 // tracking. For now we track only simple cases when parameter
4107 // is transferred through whole register.
4108 CSInfo
.erase(std::remove_if(CSInfo
.begin(), CSInfo
.end(),
4109 [&VA
](MachineFunction::ArgRegPair ArgReg
) {
4110 return ArgReg
.Reg
== VA
.getLocReg();
4114 RegsToPass
.emplace_back(VA
.getLocReg(), Arg
);
4115 RegsUsed
.insert(VA
.getLocReg());
4116 const TargetOptions
&Options
= DAG
.getTarget().Options
;
4117 if (Options
.EnableDebugEntryValues
)
4118 CSInfo
.emplace_back(VA
.getLocReg(), i
);
4121 assert(VA
.isMemLoc());
4124 MachinePointerInfo DstInfo
;
4126 // FIXME: This works on big-endian for composite byvals, which are the
4127 // common case. It should also work for fundamental types too.
4128 uint32_t BEAlign
= 0;
4129 unsigned OpSize
= Flags
.isByVal() ? Flags
.getByValSize() * 8
4130 : VA
.getValVT().getSizeInBits();
4131 OpSize
= (OpSize
+ 7) / 8;
4132 if (!Subtarget
->isLittleEndian() && !Flags
.isByVal() &&
4133 !Flags
.isInConsecutiveRegs()) {
4135 BEAlign
= 8 - OpSize
;
4137 unsigned LocMemOffset
= VA
.getLocMemOffset();
4138 int32_t Offset
= LocMemOffset
+ BEAlign
;
4139 SDValue PtrOff
= DAG
.getIntPtrConstant(Offset
, DL
);
4140 PtrOff
= DAG
.getNode(ISD::ADD
, DL
, PtrVT
, StackPtr
, PtrOff
);
4143 Offset
= Offset
+ FPDiff
;
4144 int FI
= MF
.getFrameInfo().CreateFixedObject(OpSize
, Offset
, true);
4146 DstAddr
= DAG
.getFrameIndex(FI
, PtrVT
);
4148 MachinePointerInfo::getFixedStack(DAG
.getMachineFunction(), FI
);
4150 // Make sure any stack arguments overlapping with where we're storing
4151 // are loaded before this eventual operation. Otherwise they'll be
4153 Chain
= addTokenForArgument(Chain
, DAG
, MF
.getFrameInfo(), FI
);
4155 SDValue PtrOff
= DAG
.getIntPtrConstant(Offset
, DL
);
4157 DstAddr
= DAG
.getNode(ISD::ADD
, DL
, PtrVT
, StackPtr
, PtrOff
);
4158 DstInfo
= MachinePointerInfo::getStack(DAG
.getMachineFunction(),
4162 if (Outs
[i
].Flags
.isByVal()) {
4164 DAG
.getConstant(Outs
[i
].Flags
.getByValSize(), DL
, MVT::i64
);
4165 SDValue Cpy
= DAG
.getMemcpy(
4166 Chain
, DL
, DstAddr
, Arg
, SizeNode
, Outs
[i
].Flags
.getByValAlign(),
4167 /*isVol = */ false, /*AlwaysInline = */ false,
4168 /*isTailCall = */ false,
4169 DstInfo
, MachinePointerInfo());
4171 MemOpChains
.push_back(Cpy
);
4173 // Since we pass i1/i8/i16 as i1/i8/i16 on stack and Arg is already
4174 // promoted to a legal register type i32, we should truncate Arg back to
4176 if (VA
.getValVT() == MVT::i1
|| VA
.getValVT() == MVT::i8
||
4177 VA
.getValVT() == MVT::i16
)
4178 Arg
= DAG
.getNode(ISD::TRUNCATE
, DL
, VA
.getValVT(), Arg
);
4180 SDValue Store
= DAG
.getStore(Chain
, DL
, Arg
, DstAddr
, DstInfo
);
4181 MemOpChains
.push_back(Store
);
4186 if (!MemOpChains
.empty())
4187 Chain
= DAG
.getNode(ISD::TokenFactor
, DL
, MVT::Other
, MemOpChains
);
4189 // Build a sequence of copy-to-reg nodes chained together with token chain
4190 // and flag operands which copy the outgoing args into the appropriate regs.
4192 for (auto &RegToPass
: RegsToPass
) {
4193 Chain
= DAG
.getCopyToReg(Chain
, DL
, RegToPass
.first
,
4194 RegToPass
.second
, InFlag
);
4195 InFlag
= Chain
.getValue(1);
4198 // If the callee is a GlobalAddress/ExternalSymbol node (quite common, every
4199 // direct call is) turn it into a TargetGlobalAddress/TargetExternalSymbol
4200 // node so that legalize doesn't hack it.
4201 if (auto *G
= dyn_cast
<GlobalAddressSDNode
>(Callee
)) {
4202 auto GV
= G
->getGlobal();
4204 Subtarget
->classifyGlobalFunctionReference(GV
, getTargetMachine());
4205 if (OpFlags
& AArch64II::MO_GOT
) {
4206 Callee
= DAG
.getTargetGlobalAddress(GV
, DL
, PtrVT
, 0, OpFlags
);
4207 Callee
= DAG
.getNode(AArch64ISD::LOADgot
, DL
, PtrVT
, Callee
);
4209 const GlobalValue
*GV
= G
->getGlobal();
4210 Callee
= DAG
.getTargetGlobalAddress(GV
, DL
, PtrVT
, 0, 0);
4212 } else if (auto *S
= dyn_cast
<ExternalSymbolSDNode
>(Callee
)) {
4213 if (getTargetMachine().getCodeModel() == CodeModel::Large
&&
4214 Subtarget
->isTargetMachO()) {
4215 const char *Sym
= S
->getSymbol();
4216 Callee
= DAG
.getTargetExternalSymbol(Sym
, PtrVT
, AArch64II::MO_GOT
);
4217 Callee
= DAG
.getNode(AArch64ISD::LOADgot
, DL
, PtrVT
, Callee
);
4219 const char *Sym
= S
->getSymbol();
4220 Callee
= DAG
.getTargetExternalSymbol(Sym
, PtrVT
, 0);
4224 // We don't usually want to end the call-sequence here because we would tidy
4225 // the frame up *after* the call, however in the ABI-changing tail-call case
4226 // we've carefully laid out the parameters so that when sp is reset they'll be
4227 // in the correct location.
4228 if (IsTailCall
&& !IsSibCall
) {
4229 Chain
= DAG
.getCALLSEQ_END(Chain
, DAG
.getIntPtrConstant(NumBytes
, DL
, true),
4230 DAG
.getIntPtrConstant(0, DL
, true), InFlag
, DL
);
4231 InFlag
= Chain
.getValue(1);
4234 std::vector
<SDValue
> Ops
;
4235 Ops
.push_back(Chain
);
4236 Ops
.push_back(Callee
);
4239 // Each tail call may have to adjust the stack by a different amount, so
4240 // this information must travel along with the operation for eventual
4241 // consumption by emitEpilogue.
4242 Ops
.push_back(DAG
.getTargetConstant(FPDiff
, DL
, MVT::i32
));
4245 // Add argument registers to the end of the list so that they are known live
4247 for (auto &RegToPass
: RegsToPass
)
4248 Ops
.push_back(DAG
.getRegister(RegToPass
.first
,
4249 RegToPass
.second
.getValueType()));
4251 // Check callee args/returns for SVE registers and set calling convention
4253 if (CallConv
== CallingConv::C
) {
4254 bool CalleeOutSVE
= any_of(Outs
, [](ISD::OutputArg
&Out
){
4255 return Out
.VT
.isScalableVector();
4257 bool CalleeInSVE
= any_of(Ins
, [](ISD::InputArg
&In
){
4258 return In
.VT
.isScalableVector();
4261 if (CalleeInSVE
|| CalleeOutSVE
)
4262 CallConv
= CallingConv::AArch64_SVE_VectorCall
;
4265 // Add a register mask operand representing the call-preserved registers.
4266 const uint32_t *Mask
;
4267 const AArch64RegisterInfo
*TRI
= Subtarget
->getRegisterInfo();
4269 // For 'this' returns, use the X0-preserving mask if applicable
4270 Mask
= TRI
->getThisReturnPreservedMask(MF
, CallConv
);
4272 IsThisReturn
= false;
4273 Mask
= TRI
->getCallPreservedMask(MF
, CallConv
);
4276 Mask
= TRI
->getCallPreservedMask(MF
, CallConv
);
4278 if (Subtarget
->hasCustomCallingConv())
4279 TRI
->UpdateCustomCallPreservedMask(MF
, &Mask
);
4281 if (TRI
->isAnyArgRegReserved(MF
))
4282 TRI
->emitReservedArgRegCallError(MF
);
4284 assert(Mask
&& "Missing call preserved mask for calling convention");
4285 Ops
.push_back(DAG
.getRegisterMask(Mask
));
4287 if (InFlag
.getNode())
4288 Ops
.push_back(InFlag
);
4290 SDVTList NodeTys
= DAG
.getVTList(MVT::Other
, MVT::Glue
);
4292 // If we're doing a tall call, use a TC_RETURN here rather than an
4293 // actual call instruction.
4295 MF
.getFrameInfo().setHasTailCall();
4296 SDValue Ret
= DAG
.getNode(AArch64ISD::TC_RETURN
, DL
, NodeTys
, Ops
);
4297 DAG
.addCallSiteInfo(Ret
.getNode(), std::move(CSInfo
));
4301 // Returns a chain and a flag for retval copy to use.
4302 Chain
= DAG
.getNode(AArch64ISD::CALL
, DL
, NodeTys
, Ops
);
4303 InFlag
= Chain
.getValue(1);
4304 DAG
.addCallSiteInfo(Chain
.getNode(), std::move(CSInfo
));
4306 uint64_t CalleePopBytes
=
4307 DoesCalleeRestoreStack(CallConv
, TailCallOpt
) ? alignTo(NumBytes
, 16) : 0;
4309 Chain
= DAG
.getCALLSEQ_END(Chain
, DAG
.getIntPtrConstant(NumBytes
, DL
, true),
4310 DAG
.getIntPtrConstant(CalleePopBytes
, DL
, true),
4313 InFlag
= Chain
.getValue(1);
4315 // Handle result values, copying them out of physregs into vregs that we
4317 return LowerCallResult(Chain
, InFlag
, CallConv
, IsVarArg
, Ins
, DL
, DAG
,
4318 InVals
, IsThisReturn
,
4319 IsThisReturn
? OutVals
[0] : SDValue());
4322 bool AArch64TargetLowering::CanLowerReturn(
4323 CallingConv::ID CallConv
, MachineFunction
&MF
, bool isVarArg
,
4324 const SmallVectorImpl
<ISD::OutputArg
> &Outs
, LLVMContext
&Context
) const {
4325 CCAssignFn
*RetCC
= CallConv
== CallingConv::WebKit_JS
4326 ? RetCC_AArch64_WebKit_JS
4327 : RetCC_AArch64_AAPCS
;
4328 SmallVector
<CCValAssign
, 16> RVLocs
;
4329 CCState
CCInfo(CallConv
, isVarArg
, MF
, RVLocs
, Context
);
4330 return CCInfo
.CheckReturn(Outs
, RetCC
);
4334 AArch64TargetLowering::LowerReturn(SDValue Chain
, CallingConv::ID CallConv
,
4336 const SmallVectorImpl
<ISD::OutputArg
> &Outs
,
4337 const SmallVectorImpl
<SDValue
> &OutVals
,
4338 const SDLoc
&DL
, SelectionDAG
&DAG
) const {
4339 auto &MF
= DAG
.getMachineFunction();
4340 auto *FuncInfo
= MF
.getInfo
<AArch64FunctionInfo
>();
4342 CCAssignFn
*RetCC
= CallConv
== CallingConv::WebKit_JS
4343 ? RetCC_AArch64_WebKit_JS
4344 : RetCC_AArch64_AAPCS
;
4345 SmallVector
<CCValAssign
, 16> RVLocs
;
4346 CCState
CCInfo(CallConv
, isVarArg
, DAG
.getMachineFunction(), RVLocs
,
4348 CCInfo
.AnalyzeReturn(Outs
, RetCC
);
4350 // Copy the result values into the output registers.
4352 SmallVector
<std::pair
<unsigned, SDValue
>, 4> RetVals
;
4353 SmallSet
<unsigned, 4> RegsUsed
;
4354 for (unsigned i
= 0, realRVLocIdx
= 0; i
!= RVLocs
.size();
4355 ++i
, ++realRVLocIdx
) {
4356 CCValAssign
&VA
= RVLocs
[i
];
4357 assert(VA
.isRegLoc() && "Can only return in registers!");
4358 SDValue Arg
= OutVals
[realRVLocIdx
];
4360 switch (VA
.getLocInfo()) {
4362 llvm_unreachable("Unknown loc info!");
4363 case CCValAssign::Full
:
4364 if (Outs
[i
].ArgVT
== MVT::i1
) {
4365 // AAPCS requires i1 to be zero-extended to i8 by the producer of the
4366 // value. This is strictly redundant on Darwin (which uses "zeroext
4367 // i1"), but will be optimised out before ISel.
4368 Arg
= DAG
.getNode(ISD::TRUNCATE
, DL
, MVT::i1
, Arg
);
4369 Arg
= DAG
.getNode(ISD::ZERO_EXTEND
, DL
, VA
.getLocVT(), Arg
);
4372 case CCValAssign::BCvt
:
4373 Arg
= DAG
.getNode(ISD::BITCAST
, DL
, VA
.getLocVT(), Arg
);
4375 case CCValAssign::AExt
:
4376 case CCValAssign::ZExt
:
4377 Arg
= DAG
.getZExtOrTrunc(Arg
, DL
, VA
.getLocVT());
4379 case CCValAssign::AExtUpper
:
4380 assert(VA
.getValVT() == MVT::i32
&& "only expect 32 -> 64 upper bits");
4381 Arg
= DAG
.getZExtOrTrunc(Arg
, DL
, VA
.getLocVT());
4382 Arg
= DAG
.getNode(ISD::SHL
, DL
, VA
.getLocVT(), Arg
,
4383 DAG
.getConstant(32, DL
, VA
.getLocVT()));
4387 if (RegsUsed
.count(VA
.getLocReg())) {
4389 std::find_if(RetVals
.begin(), RetVals
.end(),
4390 [=](const std::pair
<unsigned, SDValue
> &Elt
) {
4391 return Elt
.first
== VA
.getLocReg();
4394 Bits
= DAG
.getNode(ISD::OR
, DL
, Bits
.getValueType(), Bits
, Arg
);
4396 RetVals
.emplace_back(VA
.getLocReg(), Arg
);
4397 RegsUsed
.insert(VA
.getLocReg());
4401 SmallVector
<SDValue
, 4> RetOps(1, Chain
);
4402 for (auto &RetVal
: RetVals
) {
4403 Chain
= DAG
.getCopyToReg(Chain
, DL
, RetVal
.first
, RetVal
.second
, Flag
);
4404 Flag
= Chain
.getValue(1);
4406 DAG
.getRegister(RetVal
.first
, RetVal
.second
.getValueType()));
4409 // Windows AArch64 ABIs require that for returning structs by value we copy
4410 // the sret argument into X0 for the return.
4411 // We saved the argument into a virtual register in the entry block,
4412 // so now we copy the value out and into X0.
4413 if (unsigned SRetReg
= FuncInfo
->getSRetReturnReg()) {
4414 SDValue Val
= DAG
.getCopyFromReg(RetOps
[0], DL
, SRetReg
,
4415 getPointerTy(MF
.getDataLayout()));
4417 unsigned RetValReg
= AArch64::X0
;
4418 Chain
= DAG
.getCopyToReg(Chain
, DL
, RetValReg
, Val
, Flag
);
4419 Flag
= Chain
.getValue(1);
4422 DAG
.getRegister(RetValReg
, getPointerTy(DAG
.getDataLayout())));
4425 const AArch64RegisterInfo
*TRI
= Subtarget
->getRegisterInfo();
4426 const MCPhysReg
*I
=
4427 TRI
->getCalleeSavedRegsViaCopy(&DAG
.getMachineFunction());
4430 if (AArch64::GPR64RegClass
.contains(*I
))
4431 RetOps
.push_back(DAG
.getRegister(*I
, MVT::i64
));
4432 else if (AArch64::FPR64RegClass
.contains(*I
))
4433 RetOps
.push_back(DAG
.getRegister(*I
, MVT::getFloatingPointVT(64)));
4435 llvm_unreachable("Unexpected register class in CSRsViaCopy!");
4439 RetOps
[0] = Chain
; // Update chain.
4441 // Add the flag if we have it.
4443 RetOps
.push_back(Flag
);
4445 return DAG
.getNode(AArch64ISD::RET_FLAG
, DL
, MVT::Other
, RetOps
);
4448 //===----------------------------------------------------------------------===//
4449 // Other Lowering Code
4450 //===----------------------------------------------------------------------===//
4452 SDValue
AArch64TargetLowering::getTargetNode(GlobalAddressSDNode
*N
, EVT Ty
,
4454 unsigned Flag
) const {
4455 return DAG
.getTargetGlobalAddress(N
->getGlobal(), SDLoc(N
), Ty
,
4456 N
->getOffset(), Flag
);
4459 SDValue
AArch64TargetLowering::getTargetNode(JumpTableSDNode
*N
, EVT Ty
,
4461 unsigned Flag
) const {
4462 return DAG
.getTargetJumpTable(N
->getIndex(), Ty
, Flag
);
4465 SDValue
AArch64TargetLowering::getTargetNode(ConstantPoolSDNode
*N
, EVT Ty
,
4467 unsigned Flag
) const {
4468 return DAG
.getTargetConstantPool(N
->getConstVal(), Ty
, N
->getAlignment(),
4469 N
->getOffset(), Flag
);
4472 SDValue
AArch64TargetLowering::getTargetNode(BlockAddressSDNode
* N
, EVT Ty
,
4474 unsigned Flag
) const {
4475 return DAG
.getTargetBlockAddress(N
->getBlockAddress(), Ty
, 0, Flag
);
4479 template <class NodeTy
>
4480 SDValue
AArch64TargetLowering::getGOT(NodeTy
*N
, SelectionDAG
&DAG
,
4481 unsigned Flags
) const {
4482 LLVM_DEBUG(dbgs() << "AArch64TargetLowering::getGOT\n");
4484 EVT Ty
= getPointerTy(DAG
.getDataLayout());
4485 SDValue GotAddr
= getTargetNode(N
, Ty
, DAG
, AArch64II::MO_GOT
| Flags
);
4486 // FIXME: Once remat is capable of dealing with instructions with register
4487 // operands, expand this into two nodes instead of using a wrapper node.
4488 return DAG
.getNode(AArch64ISD::LOADgot
, DL
, Ty
, GotAddr
);
4491 // (wrapper %highest(sym), %higher(sym), %hi(sym), %lo(sym))
4492 template <class NodeTy
>
4493 SDValue
AArch64TargetLowering::getAddrLarge(NodeTy
*N
, SelectionDAG
&DAG
,
4494 unsigned Flags
) const {
4495 LLVM_DEBUG(dbgs() << "AArch64TargetLowering::getAddrLarge\n");
4497 EVT Ty
= getPointerTy(DAG
.getDataLayout());
4498 const unsigned char MO_NC
= AArch64II::MO_NC
;
4500 AArch64ISD::WrapperLarge
, DL
, Ty
,
4501 getTargetNode(N
, Ty
, DAG
, AArch64II::MO_G3
| Flags
),
4502 getTargetNode(N
, Ty
, DAG
, AArch64II::MO_G2
| MO_NC
| Flags
),
4503 getTargetNode(N
, Ty
, DAG
, AArch64II::MO_G1
| MO_NC
| Flags
),
4504 getTargetNode(N
, Ty
, DAG
, AArch64II::MO_G0
| MO_NC
| Flags
));
4507 // (addlow (adrp %hi(sym)) %lo(sym))
4508 template <class NodeTy
>
4509 SDValue
AArch64TargetLowering::getAddr(NodeTy
*N
, SelectionDAG
&DAG
,
4510 unsigned Flags
) const {
4511 LLVM_DEBUG(dbgs() << "AArch64TargetLowering::getAddr\n");
4513 EVT Ty
= getPointerTy(DAG
.getDataLayout());
4514 SDValue Hi
= getTargetNode(N
, Ty
, DAG
, AArch64II::MO_PAGE
| Flags
);
4515 SDValue Lo
= getTargetNode(N
, Ty
, DAG
,
4516 AArch64II::MO_PAGEOFF
| AArch64II::MO_NC
| Flags
);
4517 SDValue ADRP
= DAG
.getNode(AArch64ISD::ADRP
, DL
, Ty
, Hi
);
4518 return DAG
.getNode(AArch64ISD::ADDlow
, DL
, Ty
, ADRP
, Lo
);
4522 template <class NodeTy
>
4523 SDValue
AArch64TargetLowering::getAddrTiny(NodeTy
*N
, SelectionDAG
&DAG
,
4524 unsigned Flags
) const {
4525 LLVM_DEBUG(dbgs() << "AArch64TargetLowering::getAddrTiny\n");
4527 EVT Ty
= getPointerTy(DAG
.getDataLayout());
4528 SDValue Sym
= getTargetNode(N
, Ty
, DAG
, Flags
);
4529 return DAG
.getNode(AArch64ISD::ADR
, DL
, Ty
, Sym
);
4532 SDValue
AArch64TargetLowering::LowerGlobalAddress(SDValue Op
,
4533 SelectionDAG
&DAG
) const {
4534 GlobalAddressSDNode
*GN
= cast
<GlobalAddressSDNode
>(Op
);
4535 const GlobalValue
*GV
= GN
->getGlobal();
4536 unsigned OpFlags
= Subtarget
->ClassifyGlobalReference(GV
, getTargetMachine());
4538 if (OpFlags
!= AArch64II::MO_NO_FLAG
)
4539 assert(cast
<GlobalAddressSDNode
>(Op
)->getOffset() == 0 &&
4540 "unexpected offset in global node");
4542 // This also catches the large code model case for Darwin, and tiny code
4543 // model with got relocations.
4544 if ((OpFlags
& AArch64II::MO_GOT
) != 0) {
4545 return getGOT(GN
, DAG
, OpFlags
);
4549 if (getTargetMachine().getCodeModel() == CodeModel::Large
) {
4550 Result
= getAddrLarge(GN
, DAG
, OpFlags
);
4551 } else if (getTargetMachine().getCodeModel() == CodeModel::Tiny
) {
4552 Result
= getAddrTiny(GN
, DAG
, OpFlags
);
4554 Result
= getAddr(GN
, DAG
, OpFlags
);
4556 EVT PtrVT
= getPointerTy(DAG
.getDataLayout());
4558 if (OpFlags
& (AArch64II::MO_DLLIMPORT
| AArch64II::MO_COFFSTUB
))
4559 Result
= DAG
.getLoad(PtrVT
, DL
, DAG
.getEntryNode(), Result
,
4560 MachinePointerInfo::getGOT(DAG
.getMachineFunction()));
4564 /// Convert a TLS address reference into the correct sequence of loads
4565 /// and calls to compute the variable's address (for Darwin, currently) and
4566 /// return an SDValue containing the final node.
4568 /// Darwin only has one TLS scheme which must be capable of dealing with the
4569 /// fully general situation, in the worst case. This means:
4570 /// + "extern __thread" declaration.
4571 /// + Defined in a possibly unknown dynamic library.
4573 /// The general system is that each __thread variable has a [3 x i64] descriptor
4574 /// which contains information used by the runtime to calculate the address. The
4575 /// only part of this the compiler needs to know about is the first xword, which
4576 /// contains a function pointer that must be called with the address of the
4577 /// entire descriptor in "x0".
4579 /// Since this descriptor may be in a different unit, in general even the
4580 /// descriptor must be accessed via an indirect load. The "ideal" code sequence
4582 /// adrp x0, _var@TLVPPAGE
4583 /// ldr x0, [x0, _var@TLVPPAGEOFF] ; x0 now contains address of descriptor
4584 /// ldr x1, [x0] ; x1 contains 1st entry of descriptor,
4585 /// ; the function pointer
4586 /// blr x1 ; Uses descriptor address in x0
4587 /// ; Address of _var is now in x0.
4589 /// If the address of _var's descriptor *is* known to the linker, then it can
4590 /// change the first "ldr" instruction to an appropriate "add x0, x0, #imm" for
4591 /// a slight efficiency gain.
4593 AArch64TargetLowering::LowerDarwinGlobalTLSAddress(SDValue Op
,
4594 SelectionDAG
&DAG
) const {
4595 assert(Subtarget
->isTargetDarwin() &&
4596 "This function expects a Darwin target");
4599 MVT PtrVT
= getPointerTy(DAG
.getDataLayout());
4600 MVT PtrMemVT
= getPointerMemTy(DAG
.getDataLayout());
4601 const GlobalValue
*GV
= cast
<GlobalAddressSDNode
>(Op
)->getGlobal();
4604 DAG
.getTargetGlobalAddress(GV
, DL
, PtrVT
, 0, AArch64II::MO_TLS
);
4605 SDValue DescAddr
= DAG
.getNode(AArch64ISD::LOADgot
, DL
, PtrVT
, TLVPAddr
);
4607 // The first entry in the descriptor is a function pointer that we must call
4608 // to obtain the address of the variable.
4609 SDValue Chain
= DAG
.getEntryNode();
4610 SDValue FuncTLVGet
= DAG
.getLoad(
4611 PtrMemVT
, DL
, Chain
, DescAddr
,
4612 MachinePointerInfo::getGOT(DAG
.getMachineFunction()),
4613 /* Alignment = */ PtrMemVT
.getSizeInBits() / 8,
4614 MachineMemOperand::MOInvariant
| MachineMemOperand::MODereferenceable
);
4615 Chain
= FuncTLVGet
.getValue(1);
4617 // Extend loaded pointer if necessary (i.e. if ILP32) to DAG pointer.
4618 FuncTLVGet
= DAG
.getZExtOrTrunc(FuncTLVGet
, DL
, PtrVT
);
4620 MachineFrameInfo
&MFI
= DAG
.getMachineFunction().getFrameInfo();
4621 MFI
.setAdjustsStack(true);
4623 // TLS calls preserve all registers except those that absolutely must be
4624 // trashed: X0 (it takes an argument), LR (it's a call) and NZCV (let's not be
4626 const AArch64RegisterInfo
*TRI
= Subtarget
->getRegisterInfo();
4627 const uint32_t *Mask
= TRI
->getTLSCallPreservedMask();
4628 if (Subtarget
->hasCustomCallingConv())
4629 TRI
->UpdateCustomCallPreservedMask(DAG
.getMachineFunction(), &Mask
);
4631 // Finally, we can make the call. This is just a degenerate version of a
4632 // normal AArch64 call node: x0 takes the address of the descriptor, and
4633 // returns the address of the variable in this thread.
4634 Chain
= DAG
.getCopyToReg(Chain
, DL
, AArch64::X0
, DescAddr
, SDValue());
4636 DAG
.getNode(AArch64ISD::CALL
, DL
, DAG
.getVTList(MVT::Other
, MVT::Glue
),
4637 Chain
, FuncTLVGet
, DAG
.getRegister(AArch64::X0
, MVT::i64
),
4638 DAG
.getRegisterMask(Mask
), Chain
.getValue(1));
4639 return DAG
.getCopyFromReg(Chain
, DL
, AArch64::X0
, PtrVT
, Chain
.getValue(1));
4642 /// Convert a thread-local variable reference into a sequence of instructions to
4643 /// compute the variable's address for the local exec TLS model of ELF targets.
4644 /// The sequence depends on the maximum TLS area size.
4645 SDValue
AArch64TargetLowering::LowerELFTLSLocalExec(const GlobalValue
*GV
,
4648 SelectionDAG
&DAG
) const {
4649 EVT PtrVT
= getPointerTy(DAG
.getDataLayout());
4650 SDValue TPOff
, Addr
;
4652 switch (DAG
.getTarget().Options
.TLSSize
) {
4654 llvm_unreachable("Unexpected TLS size");
4657 // mrs x0, TPIDR_EL0
4658 // add x0, x0, :tprel_lo12:a
4659 SDValue Var
= DAG
.getTargetGlobalAddress(
4660 GV
, DL
, PtrVT
, 0, AArch64II::MO_TLS
| AArch64II::MO_PAGEOFF
);
4661 return SDValue(DAG
.getMachineNode(AArch64::ADDXri
, DL
, PtrVT
, ThreadBase
,
4663 DAG
.getTargetConstant(0, DL
, MVT::i32
)),
4668 // mrs x0, TPIDR_EL0
4669 // add x0, x0, :tprel_hi12:a
4670 // add x0, x0, :tprel_lo12_nc:a
4671 SDValue HiVar
= DAG
.getTargetGlobalAddress(
4672 GV
, DL
, PtrVT
, 0, AArch64II::MO_TLS
| AArch64II::MO_HI12
);
4673 SDValue LoVar
= DAG
.getTargetGlobalAddress(
4675 AArch64II::MO_TLS
| AArch64II::MO_PAGEOFF
| AArch64II::MO_NC
);
4676 Addr
= SDValue(DAG
.getMachineNode(AArch64::ADDXri
, DL
, PtrVT
, ThreadBase
,
4678 DAG
.getTargetConstant(0, DL
, MVT::i32
)),
4680 return SDValue(DAG
.getMachineNode(AArch64::ADDXri
, DL
, PtrVT
, Addr
,
4682 DAG
.getTargetConstant(0, DL
, MVT::i32
)),
4687 // mrs x1, TPIDR_EL0
4688 // movz x0, #:tprel_g1:a
4689 // movk x0, #:tprel_g0_nc:a
4691 SDValue HiVar
= DAG
.getTargetGlobalAddress(
4692 GV
, DL
, PtrVT
, 0, AArch64II::MO_TLS
| AArch64II::MO_G1
);
4693 SDValue LoVar
= DAG
.getTargetGlobalAddress(
4695 AArch64II::MO_TLS
| AArch64II::MO_G0
| AArch64II::MO_NC
);
4696 TPOff
= SDValue(DAG
.getMachineNode(AArch64::MOVZXi
, DL
, PtrVT
, HiVar
,
4697 DAG
.getTargetConstant(16, DL
, MVT::i32
)),
4699 TPOff
= SDValue(DAG
.getMachineNode(AArch64::MOVKXi
, DL
, PtrVT
, TPOff
, LoVar
,
4700 DAG
.getTargetConstant(0, DL
, MVT::i32
)),
4702 return DAG
.getNode(ISD::ADD
, DL
, PtrVT
, ThreadBase
, TPOff
);
4706 // mrs x1, TPIDR_EL0
4707 // movz x0, #:tprel_g2:a
4708 // movk x0, #:tprel_g1_nc:a
4709 // movk x0, #:tprel_g0_nc:a
4711 SDValue HiVar
= DAG
.getTargetGlobalAddress(
4712 GV
, DL
, PtrVT
, 0, AArch64II::MO_TLS
| AArch64II::MO_G2
);
4713 SDValue MiVar
= DAG
.getTargetGlobalAddress(
4715 AArch64II::MO_TLS
| AArch64II::MO_G1
| AArch64II::MO_NC
);
4716 SDValue LoVar
= DAG
.getTargetGlobalAddress(
4718 AArch64II::MO_TLS
| AArch64II::MO_G0
| AArch64II::MO_NC
);
4719 TPOff
= SDValue(DAG
.getMachineNode(AArch64::MOVZXi
, DL
, PtrVT
, HiVar
,
4720 DAG
.getTargetConstant(32, DL
, MVT::i32
)),
4722 TPOff
= SDValue(DAG
.getMachineNode(AArch64::MOVKXi
, DL
, PtrVT
, TPOff
, MiVar
,
4723 DAG
.getTargetConstant(16, DL
, MVT::i32
)),
4725 TPOff
= SDValue(DAG
.getMachineNode(AArch64::MOVKXi
, DL
, PtrVT
, TPOff
, LoVar
,
4726 DAG
.getTargetConstant(0, DL
, MVT::i32
)),
4728 return DAG
.getNode(ISD::ADD
, DL
, PtrVT
, ThreadBase
, TPOff
);
4733 /// When accessing thread-local variables under either the general-dynamic or
4734 /// local-dynamic system, we make a "TLS-descriptor" call. The variable will
4735 /// have a descriptor, accessible via a PC-relative ADRP, and whose first entry
4736 /// is a function pointer to carry out the resolution.
4738 /// The sequence is:
4739 /// adrp x0, :tlsdesc:var
4740 /// ldr x1, [x0, #:tlsdesc_lo12:var]
4741 /// add x0, x0, #:tlsdesc_lo12:var
4742 /// .tlsdesccall var
4744 /// (TPIDR_EL0 offset now in x0)
4746 /// The above sequence must be produced unscheduled, to enable the linker to
4747 /// optimize/relax this sequence.
4748 /// Therefore, a pseudo-instruction (TLSDESC_CALLSEQ) is used to represent the
4749 /// above sequence, and expanded really late in the compilation flow, to ensure
4750 /// the sequence is produced as per above.
4751 SDValue
AArch64TargetLowering::LowerELFTLSDescCallSeq(SDValue SymAddr
,
4753 SelectionDAG
&DAG
) const {
4754 EVT PtrVT
= getPointerTy(DAG
.getDataLayout());
4756 SDValue Chain
= DAG
.getEntryNode();
4757 SDVTList NodeTys
= DAG
.getVTList(MVT::Other
, MVT::Glue
);
4760 DAG
.getNode(AArch64ISD::TLSDESC_CALLSEQ
, DL
, NodeTys
, {Chain
, SymAddr
});
4761 SDValue Glue
= Chain
.getValue(1);
4763 return DAG
.getCopyFromReg(Chain
, DL
, AArch64::X0
, PtrVT
, Glue
);
4767 AArch64TargetLowering::LowerELFGlobalTLSAddress(SDValue Op
,
4768 SelectionDAG
&DAG
) const {
4769 assert(Subtarget
->isTargetELF() && "This function expects an ELF target");
4771 const GlobalAddressSDNode
*GA
= cast
<GlobalAddressSDNode
>(Op
);
4773 TLSModel::Model Model
= getTargetMachine().getTLSModel(GA
->getGlobal());
4775 if (!EnableAArch64ELFLocalDynamicTLSGeneration
) {
4776 if (Model
== TLSModel::LocalDynamic
)
4777 Model
= TLSModel::GeneralDynamic
;
4780 if (getTargetMachine().getCodeModel() == CodeModel::Large
&&
4781 Model
!= TLSModel::LocalExec
)
4782 report_fatal_error("ELF TLS only supported in small memory model or "
4783 "in local exec TLS model");
4784 // Different choices can be made for the maximum size of the TLS area for a
4785 // module. For the small address model, the default TLS size is 16MiB and the
4786 // maximum TLS size is 4GiB.
4787 // FIXME: add tiny and large code model support for TLS access models other
4788 // than local exec. We currently generate the same code as small for tiny,
4789 // which may be larger than needed.
4792 EVT PtrVT
= getPointerTy(DAG
.getDataLayout());
4794 const GlobalValue
*GV
= GA
->getGlobal();
4796 SDValue ThreadBase
= DAG
.getNode(AArch64ISD::THREAD_POINTER
, DL
, PtrVT
);
4798 if (Model
== TLSModel::LocalExec
) {
4799 return LowerELFTLSLocalExec(GV
, ThreadBase
, DL
, DAG
);
4800 } else if (Model
== TLSModel::InitialExec
) {
4801 TPOff
= DAG
.getTargetGlobalAddress(GV
, DL
, PtrVT
, 0, AArch64II::MO_TLS
);
4802 TPOff
= DAG
.getNode(AArch64ISD::LOADgot
, DL
, PtrVT
, TPOff
);
4803 } else if (Model
== TLSModel::LocalDynamic
) {
4804 // Local-dynamic accesses proceed in two phases. A general-dynamic TLS
4805 // descriptor call against the special symbol _TLS_MODULE_BASE_ to calculate
4806 // the beginning of the module's TLS region, followed by a DTPREL offset
4809 // These accesses will need deduplicating if there's more than one.
4810 AArch64FunctionInfo
*MFI
=
4811 DAG
.getMachineFunction().getInfo
<AArch64FunctionInfo
>();
4812 MFI
->incNumLocalDynamicTLSAccesses();
4814 // The call needs a relocation too for linker relaxation. It doesn't make
4815 // sense to call it MO_PAGE or MO_PAGEOFF though so we need another copy of
4817 SDValue SymAddr
= DAG
.getTargetExternalSymbol("_TLS_MODULE_BASE_", PtrVT
,
4820 // Now we can calculate the offset from TPIDR_EL0 to this module's
4821 // thread-local area.
4822 TPOff
= LowerELFTLSDescCallSeq(SymAddr
, DL
, DAG
);
4824 // Now use :dtprel_whatever: operations to calculate this variable's offset
4825 // in its thread-storage area.
4826 SDValue HiVar
= DAG
.getTargetGlobalAddress(
4827 GV
, DL
, MVT::i64
, 0, AArch64II::MO_TLS
| AArch64II::MO_HI12
);
4828 SDValue LoVar
= DAG
.getTargetGlobalAddress(
4829 GV
, DL
, MVT::i64
, 0,
4830 AArch64II::MO_TLS
| AArch64II::MO_PAGEOFF
| AArch64II::MO_NC
);
4832 TPOff
= SDValue(DAG
.getMachineNode(AArch64::ADDXri
, DL
, PtrVT
, TPOff
, HiVar
,
4833 DAG
.getTargetConstant(0, DL
, MVT::i32
)),
4835 TPOff
= SDValue(DAG
.getMachineNode(AArch64::ADDXri
, DL
, PtrVT
, TPOff
, LoVar
,
4836 DAG
.getTargetConstant(0, DL
, MVT::i32
)),
4838 } else if (Model
== TLSModel::GeneralDynamic
) {
4839 // The call needs a relocation too for linker relaxation. It doesn't make
4840 // sense to call it MO_PAGE or MO_PAGEOFF though so we need another copy of
4843 DAG
.getTargetGlobalAddress(GV
, DL
, PtrVT
, 0, AArch64II::MO_TLS
);
4845 // Finally we can make a call to calculate the offset from tpidr_el0.
4846 TPOff
= LowerELFTLSDescCallSeq(SymAddr
, DL
, DAG
);
4848 llvm_unreachable("Unsupported ELF TLS access model");
4850 return DAG
.getNode(ISD::ADD
, DL
, PtrVT
, ThreadBase
, TPOff
);
4854 AArch64TargetLowering::LowerWindowsGlobalTLSAddress(SDValue Op
,
4855 SelectionDAG
&DAG
) const {
4856 assert(Subtarget
->isTargetWindows() && "Windows specific TLS lowering");
4858 SDValue Chain
= DAG
.getEntryNode();
4859 EVT PtrVT
= getPointerTy(DAG
.getDataLayout());
4862 SDValue TEB
= DAG
.getRegister(AArch64::X18
, MVT::i64
);
4864 // Load the ThreadLocalStoragePointer from the TEB
4865 // A pointer to the TLS array is located at offset 0x58 from the TEB.
4867 DAG
.getNode(ISD::ADD
, DL
, PtrVT
, TEB
, DAG
.getIntPtrConstant(0x58, DL
));
4868 TLSArray
= DAG
.getLoad(PtrVT
, DL
, Chain
, TLSArray
, MachinePointerInfo());
4869 Chain
= TLSArray
.getValue(1);
4871 // Load the TLS index from the C runtime;
4872 // This does the same as getAddr(), but without having a GlobalAddressSDNode.
4873 // This also does the same as LOADgot, but using a generic i32 load,
4874 // while LOADgot only loads i64.
4875 SDValue TLSIndexHi
=
4876 DAG
.getTargetExternalSymbol("_tls_index", PtrVT
, AArch64II::MO_PAGE
);
4877 SDValue TLSIndexLo
= DAG
.getTargetExternalSymbol(
4878 "_tls_index", PtrVT
, AArch64II::MO_PAGEOFF
| AArch64II::MO_NC
);
4879 SDValue ADRP
= DAG
.getNode(AArch64ISD::ADRP
, DL
, PtrVT
, TLSIndexHi
);
4881 DAG
.getNode(AArch64ISD::ADDlow
, DL
, PtrVT
, ADRP
, TLSIndexLo
);
4882 TLSIndex
= DAG
.getLoad(MVT::i32
, DL
, Chain
, TLSIndex
, MachinePointerInfo());
4883 Chain
= TLSIndex
.getValue(1);
4885 // The pointer to the thread's TLS data area is at the TLS Index scaled by 8
4886 // offset into the TLSArray.
4887 TLSIndex
= DAG
.getNode(ISD::ZERO_EXTEND
, DL
, PtrVT
, TLSIndex
);
4888 SDValue Slot
= DAG
.getNode(ISD::SHL
, DL
, PtrVT
, TLSIndex
,
4889 DAG
.getConstant(3, DL
, PtrVT
));
4890 SDValue TLS
= DAG
.getLoad(PtrVT
, DL
, Chain
,
4891 DAG
.getNode(ISD::ADD
, DL
, PtrVT
, TLSArray
, Slot
),
4892 MachinePointerInfo());
4893 Chain
= TLS
.getValue(1);
4895 const GlobalAddressSDNode
*GA
= cast
<GlobalAddressSDNode
>(Op
);
4896 const GlobalValue
*GV
= GA
->getGlobal();
4897 SDValue TGAHi
= DAG
.getTargetGlobalAddress(
4898 GV
, DL
, PtrVT
, 0, AArch64II::MO_TLS
| AArch64II::MO_HI12
);
4899 SDValue TGALo
= DAG
.getTargetGlobalAddress(
4901 AArch64II::MO_TLS
| AArch64II::MO_PAGEOFF
| AArch64II::MO_NC
);
4903 // Add the offset from the start of the .tls section (section base).
4905 SDValue(DAG
.getMachineNode(AArch64::ADDXri
, DL
, PtrVT
, TLS
, TGAHi
,
4906 DAG
.getTargetConstant(0, DL
, MVT::i32
)),
4908 Addr
= DAG
.getNode(AArch64ISD::ADDlow
, DL
, PtrVT
, Addr
, TGALo
);
4912 SDValue
AArch64TargetLowering::LowerGlobalTLSAddress(SDValue Op
,
4913 SelectionDAG
&DAG
) const {
4914 const GlobalAddressSDNode
*GA
= cast
<GlobalAddressSDNode
>(Op
);
4915 if (DAG
.getTarget().useEmulatedTLS())
4916 return LowerToTLSEmulatedModel(GA
, DAG
);
4918 if (Subtarget
->isTargetDarwin())
4919 return LowerDarwinGlobalTLSAddress(Op
, DAG
);
4920 if (Subtarget
->isTargetELF())
4921 return LowerELFGlobalTLSAddress(Op
, DAG
);
4922 if (Subtarget
->isTargetWindows())
4923 return LowerWindowsGlobalTLSAddress(Op
, DAG
);
4925 llvm_unreachable("Unexpected platform trying to use TLS");
4928 SDValue
AArch64TargetLowering::LowerBR_CC(SDValue Op
, SelectionDAG
&DAG
) const {
4929 SDValue Chain
= Op
.getOperand(0);
4930 ISD::CondCode CC
= cast
<CondCodeSDNode
>(Op
.getOperand(1))->get();
4931 SDValue LHS
= Op
.getOperand(2);
4932 SDValue RHS
= Op
.getOperand(3);
4933 SDValue Dest
= Op
.getOperand(4);
4936 MachineFunction
&MF
= DAG
.getMachineFunction();
4937 // Speculation tracking/SLH assumes that optimized TB(N)Z/CB(N)Z instructions
4938 // will not be produced, as they are conditional branch instructions that do
4940 bool ProduceNonFlagSettingCondBr
=
4941 !MF
.getFunction().hasFnAttribute(Attribute::SpeculativeLoadHardening
);
4943 // Handle f128 first, since lowering it will result in comparing the return
4944 // value of a libcall against zero, which is just what the rest of LowerBR_CC
4945 // is expecting to deal with.
4946 if (LHS
.getValueType() == MVT::f128
) {
4947 softenSetCCOperands(DAG
, MVT::f128
, LHS
, RHS
, CC
, dl
, LHS
, RHS
);
4949 // If softenSetCCOperands returned a scalar, we need to compare the result
4950 // against zero to select between true and false values.
4951 if (!RHS
.getNode()) {
4952 RHS
= DAG
.getConstant(0, dl
, LHS
.getValueType());
4957 // Optimize {s|u}{add|sub|mul}.with.overflow feeding into a branch
4959 if (isOverflowIntrOpRes(LHS
) && isOneConstant(RHS
) &&
4960 (CC
== ISD::SETEQ
|| CC
== ISD::SETNE
)) {
4961 // Only lower legal XALUO ops.
4962 if (!DAG
.getTargetLoweringInfo().isTypeLegal(LHS
->getValueType(0)))
4965 // The actual operation with overflow check.
4966 AArch64CC::CondCode OFCC
;
4967 SDValue Value
, Overflow
;
4968 std::tie(Value
, Overflow
) = getAArch64XALUOOp(OFCC
, LHS
.getValue(0), DAG
);
4970 if (CC
== ISD::SETNE
)
4971 OFCC
= getInvertedCondCode(OFCC
);
4972 SDValue CCVal
= DAG
.getConstant(OFCC
, dl
, MVT::i32
);
4974 return DAG
.getNode(AArch64ISD::BRCOND
, dl
, MVT::Other
, Chain
, Dest
, CCVal
,
4978 if (LHS
.getValueType().isInteger()) {
4979 assert((LHS
.getValueType() == RHS
.getValueType()) &&
4980 (LHS
.getValueType() == MVT::i32
|| LHS
.getValueType() == MVT::i64
));
4982 // If the RHS of the comparison is zero, we can potentially fold this
4983 // to a specialized branch.
4984 const ConstantSDNode
*RHSC
= dyn_cast
<ConstantSDNode
>(RHS
);
4985 if (RHSC
&& RHSC
->getZExtValue() == 0 && ProduceNonFlagSettingCondBr
) {
4986 if (CC
== ISD::SETEQ
) {
4987 // See if we can use a TBZ to fold in an AND as well.
4988 // TBZ has a smaller branch displacement than CBZ. If the offset is
4989 // out of bounds, a late MI-layer pass rewrites branches.
4990 // 403.gcc is an example that hits this case.
4991 if (LHS
.getOpcode() == ISD::AND
&&
4992 isa
<ConstantSDNode
>(LHS
.getOperand(1)) &&
4993 isPowerOf2_64(LHS
.getConstantOperandVal(1))) {
4994 SDValue Test
= LHS
.getOperand(0);
4995 uint64_t Mask
= LHS
.getConstantOperandVal(1);
4996 return DAG
.getNode(AArch64ISD::TBZ
, dl
, MVT::Other
, Chain
, Test
,
4997 DAG
.getConstant(Log2_64(Mask
), dl
, MVT::i64
),
5001 return DAG
.getNode(AArch64ISD::CBZ
, dl
, MVT::Other
, Chain
, LHS
, Dest
);
5002 } else if (CC
== ISD::SETNE
) {
5003 // See if we can use a TBZ to fold in an AND as well.
5004 // TBZ has a smaller branch displacement than CBZ. If the offset is
5005 // out of bounds, a late MI-layer pass rewrites branches.
5006 // 403.gcc is an example that hits this case.
5007 if (LHS
.getOpcode() == ISD::AND
&&
5008 isa
<ConstantSDNode
>(LHS
.getOperand(1)) &&
5009 isPowerOf2_64(LHS
.getConstantOperandVal(1))) {
5010 SDValue Test
= LHS
.getOperand(0);
5011 uint64_t Mask
= LHS
.getConstantOperandVal(1);
5012 return DAG
.getNode(AArch64ISD::TBNZ
, dl
, MVT::Other
, Chain
, Test
,
5013 DAG
.getConstant(Log2_64(Mask
), dl
, MVT::i64
),
5017 return DAG
.getNode(AArch64ISD::CBNZ
, dl
, MVT::Other
, Chain
, LHS
, Dest
);
5018 } else if (CC
== ISD::SETLT
&& LHS
.getOpcode() != ISD::AND
) {
5019 // Don't combine AND since emitComparison converts the AND to an ANDS
5020 // (a.k.a. TST) and the test in the test bit and branch instruction
5021 // becomes redundant. This would also increase register pressure.
5022 uint64_t Mask
= LHS
.getValueSizeInBits() - 1;
5023 return DAG
.getNode(AArch64ISD::TBNZ
, dl
, MVT::Other
, Chain
, LHS
,
5024 DAG
.getConstant(Mask
, dl
, MVT::i64
), Dest
);
5027 if (RHSC
&& RHSC
->getSExtValue() == -1 && CC
== ISD::SETGT
&&
5028 LHS
.getOpcode() != ISD::AND
&& ProduceNonFlagSettingCondBr
) {
5029 // Don't combine AND since emitComparison converts the AND to an ANDS
5030 // (a.k.a. TST) and the test in the test bit and branch instruction
5031 // becomes redundant. This would also increase register pressure.
5032 uint64_t Mask
= LHS
.getValueSizeInBits() - 1;
5033 return DAG
.getNode(AArch64ISD::TBZ
, dl
, MVT::Other
, Chain
, LHS
,
5034 DAG
.getConstant(Mask
, dl
, MVT::i64
), Dest
);
5038 SDValue Cmp
= getAArch64Cmp(LHS
, RHS
, CC
, CCVal
, DAG
, dl
);
5039 return DAG
.getNode(AArch64ISD::BRCOND
, dl
, MVT::Other
, Chain
, Dest
, CCVal
,
5043 assert(LHS
.getValueType() == MVT::f16
|| LHS
.getValueType() == MVT::f32
||
5044 LHS
.getValueType() == MVT::f64
);
5046 // Unfortunately, the mapping of LLVM FP CC's onto AArch64 CC's isn't totally
5047 // clean. Some of them require two branches to implement.
5048 SDValue Cmp
= emitComparison(LHS
, RHS
, CC
, dl
, DAG
);
5049 AArch64CC::CondCode CC1
, CC2
;
5050 changeFPCCToAArch64CC(CC
, CC1
, CC2
);
5051 SDValue CC1Val
= DAG
.getConstant(CC1
, dl
, MVT::i32
);
5053 DAG
.getNode(AArch64ISD::BRCOND
, dl
, MVT::Other
, Chain
, Dest
, CC1Val
, Cmp
);
5054 if (CC2
!= AArch64CC::AL
) {
5055 SDValue CC2Val
= DAG
.getConstant(CC2
, dl
, MVT::i32
);
5056 return DAG
.getNode(AArch64ISD::BRCOND
, dl
, MVT::Other
, BR1
, Dest
, CC2Val
,
5063 SDValue
AArch64TargetLowering::LowerFCOPYSIGN(SDValue Op
,
5064 SelectionDAG
&DAG
) const {
5065 EVT VT
= Op
.getValueType();
5068 SDValue In1
= Op
.getOperand(0);
5069 SDValue In2
= Op
.getOperand(1);
5070 EVT SrcVT
= In2
.getValueType();
5072 if (SrcVT
.bitsLT(VT
))
5073 In2
= DAG
.getNode(ISD::FP_EXTEND
, DL
, VT
, In2
);
5074 else if (SrcVT
.bitsGT(VT
))
5075 In2
= DAG
.getNode(ISD::FP_ROUND
, DL
, VT
, In2
, DAG
.getIntPtrConstant(0, DL
));
5079 SDValue VecVal1
, VecVal2
;
5081 auto setVecVal
= [&] (int Idx
) {
5082 if (!VT
.isVector()) {
5083 VecVal1
= DAG
.getTargetInsertSubreg(Idx
, DL
, VecVT
,
5084 DAG
.getUNDEF(VecVT
), In1
);
5085 VecVal2
= DAG
.getTargetInsertSubreg(Idx
, DL
, VecVT
,
5086 DAG
.getUNDEF(VecVT
), In2
);
5088 VecVal1
= DAG
.getNode(ISD::BITCAST
, DL
, VecVT
, In1
);
5089 VecVal2
= DAG
.getNode(ISD::BITCAST
, DL
, VecVT
, In2
);
5093 if (VT
== MVT::f32
|| VT
== MVT::v2f32
|| VT
== MVT::v4f32
) {
5094 VecVT
= (VT
== MVT::v2f32
? MVT::v2i32
: MVT::v4i32
);
5095 EltMask
= 0x80000000ULL
;
5096 setVecVal(AArch64::ssub
);
5097 } else if (VT
== MVT::f64
|| VT
== MVT::v2f64
) {
5100 // We want to materialize a mask with the high bit set, but the AdvSIMD
5101 // immediate moves cannot materialize that in a single instruction for
5102 // 64-bit elements. Instead, materialize zero and then negate it.
5105 setVecVal(AArch64::dsub
);
5106 } else if (VT
== MVT::f16
|| VT
== MVT::v4f16
|| VT
== MVT::v8f16
) {
5107 VecVT
= (VT
== MVT::v4f16
? MVT::v4i16
: MVT::v8i16
);
5108 EltMask
= 0x8000ULL
;
5109 setVecVal(AArch64::hsub
);
5111 llvm_unreachable("Invalid type for copysign!");
5114 SDValue BuildVec
= DAG
.getConstant(EltMask
, DL
, VecVT
);
5116 // If we couldn't materialize the mask above, then the mask vector will be
5117 // the zero vector, and we need to negate it here.
5118 if (VT
== MVT::f64
|| VT
== MVT::v2f64
) {
5119 BuildVec
= DAG
.getNode(ISD::BITCAST
, DL
, MVT::v2f64
, BuildVec
);
5120 BuildVec
= DAG
.getNode(ISD::FNEG
, DL
, MVT::v2f64
, BuildVec
);
5121 BuildVec
= DAG
.getNode(ISD::BITCAST
, DL
, MVT::v2i64
, BuildVec
);
5125 DAG
.getNode(AArch64ISD::BIT
, DL
, VecVT
, VecVal1
, VecVal2
, BuildVec
);
5128 return DAG
.getTargetExtractSubreg(AArch64::hsub
, DL
, VT
, Sel
);
5130 return DAG
.getTargetExtractSubreg(AArch64::ssub
, DL
, VT
, Sel
);
5131 else if (VT
== MVT::f64
)
5132 return DAG
.getTargetExtractSubreg(AArch64::dsub
, DL
, VT
, Sel
);
5134 return DAG
.getNode(ISD::BITCAST
, DL
, VT
, Sel
);
5137 SDValue
AArch64TargetLowering::LowerCTPOP(SDValue Op
, SelectionDAG
&DAG
) const {
5138 if (DAG
.getMachineFunction().getFunction().hasFnAttribute(
5139 Attribute::NoImplicitFloat
))
5142 if (!Subtarget
->hasNEON())
5145 // While there is no integer popcount instruction, it can
5146 // be more efficiently lowered to the following sequence that uses
5147 // AdvSIMD registers/instructions as long as the copies to/from
5148 // the AdvSIMD registers are cheap.
5149 // FMOV D0, X0 // copy 64-bit int to vector, high bits zero'd
5150 // CNT V0.8B, V0.8B // 8xbyte pop-counts
5151 // ADDV B0, V0.8B // sum 8xbyte pop-counts
5152 // UMOV X0, V0.B[0] // copy byte result back to integer reg
5153 SDValue Val
= Op
.getOperand(0);
5155 EVT VT
= Op
.getValueType();
5157 if (VT
== MVT::i32
|| VT
== MVT::i64
) {
5159 Val
= DAG
.getNode(ISD::ZERO_EXTEND
, DL
, MVT::i64
, Val
);
5160 Val
= DAG
.getNode(ISD::BITCAST
, DL
, MVT::v8i8
, Val
);
5162 SDValue CtPop
= DAG
.getNode(ISD::CTPOP
, DL
, MVT::v8i8
, Val
);
5163 SDValue UaddLV
= DAG
.getNode(
5164 ISD::INTRINSIC_WO_CHAIN
, DL
, MVT::i32
,
5165 DAG
.getConstant(Intrinsic::aarch64_neon_uaddlv
, DL
, MVT::i32
), CtPop
);
5168 UaddLV
= DAG
.getNode(ISD::ZERO_EXTEND
, DL
, MVT::i64
, UaddLV
);
5172 assert((VT
== MVT::v1i64
|| VT
== MVT::v2i64
|| VT
== MVT::v2i32
||
5173 VT
== MVT::v4i32
|| VT
== MVT::v4i16
|| VT
== MVT::v8i16
) &&
5174 "Unexpected type for custom ctpop lowering");
5176 EVT VT8Bit
= VT
.is64BitVector() ? MVT::v8i8
: MVT::v16i8
;
5177 Val
= DAG
.getBitcast(VT8Bit
, Val
);
5178 Val
= DAG
.getNode(ISD::CTPOP
, DL
, VT8Bit
, Val
);
5180 // Widen v8i8/v16i8 CTPOP result to VT by repeatedly widening pairwise adds.
5181 unsigned EltSize
= 8;
5182 unsigned NumElts
= VT
.is64BitVector() ? 8 : 16;
5183 while (EltSize
!= VT
.getScalarSizeInBits()) {
5186 MVT WidenVT
= MVT::getVectorVT(MVT::getIntegerVT(EltSize
), NumElts
);
5188 ISD::INTRINSIC_WO_CHAIN
, DL
, WidenVT
,
5189 DAG
.getConstant(Intrinsic::aarch64_neon_uaddlp
, DL
, MVT::i32
), Val
);
5195 SDValue
AArch64TargetLowering::LowerSETCC(SDValue Op
, SelectionDAG
&DAG
) const {
5197 if (Op
.getValueType().isVector())
5198 return LowerVSETCC(Op
, DAG
);
5200 SDValue LHS
= Op
.getOperand(0);
5201 SDValue RHS
= Op
.getOperand(1);
5202 ISD::CondCode CC
= cast
<CondCodeSDNode
>(Op
.getOperand(2))->get();
5205 // We chose ZeroOrOneBooleanContents, so use zero and one.
5206 EVT VT
= Op
.getValueType();
5207 SDValue TVal
= DAG
.getConstant(1, dl
, VT
);
5208 SDValue FVal
= DAG
.getConstant(0, dl
, VT
);
5210 // Handle f128 first, since one possible outcome is a normal integer
5211 // comparison which gets picked up by the next if statement.
5212 if (LHS
.getValueType() == MVT::f128
) {
5213 softenSetCCOperands(DAG
, MVT::f128
, LHS
, RHS
, CC
, dl
, LHS
, RHS
);
5215 // If softenSetCCOperands returned a scalar, use it.
5216 if (!RHS
.getNode()) {
5217 assert(LHS
.getValueType() == Op
.getValueType() &&
5218 "Unexpected setcc expansion!");
5223 if (LHS
.getValueType().isInteger()) {
5225 SDValue Cmp
= getAArch64Cmp(
5226 LHS
, RHS
, ISD::getSetCCInverse(CC
, LHS
.getValueType()), CCVal
, DAG
, dl
);
5228 // Note that we inverted the condition above, so we reverse the order of
5229 // the true and false operands here. This will allow the setcc to be
5230 // matched to a single CSINC instruction.
5231 return DAG
.getNode(AArch64ISD::CSEL
, dl
, VT
, FVal
, TVal
, CCVal
, Cmp
);
5234 // Now we know we're dealing with FP values.
5235 assert(LHS
.getValueType() == MVT::f16
|| LHS
.getValueType() == MVT::f32
||
5236 LHS
.getValueType() == MVT::f64
);
5238 // If that fails, we'll need to perform an FCMP + CSEL sequence. Go ahead
5239 // and do the comparison.
5240 SDValue Cmp
= emitComparison(LHS
, RHS
, CC
, dl
, DAG
);
5242 AArch64CC::CondCode CC1
, CC2
;
5243 changeFPCCToAArch64CC(CC
, CC1
, CC2
);
5244 if (CC2
== AArch64CC::AL
) {
5245 changeFPCCToAArch64CC(ISD::getSetCCInverse(CC
, LHS
.getValueType()), CC1
,
5247 SDValue CC1Val
= DAG
.getConstant(CC1
, dl
, MVT::i32
);
5249 // Note that we inverted the condition above, so we reverse the order of
5250 // the true and false operands here. This will allow the setcc to be
5251 // matched to a single CSINC instruction.
5252 return DAG
.getNode(AArch64ISD::CSEL
, dl
, VT
, FVal
, TVal
, CC1Val
, Cmp
);
5254 // Unfortunately, the mapping of LLVM FP CC's onto AArch64 CC's isn't
5255 // totally clean. Some of them require two CSELs to implement. As is in
5256 // this case, we emit the first CSEL and then emit a second using the output
5257 // of the first as the RHS. We're effectively OR'ing the two CC's together.
5259 // FIXME: It would be nice if we could match the two CSELs to two CSINCs.
5260 SDValue CC1Val
= DAG
.getConstant(CC1
, dl
, MVT::i32
);
5262 DAG
.getNode(AArch64ISD::CSEL
, dl
, VT
, TVal
, FVal
, CC1Val
, Cmp
);
5264 SDValue CC2Val
= DAG
.getConstant(CC2
, dl
, MVT::i32
);
5265 return DAG
.getNode(AArch64ISD::CSEL
, dl
, VT
, TVal
, CS1
, CC2Val
, Cmp
);
5269 SDValue
AArch64TargetLowering::LowerSELECT_CC(ISD::CondCode CC
, SDValue LHS
,
5270 SDValue RHS
, SDValue TVal
,
5271 SDValue FVal
, const SDLoc
&dl
,
5272 SelectionDAG
&DAG
) const {
5273 // Handle f128 first, because it will result in a comparison of some RTLIB
5274 // call result against zero.
5275 if (LHS
.getValueType() == MVT::f128
) {
5276 softenSetCCOperands(DAG
, MVT::f128
, LHS
, RHS
, CC
, dl
, LHS
, RHS
);
5278 // If softenSetCCOperands returned a scalar, we need to compare the result
5279 // against zero to select between true and false values.
5280 if (!RHS
.getNode()) {
5281 RHS
= DAG
.getConstant(0, dl
, LHS
.getValueType());
5286 // Also handle f16, for which we need to do a f32 comparison.
5287 if (LHS
.getValueType() == MVT::f16
&& !Subtarget
->hasFullFP16()) {
5288 LHS
= DAG
.getNode(ISD::FP_EXTEND
, dl
, MVT::f32
, LHS
);
5289 RHS
= DAG
.getNode(ISD::FP_EXTEND
, dl
, MVT::f32
, RHS
);
5292 // Next, handle integers.
5293 if (LHS
.getValueType().isInteger()) {
5294 assert((LHS
.getValueType() == RHS
.getValueType()) &&
5295 (LHS
.getValueType() == MVT::i32
|| LHS
.getValueType() == MVT::i64
));
5297 unsigned Opcode
= AArch64ISD::CSEL
;
5299 // If both the TVal and the FVal are constants, see if we can swap them in
5300 // order to for a CSINV or CSINC out of them.
5301 ConstantSDNode
*CFVal
= dyn_cast
<ConstantSDNode
>(FVal
);
5302 ConstantSDNode
*CTVal
= dyn_cast
<ConstantSDNode
>(TVal
);
5304 if (CTVal
&& CFVal
&& CTVal
->isAllOnesValue() && CFVal
->isNullValue()) {
5305 std::swap(TVal
, FVal
);
5306 std::swap(CTVal
, CFVal
);
5307 CC
= ISD::getSetCCInverse(CC
, LHS
.getValueType());
5308 } else if (CTVal
&& CFVal
&& CTVal
->isOne() && CFVal
->isNullValue()) {
5309 std::swap(TVal
, FVal
);
5310 std::swap(CTVal
, CFVal
);
5311 CC
= ISD::getSetCCInverse(CC
, LHS
.getValueType());
5312 } else if (TVal
.getOpcode() == ISD::XOR
) {
5313 // If TVal is a NOT we want to swap TVal and FVal so that we can match
5314 // with a CSINV rather than a CSEL.
5315 if (isAllOnesConstant(TVal
.getOperand(1))) {
5316 std::swap(TVal
, FVal
);
5317 std::swap(CTVal
, CFVal
);
5318 CC
= ISD::getSetCCInverse(CC
, LHS
.getValueType());
5320 } else if (TVal
.getOpcode() == ISD::SUB
) {
5321 // If TVal is a negation (SUB from 0) we want to swap TVal and FVal so
5322 // that we can match with a CSNEG rather than a CSEL.
5323 if (isNullConstant(TVal
.getOperand(0))) {
5324 std::swap(TVal
, FVal
);
5325 std::swap(CTVal
, CFVal
);
5326 CC
= ISD::getSetCCInverse(CC
, LHS
.getValueType());
5328 } else if (CTVal
&& CFVal
) {
5329 const int64_t TrueVal
= CTVal
->getSExtValue();
5330 const int64_t FalseVal
= CFVal
->getSExtValue();
5333 // If both TVal and FVal are constants, see if FVal is the
5334 // inverse/negation/increment of TVal and generate a CSINV/CSNEG/CSINC
5335 // instead of a CSEL in that case.
5336 if (TrueVal
== ~FalseVal
) {
5337 Opcode
= AArch64ISD::CSINV
;
5338 } else if (TrueVal
== -FalseVal
) {
5339 Opcode
= AArch64ISD::CSNEG
;
5340 } else if (TVal
.getValueType() == MVT::i32
) {
5341 // If our operands are only 32-bit wide, make sure we use 32-bit
5342 // arithmetic for the check whether we can use CSINC. This ensures that
5343 // the addition in the check will wrap around properly in case there is
5344 // an overflow (which would not be the case if we do the check with
5345 // 64-bit arithmetic).
5346 const uint32_t TrueVal32
= CTVal
->getZExtValue();
5347 const uint32_t FalseVal32
= CFVal
->getZExtValue();
5349 if ((TrueVal32
== FalseVal32
+ 1) || (TrueVal32
+ 1 == FalseVal32
)) {
5350 Opcode
= AArch64ISD::CSINC
;
5352 if (TrueVal32
> FalseVal32
) {
5356 // 64-bit check whether we can use CSINC.
5357 } else if ((TrueVal
== FalseVal
+ 1) || (TrueVal
+ 1 == FalseVal
)) {
5358 Opcode
= AArch64ISD::CSINC
;
5360 if (TrueVal
> FalseVal
) {
5365 // Swap TVal and FVal if necessary.
5367 std::swap(TVal
, FVal
);
5368 std::swap(CTVal
, CFVal
);
5369 CC
= ISD::getSetCCInverse(CC
, LHS
.getValueType());
5372 if (Opcode
!= AArch64ISD::CSEL
) {
5373 // Drop FVal since we can get its value by simply inverting/negating
5379 // Avoid materializing a constant when possible by reusing a known value in
5380 // a register. However, don't perform this optimization if the known value
5381 // is one, zero or negative one in the case of a CSEL. We can always
5382 // materialize these values using CSINC, CSEL and CSINV with wzr/xzr as the
5383 // FVal, respectively.
5384 ConstantSDNode
*RHSVal
= dyn_cast
<ConstantSDNode
>(RHS
);
5385 if (Opcode
== AArch64ISD::CSEL
&& RHSVal
&& !RHSVal
->isOne() &&
5386 !RHSVal
->isNullValue() && !RHSVal
->isAllOnesValue()) {
5387 AArch64CC::CondCode AArch64CC
= changeIntCCToAArch64CC(CC
);
5388 // Transform "a == C ? C : x" to "a == C ? a : x" and "a != C ? x : C" to
5389 // "a != C ? x : a" to avoid materializing C.
5390 if (CTVal
&& CTVal
== RHSVal
&& AArch64CC
== AArch64CC::EQ
)
5392 else if (CFVal
&& CFVal
== RHSVal
&& AArch64CC
== AArch64CC::NE
)
5394 } else if (Opcode
== AArch64ISD::CSNEG
&& RHSVal
&& RHSVal
->isOne()) {
5395 assert (CTVal
&& CFVal
&& "Expected constant operands for CSNEG.");
5396 // Use a CSINV to transform "a == C ? 1 : -1" to "a == C ? a : -1" to
5397 // avoid materializing C.
5398 AArch64CC::CondCode AArch64CC
= changeIntCCToAArch64CC(CC
);
5399 if (CTVal
== RHSVal
&& AArch64CC
== AArch64CC::EQ
) {
5400 Opcode
= AArch64ISD::CSINV
;
5402 FVal
= DAG
.getConstant(0, dl
, FVal
.getValueType());
5407 SDValue Cmp
= getAArch64Cmp(LHS
, RHS
, CC
, CCVal
, DAG
, dl
);
5408 EVT VT
= TVal
.getValueType();
5409 return DAG
.getNode(Opcode
, dl
, VT
, TVal
, FVal
, CCVal
, Cmp
);
5412 // Now we know we're dealing with FP values.
5413 assert(LHS
.getValueType() == MVT::f16
|| LHS
.getValueType() == MVT::f32
||
5414 LHS
.getValueType() == MVT::f64
);
5415 assert(LHS
.getValueType() == RHS
.getValueType());
5416 EVT VT
= TVal
.getValueType();
5417 SDValue Cmp
= emitComparison(LHS
, RHS
, CC
, dl
, DAG
);
5419 // Unfortunately, the mapping of LLVM FP CC's onto AArch64 CC's isn't totally
5420 // clean. Some of them require two CSELs to implement.
5421 AArch64CC::CondCode CC1
, CC2
;
5422 changeFPCCToAArch64CC(CC
, CC1
, CC2
);
5424 if (DAG
.getTarget().Options
.UnsafeFPMath
) {
5425 // Transform "a == 0.0 ? 0.0 : x" to "a == 0.0 ? a : x" and
5426 // "a != 0.0 ? x : 0.0" to "a != 0.0 ? x : a" to avoid materializing 0.0.
5427 ConstantFPSDNode
*RHSVal
= dyn_cast
<ConstantFPSDNode
>(RHS
);
5428 if (RHSVal
&& RHSVal
->isZero()) {
5429 ConstantFPSDNode
*CFVal
= dyn_cast
<ConstantFPSDNode
>(FVal
);
5430 ConstantFPSDNode
*CTVal
= dyn_cast
<ConstantFPSDNode
>(TVal
);
5432 if ((CC
== ISD::SETEQ
|| CC
== ISD::SETOEQ
|| CC
== ISD::SETUEQ
) &&
5433 CTVal
&& CTVal
->isZero() && TVal
.getValueType() == LHS
.getValueType())
5435 else if ((CC
== ISD::SETNE
|| CC
== ISD::SETONE
|| CC
== ISD::SETUNE
) &&
5436 CFVal
&& CFVal
->isZero() &&
5437 FVal
.getValueType() == LHS
.getValueType())
5442 // Emit first, and possibly only, CSEL.
5443 SDValue CC1Val
= DAG
.getConstant(CC1
, dl
, MVT::i32
);
5444 SDValue CS1
= DAG
.getNode(AArch64ISD::CSEL
, dl
, VT
, TVal
, FVal
, CC1Val
, Cmp
);
5446 // If we need a second CSEL, emit it, using the output of the first as the
5447 // RHS. We're effectively OR'ing the two CC's together.
5448 if (CC2
!= AArch64CC::AL
) {
5449 SDValue CC2Val
= DAG
.getConstant(CC2
, dl
, MVT::i32
);
5450 return DAG
.getNode(AArch64ISD::CSEL
, dl
, VT
, TVal
, CS1
, CC2Val
, Cmp
);
5453 // Otherwise, return the output of the first CSEL.
5457 SDValue
AArch64TargetLowering::LowerSELECT_CC(SDValue Op
,
5458 SelectionDAG
&DAG
) const {
5459 ISD::CondCode CC
= cast
<CondCodeSDNode
>(Op
.getOperand(4))->get();
5460 SDValue LHS
= Op
.getOperand(0);
5461 SDValue RHS
= Op
.getOperand(1);
5462 SDValue TVal
= Op
.getOperand(2);
5463 SDValue FVal
= Op
.getOperand(3);
5465 return LowerSELECT_CC(CC
, LHS
, RHS
, TVal
, FVal
, DL
, DAG
);
5468 SDValue
AArch64TargetLowering::LowerSELECT(SDValue Op
,
5469 SelectionDAG
&DAG
) const {
5470 SDValue CCVal
= Op
->getOperand(0);
5471 SDValue TVal
= Op
->getOperand(1);
5472 SDValue FVal
= Op
->getOperand(2);
5475 // Optimize {s|u}{add|sub|mul}.with.overflow feeding into a select
5477 if (isOverflowIntrOpRes(CCVal
)) {
5478 // Only lower legal XALUO ops.
5479 if (!DAG
.getTargetLoweringInfo().isTypeLegal(CCVal
->getValueType(0)))
5482 AArch64CC::CondCode OFCC
;
5483 SDValue Value
, Overflow
;
5484 std::tie(Value
, Overflow
) = getAArch64XALUOOp(OFCC
, CCVal
.getValue(0), DAG
);
5485 SDValue CCVal
= DAG
.getConstant(OFCC
, DL
, MVT::i32
);
5487 return DAG
.getNode(AArch64ISD::CSEL
, DL
, Op
.getValueType(), TVal
, FVal
,
5491 // Lower it the same way as we would lower a SELECT_CC node.
5494 if (CCVal
.getOpcode() == ISD::SETCC
) {
5495 LHS
= CCVal
.getOperand(0);
5496 RHS
= CCVal
.getOperand(1);
5497 CC
= cast
<CondCodeSDNode
>(CCVal
->getOperand(2))->get();
5500 RHS
= DAG
.getConstant(0, DL
, CCVal
.getValueType());
5503 return LowerSELECT_CC(CC
, LHS
, RHS
, TVal
, FVal
, DL
, DAG
);
5506 SDValue
AArch64TargetLowering::LowerJumpTable(SDValue Op
,
5507 SelectionDAG
&DAG
) const {
5508 // Jump table entries as PC relative offsets. No additional tweaking
5509 // is necessary here. Just get the address of the jump table.
5510 JumpTableSDNode
*JT
= cast
<JumpTableSDNode
>(Op
);
5512 if (getTargetMachine().getCodeModel() == CodeModel::Large
&&
5513 !Subtarget
->isTargetMachO()) {
5514 return getAddrLarge(JT
, DAG
);
5515 } else if (getTargetMachine().getCodeModel() == CodeModel::Tiny
) {
5516 return getAddrTiny(JT
, DAG
);
5518 return getAddr(JT
, DAG
);
5521 SDValue
AArch64TargetLowering::LowerBR_JT(SDValue Op
,
5522 SelectionDAG
&DAG
) const {
5523 // Jump table entries as PC relative offsets. No additional tweaking
5524 // is necessary here. Just get the address of the jump table.
5526 SDValue JT
= Op
.getOperand(1);
5527 SDValue Entry
= Op
.getOperand(2);
5528 int JTI
= cast
<JumpTableSDNode
>(JT
.getNode())->getIndex();
5531 DAG
.getMachineNode(AArch64::JumpTableDest32
, DL
, MVT::i64
, MVT::i64
, JT
,
5532 Entry
, DAG
.getTargetJumpTable(JTI
, MVT::i32
));
5533 return DAG
.getNode(ISD::BRIND
, DL
, MVT::Other
, Op
.getOperand(0),
5537 SDValue
AArch64TargetLowering::LowerConstantPool(SDValue Op
,
5538 SelectionDAG
&DAG
) const {
5539 ConstantPoolSDNode
*CP
= cast
<ConstantPoolSDNode
>(Op
);
5541 if (getTargetMachine().getCodeModel() == CodeModel::Large
) {
5542 // Use the GOT for the large code model on iOS.
5543 if (Subtarget
->isTargetMachO()) {
5544 return getGOT(CP
, DAG
);
5546 return getAddrLarge(CP
, DAG
);
5547 } else if (getTargetMachine().getCodeModel() == CodeModel::Tiny
) {
5548 return getAddrTiny(CP
, DAG
);
5550 return getAddr(CP
, DAG
);
5554 SDValue
AArch64TargetLowering::LowerBlockAddress(SDValue Op
,
5555 SelectionDAG
&DAG
) const {
5556 BlockAddressSDNode
*BA
= cast
<BlockAddressSDNode
>(Op
);
5557 if (getTargetMachine().getCodeModel() == CodeModel::Large
&&
5558 !Subtarget
->isTargetMachO()) {
5559 return getAddrLarge(BA
, DAG
);
5560 } else if (getTargetMachine().getCodeModel() == CodeModel::Tiny
) {
5561 return getAddrTiny(BA
, DAG
);
5563 return getAddr(BA
, DAG
);
5566 SDValue
AArch64TargetLowering::LowerDarwin_VASTART(SDValue Op
,
5567 SelectionDAG
&DAG
) const {
5568 AArch64FunctionInfo
*FuncInfo
=
5569 DAG
.getMachineFunction().getInfo
<AArch64FunctionInfo
>();
5572 SDValue FR
= DAG
.getFrameIndex(FuncInfo
->getVarArgsStackIndex(),
5573 getPointerTy(DAG
.getDataLayout()));
5574 FR
= DAG
.getZExtOrTrunc(FR
, DL
, getPointerMemTy(DAG
.getDataLayout()));
5575 const Value
*SV
= cast
<SrcValueSDNode
>(Op
.getOperand(2))->getValue();
5576 return DAG
.getStore(Op
.getOperand(0), DL
, FR
, Op
.getOperand(1),
5577 MachinePointerInfo(SV
));
5580 SDValue
AArch64TargetLowering::LowerWin64_VASTART(SDValue Op
,
5581 SelectionDAG
&DAG
) const {
5582 AArch64FunctionInfo
*FuncInfo
=
5583 DAG
.getMachineFunction().getInfo
<AArch64FunctionInfo
>();
5586 SDValue FR
= DAG
.getFrameIndex(FuncInfo
->getVarArgsGPRSize() > 0
5587 ? FuncInfo
->getVarArgsGPRIndex()
5588 : FuncInfo
->getVarArgsStackIndex(),
5589 getPointerTy(DAG
.getDataLayout()));
5590 const Value
*SV
= cast
<SrcValueSDNode
>(Op
.getOperand(2))->getValue();
5591 return DAG
.getStore(Op
.getOperand(0), DL
, FR
, Op
.getOperand(1),
5592 MachinePointerInfo(SV
));
5595 SDValue
AArch64TargetLowering::LowerAAPCS_VASTART(SDValue Op
,
5596 SelectionDAG
&DAG
) const {
5597 // The layout of the va_list struct is specified in the AArch64 Procedure Call
5598 // Standard, section B.3.
5599 MachineFunction
&MF
= DAG
.getMachineFunction();
5600 AArch64FunctionInfo
*FuncInfo
= MF
.getInfo
<AArch64FunctionInfo
>();
5601 auto PtrVT
= getPointerTy(DAG
.getDataLayout());
5604 SDValue Chain
= Op
.getOperand(0);
5605 SDValue VAList
= Op
.getOperand(1);
5606 const Value
*SV
= cast
<SrcValueSDNode
>(Op
.getOperand(2))->getValue();
5607 SmallVector
<SDValue
, 4> MemOps
;
5609 // void *__stack at offset 0
5610 SDValue Stack
= DAG
.getFrameIndex(FuncInfo
->getVarArgsStackIndex(), PtrVT
);
5611 MemOps
.push_back(DAG
.getStore(Chain
, DL
, Stack
, VAList
,
5612 MachinePointerInfo(SV
), /* Alignment = */ 8));
5614 // void *__gr_top at offset 8
5615 int GPRSize
= FuncInfo
->getVarArgsGPRSize();
5617 SDValue GRTop
, GRTopAddr
;
5620 DAG
.getNode(ISD::ADD
, DL
, PtrVT
, VAList
, DAG
.getConstant(8, DL
, PtrVT
));
5622 GRTop
= DAG
.getFrameIndex(FuncInfo
->getVarArgsGPRIndex(), PtrVT
);
5623 GRTop
= DAG
.getNode(ISD::ADD
, DL
, PtrVT
, GRTop
,
5624 DAG
.getConstant(GPRSize
, DL
, PtrVT
));
5626 MemOps
.push_back(DAG
.getStore(Chain
, DL
, GRTop
, GRTopAddr
,
5627 MachinePointerInfo(SV
, 8),
5628 /* Alignment = */ 8));
5631 // void *__vr_top at offset 16
5632 int FPRSize
= FuncInfo
->getVarArgsFPRSize();
5634 SDValue VRTop
, VRTopAddr
;
5635 VRTopAddr
= DAG
.getNode(ISD::ADD
, DL
, PtrVT
, VAList
,
5636 DAG
.getConstant(16, DL
, PtrVT
));
5638 VRTop
= DAG
.getFrameIndex(FuncInfo
->getVarArgsFPRIndex(), PtrVT
);
5639 VRTop
= DAG
.getNode(ISD::ADD
, DL
, PtrVT
, VRTop
,
5640 DAG
.getConstant(FPRSize
, DL
, PtrVT
));
5642 MemOps
.push_back(DAG
.getStore(Chain
, DL
, VRTop
, VRTopAddr
,
5643 MachinePointerInfo(SV
, 16),
5644 /* Alignment = */ 8));
5647 // int __gr_offs at offset 24
5648 SDValue GROffsAddr
=
5649 DAG
.getNode(ISD::ADD
, DL
, PtrVT
, VAList
, DAG
.getConstant(24, DL
, PtrVT
));
5650 MemOps
.push_back(DAG
.getStore(
5651 Chain
, DL
, DAG
.getConstant(-GPRSize
, DL
, MVT::i32
), GROffsAddr
,
5652 MachinePointerInfo(SV
, 24), /* Alignment = */ 4));
5654 // int __vr_offs at offset 28
5655 SDValue VROffsAddr
=
5656 DAG
.getNode(ISD::ADD
, DL
, PtrVT
, VAList
, DAG
.getConstant(28, DL
, PtrVT
));
5657 MemOps
.push_back(DAG
.getStore(
5658 Chain
, DL
, DAG
.getConstant(-FPRSize
, DL
, MVT::i32
), VROffsAddr
,
5659 MachinePointerInfo(SV
, 28), /* Alignment = */ 4));
5661 return DAG
.getNode(ISD::TokenFactor
, DL
, MVT::Other
, MemOps
);
5664 SDValue
AArch64TargetLowering::LowerVASTART(SDValue Op
,
5665 SelectionDAG
&DAG
) const {
5666 MachineFunction
&MF
= DAG
.getMachineFunction();
5668 if (Subtarget
->isCallingConvWin64(MF
.getFunction().getCallingConv()))
5669 return LowerWin64_VASTART(Op
, DAG
);
5670 else if (Subtarget
->isTargetDarwin())
5671 return LowerDarwin_VASTART(Op
, DAG
);
5673 return LowerAAPCS_VASTART(Op
, DAG
);
5676 SDValue
AArch64TargetLowering::LowerVACOPY(SDValue Op
,
5677 SelectionDAG
&DAG
) const {
5678 // AAPCS has three pointers and two ints (= 32 bytes), Darwin has single
5681 unsigned PtrSize
= Subtarget
->isTargetILP32() ? 4 : 8;
5682 unsigned VaListSize
= (Subtarget
->isTargetDarwin() ||
5683 Subtarget
->isTargetWindows()) ? PtrSize
: 32;
5684 const Value
*DestSV
= cast
<SrcValueSDNode
>(Op
.getOperand(3))->getValue();
5685 const Value
*SrcSV
= cast
<SrcValueSDNode
>(Op
.getOperand(4))->getValue();
5687 return DAG
.getMemcpy(Op
.getOperand(0), DL
, Op
.getOperand(1), Op
.getOperand(2),
5688 DAG
.getConstant(VaListSize
, DL
, MVT::i32
), PtrSize
,
5689 false, false, false, MachinePointerInfo(DestSV
),
5690 MachinePointerInfo(SrcSV
));
5693 SDValue
AArch64TargetLowering::LowerVAARG(SDValue Op
, SelectionDAG
&DAG
) const {
5694 assert(Subtarget
->isTargetDarwin() &&
5695 "automatic va_arg instruction only works on Darwin");
5697 const Value
*V
= cast
<SrcValueSDNode
>(Op
.getOperand(2))->getValue();
5698 EVT VT
= Op
.getValueType();
5700 SDValue Chain
= Op
.getOperand(0);
5701 SDValue Addr
= Op
.getOperand(1);
5702 unsigned Align
= Op
.getConstantOperandVal(3);
5703 unsigned MinSlotSize
= Subtarget
->isTargetILP32() ? 4 : 8;
5704 auto PtrVT
= getPointerTy(DAG
.getDataLayout());
5705 auto PtrMemVT
= getPointerMemTy(DAG
.getDataLayout());
5707 DAG
.getLoad(PtrMemVT
, DL
, Chain
, Addr
, MachinePointerInfo(V
));
5708 Chain
= VAList
.getValue(1);
5709 VAList
= DAG
.getZExtOrTrunc(VAList
, DL
, PtrVT
);
5711 if (Align
> MinSlotSize
) {
5712 assert(((Align
& (Align
- 1)) == 0) && "Expected Align to be a power of 2");
5713 VAList
= DAG
.getNode(ISD::ADD
, DL
, PtrVT
, VAList
,
5714 DAG
.getConstant(Align
- 1, DL
, PtrVT
));
5715 VAList
= DAG
.getNode(ISD::AND
, DL
, PtrVT
, VAList
,
5716 DAG
.getConstant(-(int64_t)Align
, DL
, PtrVT
));
5719 Type
*ArgTy
= VT
.getTypeForEVT(*DAG
.getContext());
5720 unsigned ArgSize
= DAG
.getDataLayout().getTypeAllocSize(ArgTy
);
5722 // Scalar integer and FP values smaller than 64 bits are implicitly extended
5723 // up to 64 bits. At the very least, we have to increase the striding of the
5724 // vaargs list to match this, and for FP values we need to introduce
5725 // FP_ROUND nodes as well.
5726 if (VT
.isInteger() && !VT
.isVector())
5727 ArgSize
= std::max(ArgSize
, MinSlotSize
);
5728 bool NeedFPTrunc
= false;
5729 if (VT
.isFloatingPoint() && !VT
.isVector() && VT
!= MVT::f64
) {
5734 // Increment the pointer, VAList, to the next vaarg
5735 SDValue VANext
= DAG
.getNode(ISD::ADD
, DL
, PtrVT
, VAList
,
5736 DAG
.getConstant(ArgSize
, DL
, PtrVT
));
5737 VANext
= DAG
.getZExtOrTrunc(VANext
, DL
, PtrMemVT
);
5739 // Store the incremented VAList to the legalized pointer
5741 DAG
.getStore(Chain
, DL
, VANext
, Addr
, MachinePointerInfo(V
));
5743 // Load the actual argument out of the pointer VAList
5745 // Load the value as an f64.
5747 DAG
.getLoad(MVT::f64
, DL
, APStore
, VAList
, MachinePointerInfo());
5748 // Round the value down to an f32.
5749 SDValue NarrowFP
= DAG
.getNode(ISD::FP_ROUND
, DL
, VT
, WideFP
.getValue(0),
5750 DAG
.getIntPtrConstant(1, DL
));
5751 SDValue Ops
[] = { NarrowFP
, WideFP
.getValue(1) };
5752 // Merge the rounded value with the chain output of the load.
5753 return DAG
.getMergeValues(Ops
, DL
);
5756 return DAG
.getLoad(VT
, DL
, APStore
, VAList
, MachinePointerInfo());
5759 SDValue
AArch64TargetLowering::LowerFRAMEADDR(SDValue Op
,
5760 SelectionDAG
&DAG
) const {
5761 MachineFrameInfo
&MFI
= DAG
.getMachineFunction().getFrameInfo();
5762 MFI
.setFrameAddressIsTaken(true);
5764 EVT VT
= Op
.getValueType();
5766 unsigned Depth
= cast
<ConstantSDNode
>(Op
.getOperand(0))->getZExtValue();
5768 DAG
.getCopyFromReg(DAG
.getEntryNode(), DL
, AArch64::FP
, MVT::i64
);
5770 FrameAddr
= DAG
.getLoad(VT
, DL
, DAG
.getEntryNode(), FrameAddr
,
5771 MachinePointerInfo());
5773 if (Subtarget
->isTargetILP32())
5774 FrameAddr
= DAG
.getNode(ISD::AssertZext
, DL
, MVT::i64
, FrameAddr
,
5775 DAG
.getValueType(VT
));
5780 SDValue
AArch64TargetLowering::LowerSPONENTRY(SDValue Op
,
5781 SelectionDAG
&DAG
) const {
5782 MachineFrameInfo
&MFI
= DAG
.getMachineFunction().getFrameInfo();
5784 EVT VT
= getPointerTy(DAG
.getDataLayout());
5786 int FI
= MFI
.CreateFixedObject(4, 0, false);
5787 return DAG
.getFrameIndex(FI
, VT
);
5790 #define GET_REGISTER_MATCHER
5791 #include "AArch64GenAsmMatcher.inc"
5793 // FIXME? Maybe this could be a TableGen attribute on some registers and
5794 // this table could be generated automatically from RegInfo.
5795 Register
AArch64TargetLowering::
5796 getRegisterByName(const char* RegName
, LLT VT
, const MachineFunction
&MF
) const {
5797 Register Reg
= MatchRegisterName(RegName
);
5798 if (AArch64::X1
<= Reg
&& Reg
<= AArch64::X28
) {
5799 const MCRegisterInfo
*MRI
= Subtarget
->getRegisterInfo();
5800 unsigned DwarfRegNum
= MRI
->getDwarfRegNum(Reg
, false);
5801 if (!Subtarget
->isXRegisterReserved(DwarfRegNum
))
5806 report_fatal_error(Twine("Invalid register name \""
5807 + StringRef(RegName
) + "\"."));
5810 SDValue
AArch64TargetLowering::LowerADDROFRETURNADDR(SDValue Op
,
5811 SelectionDAG
&DAG
) const {
5812 DAG
.getMachineFunction().getFrameInfo().setFrameAddressIsTaken(true);
5814 EVT VT
= Op
.getValueType();
5818 DAG
.getCopyFromReg(DAG
.getEntryNode(), DL
, AArch64::FP
, VT
);
5819 SDValue Offset
= DAG
.getConstant(8, DL
, getPointerTy(DAG
.getDataLayout()));
5821 return DAG
.getNode(ISD::ADD
, DL
, VT
, FrameAddr
, Offset
);
5824 SDValue
AArch64TargetLowering::LowerRETURNADDR(SDValue Op
,
5825 SelectionDAG
&DAG
) const {
5826 MachineFunction
&MF
= DAG
.getMachineFunction();
5827 MachineFrameInfo
&MFI
= MF
.getFrameInfo();
5828 MFI
.setReturnAddressIsTaken(true);
5830 EVT VT
= Op
.getValueType();
5832 unsigned Depth
= cast
<ConstantSDNode
>(Op
.getOperand(0))->getZExtValue();
5834 SDValue FrameAddr
= LowerFRAMEADDR(Op
, DAG
);
5835 SDValue Offset
= DAG
.getConstant(8, DL
, getPointerTy(DAG
.getDataLayout()));
5836 return DAG
.getLoad(VT
, DL
, DAG
.getEntryNode(),
5837 DAG
.getNode(ISD::ADD
, DL
, VT
, FrameAddr
, Offset
),
5838 MachinePointerInfo());
5841 // Return LR, which contains the return address. Mark it an implicit live-in.
5842 unsigned Reg
= MF
.addLiveIn(AArch64::LR
, &AArch64::GPR64RegClass
);
5843 return DAG
.getCopyFromReg(DAG
.getEntryNode(), DL
, Reg
, VT
);
5846 /// LowerShiftRightParts - Lower SRA_PARTS, which returns two
5847 /// i64 values and take a 2 x i64 value to shift plus a shift amount.
5848 SDValue
AArch64TargetLowering::LowerShiftRightParts(SDValue Op
,
5849 SelectionDAG
&DAG
) const {
5850 assert(Op
.getNumOperands() == 3 && "Not a double-shift!");
5851 EVT VT
= Op
.getValueType();
5852 unsigned VTBits
= VT
.getSizeInBits();
5854 SDValue ShOpLo
= Op
.getOperand(0);
5855 SDValue ShOpHi
= Op
.getOperand(1);
5856 SDValue ShAmt
= Op
.getOperand(2);
5857 unsigned Opc
= (Op
.getOpcode() == ISD::SRA_PARTS
) ? ISD::SRA
: ISD::SRL
;
5859 assert(Op
.getOpcode() == ISD::SRA_PARTS
|| Op
.getOpcode() == ISD::SRL_PARTS
);
5861 SDValue RevShAmt
= DAG
.getNode(ISD::SUB
, dl
, MVT::i64
,
5862 DAG
.getConstant(VTBits
, dl
, MVT::i64
), ShAmt
);
5863 SDValue HiBitsForLo
= DAG
.getNode(ISD::SHL
, dl
, VT
, ShOpHi
, RevShAmt
);
5865 // Unfortunately, if ShAmt == 0, we just calculated "(SHL ShOpHi, 64)" which
5866 // is "undef". We wanted 0, so CSEL it directly.
5867 SDValue Cmp
= emitComparison(ShAmt
, DAG
.getConstant(0, dl
, MVT::i64
),
5868 ISD::SETEQ
, dl
, DAG
);
5869 SDValue CCVal
= DAG
.getConstant(AArch64CC::EQ
, dl
, MVT::i32
);
5871 DAG
.getNode(AArch64ISD::CSEL
, dl
, VT
, DAG
.getConstant(0, dl
, MVT::i64
),
5872 HiBitsForLo
, CCVal
, Cmp
);
5874 SDValue ExtraShAmt
= DAG
.getNode(ISD::SUB
, dl
, MVT::i64
, ShAmt
,
5875 DAG
.getConstant(VTBits
, dl
, MVT::i64
));
5877 SDValue LoBitsForLo
= DAG
.getNode(ISD::SRL
, dl
, VT
, ShOpLo
, ShAmt
);
5878 SDValue LoForNormalShift
=
5879 DAG
.getNode(ISD::OR
, dl
, VT
, LoBitsForLo
, HiBitsForLo
);
5881 Cmp
= emitComparison(ExtraShAmt
, DAG
.getConstant(0, dl
, MVT::i64
), ISD::SETGE
,
5883 CCVal
= DAG
.getConstant(AArch64CC::GE
, dl
, MVT::i32
);
5884 SDValue LoForBigShift
= DAG
.getNode(Opc
, dl
, VT
, ShOpHi
, ExtraShAmt
);
5885 SDValue Lo
= DAG
.getNode(AArch64ISD::CSEL
, dl
, VT
, LoForBigShift
,
5886 LoForNormalShift
, CCVal
, Cmp
);
5888 // AArch64 shifts larger than the register width are wrapped rather than
5889 // clamped, so we can't just emit "hi >> x".
5890 SDValue HiForNormalShift
= DAG
.getNode(Opc
, dl
, VT
, ShOpHi
, ShAmt
);
5891 SDValue HiForBigShift
=
5893 ? DAG
.getNode(Opc
, dl
, VT
, ShOpHi
,
5894 DAG
.getConstant(VTBits
- 1, dl
, MVT::i64
))
5895 : DAG
.getConstant(0, dl
, VT
);
5896 SDValue Hi
= DAG
.getNode(AArch64ISD::CSEL
, dl
, VT
, HiForBigShift
,
5897 HiForNormalShift
, CCVal
, Cmp
);
5899 SDValue Ops
[2] = { Lo
, Hi
};
5900 return DAG
.getMergeValues(Ops
, dl
);
5903 /// LowerShiftLeftParts - Lower SHL_PARTS, which returns two
5904 /// i64 values and take a 2 x i64 value to shift plus a shift amount.
5905 SDValue
AArch64TargetLowering::LowerShiftLeftParts(SDValue Op
,
5906 SelectionDAG
&DAG
) const {
5907 assert(Op
.getNumOperands() == 3 && "Not a double-shift!");
5908 EVT VT
= Op
.getValueType();
5909 unsigned VTBits
= VT
.getSizeInBits();
5911 SDValue ShOpLo
= Op
.getOperand(0);
5912 SDValue ShOpHi
= Op
.getOperand(1);
5913 SDValue ShAmt
= Op
.getOperand(2);
5915 assert(Op
.getOpcode() == ISD::SHL_PARTS
);
5916 SDValue RevShAmt
= DAG
.getNode(ISD::SUB
, dl
, MVT::i64
,
5917 DAG
.getConstant(VTBits
, dl
, MVT::i64
), ShAmt
);
5918 SDValue LoBitsForHi
= DAG
.getNode(ISD::SRL
, dl
, VT
, ShOpLo
, RevShAmt
);
5920 // Unfortunately, if ShAmt == 0, we just calculated "(SRL ShOpLo, 64)" which
5921 // is "undef". We wanted 0, so CSEL it directly.
5922 SDValue Cmp
= emitComparison(ShAmt
, DAG
.getConstant(0, dl
, MVT::i64
),
5923 ISD::SETEQ
, dl
, DAG
);
5924 SDValue CCVal
= DAG
.getConstant(AArch64CC::EQ
, dl
, MVT::i32
);
5926 DAG
.getNode(AArch64ISD::CSEL
, dl
, VT
, DAG
.getConstant(0, dl
, MVT::i64
),
5927 LoBitsForHi
, CCVal
, Cmp
);
5929 SDValue ExtraShAmt
= DAG
.getNode(ISD::SUB
, dl
, MVT::i64
, ShAmt
,
5930 DAG
.getConstant(VTBits
, dl
, MVT::i64
));
5931 SDValue HiBitsForHi
= DAG
.getNode(ISD::SHL
, dl
, VT
, ShOpHi
, ShAmt
);
5932 SDValue HiForNormalShift
=
5933 DAG
.getNode(ISD::OR
, dl
, VT
, LoBitsForHi
, HiBitsForHi
);
5935 SDValue HiForBigShift
= DAG
.getNode(ISD::SHL
, dl
, VT
, ShOpLo
, ExtraShAmt
);
5937 Cmp
= emitComparison(ExtraShAmt
, DAG
.getConstant(0, dl
, MVT::i64
), ISD::SETGE
,
5939 CCVal
= DAG
.getConstant(AArch64CC::GE
, dl
, MVT::i32
);
5940 SDValue Hi
= DAG
.getNode(AArch64ISD::CSEL
, dl
, VT
, HiForBigShift
,
5941 HiForNormalShift
, CCVal
, Cmp
);
5943 // AArch64 shifts of larger than register sizes are wrapped rather than
5944 // clamped, so we can't just emit "lo << a" if a is too big.
5945 SDValue LoForBigShift
= DAG
.getConstant(0, dl
, VT
);
5946 SDValue LoForNormalShift
= DAG
.getNode(ISD::SHL
, dl
, VT
, ShOpLo
, ShAmt
);
5947 SDValue Lo
= DAG
.getNode(AArch64ISD::CSEL
, dl
, VT
, LoForBigShift
,
5948 LoForNormalShift
, CCVal
, Cmp
);
5950 SDValue Ops
[2] = { Lo
, Hi
};
5951 return DAG
.getMergeValues(Ops
, dl
);
5954 bool AArch64TargetLowering::isOffsetFoldingLegal(
5955 const GlobalAddressSDNode
*GA
) const {
5956 // Offsets are folded in the DAG combine rather than here so that we can
5957 // intelligently choose an offset based on the uses.
5961 bool AArch64TargetLowering::isFPImmLegal(const APFloat
&Imm
, EVT VT
,
5962 bool OptForSize
) const {
5963 bool IsLegal
= false;
5964 // We can materialize #0.0 as fmov $Rd, XZR for 64-bit, 32-bit cases, and
5965 // 16-bit case when target has full fp16 support.
5966 // FIXME: We should be able to handle f128 as well with a clever lowering.
5967 const APInt ImmInt
= Imm
.bitcastToAPInt();
5969 IsLegal
= AArch64_AM::getFP64Imm(ImmInt
) != -1 || Imm
.isPosZero();
5970 else if (VT
== MVT::f32
)
5971 IsLegal
= AArch64_AM::getFP32Imm(ImmInt
) != -1 || Imm
.isPosZero();
5972 else if (VT
== MVT::f16
&& Subtarget
->hasFullFP16())
5973 IsLegal
= AArch64_AM::getFP16Imm(ImmInt
) != -1 || Imm
.isPosZero();
5974 // TODO: fmov h0, w0 is also legal, however on't have an isel pattern to
5975 // generate that fmov.
5977 // If we can not materialize in immediate field for fmov, check if the
5978 // value can be encoded as the immediate operand of a logical instruction.
5979 // The immediate value will be created with either MOVZ, MOVN, or ORR.
5980 if (!IsLegal
&& (VT
== MVT::f64
|| VT
== MVT::f32
)) {
5981 // The cost is actually exactly the same for mov+fmov vs. adrp+ldr;
5982 // however the mov+fmov sequence is always better because of the reduced
5983 // cache pressure. The timings are still the same if you consider
5984 // movw+movk+fmov vs. adrp+ldr (it's one instruction longer, but the
5985 // movw+movk is fused). So we limit up to 2 instrdduction at most.
5986 SmallVector
<AArch64_IMM::ImmInsnModel
, 4> Insn
;
5987 AArch64_IMM::expandMOVImm(ImmInt
.getZExtValue(), VT
.getSizeInBits(),
5989 unsigned Limit
= (OptForSize
? 1 : (Subtarget
->hasFuseLiterals() ? 5 : 2));
5990 IsLegal
= Insn
.size() <= Limit
;
5993 LLVM_DEBUG(dbgs() << (IsLegal
? "Legal " : "Illegal ") << VT
.getEVTString()
5994 << " imm value: "; Imm
.dump(););
5998 //===----------------------------------------------------------------------===//
5999 // AArch64 Optimization Hooks
6000 //===----------------------------------------------------------------------===//
6002 static SDValue
getEstimate(const AArch64Subtarget
*ST
, unsigned Opcode
,
6003 SDValue Operand
, SelectionDAG
&DAG
,
6005 EVT VT
= Operand
.getValueType();
6006 if (ST
->hasNEON() &&
6007 (VT
== MVT::f64
|| VT
== MVT::v1f64
|| VT
== MVT::v2f64
||
6008 VT
== MVT::f32
|| VT
== MVT::v1f32
||
6009 VT
== MVT::v2f32
|| VT
== MVT::v4f32
)) {
6010 if (ExtraSteps
== TargetLoweringBase::ReciprocalEstimate::Unspecified
)
6011 // For the reciprocal estimates, convergence is quadratic, so the number
6012 // of digits is doubled after each iteration. In ARMv8, the accuracy of
6013 // the initial estimate is 2^-8. Thus the number of extra steps to refine
6014 // the result for float (23 mantissa bits) is 2 and for double (52
6015 // mantissa bits) is 3.
6016 ExtraSteps
= VT
.getScalarType() == MVT::f64
? 3 : 2;
6018 return DAG
.getNode(Opcode
, SDLoc(Operand
), VT
, Operand
);
6024 SDValue
AArch64TargetLowering::getSqrtEstimate(SDValue Operand
,
6025 SelectionDAG
&DAG
, int Enabled
,
6028 bool Reciprocal
) const {
6029 if (Enabled
== ReciprocalEstimate::Enabled
||
6030 (Enabled
== ReciprocalEstimate::Unspecified
&& Subtarget
->useRSqrt()))
6031 if (SDValue Estimate
= getEstimate(Subtarget
, AArch64ISD::FRSQRTE
, Operand
,
6034 EVT VT
= Operand
.getValueType();
6037 Flags
.setAllowReassociation(true);
6039 // Newton reciprocal square root iteration: E * 0.5 * (3 - X * E^2)
6040 // AArch64 reciprocal square root iteration instruction: 0.5 * (3 - M * N)
6041 for (int i
= ExtraSteps
; i
> 0; --i
) {
6042 SDValue Step
= DAG
.getNode(ISD::FMUL
, DL
, VT
, Estimate
, Estimate
,
6044 Step
= DAG
.getNode(AArch64ISD::FRSQRTS
, DL
, VT
, Operand
, Step
, Flags
);
6045 Estimate
= DAG
.getNode(ISD::FMUL
, DL
, VT
, Estimate
, Step
, Flags
);
6048 EVT CCVT
= getSetCCResultType(DAG
.getDataLayout(), *DAG
.getContext(),
6050 SDValue FPZero
= DAG
.getConstantFP(0.0, DL
, VT
);
6051 SDValue Eq
= DAG
.getSetCC(DL
, CCVT
, Operand
, FPZero
, ISD::SETEQ
);
6053 Estimate
= DAG
.getNode(ISD::FMUL
, DL
, VT
, Operand
, Estimate
, Flags
);
6054 // Correct the result if the operand is 0.0.
6055 Estimate
= DAG
.getNode(VT
.isVector() ? ISD::VSELECT
: ISD::SELECT
, DL
,
6056 VT
, Eq
, Operand
, Estimate
);
6066 SDValue
AArch64TargetLowering::getRecipEstimate(SDValue Operand
,
6067 SelectionDAG
&DAG
, int Enabled
,
6068 int &ExtraSteps
) const {
6069 if (Enabled
== ReciprocalEstimate::Enabled
)
6070 if (SDValue Estimate
= getEstimate(Subtarget
, AArch64ISD::FRECPE
, Operand
,
6073 EVT VT
= Operand
.getValueType();
6076 Flags
.setAllowReassociation(true);
6078 // Newton reciprocal iteration: E * (2 - X * E)
6079 // AArch64 reciprocal iteration instruction: (2 - M * N)
6080 for (int i
= ExtraSteps
; i
> 0; --i
) {
6081 SDValue Step
= DAG
.getNode(AArch64ISD::FRECPS
, DL
, VT
, Operand
,
6083 Estimate
= DAG
.getNode(ISD::FMUL
, DL
, VT
, Estimate
, Step
, Flags
);
6093 //===----------------------------------------------------------------------===//
6094 // AArch64 Inline Assembly Support
6095 //===----------------------------------------------------------------------===//
6097 // Table of Constraints
6098 // TODO: This is the current set of constraints supported by ARM for the
6099 // compiler, not all of them may make sense.
6101 // r - A general register
6102 // w - An FP/SIMD register of some size in the range v0-v31
6103 // x - An FP/SIMD register of some size in the range v0-v15
6104 // I - Constant that can be used with an ADD instruction
6105 // J - Constant that can be used with a SUB instruction
6106 // K - Constant that can be used with a 32-bit logical instruction
6107 // L - Constant that can be used with a 64-bit logical instruction
6108 // M - Constant that can be used as a 32-bit MOV immediate
6109 // N - Constant that can be used as a 64-bit MOV immediate
6110 // Q - A memory reference with base register and no offset
6111 // S - A symbolic address
6112 // Y - Floating point constant zero
6113 // Z - Integer constant zero
6115 // Note that general register operands will be output using their 64-bit x
6116 // register name, whatever the size of the variable, unless the asm operand
6117 // is prefixed by the %w modifier. Floating-point and SIMD register operands
6118 // will be output with the v prefix unless prefixed by the %b, %h, %s, %d or
6120 const char *AArch64TargetLowering::LowerXConstraint(EVT ConstraintVT
) const {
6121 // At this point, we have to lower this constraint to something else, so we
6122 // lower it to an "r" or "w". However, by doing this we will force the result
6123 // to be in register, while the X constraint is much more permissive.
6125 // Although we are correct (we are free to emit anything, without
6126 // constraints), we might break use cases that would expect us to be more
6127 // efficient and emit something else.
6128 if (!Subtarget
->hasFPARMv8())
6131 if (ConstraintVT
.isFloatingPoint())
6134 if (ConstraintVT
.isVector() &&
6135 (ConstraintVT
.getSizeInBits() == 64 ||
6136 ConstraintVT
.getSizeInBits() == 128))
6142 enum PredicateConstraint
{
6148 static PredicateConstraint
parsePredicateConstraint(StringRef Constraint
) {
6149 PredicateConstraint P
= PredicateConstraint::Invalid
;
6150 if (Constraint
== "Upa")
6151 P
= PredicateConstraint::Upa
;
6152 if (Constraint
== "Upl")
6153 P
= PredicateConstraint::Upl
;
6157 /// getConstraintType - Given a constraint letter, return the type of
6158 /// constraint it is for this target.
6159 AArch64TargetLowering::ConstraintType
6160 AArch64TargetLowering::getConstraintType(StringRef Constraint
) const {
6161 if (Constraint
.size() == 1) {
6162 switch (Constraint
[0]) {
6168 return C_RegisterClass
;
6169 // An address with a single base register. Due to the way we
6170 // currently handle addresses it is the same as 'r'.
6183 case 'S': // A symbolic address
6186 } else if (parsePredicateConstraint(Constraint
) !=
6187 PredicateConstraint::Invalid
)
6188 return C_RegisterClass
;
6189 return TargetLowering::getConstraintType(Constraint
);
6192 /// Examine constraint type and operand type and determine a weight value.
6193 /// This object must already have been set up with the operand type
6194 /// and the current alternative constraint selected.
6195 TargetLowering::ConstraintWeight
6196 AArch64TargetLowering::getSingleConstraintMatchWeight(
6197 AsmOperandInfo
&info
, const char *constraint
) const {
6198 ConstraintWeight weight
= CW_Invalid
;
6199 Value
*CallOperandVal
= info
.CallOperandVal
;
6200 // If we don't have a value, we can't do a match,
6201 // but allow it at the lowest weight.
6202 if (!CallOperandVal
)
6204 Type
*type
= CallOperandVal
->getType();
6205 // Look at the constraint type.
6206 switch (*constraint
) {
6208 weight
= TargetLowering::getSingleConstraintMatchWeight(info
, constraint
);
6213 if (type
->isFloatingPointTy() || type
->isVectorTy())
6214 weight
= CW_Register
;
6217 weight
= CW_Constant
;
6220 if (parsePredicateConstraint(constraint
) != PredicateConstraint::Invalid
)
6221 weight
= CW_Register
;
6227 std::pair
<unsigned, const TargetRegisterClass
*>
6228 AArch64TargetLowering::getRegForInlineAsmConstraint(
6229 const TargetRegisterInfo
*TRI
, StringRef Constraint
, MVT VT
) const {
6230 if (Constraint
.size() == 1) {
6231 switch (Constraint
[0]) {
6233 if (VT
.getSizeInBits() == 64)
6234 return std::make_pair(0U, &AArch64::GPR64commonRegClass
);
6235 return std::make_pair(0U, &AArch64::GPR32commonRegClass
);
6237 if (!Subtarget
->hasFPARMv8())
6239 if (VT
.isScalableVector())
6240 return std::make_pair(0U, &AArch64::ZPRRegClass
);
6241 if (VT
.getSizeInBits() == 16)
6242 return std::make_pair(0U, &AArch64::FPR16RegClass
);
6243 if (VT
.getSizeInBits() == 32)
6244 return std::make_pair(0U, &AArch64::FPR32RegClass
);
6245 if (VT
.getSizeInBits() == 64)
6246 return std::make_pair(0U, &AArch64::FPR64RegClass
);
6247 if (VT
.getSizeInBits() == 128)
6248 return std::make_pair(0U, &AArch64::FPR128RegClass
);
6250 // The instructions that this constraint is designed for can
6251 // only take 128-bit registers so just use that regclass.
6253 if (!Subtarget
->hasFPARMv8())
6255 if (VT
.isScalableVector())
6256 return std::make_pair(0U, &AArch64::ZPR_4bRegClass
);
6257 if (VT
.getSizeInBits() == 128)
6258 return std::make_pair(0U, &AArch64::FPR128_loRegClass
);
6261 if (!Subtarget
->hasFPARMv8())
6263 if (VT
.isScalableVector())
6264 return std::make_pair(0U, &AArch64::ZPR_3bRegClass
);
6268 PredicateConstraint PC
= parsePredicateConstraint(Constraint
);
6269 if (PC
!= PredicateConstraint::Invalid
) {
6270 assert(VT
.isScalableVector());
6271 bool restricted
= (PC
== PredicateConstraint::Upl
);
6272 return restricted
? std::make_pair(0U, &AArch64::PPR_3bRegClass
)
6273 : std::make_pair(0U, &AArch64::PPRRegClass
);
6276 if (StringRef("{cc}").equals_lower(Constraint
))
6277 return std::make_pair(unsigned(AArch64::NZCV
), &AArch64::CCRRegClass
);
6279 // Use the default implementation in TargetLowering to convert the register
6280 // constraint into a member of a register class.
6281 std::pair
<unsigned, const TargetRegisterClass
*> Res
;
6282 Res
= TargetLowering::getRegForInlineAsmConstraint(TRI
, Constraint
, VT
);
6284 // Not found as a standard register?
6286 unsigned Size
= Constraint
.size();
6287 if ((Size
== 4 || Size
== 5) && Constraint
[0] == '{' &&
6288 tolower(Constraint
[1]) == 'v' && Constraint
[Size
- 1] == '}') {
6290 bool Failed
= Constraint
.slice(2, Size
- 1).getAsInteger(10, RegNo
);
6291 if (!Failed
&& RegNo
>= 0 && RegNo
<= 31) {
6292 // v0 - v31 are aliases of q0 - q31 or d0 - d31 depending on size.
6293 // By default we'll emit v0-v31 for this unless there's a modifier where
6294 // we'll emit the correct register as well.
6295 if (VT
!= MVT::Other
&& VT
.getSizeInBits() == 64) {
6296 Res
.first
= AArch64::FPR64RegClass
.getRegister(RegNo
);
6297 Res
.second
= &AArch64::FPR64RegClass
;
6299 Res
.first
= AArch64::FPR128RegClass
.getRegister(RegNo
);
6300 Res
.second
= &AArch64::FPR128RegClass
;
6306 if (Res
.second
&& !Subtarget
->hasFPARMv8() &&
6307 !AArch64::GPR32allRegClass
.hasSubClassEq(Res
.second
) &&
6308 !AArch64::GPR64allRegClass
.hasSubClassEq(Res
.second
))
6309 return std::make_pair(0U, nullptr);
6314 /// LowerAsmOperandForConstraint - Lower the specified operand into the Ops
6315 /// vector. If it is invalid, don't add anything to Ops.
6316 void AArch64TargetLowering::LowerAsmOperandForConstraint(
6317 SDValue Op
, std::string
&Constraint
, std::vector
<SDValue
> &Ops
,
6318 SelectionDAG
&DAG
) const {
6321 // Currently only support length 1 constraints.
6322 if (Constraint
.length() != 1)
6325 char ConstraintLetter
= Constraint
[0];
6326 switch (ConstraintLetter
) {
6330 // This set of constraints deal with valid constants for various instructions.
6331 // Validate and return a target constant for them if we can.
6333 // 'z' maps to xzr or wzr so it needs an input of 0.
6334 if (!isNullConstant(Op
))
6337 if (Op
.getValueType() == MVT::i64
)
6338 Result
= DAG
.getRegister(AArch64::XZR
, MVT::i64
);
6340 Result
= DAG
.getRegister(AArch64::WZR
, MVT::i32
);
6344 // An absolute symbolic address or label reference.
6345 if (const GlobalAddressSDNode
*GA
= dyn_cast
<GlobalAddressSDNode
>(Op
)) {
6346 Result
= DAG
.getTargetGlobalAddress(GA
->getGlobal(), SDLoc(Op
),
6347 GA
->getValueType(0));
6348 } else if (const BlockAddressSDNode
*BA
=
6349 dyn_cast
<BlockAddressSDNode
>(Op
)) {
6351 DAG
.getTargetBlockAddress(BA
->getBlockAddress(), BA
->getValueType(0));
6352 } else if (const ExternalSymbolSDNode
*ES
=
6353 dyn_cast
<ExternalSymbolSDNode
>(Op
)) {
6355 DAG
.getTargetExternalSymbol(ES
->getSymbol(), ES
->getValueType(0));
6367 ConstantSDNode
*C
= dyn_cast
<ConstantSDNode
>(Op
);
6371 // Grab the value and do some validation.
6372 uint64_t CVal
= C
->getZExtValue();
6373 switch (ConstraintLetter
) {
6374 // The I constraint applies only to simple ADD or SUB immediate operands:
6375 // i.e. 0 to 4095 with optional shift by 12
6376 // The J constraint applies only to ADD or SUB immediates that would be
6377 // valid when negated, i.e. if [an add pattern] were to be output as a SUB
6378 // instruction [or vice versa], in other words -1 to -4095 with optional
6379 // left shift by 12.
6381 if (isUInt
<12>(CVal
) || isShiftedUInt
<12, 12>(CVal
))
6385 uint64_t NVal
= -C
->getSExtValue();
6386 if (isUInt
<12>(NVal
) || isShiftedUInt
<12, 12>(NVal
)) {
6387 CVal
= C
->getSExtValue();
6392 // The K and L constraints apply *only* to logical immediates, including
6393 // what used to be the MOVI alias for ORR (though the MOVI alias has now
6394 // been removed and MOV should be used). So these constraints have to
6395 // distinguish between bit patterns that are valid 32-bit or 64-bit
6396 // "bitmask immediates": for example 0xaaaaaaaa is a valid bimm32 (K), but
6397 // not a valid bimm64 (L) where 0xaaaaaaaaaaaaaaaa would be valid, and vice
6400 if (AArch64_AM::isLogicalImmediate(CVal
, 32))
6404 if (AArch64_AM::isLogicalImmediate(CVal
, 64))
6407 // The M and N constraints are a superset of K and L respectively, for use
6408 // with the MOV (immediate) alias. As well as the logical immediates they
6409 // also match 32 or 64-bit immediates that can be loaded either using a
6410 // *single* MOVZ or MOVN , such as 32-bit 0x12340000, 0x00001234, 0xffffedca
6411 // (M) or 64-bit 0x1234000000000000 (N) etc.
6412 // As a note some of this code is liberally stolen from the asm parser.
6414 if (!isUInt
<32>(CVal
))
6416 if (AArch64_AM::isLogicalImmediate(CVal
, 32))
6418 if ((CVal
& 0xFFFF) == CVal
)
6420 if ((CVal
& 0xFFFF0000ULL
) == CVal
)
6422 uint64_t NCVal
= ~(uint32_t)CVal
;
6423 if ((NCVal
& 0xFFFFULL
) == NCVal
)
6425 if ((NCVal
& 0xFFFF0000ULL
) == NCVal
)
6430 if (AArch64_AM::isLogicalImmediate(CVal
, 64))
6432 if ((CVal
& 0xFFFFULL
) == CVal
)
6434 if ((CVal
& 0xFFFF0000ULL
) == CVal
)
6436 if ((CVal
& 0xFFFF00000000ULL
) == CVal
)
6438 if ((CVal
& 0xFFFF000000000000ULL
) == CVal
)
6440 uint64_t NCVal
= ~CVal
;
6441 if ((NCVal
& 0xFFFFULL
) == NCVal
)
6443 if ((NCVal
& 0xFFFF0000ULL
) == NCVal
)
6445 if ((NCVal
& 0xFFFF00000000ULL
) == NCVal
)
6447 if ((NCVal
& 0xFFFF000000000000ULL
) == NCVal
)
6455 // All assembler immediates are 64-bit integers.
6456 Result
= DAG
.getTargetConstant(CVal
, SDLoc(Op
), MVT::i64
);
6460 if (Result
.getNode()) {
6461 Ops
.push_back(Result
);
6465 return TargetLowering::LowerAsmOperandForConstraint(Op
, Constraint
, Ops
, DAG
);
6468 //===----------------------------------------------------------------------===//
6469 // AArch64 Advanced SIMD Support
6470 //===----------------------------------------------------------------------===//
6472 /// WidenVector - Given a value in the V64 register class, produce the
6473 /// equivalent value in the V128 register class.
6474 static SDValue
WidenVector(SDValue V64Reg
, SelectionDAG
&DAG
) {
6475 EVT VT
= V64Reg
.getValueType();
6476 unsigned NarrowSize
= VT
.getVectorNumElements();
6477 MVT EltTy
= VT
.getVectorElementType().getSimpleVT();
6478 MVT WideTy
= MVT::getVectorVT(EltTy
, 2 * NarrowSize
);
6481 return DAG
.getNode(ISD::INSERT_SUBVECTOR
, DL
, WideTy
, DAG
.getUNDEF(WideTy
),
6482 V64Reg
, DAG
.getConstant(0, DL
, MVT::i32
));
6485 /// getExtFactor - Determine the adjustment factor for the position when
6486 /// generating an "extract from vector registers" instruction.
6487 static unsigned getExtFactor(SDValue
&V
) {
6488 EVT EltType
= V
.getValueType().getVectorElementType();
6489 return EltType
.getSizeInBits() / 8;
6492 /// NarrowVector - Given a value in the V128 register class, produce the
6493 /// equivalent value in the V64 register class.
6494 static SDValue
NarrowVector(SDValue V128Reg
, SelectionDAG
&DAG
) {
6495 EVT VT
= V128Reg
.getValueType();
6496 unsigned WideSize
= VT
.getVectorNumElements();
6497 MVT EltTy
= VT
.getVectorElementType().getSimpleVT();
6498 MVT NarrowTy
= MVT::getVectorVT(EltTy
, WideSize
/ 2);
6501 return DAG
.getTargetExtractSubreg(AArch64::dsub
, DL
, NarrowTy
, V128Reg
);
6504 // Gather data to see if the operation can be modelled as a
6505 // shuffle in combination with VEXTs.
6506 SDValue
AArch64TargetLowering::ReconstructShuffle(SDValue Op
,
6507 SelectionDAG
&DAG
) const {
6508 assert(Op
.getOpcode() == ISD::BUILD_VECTOR
&& "Unknown opcode!");
6509 LLVM_DEBUG(dbgs() << "AArch64TargetLowering::ReconstructShuffle\n");
6511 EVT VT
= Op
.getValueType();
6512 unsigned NumElts
= VT
.getVectorNumElements();
6514 struct ShuffleSourceInfo
{
6519 // We may insert some combination of BITCASTs and VEXT nodes to force Vec to
6520 // be compatible with the shuffle we intend to construct. As a result
6521 // ShuffleVec will be some sliding window into the original Vec.
6524 // Code should guarantee that element i in Vec starts at element "WindowBase
6525 // + i * WindowScale in ShuffleVec".
6529 ShuffleSourceInfo(SDValue Vec
)
6530 : Vec(Vec
), MinElt(std::numeric_limits
<unsigned>::max()), MaxElt(0),
6531 ShuffleVec(Vec
), WindowBase(0), WindowScale(1) {}
6533 bool operator ==(SDValue OtherVec
) { return Vec
== OtherVec
; }
6536 // First gather all vectors used as an immediate source for this BUILD_VECTOR
6538 SmallVector
<ShuffleSourceInfo
, 2> Sources
;
6539 for (unsigned i
= 0; i
< NumElts
; ++i
) {
6540 SDValue V
= Op
.getOperand(i
);
6543 else if (V
.getOpcode() != ISD::EXTRACT_VECTOR_ELT
||
6544 !isa
<ConstantSDNode
>(V
.getOperand(1))) {
6546 dbgs() << "Reshuffle failed: "
6547 "a shuffle can only come from building a vector from "
6548 "various elements of other vectors, provided their "
6549 "indices are constant\n");
6553 // Add this element source to the list if it's not already there.
6554 SDValue SourceVec
= V
.getOperand(0);
6555 auto Source
= find(Sources
, SourceVec
);
6556 if (Source
== Sources
.end())
6557 Source
= Sources
.insert(Sources
.end(), ShuffleSourceInfo(SourceVec
));
6559 // Update the minimum and maximum lane number seen.
6560 unsigned EltNo
= cast
<ConstantSDNode
>(V
.getOperand(1))->getZExtValue();
6561 Source
->MinElt
= std::min(Source
->MinElt
, EltNo
);
6562 Source
->MaxElt
= std::max(Source
->MaxElt
, EltNo
);
6565 if (Sources
.size() > 2) {
6567 dbgs() << "Reshuffle failed: currently only do something sane when at "
6568 "most two source vectors are involved\n");
6572 // Find out the smallest element size among result and two sources, and use
6573 // it as element size to build the shuffle_vector.
6574 EVT SmallestEltTy
= VT
.getVectorElementType();
6575 for (auto &Source
: Sources
) {
6576 EVT SrcEltTy
= Source
.Vec
.getValueType().getVectorElementType();
6577 if (SrcEltTy
.bitsLT(SmallestEltTy
)) {
6578 SmallestEltTy
= SrcEltTy
;
6581 unsigned ResMultiplier
=
6582 VT
.getScalarSizeInBits() / SmallestEltTy
.getSizeInBits();
6583 NumElts
= VT
.getSizeInBits() / SmallestEltTy
.getSizeInBits();
6584 EVT ShuffleVT
= EVT::getVectorVT(*DAG
.getContext(), SmallestEltTy
, NumElts
);
6586 // If the source vector is too wide or too narrow, we may nevertheless be able
6587 // to construct a compatible shuffle either by concatenating it with UNDEF or
6588 // extracting a suitable range of elements.
6589 for (auto &Src
: Sources
) {
6590 EVT SrcVT
= Src
.ShuffleVec
.getValueType();
6592 if (SrcVT
.getSizeInBits() == VT
.getSizeInBits())
6595 // This stage of the search produces a source with the same element type as
6596 // the original, but with a total width matching the BUILD_VECTOR output.
6597 EVT EltVT
= SrcVT
.getVectorElementType();
6598 unsigned NumSrcElts
= VT
.getSizeInBits() / EltVT
.getSizeInBits();
6599 EVT DestVT
= EVT::getVectorVT(*DAG
.getContext(), EltVT
, NumSrcElts
);
6601 if (SrcVT
.getSizeInBits() < VT
.getSizeInBits()) {
6602 assert(2 * SrcVT
.getSizeInBits() == VT
.getSizeInBits());
6603 // We can pad out the smaller vector for free, so if it's part of a
6606 DAG
.getNode(ISD::CONCAT_VECTORS
, dl
, DestVT
, Src
.ShuffleVec
,
6607 DAG
.getUNDEF(Src
.ShuffleVec
.getValueType()));
6611 assert(SrcVT
.getSizeInBits() == 2 * VT
.getSizeInBits());
6613 if (Src
.MaxElt
- Src
.MinElt
>= NumSrcElts
) {
6615 dbgs() << "Reshuffle failed: span too large for a VEXT to cope\n");
6619 if (Src
.MinElt
>= NumSrcElts
) {
6620 // The extraction can just take the second half
6622 DAG
.getNode(ISD::EXTRACT_SUBVECTOR
, dl
, DestVT
, Src
.ShuffleVec
,
6623 DAG
.getConstant(NumSrcElts
, dl
, MVT::i64
));
6624 Src
.WindowBase
= -NumSrcElts
;
6625 } else if (Src
.MaxElt
< NumSrcElts
) {
6626 // The extraction can just take the first half
6628 DAG
.getNode(ISD::EXTRACT_SUBVECTOR
, dl
, DestVT
, Src
.ShuffleVec
,
6629 DAG
.getConstant(0, dl
, MVT::i64
));
6631 // An actual VEXT is needed
6633 DAG
.getNode(ISD::EXTRACT_SUBVECTOR
, dl
, DestVT
, Src
.ShuffleVec
,
6634 DAG
.getConstant(0, dl
, MVT::i64
));
6636 DAG
.getNode(ISD::EXTRACT_SUBVECTOR
, dl
, DestVT
, Src
.ShuffleVec
,
6637 DAG
.getConstant(NumSrcElts
, dl
, MVT::i64
));
6638 unsigned Imm
= Src
.MinElt
* getExtFactor(VEXTSrc1
);
6640 Src
.ShuffleVec
= DAG
.getNode(AArch64ISD::EXT
, dl
, DestVT
, VEXTSrc1
,
6642 DAG
.getConstant(Imm
, dl
, MVT::i32
));
6643 Src
.WindowBase
= -Src
.MinElt
;
6647 // Another possible incompatibility occurs from the vector element types. We
6648 // can fix this by bitcasting the source vectors to the same type we intend
6650 for (auto &Src
: Sources
) {
6651 EVT SrcEltTy
= Src
.ShuffleVec
.getValueType().getVectorElementType();
6652 if (SrcEltTy
== SmallestEltTy
)
6654 assert(ShuffleVT
.getVectorElementType() == SmallestEltTy
);
6655 Src
.ShuffleVec
= DAG
.getNode(ISD::BITCAST
, dl
, ShuffleVT
, Src
.ShuffleVec
);
6656 Src
.WindowScale
= SrcEltTy
.getSizeInBits() / SmallestEltTy
.getSizeInBits();
6657 Src
.WindowBase
*= Src
.WindowScale
;
6660 // Final sanity check before we try to actually produce a shuffle.
6661 LLVM_DEBUG(for (auto Src
6663 assert(Src
.ShuffleVec
.getValueType() == ShuffleVT
););
6665 // The stars all align, our next step is to produce the mask for the shuffle.
6666 SmallVector
<int, 8> Mask(ShuffleVT
.getVectorNumElements(), -1);
6667 int BitsPerShuffleLane
= ShuffleVT
.getScalarSizeInBits();
6668 for (unsigned i
= 0; i
< VT
.getVectorNumElements(); ++i
) {
6669 SDValue Entry
= Op
.getOperand(i
);
6670 if (Entry
.isUndef())
6673 auto Src
= find(Sources
, Entry
.getOperand(0));
6674 int EltNo
= cast
<ConstantSDNode
>(Entry
.getOperand(1))->getSExtValue();
6676 // EXTRACT_VECTOR_ELT performs an implicit any_ext; BUILD_VECTOR an implicit
6677 // trunc. So only std::min(SrcBits, DestBits) actually get defined in this
6679 EVT OrigEltTy
= Entry
.getOperand(0).getValueType().getVectorElementType();
6681 std::min(OrigEltTy
.getSizeInBits(), VT
.getScalarSizeInBits());
6682 int LanesDefined
= BitsDefined
/ BitsPerShuffleLane
;
6684 // This source is expected to fill ResMultiplier lanes of the final shuffle,
6685 // starting at the appropriate offset.
6686 int *LaneMask
= &Mask
[i
* ResMultiplier
];
6688 int ExtractBase
= EltNo
* Src
->WindowScale
+ Src
->WindowBase
;
6689 ExtractBase
+= NumElts
* (Src
- Sources
.begin());
6690 for (int j
= 0; j
< LanesDefined
; ++j
)
6691 LaneMask
[j
] = ExtractBase
+ j
;
6694 // Final check before we try to produce nonsense...
6695 if (!isShuffleMaskLegal(Mask
, ShuffleVT
)) {
6696 LLVM_DEBUG(dbgs() << "Reshuffle failed: illegal shuffle mask\n");
6700 SDValue ShuffleOps
[] = { DAG
.getUNDEF(ShuffleVT
), DAG
.getUNDEF(ShuffleVT
) };
6701 for (unsigned i
= 0; i
< Sources
.size(); ++i
)
6702 ShuffleOps
[i
] = Sources
[i
].ShuffleVec
;
6704 SDValue Shuffle
= DAG
.getVectorShuffle(ShuffleVT
, dl
, ShuffleOps
[0],
6705 ShuffleOps
[1], Mask
);
6706 SDValue V
= DAG
.getNode(ISD::BITCAST
, dl
, VT
, Shuffle
);
6708 LLVM_DEBUG(dbgs() << "Reshuffle, creating node: "; Shuffle
.dump();
6709 dbgs() << "Reshuffle, creating node: "; V
.dump(););
6714 // check if an EXT instruction can handle the shuffle mask when the
6715 // vector sources of the shuffle are the same.
6716 static bool isSingletonEXTMask(ArrayRef
<int> M
, EVT VT
, unsigned &Imm
) {
6717 unsigned NumElts
= VT
.getVectorNumElements();
6719 // Assume that the first shuffle index is not UNDEF. Fail if it is.
6725 // If this is a VEXT shuffle, the immediate value is the index of the first
6726 // element. The other shuffle indices must be the successive elements after
6728 unsigned ExpectedElt
= Imm
;
6729 for (unsigned i
= 1; i
< NumElts
; ++i
) {
6730 // Increment the expected index. If it wraps around, just follow it
6731 // back to index zero and keep going.
6733 if (ExpectedElt
== NumElts
)
6737 continue; // ignore UNDEF indices
6738 if (ExpectedElt
!= static_cast<unsigned>(M
[i
]))
6745 // check if an EXT instruction can handle the shuffle mask when the
6746 // vector sources of the shuffle are different.
6747 static bool isEXTMask(ArrayRef
<int> M
, EVT VT
, bool &ReverseEXT
,
6749 // Look for the first non-undef element.
6750 const int *FirstRealElt
= find_if(M
, [](int Elt
) { return Elt
>= 0; });
6752 // Benefit form APInt to handle overflow when calculating expected element.
6753 unsigned NumElts
= VT
.getVectorNumElements();
6754 unsigned MaskBits
= APInt(32, NumElts
* 2).logBase2();
6755 APInt ExpectedElt
= APInt(MaskBits
, *FirstRealElt
+ 1);
6756 // The following shuffle indices must be the successive elements after the
6757 // first real element.
6758 const int *FirstWrongElt
= std::find_if(FirstRealElt
+ 1, M
.end(),
6759 [&](int Elt
) {return Elt
!= ExpectedElt
++ && Elt
!= -1;});
6760 if (FirstWrongElt
!= M
.end())
6763 // The index of an EXT is the first element if it is not UNDEF.
6764 // Watch out for the beginning UNDEFs. The EXT index should be the expected
6765 // value of the first element. E.g.
6766 // <-1, -1, 3, ...> is treated as <1, 2, 3, ...>.
6767 // <-1, -1, 0, 1, ...> is treated as <2*NumElts-2, 2*NumElts-1, 0, 1, ...>.
6768 // ExpectedElt is the last mask index plus 1.
6769 Imm
= ExpectedElt
.getZExtValue();
6771 // There are two difference cases requiring to reverse input vectors.
6772 // For example, for vector <4 x i32> we have the following cases,
6773 // Case 1: shufflevector(<4 x i32>,<4 x i32>,<-1, -1, -1, 0>)
6774 // Case 2: shufflevector(<4 x i32>,<4 x i32>,<-1, -1, 7, 0>)
6775 // For both cases, we finally use mask <5, 6, 7, 0>, which requires
6776 // to reverse two input vectors.
6785 /// isREVMask - Check if a vector shuffle corresponds to a REV
6786 /// instruction with the specified blocksize. (The order of the elements
6787 /// within each block of the vector is reversed.)
6788 static bool isREVMask(ArrayRef
<int> M
, EVT VT
, unsigned BlockSize
) {
6789 assert((BlockSize
== 16 || BlockSize
== 32 || BlockSize
== 64) &&
6790 "Only possible block sizes for REV are: 16, 32, 64");
6792 unsigned EltSz
= VT
.getScalarSizeInBits();
6796 unsigned NumElts
= VT
.getVectorNumElements();
6797 unsigned BlockElts
= M
[0] + 1;
6798 // If the first shuffle index is UNDEF, be optimistic.
6800 BlockElts
= BlockSize
/ EltSz
;
6802 if (BlockSize
<= EltSz
|| BlockSize
!= BlockElts
* EltSz
)
6805 for (unsigned i
= 0; i
< NumElts
; ++i
) {
6807 continue; // ignore UNDEF indices
6808 if ((unsigned)M
[i
] != (i
- i
% BlockElts
) + (BlockElts
- 1 - i
% BlockElts
))
6815 static bool isZIPMask(ArrayRef
<int> M
, EVT VT
, unsigned &WhichResult
) {
6816 unsigned NumElts
= VT
.getVectorNumElements();
6817 if (NumElts
% 2 != 0)
6819 WhichResult
= (M
[0] == 0 ? 0 : 1);
6820 unsigned Idx
= WhichResult
* NumElts
/ 2;
6821 for (unsigned i
= 0; i
!= NumElts
; i
+= 2) {
6822 if ((M
[i
] >= 0 && (unsigned)M
[i
] != Idx
) ||
6823 (M
[i
+ 1] >= 0 && (unsigned)M
[i
+ 1] != Idx
+ NumElts
))
6831 static bool isUZPMask(ArrayRef
<int> M
, EVT VT
, unsigned &WhichResult
) {
6832 unsigned NumElts
= VT
.getVectorNumElements();
6833 WhichResult
= (M
[0] == 0 ? 0 : 1);
6834 for (unsigned i
= 0; i
!= NumElts
; ++i
) {
6836 continue; // ignore UNDEF indices
6837 if ((unsigned)M
[i
] != 2 * i
+ WhichResult
)
6844 static bool isTRNMask(ArrayRef
<int> M
, EVT VT
, unsigned &WhichResult
) {
6845 unsigned NumElts
= VT
.getVectorNumElements();
6846 if (NumElts
% 2 != 0)
6848 WhichResult
= (M
[0] == 0 ? 0 : 1);
6849 for (unsigned i
= 0; i
< NumElts
; i
+= 2) {
6850 if ((M
[i
] >= 0 && (unsigned)M
[i
] != i
+ WhichResult
) ||
6851 (M
[i
+ 1] >= 0 && (unsigned)M
[i
+ 1] != i
+ NumElts
+ WhichResult
))
6857 /// isZIP_v_undef_Mask - Special case of isZIPMask for canonical form of
6858 /// "vector_shuffle v, v", i.e., "vector_shuffle v, undef".
6859 /// Mask is e.g., <0, 0, 1, 1> instead of <0, 4, 1, 5>.
6860 static bool isZIP_v_undef_Mask(ArrayRef
<int> M
, EVT VT
, unsigned &WhichResult
) {
6861 unsigned NumElts
= VT
.getVectorNumElements();
6862 if (NumElts
% 2 != 0)
6864 WhichResult
= (M
[0] == 0 ? 0 : 1);
6865 unsigned Idx
= WhichResult
* NumElts
/ 2;
6866 for (unsigned i
= 0; i
!= NumElts
; i
+= 2) {
6867 if ((M
[i
] >= 0 && (unsigned)M
[i
] != Idx
) ||
6868 (M
[i
+ 1] >= 0 && (unsigned)M
[i
+ 1] != Idx
))
6876 /// isUZP_v_undef_Mask - Special case of isUZPMask for canonical form of
6877 /// "vector_shuffle v, v", i.e., "vector_shuffle v, undef".
6878 /// Mask is e.g., <0, 2, 0, 2> instead of <0, 2, 4, 6>,
6879 static bool isUZP_v_undef_Mask(ArrayRef
<int> M
, EVT VT
, unsigned &WhichResult
) {
6880 unsigned Half
= VT
.getVectorNumElements() / 2;
6881 WhichResult
= (M
[0] == 0 ? 0 : 1);
6882 for (unsigned j
= 0; j
!= 2; ++j
) {
6883 unsigned Idx
= WhichResult
;
6884 for (unsigned i
= 0; i
!= Half
; ++i
) {
6885 int MIdx
= M
[i
+ j
* Half
];
6886 if (MIdx
>= 0 && (unsigned)MIdx
!= Idx
)
6895 /// isTRN_v_undef_Mask - Special case of isTRNMask for canonical form of
6896 /// "vector_shuffle v, v", i.e., "vector_shuffle v, undef".
6897 /// Mask is e.g., <0, 0, 2, 2> instead of <0, 4, 2, 6>.
6898 static bool isTRN_v_undef_Mask(ArrayRef
<int> M
, EVT VT
, unsigned &WhichResult
) {
6899 unsigned NumElts
= VT
.getVectorNumElements();
6900 if (NumElts
% 2 != 0)
6902 WhichResult
= (M
[0] == 0 ? 0 : 1);
6903 for (unsigned i
= 0; i
< NumElts
; i
+= 2) {
6904 if ((M
[i
] >= 0 && (unsigned)M
[i
] != i
+ WhichResult
) ||
6905 (M
[i
+ 1] >= 0 && (unsigned)M
[i
+ 1] != i
+ WhichResult
))
6911 static bool isINSMask(ArrayRef
<int> M
, int NumInputElements
,
6912 bool &DstIsLeft
, int &Anomaly
) {
6913 if (M
.size() != static_cast<size_t>(NumInputElements
))
6916 int NumLHSMatch
= 0, NumRHSMatch
= 0;
6917 int LastLHSMismatch
= -1, LastRHSMismatch
= -1;
6919 for (int i
= 0; i
< NumInputElements
; ++i
) {
6929 LastLHSMismatch
= i
;
6931 if (M
[i
] == i
+ NumInputElements
)
6934 LastRHSMismatch
= i
;
6937 if (NumLHSMatch
== NumInputElements
- 1) {
6939 Anomaly
= LastLHSMismatch
;
6941 } else if (NumRHSMatch
== NumInputElements
- 1) {
6943 Anomaly
= LastRHSMismatch
;
6950 static bool isConcatMask(ArrayRef
<int> Mask
, EVT VT
, bool SplitLHS
) {
6951 if (VT
.getSizeInBits() != 128)
6954 unsigned NumElts
= VT
.getVectorNumElements();
6956 for (int I
= 0, E
= NumElts
/ 2; I
!= E
; I
++) {
6961 int Offset
= NumElts
/ 2;
6962 for (int I
= NumElts
/ 2, E
= NumElts
; I
!= E
; I
++) {
6963 if (Mask
[I
] != I
+ SplitLHS
* Offset
)
6970 static SDValue
tryFormConcatFromShuffle(SDValue Op
, SelectionDAG
&DAG
) {
6972 EVT VT
= Op
.getValueType();
6973 SDValue V0
= Op
.getOperand(0);
6974 SDValue V1
= Op
.getOperand(1);
6975 ArrayRef
<int> Mask
= cast
<ShuffleVectorSDNode
>(Op
)->getMask();
6977 if (VT
.getVectorElementType() != V0
.getValueType().getVectorElementType() ||
6978 VT
.getVectorElementType() != V1
.getValueType().getVectorElementType())
6981 bool SplitV0
= V0
.getValueSizeInBits() == 128;
6983 if (!isConcatMask(Mask
, VT
, SplitV0
))
6986 EVT CastVT
= VT
.getHalfNumVectorElementsVT(*DAG
.getContext());
6988 V0
= DAG
.getNode(ISD::EXTRACT_SUBVECTOR
, DL
, CastVT
, V0
,
6989 DAG
.getConstant(0, DL
, MVT::i64
));
6991 if (V1
.getValueSizeInBits() == 128) {
6992 V1
= DAG
.getNode(ISD::EXTRACT_SUBVECTOR
, DL
, CastVT
, V1
,
6993 DAG
.getConstant(0, DL
, MVT::i64
));
6995 return DAG
.getNode(ISD::CONCAT_VECTORS
, DL
, VT
, V0
, V1
);
6998 /// GeneratePerfectShuffle - Given an entry in the perfect-shuffle table, emit
6999 /// the specified operations to build the shuffle.
7000 static SDValue
GeneratePerfectShuffle(unsigned PFEntry
, SDValue LHS
,
7001 SDValue RHS
, SelectionDAG
&DAG
,
7003 unsigned OpNum
= (PFEntry
>> 26) & 0x0F;
7004 unsigned LHSID
= (PFEntry
>> 13) & ((1 << 13) - 1);
7005 unsigned RHSID
= (PFEntry
>> 0) & ((1 << 13) - 1);
7008 OP_COPY
= 0, // Copy, used for things like <u,u,u,3> to say it is <0,1,2,3>
7017 OP_VUZPL
, // VUZP, left result
7018 OP_VUZPR
, // VUZP, right result
7019 OP_VZIPL
, // VZIP, left result
7020 OP_VZIPR
, // VZIP, right result
7021 OP_VTRNL
, // VTRN, left result
7022 OP_VTRNR
// VTRN, right result
7025 if (OpNum
== OP_COPY
) {
7026 if (LHSID
== (1 * 9 + 2) * 9 + 3)
7028 assert(LHSID
== ((4 * 9 + 5) * 9 + 6) * 9 + 7 && "Illegal OP_COPY!");
7032 SDValue OpLHS
, OpRHS
;
7033 OpLHS
= GeneratePerfectShuffle(PerfectShuffleTable
[LHSID
], LHS
, RHS
, DAG
, dl
);
7034 OpRHS
= GeneratePerfectShuffle(PerfectShuffleTable
[RHSID
], LHS
, RHS
, DAG
, dl
);
7035 EVT VT
= OpLHS
.getValueType();
7039 llvm_unreachable("Unknown shuffle opcode!");
7041 // VREV divides the vector in half and swaps within the half.
7042 if (VT
.getVectorElementType() == MVT::i32
||
7043 VT
.getVectorElementType() == MVT::f32
)
7044 return DAG
.getNode(AArch64ISD::REV64
, dl
, VT
, OpLHS
);
7045 // vrev <4 x i16> -> REV32
7046 if (VT
.getVectorElementType() == MVT::i16
||
7047 VT
.getVectorElementType() == MVT::f16
)
7048 return DAG
.getNode(AArch64ISD::REV32
, dl
, VT
, OpLHS
);
7049 // vrev <4 x i8> -> REV16
7050 assert(VT
.getVectorElementType() == MVT::i8
);
7051 return DAG
.getNode(AArch64ISD::REV16
, dl
, VT
, OpLHS
);
7056 EVT EltTy
= VT
.getVectorElementType();
7058 if (EltTy
== MVT::i8
)
7059 Opcode
= AArch64ISD::DUPLANE8
;
7060 else if (EltTy
== MVT::i16
|| EltTy
== MVT::f16
)
7061 Opcode
= AArch64ISD::DUPLANE16
;
7062 else if (EltTy
== MVT::i32
|| EltTy
== MVT::f32
)
7063 Opcode
= AArch64ISD::DUPLANE32
;
7064 else if (EltTy
== MVT::i64
|| EltTy
== MVT::f64
)
7065 Opcode
= AArch64ISD::DUPLANE64
;
7067 llvm_unreachable("Invalid vector element type?");
7069 if (VT
.getSizeInBits() == 64)
7070 OpLHS
= WidenVector(OpLHS
, DAG
);
7071 SDValue Lane
= DAG
.getConstant(OpNum
- OP_VDUP0
, dl
, MVT::i64
);
7072 return DAG
.getNode(Opcode
, dl
, VT
, OpLHS
, Lane
);
7077 unsigned Imm
= (OpNum
- OP_VEXT1
+ 1) * getExtFactor(OpLHS
);
7078 return DAG
.getNode(AArch64ISD::EXT
, dl
, VT
, OpLHS
, OpRHS
,
7079 DAG
.getConstant(Imm
, dl
, MVT::i32
));
7082 return DAG
.getNode(AArch64ISD::UZP1
, dl
, DAG
.getVTList(VT
, VT
), OpLHS
,
7085 return DAG
.getNode(AArch64ISD::UZP2
, dl
, DAG
.getVTList(VT
, VT
), OpLHS
,
7088 return DAG
.getNode(AArch64ISD::ZIP1
, dl
, DAG
.getVTList(VT
, VT
), OpLHS
,
7091 return DAG
.getNode(AArch64ISD::ZIP2
, dl
, DAG
.getVTList(VT
, VT
), OpLHS
,
7094 return DAG
.getNode(AArch64ISD::TRN1
, dl
, DAG
.getVTList(VT
, VT
), OpLHS
,
7097 return DAG
.getNode(AArch64ISD::TRN2
, dl
, DAG
.getVTList(VT
, VT
), OpLHS
,
7102 static SDValue
GenerateTBL(SDValue Op
, ArrayRef
<int> ShuffleMask
,
7103 SelectionDAG
&DAG
) {
7104 // Check to see if we can use the TBL instruction.
7105 SDValue V1
= Op
.getOperand(0);
7106 SDValue V2
= Op
.getOperand(1);
7109 EVT EltVT
= Op
.getValueType().getVectorElementType();
7110 unsigned BytesPerElt
= EltVT
.getSizeInBits() / 8;
7112 SmallVector
<SDValue
, 8> TBLMask
;
7113 for (int Val
: ShuffleMask
) {
7114 for (unsigned Byte
= 0; Byte
< BytesPerElt
; ++Byte
) {
7115 unsigned Offset
= Byte
+ Val
* BytesPerElt
;
7116 TBLMask
.push_back(DAG
.getConstant(Offset
, DL
, MVT::i32
));
7120 MVT IndexVT
= MVT::v8i8
;
7121 unsigned IndexLen
= 8;
7122 if (Op
.getValueSizeInBits() == 128) {
7123 IndexVT
= MVT::v16i8
;
7127 SDValue V1Cst
= DAG
.getNode(ISD::BITCAST
, DL
, IndexVT
, V1
);
7128 SDValue V2Cst
= DAG
.getNode(ISD::BITCAST
, DL
, IndexVT
, V2
);
7131 if (V2
.getNode()->isUndef()) {
7133 V1Cst
= DAG
.getNode(ISD::CONCAT_VECTORS
, DL
, MVT::v16i8
, V1Cst
, V1Cst
);
7134 Shuffle
= DAG
.getNode(
7135 ISD::INTRINSIC_WO_CHAIN
, DL
, IndexVT
,
7136 DAG
.getConstant(Intrinsic::aarch64_neon_tbl1
, DL
, MVT::i32
), V1Cst
,
7137 DAG
.getBuildVector(IndexVT
, DL
,
7138 makeArrayRef(TBLMask
.data(), IndexLen
)));
7140 if (IndexLen
== 8) {
7141 V1Cst
= DAG
.getNode(ISD::CONCAT_VECTORS
, DL
, MVT::v16i8
, V1Cst
, V2Cst
);
7142 Shuffle
= DAG
.getNode(
7143 ISD::INTRINSIC_WO_CHAIN
, DL
, IndexVT
,
7144 DAG
.getConstant(Intrinsic::aarch64_neon_tbl1
, DL
, MVT::i32
), V1Cst
,
7145 DAG
.getBuildVector(IndexVT
, DL
,
7146 makeArrayRef(TBLMask
.data(), IndexLen
)));
7148 // FIXME: We cannot, for the moment, emit a TBL2 instruction because we
7149 // cannot currently represent the register constraints on the input
7151 // Shuffle = DAG.getNode(AArch64ISD::TBL2, DL, IndexVT, V1Cst, V2Cst,
7152 // DAG.getBuildVector(IndexVT, DL, &TBLMask[0],
7154 Shuffle
= DAG
.getNode(
7155 ISD::INTRINSIC_WO_CHAIN
, DL
, IndexVT
,
7156 DAG
.getConstant(Intrinsic::aarch64_neon_tbl2
, DL
, MVT::i32
), V1Cst
,
7157 V2Cst
, DAG
.getBuildVector(IndexVT
, DL
,
7158 makeArrayRef(TBLMask
.data(), IndexLen
)));
7161 return DAG
.getNode(ISD::BITCAST
, DL
, Op
.getValueType(), Shuffle
);
7164 static unsigned getDUPLANEOp(EVT EltType
) {
7165 if (EltType
== MVT::i8
)
7166 return AArch64ISD::DUPLANE8
;
7167 if (EltType
== MVT::i16
|| EltType
== MVT::f16
)
7168 return AArch64ISD::DUPLANE16
;
7169 if (EltType
== MVT::i32
|| EltType
== MVT::f32
)
7170 return AArch64ISD::DUPLANE32
;
7171 if (EltType
== MVT::i64
|| EltType
== MVT::f64
)
7172 return AArch64ISD::DUPLANE64
;
7174 llvm_unreachable("Invalid vector element type?");
7177 SDValue
AArch64TargetLowering::LowerVECTOR_SHUFFLE(SDValue Op
,
7178 SelectionDAG
&DAG
) const {
7180 EVT VT
= Op
.getValueType();
7182 ShuffleVectorSDNode
*SVN
= cast
<ShuffleVectorSDNode
>(Op
.getNode());
7184 // Convert shuffles that are directly supported on NEON to target-specific
7185 // DAG nodes, instead of keeping them as shuffles and matching them again
7186 // during code selection. This is more efficient and avoids the possibility
7187 // of inconsistencies between legalization and selection.
7188 ArrayRef
<int> ShuffleMask
= SVN
->getMask();
7190 SDValue V1
= Op
.getOperand(0);
7191 SDValue V2
= Op
.getOperand(1);
7193 if (SVN
->isSplat()) {
7194 int Lane
= SVN
->getSplatIndex();
7195 // If this is undef splat, generate it via "just" vdup, if possible.
7199 if (Lane
== 0 && V1
.getOpcode() == ISD::SCALAR_TO_VECTOR
)
7200 return DAG
.getNode(AArch64ISD::DUP
, dl
, V1
.getValueType(),
7202 // Test if V1 is a BUILD_VECTOR and the lane being referenced is a non-
7203 // constant. If so, we can just reference the lane's definition directly.
7204 if (V1
.getOpcode() == ISD::BUILD_VECTOR
&&
7205 !isa
<ConstantSDNode
>(V1
.getOperand(Lane
)))
7206 return DAG
.getNode(AArch64ISD::DUP
, dl
, VT
, V1
.getOperand(Lane
));
7208 // Otherwise, duplicate from the lane of the input vector.
7209 unsigned Opcode
= getDUPLANEOp(V1
.getValueType().getVectorElementType());
7211 // Try to eliminate a bitcasted extract subvector before a DUPLANE.
7212 auto getScaledOffsetDup
= [](SDValue BitCast
, int &LaneC
, MVT
&CastVT
) {
7213 // Match: dup (bitcast (extract_subv X, C)), LaneC
7214 if (BitCast
.getOpcode() != ISD::BITCAST
||
7215 BitCast
.getOperand(0).getOpcode() != ISD::EXTRACT_SUBVECTOR
)
7218 // The extract index must align in the destination type. That may not
7219 // happen if the bitcast is from narrow to wide type.
7220 SDValue Extract
= BitCast
.getOperand(0);
7221 unsigned ExtIdx
= Extract
.getConstantOperandVal(1);
7222 unsigned SrcEltBitWidth
= Extract
.getScalarValueSizeInBits();
7223 unsigned ExtIdxInBits
= ExtIdx
* SrcEltBitWidth
;
7224 unsigned CastedEltBitWidth
= BitCast
.getScalarValueSizeInBits();
7225 if (ExtIdxInBits
% CastedEltBitWidth
!= 0)
7228 // Update the lane value by offsetting with the scaled extract index.
7229 LaneC
+= ExtIdxInBits
/ CastedEltBitWidth
;
7231 // Determine the casted vector type of the wide vector input.
7232 // dup (bitcast (extract_subv X, C)), LaneC --> dup (bitcast X), LaneC'
7234 // dup (bitcast (extract_subv v2f64 X, 1) to v2f32), 1 --> dup v4f32 X, 3
7235 // dup (bitcast (extract_subv v16i8 X, 8) to v4i16), 1 --> dup v8i16 X, 5
7236 unsigned SrcVecNumElts
=
7237 Extract
.getOperand(0).getValueSizeInBits() / CastedEltBitWidth
;
7238 CastVT
= MVT::getVectorVT(BitCast
.getSimpleValueType().getScalarType(),
7243 if (getScaledOffsetDup(V1
, Lane
, CastVT
)) {
7244 V1
= DAG
.getBitcast(CastVT
, V1
.getOperand(0).getOperand(0));
7245 } else if (V1
.getOpcode() == ISD::EXTRACT_SUBVECTOR
) {
7246 // The lane is incremented by the index of the extract.
7247 // Example: dup v2f32 (extract v4f32 X, 2), 1 --> dup v4f32 X, 3
7248 Lane
+= V1
.getConstantOperandVal(1);
7249 V1
= V1
.getOperand(0);
7250 } else if (V1
.getOpcode() == ISD::CONCAT_VECTORS
) {
7251 // The lane is decremented if we are splatting from the 2nd operand.
7252 // Example: dup v4i32 (concat v2i32 X, v2i32 Y), 3 --> dup v4i32 Y, 1
7253 unsigned Idx
= Lane
>= (int)VT
.getVectorNumElements() / 2;
7254 Lane
-= Idx
* VT
.getVectorNumElements() / 2;
7255 V1
= WidenVector(V1
.getOperand(Idx
), DAG
);
7256 } else if (VT
.getSizeInBits() == 64) {
7257 // Widen the operand to 128-bit register with undef.
7258 V1
= WidenVector(V1
, DAG
);
7260 return DAG
.getNode(Opcode
, dl
, VT
, V1
, DAG
.getConstant(Lane
, dl
, MVT::i64
));
7263 if (isREVMask(ShuffleMask
, VT
, 64))
7264 return DAG
.getNode(AArch64ISD::REV64
, dl
, V1
.getValueType(), V1
, V2
);
7265 if (isREVMask(ShuffleMask
, VT
, 32))
7266 return DAG
.getNode(AArch64ISD::REV32
, dl
, V1
.getValueType(), V1
, V2
);
7267 if (isREVMask(ShuffleMask
, VT
, 16))
7268 return DAG
.getNode(AArch64ISD::REV16
, dl
, V1
.getValueType(), V1
, V2
);
7270 bool ReverseEXT
= false;
7272 if (isEXTMask(ShuffleMask
, VT
, ReverseEXT
, Imm
)) {
7275 Imm
*= getExtFactor(V1
);
7276 return DAG
.getNode(AArch64ISD::EXT
, dl
, V1
.getValueType(), V1
, V2
,
7277 DAG
.getConstant(Imm
, dl
, MVT::i32
));
7278 } else if (V2
->isUndef() && isSingletonEXTMask(ShuffleMask
, VT
, Imm
)) {
7279 Imm
*= getExtFactor(V1
);
7280 return DAG
.getNode(AArch64ISD::EXT
, dl
, V1
.getValueType(), V1
, V1
,
7281 DAG
.getConstant(Imm
, dl
, MVT::i32
));
7284 unsigned WhichResult
;
7285 if (isZIPMask(ShuffleMask
, VT
, WhichResult
)) {
7286 unsigned Opc
= (WhichResult
== 0) ? AArch64ISD::ZIP1
: AArch64ISD::ZIP2
;
7287 return DAG
.getNode(Opc
, dl
, V1
.getValueType(), V1
, V2
);
7289 if (isUZPMask(ShuffleMask
, VT
, WhichResult
)) {
7290 unsigned Opc
= (WhichResult
== 0) ? AArch64ISD::UZP1
: AArch64ISD::UZP2
;
7291 return DAG
.getNode(Opc
, dl
, V1
.getValueType(), V1
, V2
);
7293 if (isTRNMask(ShuffleMask
, VT
, WhichResult
)) {
7294 unsigned Opc
= (WhichResult
== 0) ? AArch64ISD::TRN1
: AArch64ISD::TRN2
;
7295 return DAG
.getNode(Opc
, dl
, V1
.getValueType(), V1
, V2
);
7298 if (isZIP_v_undef_Mask(ShuffleMask
, VT
, WhichResult
)) {
7299 unsigned Opc
= (WhichResult
== 0) ? AArch64ISD::ZIP1
: AArch64ISD::ZIP2
;
7300 return DAG
.getNode(Opc
, dl
, V1
.getValueType(), V1
, V1
);
7302 if (isUZP_v_undef_Mask(ShuffleMask
, VT
, WhichResult
)) {
7303 unsigned Opc
= (WhichResult
== 0) ? AArch64ISD::UZP1
: AArch64ISD::UZP2
;
7304 return DAG
.getNode(Opc
, dl
, V1
.getValueType(), V1
, V1
);
7306 if (isTRN_v_undef_Mask(ShuffleMask
, VT
, WhichResult
)) {
7307 unsigned Opc
= (WhichResult
== 0) ? AArch64ISD::TRN1
: AArch64ISD::TRN2
;
7308 return DAG
.getNode(Opc
, dl
, V1
.getValueType(), V1
, V1
);
7311 if (SDValue Concat
= tryFormConcatFromShuffle(Op
, DAG
))
7316 int NumInputElements
= V1
.getValueType().getVectorNumElements();
7317 if (isINSMask(ShuffleMask
, NumInputElements
, DstIsLeft
, Anomaly
)) {
7318 SDValue DstVec
= DstIsLeft
? V1
: V2
;
7319 SDValue DstLaneV
= DAG
.getConstant(Anomaly
, dl
, MVT::i64
);
7321 SDValue SrcVec
= V1
;
7322 int SrcLane
= ShuffleMask
[Anomaly
];
7323 if (SrcLane
>= NumInputElements
) {
7325 SrcLane
-= VT
.getVectorNumElements();
7327 SDValue SrcLaneV
= DAG
.getConstant(SrcLane
, dl
, MVT::i64
);
7329 EVT ScalarVT
= VT
.getVectorElementType();
7331 if (ScalarVT
.getSizeInBits() < 32 && ScalarVT
.isInteger())
7332 ScalarVT
= MVT::i32
;
7335 ISD::INSERT_VECTOR_ELT
, dl
, VT
, DstVec
,
7336 DAG
.getNode(ISD::EXTRACT_VECTOR_ELT
, dl
, ScalarVT
, SrcVec
, SrcLaneV
),
7340 // If the shuffle is not directly supported and it has 4 elements, use
7341 // the PerfectShuffle-generated table to synthesize it from other shuffles.
7342 unsigned NumElts
= VT
.getVectorNumElements();
7344 unsigned PFIndexes
[4];
7345 for (unsigned i
= 0; i
!= 4; ++i
) {
7346 if (ShuffleMask
[i
] < 0)
7349 PFIndexes
[i
] = ShuffleMask
[i
];
7352 // Compute the index in the perfect shuffle table.
7353 unsigned PFTableIndex
= PFIndexes
[0] * 9 * 9 * 9 + PFIndexes
[1] * 9 * 9 +
7354 PFIndexes
[2] * 9 + PFIndexes
[3];
7355 unsigned PFEntry
= PerfectShuffleTable
[PFTableIndex
];
7356 unsigned Cost
= (PFEntry
>> 30);
7359 return GeneratePerfectShuffle(PFEntry
, V1
, V2
, DAG
, dl
);
7362 return GenerateTBL(Op
, ShuffleMask
, DAG
);
7365 SDValue
AArch64TargetLowering::LowerSPLAT_VECTOR(SDValue Op
,
7366 SelectionDAG
&DAG
) const {
7368 EVT VT
= Op
.getValueType();
7369 EVT ElemVT
= VT
.getScalarType();
7371 SDValue SplatVal
= Op
.getOperand(0);
7373 // Extend input splat value where needed to fit into a GPR (32b or 64b only)
7374 // FPRs don't have this restriction.
7375 switch (ElemVT
.getSimpleVT().SimpleTy
) {
7379 SplatVal
= DAG
.getAnyExtOrTrunc(SplatVal
, dl
, MVT::i32
);
7380 return DAG
.getNode(AArch64ISD::DUP
, dl
, VT
, SplatVal
);
7382 SplatVal
= DAG
.getAnyExtOrTrunc(SplatVal
, dl
, MVT::i64
);
7383 return DAG
.getNode(AArch64ISD::DUP
, dl
, VT
, SplatVal
);
7385 // The general case of i1. There isn't any natural way to do this,
7386 // so we use some trickery with whilelo.
7387 // TODO: Add special cases for splat of constant true/false.
7388 SplatVal
= DAG
.getAnyExtOrTrunc(SplatVal
, dl
, MVT::i64
);
7389 SplatVal
= DAG
.getNode(ISD::SIGN_EXTEND_INREG
, dl
, MVT::i64
, SplatVal
,
7390 DAG
.getValueType(MVT::i1
));
7391 SDValue ID
= DAG
.getTargetConstant(Intrinsic::aarch64_sve_whilelo
, dl
,
7393 return DAG
.getNode(ISD::INTRINSIC_WO_CHAIN
, dl
, VT
, ID
,
7394 DAG
.getConstant(0, dl
, MVT::i64
), SplatVal
);
7396 // TODO: we can support float types, but haven't added patterns yet.
7401 report_fatal_error("Unsupported SPLAT_VECTOR input operand type");
7405 static bool resolveBuildVector(BuildVectorSDNode
*BVN
, APInt
&CnstBits
,
7407 EVT VT
= BVN
->getValueType(0);
7408 APInt SplatBits
, SplatUndef
;
7409 unsigned SplatBitSize
;
7411 if (BVN
->isConstantSplat(SplatBits
, SplatUndef
, SplatBitSize
, HasAnyUndefs
)) {
7412 unsigned NumSplats
= VT
.getSizeInBits() / SplatBitSize
;
7414 for (unsigned i
= 0; i
< NumSplats
; ++i
) {
7415 CnstBits
<<= SplatBitSize
;
7416 UndefBits
<<= SplatBitSize
;
7417 CnstBits
|= SplatBits
.zextOrTrunc(VT
.getSizeInBits());
7418 UndefBits
|= (SplatBits
^ SplatUndef
).zextOrTrunc(VT
.getSizeInBits());
7427 // Try 64-bit splatted SIMD immediate.
7428 static SDValue
tryAdvSIMDModImm64(unsigned NewOp
, SDValue Op
, SelectionDAG
&DAG
,
7429 const APInt
&Bits
) {
7430 if (Bits
.getHiBits(64) == Bits
.getLoBits(64)) {
7431 uint64_t Value
= Bits
.zextOrTrunc(64).getZExtValue();
7432 EVT VT
= Op
.getValueType();
7433 MVT MovTy
= (VT
.getSizeInBits() == 128) ? MVT::v2i64
: MVT::f64
;
7435 if (AArch64_AM::isAdvSIMDModImmType10(Value
)) {
7436 Value
= AArch64_AM::encodeAdvSIMDModImmType10(Value
);
7439 SDValue Mov
= DAG
.getNode(NewOp
, dl
, MovTy
,
7440 DAG
.getConstant(Value
, dl
, MVT::i32
));
7441 return DAG
.getNode(AArch64ISD::NVCAST
, dl
, VT
, Mov
);
7448 // Try 32-bit splatted SIMD immediate.
7449 static SDValue
tryAdvSIMDModImm32(unsigned NewOp
, SDValue Op
, SelectionDAG
&DAG
,
7451 const SDValue
*LHS
= nullptr) {
7452 if (Bits
.getHiBits(64) == Bits
.getLoBits(64)) {
7453 uint64_t Value
= Bits
.zextOrTrunc(64).getZExtValue();
7454 EVT VT
= Op
.getValueType();
7455 MVT MovTy
= (VT
.getSizeInBits() == 128) ? MVT::v4i32
: MVT::v2i32
;
7456 bool isAdvSIMDModImm
= false;
7459 if ((isAdvSIMDModImm
= AArch64_AM::isAdvSIMDModImmType1(Value
))) {
7460 Value
= AArch64_AM::encodeAdvSIMDModImmType1(Value
);
7463 else if ((isAdvSIMDModImm
= AArch64_AM::isAdvSIMDModImmType2(Value
))) {
7464 Value
= AArch64_AM::encodeAdvSIMDModImmType2(Value
);
7467 else if ((isAdvSIMDModImm
= AArch64_AM::isAdvSIMDModImmType3(Value
))) {
7468 Value
= AArch64_AM::encodeAdvSIMDModImmType3(Value
);
7471 else if ((isAdvSIMDModImm
= AArch64_AM::isAdvSIMDModImmType4(Value
))) {
7472 Value
= AArch64_AM::encodeAdvSIMDModImmType4(Value
);
7476 if (isAdvSIMDModImm
) {
7481 Mov
= DAG
.getNode(NewOp
, dl
, MovTy
, *LHS
,
7482 DAG
.getConstant(Value
, dl
, MVT::i32
),
7483 DAG
.getConstant(Shift
, dl
, MVT::i32
));
7485 Mov
= DAG
.getNode(NewOp
, dl
, MovTy
,
7486 DAG
.getConstant(Value
, dl
, MVT::i32
),
7487 DAG
.getConstant(Shift
, dl
, MVT::i32
));
7489 return DAG
.getNode(AArch64ISD::NVCAST
, dl
, VT
, Mov
);
7496 // Try 16-bit splatted SIMD immediate.
7497 static SDValue
tryAdvSIMDModImm16(unsigned NewOp
, SDValue Op
, SelectionDAG
&DAG
,
7499 const SDValue
*LHS
= nullptr) {
7500 if (Bits
.getHiBits(64) == Bits
.getLoBits(64)) {
7501 uint64_t Value
= Bits
.zextOrTrunc(64).getZExtValue();
7502 EVT VT
= Op
.getValueType();
7503 MVT MovTy
= (VT
.getSizeInBits() == 128) ? MVT::v8i16
: MVT::v4i16
;
7504 bool isAdvSIMDModImm
= false;
7507 if ((isAdvSIMDModImm
= AArch64_AM::isAdvSIMDModImmType5(Value
))) {
7508 Value
= AArch64_AM::encodeAdvSIMDModImmType5(Value
);
7511 else if ((isAdvSIMDModImm
= AArch64_AM::isAdvSIMDModImmType6(Value
))) {
7512 Value
= AArch64_AM::encodeAdvSIMDModImmType6(Value
);
7516 if (isAdvSIMDModImm
) {
7521 Mov
= DAG
.getNode(NewOp
, dl
, MovTy
, *LHS
,
7522 DAG
.getConstant(Value
, dl
, MVT::i32
),
7523 DAG
.getConstant(Shift
, dl
, MVT::i32
));
7525 Mov
= DAG
.getNode(NewOp
, dl
, MovTy
,
7526 DAG
.getConstant(Value
, dl
, MVT::i32
),
7527 DAG
.getConstant(Shift
, dl
, MVT::i32
));
7529 return DAG
.getNode(AArch64ISD::NVCAST
, dl
, VT
, Mov
);
7536 // Try 32-bit splatted SIMD immediate with shifted ones.
7537 static SDValue
tryAdvSIMDModImm321s(unsigned NewOp
, SDValue Op
,
7538 SelectionDAG
&DAG
, const APInt
&Bits
) {
7539 if (Bits
.getHiBits(64) == Bits
.getLoBits(64)) {
7540 uint64_t Value
= Bits
.zextOrTrunc(64).getZExtValue();
7541 EVT VT
= Op
.getValueType();
7542 MVT MovTy
= (VT
.getSizeInBits() == 128) ? MVT::v4i32
: MVT::v2i32
;
7543 bool isAdvSIMDModImm
= false;
7546 if ((isAdvSIMDModImm
= AArch64_AM::isAdvSIMDModImmType7(Value
))) {
7547 Value
= AArch64_AM::encodeAdvSIMDModImmType7(Value
);
7550 else if ((isAdvSIMDModImm
= AArch64_AM::isAdvSIMDModImmType8(Value
))) {
7551 Value
= AArch64_AM::encodeAdvSIMDModImmType8(Value
);
7555 if (isAdvSIMDModImm
) {
7557 SDValue Mov
= DAG
.getNode(NewOp
, dl
, MovTy
,
7558 DAG
.getConstant(Value
, dl
, MVT::i32
),
7559 DAG
.getConstant(Shift
, dl
, MVT::i32
));
7560 return DAG
.getNode(AArch64ISD::NVCAST
, dl
, VT
, Mov
);
7567 // Try 8-bit splatted SIMD immediate.
7568 static SDValue
tryAdvSIMDModImm8(unsigned NewOp
, SDValue Op
, SelectionDAG
&DAG
,
7569 const APInt
&Bits
) {
7570 if (Bits
.getHiBits(64) == Bits
.getLoBits(64)) {
7571 uint64_t Value
= Bits
.zextOrTrunc(64).getZExtValue();
7572 EVT VT
= Op
.getValueType();
7573 MVT MovTy
= (VT
.getSizeInBits() == 128) ? MVT::v16i8
: MVT::v8i8
;
7575 if (AArch64_AM::isAdvSIMDModImmType9(Value
)) {
7576 Value
= AArch64_AM::encodeAdvSIMDModImmType9(Value
);
7579 SDValue Mov
= DAG
.getNode(NewOp
, dl
, MovTy
,
7580 DAG
.getConstant(Value
, dl
, MVT::i32
));
7581 return DAG
.getNode(AArch64ISD::NVCAST
, dl
, VT
, Mov
);
7588 // Try FP splatted SIMD immediate.
7589 static SDValue
tryAdvSIMDModImmFP(unsigned NewOp
, SDValue Op
, SelectionDAG
&DAG
,
7590 const APInt
&Bits
) {
7591 if (Bits
.getHiBits(64) == Bits
.getLoBits(64)) {
7592 uint64_t Value
= Bits
.zextOrTrunc(64).getZExtValue();
7593 EVT VT
= Op
.getValueType();
7594 bool isWide
= (VT
.getSizeInBits() == 128);
7596 bool isAdvSIMDModImm
= false;
7598 if ((isAdvSIMDModImm
= AArch64_AM::isAdvSIMDModImmType11(Value
))) {
7599 Value
= AArch64_AM::encodeAdvSIMDModImmType11(Value
);
7600 MovTy
= isWide
? MVT::v4f32
: MVT::v2f32
;
7603 (isAdvSIMDModImm
= AArch64_AM::isAdvSIMDModImmType12(Value
))) {
7604 Value
= AArch64_AM::encodeAdvSIMDModImmType12(Value
);
7608 if (isAdvSIMDModImm
) {
7610 SDValue Mov
= DAG
.getNode(NewOp
, dl
, MovTy
,
7611 DAG
.getConstant(Value
, dl
, MVT::i32
));
7612 return DAG
.getNode(AArch64ISD::NVCAST
, dl
, VT
, Mov
);
7619 // Specialized code to quickly find if PotentialBVec is a BuildVector that
7620 // consists of only the same constant int value, returned in reference arg
7622 static bool isAllConstantBuildVector(const SDValue
&PotentialBVec
,
7623 uint64_t &ConstVal
) {
7624 BuildVectorSDNode
*Bvec
= dyn_cast
<BuildVectorSDNode
>(PotentialBVec
);
7627 ConstantSDNode
*FirstElt
= dyn_cast
<ConstantSDNode
>(Bvec
->getOperand(0));
7630 EVT VT
= Bvec
->getValueType(0);
7631 unsigned NumElts
= VT
.getVectorNumElements();
7632 for (unsigned i
= 1; i
< NumElts
; ++i
)
7633 if (dyn_cast
<ConstantSDNode
>(Bvec
->getOperand(i
)) != FirstElt
)
7635 ConstVal
= FirstElt
->getZExtValue();
7639 static unsigned getIntrinsicID(const SDNode
*N
) {
7640 unsigned Opcode
= N
->getOpcode();
7643 return Intrinsic::not_intrinsic
;
7644 case ISD::INTRINSIC_WO_CHAIN
: {
7645 unsigned IID
= cast
<ConstantSDNode
>(N
->getOperand(0))->getZExtValue();
7646 if (IID
< Intrinsic::num_intrinsics
)
7648 return Intrinsic::not_intrinsic
;
7653 // Attempt to form a vector S[LR]I from (or (and X, BvecC1), (lsl Y, C2)),
7654 // to (SLI X, Y, C2), where X and Y have matching vector types, BvecC1 is a
7655 // BUILD_VECTORs with constant element C1, C2 is a constant, and C1 == ~C2.
7656 // Also, logical shift right -> sri, with the same structure.
7657 static SDValue
tryLowerToSLI(SDNode
*N
, SelectionDAG
&DAG
) {
7658 EVT VT
= N
->getValueType(0);
7665 // Is the first op an AND?
7666 const SDValue And
= N
->getOperand(0);
7667 if (And
.getOpcode() != ISD::AND
)
7670 // Is the second op an shl or lshr?
7671 SDValue Shift
= N
->getOperand(1);
7672 // This will have been turned into: AArch64ISD::VSHL vector, #shift
7673 // or AArch64ISD::VLSHR vector, #shift
7674 unsigned ShiftOpc
= Shift
.getOpcode();
7675 if ((ShiftOpc
!= AArch64ISD::VSHL
&& ShiftOpc
!= AArch64ISD::VLSHR
))
7677 bool IsShiftRight
= ShiftOpc
== AArch64ISD::VLSHR
;
7679 // Is the shift amount constant?
7680 ConstantSDNode
*C2node
= dyn_cast
<ConstantSDNode
>(Shift
.getOperand(1));
7684 // Is the and mask vector all constant?
7686 if (!isAllConstantBuildVector(And
.getOperand(1), C1
))
7689 // Is C1 == ~C2, taking into account how much one can shift elements of a
7691 uint64_t C2
= C2node
->getZExtValue();
7692 unsigned ElemSizeInBits
= VT
.getScalarSizeInBits();
7693 if (C2
> ElemSizeInBits
)
7695 unsigned ElemMask
= (1 << ElemSizeInBits
) - 1;
7696 if ((C1
& ElemMask
) != (~C2
& ElemMask
))
7699 SDValue X
= And
.getOperand(0);
7700 SDValue Y
= Shift
.getOperand(0);
7703 IsShiftRight
? Intrinsic::aarch64_neon_vsri
: Intrinsic::aarch64_neon_vsli
;
7705 DAG
.getNode(ISD::INTRINSIC_WO_CHAIN
, DL
, VT
,
7706 DAG
.getConstant(Intrin
, DL
, MVT::i32
), X
, Y
,
7707 Shift
.getOperand(1));
7709 LLVM_DEBUG(dbgs() << "aarch64-lower: transformed: \n");
7710 LLVM_DEBUG(N
->dump(&DAG
));
7711 LLVM_DEBUG(dbgs() << "into: \n");
7712 LLVM_DEBUG(ResultSLI
->dump(&DAG
));
7718 SDValue
AArch64TargetLowering::LowerVectorOR(SDValue Op
,
7719 SelectionDAG
&DAG
) const {
7720 // Attempt to form a vector S[LR]I from (or (and X, C1), (lsl Y, C2))
7721 if (EnableAArch64SlrGeneration
) {
7722 if (SDValue Res
= tryLowerToSLI(Op
.getNode(), DAG
))
7726 EVT VT
= Op
.getValueType();
7728 SDValue LHS
= Op
.getOperand(0);
7729 BuildVectorSDNode
*BVN
=
7730 dyn_cast
<BuildVectorSDNode
>(Op
.getOperand(1).getNode());
7732 // OR commutes, so try swapping the operands.
7733 LHS
= Op
.getOperand(1);
7734 BVN
= dyn_cast
<BuildVectorSDNode
>(Op
.getOperand(0).getNode());
7739 APInt
DefBits(VT
.getSizeInBits(), 0);
7740 APInt
UndefBits(VT
.getSizeInBits(), 0);
7741 if (resolveBuildVector(BVN
, DefBits
, UndefBits
)) {
7744 if ((NewOp
= tryAdvSIMDModImm32(AArch64ISD::ORRi
, Op
, DAG
,
7746 (NewOp
= tryAdvSIMDModImm16(AArch64ISD::ORRi
, Op
, DAG
,
7750 if ((NewOp
= tryAdvSIMDModImm32(AArch64ISD::ORRi
, Op
, DAG
,
7751 UndefBits
, &LHS
)) ||
7752 (NewOp
= tryAdvSIMDModImm16(AArch64ISD::ORRi
, Op
, DAG
,
7757 // We can always fall back to a non-immediate OR.
7761 // Normalize the operands of BUILD_VECTOR. The value of constant operands will
7762 // be truncated to fit element width.
7763 static SDValue
NormalizeBuildVector(SDValue Op
,
7764 SelectionDAG
&DAG
) {
7765 assert(Op
.getOpcode() == ISD::BUILD_VECTOR
&& "Unknown opcode!");
7767 EVT VT
= Op
.getValueType();
7768 EVT EltTy
= VT
.getVectorElementType();
7770 if (EltTy
.isFloatingPoint() || EltTy
.getSizeInBits() > 16)
7773 SmallVector
<SDValue
, 16> Ops
;
7774 for (SDValue Lane
: Op
->ops()) {
7775 // For integer vectors, type legalization would have promoted the
7776 // operands already. Otherwise, if Op is a floating-point splat
7777 // (with operands cast to integers), then the only possibilities
7778 // are constants and UNDEFs.
7779 if (auto *CstLane
= dyn_cast
<ConstantSDNode
>(Lane
)) {
7780 APInt
LowBits(EltTy
.getSizeInBits(),
7781 CstLane
->getZExtValue());
7782 Lane
= DAG
.getConstant(LowBits
.getZExtValue(), dl
, MVT::i32
);
7783 } else if (Lane
.getNode()->isUndef()) {
7784 Lane
= DAG
.getUNDEF(MVT::i32
);
7786 assert(Lane
.getValueType() == MVT::i32
&&
7787 "Unexpected BUILD_VECTOR operand type");
7789 Ops
.push_back(Lane
);
7791 return DAG
.getBuildVector(VT
, dl
, Ops
);
7794 static SDValue
ConstantBuildVector(SDValue Op
, SelectionDAG
&DAG
) {
7795 EVT VT
= Op
.getValueType();
7797 APInt
DefBits(VT
.getSizeInBits(), 0);
7798 APInt
UndefBits(VT
.getSizeInBits(), 0);
7799 BuildVectorSDNode
*BVN
= cast
<BuildVectorSDNode
>(Op
.getNode());
7800 if (resolveBuildVector(BVN
, DefBits
, UndefBits
)) {
7802 if ((NewOp
= tryAdvSIMDModImm64(AArch64ISD::MOVIedit
, Op
, DAG
, DefBits
)) ||
7803 (NewOp
= tryAdvSIMDModImm32(AArch64ISD::MOVIshift
, Op
, DAG
, DefBits
)) ||
7804 (NewOp
= tryAdvSIMDModImm321s(AArch64ISD::MOVImsl
, Op
, DAG
, DefBits
)) ||
7805 (NewOp
= tryAdvSIMDModImm16(AArch64ISD::MOVIshift
, Op
, DAG
, DefBits
)) ||
7806 (NewOp
= tryAdvSIMDModImm8(AArch64ISD::MOVI
, Op
, DAG
, DefBits
)) ||
7807 (NewOp
= tryAdvSIMDModImmFP(AArch64ISD::FMOV
, Op
, DAG
, DefBits
)))
7811 if ((NewOp
= tryAdvSIMDModImm32(AArch64ISD::MVNIshift
, Op
, DAG
, DefBits
)) ||
7812 (NewOp
= tryAdvSIMDModImm321s(AArch64ISD::MVNImsl
, Op
, DAG
, DefBits
)) ||
7813 (NewOp
= tryAdvSIMDModImm16(AArch64ISD::MVNIshift
, Op
, DAG
, DefBits
)))
7816 DefBits
= UndefBits
;
7817 if ((NewOp
= tryAdvSIMDModImm64(AArch64ISD::MOVIedit
, Op
, DAG
, DefBits
)) ||
7818 (NewOp
= tryAdvSIMDModImm32(AArch64ISD::MOVIshift
, Op
, DAG
, DefBits
)) ||
7819 (NewOp
= tryAdvSIMDModImm321s(AArch64ISD::MOVImsl
, Op
, DAG
, DefBits
)) ||
7820 (NewOp
= tryAdvSIMDModImm16(AArch64ISD::MOVIshift
, Op
, DAG
, DefBits
)) ||
7821 (NewOp
= tryAdvSIMDModImm8(AArch64ISD::MOVI
, Op
, DAG
, DefBits
)) ||
7822 (NewOp
= tryAdvSIMDModImmFP(AArch64ISD::FMOV
, Op
, DAG
, DefBits
)))
7825 DefBits
= ~UndefBits
;
7826 if ((NewOp
= tryAdvSIMDModImm32(AArch64ISD::MVNIshift
, Op
, DAG
, DefBits
)) ||
7827 (NewOp
= tryAdvSIMDModImm321s(AArch64ISD::MVNImsl
, Op
, DAG
, DefBits
)) ||
7828 (NewOp
= tryAdvSIMDModImm16(AArch64ISD::MVNIshift
, Op
, DAG
, DefBits
)))
7835 SDValue
AArch64TargetLowering::LowerBUILD_VECTOR(SDValue Op
,
7836 SelectionDAG
&DAG
) const {
7837 EVT VT
= Op
.getValueType();
7839 // Try to build a simple constant vector.
7840 Op
= NormalizeBuildVector(Op
, DAG
);
7841 if (VT
.isInteger()) {
7842 // Certain vector constants, used to express things like logical NOT and
7843 // arithmetic NEG, are passed through unmodified. This allows special
7844 // patterns for these operations to match, which will lower these constants
7845 // to whatever is proven necessary.
7846 BuildVectorSDNode
*BVN
= cast
<BuildVectorSDNode
>(Op
.getNode());
7847 if (BVN
->isConstant())
7848 if (ConstantSDNode
*Const
= BVN
->getConstantSplatNode()) {
7849 unsigned BitSize
= VT
.getVectorElementType().getSizeInBits();
7851 Const
->getAPIntValue().zextOrTrunc(BitSize
).getZExtValue());
7852 if (Val
.isNullValue() || Val
.isAllOnesValue())
7857 if (SDValue V
= ConstantBuildVector(Op
, DAG
))
7860 // Scan through the operands to find some interesting properties we can
7862 // 1) If only one value is used, we can use a DUP, or
7863 // 2) if only the low element is not undef, we can just insert that, or
7864 // 3) if only one constant value is used (w/ some non-constant lanes),
7865 // we can splat the constant value into the whole vector then fill
7866 // in the non-constant lanes.
7867 // 4) FIXME: If different constant values are used, but we can intelligently
7868 // select the values we'll be overwriting for the non-constant
7869 // lanes such that we can directly materialize the vector
7870 // some other way (MOVI, e.g.), we can be sneaky.
7871 // 5) if all operands are EXTRACT_VECTOR_ELT, check for VUZP.
7873 unsigned NumElts
= VT
.getVectorNumElements();
7874 bool isOnlyLowElement
= true;
7875 bool usesOnlyOneValue
= true;
7876 bool usesOnlyOneConstantValue
= true;
7877 bool isConstant
= true;
7878 bool AllLanesExtractElt
= true;
7879 unsigned NumConstantLanes
= 0;
7881 SDValue ConstantValue
;
7882 for (unsigned i
= 0; i
< NumElts
; ++i
) {
7883 SDValue V
= Op
.getOperand(i
);
7884 if (V
.getOpcode() != ISD::EXTRACT_VECTOR_ELT
)
7885 AllLanesExtractElt
= false;
7889 isOnlyLowElement
= false;
7890 if (!isa
<ConstantFPSDNode
>(V
) && !isa
<ConstantSDNode
>(V
))
7893 if (isa
<ConstantSDNode
>(V
) || isa
<ConstantFPSDNode
>(V
)) {
7895 if (!ConstantValue
.getNode())
7897 else if (ConstantValue
!= V
)
7898 usesOnlyOneConstantValue
= false;
7901 if (!Value
.getNode())
7903 else if (V
!= Value
)
7904 usesOnlyOneValue
= false;
7907 if (!Value
.getNode()) {
7909 dbgs() << "LowerBUILD_VECTOR: value undefined, creating undef node\n");
7910 return DAG
.getUNDEF(VT
);
7913 // Convert BUILD_VECTOR where all elements but the lowest are undef into
7914 // SCALAR_TO_VECTOR, except for when we have a single-element constant vector
7915 // as SimplifyDemandedBits will just turn that back into BUILD_VECTOR.
7916 if (isOnlyLowElement
&& !(NumElts
== 1 && isa
<ConstantSDNode
>(Value
))) {
7917 LLVM_DEBUG(dbgs() << "LowerBUILD_VECTOR: only low element used, creating 1 "
7918 "SCALAR_TO_VECTOR node\n");
7919 return DAG
.getNode(ISD::SCALAR_TO_VECTOR
, dl
, VT
, Value
);
7922 if (AllLanesExtractElt
) {
7923 SDNode
*Vector
= nullptr;
7926 // Check whether the extract elements match the Even pattern <0,2,4,...> or
7927 // the Odd pattern <1,3,5,...>.
7928 for (unsigned i
= 0; i
< NumElts
; ++i
) {
7929 SDValue V
= Op
.getOperand(i
);
7930 const SDNode
*N
= V
.getNode();
7931 if (!isa
<ConstantSDNode
>(N
->getOperand(1)))
7933 SDValue N0
= N
->getOperand(0);
7935 // All elements are extracted from the same vector.
7937 Vector
= N0
.getNode();
7938 // Check that the type of EXTRACT_VECTOR_ELT matches the type of
7940 if (VT
.getVectorElementType() !=
7941 N0
.getValueType().getVectorElementType())
7943 } else if (Vector
!= N0
.getNode()) {
7949 // Extracted values are either at Even indices <0,2,4,...> or at Odd
7950 // indices <1,3,5,...>.
7951 uint64_t Val
= N
->getConstantOperandVal(1);
7956 if (Val
- 1 == 2 * i
) {
7961 // Something does not match: abort.
7968 DAG
.getNode(ISD::EXTRACT_SUBVECTOR
, dl
, VT
, SDValue(Vector
, 0),
7969 DAG
.getConstant(0, dl
, MVT::i64
));
7971 DAG
.getNode(ISD::EXTRACT_SUBVECTOR
, dl
, VT
, SDValue(Vector
, 0),
7972 DAG
.getConstant(NumElts
, dl
, MVT::i64
));
7975 return DAG
.getNode(AArch64ISD::UZP1
, dl
, DAG
.getVTList(VT
, VT
), LHS
,
7978 return DAG
.getNode(AArch64ISD::UZP2
, dl
, DAG
.getVTList(VT
, VT
), LHS
,
7983 // Use DUP for non-constant splats. For f32 constant splats, reduce to
7984 // i32 and try again.
7985 if (usesOnlyOneValue
) {
7987 if (Value
.getOpcode() != ISD::EXTRACT_VECTOR_ELT
||
7988 Value
.getValueType() != VT
) {
7990 dbgs() << "LowerBUILD_VECTOR: use DUP for non-constant splats\n");
7991 return DAG
.getNode(AArch64ISD::DUP
, dl
, VT
, Value
);
7994 // This is actually a DUPLANExx operation, which keeps everything vectory.
7996 SDValue Lane
= Value
.getOperand(1);
7997 Value
= Value
.getOperand(0);
7998 if (Value
.getValueSizeInBits() == 64) {
8000 dbgs() << "LowerBUILD_VECTOR: DUPLANE works on 128-bit vectors, "
8002 Value
= WidenVector(Value
, DAG
);
8005 unsigned Opcode
= getDUPLANEOp(VT
.getVectorElementType());
8006 return DAG
.getNode(Opcode
, dl
, VT
, Value
, Lane
);
8009 if (VT
.getVectorElementType().isFloatingPoint()) {
8010 SmallVector
<SDValue
, 8> Ops
;
8011 EVT EltTy
= VT
.getVectorElementType();
8012 assert ((EltTy
== MVT::f16
|| EltTy
== MVT::f32
|| EltTy
== MVT::f64
) &&
8013 "Unsupported floating-point vector type");
8015 dbgs() << "LowerBUILD_VECTOR: float constant splats, creating int "
8016 "BITCASTS, and try again\n");
8017 MVT NewType
= MVT::getIntegerVT(EltTy
.getSizeInBits());
8018 for (unsigned i
= 0; i
< NumElts
; ++i
)
8019 Ops
.push_back(DAG
.getNode(ISD::BITCAST
, dl
, NewType
, Op
.getOperand(i
)));
8020 EVT VecVT
= EVT::getVectorVT(*DAG
.getContext(), NewType
, NumElts
);
8021 SDValue Val
= DAG
.getBuildVector(VecVT
, dl
, Ops
);
8022 LLVM_DEBUG(dbgs() << "LowerBUILD_VECTOR: trying to lower new vector: ";
8024 Val
= LowerBUILD_VECTOR(Val
, DAG
);
8026 return DAG
.getNode(ISD::BITCAST
, dl
, VT
, Val
);
8030 // If there was only one constant value used and for more than one lane,
8031 // start by splatting that value, then replace the non-constant lanes. This
8032 // is better than the default, which will perform a separate initialization
8034 if (NumConstantLanes
> 0 && usesOnlyOneConstantValue
) {
8035 // Firstly, try to materialize the splat constant.
8036 SDValue Vec
= DAG
.getSplatBuildVector(VT
, dl
, ConstantValue
),
8037 Val
= ConstantBuildVector(Vec
, DAG
);
8039 // Otherwise, materialize the constant and splat it.
8040 Val
= DAG
.getNode(AArch64ISD::DUP
, dl
, VT
, ConstantValue
);
8041 DAG
.ReplaceAllUsesWith(Vec
.getNode(), &Val
);
8044 // Now insert the non-constant lanes.
8045 for (unsigned i
= 0; i
< NumElts
; ++i
) {
8046 SDValue V
= Op
.getOperand(i
);
8047 SDValue LaneIdx
= DAG
.getConstant(i
, dl
, MVT::i64
);
8048 if (!isa
<ConstantSDNode
>(V
) && !isa
<ConstantFPSDNode
>(V
))
8049 // Note that type legalization likely mucked about with the VT of the
8050 // source operand, so we may have to convert it here before inserting.
8051 Val
= DAG
.getNode(ISD::INSERT_VECTOR_ELT
, dl
, VT
, Val
, V
, LaneIdx
);
8056 // This will generate a load from the constant pool.
8059 dbgs() << "LowerBUILD_VECTOR: all elements are constant, use default "
8064 // Empirical tests suggest this is rarely worth it for vectors of length <= 2.
8066 if (SDValue shuffle
= ReconstructShuffle(Op
, DAG
))
8070 // If all else fails, just use a sequence of INSERT_VECTOR_ELT when we
8071 // know the default expansion would otherwise fall back on something even
8072 // worse. For a vector with one or two non-undef values, that's
8073 // scalar_to_vector for the elements followed by a shuffle (provided the
8074 // shuffle is valid for the target) and materialization element by element
8075 // on the stack followed by a load for everything else.
8076 if (!isConstant
&& !usesOnlyOneValue
) {
8078 dbgs() << "LowerBUILD_VECTOR: alternatives failed, creating sequence "
8079 "of INSERT_VECTOR_ELT\n");
8081 SDValue Vec
= DAG
.getUNDEF(VT
);
8082 SDValue Op0
= Op
.getOperand(0);
8085 // Use SCALAR_TO_VECTOR for lane zero to
8086 // a) Avoid a RMW dependency on the full vector register, and
8087 // b) Allow the register coalescer to fold away the copy if the
8088 // value is already in an S or D register, and we're forced to emit an
8089 // INSERT_SUBREG that we can't fold anywhere.
8091 // We also allow types like i8 and i16 which are illegal scalar but legal
8092 // vector element types. After type-legalization the inserted value is
8093 // extended (i32) and it is safe to cast them to the vector type by ignoring
8094 // the upper bits of the lowest lane (e.g. v8i8, v4i16).
8095 if (!Op0
.isUndef()) {
8096 LLVM_DEBUG(dbgs() << "Creating node for op0, it is not undefined:\n");
8097 Vec
= DAG
.getNode(ISD::SCALAR_TO_VECTOR
, dl
, VT
, Op0
);
8100 LLVM_DEBUG(if (i
< NumElts
) dbgs()
8101 << "Creating nodes for the other vector elements:\n";);
8102 for (; i
< NumElts
; ++i
) {
8103 SDValue V
= Op
.getOperand(i
);
8106 SDValue LaneIdx
= DAG
.getConstant(i
, dl
, MVT::i64
);
8107 Vec
= DAG
.getNode(ISD::INSERT_VECTOR_ELT
, dl
, VT
, Vec
, V
, LaneIdx
);
8113 dbgs() << "LowerBUILD_VECTOR: use default expansion, failed to find "
8114 "better alternative\n");
8118 SDValue
AArch64TargetLowering::LowerINSERT_VECTOR_ELT(SDValue Op
,
8119 SelectionDAG
&DAG
) const {
8120 assert(Op
.getOpcode() == ISD::INSERT_VECTOR_ELT
&& "Unknown opcode!");
8122 // Check for non-constant or out of range lane.
8123 EVT VT
= Op
.getOperand(0).getValueType();
8124 ConstantSDNode
*CI
= dyn_cast
<ConstantSDNode
>(Op
.getOperand(2));
8125 if (!CI
|| CI
->getZExtValue() >= VT
.getVectorNumElements())
8129 // Insertion/extraction are legal for V128 types.
8130 if (VT
== MVT::v16i8
|| VT
== MVT::v8i16
|| VT
== MVT::v4i32
||
8131 VT
== MVT::v2i64
|| VT
== MVT::v4f32
|| VT
== MVT::v2f64
||
8135 if (VT
!= MVT::v8i8
&& VT
!= MVT::v4i16
&& VT
!= MVT::v2i32
&&
8136 VT
!= MVT::v1i64
&& VT
!= MVT::v2f32
&& VT
!= MVT::v4f16
)
8139 // For V64 types, we perform insertion by expanding the value
8140 // to a V128 type and perform the insertion on that.
8142 SDValue WideVec
= WidenVector(Op
.getOperand(0), DAG
);
8143 EVT WideTy
= WideVec
.getValueType();
8145 SDValue Node
= DAG
.getNode(ISD::INSERT_VECTOR_ELT
, DL
, WideTy
, WideVec
,
8146 Op
.getOperand(1), Op
.getOperand(2));
8147 // Re-narrow the resultant vector.
8148 return NarrowVector(Node
, DAG
);
8152 AArch64TargetLowering::LowerEXTRACT_VECTOR_ELT(SDValue Op
,
8153 SelectionDAG
&DAG
) const {
8154 assert(Op
.getOpcode() == ISD::EXTRACT_VECTOR_ELT
&& "Unknown opcode!");
8156 // Check for non-constant or out of range lane.
8157 EVT VT
= Op
.getOperand(0).getValueType();
8158 ConstantSDNode
*CI
= dyn_cast
<ConstantSDNode
>(Op
.getOperand(1));
8159 if (!CI
|| CI
->getZExtValue() >= VT
.getVectorNumElements())
8163 // Insertion/extraction are legal for V128 types.
8164 if (VT
== MVT::v16i8
|| VT
== MVT::v8i16
|| VT
== MVT::v4i32
||
8165 VT
== MVT::v2i64
|| VT
== MVT::v4f32
|| VT
== MVT::v2f64
||
8169 if (VT
!= MVT::v8i8
&& VT
!= MVT::v4i16
&& VT
!= MVT::v2i32
&&
8170 VT
!= MVT::v1i64
&& VT
!= MVT::v2f32
&& VT
!= MVT::v4f16
)
8173 // For V64 types, we perform extraction by expanding the value
8174 // to a V128 type and perform the extraction on that.
8176 SDValue WideVec
= WidenVector(Op
.getOperand(0), DAG
);
8177 EVT WideTy
= WideVec
.getValueType();
8179 EVT ExtrTy
= WideTy
.getVectorElementType();
8180 if (ExtrTy
== MVT::i16
|| ExtrTy
== MVT::i8
)
8183 // For extractions, we just return the result directly.
8184 return DAG
.getNode(ISD::EXTRACT_VECTOR_ELT
, DL
, ExtrTy
, WideVec
,
8188 SDValue
AArch64TargetLowering::LowerEXTRACT_SUBVECTOR(SDValue Op
,
8189 SelectionDAG
&DAG
) const {
8190 EVT VT
= Op
.getOperand(0).getValueType();
8196 ConstantSDNode
*Cst
= dyn_cast
<ConstantSDNode
>(Op
.getOperand(1));
8199 unsigned Val
= Cst
->getZExtValue();
8201 unsigned Size
= Op
.getValueSizeInBits();
8203 // This will get lowered to an appropriate EXTRACT_SUBREG in ISel.
8207 // If this is extracting the upper 64-bits of a 128-bit vector, we match
8209 if (Size
== 64 && Val
* VT
.getScalarSizeInBits() == 64)
8215 bool AArch64TargetLowering::isShuffleMaskLegal(ArrayRef
<int> M
, EVT VT
) const {
8216 if (VT
.getVectorNumElements() == 4 &&
8217 (VT
.is128BitVector() || VT
.is64BitVector())) {
8218 unsigned PFIndexes
[4];
8219 for (unsigned i
= 0; i
!= 4; ++i
) {
8223 PFIndexes
[i
] = M
[i
];
8226 // Compute the index in the perfect shuffle table.
8227 unsigned PFTableIndex
= PFIndexes
[0] * 9 * 9 * 9 + PFIndexes
[1] * 9 * 9 +
8228 PFIndexes
[2] * 9 + PFIndexes
[3];
8229 unsigned PFEntry
= PerfectShuffleTable
[PFTableIndex
];
8230 unsigned Cost
= (PFEntry
>> 30);
8238 unsigned DummyUnsigned
;
8240 return (ShuffleVectorSDNode::isSplatMask(&M
[0], VT
) || isREVMask(M
, VT
, 64) ||
8241 isREVMask(M
, VT
, 32) || isREVMask(M
, VT
, 16) ||
8242 isEXTMask(M
, VT
, DummyBool
, DummyUnsigned
) ||
8243 // isTBLMask(M, VT) || // FIXME: Port TBL support from ARM.
8244 isTRNMask(M
, VT
, DummyUnsigned
) || isUZPMask(M
, VT
, DummyUnsigned
) ||
8245 isZIPMask(M
, VT
, DummyUnsigned
) ||
8246 isTRN_v_undef_Mask(M
, VT
, DummyUnsigned
) ||
8247 isUZP_v_undef_Mask(M
, VT
, DummyUnsigned
) ||
8248 isZIP_v_undef_Mask(M
, VT
, DummyUnsigned
) ||
8249 isINSMask(M
, VT
.getVectorNumElements(), DummyBool
, DummyInt
) ||
8250 isConcatMask(M
, VT
, VT
.getSizeInBits() == 128));
8253 /// getVShiftImm - Check if this is a valid build_vector for the immediate
8254 /// operand of a vector shift operation, where all the elements of the
8255 /// build_vector must have the same constant integer value.
8256 static bool getVShiftImm(SDValue Op
, unsigned ElementBits
, int64_t &Cnt
) {
8257 // Ignore bit_converts.
8258 while (Op
.getOpcode() == ISD::BITCAST
)
8259 Op
= Op
.getOperand(0);
8260 BuildVectorSDNode
*BVN
= dyn_cast
<BuildVectorSDNode
>(Op
.getNode());
8261 APInt SplatBits
, SplatUndef
;
8262 unsigned SplatBitSize
;
8264 if (!BVN
|| !BVN
->isConstantSplat(SplatBits
, SplatUndef
, SplatBitSize
,
8265 HasAnyUndefs
, ElementBits
) ||
8266 SplatBitSize
> ElementBits
)
8268 Cnt
= SplatBits
.getSExtValue();
8272 /// isVShiftLImm - Check if this is a valid build_vector for the immediate
8273 /// operand of a vector shift left operation. That value must be in the range:
8274 /// 0 <= Value < ElementBits for a left shift; or
8275 /// 0 <= Value <= ElementBits for a long left shift.
8276 static bool isVShiftLImm(SDValue Op
, EVT VT
, bool isLong
, int64_t &Cnt
) {
8277 assert(VT
.isVector() && "vector shift count is not a vector type");
8278 int64_t ElementBits
= VT
.getScalarSizeInBits();
8279 if (!getVShiftImm(Op
, ElementBits
, Cnt
))
8281 return (Cnt
>= 0 && (isLong
? Cnt
- 1 : Cnt
) < ElementBits
);
8284 /// isVShiftRImm - Check if this is a valid build_vector for the immediate
8285 /// operand of a vector shift right operation. The value must be in the range:
8286 /// 1 <= Value <= ElementBits for a right shift; or
8287 static bool isVShiftRImm(SDValue Op
, EVT VT
, bool isNarrow
, int64_t &Cnt
) {
8288 assert(VT
.isVector() && "vector shift count is not a vector type");
8289 int64_t ElementBits
= VT
.getScalarSizeInBits();
8290 if (!getVShiftImm(Op
, ElementBits
, Cnt
))
8292 return (Cnt
>= 1 && Cnt
<= (isNarrow
? ElementBits
/ 2 : ElementBits
));
8295 SDValue
AArch64TargetLowering::LowerVectorSRA_SRL_SHL(SDValue Op
,
8296 SelectionDAG
&DAG
) const {
8297 EVT VT
= Op
.getValueType();
8301 if (!Op
.getOperand(1).getValueType().isVector())
8303 unsigned EltSize
= VT
.getScalarSizeInBits();
8305 switch (Op
.getOpcode()) {
8307 llvm_unreachable("unexpected shift opcode");
8310 if (isVShiftLImm(Op
.getOperand(1), VT
, false, Cnt
) && Cnt
< EltSize
)
8311 return DAG
.getNode(AArch64ISD::VSHL
, DL
, VT
, Op
.getOperand(0),
8312 DAG
.getConstant(Cnt
, DL
, MVT::i32
));
8313 return DAG
.getNode(ISD::INTRINSIC_WO_CHAIN
, DL
, VT
,
8314 DAG
.getConstant(Intrinsic::aarch64_neon_ushl
, DL
,
8316 Op
.getOperand(0), Op
.getOperand(1));
8319 // Right shift immediate
8320 if (isVShiftRImm(Op
.getOperand(1), VT
, false, Cnt
) && Cnt
< EltSize
) {
8322 (Op
.getOpcode() == ISD::SRA
) ? AArch64ISD::VASHR
: AArch64ISD::VLSHR
;
8323 return DAG
.getNode(Opc
, DL
, VT
, Op
.getOperand(0),
8324 DAG
.getConstant(Cnt
, DL
, MVT::i32
));
8327 // Right shift register. Note, there is not a shift right register
8328 // instruction, but the shift left register instruction takes a signed
8329 // value, where negative numbers specify a right shift.
8330 unsigned Opc
= (Op
.getOpcode() == ISD::SRA
) ? Intrinsic::aarch64_neon_sshl
8331 : Intrinsic::aarch64_neon_ushl
;
8332 // negate the shift amount
8333 SDValue NegShift
= DAG
.getNode(AArch64ISD::NEG
, DL
, VT
, Op
.getOperand(1));
8334 SDValue NegShiftLeft
=
8335 DAG
.getNode(ISD::INTRINSIC_WO_CHAIN
, DL
, VT
,
8336 DAG
.getConstant(Opc
, DL
, MVT::i32
), Op
.getOperand(0),
8338 return NegShiftLeft
;
8344 static SDValue
EmitVectorComparison(SDValue LHS
, SDValue RHS
,
8345 AArch64CC::CondCode CC
, bool NoNans
, EVT VT
,
8346 const SDLoc
&dl
, SelectionDAG
&DAG
) {
8347 EVT SrcVT
= LHS
.getValueType();
8348 assert(VT
.getSizeInBits() == SrcVT
.getSizeInBits() &&
8349 "function only supposed to emit natural comparisons");
8351 BuildVectorSDNode
*BVN
= dyn_cast
<BuildVectorSDNode
>(RHS
.getNode());
8352 APInt
CnstBits(VT
.getSizeInBits(), 0);
8353 APInt
UndefBits(VT
.getSizeInBits(), 0);
8354 bool IsCnst
= BVN
&& resolveBuildVector(BVN
, CnstBits
, UndefBits
);
8355 bool IsZero
= IsCnst
&& (CnstBits
== 0);
8357 if (SrcVT
.getVectorElementType().isFloatingPoint()) {
8361 case AArch64CC::NE
: {
8364 Fcmeq
= DAG
.getNode(AArch64ISD::FCMEQz
, dl
, VT
, LHS
);
8366 Fcmeq
= DAG
.getNode(AArch64ISD::FCMEQ
, dl
, VT
, LHS
, RHS
);
8367 return DAG
.getNode(AArch64ISD::NOT
, dl
, VT
, Fcmeq
);
8371 return DAG
.getNode(AArch64ISD::FCMEQz
, dl
, VT
, LHS
);
8372 return DAG
.getNode(AArch64ISD::FCMEQ
, dl
, VT
, LHS
, RHS
);
8375 return DAG
.getNode(AArch64ISD::FCMGEz
, dl
, VT
, LHS
);
8376 return DAG
.getNode(AArch64ISD::FCMGE
, dl
, VT
, LHS
, RHS
);
8379 return DAG
.getNode(AArch64ISD::FCMGTz
, dl
, VT
, LHS
);
8380 return DAG
.getNode(AArch64ISD::FCMGT
, dl
, VT
, LHS
, RHS
);
8383 return DAG
.getNode(AArch64ISD::FCMLEz
, dl
, VT
, LHS
);
8384 return DAG
.getNode(AArch64ISD::FCMGE
, dl
, VT
, RHS
, LHS
);
8388 // If we ignore NaNs then we can use to the MI implementation.
8392 return DAG
.getNode(AArch64ISD::FCMLTz
, dl
, VT
, LHS
);
8393 return DAG
.getNode(AArch64ISD::FCMGT
, dl
, VT
, RHS
, LHS
);
8400 case AArch64CC::NE
: {
8403 Cmeq
= DAG
.getNode(AArch64ISD::CMEQz
, dl
, VT
, LHS
);
8405 Cmeq
= DAG
.getNode(AArch64ISD::CMEQ
, dl
, VT
, LHS
, RHS
);
8406 return DAG
.getNode(AArch64ISD::NOT
, dl
, VT
, Cmeq
);
8410 return DAG
.getNode(AArch64ISD::CMEQz
, dl
, VT
, LHS
);
8411 return DAG
.getNode(AArch64ISD::CMEQ
, dl
, VT
, LHS
, RHS
);
8414 return DAG
.getNode(AArch64ISD::CMGEz
, dl
, VT
, LHS
);
8415 return DAG
.getNode(AArch64ISD::CMGE
, dl
, VT
, LHS
, RHS
);
8418 return DAG
.getNode(AArch64ISD::CMGTz
, dl
, VT
, LHS
);
8419 return DAG
.getNode(AArch64ISD::CMGT
, dl
, VT
, LHS
, RHS
);
8422 return DAG
.getNode(AArch64ISD::CMLEz
, dl
, VT
, LHS
);
8423 return DAG
.getNode(AArch64ISD::CMGE
, dl
, VT
, RHS
, LHS
);
8425 return DAG
.getNode(AArch64ISD::CMHS
, dl
, VT
, RHS
, LHS
);
8427 return DAG
.getNode(AArch64ISD::CMHI
, dl
, VT
, RHS
, LHS
);
8430 return DAG
.getNode(AArch64ISD::CMLTz
, dl
, VT
, LHS
);
8431 return DAG
.getNode(AArch64ISD::CMGT
, dl
, VT
, RHS
, LHS
);
8433 return DAG
.getNode(AArch64ISD::CMHI
, dl
, VT
, LHS
, RHS
);
8435 return DAG
.getNode(AArch64ISD::CMHS
, dl
, VT
, LHS
, RHS
);
8439 SDValue
AArch64TargetLowering::LowerVSETCC(SDValue Op
,
8440 SelectionDAG
&DAG
) const {
8441 ISD::CondCode CC
= cast
<CondCodeSDNode
>(Op
.getOperand(2))->get();
8442 SDValue LHS
= Op
.getOperand(0);
8443 SDValue RHS
= Op
.getOperand(1);
8444 EVT CmpVT
= LHS
.getValueType().changeVectorElementTypeToInteger();
8447 if (LHS
.getValueType().getVectorElementType().isInteger()) {
8448 assert(LHS
.getValueType() == RHS
.getValueType());
8449 AArch64CC::CondCode AArch64CC
= changeIntCCToAArch64CC(CC
);
8451 EmitVectorComparison(LHS
, RHS
, AArch64CC
, false, CmpVT
, dl
, DAG
);
8452 return DAG
.getSExtOrTrunc(Cmp
, dl
, Op
.getValueType());
8455 const bool FullFP16
=
8456 static_cast<const AArch64Subtarget
&>(DAG
.getSubtarget()).hasFullFP16();
8458 // Make v4f16 (only) fcmp operations utilise vector instructions
8459 // v8f16 support will be a litle more complicated
8460 if (!FullFP16
&& LHS
.getValueType().getVectorElementType() == MVT::f16
) {
8461 if (LHS
.getValueType().getVectorNumElements() == 4) {
8462 LHS
= DAG
.getNode(ISD::FP_EXTEND
, dl
, MVT::v4f32
, LHS
);
8463 RHS
= DAG
.getNode(ISD::FP_EXTEND
, dl
, MVT::v4f32
, RHS
);
8464 SDValue NewSetcc
= DAG
.getSetCC(dl
, MVT::v4i16
, LHS
, RHS
, CC
);
8465 DAG
.ReplaceAllUsesWith(Op
, NewSetcc
);
8471 assert((!FullFP16
&& LHS
.getValueType().getVectorElementType() != MVT::f16
) ||
8472 LHS
.getValueType().getVectorElementType() != MVT::f128
);
8474 // Unfortunately, the mapping of LLVM FP CC's onto AArch64 CC's isn't totally
8475 // clean. Some of them require two branches to implement.
8476 AArch64CC::CondCode CC1
, CC2
;
8478 changeVectorFPCCToAArch64CC(CC
, CC1
, CC2
, ShouldInvert
);
8480 bool NoNaNs
= getTargetMachine().Options
.NoNaNsFPMath
;
8482 EmitVectorComparison(LHS
, RHS
, CC1
, NoNaNs
, CmpVT
, dl
, DAG
);
8486 if (CC2
!= AArch64CC::AL
) {
8488 EmitVectorComparison(LHS
, RHS
, CC2
, NoNaNs
, CmpVT
, dl
, DAG
);
8489 if (!Cmp2
.getNode())
8492 Cmp
= DAG
.getNode(ISD::OR
, dl
, CmpVT
, Cmp
, Cmp2
);
8495 Cmp
= DAG
.getSExtOrTrunc(Cmp
, dl
, Op
.getValueType());
8498 Cmp
= DAG
.getNOT(dl
, Cmp
, Cmp
.getValueType());
8503 static SDValue
getReductionSDNode(unsigned Op
, SDLoc DL
, SDValue ScalarOp
,
8504 SelectionDAG
&DAG
) {
8505 SDValue VecOp
= ScalarOp
.getOperand(0);
8506 auto Rdx
= DAG
.getNode(Op
, DL
, VecOp
.getSimpleValueType(), VecOp
);
8507 return DAG
.getNode(ISD::EXTRACT_VECTOR_ELT
, DL
, ScalarOp
.getValueType(), Rdx
,
8508 DAG
.getConstant(0, DL
, MVT::i64
));
8511 SDValue
AArch64TargetLowering::LowerVECREDUCE(SDValue Op
,
8512 SelectionDAG
&DAG
) const {
8514 switch (Op
.getOpcode()) {
8515 case ISD::VECREDUCE_ADD
:
8516 return getReductionSDNode(AArch64ISD::UADDV
, dl
, Op
, DAG
);
8517 case ISD::VECREDUCE_SMAX
:
8518 return getReductionSDNode(AArch64ISD::SMAXV
, dl
, Op
, DAG
);
8519 case ISD::VECREDUCE_SMIN
:
8520 return getReductionSDNode(AArch64ISD::SMINV
, dl
, Op
, DAG
);
8521 case ISD::VECREDUCE_UMAX
:
8522 return getReductionSDNode(AArch64ISD::UMAXV
, dl
, Op
, DAG
);
8523 case ISD::VECREDUCE_UMIN
:
8524 return getReductionSDNode(AArch64ISD::UMINV
, dl
, Op
, DAG
);
8525 case ISD::VECREDUCE_FMAX
: {
8526 assert(Op
->getFlags().hasNoNaNs() && "fmax vector reduction needs NoNaN flag");
8528 ISD::INTRINSIC_WO_CHAIN
, dl
, Op
.getValueType(),
8529 DAG
.getConstant(Intrinsic::aarch64_neon_fmaxnmv
, dl
, MVT::i32
),
8532 case ISD::VECREDUCE_FMIN
: {
8533 assert(Op
->getFlags().hasNoNaNs() && "fmin vector reduction needs NoNaN flag");
8535 ISD::INTRINSIC_WO_CHAIN
, dl
, Op
.getValueType(),
8536 DAG
.getConstant(Intrinsic::aarch64_neon_fminnmv
, dl
, MVT::i32
),
8540 llvm_unreachable("Unhandled reduction");
8544 SDValue
AArch64TargetLowering::LowerATOMIC_LOAD_SUB(SDValue Op
,
8545 SelectionDAG
&DAG
) const {
8546 auto &Subtarget
= static_cast<const AArch64Subtarget
&>(DAG
.getSubtarget());
8547 if (!Subtarget
.hasLSE())
8550 // LSE has an atomic load-add instruction, but not a load-sub.
8552 MVT VT
= Op
.getSimpleValueType();
8553 SDValue RHS
= Op
.getOperand(2);
8554 AtomicSDNode
*AN
= cast
<AtomicSDNode
>(Op
.getNode());
8555 RHS
= DAG
.getNode(ISD::SUB
, dl
, VT
, DAG
.getConstant(0, dl
, VT
), RHS
);
8556 return DAG
.getAtomic(ISD::ATOMIC_LOAD_ADD
, dl
, AN
->getMemoryVT(),
8557 Op
.getOperand(0), Op
.getOperand(1), RHS
,
8558 AN
->getMemOperand());
8561 SDValue
AArch64TargetLowering::LowerATOMIC_LOAD_AND(SDValue Op
,
8562 SelectionDAG
&DAG
) const {
8563 auto &Subtarget
= static_cast<const AArch64Subtarget
&>(DAG
.getSubtarget());
8564 if (!Subtarget
.hasLSE())
8567 // LSE has an atomic load-clear instruction, but not a load-and.
8569 MVT VT
= Op
.getSimpleValueType();
8570 SDValue RHS
= Op
.getOperand(2);
8571 AtomicSDNode
*AN
= cast
<AtomicSDNode
>(Op
.getNode());
8572 RHS
= DAG
.getNode(ISD::XOR
, dl
, VT
, DAG
.getConstant(-1ULL, dl
, VT
), RHS
);
8573 return DAG
.getAtomic(ISD::ATOMIC_LOAD_CLR
, dl
, AN
->getMemoryVT(),
8574 Op
.getOperand(0), Op
.getOperand(1), RHS
,
8575 AN
->getMemOperand());
8578 SDValue
AArch64TargetLowering::LowerWindowsDYNAMIC_STACKALLOC(
8579 SDValue Op
, SDValue Chain
, SDValue
&Size
, SelectionDAG
&DAG
) const {
8581 EVT PtrVT
= getPointerTy(DAG
.getDataLayout());
8582 SDValue Callee
= DAG
.getTargetExternalSymbol("__chkstk", PtrVT
, 0);
8584 const AArch64RegisterInfo
*TRI
= Subtarget
->getRegisterInfo();
8585 const uint32_t *Mask
= TRI
->getWindowsStackProbePreservedMask();
8586 if (Subtarget
->hasCustomCallingConv())
8587 TRI
->UpdateCustomCallPreservedMask(DAG
.getMachineFunction(), &Mask
);
8589 Size
= DAG
.getNode(ISD::SRL
, dl
, MVT::i64
, Size
,
8590 DAG
.getConstant(4, dl
, MVT::i64
));
8591 Chain
= DAG
.getCopyToReg(Chain
, dl
, AArch64::X15
, Size
, SDValue());
8593 DAG
.getNode(AArch64ISD::CALL
, dl
, DAG
.getVTList(MVT::Other
, MVT::Glue
),
8594 Chain
, Callee
, DAG
.getRegister(AArch64::X15
, MVT::i64
),
8595 DAG
.getRegisterMask(Mask
), Chain
.getValue(1));
8596 // To match the actual intent better, we should read the output from X15 here
8597 // again (instead of potentially spilling it to the stack), but rereading Size
8598 // from X15 here doesn't work at -O0, since it thinks that X15 is undefined
8601 Size
= DAG
.getNode(ISD::SHL
, dl
, MVT::i64
, Size
,
8602 DAG
.getConstant(4, dl
, MVT::i64
));
8607 AArch64TargetLowering::LowerDYNAMIC_STACKALLOC(SDValue Op
,
8608 SelectionDAG
&DAG
) const {
8609 assert(Subtarget
->isTargetWindows() &&
8610 "Only Windows alloca probing supported");
8613 SDNode
*Node
= Op
.getNode();
8614 SDValue Chain
= Op
.getOperand(0);
8615 SDValue Size
= Op
.getOperand(1);
8616 unsigned Align
= cast
<ConstantSDNode
>(Op
.getOperand(2))->getZExtValue();
8617 EVT VT
= Node
->getValueType(0);
8619 if (DAG
.getMachineFunction().getFunction().hasFnAttribute(
8620 "no-stack-arg-probe")) {
8621 SDValue SP
= DAG
.getCopyFromReg(Chain
, dl
, AArch64::SP
, MVT::i64
);
8622 Chain
= SP
.getValue(1);
8623 SP
= DAG
.getNode(ISD::SUB
, dl
, MVT::i64
, SP
, Size
);
8625 SP
= DAG
.getNode(ISD::AND
, dl
, VT
, SP
.getValue(0),
8626 DAG
.getConstant(-(uint64_t)Align
, dl
, VT
));
8627 Chain
= DAG
.getCopyToReg(Chain
, dl
, AArch64::SP
, SP
);
8628 SDValue Ops
[2] = {SP
, Chain
};
8629 return DAG
.getMergeValues(Ops
, dl
);
8632 Chain
= DAG
.getCALLSEQ_START(Chain
, 0, 0, dl
);
8634 Chain
= LowerWindowsDYNAMIC_STACKALLOC(Op
, Chain
, Size
, DAG
);
8636 SDValue SP
= DAG
.getCopyFromReg(Chain
, dl
, AArch64::SP
, MVT::i64
);
8637 Chain
= SP
.getValue(1);
8638 SP
= DAG
.getNode(ISD::SUB
, dl
, MVT::i64
, SP
, Size
);
8640 SP
= DAG
.getNode(ISD::AND
, dl
, VT
, SP
.getValue(0),
8641 DAG
.getConstant(-(uint64_t)Align
, dl
, VT
));
8642 Chain
= DAG
.getCopyToReg(Chain
, dl
, AArch64::SP
, SP
);
8644 Chain
= DAG
.getCALLSEQ_END(Chain
, DAG
.getIntPtrConstant(0, dl
, true),
8645 DAG
.getIntPtrConstant(0, dl
, true), SDValue(), dl
);
8647 SDValue Ops
[2] = {SP
, Chain
};
8648 return DAG
.getMergeValues(Ops
, dl
);
8651 SDValue
AArch64TargetLowering::LowerVSCALE(SDValue Op
,
8652 SelectionDAG
&DAG
) const {
8653 EVT VT
= Op
.getValueType();
8654 assert(VT
!= MVT::i64
&& "Expected illegal VSCALE node");
8657 APInt MulImm
= cast
<ConstantSDNode
>(Op
.getOperand(0))->getAPIntValue();
8658 return DAG
.getZExtOrTrunc(DAG
.getVScale(DL
, MVT::i64
, MulImm
.sextOrSelf(64)),
8662 /// getTgtMemIntrinsic - Represent NEON load and store intrinsics as
8663 /// MemIntrinsicNodes. The associated MachineMemOperands record the alignment
8664 /// specified in the intrinsic calls.
8665 bool AArch64TargetLowering::getTgtMemIntrinsic(IntrinsicInfo
&Info
,
8667 MachineFunction
&MF
,
8668 unsigned Intrinsic
) const {
8669 auto &DL
= I
.getModule()->getDataLayout();
8670 switch (Intrinsic
) {
8671 case Intrinsic::aarch64_neon_ld2
:
8672 case Intrinsic::aarch64_neon_ld3
:
8673 case Intrinsic::aarch64_neon_ld4
:
8674 case Intrinsic::aarch64_neon_ld1x2
:
8675 case Intrinsic::aarch64_neon_ld1x3
:
8676 case Intrinsic::aarch64_neon_ld1x4
:
8677 case Intrinsic::aarch64_neon_ld2lane
:
8678 case Intrinsic::aarch64_neon_ld3lane
:
8679 case Intrinsic::aarch64_neon_ld4lane
:
8680 case Intrinsic::aarch64_neon_ld2r
:
8681 case Intrinsic::aarch64_neon_ld3r
:
8682 case Intrinsic::aarch64_neon_ld4r
: {
8683 Info
.opc
= ISD::INTRINSIC_W_CHAIN
;
8684 // Conservatively set memVT to the entire set of vectors loaded.
8685 uint64_t NumElts
= DL
.getTypeSizeInBits(I
.getType()) / 64;
8686 Info
.memVT
= EVT::getVectorVT(I
.getType()->getContext(), MVT::i64
, NumElts
);
8687 Info
.ptrVal
= I
.getArgOperand(I
.getNumArgOperands() - 1);
8690 // volatile loads with NEON intrinsics not supported
8691 Info
.flags
= MachineMemOperand::MOLoad
;
8694 case Intrinsic::aarch64_neon_st2
:
8695 case Intrinsic::aarch64_neon_st3
:
8696 case Intrinsic::aarch64_neon_st4
:
8697 case Intrinsic::aarch64_neon_st1x2
:
8698 case Intrinsic::aarch64_neon_st1x3
:
8699 case Intrinsic::aarch64_neon_st1x4
:
8700 case Intrinsic::aarch64_neon_st2lane
:
8701 case Intrinsic::aarch64_neon_st3lane
:
8702 case Intrinsic::aarch64_neon_st4lane
: {
8703 Info
.opc
= ISD::INTRINSIC_VOID
;
8704 // Conservatively set memVT to the entire set of vectors stored.
8705 unsigned NumElts
= 0;
8706 for (unsigned ArgI
= 0, ArgE
= I
.getNumArgOperands(); ArgI
< ArgE
; ++ArgI
) {
8707 Type
*ArgTy
= I
.getArgOperand(ArgI
)->getType();
8708 if (!ArgTy
->isVectorTy())
8710 NumElts
+= DL
.getTypeSizeInBits(ArgTy
) / 64;
8712 Info
.memVT
= EVT::getVectorVT(I
.getType()->getContext(), MVT::i64
, NumElts
);
8713 Info
.ptrVal
= I
.getArgOperand(I
.getNumArgOperands() - 1);
8716 // volatile stores with NEON intrinsics not supported
8717 Info
.flags
= MachineMemOperand::MOStore
;
8720 case Intrinsic::aarch64_ldaxr
:
8721 case Intrinsic::aarch64_ldxr
: {
8722 PointerType
*PtrTy
= cast
<PointerType
>(I
.getArgOperand(0)->getType());
8723 Info
.opc
= ISD::INTRINSIC_W_CHAIN
;
8724 Info
.memVT
= MVT::getVT(PtrTy
->getElementType());
8725 Info
.ptrVal
= I
.getArgOperand(0);
8727 Info
.align
= MaybeAlign(DL
.getABITypeAlignment(PtrTy
->getElementType()));
8728 Info
.flags
= MachineMemOperand::MOLoad
| MachineMemOperand::MOVolatile
;
8731 case Intrinsic::aarch64_stlxr
:
8732 case Intrinsic::aarch64_stxr
: {
8733 PointerType
*PtrTy
= cast
<PointerType
>(I
.getArgOperand(1)->getType());
8734 Info
.opc
= ISD::INTRINSIC_W_CHAIN
;
8735 Info
.memVT
= MVT::getVT(PtrTy
->getElementType());
8736 Info
.ptrVal
= I
.getArgOperand(1);
8738 Info
.align
= MaybeAlign(DL
.getABITypeAlignment(PtrTy
->getElementType()));
8739 Info
.flags
= MachineMemOperand::MOStore
| MachineMemOperand::MOVolatile
;
8742 case Intrinsic::aarch64_ldaxp
:
8743 case Intrinsic::aarch64_ldxp
:
8744 Info
.opc
= ISD::INTRINSIC_W_CHAIN
;
8745 Info
.memVT
= MVT::i128
;
8746 Info
.ptrVal
= I
.getArgOperand(0);
8748 Info
.align
= Align(16);
8749 Info
.flags
= MachineMemOperand::MOLoad
| MachineMemOperand::MOVolatile
;
8751 case Intrinsic::aarch64_stlxp
:
8752 case Intrinsic::aarch64_stxp
:
8753 Info
.opc
= ISD::INTRINSIC_W_CHAIN
;
8754 Info
.memVT
= MVT::i128
;
8755 Info
.ptrVal
= I
.getArgOperand(2);
8757 Info
.align
= Align(16);
8758 Info
.flags
= MachineMemOperand::MOStore
| MachineMemOperand::MOVolatile
;
8760 case Intrinsic::aarch64_sve_ldnt1
: {
8761 PointerType
*PtrTy
= cast
<PointerType
>(I
.getArgOperand(1)->getType());
8762 Info
.opc
= ISD::INTRINSIC_W_CHAIN
;
8763 Info
.memVT
= MVT::getVT(PtrTy
->getElementType());
8764 Info
.ptrVal
= I
.getArgOperand(1);
8766 Info
.align
= MaybeAlign(DL
.getABITypeAlignment(PtrTy
->getElementType()));
8767 Info
.flags
= MachineMemOperand::MOLoad
| MachineMemOperand::MONonTemporal
;
8770 case Intrinsic::aarch64_sve_stnt1
: {
8771 PointerType
*PtrTy
= cast
<PointerType
>(I
.getArgOperand(2)->getType());
8772 Info
.opc
= ISD::INTRINSIC_W_CHAIN
;
8773 Info
.memVT
= MVT::getVT(PtrTy
->getElementType());
8774 Info
.ptrVal
= I
.getArgOperand(2);
8776 Info
.align
= MaybeAlign(DL
.getABITypeAlignment(PtrTy
->getElementType()));
8777 Info
.flags
= MachineMemOperand::MOStore
| MachineMemOperand::MONonTemporal
;
8787 bool AArch64TargetLowering::shouldReduceLoadWidth(SDNode
*Load
,
8788 ISD::LoadExtType ExtTy
,
8790 // TODO: This may be worth removing. Check regression tests for diffs.
8791 if (!TargetLoweringBase::shouldReduceLoadWidth(Load
, ExtTy
, NewVT
))
8794 // If we're reducing the load width in order to avoid having to use an extra
8795 // instruction to do extension then it's probably a good idea.
8796 if (ExtTy
!= ISD::NON_EXTLOAD
)
8798 // Don't reduce load width if it would prevent us from combining a shift into
8800 MemSDNode
*Mem
= dyn_cast
<MemSDNode
>(Load
);
8802 const SDValue
&Base
= Mem
->getBasePtr();
8803 if (Base
.getOpcode() == ISD::ADD
&&
8804 Base
.getOperand(1).getOpcode() == ISD::SHL
&&
8805 Base
.getOperand(1).hasOneUse() &&
8806 Base
.getOperand(1).getOperand(1).getOpcode() == ISD::Constant
) {
8807 // The shift can be combined if it matches the size of the value being
8808 // loaded (and so reducing the width would make it not match).
8809 uint64_t ShiftAmount
= Base
.getOperand(1).getConstantOperandVal(1);
8810 uint64_t LoadBytes
= Mem
->getMemoryVT().getSizeInBits()/8;
8811 if (ShiftAmount
== Log2_32(LoadBytes
))
8814 // We have no reason to disallow reducing the load width, so allow it.
8818 // Truncations from 64-bit GPR to 32-bit GPR is free.
8819 bool AArch64TargetLowering::isTruncateFree(Type
*Ty1
, Type
*Ty2
) const {
8820 if (!Ty1
->isIntegerTy() || !Ty2
->isIntegerTy())
8822 unsigned NumBits1
= Ty1
->getPrimitiveSizeInBits();
8823 unsigned NumBits2
= Ty2
->getPrimitiveSizeInBits();
8824 return NumBits1
> NumBits2
;
8826 bool AArch64TargetLowering::isTruncateFree(EVT VT1
, EVT VT2
) const {
8827 if (VT1
.isVector() || VT2
.isVector() || !VT1
.isInteger() || !VT2
.isInteger())
8829 unsigned NumBits1
= VT1
.getSizeInBits();
8830 unsigned NumBits2
= VT2
.getSizeInBits();
8831 return NumBits1
> NumBits2
;
8834 /// Check if it is profitable to hoist instruction in then/else to if.
8835 /// Not profitable if I and it's user can form a FMA instruction
8836 /// because we prefer FMSUB/FMADD.
8837 bool AArch64TargetLowering::isProfitableToHoist(Instruction
*I
) const {
8838 if (I
->getOpcode() != Instruction::FMul
)
8841 if (!I
->hasOneUse())
8844 Instruction
*User
= I
->user_back();
8847 !(User
->getOpcode() == Instruction::FSub
||
8848 User
->getOpcode() == Instruction::FAdd
))
8851 const TargetOptions
&Options
= getTargetMachine().Options
;
8852 const Function
*F
= I
->getFunction();
8853 const DataLayout
&DL
= F
->getParent()->getDataLayout();
8854 Type
*Ty
= User
->getOperand(0)->getType();
8856 return !(isFMAFasterThanFMulAndFAdd(*F
, Ty
) &&
8857 isOperationLegalOrCustom(ISD::FMA
, getValueType(DL
, Ty
)) &&
8858 (Options
.AllowFPOpFusion
== FPOpFusion::Fast
||
8859 Options
.UnsafeFPMath
));
8862 // All 32-bit GPR operations implicitly zero the high-half of the corresponding
8864 bool AArch64TargetLowering::isZExtFree(Type
*Ty1
, Type
*Ty2
) const {
8865 if (!Ty1
->isIntegerTy() || !Ty2
->isIntegerTy())
8867 unsigned NumBits1
= Ty1
->getPrimitiveSizeInBits();
8868 unsigned NumBits2
= Ty2
->getPrimitiveSizeInBits();
8869 return NumBits1
== 32 && NumBits2
== 64;
8871 bool AArch64TargetLowering::isZExtFree(EVT VT1
, EVT VT2
) const {
8872 if (VT1
.isVector() || VT2
.isVector() || !VT1
.isInteger() || !VT2
.isInteger())
8874 unsigned NumBits1
= VT1
.getSizeInBits();
8875 unsigned NumBits2
= VT2
.getSizeInBits();
8876 return NumBits1
== 32 && NumBits2
== 64;
8879 bool AArch64TargetLowering::isZExtFree(SDValue Val
, EVT VT2
) const {
8880 EVT VT1
= Val
.getValueType();
8881 if (isZExtFree(VT1
, VT2
)) {
8885 if (Val
.getOpcode() != ISD::LOAD
)
8888 // 8-, 16-, and 32-bit integer loads all implicitly zero-extend.
8889 return (VT1
.isSimple() && !VT1
.isVector() && VT1
.isInteger() &&
8890 VT2
.isSimple() && !VT2
.isVector() && VT2
.isInteger() &&
8891 VT1
.getSizeInBits() <= 32);
8894 bool AArch64TargetLowering::isExtFreeImpl(const Instruction
*Ext
) const {
8895 if (isa
<FPExtInst
>(Ext
))
8898 // Vector types are not free.
8899 if (Ext
->getType()->isVectorTy())
8902 for (const Use
&U
: Ext
->uses()) {
8903 // The extension is free if we can fold it with a left shift in an
8904 // addressing mode or an arithmetic operation: add, sub, and cmp.
8906 // Is there a shift?
8907 const Instruction
*Instr
= cast
<Instruction
>(U
.getUser());
8909 // Is this a constant shift?
8910 switch (Instr
->getOpcode()) {
8911 case Instruction::Shl
:
8912 if (!isa
<ConstantInt
>(Instr
->getOperand(1)))
8915 case Instruction::GetElementPtr
: {
8916 gep_type_iterator GTI
= gep_type_begin(Instr
);
8917 auto &DL
= Ext
->getModule()->getDataLayout();
8918 std::advance(GTI
, U
.getOperandNo()-1);
8919 Type
*IdxTy
= GTI
.getIndexedType();
8920 // This extension will end up with a shift because of the scaling factor.
8921 // 8-bit sized types have a scaling factor of 1, thus a shift amount of 0.
8922 // Get the shift amount based on the scaling factor:
8923 // log2(sizeof(IdxTy)) - log2(8).
8925 countTrailingZeros(DL
.getTypeStoreSizeInBits(IdxTy
).getFixedSize()) - 3;
8926 // Is the constant foldable in the shift of the addressing mode?
8927 // I.e., shift amount is between 1 and 4 inclusive.
8928 if (ShiftAmt
== 0 || ShiftAmt
> 4)
8932 case Instruction::Trunc
:
8933 // Check if this is a noop.
8934 // trunc(sext ty1 to ty2) to ty1.
8935 if (Instr
->getType() == Ext
->getOperand(0)->getType())
8942 // At this point we can use the bfm family, so this extension is free
8948 /// Check if both Op1 and Op2 are shufflevector extracts of either the lower
8949 /// or upper half of the vector elements.
8950 static bool areExtractShuffleVectors(Value
*Op1
, Value
*Op2
) {
8951 auto areTypesHalfed
= [](Value
*FullV
, Value
*HalfV
) {
8952 auto *FullVT
= cast
<VectorType
>(FullV
->getType());
8953 auto *HalfVT
= cast
<VectorType
>(HalfV
->getType());
8954 return FullVT
->getBitWidth() == 2 * HalfVT
->getBitWidth();
8957 auto extractHalf
= [](Value
*FullV
, Value
*HalfV
) {
8958 auto *FullVT
= cast
<VectorType
>(FullV
->getType());
8959 auto *HalfVT
= cast
<VectorType
>(HalfV
->getType());
8960 return FullVT
->getNumElements() == 2 * HalfVT
->getNumElements();
8964 Value
*S1Op1
, *S2Op1
;
8965 if (!match(Op1
, m_ShuffleVector(m_Value(S1Op1
), m_Undef(), m_Constant(M1
))) ||
8966 !match(Op2
, m_ShuffleVector(m_Value(S2Op1
), m_Undef(), m_Constant(M2
))))
8969 // Check that the operands are half as wide as the result and we extract
8970 // half of the elements of the input vectors.
8971 if (!areTypesHalfed(S1Op1
, Op1
) || !areTypesHalfed(S2Op1
, Op2
) ||
8972 !extractHalf(S1Op1
, Op1
) || !extractHalf(S2Op1
, Op2
))
8975 // Check the mask extracts either the lower or upper half of vector
8979 int NumElements
= cast
<VectorType
>(Op1
->getType())->getNumElements() * 2;
8980 if (!ShuffleVectorInst::isExtractSubvectorMask(M1
, NumElements
, M1Start
) ||
8981 !ShuffleVectorInst::isExtractSubvectorMask(M2
, NumElements
, M2Start
) ||
8982 M1Start
!= M2Start
|| (M1Start
!= 0 && M2Start
!= (NumElements
/ 2)))
8988 /// Check if Ext1 and Ext2 are extends of the same type, doubling the bitwidth
8989 /// of the vector elements.
8990 static bool areExtractExts(Value
*Ext1
, Value
*Ext2
) {
8991 auto areExtDoubled
= [](Instruction
*Ext
) {
8992 return Ext
->getType()->getScalarSizeInBits() ==
8993 2 * Ext
->getOperand(0)->getType()->getScalarSizeInBits();
8996 if (!match(Ext1
, m_ZExtOrSExt(m_Value())) ||
8997 !match(Ext2
, m_ZExtOrSExt(m_Value())) ||
8998 !areExtDoubled(cast
<Instruction
>(Ext1
)) ||
8999 !areExtDoubled(cast
<Instruction
>(Ext2
)))
9005 /// Check if sinking \p I's operands to I's basic block is profitable, because
9006 /// the operands can be folded into a target instruction, e.g.
9007 /// shufflevectors extracts and/or sext/zext can be folded into (u,s)subl(2).
9008 bool AArch64TargetLowering::shouldSinkOperands(
9009 Instruction
*I
, SmallVectorImpl
<Use
*> &Ops
) const {
9010 if (!I
->getType()->isVectorTy())
9013 if (IntrinsicInst
*II
= dyn_cast
<IntrinsicInst
>(I
)) {
9014 switch (II
->getIntrinsicID()) {
9015 case Intrinsic::aarch64_neon_umull
:
9016 if (!areExtractShuffleVectors(II
->getOperand(0), II
->getOperand(1)))
9018 Ops
.push_back(&II
->getOperandUse(0));
9019 Ops
.push_back(&II
->getOperandUse(1));
9026 switch (I
->getOpcode()) {
9027 case Instruction::Sub
:
9028 case Instruction::Add
: {
9029 if (!areExtractExts(I
->getOperand(0), I
->getOperand(1)))
9032 // If the exts' operands extract either the lower or upper elements, we
9033 // can sink them too.
9034 auto Ext1
= cast
<Instruction
>(I
->getOperand(0));
9035 auto Ext2
= cast
<Instruction
>(I
->getOperand(1));
9036 if (areExtractShuffleVectors(Ext1
, Ext2
)) {
9037 Ops
.push_back(&Ext1
->getOperandUse(0));
9038 Ops
.push_back(&Ext2
->getOperandUse(0));
9041 Ops
.push_back(&I
->getOperandUse(0));
9042 Ops
.push_back(&I
->getOperandUse(1));
9052 bool AArch64TargetLowering::hasPairedLoad(EVT LoadedType
,
9053 unsigned &RequiredAligment
) const {
9054 if (!LoadedType
.isSimple() ||
9055 (!LoadedType
.isInteger() && !LoadedType
.isFloatingPoint()))
9057 // Cyclone supports unaligned accesses.
9058 RequiredAligment
= 0;
9059 unsigned NumBits
= LoadedType
.getSizeInBits();
9060 return NumBits
== 32 || NumBits
== 64;
9063 /// A helper function for determining the number of interleaved accesses we
9064 /// will generate when lowering accesses of the given type.
9066 AArch64TargetLowering::getNumInterleavedAccesses(VectorType
*VecTy
,
9067 const DataLayout
&DL
) const {
9068 return (DL
.getTypeSizeInBits(VecTy
) + 127) / 128;
9071 MachineMemOperand::Flags
9072 AArch64TargetLowering::getTargetMMOFlags(const Instruction
&I
) const {
9073 if (Subtarget
->getProcFamily() == AArch64Subtarget::Falkor
&&
9074 I
.getMetadata(FALKOR_STRIDED_ACCESS_MD
) != nullptr)
9075 return MOStridedAccess
;
9076 return MachineMemOperand::MONone
;
9079 bool AArch64TargetLowering::isLegalInterleavedAccessType(
9080 VectorType
*VecTy
, const DataLayout
&DL
) const {
9082 unsigned VecSize
= DL
.getTypeSizeInBits(VecTy
);
9083 unsigned ElSize
= DL
.getTypeSizeInBits(VecTy
->getElementType());
9085 // Ensure the number of vector elements is greater than 1.
9086 if (VecTy
->getNumElements() < 2)
9089 // Ensure the element type is legal.
9090 if (ElSize
!= 8 && ElSize
!= 16 && ElSize
!= 32 && ElSize
!= 64)
9093 // Ensure the total vector size is 64 or a multiple of 128. Types larger than
9094 // 128 will be split into multiple interleaved accesses.
9095 return VecSize
== 64 || VecSize
% 128 == 0;
9098 /// Lower an interleaved load into a ldN intrinsic.
9100 /// E.g. Lower an interleaved load (Factor = 2):
9101 /// %wide.vec = load <8 x i32>, <8 x i32>* %ptr
9102 /// %v0 = shuffle %wide.vec, undef, <0, 2, 4, 6> ; Extract even elements
9103 /// %v1 = shuffle %wide.vec, undef, <1, 3, 5, 7> ; Extract odd elements
9106 /// %ld2 = { <4 x i32>, <4 x i32> } call llvm.aarch64.neon.ld2(%ptr)
9107 /// %vec0 = extractelement { <4 x i32>, <4 x i32> } %ld2, i32 0
9108 /// %vec1 = extractelement { <4 x i32>, <4 x i32> } %ld2, i32 1
9109 bool AArch64TargetLowering::lowerInterleavedLoad(
9110 LoadInst
*LI
, ArrayRef
<ShuffleVectorInst
*> Shuffles
,
9111 ArrayRef
<unsigned> Indices
, unsigned Factor
) const {
9112 assert(Factor
>= 2 && Factor
<= getMaxSupportedInterleaveFactor() &&
9113 "Invalid interleave factor");
9114 assert(!Shuffles
.empty() && "Empty shufflevector input");
9115 assert(Shuffles
.size() == Indices
.size() &&
9116 "Unmatched number of shufflevectors and indices");
9118 const DataLayout
&DL
= LI
->getModule()->getDataLayout();
9120 VectorType
*VecTy
= Shuffles
[0]->getType();
9122 // Skip if we do not have NEON and skip illegal vector types. We can
9123 // "legalize" wide vector types into multiple interleaved accesses as long as
9124 // the vector types are divisible by 128.
9125 if (!Subtarget
->hasNEON() || !isLegalInterleavedAccessType(VecTy
, DL
))
9128 unsigned NumLoads
= getNumInterleavedAccesses(VecTy
, DL
);
9130 // A pointer vector can not be the return type of the ldN intrinsics. Need to
9131 // load integer vectors first and then convert to pointer vectors.
9132 Type
*EltTy
= VecTy
->getVectorElementType();
9133 if (EltTy
->isPointerTy())
9135 VectorType::get(DL
.getIntPtrType(EltTy
), VecTy
->getVectorNumElements());
9137 IRBuilder
<> Builder(LI
);
9139 // The base address of the load.
9140 Value
*BaseAddr
= LI
->getPointerOperand();
9143 // If we're going to generate more than one load, reset the sub-vector type
9144 // to something legal.
9145 VecTy
= VectorType::get(VecTy
->getVectorElementType(),
9146 VecTy
->getVectorNumElements() / NumLoads
);
9148 // We will compute the pointer operand of each load from the original base
9149 // address using GEPs. Cast the base address to a pointer to the scalar
9151 BaseAddr
= Builder
.CreateBitCast(
9152 BaseAddr
, VecTy
->getVectorElementType()->getPointerTo(
9153 LI
->getPointerAddressSpace()));
9156 Type
*PtrTy
= VecTy
->getPointerTo(LI
->getPointerAddressSpace());
9157 Type
*Tys
[2] = {VecTy
, PtrTy
};
9158 static const Intrinsic::ID LoadInts
[3] = {Intrinsic::aarch64_neon_ld2
,
9159 Intrinsic::aarch64_neon_ld3
,
9160 Intrinsic::aarch64_neon_ld4
};
9162 Intrinsic::getDeclaration(LI
->getModule(), LoadInts
[Factor
- 2], Tys
);
9164 // Holds sub-vectors extracted from the load intrinsic return values. The
9165 // sub-vectors are associated with the shufflevector instructions they will
9167 DenseMap
<ShuffleVectorInst
*, SmallVector
<Value
*, 4>> SubVecs
;
9169 for (unsigned LoadCount
= 0; LoadCount
< NumLoads
; ++LoadCount
) {
9171 // If we're generating more than one load, compute the base address of
9172 // subsequent loads as an offset from the previous.
9175 Builder
.CreateConstGEP1_32(VecTy
->getVectorElementType(), BaseAddr
,
9176 VecTy
->getVectorNumElements() * Factor
);
9178 CallInst
*LdN
= Builder
.CreateCall(
9179 LdNFunc
, Builder
.CreateBitCast(BaseAddr
, PtrTy
), "ldN");
9181 // Extract and store the sub-vectors returned by the load intrinsic.
9182 for (unsigned i
= 0; i
< Shuffles
.size(); i
++) {
9183 ShuffleVectorInst
*SVI
= Shuffles
[i
];
9184 unsigned Index
= Indices
[i
];
9186 Value
*SubVec
= Builder
.CreateExtractValue(LdN
, Index
);
9188 // Convert the integer vector to pointer vector if the element is pointer.
9189 if (EltTy
->isPointerTy())
9190 SubVec
= Builder
.CreateIntToPtr(
9191 SubVec
, VectorType::get(SVI
->getType()->getVectorElementType(),
9192 VecTy
->getVectorNumElements()));
9193 SubVecs
[SVI
].push_back(SubVec
);
9197 // Replace uses of the shufflevector instructions with the sub-vectors
9198 // returned by the load intrinsic. If a shufflevector instruction is
9199 // associated with more than one sub-vector, those sub-vectors will be
9200 // concatenated into a single wide vector.
9201 for (ShuffleVectorInst
*SVI
: Shuffles
) {
9202 auto &SubVec
= SubVecs
[SVI
];
9204 SubVec
.size() > 1 ? concatenateVectors(Builder
, SubVec
) : SubVec
[0];
9205 SVI
->replaceAllUsesWith(WideVec
);
9211 /// Lower an interleaved store into a stN intrinsic.
9213 /// E.g. Lower an interleaved store (Factor = 3):
9214 /// %i.vec = shuffle <8 x i32> %v0, <8 x i32> %v1,
9215 /// <0, 4, 8, 1, 5, 9, 2, 6, 10, 3, 7, 11>
9216 /// store <12 x i32> %i.vec, <12 x i32>* %ptr
9219 /// %sub.v0 = shuffle <8 x i32> %v0, <8 x i32> v1, <0, 1, 2, 3>
9220 /// %sub.v1 = shuffle <8 x i32> %v0, <8 x i32> v1, <4, 5, 6, 7>
9221 /// %sub.v2 = shuffle <8 x i32> %v0, <8 x i32> v1, <8, 9, 10, 11>
9222 /// call void llvm.aarch64.neon.st3(%sub.v0, %sub.v1, %sub.v2, %ptr)
9224 /// Note that the new shufflevectors will be removed and we'll only generate one
9225 /// st3 instruction in CodeGen.
9227 /// Example for a more general valid mask (Factor 3). Lower:
9228 /// %i.vec = shuffle <32 x i32> %v0, <32 x i32> %v1,
9229 /// <4, 32, 16, 5, 33, 17, 6, 34, 18, 7, 35, 19>
9230 /// store <12 x i32> %i.vec, <12 x i32>* %ptr
9233 /// %sub.v0 = shuffle <32 x i32> %v0, <32 x i32> v1, <4, 5, 6, 7>
9234 /// %sub.v1 = shuffle <32 x i32> %v0, <32 x i32> v1, <32, 33, 34, 35>
9235 /// %sub.v2 = shuffle <32 x i32> %v0, <32 x i32> v1, <16, 17, 18, 19>
9236 /// call void llvm.aarch64.neon.st3(%sub.v0, %sub.v1, %sub.v2, %ptr)
9237 bool AArch64TargetLowering::lowerInterleavedStore(StoreInst
*SI
,
9238 ShuffleVectorInst
*SVI
,
9239 unsigned Factor
) const {
9240 assert(Factor
>= 2 && Factor
<= getMaxSupportedInterleaveFactor() &&
9241 "Invalid interleave factor");
9243 VectorType
*VecTy
= SVI
->getType();
9244 assert(VecTy
->getVectorNumElements() % Factor
== 0 &&
9245 "Invalid interleaved store");
9247 unsigned LaneLen
= VecTy
->getVectorNumElements() / Factor
;
9248 Type
*EltTy
= VecTy
->getVectorElementType();
9249 VectorType
*SubVecTy
= VectorType::get(EltTy
, LaneLen
);
9251 const DataLayout
&DL
= SI
->getModule()->getDataLayout();
9253 // Skip if we do not have NEON and skip illegal vector types. We can
9254 // "legalize" wide vector types into multiple interleaved accesses as long as
9255 // the vector types are divisible by 128.
9256 if (!Subtarget
->hasNEON() || !isLegalInterleavedAccessType(SubVecTy
, DL
))
9259 unsigned NumStores
= getNumInterleavedAccesses(SubVecTy
, DL
);
9261 Value
*Op0
= SVI
->getOperand(0);
9262 Value
*Op1
= SVI
->getOperand(1);
9263 IRBuilder
<> Builder(SI
);
9265 // StN intrinsics don't support pointer vectors as arguments. Convert pointer
9266 // vectors to integer vectors.
9267 if (EltTy
->isPointerTy()) {
9268 Type
*IntTy
= DL
.getIntPtrType(EltTy
);
9269 unsigned NumOpElts
= Op0
->getType()->getVectorNumElements();
9271 // Convert to the corresponding integer vector.
9272 Type
*IntVecTy
= VectorType::get(IntTy
, NumOpElts
);
9273 Op0
= Builder
.CreatePtrToInt(Op0
, IntVecTy
);
9274 Op1
= Builder
.CreatePtrToInt(Op1
, IntVecTy
);
9276 SubVecTy
= VectorType::get(IntTy
, LaneLen
);
9279 // The base address of the store.
9280 Value
*BaseAddr
= SI
->getPointerOperand();
9282 if (NumStores
> 1) {
9283 // If we're going to generate more than one store, reset the lane length
9284 // and sub-vector type to something legal.
9285 LaneLen
/= NumStores
;
9286 SubVecTy
= VectorType::get(SubVecTy
->getVectorElementType(), LaneLen
);
9288 // We will compute the pointer operand of each store from the original base
9289 // address using GEPs. Cast the base address to a pointer to the scalar
9291 BaseAddr
= Builder
.CreateBitCast(
9292 BaseAddr
, SubVecTy
->getVectorElementType()->getPointerTo(
9293 SI
->getPointerAddressSpace()));
9296 auto Mask
= SVI
->getShuffleMask();
9298 Type
*PtrTy
= SubVecTy
->getPointerTo(SI
->getPointerAddressSpace());
9299 Type
*Tys
[2] = {SubVecTy
, PtrTy
};
9300 static const Intrinsic::ID StoreInts
[3] = {Intrinsic::aarch64_neon_st2
,
9301 Intrinsic::aarch64_neon_st3
,
9302 Intrinsic::aarch64_neon_st4
};
9304 Intrinsic::getDeclaration(SI
->getModule(), StoreInts
[Factor
- 2], Tys
);
9306 for (unsigned StoreCount
= 0; StoreCount
< NumStores
; ++StoreCount
) {
9308 SmallVector
<Value
*, 5> Ops
;
9310 // Split the shufflevector operands into sub vectors for the new stN call.
9311 for (unsigned i
= 0; i
< Factor
; i
++) {
9312 unsigned IdxI
= StoreCount
* LaneLen
* Factor
+ i
;
9313 if (Mask
[IdxI
] >= 0) {
9314 Ops
.push_back(Builder
.CreateShuffleVector(
9315 Op0
, Op1
, createSequentialMask(Builder
, Mask
[IdxI
], LaneLen
, 0)));
9317 unsigned StartMask
= 0;
9318 for (unsigned j
= 1; j
< LaneLen
; j
++) {
9319 unsigned IdxJ
= StoreCount
* LaneLen
* Factor
+ j
;
9320 if (Mask
[IdxJ
* Factor
+ IdxI
] >= 0) {
9321 StartMask
= Mask
[IdxJ
* Factor
+ IdxI
] - IdxJ
;
9325 // Note: Filling undef gaps with random elements is ok, since
9326 // those elements were being written anyway (with undefs).
9327 // In the case of all undefs we're defaulting to using elems from 0
9328 // Note: StartMask cannot be negative, it's checked in
9329 // isReInterleaveMask
9330 Ops
.push_back(Builder
.CreateShuffleVector(
9331 Op0
, Op1
, createSequentialMask(Builder
, StartMask
, LaneLen
, 0)));
9335 // If we generating more than one store, we compute the base address of
9336 // subsequent stores as an offset from the previous.
9338 BaseAddr
= Builder
.CreateConstGEP1_32(SubVecTy
->getVectorElementType(),
9339 BaseAddr
, LaneLen
* Factor
);
9341 Ops
.push_back(Builder
.CreateBitCast(BaseAddr
, PtrTy
));
9342 Builder
.CreateCall(StNFunc
, Ops
);
9347 static bool memOpAlign(unsigned DstAlign
, unsigned SrcAlign
,
9348 unsigned AlignCheck
) {
9349 return ((SrcAlign
== 0 || SrcAlign
% AlignCheck
== 0) &&
9350 (DstAlign
== 0 || DstAlign
% AlignCheck
== 0));
9353 EVT
AArch64TargetLowering::getOptimalMemOpType(
9354 uint64_t Size
, unsigned DstAlign
, unsigned SrcAlign
, bool IsMemset
,
9355 bool ZeroMemset
, bool MemcpyStrSrc
,
9356 const AttributeList
&FuncAttributes
) const {
9357 bool CanImplicitFloat
=
9358 !FuncAttributes
.hasFnAttribute(Attribute::NoImplicitFloat
);
9359 bool CanUseNEON
= Subtarget
->hasNEON() && CanImplicitFloat
;
9360 bool CanUseFP
= Subtarget
->hasFPARMv8() && CanImplicitFloat
;
9361 // Only use AdvSIMD to implement memset of 32-byte and above. It would have
9362 // taken one instruction to materialize the v2i64 zero and one store (with
9363 // restrictive addressing mode). Just do i64 stores.
9364 bool IsSmallMemset
= IsMemset
&& Size
< 32;
9365 auto AlignmentIsAcceptable
= [&](EVT VT
, unsigned AlignCheck
) {
9366 if (memOpAlign(SrcAlign
, DstAlign
, AlignCheck
))
9369 return allowsMisalignedMemoryAccesses(VT
, 0, 1, MachineMemOperand::MONone
,
9374 if (CanUseNEON
&& IsMemset
&& !IsSmallMemset
&&
9375 AlignmentIsAcceptable(MVT::v2i64
, 16))
9377 if (CanUseFP
&& !IsSmallMemset
&& AlignmentIsAcceptable(MVT::f128
, 16))
9379 if (Size
>= 8 && AlignmentIsAcceptable(MVT::i64
, 8))
9381 if (Size
>= 4 && AlignmentIsAcceptable(MVT::i32
, 4))
9386 LLT
AArch64TargetLowering::getOptimalMemOpLLT(
9387 uint64_t Size
, unsigned DstAlign
, unsigned SrcAlign
, bool IsMemset
,
9388 bool ZeroMemset
, bool MemcpyStrSrc
,
9389 const AttributeList
&FuncAttributes
) const {
9390 bool CanImplicitFloat
=
9391 !FuncAttributes
.hasFnAttribute(Attribute::NoImplicitFloat
);
9392 bool CanUseNEON
= Subtarget
->hasNEON() && CanImplicitFloat
;
9393 bool CanUseFP
= Subtarget
->hasFPARMv8() && CanImplicitFloat
;
9394 // Only use AdvSIMD to implement memset of 32-byte and above. It would have
9395 // taken one instruction to materialize the v2i64 zero and one store (with
9396 // restrictive addressing mode). Just do i64 stores.
9397 bool IsSmallMemset
= IsMemset
&& Size
< 32;
9398 auto AlignmentIsAcceptable
= [&](EVT VT
, unsigned AlignCheck
) {
9399 if (memOpAlign(SrcAlign
, DstAlign
, AlignCheck
))
9402 return allowsMisalignedMemoryAccesses(VT
, 0, 1, MachineMemOperand::MONone
,
9407 if (CanUseNEON
&& IsMemset
&& !IsSmallMemset
&&
9408 AlignmentIsAcceptable(MVT::v2i64
, 16))
9409 return LLT::vector(2, 64);
9410 if (CanUseFP
&& !IsSmallMemset
&& AlignmentIsAcceptable(MVT::f128
, 16))
9411 return LLT::scalar(128);
9412 if (Size
>= 8 && AlignmentIsAcceptable(MVT::i64
, 8))
9413 return LLT::scalar(64);
9414 if (Size
>= 4 && AlignmentIsAcceptable(MVT::i32
, 4))
9415 return LLT::scalar(32);
9419 // 12-bit optionally shifted immediates are legal for adds.
9420 bool AArch64TargetLowering::isLegalAddImmediate(int64_t Immed
) const {
9421 if (Immed
== std::numeric_limits
<int64_t>::min()) {
9422 LLVM_DEBUG(dbgs() << "Illegal add imm " << Immed
9423 << ": avoid UB for INT64_MIN\n");
9426 // Same encoding for add/sub, just flip the sign.
9427 Immed
= std::abs(Immed
);
9428 bool IsLegal
= ((Immed
>> 12) == 0 ||
9429 ((Immed
& 0xfff) == 0 && Immed
>> 24 == 0));
9430 LLVM_DEBUG(dbgs() << "Is " << Immed
9431 << " legal add imm: " << (IsLegal
? "yes" : "no") << "\n");
9435 // Integer comparisons are implemented with ADDS/SUBS, so the range of valid
9436 // immediates is the same as for an add or a sub.
9437 bool AArch64TargetLowering::isLegalICmpImmediate(int64_t Immed
) const {
9438 return isLegalAddImmediate(Immed
);
9441 /// isLegalAddressingMode - Return true if the addressing mode represented
9442 /// by AM is legal for this target, for a load/store of the specified type.
9443 bool AArch64TargetLowering::isLegalAddressingMode(const DataLayout
&DL
,
9444 const AddrMode
&AM
, Type
*Ty
,
9445 unsigned AS
, Instruction
*I
) const {
9446 // AArch64 has five basic addressing modes:
9448 // reg + 9-bit signed offset
9449 // reg + SIZE_IN_BYTES * 12-bit unsigned offset
9451 // reg + SIZE_IN_BYTES * reg
9453 // No global is ever allowed as a base.
9457 // No reg+reg+imm addressing.
9458 if (AM
.HasBaseReg
&& AM
.BaseOffs
&& AM
.Scale
)
9461 // FIXME: Update this method to support scalable addressing modes.
9462 if (Ty
->isVectorTy() && Ty
->getVectorIsScalable())
9463 return AM
.HasBaseReg
&& !AM
.BaseOffs
&& !AM
.Scale
;
9465 // check reg + imm case:
9466 // i.e., reg + 0, reg + imm9, reg + SIZE_IN_BYTES * uimm12
9467 uint64_t NumBytes
= 0;
9468 if (Ty
->isSized()) {
9469 uint64_t NumBits
= DL
.getTypeSizeInBits(Ty
);
9470 NumBytes
= NumBits
/ 8;
9471 if (!isPowerOf2_64(NumBits
))
9476 int64_t Offset
= AM
.BaseOffs
;
9478 // 9-bit signed offset
9479 if (isInt
<9>(Offset
))
9482 // 12-bit unsigned offset
9483 unsigned shift
= Log2_64(NumBytes
);
9484 if (NumBytes
&& Offset
> 0 && (Offset
/ NumBytes
) <= (1LL << 12) - 1 &&
9485 // Must be a multiple of NumBytes (NumBytes is a power of 2)
9486 (Offset
>> shift
) << shift
== Offset
)
9491 // Check reg1 + SIZE_IN_BYTES * reg2 and reg1 + reg2
9493 return AM
.Scale
== 1 || (AM
.Scale
> 0 && (uint64_t)AM
.Scale
== NumBytes
);
9496 bool AArch64TargetLowering::shouldConsiderGEPOffsetSplit() const {
9497 // Consider splitting large offset of struct or array.
9501 int AArch64TargetLowering::getScalingFactorCost(const DataLayout
&DL
,
9502 const AddrMode
&AM
, Type
*Ty
,
9503 unsigned AS
) const {
9504 // Scaling factors are not free at all.
9505 // Operands | Rt Latency
9506 // -------------------------------------------
9508 // -------------------------------------------
9509 // Rt, [Xn, Xm, lsl #imm] | Rn: 4 Rm: 5
9510 // Rt, [Xn, Wm, <extend> #imm] |
9511 if (isLegalAddressingMode(DL
, AM
, Ty
, AS
))
9512 // Scale represents reg2 * scale, thus account for 1 if
9513 // it is not equal to 0 or 1.
9514 return AM
.Scale
!= 0 && AM
.Scale
!= 1;
9518 bool AArch64TargetLowering::isFMAFasterThanFMulAndFAdd(
9519 const MachineFunction
&MF
, EVT VT
) const {
9520 VT
= VT
.getScalarType();
9525 switch (VT
.getSimpleVT().SimpleTy
) {
9536 bool AArch64TargetLowering::isFMAFasterThanFMulAndFAdd(const Function
&F
,
9538 switch (Ty
->getScalarType()->getTypeID()) {
9539 case Type::FloatTyID
:
9540 case Type::DoubleTyID
:
9548 AArch64TargetLowering::getScratchRegisters(CallingConv::ID
) const {
9549 // LR is a callee-save register, but we must treat it as clobbered by any call
9550 // site. Hence we include LR in the scratch registers, which are in turn added
9551 // as implicit-defs for stackmaps and patchpoints.
9552 static const MCPhysReg ScratchRegs
[] = {
9553 AArch64::X16
, AArch64::X17
, AArch64::LR
, 0
9559 AArch64TargetLowering::isDesirableToCommuteWithShift(const SDNode
*N
,
9560 CombineLevel Level
) const {
9561 N
= N
->getOperand(0).getNode();
9562 EVT VT
= N
->getValueType(0);
9563 // If N is unsigned bit extraction: ((x >> C) & mask), then do not combine
9564 // it with shift to let it be lowered to UBFX.
9565 if (N
->getOpcode() == ISD::AND
&& (VT
== MVT::i32
|| VT
== MVT::i64
) &&
9566 isa
<ConstantSDNode
>(N
->getOperand(1))) {
9567 uint64_t TruncMask
= N
->getConstantOperandVal(1);
9568 if (isMask_64(TruncMask
) &&
9569 N
->getOperand(0).getOpcode() == ISD::SRL
&&
9570 isa
<ConstantSDNode
>(N
->getOperand(0)->getOperand(1)))
9576 bool AArch64TargetLowering::shouldConvertConstantLoadToIntImm(const APInt
&Imm
,
9578 assert(Ty
->isIntegerTy());
9580 unsigned BitSize
= Ty
->getPrimitiveSizeInBits();
9584 int64_t Val
= Imm
.getSExtValue();
9585 if (Val
== 0 || AArch64_AM::isLogicalImmediate(Val
, BitSize
))
9588 if ((int64_t)Val
< 0)
9591 Val
&= (1LL << 32) - 1;
9593 unsigned LZ
= countLeadingZeros((uint64_t)Val
);
9594 unsigned Shift
= (63 - LZ
) / 16;
9595 // MOVZ is free so return true for one or fewer MOVK.
9599 bool AArch64TargetLowering::isExtractSubvectorCheap(EVT ResVT
, EVT SrcVT
,
9600 unsigned Index
) const {
9601 if (!isOperationLegalOrCustom(ISD::EXTRACT_SUBVECTOR
, ResVT
))
9604 return (Index
== 0 || Index
== ResVT
.getVectorNumElements());
9607 /// Turn vector tests of the signbit in the form of:
9608 /// xor (sra X, elt_size(X)-1), -1
9611 static SDValue
foldVectorXorShiftIntoCmp(SDNode
*N
, SelectionDAG
&DAG
,
9612 const AArch64Subtarget
*Subtarget
) {
9613 EVT VT
= N
->getValueType(0);
9614 if (!Subtarget
->hasNEON() || !VT
.isVector())
9617 // There must be a shift right algebraic before the xor, and the xor must be a
9619 SDValue Shift
= N
->getOperand(0);
9620 SDValue Ones
= N
->getOperand(1);
9621 if (Shift
.getOpcode() != AArch64ISD::VASHR
|| !Shift
.hasOneUse() ||
9622 !ISD::isBuildVectorAllOnes(Ones
.getNode()))
9625 // The shift should be smearing the sign bit across each vector element.
9626 auto *ShiftAmt
= dyn_cast
<ConstantSDNode
>(Shift
.getOperand(1));
9627 EVT ShiftEltTy
= Shift
.getValueType().getVectorElementType();
9628 if (!ShiftAmt
|| ShiftAmt
->getZExtValue() != ShiftEltTy
.getSizeInBits() - 1)
9631 return DAG
.getNode(AArch64ISD::CMGEz
, SDLoc(N
), VT
, Shift
.getOperand(0));
9634 // Generate SUBS and CSEL for integer abs.
9635 static SDValue
performIntegerAbsCombine(SDNode
*N
, SelectionDAG
&DAG
) {
9636 EVT VT
= N
->getValueType(0);
9638 SDValue N0
= N
->getOperand(0);
9639 SDValue N1
= N
->getOperand(1);
9642 // Check pattern of XOR(ADD(X,Y), Y) where Y is SRA(X, size(X)-1)
9643 // and change it to SUB and CSEL.
9644 if (VT
.isInteger() && N
->getOpcode() == ISD::XOR
&&
9645 N0
.getOpcode() == ISD::ADD
&& N0
.getOperand(1) == N1
&&
9646 N1
.getOpcode() == ISD::SRA
&& N1
.getOperand(0) == N0
.getOperand(0))
9647 if (ConstantSDNode
*Y1C
= dyn_cast
<ConstantSDNode
>(N1
.getOperand(1)))
9648 if (Y1C
->getAPIntValue() == VT
.getSizeInBits() - 1) {
9649 SDValue Neg
= DAG
.getNode(ISD::SUB
, DL
, VT
, DAG
.getConstant(0, DL
, VT
),
9651 // Generate SUBS & CSEL.
9653 DAG
.getNode(AArch64ISD::SUBS
, DL
, DAG
.getVTList(VT
, MVT::i32
),
9654 N0
.getOperand(0), DAG
.getConstant(0, DL
, VT
));
9655 return DAG
.getNode(AArch64ISD::CSEL
, DL
, VT
, N0
.getOperand(0), Neg
,
9656 DAG
.getConstant(AArch64CC::PL
, DL
, MVT::i32
),
9657 SDValue(Cmp
.getNode(), 1));
9662 static SDValue
performXorCombine(SDNode
*N
, SelectionDAG
&DAG
,
9663 TargetLowering::DAGCombinerInfo
&DCI
,
9664 const AArch64Subtarget
*Subtarget
) {
9665 if (DCI
.isBeforeLegalizeOps())
9668 if (SDValue Cmp
= foldVectorXorShiftIntoCmp(N
, DAG
, Subtarget
))
9671 return performIntegerAbsCombine(N
, DAG
);
9675 AArch64TargetLowering::BuildSDIVPow2(SDNode
*N
, const APInt
&Divisor
,
9677 SmallVectorImpl
<SDNode
*> &Created
) const {
9678 AttributeList Attr
= DAG
.getMachineFunction().getFunction().getAttributes();
9679 if (isIntDivCheap(N
->getValueType(0), Attr
))
9680 return SDValue(N
,0); // Lower SDIV as SDIV
9682 // fold (sdiv X, pow2)
9683 EVT VT
= N
->getValueType(0);
9684 if ((VT
!= MVT::i32
&& VT
!= MVT::i64
) ||
9685 !(Divisor
.isPowerOf2() || (-Divisor
).isPowerOf2()))
9689 SDValue N0
= N
->getOperand(0);
9690 unsigned Lg2
= Divisor
.countTrailingZeros();
9691 SDValue Zero
= DAG
.getConstant(0, DL
, VT
);
9692 SDValue Pow2MinusOne
= DAG
.getConstant((1ULL << Lg2
) - 1, DL
, VT
);
9694 // Add (N0 < 0) ? Pow2 - 1 : 0;
9696 SDValue Cmp
= getAArch64Cmp(N0
, Zero
, ISD::SETLT
, CCVal
, DAG
, DL
);
9697 SDValue Add
= DAG
.getNode(ISD::ADD
, DL
, VT
, N0
, Pow2MinusOne
);
9698 SDValue CSel
= DAG
.getNode(AArch64ISD::CSEL
, DL
, VT
, Add
, N0
, CCVal
, Cmp
);
9700 Created
.push_back(Cmp
.getNode());
9701 Created
.push_back(Add
.getNode());
9702 Created
.push_back(CSel
.getNode());
9706 DAG
.getNode(ISD::SRA
, DL
, VT
, CSel
, DAG
.getConstant(Lg2
, DL
, MVT::i64
));
9708 // If we're dividing by a positive value, we're done. Otherwise, we must
9709 // negate the result.
9710 if (Divisor
.isNonNegative())
9713 Created
.push_back(SRA
.getNode());
9714 return DAG
.getNode(ISD::SUB
, DL
, VT
, DAG
.getConstant(0, DL
, VT
), SRA
);
9717 static bool IsSVECntIntrinsic(SDValue S
) {
9718 switch(getIntrinsicID(S
.getNode())) {
9721 case Intrinsic::aarch64_sve_cntb
:
9722 case Intrinsic::aarch64_sve_cnth
:
9723 case Intrinsic::aarch64_sve_cntw
:
9724 case Intrinsic::aarch64_sve_cntd
:
9730 static SDValue
performMulCombine(SDNode
*N
, SelectionDAG
&DAG
,
9731 TargetLowering::DAGCombinerInfo
&DCI
,
9732 const AArch64Subtarget
*Subtarget
) {
9733 if (DCI
.isBeforeLegalizeOps())
9736 // The below optimizations require a constant RHS.
9737 if (!isa
<ConstantSDNode
>(N
->getOperand(1)))
9740 SDValue N0
= N
->getOperand(0);
9741 ConstantSDNode
*C
= cast
<ConstantSDNode
>(N
->getOperand(1));
9742 const APInt
&ConstValue
= C
->getAPIntValue();
9744 // Allow the scaling to be folded into the `cnt` instruction by preventing
9745 // the scaling to be obscured here. This makes it easier to pattern match.
9746 if (IsSVECntIntrinsic(N0
) ||
9747 (N0
->getOpcode() == ISD::TRUNCATE
&&
9748 (IsSVECntIntrinsic(N0
->getOperand(0)))))
9749 if (ConstValue
.sge(1) && ConstValue
.sle(16))
9752 // Multiplication of a power of two plus/minus one can be done more
9753 // cheaply as as shift+add/sub. For now, this is true unilaterally. If
9754 // future CPUs have a cheaper MADD instruction, this may need to be
9755 // gated on a subtarget feature. For Cyclone, 32-bit MADD is 4 cycles and
9756 // 64-bit is 5 cycles, so this is always a win.
9757 // More aggressively, some multiplications N0 * C can be lowered to
9758 // shift+add+shift if the constant C = A * B where A = 2^N + 1 and B = 2^M,
9759 // e.g. 6=3*2=(2+1)*2.
9760 // TODO: consider lowering more cases, e.g. C = 14, -6, -14 or even 45
9761 // which equals to (1+2)*16-(1+2).
9762 // TrailingZeroes is used to test if the mul can be lowered to
9764 unsigned TrailingZeroes
= ConstValue
.countTrailingZeros();
9765 if (TrailingZeroes
) {
9766 // Conservatively do not lower to shift+add+shift if the mul might be
9767 // folded into smul or umul.
9768 if (N0
->hasOneUse() && (isSignExtended(N0
.getNode(), DAG
) ||
9769 isZeroExtended(N0
.getNode(), DAG
)))
9771 // Conservatively do not lower to shift+add+shift if the mul might be
9772 // folded into madd or msub.
9773 if (N
->hasOneUse() && (N
->use_begin()->getOpcode() == ISD::ADD
||
9774 N
->use_begin()->getOpcode() == ISD::SUB
))
9777 // Use ShiftedConstValue instead of ConstValue to support both shift+add/sub
9778 // and shift+add+shift.
9779 APInt ShiftedConstValue
= ConstValue
.ashr(TrailingZeroes
);
9781 unsigned ShiftAmt
, AddSubOpc
;
9782 // Is the shifted value the LHS operand of the add/sub?
9783 bool ShiftValUseIsN0
= true;
9784 // Do we need to negate the result?
9785 bool NegateResult
= false;
9787 if (ConstValue
.isNonNegative()) {
9788 // (mul x, 2^N + 1) => (add (shl x, N), x)
9789 // (mul x, 2^N - 1) => (sub (shl x, N), x)
9790 // (mul x, (2^N + 1) * 2^M) => (shl (add (shl x, N), x), M)
9791 APInt SCVMinus1
= ShiftedConstValue
- 1;
9792 APInt CVPlus1
= ConstValue
+ 1;
9793 if (SCVMinus1
.isPowerOf2()) {
9794 ShiftAmt
= SCVMinus1
.logBase2();
9795 AddSubOpc
= ISD::ADD
;
9796 } else if (CVPlus1
.isPowerOf2()) {
9797 ShiftAmt
= CVPlus1
.logBase2();
9798 AddSubOpc
= ISD::SUB
;
9802 // (mul x, -(2^N - 1)) => (sub x, (shl x, N))
9803 // (mul x, -(2^N + 1)) => - (add (shl x, N), x)
9804 APInt CVNegPlus1
= -ConstValue
+ 1;
9805 APInt CVNegMinus1
= -ConstValue
- 1;
9806 if (CVNegPlus1
.isPowerOf2()) {
9807 ShiftAmt
= CVNegPlus1
.logBase2();
9808 AddSubOpc
= ISD::SUB
;
9809 ShiftValUseIsN0
= false;
9810 } else if (CVNegMinus1
.isPowerOf2()) {
9811 ShiftAmt
= CVNegMinus1
.logBase2();
9812 AddSubOpc
= ISD::ADD
;
9813 NegateResult
= true;
9819 EVT VT
= N
->getValueType(0);
9820 SDValue ShiftedVal
= DAG
.getNode(ISD::SHL
, DL
, VT
, N0
,
9821 DAG
.getConstant(ShiftAmt
, DL
, MVT::i64
));
9823 SDValue AddSubN0
= ShiftValUseIsN0
? ShiftedVal
: N0
;
9824 SDValue AddSubN1
= ShiftValUseIsN0
? N0
: ShiftedVal
;
9825 SDValue Res
= DAG
.getNode(AddSubOpc
, DL
, VT
, AddSubN0
, AddSubN1
);
9826 assert(!(NegateResult
&& TrailingZeroes
) &&
9827 "NegateResult and TrailingZeroes cannot both be true for now.");
9828 // Negate the result.
9830 return DAG
.getNode(ISD::SUB
, DL
, VT
, DAG
.getConstant(0, DL
, VT
), Res
);
9831 // Shift the result.
9833 return DAG
.getNode(ISD::SHL
, DL
, VT
, Res
,
9834 DAG
.getConstant(TrailingZeroes
, DL
, MVT::i64
));
9838 static SDValue
performVectorCompareAndMaskUnaryOpCombine(SDNode
*N
,
9839 SelectionDAG
&DAG
) {
9840 // Take advantage of vector comparisons producing 0 or -1 in each lane to
9841 // optimize away operation when it's from a constant.
9843 // The general transformation is:
9844 // UNARYOP(AND(VECTOR_CMP(x,y), constant)) -->
9845 // AND(VECTOR_CMP(x,y), constant2)
9846 // constant2 = UNARYOP(constant)
9848 // Early exit if this isn't a vector operation, the operand of the
9849 // unary operation isn't a bitwise AND, or if the sizes of the operations
9851 EVT VT
= N
->getValueType(0);
9852 if (!VT
.isVector() || N
->getOperand(0)->getOpcode() != ISD::AND
||
9853 N
->getOperand(0)->getOperand(0)->getOpcode() != ISD::SETCC
||
9854 VT
.getSizeInBits() != N
->getOperand(0)->getValueType(0).getSizeInBits())
9857 // Now check that the other operand of the AND is a constant. We could
9858 // make the transformation for non-constant splats as well, but it's unclear
9859 // that would be a benefit as it would not eliminate any operations, just
9860 // perform one more step in scalar code before moving to the vector unit.
9861 if (BuildVectorSDNode
*BV
=
9862 dyn_cast
<BuildVectorSDNode
>(N
->getOperand(0)->getOperand(1))) {
9863 // Bail out if the vector isn't a constant.
9864 if (!BV
->isConstant())
9867 // Everything checks out. Build up the new and improved node.
9869 EVT IntVT
= BV
->getValueType(0);
9870 // Create a new constant of the appropriate type for the transformed
9872 SDValue SourceConst
= DAG
.getNode(N
->getOpcode(), DL
, VT
, SDValue(BV
, 0));
9873 // The AND node needs bitcasts to/from an integer vector type around it.
9874 SDValue MaskConst
= DAG
.getNode(ISD::BITCAST
, DL
, IntVT
, SourceConst
);
9875 SDValue NewAnd
= DAG
.getNode(ISD::AND
, DL
, IntVT
,
9876 N
->getOperand(0)->getOperand(0), MaskConst
);
9877 SDValue Res
= DAG
.getNode(ISD::BITCAST
, DL
, VT
, NewAnd
);
9884 static SDValue
performIntToFpCombine(SDNode
*N
, SelectionDAG
&DAG
,
9885 const AArch64Subtarget
*Subtarget
) {
9886 // First try to optimize away the conversion when it's conditionally from
9887 // a constant. Vectors only.
9888 if (SDValue Res
= performVectorCompareAndMaskUnaryOpCombine(N
, DAG
))
9891 EVT VT
= N
->getValueType(0);
9892 if (VT
!= MVT::f32
&& VT
!= MVT::f64
)
9895 // Only optimize when the source and destination types have the same width.
9896 if (VT
.getSizeInBits() != N
->getOperand(0).getValueSizeInBits())
9899 // If the result of an integer load is only used by an integer-to-float
9900 // conversion, use a fp load instead and a AdvSIMD scalar {S|U}CVTF instead.
9901 // This eliminates an "integer-to-vector-move" UOP and improves throughput.
9902 SDValue N0
= N
->getOperand(0);
9903 if (Subtarget
->hasNEON() && ISD::isNormalLoad(N0
.getNode()) && N0
.hasOneUse() &&
9904 // Do not change the width of a volatile load.
9905 !cast
<LoadSDNode
>(N0
)->isVolatile()) {
9906 LoadSDNode
*LN0
= cast
<LoadSDNode
>(N0
);
9907 SDValue Load
= DAG
.getLoad(VT
, SDLoc(N
), LN0
->getChain(), LN0
->getBasePtr(),
9908 LN0
->getPointerInfo(), LN0
->getAlignment(),
9909 LN0
->getMemOperand()->getFlags());
9911 // Make sure successors of the original load stay after it by updating them
9912 // to use the new Chain.
9913 DAG
.ReplaceAllUsesOfValueWith(SDValue(LN0
, 1), Load
.getValue(1));
9916 (N
->getOpcode() == ISD::SINT_TO_FP
) ? AArch64ISD::SITOF
: AArch64ISD::UITOF
;
9917 return DAG
.getNode(Opcode
, SDLoc(N
), VT
, Load
);
9923 /// Fold a floating-point multiply by power of two into floating-point to
9924 /// fixed-point conversion.
9925 static SDValue
performFpToIntCombine(SDNode
*N
, SelectionDAG
&DAG
,
9926 TargetLowering::DAGCombinerInfo
&DCI
,
9927 const AArch64Subtarget
*Subtarget
) {
9928 if (!Subtarget
->hasNEON())
9931 if (!N
->getValueType(0).isSimple())
9934 SDValue Op
= N
->getOperand(0);
9935 if (!Op
.getValueType().isVector() || !Op
.getValueType().isSimple() ||
9936 Op
.getOpcode() != ISD::FMUL
)
9939 SDValue ConstVec
= Op
->getOperand(1);
9940 if (!isa
<BuildVectorSDNode
>(ConstVec
))
9943 MVT FloatTy
= Op
.getSimpleValueType().getVectorElementType();
9944 uint32_t FloatBits
= FloatTy
.getSizeInBits();
9945 if (FloatBits
!= 32 && FloatBits
!= 64)
9948 MVT IntTy
= N
->getSimpleValueType(0).getVectorElementType();
9949 uint32_t IntBits
= IntTy
.getSizeInBits();
9950 if (IntBits
!= 16 && IntBits
!= 32 && IntBits
!= 64)
9953 // Avoid conversions where iN is larger than the float (e.g., float -> i64).
9954 if (IntBits
> FloatBits
)
9957 BitVector UndefElements
;
9958 BuildVectorSDNode
*BV
= cast
<BuildVectorSDNode
>(ConstVec
);
9959 int32_t Bits
= IntBits
== 64 ? 64 : 32;
9960 int32_t C
= BV
->getConstantFPSplatPow2ToLog2Int(&UndefElements
, Bits
+ 1);
9961 if (C
== -1 || C
== 0 || C
> Bits
)
9965 unsigned NumLanes
= Op
.getValueType().getVectorNumElements();
9970 ResTy
= FloatBits
== 32 ? MVT::v2i32
: MVT::v2i64
;
9973 ResTy
= FloatBits
== 32 ? MVT::v4i32
: MVT::v4i64
;
9977 if (ResTy
== MVT::v4i64
&& DCI
.isBeforeLegalizeOps())
9980 assert((ResTy
!= MVT::v4i64
|| DCI
.isBeforeLegalizeOps()) &&
9981 "Illegal vector type after legalization");
9984 bool IsSigned
= N
->getOpcode() == ISD::FP_TO_SINT
;
9985 unsigned IntrinsicOpcode
= IsSigned
? Intrinsic::aarch64_neon_vcvtfp2fxs
9986 : Intrinsic::aarch64_neon_vcvtfp2fxu
;
9988 DAG
.getNode(ISD::INTRINSIC_WO_CHAIN
, DL
, ResTy
,
9989 DAG
.getConstant(IntrinsicOpcode
, DL
, MVT::i32
),
9990 Op
->getOperand(0), DAG
.getConstant(C
, DL
, MVT::i32
));
9991 // We can handle smaller integers by generating an extra trunc.
9992 if (IntBits
< FloatBits
)
9993 FixConv
= DAG
.getNode(ISD::TRUNCATE
, DL
, N
->getValueType(0), FixConv
);
9998 /// Fold a floating-point divide by power of two into fixed-point to
9999 /// floating-point conversion.
10000 static SDValue
performFDivCombine(SDNode
*N
, SelectionDAG
&DAG
,
10001 TargetLowering::DAGCombinerInfo
&DCI
,
10002 const AArch64Subtarget
*Subtarget
) {
10003 if (!Subtarget
->hasNEON())
10006 SDValue Op
= N
->getOperand(0);
10007 unsigned Opc
= Op
->getOpcode();
10008 if (!Op
.getValueType().isVector() || !Op
.getValueType().isSimple() ||
10009 !Op
.getOperand(0).getValueType().isSimple() ||
10010 (Opc
!= ISD::SINT_TO_FP
&& Opc
!= ISD::UINT_TO_FP
))
10013 SDValue ConstVec
= N
->getOperand(1);
10014 if (!isa
<BuildVectorSDNode
>(ConstVec
))
10017 MVT IntTy
= Op
.getOperand(0).getSimpleValueType().getVectorElementType();
10018 int32_t IntBits
= IntTy
.getSizeInBits();
10019 if (IntBits
!= 16 && IntBits
!= 32 && IntBits
!= 64)
10022 MVT FloatTy
= N
->getSimpleValueType(0).getVectorElementType();
10023 int32_t FloatBits
= FloatTy
.getSizeInBits();
10024 if (FloatBits
!= 32 && FloatBits
!= 64)
10027 // Avoid conversions where iN is larger than the float (e.g., i64 -> float).
10028 if (IntBits
> FloatBits
)
10031 BitVector UndefElements
;
10032 BuildVectorSDNode
*BV
= cast
<BuildVectorSDNode
>(ConstVec
);
10033 int32_t C
= BV
->getConstantFPSplatPow2ToLog2Int(&UndefElements
, FloatBits
+ 1);
10034 if (C
== -1 || C
== 0 || C
> FloatBits
)
10038 unsigned NumLanes
= Op
.getValueType().getVectorNumElements();
10039 switch (NumLanes
) {
10043 ResTy
= FloatBits
== 32 ? MVT::v2i32
: MVT::v2i64
;
10046 ResTy
= FloatBits
== 32 ? MVT::v4i32
: MVT::v4i64
;
10050 if (ResTy
== MVT::v4i64
&& DCI
.isBeforeLegalizeOps())
10054 SDValue ConvInput
= Op
.getOperand(0);
10055 bool IsSigned
= Opc
== ISD::SINT_TO_FP
;
10056 if (IntBits
< FloatBits
)
10057 ConvInput
= DAG
.getNode(IsSigned
? ISD::SIGN_EXTEND
: ISD::ZERO_EXTEND
, DL
,
10060 unsigned IntrinsicOpcode
= IsSigned
? Intrinsic::aarch64_neon_vcvtfxs2fp
10061 : Intrinsic::aarch64_neon_vcvtfxu2fp
;
10062 return DAG
.getNode(ISD::INTRINSIC_WO_CHAIN
, DL
, Op
.getValueType(),
10063 DAG
.getConstant(IntrinsicOpcode
, DL
, MVT::i32
), ConvInput
,
10064 DAG
.getConstant(C
, DL
, MVT::i32
));
10067 /// An EXTR instruction is made up of two shifts, ORed together. This helper
10068 /// searches for and classifies those shifts.
10069 static bool findEXTRHalf(SDValue N
, SDValue
&Src
, uint32_t &ShiftAmount
,
10071 if (N
.getOpcode() == ISD::SHL
)
10073 else if (N
.getOpcode() == ISD::SRL
)
10078 if (!isa
<ConstantSDNode
>(N
.getOperand(1)))
10081 ShiftAmount
= N
->getConstantOperandVal(1);
10082 Src
= N
->getOperand(0);
10086 /// EXTR instruction extracts a contiguous chunk of bits from two existing
10087 /// registers viewed as a high/low pair. This function looks for the pattern:
10088 /// <tt>(or (shl VAL1, \#N), (srl VAL2, \#RegWidth-N))</tt> and replaces it
10089 /// with an EXTR. Can't quite be done in TableGen because the two immediates
10090 /// aren't independent.
10091 static SDValue
tryCombineToEXTR(SDNode
*N
,
10092 TargetLowering::DAGCombinerInfo
&DCI
) {
10093 SelectionDAG
&DAG
= DCI
.DAG
;
10095 EVT VT
= N
->getValueType(0);
10097 assert(N
->getOpcode() == ISD::OR
&& "Unexpected root");
10099 if (VT
!= MVT::i32
&& VT
!= MVT::i64
)
10103 uint32_t ShiftLHS
= 0;
10104 bool LHSFromHi
= false;
10105 if (!findEXTRHalf(N
->getOperand(0), LHS
, ShiftLHS
, LHSFromHi
))
10109 uint32_t ShiftRHS
= 0;
10110 bool RHSFromHi
= false;
10111 if (!findEXTRHalf(N
->getOperand(1), RHS
, ShiftRHS
, RHSFromHi
))
10114 // If they're both trying to come from the high part of the register, they're
10115 // not really an EXTR.
10116 if (LHSFromHi
== RHSFromHi
)
10119 if (ShiftLHS
+ ShiftRHS
!= VT
.getSizeInBits())
10123 std::swap(LHS
, RHS
);
10124 std::swap(ShiftLHS
, ShiftRHS
);
10127 return DAG
.getNode(AArch64ISD::EXTR
, DL
, VT
, LHS
, RHS
,
10128 DAG
.getConstant(ShiftRHS
, DL
, MVT::i64
));
10131 static SDValue
tryCombineToBSL(SDNode
*N
,
10132 TargetLowering::DAGCombinerInfo
&DCI
) {
10133 EVT VT
= N
->getValueType(0);
10134 SelectionDAG
&DAG
= DCI
.DAG
;
10137 if (!VT
.isVector())
10140 SDValue N0
= N
->getOperand(0);
10141 if (N0
.getOpcode() != ISD::AND
)
10144 SDValue N1
= N
->getOperand(1);
10145 if (N1
.getOpcode() != ISD::AND
)
10148 // We only have to look for constant vectors here since the general, variable
10149 // case can be handled in TableGen.
10150 unsigned Bits
= VT
.getScalarSizeInBits();
10151 uint64_t BitMask
= Bits
== 64 ? -1ULL : ((1ULL << Bits
) - 1);
10152 for (int i
= 1; i
>= 0; --i
)
10153 for (int j
= 1; j
>= 0; --j
) {
10154 BuildVectorSDNode
*BVN0
= dyn_cast
<BuildVectorSDNode
>(N0
->getOperand(i
));
10155 BuildVectorSDNode
*BVN1
= dyn_cast
<BuildVectorSDNode
>(N1
->getOperand(j
));
10156 if (!BVN0
|| !BVN1
)
10159 bool FoundMatch
= true;
10160 for (unsigned k
= 0; k
< VT
.getVectorNumElements(); ++k
) {
10161 ConstantSDNode
*CN0
= dyn_cast
<ConstantSDNode
>(BVN0
->getOperand(k
));
10162 ConstantSDNode
*CN1
= dyn_cast
<ConstantSDNode
>(BVN1
->getOperand(k
));
10163 if (!CN0
|| !CN1
||
10164 CN0
->getZExtValue() != (BitMask
& ~CN1
->getZExtValue())) {
10165 FoundMatch
= false;
10171 return DAG
.getNode(AArch64ISD::BSL
, DL
, VT
, SDValue(BVN0
, 0),
10172 N0
->getOperand(1 - i
), N1
->getOperand(1 - j
));
10178 static SDValue
performORCombine(SDNode
*N
, TargetLowering::DAGCombinerInfo
&DCI
,
10179 const AArch64Subtarget
*Subtarget
) {
10180 // Attempt to form an EXTR from (or (shl VAL1, #N), (srl VAL2, #RegWidth-N))
10181 SelectionDAG
&DAG
= DCI
.DAG
;
10182 EVT VT
= N
->getValueType(0);
10184 if (!DAG
.getTargetLoweringInfo().isTypeLegal(VT
))
10187 if (SDValue Res
= tryCombineToEXTR(N
, DCI
))
10190 if (SDValue Res
= tryCombineToBSL(N
, DCI
))
10196 static bool isConstantSplatVectorMaskForType(SDNode
*N
, EVT MemVT
) {
10197 if (!MemVT
.getVectorElementType().isSimple())
10200 uint64_t MaskForTy
= 0ull;
10201 switch (MemVT
.getVectorElementType().getSimpleVT().SimpleTy
) {
10203 MaskForTy
= 0xffull
;
10206 MaskForTy
= 0xffffull
;
10209 MaskForTy
= 0xffffffffull
;
10216 if (N
->getOpcode() == AArch64ISD::DUP
|| N
->getOpcode() == ISD::SPLAT_VECTOR
)
10217 if (auto *Op0
= dyn_cast
<ConstantSDNode
>(N
->getOperand(0)))
10218 return Op0
->getAPIntValue().getLimitedValue() == MaskForTy
;
10223 static SDValue
performSVEAndCombine(SDNode
*N
,
10224 TargetLowering::DAGCombinerInfo
&DCI
) {
10225 if (DCI
.isBeforeLegalizeOps())
10228 SDValue Src
= N
->getOperand(0);
10229 SDValue Mask
= N
->getOperand(1);
10231 if (!Src
.hasOneUse())
10236 // SVE load instructions perform an implicit zero-extend, which makes them
10237 // perfect candidates for combining.
10238 switch (Src
->getOpcode()) {
10239 case AArch64ISD::LDNF1
:
10240 MemVT
= cast
<VTSDNode
>(Src
->getOperand(3))->getVT();
10242 case AArch64ISD::GLD1
:
10243 case AArch64ISD::GLD1_SCALED
:
10244 case AArch64ISD::GLD1_SXTW
:
10245 case AArch64ISD::GLD1_SXTW_SCALED
:
10246 case AArch64ISD::GLD1_UXTW
:
10247 case AArch64ISD::GLD1_UXTW_SCALED
:
10248 case AArch64ISD::GLD1_IMM
:
10249 MemVT
= cast
<VTSDNode
>(Src
->getOperand(4))->getVT();
10255 if (isConstantSplatVectorMaskForType(Mask
.getNode(), MemVT
))
10261 static SDValue
performANDCombine(SDNode
*N
,
10262 TargetLowering::DAGCombinerInfo
&DCI
) {
10263 SelectionDAG
&DAG
= DCI
.DAG
;
10264 SDValue LHS
= N
->getOperand(0);
10265 EVT VT
= N
->getValueType(0);
10266 if (!VT
.isVector() || !DAG
.getTargetLoweringInfo().isTypeLegal(VT
))
10269 if (VT
.isScalableVector())
10270 return performSVEAndCombine(N
, DCI
);
10272 BuildVectorSDNode
*BVN
=
10273 dyn_cast
<BuildVectorSDNode
>(N
->getOperand(1).getNode());
10277 // AND does not accept an immediate, so check if we can use a BIC immediate
10278 // instruction instead. We do this here instead of using a (and x, (mvni imm))
10279 // pattern in isel, because some immediates may be lowered to the preferred
10280 // (and x, (movi imm)) form, even though an mvni representation also exists.
10281 APInt
DefBits(VT
.getSizeInBits(), 0);
10282 APInt
UndefBits(VT
.getSizeInBits(), 0);
10283 if (resolveBuildVector(BVN
, DefBits
, UndefBits
)) {
10286 DefBits
= ~DefBits
;
10287 if ((NewOp
= tryAdvSIMDModImm32(AArch64ISD::BICi
, SDValue(N
, 0), DAG
,
10289 (NewOp
= tryAdvSIMDModImm16(AArch64ISD::BICi
, SDValue(N
, 0), DAG
,
10293 UndefBits
= ~UndefBits
;
10294 if ((NewOp
= tryAdvSIMDModImm32(AArch64ISD::BICi
, SDValue(N
, 0), DAG
,
10295 UndefBits
, &LHS
)) ||
10296 (NewOp
= tryAdvSIMDModImm16(AArch64ISD::BICi
, SDValue(N
, 0), DAG
,
10304 static SDValue
performSRLCombine(SDNode
*N
,
10305 TargetLowering::DAGCombinerInfo
&DCI
) {
10306 SelectionDAG
&DAG
= DCI
.DAG
;
10307 EVT VT
= N
->getValueType(0);
10308 if (VT
!= MVT::i32
&& VT
!= MVT::i64
)
10311 // Canonicalize (srl (bswap i32 x), 16) to (rotr (bswap i32 x), 16), if the
10312 // high 16-bits of x are zero. Similarly, canonicalize (srl (bswap i64 x), 32)
10313 // to (rotr (bswap i64 x), 32), if the high 32-bits of x are zero.
10314 SDValue N0
= N
->getOperand(0);
10315 if (N0
.getOpcode() == ISD::BSWAP
) {
10317 SDValue N1
= N
->getOperand(1);
10318 SDValue N00
= N0
.getOperand(0);
10319 if (ConstantSDNode
*C
= dyn_cast
<ConstantSDNode
>(N1
)) {
10320 uint64_t ShiftAmt
= C
->getZExtValue();
10321 if (VT
== MVT::i32
&& ShiftAmt
== 16 &&
10322 DAG
.MaskedValueIsZero(N00
, APInt::getHighBitsSet(32, 16)))
10323 return DAG
.getNode(ISD::ROTR
, DL
, VT
, N0
, N1
);
10324 if (VT
== MVT::i64
&& ShiftAmt
== 32 &&
10325 DAG
.MaskedValueIsZero(N00
, APInt::getHighBitsSet(64, 32)))
10326 return DAG
.getNode(ISD::ROTR
, DL
, VT
, N0
, N1
);
10332 static SDValue
performConcatVectorsCombine(SDNode
*N
,
10333 TargetLowering::DAGCombinerInfo
&DCI
,
10334 SelectionDAG
&DAG
) {
10336 EVT VT
= N
->getValueType(0);
10337 SDValue N0
= N
->getOperand(0), N1
= N
->getOperand(1);
10339 // Optimize concat_vectors of truncated vectors, where the intermediate
10340 // type is illegal, to avoid said illegality, e.g.,
10341 // (v4i16 (concat_vectors (v2i16 (truncate (v2i64))),
10342 // (v2i16 (truncate (v2i64)))))
10344 // (v4i16 (truncate (vector_shuffle (v4i32 (bitcast (v2i64))),
10345 // (v4i32 (bitcast (v2i64))),
10347 // This isn't really target-specific, but ISD::TRUNCATE legality isn't keyed
10348 // on both input and result type, so we might generate worse code.
10349 // On AArch64 we know it's fine for v2i64->v4i16 and v4i32->v8i8.
10350 if (N
->getNumOperands() == 2 &&
10351 N0
->getOpcode() == ISD::TRUNCATE
&&
10352 N1
->getOpcode() == ISD::TRUNCATE
) {
10353 SDValue N00
= N0
->getOperand(0);
10354 SDValue N10
= N1
->getOperand(0);
10355 EVT N00VT
= N00
.getValueType();
10357 if (N00VT
== N10
.getValueType() &&
10358 (N00VT
== MVT::v2i64
|| N00VT
== MVT::v4i32
) &&
10359 N00VT
.getScalarSizeInBits() == 4 * VT
.getScalarSizeInBits()) {
10360 MVT MidVT
= (N00VT
== MVT::v2i64
? MVT::v4i32
: MVT::v8i16
);
10361 SmallVector
<int, 8> Mask(MidVT
.getVectorNumElements());
10362 for (size_t i
= 0; i
< Mask
.size(); ++i
)
10364 return DAG
.getNode(ISD::TRUNCATE
, dl
, VT
,
10365 DAG
.getVectorShuffle(
10367 DAG
.getNode(ISD::BITCAST
, dl
, MidVT
, N00
),
10368 DAG
.getNode(ISD::BITCAST
, dl
, MidVT
, N10
), Mask
));
10372 // Wait 'til after everything is legalized to try this. That way we have
10373 // legal vector types and such.
10374 if (DCI
.isBeforeLegalizeOps())
10377 // If we see a (concat_vectors (v1x64 A), (v1x64 A)) it's really a vector
10378 // splat. The indexed instructions are going to be expecting a DUPLANE64, so
10379 // canonicalise to that.
10380 if (N0
== N1
&& VT
.getVectorNumElements() == 2) {
10381 assert(VT
.getScalarSizeInBits() == 64);
10382 return DAG
.getNode(AArch64ISD::DUPLANE64
, dl
, VT
, WidenVector(N0
, DAG
),
10383 DAG
.getConstant(0, dl
, MVT::i64
));
10386 // Canonicalise concat_vectors so that the right-hand vector has as few
10387 // bit-casts as possible before its real operation. The primary matching
10388 // destination for these operations will be the narrowing "2" instructions,
10389 // which depend on the operation being performed on this right-hand vector.
10391 // (concat_vectors LHS, (v1i64 (bitconvert (v4i16 RHS))))
10393 // (bitconvert (concat_vectors (v4i16 (bitconvert LHS)), RHS))
10395 if (N1
->getOpcode() != ISD::BITCAST
)
10397 SDValue RHS
= N1
->getOperand(0);
10398 MVT RHSTy
= RHS
.getValueType().getSimpleVT();
10399 // If the RHS is not a vector, this is not the pattern we're looking for.
10400 if (!RHSTy
.isVector())
10404 dbgs() << "aarch64-lower: concat_vectors bitcast simplification\n");
10406 MVT ConcatTy
= MVT::getVectorVT(RHSTy
.getVectorElementType(),
10407 RHSTy
.getVectorNumElements() * 2);
10408 return DAG
.getNode(ISD::BITCAST
, dl
, VT
,
10409 DAG
.getNode(ISD::CONCAT_VECTORS
, dl
, ConcatTy
,
10410 DAG
.getNode(ISD::BITCAST
, dl
, RHSTy
, N0
),
10414 static SDValue
tryCombineFixedPointConvert(SDNode
*N
,
10415 TargetLowering::DAGCombinerInfo
&DCI
,
10416 SelectionDAG
&DAG
) {
10417 // Wait until after everything is legalized to try this. That way we have
10418 // legal vector types and such.
10419 if (DCI
.isBeforeLegalizeOps())
10421 // Transform a scalar conversion of a value from a lane extract into a
10422 // lane extract of a vector conversion. E.g., from foo1 to foo2:
10423 // double foo1(int64x2_t a) { return vcvtd_n_f64_s64(a[1], 9); }
10424 // double foo2(int64x2_t a) { return vcvtq_n_f64_s64(a, 9)[1]; }
10426 // The second form interacts better with instruction selection and the
10427 // register allocator to avoid cross-class register copies that aren't
10428 // coalescable due to a lane reference.
10430 // Check the operand and see if it originates from a lane extract.
10431 SDValue Op1
= N
->getOperand(1);
10432 if (Op1
.getOpcode() == ISD::EXTRACT_VECTOR_ELT
) {
10433 // Yep, no additional predication needed. Perform the transform.
10434 SDValue IID
= N
->getOperand(0);
10435 SDValue Shift
= N
->getOperand(2);
10436 SDValue Vec
= Op1
.getOperand(0);
10437 SDValue Lane
= Op1
.getOperand(1);
10438 EVT ResTy
= N
->getValueType(0);
10442 // The vector width should be 128 bits by the time we get here, even
10443 // if it started as 64 bits (the extract_vector handling will have
10445 assert(Vec
.getValueSizeInBits() == 128 &&
10446 "unexpected vector size on extract_vector_elt!");
10447 if (Vec
.getValueType() == MVT::v4i32
)
10448 VecResTy
= MVT::v4f32
;
10449 else if (Vec
.getValueType() == MVT::v2i64
)
10450 VecResTy
= MVT::v2f64
;
10452 llvm_unreachable("unexpected vector type!");
10455 DAG
.getNode(ISD::INTRINSIC_WO_CHAIN
, DL
, VecResTy
, IID
, Vec
, Shift
);
10456 return DAG
.getNode(ISD::EXTRACT_VECTOR_ELT
, DL
, ResTy
, Convert
, Lane
);
10461 // AArch64 high-vector "long" operations are formed by performing the non-high
10462 // version on an extract_subvector of each operand which gets the high half:
10464 // (longop2 LHS, RHS) == (longop (extract_high LHS), (extract_high RHS))
10466 // However, there are cases which don't have an extract_high explicitly, but
10467 // have another operation that can be made compatible with one for free. For
10470 // (dupv64 scalar) --> (extract_high (dup128 scalar))
10472 // This routine does the actual conversion of such DUPs, once outer routines
10473 // have determined that everything else is in order.
10474 // It also supports immediate DUP-like nodes (MOVI/MVNi), which we can fold
10476 static SDValue
tryExtendDUPToExtractHigh(SDValue N
, SelectionDAG
&DAG
) {
10477 switch (N
.getOpcode()) {
10478 case AArch64ISD::DUP
:
10479 case AArch64ISD::DUPLANE8
:
10480 case AArch64ISD::DUPLANE16
:
10481 case AArch64ISD::DUPLANE32
:
10482 case AArch64ISD::DUPLANE64
:
10483 case AArch64ISD::MOVI
:
10484 case AArch64ISD::MOVIshift
:
10485 case AArch64ISD::MOVIedit
:
10486 case AArch64ISD::MOVImsl
:
10487 case AArch64ISD::MVNIshift
:
10488 case AArch64ISD::MVNImsl
:
10491 // FMOV could be supported, but isn't very useful, as it would only occur
10492 // if you passed a bitcast' floating point immediate to an eligible long
10493 // integer op (addl, smull, ...).
10497 MVT NarrowTy
= N
.getSimpleValueType();
10498 if (!NarrowTy
.is64BitVector())
10501 MVT ElementTy
= NarrowTy
.getVectorElementType();
10502 unsigned NumElems
= NarrowTy
.getVectorNumElements();
10503 MVT NewVT
= MVT::getVectorVT(ElementTy
, NumElems
* 2);
10506 return DAG
.getNode(ISD::EXTRACT_SUBVECTOR
, dl
, NarrowTy
,
10507 DAG
.getNode(N
->getOpcode(), dl
, NewVT
, N
->ops()),
10508 DAG
.getConstant(NumElems
, dl
, MVT::i64
));
10511 static bool isEssentiallyExtractHighSubvector(SDValue N
) {
10512 if (N
.getOpcode() == ISD::BITCAST
)
10513 N
= N
.getOperand(0);
10514 if (N
.getOpcode() != ISD::EXTRACT_SUBVECTOR
)
10516 return cast
<ConstantSDNode
>(N
.getOperand(1))->getAPIntValue() ==
10517 N
.getOperand(0).getValueType().getVectorNumElements() / 2;
10520 /// Helper structure to keep track of ISD::SET_CC operands.
10521 struct GenericSetCCInfo
{
10522 const SDValue
*Opnd0
;
10523 const SDValue
*Opnd1
;
10527 /// Helper structure to keep track of a SET_CC lowered into AArch64 code.
10528 struct AArch64SetCCInfo
{
10529 const SDValue
*Cmp
;
10530 AArch64CC::CondCode CC
;
10533 /// Helper structure to keep track of SetCC information.
10535 GenericSetCCInfo Generic
;
10536 AArch64SetCCInfo AArch64
;
10539 /// Helper structure to be able to read SetCC information. If set to
10540 /// true, IsAArch64 field, Info is a AArch64SetCCInfo, otherwise Info is a
10541 /// GenericSetCCInfo.
10542 struct SetCCInfoAndKind
{
10547 /// Check whether or not \p Op is a SET_CC operation, either a generic or
10549 /// AArch64 lowered one.
10550 /// \p SetCCInfo is filled accordingly.
10551 /// \post SetCCInfo is meanginfull only when this function returns true.
10552 /// \return True when Op is a kind of SET_CC operation.
10553 static bool isSetCC(SDValue Op
, SetCCInfoAndKind
&SetCCInfo
) {
10554 // If this is a setcc, this is straight forward.
10555 if (Op
.getOpcode() == ISD::SETCC
) {
10556 SetCCInfo
.Info
.Generic
.Opnd0
= &Op
.getOperand(0);
10557 SetCCInfo
.Info
.Generic
.Opnd1
= &Op
.getOperand(1);
10558 SetCCInfo
.Info
.Generic
.CC
= cast
<CondCodeSDNode
>(Op
.getOperand(2))->get();
10559 SetCCInfo
.IsAArch64
= false;
10562 // Otherwise, check if this is a matching csel instruction.
10565 // - csel 0, 1, !cc
10566 if (Op
.getOpcode() != AArch64ISD::CSEL
)
10568 // Set the information about the operands.
10569 // TODO: we want the operands of the Cmp not the csel
10570 SetCCInfo
.Info
.AArch64
.Cmp
= &Op
.getOperand(3);
10571 SetCCInfo
.IsAArch64
= true;
10572 SetCCInfo
.Info
.AArch64
.CC
= static_cast<AArch64CC::CondCode
>(
10573 cast
<ConstantSDNode
>(Op
.getOperand(2))->getZExtValue());
10575 // Check that the operands matches the constraints:
10576 // (1) Both operands must be constants.
10577 // (2) One must be 1 and the other must be 0.
10578 ConstantSDNode
*TValue
= dyn_cast
<ConstantSDNode
>(Op
.getOperand(0));
10579 ConstantSDNode
*FValue
= dyn_cast
<ConstantSDNode
>(Op
.getOperand(1));
10582 if (!TValue
|| !FValue
)
10586 if (!TValue
->isOne()) {
10587 // Update the comparison when we are interested in !cc.
10588 std::swap(TValue
, FValue
);
10589 SetCCInfo
.Info
.AArch64
.CC
=
10590 AArch64CC::getInvertedCondCode(SetCCInfo
.Info
.AArch64
.CC
);
10592 return TValue
->isOne() && FValue
->isNullValue();
10595 // Returns true if Op is setcc or zext of setcc.
10596 static bool isSetCCOrZExtSetCC(const SDValue
& Op
, SetCCInfoAndKind
&Info
) {
10597 if (isSetCC(Op
, Info
))
10599 return ((Op
.getOpcode() == ISD::ZERO_EXTEND
) &&
10600 isSetCC(Op
->getOperand(0), Info
));
10603 // The folding we want to perform is:
10604 // (add x, [zext] (setcc cc ...) )
10606 // (csel x, (add x, 1), !cc ...)
10608 // The latter will get matched to a CSINC instruction.
10609 static SDValue
performSetccAddFolding(SDNode
*Op
, SelectionDAG
&DAG
) {
10610 assert(Op
&& Op
->getOpcode() == ISD::ADD
&& "Unexpected operation!");
10611 SDValue LHS
= Op
->getOperand(0);
10612 SDValue RHS
= Op
->getOperand(1);
10613 SetCCInfoAndKind InfoAndKind
;
10615 // If neither operand is a SET_CC, give up.
10616 if (!isSetCCOrZExtSetCC(LHS
, InfoAndKind
)) {
10617 std::swap(LHS
, RHS
);
10618 if (!isSetCCOrZExtSetCC(LHS
, InfoAndKind
))
10622 // FIXME: This could be generatized to work for FP comparisons.
10623 EVT CmpVT
= InfoAndKind
.IsAArch64
10624 ? InfoAndKind
.Info
.AArch64
.Cmp
->getOperand(0).getValueType()
10625 : InfoAndKind
.Info
.Generic
.Opnd0
->getValueType();
10626 if (CmpVT
!= MVT::i32
&& CmpVT
!= MVT::i64
)
10632 if (InfoAndKind
.IsAArch64
) {
10633 CCVal
= DAG
.getConstant(
10634 AArch64CC::getInvertedCondCode(InfoAndKind
.Info
.AArch64
.CC
), dl
,
10636 Cmp
= *InfoAndKind
.Info
.AArch64
.Cmp
;
10638 Cmp
= getAArch64Cmp(
10639 *InfoAndKind
.Info
.Generic
.Opnd0
, *InfoAndKind
.Info
.Generic
.Opnd1
,
10640 ISD::getSetCCInverse(InfoAndKind
.Info
.Generic
.CC
, CmpVT
), CCVal
, DAG
,
10643 EVT VT
= Op
->getValueType(0);
10644 LHS
= DAG
.getNode(ISD::ADD
, dl
, VT
, RHS
, DAG
.getConstant(1, dl
, VT
));
10645 return DAG
.getNode(AArch64ISD::CSEL
, dl
, VT
, RHS
, LHS
, CCVal
, Cmp
);
10648 // The basic add/sub long vector instructions have variants with "2" on the end
10649 // which act on the high-half of their inputs. They are normally matched by
10652 // (add (zeroext (extract_high LHS)),
10653 // (zeroext (extract_high RHS)))
10654 // -> uaddl2 vD, vN, vM
10656 // However, if one of the extracts is something like a duplicate, this
10657 // instruction can still be used profitably. This function puts the DAG into a
10658 // more appropriate form for those patterns to trigger.
10659 static SDValue
performAddSubLongCombine(SDNode
*N
,
10660 TargetLowering::DAGCombinerInfo
&DCI
,
10661 SelectionDAG
&DAG
) {
10662 if (DCI
.isBeforeLegalizeOps())
10665 MVT VT
= N
->getSimpleValueType(0);
10666 if (!VT
.is128BitVector()) {
10667 if (N
->getOpcode() == ISD::ADD
)
10668 return performSetccAddFolding(N
, DAG
);
10672 // Make sure both branches are extended in the same way.
10673 SDValue LHS
= N
->getOperand(0);
10674 SDValue RHS
= N
->getOperand(1);
10675 if ((LHS
.getOpcode() != ISD::ZERO_EXTEND
&&
10676 LHS
.getOpcode() != ISD::SIGN_EXTEND
) ||
10677 LHS
.getOpcode() != RHS
.getOpcode())
10680 unsigned ExtType
= LHS
.getOpcode();
10682 // It's not worth doing if at least one of the inputs isn't already an
10683 // extract, but we don't know which it'll be so we have to try both.
10684 if (isEssentiallyExtractHighSubvector(LHS
.getOperand(0))) {
10685 RHS
= tryExtendDUPToExtractHigh(RHS
.getOperand(0), DAG
);
10686 if (!RHS
.getNode())
10689 RHS
= DAG
.getNode(ExtType
, SDLoc(N
), VT
, RHS
);
10690 } else if (isEssentiallyExtractHighSubvector(RHS
.getOperand(0))) {
10691 LHS
= tryExtendDUPToExtractHigh(LHS
.getOperand(0), DAG
);
10692 if (!LHS
.getNode())
10695 LHS
= DAG
.getNode(ExtType
, SDLoc(N
), VT
, LHS
);
10698 return DAG
.getNode(N
->getOpcode(), SDLoc(N
), VT
, LHS
, RHS
);
10701 // Massage DAGs which we can use the high-half "long" operations on into
10702 // something isel will recognize better. E.g.
10704 // (aarch64_neon_umull (extract_high vec) (dupv64 scalar)) -->
10705 // (aarch64_neon_umull (extract_high (v2i64 vec)))
10706 // (extract_high (v2i64 (dup128 scalar)))))
10708 static SDValue
tryCombineLongOpWithDup(unsigned IID
, SDNode
*N
,
10709 TargetLowering::DAGCombinerInfo
&DCI
,
10710 SelectionDAG
&DAG
) {
10711 if (DCI
.isBeforeLegalizeOps())
10714 SDValue LHS
= N
->getOperand(1);
10715 SDValue RHS
= N
->getOperand(2);
10716 assert(LHS
.getValueType().is64BitVector() &&
10717 RHS
.getValueType().is64BitVector() &&
10718 "unexpected shape for long operation");
10720 // Either node could be a DUP, but it's not worth doing both of them (you'd
10721 // just as well use the non-high version) so look for a corresponding extract
10722 // operation on the other "wing".
10723 if (isEssentiallyExtractHighSubvector(LHS
)) {
10724 RHS
= tryExtendDUPToExtractHigh(RHS
, DAG
);
10725 if (!RHS
.getNode())
10727 } else if (isEssentiallyExtractHighSubvector(RHS
)) {
10728 LHS
= tryExtendDUPToExtractHigh(LHS
, DAG
);
10729 if (!LHS
.getNode())
10733 return DAG
.getNode(ISD::INTRINSIC_WO_CHAIN
, SDLoc(N
), N
->getValueType(0),
10734 N
->getOperand(0), LHS
, RHS
);
10737 static SDValue
tryCombineShiftImm(unsigned IID
, SDNode
*N
, SelectionDAG
&DAG
) {
10738 MVT ElemTy
= N
->getSimpleValueType(0).getScalarType();
10739 unsigned ElemBits
= ElemTy
.getSizeInBits();
10741 int64_t ShiftAmount
;
10742 if (BuildVectorSDNode
*BVN
= dyn_cast
<BuildVectorSDNode
>(N
->getOperand(2))) {
10743 APInt SplatValue
, SplatUndef
;
10744 unsigned SplatBitSize
;
10746 if (!BVN
->isConstantSplat(SplatValue
, SplatUndef
, SplatBitSize
,
10747 HasAnyUndefs
, ElemBits
) ||
10748 SplatBitSize
!= ElemBits
)
10751 ShiftAmount
= SplatValue
.getSExtValue();
10752 } else if (ConstantSDNode
*CVN
= dyn_cast
<ConstantSDNode
>(N
->getOperand(2))) {
10753 ShiftAmount
= CVN
->getSExtValue();
10761 llvm_unreachable("Unknown shift intrinsic");
10762 case Intrinsic::aarch64_neon_sqshl
:
10763 Opcode
= AArch64ISD::SQSHL_I
;
10764 IsRightShift
= false;
10766 case Intrinsic::aarch64_neon_uqshl
:
10767 Opcode
= AArch64ISD::UQSHL_I
;
10768 IsRightShift
= false;
10770 case Intrinsic::aarch64_neon_srshl
:
10771 Opcode
= AArch64ISD::SRSHR_I
;
10772 IsRightShift
= true;
10774 case Intrinsic::aarch64_neon_urshl
:
10775 Opcode
= AArch64ISD::URSHR_I
;
10776 IsRightShift
= true;
10778 case Intrinsic::aarch64_neon_sqshlu
:
10779 Opcode
= AArch64ISD::SQSHLU_I
;
10780 IsRightShift
= false;
10782 case Intrinsic::aarch64_neon_sshl
:
10783 case Intrinsic::aarch64_neon_ushl
:
10784 // For positive shift amounts we can use SHL, as ushl/sshl perform a regular
10785 // left shift for positive shift amounts. Below, we only replace the current
10786 // node with VSHL, if this condition is met.
10787 Opcode
= AArch64ISD::VSHL
;
10788 IsRightShift
= false;
10792 if (IsRightShift
&& ShiftAmount
<= -1 && ShiftAmount
>= -(int)ElemBits
) {
10794 return DAG
.getNode(Opcode
, dl
, N
->getValueType(0), N
->getOperand(1),
10795 DAG
.getConstant(-ShiftAmount
, dl
, MVT::i32
));
10796 } else if (!IsRightShift
&& ShiftAmount
>= 0 && ShiftAmount
< ElemBits
) {
10798 return DAG
.getNode(Opcode
, dl
, N
->getValueType(0), N
->getOperand(1),
10799 DAG
.getConstant(ShiftAmount
, dl
, MVT::i32
));
10805 // The CRC32[BH] instructions ignore the high bits of their data operand. Since
10806 // the intrinsics must be legal and take an i32, this means there's almost
10807 // certainly going to be a zext in the DAG which we can eliminate.
10808 static SDValue
tryCombineCRC32(unsigned Mask
, SDNode
*N
, SelectionDAG
&DAG
) {
10809 SDValue AndN
= N
->getOperand(2);
10810 if (AndN
.getOpcode() != ISD::AND
)
10813 ConstantSDNode
*CMask
= dyn_cast
<ConstantSDNode
>(AndN
.getOperand(1));
10814 if (!CMask
|| CMask
->getZExtValue() != Mask
)
10817 return DAG
.getNode(ISD::INTRINSIC_WO_CHAIN
, SDLoc(N
), MVT::i32
,
10818 N
->getOperand(0), N
->getOperand(1), AndN
.getOperand(0));
10821 static SDValue
combineAcrossLanesIntrinsic(unsigned Opc
, SDNode
*N
,
10822 SelectionDAG
&DAG
) {
10824 return DAG
.getNode(ISD::EXTRACT_VECTOR_ELT
, dl
, N
->getValueType(0),
10825 DAG
.getNode(Opc
, dl
,
10826 N
->getOperand(1).getSimpleValueType(),
10828 DAG
.getConstant(0, dl
, MVT::i64
));
10831 static SDValue
LowerSVEIntReduction(SDNode
*N
, unsigned Opc
,
10832 SelectionDAG
&DAG
) {
10834 LLVMContext
&Ctx
= *DAG
.getContext();
10835 const TargetLowering
&TLI
= DAG
.getTargetLoweringInfo();
10837 EVT VT
= N
->getValueType(0);
10838 SDValue Pred
= N
->getOperand(1);
10839 SDValue Data
= N
->getOperand(2);
10840 EVT DataVT
= Data
.getValueType();
10842 if (DataVT
.getVectorElementType().isScalarInteger() &&
10843 (VT
== MVT::i8
|| VT
== MVT::i16
|| VT
== MVT::i32
|| VT
== MVT::i64
)) {
10844 if (!TLI
.isTypeLegal(DataVT
))
10847 EVT OutputVT
= EVT::getVectorVT(Ctx
, VT
,
10848 AArch64::NeonBitsPerVector
/ VT
.getSizeInBits());
10849 SDValue Reduce
= DAG
.getNode(Opc
, dl
, OutputVT
, Pred
, Data
);
10850 SDValue Zero
= DAG
.getConstant(0, dl
, MVT::i64
);
10851 SDValue Result
= DAG
.getNode(ISD::EXTRACT_VECTOR_ELT
, dl
, VT
, Reduce
, Zero
);
10859 static SDValue
LowerSVEIntrinsicEXT(SDNode
*N
, SelectionDAG
&DAG
) {
10861 LLVMContext
&Ctx
= *DAG
.getContext();
10862 EVT VT
= N
->getValueType(0);
10864 assert(VT
.isScalableVector() && "Expected a scalable vector.");
10866 // Current lowering only supports the SVE-ACLE types.
10867 if (VT
.getSizeInBits().getKnownMinSize() != AArch64::SVEBitsPerBlock
)
10870 unsigned ElemSize
= VT
.getVectorElementType().getSizeInBits() / 8;
10871 unsigned ByteSize
= VT
.getSizeInBits().getKnownMinSize() / 8;
10872 EVT ByteVT
= EVT::getVectorVT(Ctx
, MVT::i8
, { ByteSize
, true });
10874 // Convert everything to the domain of EXT (i.e bytes).
10875 SDValue Op0
= DAG
.getNode(ISD::BITCAST
, dl
, ByteVT
, N
->getOperand(1));
10876 SDValue Op1
= DAG
.getNode(ISD::BITCAST
, dl
, ByteVT
, N
->getOperand(2));
10877 SDValue Op2
= DAG
.getNode(ISD::MUL
, dl
, MVT::i32
, N
->getOperand(3),
10878 DAG
.getConstant(ElemSize
, dl
, MVT::i32
));
10880 SDValue EXT
= DAG
.getNode(AArch64ISD::EXT
, dl
, ByteVT
, Op0
, Op1
, Op2
);
10881 return DAG
.getNode(ISD::BITCAST
, dl
, VT
, EXT
);
10884 static SDValue
tryConvertSVEWideCompare(SDNode
*N
, unsigned ReplacementIID
,
10886 TargetLowering::DAGCombinerInfo
&DCI
,
10887 SelectionDAG
&DAG
) {
10888 if (DCI
.isBeforeLegalize())
10891 SDValue Comparator
= N
->getOperand(3);
10892 if (Comparator
.getOpcode() == AArch64ISD::DUP
||
10893 Comparator
.getOpcode() == ISD::SPLAT_VECTOR
) {
10894 unsigned IID
= getIntrinsicID(N
);
10895 EVT VT
= N
->getValueType(0);
10896 EVT CmpVT
= N
->getOperand(2).getValueType();
10897 SDValue Pred
= N
->getOperand(1);
10903 llvm_unreachable("Called with wrong intrinsic!");
10906 // Signed comparisons
10907 case Intrinsic::aarch64_sve_cmpeq_wide
:
10908 case Intrinsic::aarch64_sve_cmpne_wide
:
10909 case Intrinsic::aarch64_sve_cmpge_wide
:
10910 case Intrinsic::aarch64_sve_cmpgt_wide
:
10911 case Intrinsic::aarch64_sve_cmplt_wide
:
10912 case Intrinsic::aarch64_sve_cmple_wide
: {
10913 if (auto *CN
= dyn_cast
<ConstantSDNode
>(Comparator
.getOperand(0))) {
10914 int64_t ImmVal
= CN
->getSExtValue();
10915 if (ImmVal
>= -16 && ImmVal
<= 15)
10916 Imm
= DAG
.getConstant(ImmVal
, DL
, MVT::i32
);
10922 // Unsigned comparisons
10923 case Intrinsic::aarch64_sve_cmphs_wide
:
10924 case Intrinsic::aarch64_sve_cmphi_wide
:
10925 case Intrinsic::aarch64_sve_cmplo_wide
:
10926 case Intrinsic::aarch64_sve_cmpls_wide
: {
10927 if (auto *CN
= dyn_cast
<ConstantSDNode
>(Comparator
.getOperand(0))) {
10928 uint64_t ImmVal
= CN
->getZExtValue();
10930 Imm
= DAG
.getConstant(ImmVal
, DL
, MVT::i32
);
10938 SDValue Splat
= DAG
.getNode(ISD::SPLAT_VECTOR
, DL
, CmpVT
, Imm
);
10939 SDValue ID
= DAG
.getTargetConstant(ReplacementIID
, DL
, MVT::i64
);
10943 Op1
= N
->getOperand(2);
10945 Op0
= N
->getOperand(2);
10948 return DAG
.getNode(ISD::INTRINSIC_WO_CHAIN
, DL
, VT
,
10949 ID
, Pred
, Op0
, Op1
);
10955 static SDValue
getPTest(SelectionDAG
&DAG
, EVT VT
, SDValue Pg
, SDValue Op
,
10956 AArch64CC::CondCode Cond
) {
10957 const TargetLowering
&TLI
= DAG
.getTargetLoweringInfo();
10960 assert(Op
.getValueType().isScalableVector() &&
10961 TLI
.isTypeLegal(Op
.getValueType()) &&
10962 "Expected legal scalable vector type!");
10964 // Ensure target specific opcodes are using legal type.
10965 EVT OutVT
= TLI
.getTypeToTransformTo(*DAG
.getContext(), VT
);
10966 SDValue TVal
= DAG
.getConstant(1, DL
, OutVT
);
10967 SDValue FVal
= DAG
.getConstant(0, DL
, OutVT
);
10969 // Set condition code (CC) flags.
10970 SDValue Test
= DAG
.getNode(AArch64ISD::PTEST
, DL
, MVT::Other
, Pg
, Op
);
10972 // Convert CC to integer based on requested condition.
10973 // NOTE: Cond is inverted to promote CSEL's removal when it feeds a compare.
10974 SDValue CC
= DAG
.getConstant(getInvertedCondCode(Cond
), DL
, MVT::i32
);
10975 SDValue Res
= DAG
.getNode(AArch64ISD::CSEL
, DL
, OutVT
, FVal
, TVal
, CC
, Test
);
10976 return DAG
.getZExtOrTrunc(Res
, DL
, VT
);
10979 static SDValue
performIntrinsicCombine(SDNode
*N
,
10980 TargetLowering::DAGCombinerInfo
&DCI
,
10981 const AArch64Subtarget
*Subtarget
) {
10982 SelectionDAG
&DAG
= DCI
.DAG
;
10983 unsigned IID
= getIntrinsicID(N
);
10987 case Intrinsic::aarch64_neon_vcvtfxs2fp
:
10988 case Intrinsic::aarch64_neon_vcvtfxu2fp
:
10989 return tryCombineFixedPointConvert(N
, DCI
, DAG
);
10990 case Intrinsic::aarch64_neon_saddv
:
10991 return combineAcrossLanesIntrinsic(AArch64ISD::SADDV
, N
, DAG
);
10992 case Intrinsic::aarch64_neon_uaddv
:
10993 return combineAcrossLanesIntrinsic(AArch64ISD::UADDV
, N
, DAG
);
10994 case Intrinsic::aarch64_neon_sminv
:
10995 return combineAcrossLanesIntrinsic(AArch64ISD::SMINV
, N
, DAG
);
10996 case Intrinsic::aarch64_neon_uminv
:
10997 return combineAcrossLanesIntrinsic(AArch64ISD::UMINV
, N
, DAG
);
10998 case Intrinsic::aarch64_neon_smaxv
:
10999 return combineAcrossLanesIntrinsic(AArch64ISD::SMAXV
, N
, DAG
);
11000 case Intrinsic::aarch64_neon_umaxv
:
11001 return combineAcrossLanesIntrinsic(AArch64ISD::UMAXV
, N
, DAG
);
11002 case Intrinsic::aarch64_neon_fmax
:
11003 return DAG
.getNode(ISD::FMAXIMUM
, SDLoc(N
), N
->getValueType(0),
11004 N
->getOperand(1), N
->getOperand(2));
11005 case Intrinsic::aarch64_neon_fmin
:
11006 return DAG
.getNode(ISD::FMINIMUM
, SDLoc(N
), N
->getValueType(0),
11007 N
->getOperand(1), N
->getOperand(2));
11008 case Intrinsic::aarch64_neon_fmaxnm
:
11009 return DAG
.getNode(ISD::FMAXNUM
, SDLoc(N
), N
->getValueType(0),
11010 N
->getOperand(1), N
->getOperand(2));
11011 case Intrinsic::aarch64_neon_fminnm
:
11012 return DAG
.getNode(ISD::FMINNUM
, SDLoc(N
), N
->getValueType(0),
11013 N
->getOperand(1), N
->getOperand(2));
11014 case Intrinsic::aarch64_neon_smull
:
11015 case Intrinsic::aarch64_neon_umull
:
11016 case Intrinsic::aarch64_neon_pmull
:
11017 case Intrinsic::aarch64_neon_sqdmull
:
11018 return tryCombineLongOpWithDup(IID
, N
, DCI
, DAG
);
11019 case Intrinsic::aarch64_neon_sqshl
:
11020 case Intrinsic::aarch64_neon_uqshl
:
11021 case Intrinsic::aarch64_neon_sqshlu
:
11022 case Intrinsic::aarch64_neon_srshl
:
11023 case Intrinsic::aarch64_neon_urshl
:
11024 case Intrinsic::aarch64_neon_sshl
:
11025 case Intrinsic::aarch64_neon_ushl
:
11026 return tryCombineShiftImm(IID
, N
, DAG
);
11027 case Intrinsic::aarch64_crc32b
:
11028 case Intrinsic::aarch64_crc32cb
:
11029 return tryCombineCRC32(0xff, N
, DAG
);
11030 case Intrinsic::aarch64_crc32h
:
11031 case Intrinsic::aarch64_crc32ch
:
11032 return tryCombineCRC32(0xffff, N
, DAG
);
11033 case Intrinsic::aarch64_sve_smaxv
:
11034 return LowerSVEIntReduction(N
, AArch64ISD::SMAXV_PRED
, DAG
);
11035 case Intrinsic::aarch64_sve_umaxv
:
11036 return LowerSVEIntReduction(N
, AArch64ISD::UMAXV_PRED
, DAG
);
11037 case Intrinsic::aarch64_sve_sminv
:
11038 return LowerSVEIntReduction(N
, AArch64ISD::SMINV_PRED
, DAG
);
11039 case Intrinsic::aarch64_sve_uminv
:
11040 return LowerSVEIntReduction(N
, AArch64ISD::UMINV_PRED
, DAG
);
11041 case Intrinsic::aarch64_sve_orv
:
11042 return LowerSVEIntReduction(N
, AArch64ISD::ORV_PRED
, DAG
);
11043 case Intrinsic::aarch64_sve_eorv
:
11044 return LowerSVEIntReduction(N
, AArch64ISD::EORV_PRED
, DAG
);
11045 case Intrinsic::aarch64_sve_andv
:
11046 return LowerSVEIntReduction(N
, AArch64ISD::ANDV_PRED
, DAG
);
11047 case Intrinsic::aarch64_sve_ext
:
11048 return LowerSVEIntrinsicEXT(N
, DAG
);
11049 case Intrinsic::aarch64_sve_cmpeq_wide
:
11050 return tryConvertSVEWideCompare(N
, Intrinsic::aarch64_sve_cmpeq
,
11052 case Intrinsic::aarch64_sve_cmpne_wide
:
11053 return tryConvertSVEWideCompare(N
, Intrinsic::aarch64_sve_cmpne
,
11055 case Intrinsic::aarch64_sve_cmpge_wide
:
11056 return tryConvertSVEWideCompare(N
, Intrinsic::aarch64_sve_cmpge
,
11058 case Intrinsic::aarch64_sve_cmpgt_wide
:
11059 return tryConvertSVEWideCompare(N
, Intrinsic::aarch64_sve_cmpgt
,
11061 case Intrinsic::aarch64_sve_cmplt_wide
:
11062 return tryConvertSVEWideCompare(N
, Intrinsic::aarch64_sve_cmpgt
,
11064 case Intrinsic::aarch64_sve_cmple_wide
:
11065 return tryConvertSVEWideCompare(N
, Intrinsic::aarch64_sve_cmpge
,
11067 case Intrinsic::aarch64_sve_cmphs_wide
:
11068 return tryConvertSVEWideCompare(N
, Intrinsic::aarch64_sve_cmphs
,
11070 case Intrinsic::aarch64_sve_cmphi_wide
:
11071 return tryConvertSVEWideCompare(N
, Intrinsic::aarch64_sve_cmphi
,
11073 case Intrinsic::aarch64_sve_cmplo_wide
:
11074 return tryConvertSVEWideCompare(N
, Intrinsic::aarch64_sve_cmphi
, true,
11076 case Intrinsic::aarch64_sve_cmpls_wide
:
11077 return tryConvertSVEWideCompare(N
, Intrinsic::aarch64_sve_cmphs
, true,
11079 case Intrinsic::aarch64_sve_ptest_any
:
11080 return getPTest(DAG
, N
->getValueType(0), N
->getOperand(1), N
->getOperand(2),
11081 AArch64CC::ANY_ACTIVE
);
11082 case Intrinsic::aarch64_sve_ptest_first
:
11083 return getPTest(DAG
, N
->getValueType(0), N
->getOperand(1), N
->getOperand(2),
11084 AArch64CC::FIRST_ACTIVE
);
11085 case Intrinsic::aarch64_sve_ptest_last
:
11086 return getPTest(DAG
, N
->getValueType(0), N
->getOperand(1), N
->getOperand(2),
11087 AArch64CC::LAST_ACTIVE
);
11092 static SDValue
performExtendCombine(SDNode
*N
,
11093 TargetLowering::DAGCombinerInfo
&DCI
,
11094 SelectionDAG
&DAG
) {
11095 // If we see something like (zext (sabd (extract_high ...), (DUP ...))) then
11096 // we can convert that DUP into another extract_high (of a bigger DUP), which
11097 // helps the backend to decide that an sabdl2 would be useful, saving a real
11098 // extract_high operation.
11099 if (!DCI
.isBeforeLegalizeOps() && N
->getOpcode() == ISD::ZERO_EXTEND
&&
11100 N
->getOperand(0).getOpcode() == ISD::INTRINSIC_WO_CHAIN
) {
11101 SDNode
*ABDNode
= N
->getOperand(0).getNode();
11102 unsigned IID
= getIntrinsicID(ABDNode
);
11103 if (IID
== Intrinsic::aarch64_neon_sabd
||
11104 IID
== Intrinsic::aarch64_neon_uabd
) {
11105 SDValue NewABD
= tryCombineLongOpWithDup(IID
, ABDNode
, DCI
, DAG
);
11106 if (!NewABD
.getNode())
11109 return DAG
.getNode(ISD::ZERO_EXTEND
, SDLoc(N
), N
->getValueType(0),
11114 // This is effectively a custom type legalization for AArch64.
11116 // Type legalization will split an extend of a small, legal, type to a larger
11117 // illegal type by first splitting the destination type, often creating
11118 // illegal source types, which then get legalized in isel-confusing ways,
11119 // leading to really terrible codegen. E.g.,
11120 // %result = v8i32 sext v8i8 %value
11122 // %losrc = extract_subreg %value, ...
11123 // %hisrc = extract_subreg %value, ...
11124 // %lo = v4i32 sext v4i8 %losrc
11125 // %hi = v4i32 sext v4i8 %hisrc
11126 // Things go rapidly downhill from there.
11128 // For AArch64, the [sz]ext vector instructions can only go up one element
11129 // size, so we can, e.g., extend from i8 to i16, but to go from i8 to i32
11130 // take two instructions.
11132 // This implies that the most efficient way to do the extend from v8i8
11133 // to two v4i32 values is to first extend the v8i8 to v8i16, then do
11134 // the normal splitting to happen for the v8i16->v8i32.
11136 // This is pre-legalization to catch some cases where the default
11137 // type legalization will create ill-tempered code.
11138 if (!DCI
.isBeforeLegalizeOps())
11141 // We're only interested in cleaning things up for non-legal vector types
11142 // here. If both the source and destination are legal, things will just
11143 // work naturally without any fiddling.
11144 const TargetLowering
&TLI
= DAG
.getTargetLoweringInfo();
11145 EVT ResVT
= N
->getValueType(0);
11146 if (!ResVT
.isVector() || TLI
.isTypeLegal(ResVT
))
11148 // If the vector type isn't a simple VT, it's beyond the scope of what
11149 // we're worried about here. Let legalization do its thing and hope for
11151 SDValue Src
= N
->getOperand(0);
11152 EVT SrcVT
= Src
->getValueType(0);
11153 if (!ResVT
.isSimple() || !SrcVT
.isSimple())
11156 // If the source VT is a 64-bit vector, we can play games and get the
11157 // better results we want.
11158 if (SrcVT
.getSizeInBits() != 64)
11161 unsigned SrcEltSize
= SrcVT
.getScalarSizeInBits();
11162 unsigned ElementCount
= SrcVT
.getVectorNumElements();
11163 SrcVT
= MVT::getVectorVT(MVT::getIntegerVT(SrcEltSize
* 2), ElementCount
);
11165 Src
= DAG
.getNode(N
->getOpcode(), DL
, SrcVT
, Src
);
11167 // Now split the rest of the operation into two halves, each with a 64
11171 unsigned NumElements
= ResVT
.getVectorNumElements();
11172 assert(!(NumElements
& 1) && "Splitting vector, but not in half!");
11173 LoVT
= HiVT
= EVT::getVectorVT(*DAG
.getContext(),
11174 ResVT
.getVectorElementType(), NumElements
/ 2);
11176 EVT InNVT
= EVT::getVectorVT(*DAG
.getContext(), SrcVT
.getVectorElementType(),
11177 LoVT
.getVectorNumElements());
11178 Lo
= DAG
.getNode(ISD::EXTRACT_SUBVECTOR
, DL
, InNVT
, Src
,
11179 DAG
.getConstant(0, DL
, MVT::i64
));
11180 Hi
= DAG
.getNode(ISD::EXTRACT_SUBVECTOR
, DL
, InNVT
, Src
,
11181 DAG
.getConstant(InNVT
.getVectorNumElements(), DL
, MVT::i64
));
11182 Lo
= DAG
.getNode(N
->getOpcode(), DL
, LoVT
, Lo
);
11183 Hi
= DAG
.getNode(N
->getOpcode(), DL
, HiVT
, Hi
);
11185 // Now combine the parts back together so we still have a single result
11186 // like the combiner expects.
11187 return DAG
.getNode(ISD::CONCAT_VECTORS
, DL
, ResVT
, Lo
, Hi
);
11190 static SDValue
splitStoreSplat(SelectionDAG
&DAG
, StoreSDNode
&St
,
11191 SDValue SplatVal
, unsigned NumVecElts
) {
11192 assert(!St
.isTruncatingStore() && "cannot split truncating vector store");
11193 unsigned OrigAlignment
= St
.getAlignment();
11194 unsigned EltOffset
= SplatVal
.getValueType().getSizeInBits() / 8;
11196 // Create scalar stores. This is at least as good as the code sequence for a
11197 // split unaligned store which is a dup.s, ext.b, and two stores.
11198 // Most of the time the three stores should be replaced by store pair
11199 // instructions (stp).
11201 SDValue BasePtr
= St
.getBasePtr();
11202 uint64_t BaseOffset
= 0;
11204 const MachinePointerInfo
&PtrInfo
= St
.getPointerInfo();
11206 DAG
.getStore(St
.getChain(), DL
, SplatVal
, BasePtr
, PtrInfo
,
11207 OrigAlignment
, St
.getMemOperand()->getFlags());
11209 // As this in ISel, we will not merge this add which may degrade results.
11210 if (BasePtr
->getOpcode() == ISD::ADD
&&
11211 isa
<ConstantSDNode
>(BasePtr
->getOperand(1))) {
11212 BaseOffset
= cast
<ConstantSDNode
>(BasePtr
->getOperand(1))->getSExtValue();
11213 BasePtr
= BasePtr
->getOperand(0);
11216 unsigned Offset
= EltOffset
;
11217 while (--NumVecElts
) {
11218 unsigned Alignment
= MinAlign(OrigAlignment
, Offset
);
11219 SDValue OffsetPtr
=
11220 DAG
.getNode(ISD::ADD
, DL
, MVT::i64
, BasePtr
,
11221 DAG
.getConstant(BaseOffset
+ Offset
, DL
, MVT::i64
));
11222 NewST1
= DAG
.getStore(NewST1
.getValue(0), DL
, SplatVal
, OffsetPtr
,
11223 PtrInfo
.getWithOffset(Offset
), Alignment
,
11224 St
.getMemOperand()->getFlags());
11225 Offset
+= EltOffset
;
11230 // Returns an SVE type that ContentTy can be trivially sign or zero extended
11232 static MVT
getSVEContainerType(EVT ContentTy
) {
11233 assert(ContentTy
.isSimple() && "No SVE containers for extended types");
11235 switch (ContentTy
.getSimpleVT().SimpleTy
) {
11237 llvm_unreachable("No known SVE container for this MVT type");
11244 return MVT::nxv2i64
;
11249 return MVT::nxv4i32
;
11253 return MVT::nxv8i16
;
11255 return MVT::nxv16i8
;
11259 static SDValue
performLDNT1Combine(SDNode
*N
, SelectionDAG
&DAG
) {
11261 EVT VT
= N
->getValueType(0);
11262 EVT PtrTy
= N
->getOperand(3).getValueType();
11265 if (VT
.isFloatingPoint())
11266 LoadVT
= VT
.changeTypeToInteger();
11268 auto *MINode
= cast
<MemIntrinsicSDNode
>(N
);
11269 SDValue PassThru
= DAG
.getConstant(0, DL
, LoadVT
);
11270 SDValue L
= DAG
.getMaskedLoad(LoadVT
, DL
, MINode
->getChain(),
11271 MINode
->getOperand(3), DAG
.getUNDEF(PtrTy
),
11272 MINode
->getOperand(2), PassThru
,
11273 MINode
->getMemoryVT(), MINode
->getMemOperand(),
11274 ISD::UNINDEXED
, ISD::NON_EXTLOAD
, false);
11276 if (VT
.isFloatingPoint()) {
11277 SDValue Ops
[] = { DAG
.getNode(ISD::BITCAST
, DL
, VT
, L
), L
.getValue(1) };
11278 return DAG
.getMergeValues(Ops
, DL
);
11284 static SDValue
performSTNT1Combine(SDNode
*N
, SelectionDAG
&DAG
) {
11287 SDValue Data
= N
->getOperand(2);
11288 EVT DataVT
= Data
.getValueType();
11289 EVT PtrTy
= N
->getOperand(4).getValueType();
11291 if (DataVT
.isFloatingPoint())
11292 Data
= DAG
.getNode(ISD::BITCAST
, DL
, DataVT
.changeTypeToInteger(), Data
);
11294 auto *MINode
= cast
<MemIntrinsicSDNode
>(N
);
11295 return DAG
.getMaskedStore(MINode
->getChain(), DL
, Data
, MINode
->getOperand(4),
11296 DAG
.getUNDEF(PtrTy
), MINode
->getOperand(3),
11297 MINode
->getMemoryVT(), MINode
->getMemOperand(),
11298 ISD::UNINDEXED
, false, false);
11301 static SDValue
performLDNF1Combine(SDNode
*N
, SelectionDAG
&DAG
) {
11303 EVT VT
= N
->getValueType(0);
11305 if (VT
.getSizeInBits().getKnownMinSize() > AArch64::SVEBitsPerBlock
)
11308 EVT ContainerVT
= VT
;
11309 if (ContainerVT
.isInteger())
11310 ContainerVT
= getSVEContainerType(ContainerVT
);
11312 SDVTList VTs
= DAG
.getVTList(ContainerVT
, MVT::Other
);
11313 SDValue Ops
[] = { N
->getOperand(0), // Chain
11314 N
->getOperand(2), // Pg
11315 N
->getOperand(3), // Base
11316 DAG
.getValueType(VT
) };
11318 SDValue Load
= DAG
.getNode(AArch64ISD::LDNF1
, DL
, VTs
, Ops
);
11319 SDValue LoadChain
= SDValue(Load
.getNode(), 1);
11321 if (ContainerVT
.isInteger() && (VT
!= ContainerVT
))
11322 Load
= DAG
.getNode(ISD::TRUNCATE
, DL
, VT
, Load
.getValue(0));
11324 return DAG
.getMergeValues({ Load
, LoadChain
}, DL
);
11327 /// Replace a splat of zeros to a vector store by scalar stores of WZR/XZR. The
11328 /// load store optimizer pass will merge them to store pair stores. This should
11329 /// be better than a movi to create the vector zero followed by a vector store
11330 /// if the zero constant is not re-used, since one instructions and one register
11331 /// live range will be removed.
11333 /// For example, the final generated code should be:
11335 /// stp xzr, xzr, [x0]
11342 static SDValue
replaceZeroVectorStore(SelectionDAG
&DAG
, StoreSDNode
&St
) {
11343 SDValue StVal
= St
.getValue();
11344 EVT VT
= StVal
.getValueType();
11346 // It is beneficial to scalarize a zero splat store for 2 or 3 i64 elements or
11347 // 2, 3 or 4 i32 elements.
11348 int NumVecElts
= VT
.getVectorNumElements();
11349 if (!(((NumVecElts
== 2 || NumVecElts
== 3) &&
11350 VT
.getVectorElementType().getSizeInBits() == 64) ||
11351 ((NumVecElts
== 2 || NumVecElts
== 3 || NumVecElts
== 4) &&
11352 VT
.getVectorElementType().getSizeInBits() == 32)))
11355 if (StVal
.getOpcode() != ISD::BUILD_VECTOR
)
11358 // If the zero constant has more than one use then the vector store could be
11359 // better since the constant mov will be amortized and stp q instructions
11360 // should be able to be formed.
11361 if (!StVal
.hasOneUse())
11364 // If the store is truncating then it's going down to i16 or smaller, which
11365 // means it can be implemented in a single store anyway.
11366 if (St
.isTruncatingStore())
11369 // If the immediate offset of the address operand is too large for the stp
11370 // instruction, then bail out.
11371 if (DAG
.isBaseWithConstantOffset(St
.getBasePtr())) {
11372 int64_t Offset
= St
.getBasePtr()->getConstantOperandVal(1);
11373 if (Offset
< -512 || Offset
> 504)
11377 for (int I
= 0; I
< NumVecElts
; ++I
) {
11378 SDValue EltVal
= StVal
.getOperand(I
);
11379 if (!isNullConstant(EltVal
) && !isNullFPConstant(EltVal
))
11383 // Use a CopyFromReg WZR/XZR here to prevent
11384 // DAGCombiner::MergeConsecutiveStores from undoing this transformation.
11388 if (VT
.getVectorElementType().getSizeInBits() == 32) {
11389 ZeroReg
= AArch64::WZR
;
11392 ZeroReg
= AArch64::XZR
;
11396 DAG
.getCopyFromReg(DAG
.getEntryNode(), DL
, ZeroReg
, ZeroVT
);
11397 return splitStoreSplat(DAG
, St
, SplatVal
, NumVecElts
);
11400 /// Replace a splat of a scalar to a vector store by scalar stores of the scalar
11401 /// value. The load store optimizer pass will merge them to store pair stores.
11402 /// This has better performance than a splat of the scalar followed by a split
11403 /// vector store. Even if the stores are not merged it is four stores vs a dup,
11404 /// followed by an ext.b and two stores.
11405 static SDValue
replaceSplatVectorStore(SelectionDAG
&DAG
, StoreSDNode
&St
) {
11406 SDValue StVal
= St
.getValue();
11407 EVT VT
= StVal
.getValueType();
11409 // Don't replace floating point stores, they possibly won't be transformed to
11410 // stp because of the store pair suppress pass.
11411 if (VT
.isFloatingPoint())
11414 // We can express a splat as store pair(s) for 2 or 4 elements.
11415 unsigned NumVecElts
= VT
.getVectorNumElements();
11416 if (NumVecElts
!= 4 && NumVecElts
!= 2)
11419 // If the store is truncating then it's going down to i16 or smaller, which
11420 // means it can be implemented in a single store anyway.
11421 if (St
.isTruncatingStore())
11424 // Check that this is a splat.
11425 // Make sure that each of the relevant vector element locations are inserted
11426 // to, i.e. 0 and 1 for v2i64 and 0, 1, 2, 3 for v4i32.
11427 std::bitset
<4> IndexNotInserted((1 << NumVecElts
) - 1);
11429 for (unsigned I
= 0; I
< NumVecElts
; ++I
) {
11430 // Check for insert vector elements.
11431 if (StVal
.getOpcode() != ISD::INSERT_VECTOR_ELT
)
11434 // Check that same value is inserted at each vector element.
11436 SplatVal
= StVal
.getOperand(1);
11437 else if (StVal
.getOperand(1) != SplatVal
)
11440 // Check insert element index.
11441 ConstantSDNode
*CIndex
= dyn_cast
<ConstantSDNode
>(StVal
.getOperand(2));
11444 uint64_t IndexVal
= CIndex
->getZExtValue();
11445 if (IndexVal
>= NumVecElts
)
11447 IndexNotInserted
.reset(IndexVal
);
11449 StVal
= StVal
.getOperand(0);
11451 // Check that all vector element locations were inserted to.
11452 if (IndexNotInserted
.any())
11455 return splitStoreSplat(DAG
, St
, SplatVal
, NumVecElts
);
11458 static SDValue
splitStores(SDNode
*N
, TargetLowering::DAGCombinerInfo
&DCI
,
11460 const AArch64Subtarget
*Subtarget
) {
11462 StoreSDNode
*S
= cast
<StoreSDNode
>(N
);
11463 if (S
->isVolatile() || S
->isIndexed())
11466 SDValue StVal
= S
->getValue();
11467 EVT VT
= StVal
.getValueType();
11468 if (!VT
.isVector())
11471 // If we get a splat of zeros, convert this vector store to a store of
11472 // scalars. They will be merged into store pairs of xzr thereby removing one
11473 // instruction and one register.
11474 if (SDValue ReplacedZeroSplat
= replaceZeroVectorStore(DAG
, *S
))
11475 return ReplacedZeroSplat
;
11477 // FIXME: The logic for deciding if an unaligned store should be split should
11478 // be included in TLI.allowsMisalignedMemoryAccesses(), and there should be
11479 // a call to that function here.
11481 if (!Subtarget
->isMisaligned128StoreSlow())
11484 // Don't split at -Oz.
11485 if (DAG
.getMachineFunction().getFunction().hasMinSize())
11488 // Don't split v2i64 vectors. Memcpy lowering produces those and splitting
11489 // those up regresses performance on micro-benchmarks and olden/bh.
11490 if (VT
.getVectorNumElements() < 2 || VT
== MVT::v2i64
)
11493 // Split unaligned 16B stores. They are terrible for performance.
11494 // Don't split stores with alignment of 1 or 2. Code that uses clang vector
11495 // extensions can use this to mark that it does not want splitting to happen
11496 // (by underspecifying alignment to be 1 or 2). Furthermore, the chance of
11497 // eliminating alignment hazards is only 1 in 8 for alignment of 2.
11498 if (VT
.getSizeInBits() != 128 || S
->getAlignment() >= 16 ||
11499 S
->getAlignment() <= 2)
11502 // If we get a splat of a scalar convert this vector store to a store of
11503 // scalars. They will be merged into store pairs thereby removing two
11505 if (SDValue ReplacedSplat
= replaceSplatVectorStore(DAG
, *S
))
11506 return ReplacedSplat
;
11510 // Split VT into two.
11511 EVT HalfVT
= VT
.getHalfNumVectorElementsVT(*DAG
.getContext());
11512 unsigned NumElts
= HalfVT
.getVectorNumElements();
11513 SDValue SubVector0
= DAG
.getNode(ISD::EXTRACT_SUBVECTOR
, DL
, HalfVT
, StVal
,
11514 DAG
.getConstant(0, DL
, MVT::i64
));
11515 SDValue SubVector1
= DAG
.getNode(ISD::EXTRACT_SUBVECTOR
, DL
, HalfVT
, StVal
,
11516 DAG
.getConstant(NumElts
, DL
, MVT::i64
));
11517 SDValue BasePtr
= S
->getBasePtr();
11519 DAG
.getStore(S
->getChain(), DL
, SubVector0
, BasePtr
, S
->getPointerInfo(),
11520 S
->getAlignment(), S
->getMemOperand()->getFlags());
11521 SDValue OffsetPtr
= DAG
.getNode(ISD::ADD
, DL
, MVT::i64
, BasePtr
,
11522 DAG
.getConstant(8, DL
, MVT::i64
));
11523 return DAG
.getStore(NewST1
.getValue(0), DL
, SubVector1
, OffsetPtr
,
11524 S
->getPointerInfo(), S
->getAlignment(),
11525 S
->getMemOperand()->getFlags());
11528 /// Target-specific DAG combine function for post-increment LD1 (lane) and
11529 /// post-increment LD1R.
11530 static SDValue
performPostLD1Combine(SDNode
*N
,
11531 TargetLowering::DAGCombinerInfo
&DCI
,
11533 if (DCI
.isBeforeLegalizeOps())
11536 SelectionDAG
&DAG
= DCI
.DAG
;
11537 EVT VT
= N
->getValueType(0);
11539 unsigned LoadIdx
= IsLaneOp
? 1 : 0;
11540 SDNode
*LD
= N
->getOperand(LoadIdx
).getNode();
11541 // If it is not LOAD, can not do such combine.
11542 if (LD
->getOpcode() != ISD::LOAD
)
11545 // The vector lane must be a constant in the LD1LANE opcode.
11548 Lane
= N
->getOperand(2);
11549 auto *LaneC
= dyn_cast
<ConstantSDNode
>(Lane
);
11550 if (!LaneC
|| LaneC
->getZExtValue() >= VT
.getVectorNumElements())
11554 LoadSDNode
*LoadSDN
= cast
<LoadSDNode
>(LD
);
11555 EVT MemVT
= LoadSDN
->getMemoryVT();
11556 // Check if memory operand is the same type as the vector element.
11557 if (MemVT
!= VT
.getVectorElementType())
11560 // Check if there are other uses. If so, do not combine as it will introduce
11562 for (SDNode::use_iterator UI
= LD
->use_begin(), UE
= LD
->use_end(); UI
!= UE
;
11564 if (UI
.getUse().getResNo() == 1) // Ignore uses of the chain result.
11570 SDValue Addr
= LD
->getOperand(1);
11571 SDValue Vector
= N
->getOperand(0);
11572 // Search for a use of the address operand that is an increment.
11573 for (SDNode::use_iterator UI
= Addr
.getNode()->use_begin(), UE
=
11574 Addr
.getNode()->use_end(); UI
!= UE
; ++UI
) {
11575 SDNode
*User
= *UI
;
11576 if (User
->getOpcode() != ISD::ADD
11577 || UI
.getUse().getResNo() != Addr
.getResNo())
11580 // If the increment is a constant, it must match the memory ref size.
11581 SDValue Inc
= User
->getOperand(User
->getOperand(0) == Addr
? 1 : 0);
11582 if (ConstantSDNode
*CInc
= dyn_cast
<ConstantSDNode
>(Inc
.getNode())) {
11583 uint32_t IncVal
= CInc
->getZExtValue();
11584 unsigned NumBytes
= VT
.getScalarSizeInBits() / 8;
11585 if (IncVal
!= NumBytes
)
11587 Inc
= DAG
.getRegister(AArch64::XZR
, MVT::i64
);
11590 // To avoid cycle construction make sure that neither the load nor the add
11591 // are predecessors to each other or the Vector.
11592 SmallPtrSet
<const SDNode
*, 32> Visited
;
11593 SmallVector
<const SDNode
*, 16> Worklist
;
11594 Visited
.insert(Addr
.getNode());
11595 Worklist
.push_back(User
);
11596 Worklist
.push_back(LD
);
11597 Worklist
.push_back(Vector
.getNode());
11598 if (SDNode::hasPredecessorHelper(LD
, Visited
, Worklist
) ||
11599 SDNode::hasPredecessorHelper(User
, Visited
, Worklist
))
11602 SmallVector
<SDValue
, 8> Ops
;
11603 Ops
.push_back(LD
->getOperand(0)); // Chain
11605 Ops
.push_back(Vector
); // The vector to be inserted
11606 Ops
.push_back(Lane
); // The lane to be inserted in the vector
11608 Ops
.push_back(Addr
);
11609 Ops
.push_back(Inc
);
11611 EVT Tys
[3] = { VT
, MVT::i64
, MVT::Other
};
11612 SDVTList SDTys
= DAG
.getVTList(Tys
);
11613 unsigned NewOp
= IsLaneOp
? AArch64ISD::LD1LANEpost
: AArch64ISD::LD1DUPpost
;
11614 SDValue UpdN
= DAG
.getMemIntrinsicNode(NewOp
, SDLoc(N
), SDTys
, Ops
,
11616 LoadSDN
->getMemOperand());
11618 // Update the uses.
11619 SDValue NewResults
[] = {
11620 SDValue(LD
, 0), // The result of load
11621 SDValue(UpdN
.getNode(), 2) // Chain
11623 DCI
.CombineTo(LD
, NewResults
);
11624 DCI
.CombineTo(N
, SDValue(UpdN
.getNode(), 0)); // Dup/Inserted Result
11625 DCI
.CombineTo(User
, SDValue(UpdN
.getNode(), 1)); // Write back register
11632 /// Simplify ``Addr`` given that the top byte of it is ignored by HW during
11633 /// address translation.
11634 static bool performTBISimplification(SDValue Addr
,
11635 TargetLowering::DAGCombinerInfo
&DCI
,
11636 SelectionDAG
&DAG
) {
11637 APInt DemandedMask
= APInt::getLowBitsSet(64, 56);
11639 TargetLowering::TargetLoweringOpt
TLO(DAG
, !DCI
.isBeforeLegalize(),
11640 !DCI
.isBeforeLegalizeOps());
11641 const TargetLowering
&TLI
= DAG
.getTargetLoweringInfo();
11642 if (TLI
.SimplifyDemandedBits(Addr
, DemandedMask
, Known
, TLO
)) {
11643 DCI
.CommitTargetLoweringOpt(TLO
);
11649 static SDValue
performSTORECombine(SDNode
*N
,
11650 TargetLowering::DAGCombinerInfo
&DCI
,
11652 const AArch64Subtarget
*Subtarget
) {
11653 if (SDValue Split
= splitStores(N
, DCI
, DAG
, Subtarget
))
11656 if (Subtarget
->supportsAddressTopByteIgnored() &&
11657 performTBISimplification(N
->getOperand(2), DCI
, DAG
))
11658 return SDValue(N
, 0);
11664 /// Target-specific DAG combine function for NEON load/store intrinsics
11665 /// to merge base address updates.
11666 static SDValue
performNEONPostLDSTCombine(SDNode
*N
,
11667 TargetLowering::DAGCombinerInfo
&DCI
,
11668 SelectionDAG
&DAG
) {
11669 if (DCI
.isBeforeLegalize() || DCI
.isCalledByLegalizer())
11672 unsigned AddrOpIdx
= N
->getNumOperands() - 1;
11673 SDValue Addr
= N
->getOperand(AddrOpIdx
);
11675 // Search for a use of the address operand that is an increment.
11676 for (SDNode::use_iterator UI
= Addr
.getNode()->use_begin(),
11677 UE
= Addr
.getNode()->use_end(); UI
!= UE
; ++UI
) {
11678 SDNode
*User
= *UI
;
11679 if (User
->getOpcode() != ISD::ADD
||
11680 UI
.getUse().getResNo() != Addr
.getResNo())
11683 // Check that the add is independent of the load/store. Otherwise, folding
11684 // it would create a cycle.
11685 SmallPtrSet
<const SDNode
*, 32> Visited
;
11686 SmallVector
<const SDNode
*, 16> Worklist
;
11687 Visited
.insert(Addr
.getNode());
11688 Worklist
.push_back(N
);
11689 Worklist
.push_back(User
);
11690 if (SDNode::hasPredecessorHelper(N
, Visited
, Worklist
) ||
11691 SDNode::hasPredecessorHelper(User
, Visited
, Worklist
))
11694 // Find the new opcode for the updating load/store.
11695 bool IsStore
= false;
11696 bool IsLaneOp
= false;
11697 bool IsDupOp
= false;
11698 unsigned NewOpc
= 0;
11699 unsigned NumVecs
= 0;
11700 unsigned IntNo
= cast
<ConstantSDNode
>(N
->getOperand(1))->getZExtValue();
11702 default: llvm_unreachable("unexpected intrinsic for Neon base update");
11703 case Intrinsic::aarch64_neon_ld2
: NewOpc
= AArch64ISD::LD2post
;
11704 NumVecs
= 2; break;
11705 case Intrinsic::aarch64_neon_ld3
: NewOpc
= AArch64ISD::LD3post
;
11706 NumVecs
= 3; break;
11707 case Intrinsic::aarch64_neon_ld4
: NewOpc
= AArch64ISD::LD4post
;
11708 NumVecs
= 4; break;
11709 case Intrinsic::aarch64_neon_st2
: NewOpc
= AArch64ISD::ST2post
;
11710 NumVecs
= 2; IsStore
= true; break;
11711 case Intrinsic::aarch64_neon_st3
: NewOpc
= AArch64ISD::ST3post
;
11712 NumVecs
= 3; IsStore
= true; break;
11713 case Intrinsic::aarch64_neon_st4
: NewOpc
= AArch64ISD::ST4post
;
11714 NumVecs
= 4; IsStore
= true; break;
11715 case Intrinsic::aarch64_neon_ld1x2
: NewOpc
= AArch64ISD::LD1x2post
;
11716 NumVecs
= 2; break;
11717 case Intrinsic::aarch64_neon_ld1x3
: NewOpc
= AArch64ISD::LD1x3post
;
11718 NumVecs
= 3; break;
11719 case Intrinsic::aarch64_neon_ld1x4
: NewOpc
= AArch64ISD::LD1x4post
;
11720 NumVecs
= 4; break;
11721 case Intrinsic::aarch64_neon_st1x2
: NewOpc
= AArch64ISD::ST1x2post
;
11722 NumVecs
= 2; IsStore
= true; break;
11723 case Intrinsic::aarch64_neon_st1x3
: NewOpc
= AArch64ISD::ST1x3post
;
11724 NumVecs
= 3; IsStore
= true; break;
11725 case Intrinsic::aarch64_neon_st1x4
: NewOpc
= AArch64ISD::ST1x4post
;
11726 NumVecs
= 4; IsStore
= true; break;
11727 case Intrinsic::aarch64_neon_ld2r
: NewOpc
= AArch64ISD::LD2DUPpost
;
11728 NumVecs
= 2; IsDupOp
= true; break;
11729 case Intrinsic::aarch64_neon_ld3r
: NewOpc
= AArch64ISD::LD3DUPpost
;
11730 NumVecs
= 3; IsDupOp
= true; break;
11731 case Intrinsic::aarch64_neon_ld4r
: NewOpc
= AArch64ISD::LD4DUPpost
;
11732 NumVecs
= 4; IsDupOp
= true; break;
11733 case Intrinsic::aarch64_neon_ld2lane
: NewOpc
= AArch64ISD::LD2LANEpost
;
11734 NumVecs
= 2; IsLaneOp
= true; break;
11735 case Intrinsic::aarch64_neon_ld3lane
: NewOpc
= AArch64ISD::LD3LANEpost
;
11736 NumVecs
= 3; IsLaneOp
= true; break;
11737 case Intrinsic::aarch64_neon_ld4lane
: NewOpc
= AArch64ISD::LD4LANEpost
;
11738 NumVecs
= 4; IsLaneOp
= true; break;
11739 case Intrinsic::aarch64_neon_st2lane
: NewOpc
= AArch64ISD::ST2LANEpost
;
11740 NumVecs
= 2; IsStore
= true; IsLaneOp
= true; break;
11741 case Intrinsic::aarch64_neon_st3lane
: NewOpc
= AArch64ISD::ST3LANEpost
;
11742 NumVecs
= 3; IsStore
= true; IsLaneOp
= true; break;
11743 case Intrinsic::aarch64_neon_st4lane
: NewOpc
= AArch64ISD::ST4LANEpost
;
11744 NumVecs
= 4; IsStore
= true; IsLaneOp
= true; break;
11749 VecTy
= N
->getOperand(2).getValueType();
11751 VecTy
= N
->getValueType(0);
11753 // If the increment is a constant, it must match the memory ref size.
11754 SDValue Inc
= User
->getOperand(User
->getOperand(0) == Addr
? 1 : 0);
11755 if (ConstantSDNode
*CInc
= dyn_cast
<ConstantSDNode
>(Inc
.getNode())) {
11756 uint32_t IncVal
= CInc
->getZExtValue();
11757 unsigned NumBytes
= NumVecs
* VecTy
.getSizeInBits() / 8;
11758 if (IsLaneOp
|| IsDupOp
)
11759 NumBytes
/= VecTy
.getVectorNumElements();
11760 if (IncVal
!= NumBytes
)
11762 Inc
= DAG
.getRegister(AArch64::XZR
, MVT::i64
);
11764 SmallVector
<SDValue
, 8> Ops
;
11765 Ops
.push_back(N
->getOperand(0)); // Incoming chain
11766 // Load lane and store have vector list as input.
11767 if (IsLaneOp
|| IsStore
)
11768 for (unsigned i
= 2; i
< AddrOpIdx
; ++i
)
11769 Ops
.push_back(N
->getOperand(i
));
11770 Ops
.push_back(Addr
); // Base register
11771 Ops
.push_back(Inc
);
11775 unsigned NumResultVecs
= (IsStore
? 0 : NumVecs
);
11777 for (n
= 0; n
< NumResultVecs
; ++n
)
11779 Tys
[n
++] = MVT::i64
; // Type of write back register
11780 Tys
[n
] = MVT::Other
; // Type of the chain
11781 SDVTList SDTys
= DAG
.getVTList(makeArrayRef(Tys
, NumResultVecs
+ 2));
11783 MemIntrinsicSDNode
*MemInt
= cast
<MemIntrinsicSDNode
>(N
);
11784 SDValue UpdN
= DAG
.getMemIntrinsicNode(NewOpc
, SDLoc(N
), SDTys
, Ops
,
11785 MemInt
->getMemoryVT(),
11786 MemInt
->getMemOperand());
11788 // Update the uses.
11789 std::vector
<SDValue
> NewResults
;
11790 for (unsigned i
= 0; i
< NumResultVecs
; ++i
) {
11791 NewResults
.push_back(SDValue(UpdN
.getNode(), i
));
11793 NewResults
.push_back(SDValue(UpdN
.getNode(), NumResultVecs
+ 1));
11794 DCI
.CombineTo(N
, NewResults
);
11795 DCI
.CombineTo(User
, SDValue(UpdN
.getNode(), NumResultVecs
));
11802 // Checks to see if the value is the prescribed width and returns information
11803 // about its extension mode.
11805 bool checkValueWidth(SDValue V
, unsigned width
, ISD::LoadExtType
&ExtType
) {
11806 ExtType
= ISD::NON_EXTLOAD
;
11807 switch(V
.getNode()->getOpcode()) {
11811 LoadSDNode
*LoadNode
= cast
<LoadSDNode
>(V
.getNode());
11812 if ((LoadNode
->getMemoryVT() == MVT::i8
&& width
== 8)
11813 || (LoadNode
->getMemoryVT() == MVT::i16
&& width
== 16)) {
11814 ExtType
= LoadNode
->getExtensionType();
11819 case ISD::AssertSext
: {
11820 VTSDNode
*TypeNode
= cast
<VTSDNode
>(V
.getNode()->getOperand(1));
11821 if ((TypeNode
->getVT() == MVT::i8
&& width
== 8)
11822 || (TypeNode
->getVT() == MVT::i16
&& width
== 16)) {
11823 ExtType
= ISD::SEXTLOAD
;
11828 case ISD::AssertZext
: {
11829 VTSDNode
*TypeNode
= cast
<VTSDNode
>(V
.getNode()->getOperand(1));
11830 if ((TypeNode
->getVT() == MVT::i8
&& width
== 8)
11831 || (TypeNode
->getVT() == MVT::i16
&& width
== 16)) {
11832 ExtType
= ISD::ZEXTLOAD
;
11837 case ISD::Constant
:
11838 case ISD::TargetConstant
: {
11839 return std::abs(cast
<ConstantSDNode
>(V
.getNode())->getSExtValue()) <
11840 1LL << (width
- 1);
11847 // This function does a whole lot of voodoo to determine if the tests are
11848 // equivalent without and with a mask. Essentially what happens is that given a
11851 // +-------------+ +-------------+ +-------------+ +-------------+
11852 // | Input | | AddConstant | | CompConstant| | CC |
11853 // +-------------+ +-------------+ +-------------+ +-------------+
11855 // V V | +----------+
11856 // +-------------+ +----+ | |
11857 // | ADD | |0xff| | |
11858 // +-------------+ +----+ | |
11861 // +-------------+ | |
11863 // +-------------+ | |
11872 // The AND node may be safely removed for some combinations of inputs. In
11873 // particular we need to take into account the extension type of the Input,
11874 // the exact values of AddConstant, CompConstant, and CC, along with the nominal
11875 // width of the input (this can work for any width inputs, the above graph is
11876 // specific to 8 bits.
11878 // The specific equations were worked out by generating output tables for each
11879 // AArch64CC value in terms of and AddConstant (w1), CompConstant(w2). The
11880 // problem was simplified by working with 4 bit inputs, which means we only
11881 // needed to reason about 24 distinct bit patterns: 8 patterns unique to zero
11882 // extension (8,15), 8 patterns unique to sign extensions (-8,-1), and 8
11883 // patterns present in both extensions (0,7). For every distinct set of
11884 // AddConstant and CompConstants bit patterns we can consider the masked and
11885 // unmasked versions to be equivalent if the result of this function is true for
11886 // all 16 distinct bit patterns of for the current extension type of Input (w0).
11889 // and w10, w8, #0x0f
11891 // cset w9, AArch64CC
11893 // cset w11, AArch64CC
11898 // Since the above function shows when the outputs are equivalent it defines
11899 // when it is safe to remove the AND. Unfortunately it only runs on AArch64 and
11900 // would be expensive to run during compiles. The equations below were written
11901 // in a test harness that confirmed they gave equivalent outputs to the above
11902 // for all inputs function, so they can be used determine if the removal is
11905 // isEquivalentMaskless() is the code for testing if the AND can be removed
11906 // factored out of the DAG recognition as the DAG can take several forms.
11908 static bool isEquivalentMaskless(unsigned CC
, unsigned width
,
11909 ISD::LoadExtType ExtType
, int AddConstant
,
11910 int CompConstant
) {
11911 // By being careful about our equations and only writing the in term
11912 // symbolic values and well known constants (0, 1, -1, MaxUInt) we can
11913 // make them generally applicable to all bit widths.
11914 int MaxUInt
= (1 << width
);
11916 // For the purposes of these comparisons sign extending the type is
11917 // equivalent to zero extending the add and displacing it by half the integer
11918 // width. Provided we are careful and make sure our equations are valid over
11919 // the whole range we can just adjust the input and avoid writing equations
11920 // for sign extended inputs.
11921 if (ExtType
== ISD::SEXTLOAD
)
11922 AddConstant
-= (1 << (width
-1));
11925 case AArch64CC::LE
:
11926 case AArch64CC::GT
:
11927 if ((AddConstant
== 0) ||
11928 (CompConstant
== MaxUInt
- 1 && AddConstant
< 0) ||
11929 (AddConstant
>= 0 && CompConstant
< 0) ||
11930 (AddConstant
<= 0 && CompConstant
<= 0 && CompConstant
< AddConstant
))
11933 case AArch64CC::LT
:
11934 case AArch64CC::GE
:
11935 if ((AddConstant
== 0) ||
11936 (AddConstant
>= 0 && CompConstant
<= 0) ||
11937 (AddConstant
<= 0 && CompConstant
<= 0 && CompConstant
<= AddConstant
))
11940 case AArch64CC::HI
:
11941 case AArch64CC::LS
:
11942 if ((AddConstant
>= 0 && CompConstant
< 0) ||
11943 (AddConstant
<= 0 && CompConstant
>= -1 &&
11944 CompConstant
< AddConstant
+ MaxUInt
))
11947 case AArch64CC::PL
:
11948 case AArch64CC::MI
:
11949 if ((AddConstant
== 0) ||
11950 (AddConstant
> 0 && CompConstant
<= 0) ||
11951 (AddConstant
< 0 && CompConstant
<= AddConstant
))
11954 case AArch64CC::LO
:
11955 case AArch64CC::HS
:
11956 if ((AddConstant
>= 0 && CompConstant
<= 0) ||
11957 (AddConstant
<= 0 && CompConstant
>= 0 &&
11958 CompConstant
<= AddConstant
+ MaxUInt
))
11961 case AArch64CC::EQ
:
11962 case AArch64CC::NE
:
11963 if ((AddConstant
> 0 && CompConstant
< 0) ||
11964 (AddConstant
< 0 && CompConstant
>= 0 &&
11965 CompConstant
< AddConstant
+ MaxUInt
) ||
11966 (AddConstant
>= 0 && CompConstant
>= 0 &&
11967 CompConstant
>= AddConstant
) ||
11968 (AddConstant
<= 0 && CompConstant
< 0 && CompConstant
< AddConstant
))
11971 case AArch64CC::VS
:
11972 case AArch64CC::VC
:
11973 case AArch64CC::AL
:
11974 case AArch64CC::NV
:
11976 case AArch64CC::Invalid
:
11984 SDValue
performCONDCombine(SDNode
*N
,
11985 TargetLowering::DAGCombinerInfo
&DCI
,
11986 SelectionDAG
&DAG
, unsigned CCIndex
,
11987 unsigned CmpIndex
) {
11988 unsigned CC
= cast
<ConstantSDNode
>(N
->getOperand(CCIndex
))->getSExtValue();
11989 SDNode
*SubsNode
= N
->getOperand(CmpIndex
).getNode();
11990 unsigned CondOpcode
= SubsNode
->getOpcode();
11992 if (CondOpcode
!= AArch64ISD::SUBS
)
11995 // There is a SUBS feeding this condition. Is it fed by a mask we can
11998 SDNode
*AndNode
= SubsNode
->getOperand(0).getNode();
11999 unsigned MaskBits
= 0;
12001 if (AndNode
->getOpcode() != ISD::AND
)
12004 if (ConstantSDNode
*CN
= dyn_cast
<ConstantSDNode
>(AndNode
->getOperand(1))) {
12005 uint32_t CNV
= CN
->getZExtValue();
12008 else if (CNV
== 65535)
12015 SDValue AddValue
= AndNode
->getOperand(0);
12017 if (AddValue
.getOpcode() != ISD::ADD
)
12020 // The basic dag structure is correct, grab the inputs and validate them.
12022 SDValue AddInputValue1
= AddValue
.getNode()->getOperand(0);
12023 SDValue AddInputValue2
= AddValue
.getNode()->getOperand(1);
12024 SDValue SubsInputValue
= SubsNode
->getOperand(1);
12026 // The mask is present and the provenance of all the values is a smaller type,
12027 // lets see if the mask is superfluous.
12029 if (!isa
<ConstantSDNode
>(AddInputValue2
.getNode()) ||
12030 !isa
<ConstantSDNode
>(SubsInputValue
.getNode()))
12033 ISD::LoadExtType ExtType
;
12035 if (!checkValueWidth(SubsInputValue
, MaskBits
, ExtType
) ||
12036 !checkValueWidth(AddInputValue2
, MaskBits
, ExtType
) ||
12037 !checkValueWidth(AddInputValue1
, MaskBits
, ExtType
) )
12040 if(!isEquivalentMaskless(CC
, MaskBits
, ExtType
,
12041 cast
<ConstantSDNode
>(AddInputValue2
.getNode())->getSExtValue(),
12042 cast
<ConstantSDNode
>(SubsInputValue
.getNode())->getSExtValue()))
12045 // The AND is not necessary, remove it.
12047 SDVTList VTs
= DAG
.getVTList(SubsNode
->getValueType(0),
12048 SubsNode
->getValueType(1));
12049 SDValue Ops
[] = { AddValue
, SubsNode
->getOperand(1) };
12051 SDValue NewValue
= DAG
.getNode(CondOpcode
, SDLoc(SubsNode
), VTs
, Ops
);
12052 DAG
.ReplaceAllUsesWith(SubsNode
, NewValue
.getNode());
12054 return SDValue(N
, 0);
12057 // Optimize compare with zero and branch.
12058 static SDValue
performBRCONDCombine(SDNode
*N
,
12059 TargetLowering::DAGCombinerInfo
&DCI
,
12060 SelectionDAG
&DAG
) {
12061 MachineFunction
&MF
= DAG
.getMachineFunction();
12062 // Speculation tracking/SLH assumes that optimized TB(N)Z/CB(N)Z instructions
12063 // will not be produced, as they are conditional branch instructions that do
12065 if (MF
.getFunction().hasFnAttribute(Attribute::SpeculativeLoadHardening
))
12068 if (SDValue NV
= performCONDCombine(N
, DCI
, DAG
, 2, 3))
12070 SDValue Chain
= N
->getOperand(0);
12071 SDValue Dest
= N
->getOperand(1);
12072 SDValue CCVal
= N
->getOperand(2);
12073 SDValue Cmp
= N
->getOperand(3);
12075 assert(isa
<ConstantSDNode
>(CCVal
) && "Expected a ConstantSDNode here!");
12076 unsigned CC
= cast
<ConstantSDNode
>(CCVal
)->getZExtValue();
12077 if (CC
!= AArch64CC::EQ
&& CC
!= AArch64CC::NE
)
12080 unsigned CmpOpc
= Cmp
.getOpcode();
12081 if (CmpOpc
!= AArch64ISD::ADDS
&& CmpOpc
!= AArch64ISD::SUBS
)
12084 // Only attempt folding if there is only one use of the flag and no use of the
12086 if (!Cmp
->hasNUsesOfValue(0, 0) || !Cmp
->hasNUsesOfValue(1, 1))
12089 SDValue LHS
= Cmp
.getOperand(0);
12090 SDValue RHS
= Cmp
.getOperand(1);
12092 assert(LHS
.getValueType() == RHS
.getValueType() &&
12093 "Expected the value type to be the same for both operands!");
12094 if (LHS
.getValueType() != MVT::i32
&& LHS
.getValueType() != MVT::i64
)
12097 if (isNullConstant(LHS
))
12098 std::swap(LHS
, RHS
);
12100 if (!isNullConstant(RHS
))
12103 if (LHS
.getOpcode() == ISD::SHL
|| LHS
.getOpcode() == ISD::SRA
||
12104 LHS
.getOpcode() == ISD::SRL
)
12107 // Fold the compare into the branch instruction.
12109 if (CC
== AArch64CC::EQ
)
12110 BR
= DAG
.getNode(AArch64ISD::CBZ
, SDLoc(N
), MVT::Other
, Chain
, LHS
, Dest
);
12112 BR
= DAG
.getNode(AArch64ISD::CBNZ
, SDLoc(N
), MVT::Other
, Chain
, LHS
, Dest
);
12114 // Do not add new nodes to DAG combiner worklist.
12115 DCI
.CombineTo(N
, BR
, false);
12120 // Optimize some simple tbz/tbnz cases. Returns the new operand and bit to test
12121 // as well as whether the test should be inverted. This code is required to
12122 // catch these cases (as opposed to standard dag combines) because
12123 // AArch64ISD::TBZ is matched during legalization.
12124 static SDValue
getTestBitOperand(SDValue Op
, unsigned &Bit
, bool &Invert
,
12125 SelectionDAG
&DAG
) {
12127 if (!Op
->hasOneUse())
12130 // We don't handle undef/constant-fold cases below, as they should have
12131 // already been taken care of (e.g. and of 0, test of undefined shifted bits,
12134 // (tbz (trunc x), b) -> (tbz x, b)
12135 // This case is just here to enable more of the below cases to be caught.
12136 if (Op
->getOpcode() == ISD::TRUNCATE
&&
12137 Bit
< Op
->getValueType(0).getSizeInBits()) {
12138 return getTestBitOperand(Op
->getOperand(0), Bit
, Invert
, DAG
);
12141 // (tbz (any_ext x), b) -> (tbz x, b) if we don't use the extended bits.
12142 if (Op
->getOpcode() == ISD::ANY_EXTEND
&&
12143 Bit
< Op
->getOperand(0).getValueSizeInBits()) {
12144 return getTestBitOperand(Op
->getOperand(0), Bit
, Invert
, DAG
);
12147 if (Op
->getNumOperands() != 2)
12150 auto *C
= dyn_cast
<ConstantSDNode
>(Op
->getOperand(1));
12154 switch (Op
->getOpcode()) {
12158 // (tbz (and x, m), b) -> (tbz x, b)
12160 if ((C
->getZExtValue() >> Bit
) & 1)
12161 return getTestBitOperand(Op
->getOperand(0), Bit
, Invert
, DAG
);
12164 // (tbz (shl x, c), b) -> (tbz x, b-c)
12166 if (C
->getZExtValue() <= Bit
&&
12167 (Bit
- C
->getZExtValue()) < Op
->getValueType(0).getSizeInBits()) {
12168 Bit
= Bit
- C
->getZExtValue();
12169 return getTestBitOperand(Op
->getOperand(0), Bit
, Invert
, DAG
);
12173 // (tbz (sra x, c), b) -> (tbz x, b+c) or (tbz x, msb) if b+c is > # bits in x
12175 Bit
= Bit
+ C
->getZExtValue();
12176 if (Bit
>= Op
->getValueType(0).getSizeInBits())
12177 Bit
= Op
->getValueType(0).getSizeInBits() - 1;
12178 return getTestBitOperand(Op
->getOperand(0), Bit
, Invert
, DAG
);
12180 // (tbz (srl x, c), b) -> (tbz x, b+c)
12182 if ((Bit
+ C
->getZExtValue()) < Op
->getValueType(0).getSizeInBits()) {
12183 Bit
= Bit
+ C
->getZExtValue();
12184 return getTestBitOperand(Op
->getOperand(0), Bit
, Invert
, DAG
);
12188 // (tbz (xor x, -1), b) -> (tbnz x, b)
12190 if ((C
->getZExtValue() >> Bit
) & 1)
12192 return getTestBitOperand(Op
->getOperand(0), Bit
, Invert
, DAG
);
12196 // Optimize test single bit zero/non-zero and branch.
12197 static SDValue
performTBZCombine(SDNode
*N
,
12198 TargetLowering::DAGCombinerInfo
&DCI
,
12199 SelectionDAG
&DAG
) {
12200 unsigned Bit
= cast
<ConstantSDNode
>(N
->getOperand(2))->getZExtValue();
12201 bool Invert
= false;
12202 SDValue TestSrc
= N
->getOperand(1);
12203 SDValue NewTestSrc
= getTestBitOperand(TestSrc
, Bit
, Invert
, DAG
);
12205 if (TestSrc
== NewTestSrc
)
12208 unsigned NewOpc
= N
->getOpcode();
12210 if (NewOpc
== AArch64ISD::TBZ
)
12211 NewOpc
= AArch64ISD::TBNZ
;
12213 assert(NewOpc
== AArch64ISD::TBNZ
);
12214 NewOpc
= AArch64ISD::TBZ
;
12219 return DAG
.getNode(NewOpc
, DL
, MVT::Other
, N
->getOperand(0), NewTestSrc
,
12220 DAG
.getConstant(Bit
, DL
, MVT::i64
), N
->getOperand(3));
12223 // vselect (v1i1 setcc) ->
12224 // vselect (v1iXX setcc) (XX is the size of the compared operand type)
12225 // FIXME: Currently the type legalizer can't handle VSELECT having v1i1 as
12226 // condition. If it can legalize "VSELECT v1i1" correctly, no need to combine
12228 static SDValue
performVSelectCombine(SDNode
*N
, SelectionDAG
&DAG
) {
12229 SDValue N0
= N
->getOperand(0);
12230 EVT CCVT
= N0
.getValueType();
12232 if (N0
.getOpcode() != ISD::SETCC
|| CCVT
.getVectorNumElements() != 1 ||
12233 CCVT
.getVectorElementType() != MVT::i1
)
12236 EVT ResVT
= N
->getValueType(0);
12237 EVT CmpVT
= N0
.getOperand(0).getValueType();
12238 // Only combine when the result type is of the same size as the compared
12240 if (ResVT
.getSizeInBits() != CmpVT
.getSizeInBits())
12243 SDValue IfTrue
= N
->getOperand(1);
12244 SDValue IfFalse
= N
->getOperand(2);
12246 DAG
.getSetCC(SDLoc(N
), CmpVT
.changeVectorElementTypeToInteger(),
12247 N0
.getOperand(0), N0
.getOperand(1),
12248 cast
<CondCodeSDNode
>(N0
.getOperand(2))->get());
12249 return DAG
.getNode(ISD::VSELECT
, SDLoc(N
), ResVT
, SetCC
,
12253 /// A vector select: "(select vL, vR, (setcc LHS, RHS))" is best performed with
12254 /// the compare-mask instructions rather than going via NZCV, even if LHS and
12255 /// RHS are really scalar. This replaces any scalar setcc in the above pattern
12256 /// with a vector one followed by a DUP shuffle on the result.
12257 static SDValue
performSelectCombine(SDNode
*N
,
12258 TargetLowering::DAGCombinerInfo
&DCI
) {
12259 SelectionDAG
&DAG
= DCI
.DAG
;
12260 SDValue N0
= N
->getOperand(0);
12261 EVT ResVT
= N
->getValueType(0);
12263 if (N0
.getOpcode() != ISD::SETCC
)
12266 // Make sure the SETCC result is either i1 (initial DAG), or i32, the lowered
12267 // scalar SetCCResultType. We also don't expect vectors, because we assume
12268 // that selects fed by vector SETCCs are canonicalized to VSELECT.
12269 assert((N0
.getValueType() == MVT::i1
|| N0
.getValueType() == MVT::i32
) &&
12270 "Scalar-SETCC feeding SELECT has unexpected result type!");
12272 // If NumMaskElts == 0, the comparison is larger than select result. The
12273 // largest real NEON comparison is 64-bits per lane, which means the result is
12274 // at most 32-bits and an illegal vector. Just bail out for now.
12275 EVT SrcVT
= N0
.getOperand(0).getValueType();
12277 // Don't try to do this optimization when the setcc itself has i1 operands.
12278 // There are no legal vectors of i1, so this would be pointless.
12279 if (SrcVT
== MVT::i1
)
12282 int NumMaskElts
= ResVT
.getSizeInBits() / SrcVT
.getSizeInBits();
12283 if (!ResVT
.isVector() || NumMaskElts
== 0)
12286 SrcVT
= EVT::getVectorVT(*DAG
.getContext(), SrcVT
, NumMaskElts
);
12287 EVT CCVT
= SrcVT
.changeVectorElementTypeToInteger();
12289 // Also bail out if the vector CCVT isn't the same size as ResVT.
12290 // This can happen if the SETCC operand size doesn't divide the ResVT size
12291 // (e.g., f64 vs v3f32).
12292 if (CCVT
.getSizeInBits() != ResVT
.getSizeInBits())
12295 // Make sure we didn't create illegal types, if we're not supposed to.
12296 assert(DCI
.isBeforeLegalize() ||
12297 DAG
.getTargetLoweringInfo().isTypeLegal(SrcVT
));
12299 // First perform a vector comparison, where lane 0 is the one we're interested
12303 DAG
.getNode(ISD::SCALAR_TO_VECTOR
, DL
, SrcVT
, N0
.getOperand(0));
12305 DAG
.getNode(ISD::SCALAR_TO_VECTOR
, DL
, SrcVT
, N0
.getOperand(1));
12306 SDValue SetCC
= DAG
.getNode(ISD::SETCC
, DL
, CCVT
, LHS
, RHS
, N0
.getOperand(2));
12308 // Now duplicate the comparison mask we want across all other lanes.
12309 SmallVector
<int, 8> DUPMask(CCVT
.getVectorNumElements(), 0);
12310 SDValue Mask
= DAG
.getVectorShuffle(CCVT
, DL
, SetCC
, SetCC
, DUPMask
);
12311 Mask
= DAG
.getNode(ISD::BITCAST
, DL
,
12312 ResVT
.changeVectorElementTypeToInteger(), Mask
);
12314 return DAG
.getSelect(DL
, ResVT
, Mask
, N
->getOperand(1), N
->getOperand(2));
12317 /// Get rid of unnecessary NVCASTs (that don't change the type).
12318 static SDValue
performNVCASTCombine(SDNode
*N
) {
12319 if (N
->getValueType(0) == N
->getOperand(0).getValueType())
12320 return N
->getOperand(0);
12325 // If all users of the globaladdr are of the form (globaladdr + constant), find
12326 // the smallest constant, fold it into the globaladdr's offset and rewrite the
12327 // globaladdr as (globaladdr + constant) - constant.
12328 static SDValue
performGlobalAddressCombine(SDNode
*N
, SelectionDAG
&DAG
,
12329 const AArch64Subtarget
*Subtarget
,
12330 const TargetMachine
&TM
) {
12331 auto *GN
= cast
<GlobalAddressSDNode
>(N
);
12332 if (Subtarget
->ClassifyGlobalReference(GN
->getGlobal(), TM
) !=
12333 AArch64II::MO_NO_FLAG
)
12336 uint64_t MinOffset
= -1ull;
12337 for (SDNode
*N
: GN
->uses()) {
12338 if (N
->getOpcode() != ISD::ADD
)
12340 auto *C
= dyn_cast
<ConstantSDNode
>(N
->getOperand(0));
12342 C
= dyn_cast
<ConstantSDNode
>(N
->getOperand(1));
12345 MinOffset
= std::min(MinOffset
, C
->getZExtValue());
12347 uint64_t Offset
= MinOffset
+ GN
->getOffset();
12349 // Require that the new offset is larger than the existing one. Otherwise, we
12350 // can end up oscillating between two possible DAGs, for example,
12351 // (add (add globaladdr + 10, -1), 1) and (add globaladdr + 9, 1).
12352 if (Offset
<= uint64_t(GN
->getOffset()))
12355 // Check whether folding this offset is legal. It must not go out of bounds of
12356 // the referenced object to avoid violating the code model, and must be
12357 // smaller than 2^21 because this is the largest offset expressible in all
12360 // This check also prevents us from folding negative offsets, which will end
12361 // up being treated in the same way as large positive ones. They could also
12362 // cause code model violations, and aren't really common enough to matter.
12363 if (Offset
>= (1 << 21))
12366 const GlobalValue
*GV
= GN
->getGlobal();
12367 Type
*T
= GV
->getValueType();
12368 if (!T
->isSized() ||
12369 Offset
> GV
->getParent()->getDataLayout().getTypeAllocSize(T
))
12373 SDValue Result
= DAG
.getGlobalAddress(GV
, DL
, MVT::i64
, Offset
);
12374 return DAG
.getNode(ISD::SUB
, DL
, MVT::i64
, Result
,
12375 DAG
.getConstant(MinOffset
, DL
, MVT::i64
));
12378 static SDValue
performST1ScatterCombine(SDNode
*N
, SelectionDAG
&DAG
,
12380 bool OnlyPackedOffsets
= true) {
12381 const SDValue Src
= N
->getOperand(2);
12382 const EVT SrcVT
= Src
->getValueType(0);
12383 assert(SrcVT
.isScalableVector() &&
12384 "Scatter stores are only possible for SVE vectors");
12387 MVT SrcElVT
= SrcVT
.getVectorElementType().getSimpleVT();
12389 // Make sure that source data will fit into an SVE register
12390 if (SrcVT
.getSizeInBits().getKnownMinSize() > AArch64::SVEBitsPerBlock
)
12393 // For FPs, ACLE only supports _packed_ single and double precision types.
12394 if (SrcElVT
.isFloatingPoint())
12395 if ((SrcVT
!= MVT::nxv4f32
) && (SrcVT
!= MVT::nxv2f64
))
12398 // Depending on the addressing mode, this is either a pointer or a vector of
12399 // pointers (that fits into one register)
12400 SDValue Base
= N
->getOperand(4);
12401 // Depending on the addressing mode, this is either a single offset or a
12402 // vector of offsets (that fits into one register)
12403 SDValue Offset
= N
->getOperand(5);
12405 // SST1_IMM requires that the offset is an immediate:
12406 // * multiple of #SizeInBytes
12407 // * in the range [0, 31 x #SizeInBytes]
12408 // where #SizeInBytes is the size in bytes of the stored
12409 // items. For immediates outside that range and non-immediate scalar offsets use
12410 // SST1 or SST1_UXTW instead.
12411 if (Opcode
== AArch64ISD::SST1_IMM
) {
12412 uint64_t MaxIndex
= 31;
12413 uint64_t SrcElSize
= SrcElVT
.getStoreSize().getKnownMinSize();
12415 ConstantSDNode
*OffsetConst
= dyn_cast
<ConstantSDNode
>(Offset
.getNode());
12416 if (nullptr == OffsetConst
||
12417 OffsetConst
->getZExtValue() > MaxIndex
* SrcElSize
||
12418 OffsetConst
->getZExtValue() % SrcElSize
) {
12419 if (MVT::nxv4i32
== Base
.getValueType().getSimpleVT().SimpleTy
)
12420 Opcode
= AArch64ISD::SST1_UXTW
;
12422 Opcode
= AArch64ISD::SST1
;
12424 std::swap(Base
, Offset
);
12428 auto &TLI
= DAG
.getTargetLoweringInfo();
12429 if (!TLI
.isTypeLegal(Base
.getValueType()))
12432 // Some scatter store variants allow unpacked offsets, but only as nxv2i32
12433 // vectors. These are implicitly sign (sxtw) or zero (zxtw) extend to
12434 // nxv2i64. Legalize accordingly.
12435 if (!OnlyPackedOffsets
&&
12436 Offset
.getValueType().getSimpleVT().SimpleTy
== MVT::nxv2i32
)
12437 Offset
= DAG
.getNode(ISD::ANY_EXTEND
, DL
, MVT::nxv2i64
, Offset
).getValue(0);
12439 if (!TLI
.isTypeLegal(Offset
.getValueType()))
12442 // Source value type that is representable in hardware
12443 EVT HwSrcVt
= getSVEContainerType(SrcVT
);
12445 // Keep the original type of the input data to store - this is needed to
12446 // differentiate between ST1B, ST1H, ST1W and ST1D. For FP values we want the
12447 // integer equivalent, so just use HwSrcVt.
12448 SDValue InputVT
= DAG
.getValueType(SrcVT
);
12449 if (SrcVT
.isFloatingPoint())
12450 InputVT
= DAG
.getValueType(HwSrcVt
);
12452 SDVTList VTs
= DAG
.getVTList(MVT::Other
);
12455 if (Src
.getValueType().isFloatingPoint())
12456 SrcNew
= DAG
.getNode(ISD::BITCAST
, DL
, HwSrcVt
, Src
);
12458 SrcNew
= DAG
.getNode(ISD::ANY_EXTEND
, DL
, HwSrcVt
, Src
);
12460 SDValue Ops
[] = {N
->getOperand(0), // Chain
12462 N
->getOperand(3), // Pg
12467 return DAG
.getNode(Opcode
, DL
, VTs
, Ops
);
12470 static SDValue
performLD1GatherCombine(SDNode
*N
, SelectionDAG
&DAG
,
12472 bool OnlyPackedOffsets
= true) {
12473 EVT RetVT
= N
->getValueType(0);
12474 assert(RetVT
.isScalableVector() &&
12475 "Gather loads are only possible for SVE vectors");
12478 if (RetVT
.getSizeInBits().getKnownMinSize() > AArch64::SVEBitsPerBlock
)
12481 // Depending on the addressing mode, this is either a pointer or a vector of
12482 // pointers (that fits into one register)
12483 SDValue Base
= N
->getOperand(3);
12484 // Depending on the addressing mode, this is either a single offset or a
12485 // vector of offsets (that fits into one register)
12486 SDValue Offset
= N
->getOperand(4);
12488 // GLD1_IMM requires that the offset is an immediate:
12489 // * multiple of #SizeInBytes
12490 // * in the range [0, 31 x #SizeInBytes]
12491 // where #SizeInBytes is the size in bytes of the loaded items. For immediates
12492 // outside that range and non-immediate scalar offsets use GLD1 or GLD1_UXTW
12494 if (Opcode
== AArch64ISD::GLD1_IMM
) {
12495 uint64_t MaxIndex
= 31;
12496 uint64_t RetElSize
= RetVT
.getVectorElementType()
12499 .getKnownMinSize();
12501 ConstantSDNode
*OffsetConst
= dyn_cast
<ConstantSDNode
>(Offset
.getNode());
12502 if (nullptr == OffsetConst
||
12503 OffsetConst
->getZExtValue() > MaxIndex
* RetElSize
||
12504 OffsetConst
->getZExtValue() % RetElSize
) {
12505 if (MVT::nxv4i32
== Base
.getValueType().getSimpleVT().SimpleTy
)
12506 Opcode
= AArch64ISD::GLD1_UXTW
;
12508 Opcode
= AArch64ISD::GLD1
;
12510 std::swap(Base
, Offset
);
12514 auto &TLI
= DAG
.getTargetLoweringInfo();
12515 if (!TLI
.isTypeLegal(Base
.getValueType()))
12518 // Some gather load variants allow unpacked offsets, but only as nxv2i32
12519 // vectors. These are implicitly sign (sxtw) or zero (zxtw) extend to
12520 // nxv2i64. Legalize accordingly.
12521 if (!OnlyPackedOffsets
&&
12522 Offset
.getValueType().getSimpleVT().SimpleTy
== MVT::nxv2i32
)
12523 Offset
= DAG
.getNode(ISD::ANY_EXTEND
, DL
, MVT::nxv2i64
, Offset
).getValue(0);
12525 // Return value type that is representable in hardware
12526 EVT HwRetVt
= getSVEContainerType(RetVT
);
12528 // Keep the original output value type around - this will better inform
12529 // optimisations (e.g. instruction folding when load is followed by
12530 // zext/sext). This will only be used for ints, so the value for FPs
12532 SDValue OutVT
= DAG
.getValueType(RetVT
);
12533 if (RetVT
.isFloatingPoint())
12534 OutVT
= DAG
.getValueType(HwRetVt
);
12536 SDVTList VTs
= DAG
.getVTList(HwRetVt
, MVT::Other
);
12537 SDValue Ops
[] = {N
->getOperand(0), // Chain
12538 N
->getOperand(2), // Pg
12539 Base
, Offset
, OutVT
};
12541 SDValue Load
= DAG
.getNode(Opcode
, DL
, VTs
, Ops
);
12542 SDValue LoadChain
= SDValue(Load
.getNode(), 1);
12544 if (RetVT
.isInteger() && (RetVT
!= HwRetVt
))
12545 Load
= DAG
.getNode(ISD::TRUNCATE
, DL
, RetVT
, Load
.getValue(0));
12547 // If the original return value was FP, bitcast accordingly. Doing it here
12548 // means that we can avoid adding TableGen patterns for FPs.
12549 if (RetVT
.isFloatingPoint())
12550 Load
= DAG
.getNode(ISD::BITCAST
, DL
, RetVT
, Load
.getValue(0));
12552 return DAG
.getMergeValues({Load
, LoadChain
}, DL
);
12557 performSignExtendInRegCombine(SDNode
*N
, TargetLowering::DAGCombinerInfo
&DCI
,
12558 SelectionDAG
&DAG
) {
12559 if (DCI
.isBeforeLegalizeOps())
12562 SDValue Src
= N
->getOperand(0);
12563 unsigned Opc
= Src
->getOpcode();
12565 // SVE load nodes (e.g. AArch64ISD::GLD1) are straightforward candidates
12566 // for DAG Combine with SIGN_EXTEND_INREG. Bail out for all other nodes.
12568 unsigned MemVTOpNum
= 4;
12570 case AArch64ISD::LDNF1
:
12571 NewOpc
= AArch64ISD::LDNF1S
;
12574 case AArch64ISD::GLD1
:
12575 NewOpc
= AArch64ISD::GLD1S
;
12577 case AArch64ISD::GLD1_SCALED
:
12578 NewOpc
= AArch64ISD::GLD1S_SCALED
;
12580 case AArch64ISD::GLD1_SXTW
:
12581 NewOpc
= AArch64ISD::GLD1S_SXTW
;
12583 case AArch64ISD::GLD1_SXTW_SCALED
:
12584 NewOpc
= AArch64ISD::GLD1S_SXTW_SCALED
;
12586 case AArch64ISD::GLD1_UXTW
:
12587 NewOpc
= AArch64ISD::GLD1S_UXTW
;
12589 case AArch64ISD::GLD1_UXTW_SCALED
:
12590 NewOpc
= AArch64ISD::GLD1S_UXTW_SCALED
;
12592 case AArch64ISD::GLD1_IMM
:
12593 NewOpc
= AArch64ISD::GLD1S_IMM
;
12599 EVT SignExtSrcVT
= cast
<VTSDNode
>(N
->getOperand(1))->getVT();
12600 EVT SrcMemVT
= cast
<VTSDNode
>(Src
->getOperand(MemVTOpNum
))->getVT();
12602 if ((SignExtSrcVT
!= SrcMemVT
) || !Src
.hasOneUse())
12605 EVT DstVT
= N
->getValueType(0);
12606 SDVTList VTs
= DAG
.getVTList(DstVT
, MVT::Other
);
12608 SmallVector
<SDValue
, 5> Ops
;
12609 for (unsigned I
= 0; I
< Src
->getNumOperands(); ++I
)
12610 Ops
.push_back(Src
->getOperand(I
));
12612 SDValue ExtLoad
= DAG
.getNode(NewOpc
, SDLoc(N
), VTs
, Ops
);
12613 DCI
.CombineTo(N
, ExtLoad
);
12614 DCI
.CombineTo(Src
.getNode(), ExtLoad
, ExtLoad
.getValue(1));
12616 // Return N so it doesn't get rechecked
12617 return SDValue(N
, 0);
12620 SDValue
AArch64TargetLowering::PerformDAGCombine(SDNode
*N
,
12621 DAGCombinerInfo
&DCI
) const {
12622 SelectionDAG
&DAG
= DCI
.DAG
;
12623 switch (N
->getOpcode()) {
12625 LLVM_DEBUG(dbgs() << "Custom combining: skipping\n");
12629 return performAddSubLongCombine(N
, DCI
, DAG
);
12631 return performXorCombine(N
, DAG
, DCI
, Subtarget
);
12633 return performMulCombine(N
, DAG
, DCI
, Subtarget
);
12634 case ISD::SINT_TO_FP
:
12635 case ISD::UINT_TO_FP
:
12636 return performIntToFpCombine(N
, DAG
, Subtarget
);
12637 case ISD::FP_TO_SINT
:
12638 case ISD::FP_TO_UINT
:
12639 return performFpToIntCombine(N
, DAG
, DCI
, Subtarget
);
12641 return performFDivCombine(N
, DAG
, DCI
, Subtarget
);
12643 return performORCombine(N
, DCI
, Subtarget
);
12645 return performANDCombine(N
, DCI
);
12647 return performSRLCombine(N
, DCI
);
12648 case ISD::INTRINSIC_WO_CHAIN
:
12649 return performIntrinsicCombine(N
, DCI
, Subtarget
);
12650 case ISD::ANY_EXTEND
:
12651 case ISD::ZERO_EXTEND
:
12652 case ISD::SIGN_EXTEND
:
12653 return performExtendCombine(N
, DCI
, DAG
);
12654 case ISD::SIGN_EXTEND_INREG
:
12655 return performSignExtendInRegCombine(N
, DCI
, DAG
);
12656 case ISD::CONCAT_VECTORS
:
12657 return performConcatVectorsCombine(N
, DCI
, DAG
);
12659 return performSelectCombine(N
, DCI
);
12661 return performVSelectCombine(N
, DCI
.DAG
);
12663 if (performTBISimplification(N
->getOperand(1), DCI
, DAG
))
12664 return SDValue(N
, 0);
12667 return performSTORECombine(N
, DCI
, DAG
, Subtarget
);
12668 case AArch64ISD::BRCOND
:
12669 return performBRCONDCombine(N
, DCI
, DAG
);
12670 case AArch64ISD::TBNZ
:
12671 case AArch64ISD::TBZ
:
12672 return performTBZCombine(N
, DCI
, DAG
);
12673 case AArch64ISD::CSEL
:
12674 return performCONDCombine(N
, DCI
, DAG
, 2, 3);
12675 case AArch64ISD::DUP
:
12676 return performPostLD1Combine(N
, DCI
, false);
12677 case AArch64ISD::NVCAST
:
12678 return performNVCASTCombine(N
);
12679 case ISD::INSERT_VECTOR_ELT
:
12680 return performPostLD1Combine(N
, DCI
, true);
12681 case ISD::INTRINSIC_VOID
:
12682 case ISD::INTRINSIC_W_CHAIN
:
12683 switch (cast
<ConstantSDNode
>(N
->getOperand(1))->getZExtValue()) {
12684 case Intrinsic::aarch64_neon_ld2
:
12685 case Intrinsic::aarch64_neon_ld3
:
12686 case Intrinsic::aarch64_neon_ld4
:
12687 case Intrinsic::aarch64_neon_ld1x2
:
12688 case Intrinsic::aarch64_neon_ld1x3
:
12689 case Intrinsic::aarch64_neon_ld1x4
:
12690 case Intrinsic::aarch64_neon_ld2lane
:
12691 case Intrinsic::aarch64_neon_ld3lane
:
12692 case Intrinsic::aarch64_neon_ld4lane
:
12693 case Intrinsic::aarch64_neon_ld2r
:
12694 case Intrinsic::aarch64_neon_ld3r
:
12695 case Intrinsic::aarch64_neon_ld4r
:
12696 case Intrinsic::aarch64_neon_st2
:
12697 case Intrinsic::aarch64_neon_st3
:
12698 case Intrinsic::aarch64_neon_st4
:
12699 case Intrinsic::aarch64_neon_st1x2
:
12700 case Intrinsic::aarch64_neon_st1x3
:
12701 case Intrinsic::aarch64_neon_st1x4
:
12702 case Intrinsic::aarch64_neon_st2lane
:
12703 case Intrinsic::aarch64_neon_st3lane
:
12704 case Intrinsic::aarch64_neon_st4lane
:
12705 return performNEONPostLDSTCombine(N
, DCI
, DAG
);
12706 case Intrinsic::aarch64_sve_ldnt1
:
12707 return performLDNT1Combine(N
, DAG
);
12708 case Intrinsic::aarch64_sve_ldnf1
:
12709 return performLDNF1Combine(N
, DAG
);
12710 case Intrinsic::aarch64_sve_stnt1
:
12711 return performSTNT1Combine(N
, DAG
);
12712 case Intrinsic::aarch64_sve_ld1_gather
:
12713 return performLD1GatherCombine(N
, DAG
, AArch64ISD::GLD1
);
12714 case Intrinsic::aarch64_sve_ld1_gather_index
:
12715 return performLD1GatherCombine(N
, DAG
, AArch64ISD::GLD1_SCALED
);
12716 case Intrinsic::aarch64_sve_ld1_gather_sxtw
:
12717 return performLD1GatherCombine(N
, DAG
, AArch64ISD::GLD1_SXTW
,
12718 /*OnlyPackedOffsets=*/false);
12719 case Intrinsic::aarch64_sve_ld1_gather_uxtw
:
12720 return performLD1GatherCombine(N
, DAG
, AArch64ISD::GLD1_UXTW
,
12721 /*OnlyPackedOffsets=*/false);
12722 case Intrinsic::aarch64_sve_ld1_gather_sxtw_index
:
12723 return performLD1GatherCombine(N
, DAG
, AArch64ISD::GLD1_SXTW_SCALED
,
12724 /*OnlyPackedOffsets=*/false);
12725 case Intrinsic::aarch64_sve_ld1_gather_uxtw_index
:
12726 return performLD1GatherCombine(N
, DAG
, AArch64ISD::GLD1_UXTW_SCALED
,
12727 /*OnlyPackedOffsets=*/false);
12728 case Intrinsic::aarch64_sve_ld1_gather_scalar_offset
:
12729 return performLD1GatherCombine(N
, DAG
, AArch64ISD::GLD1_IMM
);
12730 case Intrinsic::aarch64_sve_st1_scatter
:
12731 return performST1ScatterCombine(N
, DAG
, AArch64ISD::SST1
);
12732 case Intrinsic::aarch64_sve_st1_scatter_index
:
12733 return performST1ScatterCombine(N
, DAG
, AArch64ISD::SST1_SCALED
);
12734 case Intrinsic::aarch64_sve_st1_scatter_sxtw
:
12735 return performST1ScatterCombine(N
, DAG
, AArch64ISD::SST1_SXTW
,
12736 /*OnlyPackedOffsets=*/false);
12737 case Intrinsic::aarch64_sve_st1_scatter_uxtw
:
12738 return performST1ScatterCombine(N
, DAG
, AArch64ISD::SST1_UXTW
,
12739 /*OnlyPackedOffsets=*/false);
12740 case Intrinsic::aarch64_sve_st1_scatter_sxtw_index
:
12741 return performST1ScatterCombine(N
, DAG
, AArch64ISD::SST1_SXTW_SCALED
,
12742 /*OnlyPackedOffsets=*/false);
12743 case Intrinsic::aarch64_sve_st1_scatter_uxtw_index
:
12744 return performST1ScatterCombine(N
, DAG
, AArch64ISD::SST1_UXTW_SCALED
,
12745 /*OnlyPackedOffsets=*/false);
12746 case Intrinsic::aarch64_sve_st1_scatter_scalar_offset
:
12747 return performST1ScatterCombine(N
, DAG
, AArch64ISD::SST1_IMM
);
12752 case ISD::GlobalAddress
:
12753 return performGlobalAddressCombine(N
, DAG
, Subtarget
, getTargetMachine());
12758 // Check if the return value is used as only a return value, as otherwise
12759 // we can't perform a tail-call. In particular, we need to check for
12760 // target ISD nodes that are returns and any other "odd" constructs
12761 // that the generic analysis code won't necessarily catch.
12762 bool AArch64TargetLowering::isUsedByReturnOnly(SDNode
*N
,
12763 SDValue
&Chain
) const {
12764 if (N
->getNumValues() != 1)
12766 if (!N
->hasNUsesOfValue(1, 0))
12769 SDValue TCChain
= Chain
;
12770 SDNode
*Copy
= *N
->use_begin();
12771 if (Copy
->getOpcode() == ISD::CopyToReg
) {
12772 // If the copy has a glue operand, we conservatively assume it isn't safe to
12773 // perform a tail call.
12774 if (Copy
->getOperand(Copy
->getNumOperands() - 1).getValueType() ==
12777 TCChain
= Copy
->getOperand(0);
12778 } else if (Copy
->getOpcode() != ISD::FP_EXTEND
)
12781 bool HasRet
= false;
12782 for (SDNode
*Node
: Copy
->uses()) {
12783 if (Node
->getOpcode() != AArch64ISD::RET_FLAG
)
12795 // Return whether the an instruction can potentially be optimized to a tail
12796 // call. This will cause the optimizers to attempt to move, or duplicate,
12797 // return instructions to help enable tail call optimizations for this
12799 bool AArch64TargetLowering::mayBeEmittedAsTailCall(const CallInst
*CI
) const {
12800 return CI
->isTailCall();
12803 bool AArch64TargetLowering::getIndexedAddressParts(SDNode
*Op
, SDValue
&Base
,
12805 ISD::MemIndexedMode
&AM
,
12807 SelectionDAG
&DAG
) const {
12808 if (Op
->getOpcode() != ISD::ADD
&& Op
->getOpcode() != ISD::SUB
)
12811 Base
= Op
->getOperand(0);
12812 // All of the indexed addressing mode instructions take a signed
12813 // 9 bit immediate offset.
12814 if (ConstantSDNode
*RHS
= dyn_cast
<ConstantSDNode
>(Op
->getOperand(1))) {
12815 int64_t RHSC
= RHS
->getSExtValue();
12816 if (Op
->getOpcode() == ISD::SUB
)
12817 RHSC
= -(uint64_t)RHSC
;
12818 if (!isInt
<9>(RHSC
))
12820 IsInc
= (Op
->getOpcode() == ISD::ADD
);
12821 Offset
= Op
->getOperand(1);
12827 bool AArch64TargetLowering::getPreIndexedAddressParts(SDNode
*N
, SDValue
&Base
,
12829 ISD::MemIndexedMode
&AM
,
12830 SelectionDAG
&DAG
) const {
12833 if (LoadSDNode
*LD
= dyn_cast
<LoadSDNode
>(N
)) {
12834 VT
= LD
->getMemoryVT();
12835 Ptr
= LD
->getBasePtr();
12836 } else if (StoreSDNode
*ST
= dyn_cast
<StoreSDNode
>(N
)) {
12837 VT
= ST
->getMemoryVT();
12838 Ptr
= ST
->getBasePtr();
12843 if (!getIndexedAddressParts(Ptr
.getNode(), Base
, Offset
, AM
, IsInc
, DAG
))
12845 AM
= IsInc
? ISD::PRE_INC
: ISD::PRE_DEC
;
12849 bool AArch64TargetLowering::getPostIndexedAddressParts(
12850 SDNode
*N
, SDNode
*Op
, SDValue
&Base
, SDValue
&Offset
,
12851 ISD::MemIndexedMode
&AM
, SelectionDAG
&DAG
) const {
12854 if (LoadSDNode
*LD
= dyn_cast
<LoadSDNode
>(N
)) {
12855 VT
= LD
->getMemoryVT();
12856 Ptr
= LD
->getBasePtr();
12857 } else if (StoreSDNode
*ST
= dyn_cast
<StoreSDNode
>(N
)) {
12858 VT
= ST
->getMemoryVT();
12859 Ptr
= ST
->getBasePtr();
12864 if (!getIndexedAddressParts(Op
, Base
, Offset
, AM
, IsInc
, DAG
))
12866 // Post-indexing updates the base, so it's not a valid transform
12867 // if that's not the same as the load's pointer.
12870 AM
= IsInc
? ISD::POST_INC
: ISD::POST_DEC
;
12874 static void ReplaceBITCASTResults(SDNode
*N
, SmallVectorImpl
<SDValue
> &Results
,
12875 SelectionDAG
&DAG
) {
12877 SDValue Op
= N
->getOperand(0);
12879 if (N
->getValueType(0) != MVT::i16
|| Op
.getValueType() != MVT::f16
)
12883 DAG
.getMachineNode(TargetOpcode::INSERT_SUBREG
, DL
, MVT::f32
,
12884 DAG
.getUNDEF(MVT::i32
), Op
,
12885 DAG
.getTargetConstant(AArch64::hsub
, DL
, MVT::i32
)),
12887 Op
= DAG
.getNode(ISD::BITCAST
, DL
, MVT::i32
, Op
);
12888 Results
.push_back(DAG
.getNode(ISD::TRUNCATE
, DL
, MVT::i16
, Op
));
12891 static void ReplaceReductionResults(SDNode
*N
,
12892 SmallVectorImpl
<SDValue
> &Results
,
12893 SelectionDAG
&DAG
, unsigned InterOp
,
12894 unsigned AcrossOp
) {
12898 std::tie(LoVT
, HiVT
) = DAG
.GetSplitDestVTs(N
->getValueType(0));
12899 std::tie(Lo
, Hi
) = DAG
.SplitVectorOperand(N
, 0);
12900 SDValue InterVal
= DAG
.getNode(InterOp
, dl
, LoVT
, Lo
, Hi
);
12901 SDValue SplitVal
= DAG
.getNode(AcrossOp
, dl
, LoVT
, InterVal
);
12902 Results
.push_back(SplitVal
);
12905 static std::pair
<SDValue
, SDValue
> splitInt128(SDValue N
, SelectionDAG
&DAG
) {
12907 SDValue Lo
= DAG
.getNode(ISD::TRUNCATE
, DL
, MVT::i64
, N
);
12908 SDValue Hi
= DAG
.getNode(ISD::TRUNCATE
, DL
, MVT::i64
,
12909 DAG
.getNode(ISD::SRL
, DL
, MVT::i128
, N
,
12910 DAG
.getConstant(64, DL
, MVT::i64
)));
12911 return std::make_pair(Lo
, Hi
);
12914 // Create an even/odd pair of X registers holding integer value V.
12915 static SDValue
createGPRPairNode(SelectionDAG
&DAG
, SDValue V
) {
12916 SDLoc
dl(V
.getNode());
12917 SDValue VLo
= DAG
.getAnyExtOrTrunc(V
, dl
, MVT::i64
);
12918 SDValue VHi
= DAG
.getAnyExtOrTrunc(
12919 DAG
.getNode(ISD::SRL
, dl
, MVT::i128
, V
, DAG
.getConstant(64, dl
, MVT::i64
)),
12921 if (DAG
.getDataLayout().isBigEndian())
12922 std::swap (VLo
, VHi
);
12924 DAG
.getTargetConstant(AArch64::XSeqPairsClassRegClassID
, dl
, MVT::i32
);
12925 SDValue SubReg0
= DAG
.getTargetConstant(AArch64::sube64
, dl
, MVT::i32
);
12926 SDValue SubReg1
= DAG
.getTargetConstant(AArch64::subo64
, dl
, MVT::i32
);
12927 const SDValue Ops
[] = { RegClass
, VLo
, SubReg0
, VHi
, SubReg1
};
12929 DAG
.getMachineNode(TargetOpcode::REG_SEQUENCE
, dl
, MVT::Untyped
, Ops
), 0);
12932 static void ReplaceCMP_SWAP_128Results(SDNode
*N
,
12933 SmallVectorImpl
<SDValue
> &Results
,
12935 const AArch64Subtarget
*Subtarget
) {
12936 assert(N
->getValueType(0) == MVT::i128
&&
12937 "AtomicCmpSwap on types less than 128 should be legal");
12939 if (Subtarget
->hasLSE()) {
12940 // LSE has a 128-bit compare and swap (CASP), but i128 is not a legal type,
12941 // so lower it here, wrapped in REG_SEQUENCE and EXTRACT_SUBREG.
12943 createGPRPairNode(DAG
, N
->getOperand(2)), // Compare value
12944 createGPRPairNode(DAG
, N
->getOperand(3)), // Store value
12945 N
->getOperand(1), // Ptr
12946 N
->getOperand(0), // Chain in
12949 MachineMemOperand
*MemOp
= cast
<MemSDNode
>(N
)->getMemOperand();
12952 switch (MemOp
->getOrdering()) {
12953 case AtomicOrdering::Monotonic
:
12954 Opcode
= AArch64::CASPX
;
12956 case AtomicOrdering::Acquire
:
12957 Opcode
= AArch64::CASPAX
;
12959 case AtomicOrdering::Release
:
12960 Opcode
= AArch64::CASPLX
;
12962 case AtomicOrdering::AcquireRelease
:
12963 case AtomicOrdering::SequentiallyConsistent
:
12964 Opcode
= AArch64::CASPALX
;
12967 llvm_unreachable("Unexpected ordering!");
12970 MachineSDNode
*CmpSwap
= DAG
.getMachineNode(
12971 Opcode
, SDLoc(N
), DAG
.getVTList(MVT::Untyped
, MVT::Other
), Ops
);
12972 DAG
.setNodeMemRefs(CmpSwap
, {MemOp
});
12974 unsigned SubReg1
= AArch64::sube64
, SubReg2
= AArch64::subo64
;
12975 if (DAG
.getDataLayout().isBigEndian())
12976 std::swap(SubReg1
, SubReg2
);
12977 Results
.push_back(DAG
.getTargetExtractSubreg(SubReg1
, SDLoc(N
), MVT::i64
,
12978 SDValue(CmpSwap
, 0)));
12979 Results
.push_back(DAG
.getTargetExtractSubreg(SubReg2
, SDLoc(N
), MVT::i64
,
12980 SDValue(CmpSwap
, 0)));
12981 Results
.push_back(SDValue(CmpSwap
, 1)); // Chain out
12985 auto Desired
= splitInt128(N
->getOperand(2), DAG
);
12986 auto New
= splitInt128(N
->getOperand(3), DAG
);
12987 SDValue Ops
[] = {N
->getOperand(1), Desired
.first
, Desired
.second
,
12988 New
.first
, New
.second
, N
->getOperand(0)};
12989 SDNode
*CmpSwap
= DAG
.getMachineNode(
12990 AArch64::CMP_SWAP_128
, SDLoc(N
),
12991 DAG
.getVTList(MVT::i64
, MVT::i64
, MVT::i32
, MVT::Other
), Ops
);
12993 MachineMemOperand
*MemOp
= cast
<MemSDNode
>(N
)->getMemOperand();
12994 DAG
.setNodeMemRefs(cast
<MachineSDNode
>(CmpSwap
), {MemOp
});
12996 Results
.push_back(SDValue(CmpSwap
, 0));
12997 Results
.push_back(SDValue(CmpSwap
, 1));
12998 Results
.push_back(SDValue(CmpSwap
, 3));
13001 void AArch64TargetLowering::ReplaceNodeResults(
13002 SDNode
*N
, SmallVectorImpl
<SDValue
> &Results
, SelectionDAG
&DAG
) const {
13003 switch (N
->getOpcode()) {
13005 llvm_unreachable("Don't know how to custom expand this");
13007 ReplaceBITCASTResults(N
, Results
, DAG
);
13009 case ISD::VECREDUCE_ADD
:
13010 case ISD::VECREDUCE_SMAX
:
13011 case ISD::VECREDUCE_SMIN
:
13012 case ISD::VECREDUCE_UMAX
:
13013 case ISD::VECREDUCE_UMIN
:
13014 Results
.push_back(LowerVECREDUCE(SDValue(N
, 0), DAG
));
13017 case AArch64ISD::SADDV
:
13018 ReplaceReductionResults(N
, Results
, DAG
, ISD::ADD
, AArch64ISD::SADDV
);
13020 case AArch64ISD::UADDV
:
13021 ReplaceReductionResults(N
, Results
, DAG
, ISD::ADD
, AArch64ISD::UADDV
);
13023 case AArch64ISD::SMINV
:
13024 ReplaceReductionResults(N
, Results
, DAG
, ISD::SMIN
, AArch64ISD::SMINV
);
13026 case AArch64ISD::UMINV
:
13027 ReplaceReductionResults(N
, Results
, DAG
, ISD::UMIN
, AArch64ISD::UMINV
);
13029 case AArch64ISD::SMAXV
:
13030 ReplaceReductionResults(N
, Results
, DAG
, ISD::SMAX
, AArch64ISD::SMAXV
);
13032 case AArch64ISD::UMAXV
:
13033 ReplaceReductionResults(N
, Results
, DAG
, ISD::UMAX
, AArch64ISD::UMAXV
);
13035 case ISD::FP_TO_UINT
:
13036 case ISD::FP_TO_SINT
:
13037 assert(N
->getValueType(0) == MVT::i128
&& "unexpected illegal conversion");
13038 // Let normal code take care of it by not adding anything to Results.
13040 case ISD::ATOMIC_CMP_SWAP
:
13041 ReplaceCMP_SWAP_128Results(N
, Results
, DAG
, Subtarget
);
13044 assert(SDValue(N
, 0).getValueType() == MVT::i128
&&
13045 "unexpected load's value type");
13046 LoadSDNode
*LoadNode
= cast
<LoadSDNode
>(N
);
13047 if (!LoadNode
->isVolatile() || LoadNode
->getMemoryVT() != MVT::i128
) {
13048 // Non-volatile loads are optimized later in AArch64's load/store
13053 SDValue Result
= DAG
.getMemIntrinsicNode(
13054 AArch64ISD::LDP
, SDLoc(N
),
13055 DAG
.getVTList({MVT::i64
, MVT::i64
, MVT::Other
}),
13056 {LoadNode
->getChain(), LoadNode
->getBasePtr()}, LoadNode
->getMemoryVT(),
13057 LoadNode
->getMemOperand());
13059 SDValue Pair
= DAG
.getNode(ISD::BUILD_PAIR
, SDLoc(N
), MVT::i128
,
13060 Result
.getValue(0), Result
.getValue(1));
13061 Results
.append({Pair
, Result
.getValue(2) /* Chain */});
13064 case ISD::INTRINSIC_WO_CHAIN
: {
13065 EVT VT
= N
->getValueType(0);
13066 assert((VT
== MVT::i8
|| VT
== MVT::i16
) &&
13067 "custom lowering for unexpected type");
13069 ConstantSDNode
*CN
= cast
<ConstantSDNode
>(N
->getOperand(0));
13070 Intrinsic::ID IntID
= static_cast<Intrinsic::ID
>(CN
->getZExtValue());
13074 case Intrinsic::aarch64_sve_clasta_n
: {
13076 auto Op2
= DAG
.getNode(ISD::ANY_EXTEND
, DL
, MVT::i32
, N
->getOperand(2));
13077 auto V
= DAG
.getNode(AArch64ISD::CLASTA_N
, DL
, MVT::i32
,
13078 N
->getOperand(1), Op2
, N
->getOperand(3));
13079 Results
.push_back(DAG
.getNode(ISD::TRUNCATE
, DL
, VT
, V
));
13082 case Intrinsic::aarch64_sve_clastb_n
: {
13084 auto Op2
= DAG
.getNode(ISD::ANY_EXTEND
, DL
, MVT::i32
, N
->getOperand(2));
13085 auto V
= DAG
.getNode(AArch64ISD::CLASTB_N
, DL
, MVT::i32
,
13086 N
->getOperand(1), Op2
, N
->getOperand(3));
13087 Results
.push_back(DAG
.getNode(ISD::TRUNCATE
, DL
, VT
, V
));
13090 case Intrinsic::aarch64_sve_lasta
: {
13092 auto V
= DAG
.getNode(AArch64ISD::LASTA
, DL
, MVT::i32
,
13093 N
->getOperand(1), N
->getOperand(2));
13094 Results
.push_back(DAG
.getNode(ISD::TRUNCATE
, DL
, VT
, V
));
13097 case Intrinsic::aarch64_sve_lastb
: {
13099 auto V
= DAG
.getNode(AArch64ISD::LASTB
, DL
, MVT::i32
,
13100 N
->getOperand(1), N
->getOperand(2));
13101 Results
.push_back(DAG
.getNode(ISD::TRUNCATE
, DL
, VT
, V
));
13109 bool AArch64TargetLowering::useLoadStackGuardNode() const {
13110 if (Subtarget
->isTargetAndroid() || Subtarget
->isTargetFuchsia())
13111 return TargetLowering::useLoadStackGuardNode();
13115 unsigned AArch64TargetLowering::combineRepeatedFPDivisors() const {
13116 // Combine multiple FDIVs with the same divisor into multiple FMULs by the
13117 // reciprocal if there are three or more FDIVs.
13121 TargetLoweringBase::LegalizeTypeAction
13122 AArch64TargetLowering::getPreferredVectorAction(MVT VT
) const {
13123 // During type legalization, we prefer to widen v1i8, v1i16, v1i32 to v8i8,
13124 // v4i16, v2i32 instead of to promote.
13125 if (VT
== MVT::v1i8
|| VT
== MVT::v1i16
|| VT
== MVT::v1i32
||
13127 return TypeWidenVector
;
13129 return TargetLoweringBase::getPreferredVectorAction(VT
);
13132 // Loads and stores less than 128-bits are already atomic; ones above that
13133 // are doomed anyway, so defer to the default libcall and blame the OS when
13134 // things go wrong.
13135 bool AArch64TargetLowering::shouldExpandAtomicStoreInIR(StoreInst
*SI
) const {
13136 unsigned Size
= SI
->getValueOperand()->getType()->getPrimitiveSizeInBits();
13137 return Size
== 128;
13140 // Loads and stores less than 128-bits are already atomic; ones above that
13141 // are doomed anyway, so defer to the default libcall and blame the OS when
13142 // things go wrong.
13143 TargetLowering::AtomicExpansionKind
13144 AArch64TargetLowering::shouldExpandAtomicLoadInIR(LoadInst
*LI
) const {
13145 unsigned Size
= LI
->getType()->getPrimitiveSizeInBits();
13146 return Size
== 128 ? AtomicExpansionKind::LLSC
: AtomicExpansionKind::None
;
13149 // For the real atomic operations, we have ldxr/stxr up to 128 bits,
13150 TargetLowering::AtomicExpansionKind
13151 AArch64TargetLowering::shouldExpandAtomicRMWInIR(AtomicRMWInst
*AI
) const {
13152 if (AI
->isFloatingPointOperation())
13153 return AtomicExpansionKind::CmpXChg
;
13155 unsigned Size
= AI
->getType()->getPrimitiveSizeInBits();
13156 if (Size
> 128) return AtomicExpansionKind::None
;
13157 // Nand not supported in LSE.
13158 if (AI
->getOperation() == AtomicRMWInst::Nand
) return AtomicExpansionKind::LLSC
;
13159 // Leave 128 bits to LLSC.
13160 return (Subtarget
->hasLSE() && Size
< 128) ? AtomicExpansionKind::None
: AtomicExpansionKind::LLSC
;
13163 TargetLowering::AtomicExpansionKind
13164 AArch64TargetLowering::shouldExpandAtomicCmpXchgInIR(
13165 AtomicCmpXchgInst
*AI
) const {
13166 // If subtarget has LSE, leave cmpxchg intact for codegen.
13167 if (Subtarget
->hasLSE())
13168 return AtomicExpansionKind::None
;
13169 // At -O0, fast-regalloc cannot cope with the live vregs necessary to
13170 // implement cmpxchg without spilling. If the address being exchanged is also
13171 // on the stack and close enough to the spill slot, this can lead to a
13172 // situation where the monitor always gets cleared and the atomic operation
13173 // can never succeed. So at -O0 we need a late-expanded pseudo-inst instead.
13174 if (getTargetMachine().getOptLevel() == 0)
13175 return AtomicExpansionKind::None
;
13176 return AtomicExpansionKind::LLSC
;
13179 Value
*AArch64TargetLowering::emitLoadLinked(IRBuilder
<> &Builder
, Value
*Addr
,
13180 AtomicOrdering Ord
) const {
13181 Module
*M
= Builder
.GetInsertBlock()->getParent()->getParent();
13182 Type
*ValTy
= cast
<PointerType
>(Addr
->getType())->getElementType();
13183 bool IsAcquire
= isAcquireOrStronger(Ord
);
13185 // Since i128 isn't legal and intrinsics don't get type-lowered, the ldrexd
13186 // intrinsic must return {i64, i64} and we have to recombine them into a
13187 // single i128 here.
13188 if (ValTy
->getPrimitiveSizeInBits() == 128) {
13189 Intrinsic::ID Int
=
13190 IsAcquire
? Intrinsic::aarch64_ldaxp
: Intrinsic::aarch64_ldxp
;
13191 Function
*Ldxr
= Intrinsic::getDeclaration(M
, Int
);
13193 Addr
= Builder
.CreateBitCast(Addr
, Type::getInt8PtrTy(M
->getContext()));
13194 Value
*LoHi
= Builder
.CreateCall(Ldxr
, Addr
, "lohi");
13196 Value
*Lo
= Builder
.CreateExtractValue(LoHi
, 0, "lo");
13197 Value
*Hi
= Builder
.CreateExtractValue(LoHi
, 1, "hi");
13198 Lo
= Builder
.CreateZExt(Lo
, ValTy
, "lo64");
13199 Hi
= Builder
.CreateZExt(Hi
, ValTy
, "hi64");
13200 return Builder
.CreateOr(
13201 Lo
, Builder
.CreateShl(Hi
, ConstantInt::get(ValTy
, 64)), "val64");
13204 Type
*Tys
[] = { Addr
->getType() };
13205 Intrinsic::ID Int
=
13206 IsAcquire
? Intrinsic::aarch64_ldaxr
: Intrinsic::aarch64_ldxr
;
13207 Function
*Ldxr
= Intrinsic::getDeclaration(M
, Int
, Tys
);
13209 Type
*EltTy
= cast
<PointerType
>(Addr
->getType())->getElementType();
13211 const DataLayout
&DL
= M
->getDataLayout();
13212 IntegerType
*IntEltTy
= Builder
.getIntNTy(DL
.getTypeSizeInBits(EltTy
));
13213 Value
*Trunc
= Builder
.CreateTrunc(Builder
.CreateCall(Ldxr
, Addr
), IntEltTy
);
13215 return Builder
.CreateBitCast(Trunc
, EltTy
);
13218 void AArch64TargetLowering::emitAtomicCmpXchgNoStoreLLBalance(
13219 IRBuilder
<> &Builder
) const {
13220 Module
*M
= Builder
.GetInsertBlock()->getParent()->getParent();
13221 Builder
.CreateCall(Intrinsic::getDeclaration(M
, Intrinsic::aarch64_clrex
));
13224 Value
*AArch64TargetLowering::emitStoreConditional(IRBuilder
<> &Builder
,
13225 Value
*Val
, Value
*Addr
,
13226 AtomicOrdering Ord
) const {
13227 Module
*M
= Builder
.GetInsertBlock()->getParent()->getParent();
13228 bool IsRelease
= isReleaseOrStronger(Ord
);
13230 // Since the intrinsics must have legal type, the i128 intrinsics take two
13231 // parameters: "i64, i64". We must marshal Val into the appropriate form
13232 // before the call.
13233 if (Val
->getType()->getPrimitiveSizeInBits() == 128) {
13234 Intrinsic::ID Int
=
13235 IsRelease
? Intrinsic::aarch64_stlxp
: Intrinsic::aarch64_stxp
;
13236 Function
*Stxr
= Intrinsic::getDeclaration(M
, Int
);
13237 Type
*Int64Ty
= Type::getInt64Ty(M
->getContext());
13239 Value
*Lo
= Builder
.CreateTrunc(Val
, Int64Ty
, "lo");
13240 Value
*Hi
= Builder
.CreateTrunc(Builder
.CreateLShr(Val
, 64), Int64Ty
, "hi");
13241 Addr
= Builder
.CreateBitCast(Addr
, Type::getInt8PtrTy(M
->getContext()));
13242 return Builder
.CreateCall(Stxr
, {Lo
, Hi
, Addr
});
13245 Intrinsic::ID Int
=
13246 IsRelease
? Intrinsic::aarch64_stlxr
: Intrinsic::aarch64_stxr
;
13247 Type
*Tys
[] = { Addr
->getType() };
13248 Function
*Stxr
= Intrinsic::getDeclaration(M
, Int
, Tys
);
13250 const DataLayout
&DL
= M
->getDataLayout();
13251 IntegerType
*IntValTy
= Builder
.getIntNTy(DL
.getTypeSizeInBits(Val
->getType()));
13252 Val
= Builder
.CreateBitCast(Val
, IntValTy
);
13254 return Builder
.CreateCall(Stxr
,
13255 {Builder
.CreateZExtOrBitCast(
13256 Val
, Stxr
->getFunctionType()->getParamType(0)),
13260 bool AArch64TargetLowering::functionArgumentNeedsConsecutiveRegisters(
13261 Type
*Ty
, CallingConv::ID CallConv
, bool isVarArg
) const {
13262 return Ty
->isArrayTy();
13265 bool AArch64TargetLowering::shouldNormalizeToSelectSequence(LLVMContext
&,
13270 static Value
*UseTlsOffset(IRBuilder
<> &IRB
, unsigned Offset
) {
13271 Module
*M
= IRB
.GetInsertBlock()->getParent()->getParent();
13272 Function
*ThreadPointerFunc
=
13273 Intrinsic::getDeclaration(M
, Intrinsic::thread_pointer
);
13274 return IRB
.CreatePointerCast(
13275 IRB
.CreateConstGEP1_32(IRB
.getInt8Ty(), IRB
.CreateCall(ThreadPointerFunc
),
13277 IRB
.getInt8PtrTy()->getPointerTo(0));
13280 Value
*AArch64TargetLowering::getIRStackGuard(IRBuilder
<> &IRB
) const {
13281 // Android provides a fixed TLS slot for the stack cookie. See the definition
13282 // of TLS_SLOT_STACK_GUARD in
13283 // https://android.googlesource.com/platform/bionic/+/master/libc/private/bionic_tls.h
13284 if (Subtarget
->isTargetAndroid())
13285 return UseTlsOffset(IRB
, 0x28);
13287 // Fuchsia is similar.
13288 // <zircon/tls.h> defines ZX_TLS_STACK_GUARD_OFFSET with this value.
13289 if (Subtarget
->isTargetFuchsia())
13290 return UseTlsOffset(IRB
, -0x10);
13292 return TargetLowering::getIRStackGuard(IRB
);
13295 void AArch64TargetLowering::insertSSPDeclarations(Module
&M
) const {
13296 // MSVC CRT provides functionalities for stack protection.
13297 if (Subtarget
->getTargetTriple().isWindowsMSVCEnvironment()) {
13298 // MSVC CRT has a global variable holding security cookie.
13299 M
.getOrInsertGlobal("__security_cookie",
13300 Type::getInt8PtrTy(M
.getContext()));
13302 // MSVC CRT has a function to validate security cookie.
13303 FunctionCallee SecurityCheckCookie
= M
.getOrInsertFunction(
13304 "__security_check_cookie", Type::getVoidTy(M
.getContext()),
13305 Type::getInt8PtrTy(M
.getContext()));
13306 if (Function
*F
= dyn_cast
<Function
>(SecurityCheckCookie
.getCallee())) {
13307 F
->setCallingConv(CallingConv::Win64
);
13308 F
->addAttribute(1, Attribute::AttrKind::InReg
);
13312 TargetLowering::insertSSPDeclarations(M
);
13315 Value
*AArch64TargetLowering::getSDagStackGuard(const Module
&M
) const {
13316 // MSVC CRT has a global variable holding security cookie.
13317 if (Subtarget
->getTargetTriple().isWindowsMSVCEnvironment())
13318 return M
.getGlobalVariable("__security_cookie");
13319 return TargetLowering::getSDagStackGuard(M
);
13322 Function
*AArch64TargetLowering::getSSPStackGuardCheck(const Module
&M
) const {
13323 // MSVC CRT has a function to validate security cookie.
13324 if (Subtarget
->getTargetTriple().isWindowsMSVCEnvironment())
13325 return M
.getFunction("__security_check_cookie");
13326 return TargetLowering::getSSPStackGuardCheck(M
);
13329 Value
*AArch64TargetLowering::getSafeStackPointerLocation(IRBuilder
<> &IRB
) const {
13330 // Android provides a fixed TLS slot for the SafeStack pointer. See the
13331 // definition of TLS_SLOT_SAFESTACK in
13332 // https://android.googlesource.com/platform/bionic/+/master/libc/private/bionic_tls.h
13333 if (Subtarget
->isTargetAndroid())
13334 return UseTlsOffset(IRB
, 0x48);
13336 // Fuchsia is similar.
13337 // <zircon/tls.h> defines ZX_TLS_UNSAFE_SP_OFFSET with this value.
13338 if (Subtarget
->isTargetFuchsia())
13339 return UseTlsOffset(IRB
, -0x8);
13341 return TargetLowering::getSafeStackPointerLocation(IRB
);
13344 bool AArch64TargetLowering::isMaskAndCmp0FoldingBeneficial(
13345 const Instruction
&AndI
) const {
13346 // Only sink 'and' mask to cmp use block if it is masking a single bit, since
13347 // this is likely to be fold the and/cmp/br into a single tbz instruction. It
13348 // may be beneficial to sink in other cases, but we would have to check that
13349 // the cmp would not get folded into the br to form a cbz for these to be
13351 ConstantInt
* Mask
= dyn_cast
<ConstantInt
>(AndI
.getOperand(1));
13354 return Mask
->getValue().isPowerOf2();
13357 bool AArch64TargetLowering::
13358 shouldProduceAndByConstByHoistingConstFromShiftsLHSOfAnd(
13359 SDValue X
, ConstantSDNode
*XC
, ConstantSDNode
*CC
, SDValue Y
,
13360 unsigned OldShiftOpcode
, unsigned NewShiftOpcode
,
13361 SelectionDAG
&DAG
) const {
13362 // Does baseline recommend not to perform the fold by default?
13363 if (!TargetLowering::shouldProduceAndByConstByHoistingConstFromShiftsLHSOfAnd(
13364 X
, XC
, CC
, Y
, OldShiftOpcode
, NewShiftOpcode
, DAG
))
13366 // Else, if this is a vector shift, prefer 'shl'.
13367 return X
.getValueType().isScalarInteger() || NewShiftOpcode
== ISD::SHL
;
13370 bool AArch64TargetLowering::shouldExpandShift(SelectionDAG
&DAG
,
13372 if (DAG
.getMachineFunction().getFunction().hasMinSize() &&
13373 !Subtarget
->isTargetWindows() && !Subtarget
->isTargetDarwin())
13378 void AArch64TargetLowering::initializeSplitCSR(MachineBasicBlock
*Entry
) const {
13379 // Update IsSplitCSR in AArch64unctionInfo.
13380 AArch64FunctionInfo
*AFI
= Entry
->getParent()->getInfo
<AArch64FunctionInfo
>();
13381 AFI
->setIsSplitCSR(true);
13384 void AArch64TargetLowering::insertCopiesSplitCSR(
13385 MachineBasicBlock
*Entry
,
13386 const SmallVectorImpl
<MachineBasicBlock
*> &Exits
) const {
13387 const AArch64RegisterInfo
*TRI
= Subtarget
->getRegisterInfo();
13388 const MCPhysReg
*IStart
= TRI
->getCalleeSavedRegsViaCopy(Entry
->getParent());
13392 const TargetInstrInfo
*TII
= Subtarget
->getInstrInfo();
13393 MachineRegisterInfo
*MRI
= &Entry
->getParent()->getRegInfo();
13394 MachineBasicBlock::iterator MBBI
= Entry
->begin();
13395 for (const MCPhysReg
*I
= IStart
; *I
; ++I
) {
13396 const TargetRegisterClass
*RC
= nullptr;
13397 if (AArch64::GPR64RegClass
.contains(*I
))
13398 RC
= &AArch64::GPR64RegClass
;
13399 else if (AArch64::FPR64RegClass
.contains(*I
))
13400 RC
= &AArch64::FPR64RegClass
;
13402 llvm_unreachable("Unexpected register class in CSRsViaCopy!");
13404 Register NewVR
= MRI
->createVirtualRegister(RC
);
13405 // Create copy from CSR to a virtual register.
13406 // FIXME: this currently does not emit CFI pseudo-instructions, it works
13407 // fine for CXX_FAST_TLS since the C++-style TLS access functions should be
13408 // nounwind. If we want to generalize this later, we may need to emit
13409 // CFI pseudo-instructions.
13410 assert(Entry
->getParent()->getFunction().hasFnAttribute(
13411 Attribute::NoUnwind
) &&
13412 "Function should be nounwind in insertCopiesSplitCSR!");
13413 Entry
->addLiveIn(*I
);
13414 BuildMI(*Entry
, MBBI
, DebugLoc(), TII
->get(TargetOpcode::COPY
), NewVR
)
13417 // Insert the copy-back instructions right before the terminator.
13418 for (auto *Exit
: Exits
)
13419 BuildMI(*Exit
, Exit
->getFirstTerminator(), DebugLoc(),
13420 TII
->get(TargetOpcode::COPY
), *I
)
13425 bool AArch64TargetLowering::isIntDivCheap(EVT VT
, AttributeList Attr
) const {
13426 // Integer division on AArch64 is expensive. However, when aggressively
13427 // optimizing for code size, we prefer to use a div instruction, as it is
13428 // usually smaller than the alternative sequence.
13429 // The exception to this is vector division. Since AArch64 doesn't have vector
13430 // integer division, leaving the division as-is is a loss even in terms of
13431 // size, because it will have to be scalarized, while the alternative code
13432 // sequence can be performed in vector form.
13434 Attr
.hasAttribute(AttributeList::FunctionIndex
, Attribute::MinSize
);
13435 return OptSize
&& !VT
.isVector();
13438 bool AArch64TargetLowering::preferIncOfAddToSubOfNot(EVT VT
) const {
13439 // We want inc-of-add for scalars and sub-of-not for vectors.
13440 return VT
.isScalarInteger();
13443 bool AArch64TargetLowering::enableAggressiveFMAFusion(EVT VT
) const {
13444 return Subtarget
->hasAggressiveFMA() && VT
.isFloatingPoint();
13448 AArch64TargetLowering::getVaListSizeInBits(const DataLayout
&DL
) const {
13449 if (Subtarget
->isTargetDarwin() || Subtarget
->isTargetWindows())
13450 return getPointerTy(DL
).getSizeInBits();
13452 return 3 * getPointerTy(DL
).getSizeInBits() + 2 * 32;
13455 void AArch64TargetLowering::finalizeLowering(MachineFunction
&MF
) const {
13456 MF
.getFrameInfo().computeMaxCallFrameSize(MF
);
13457 TargetLoweringBase::finalizeLowering(MF
);
13460 // Unlike X86, we let frame lowering assign offsets to all catch objects.
13461 bool AArch64TargetLowering::needsFixedCatchObjects() const {