1 //=- AArch64InstrInfo.td - Describe the AArch64 Instructions -*- tablegen -*-=//
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
7 //===----------------------------------------------------------------------===//
9 // AArch64 Instruction definitions.
11 //===----------------------------------------------------------------------===//
13 //===----------------------------------------------------------------------===//
14 // ARM Instruction Predicate Definitions.
16 def HasV8_1a : Predicate<"Subtarget->hasV8_1aOps()">,
17 AssemblerPredicate<"HasV8_1aOps", "armv8.1a">;
18 def HasV8_2a : Predicate<"Subtarget->hasV8_2aOps()">,
19 AssemblerPredicate<"HasV8_2aOps", "armv8.2a">;
20 def HasV8_3a : Predicate<"Subtarget->hasV8_3aOps()">,
21 AssemblerPredicate<"HasV8_3aOps", "armv8.3a">;
22 def HasV8_4a : Predicate<"Subtarget->hasV8_4aOps()">,
23 AssemblerPredicate<"HasV8_4aOps", "armv8.4a">;
24 def HasV8_5a : Predicate<"Subtarget->hasV8_5aOps()">,
25 AssemblerPredicate<"HasV8_5aOps", "armv8.5a">;
26 def HasVH : Predicate<"Subtarget->hasVH()">,
27 AssemblerPredicate<"FeatureVH", "vh">;
29 def HasLOR : Predicate<"Subtarget->hasLOR()">,
30 AssemblerPredicate<"FeatureLOR", "lor">;
32 def HasPA : Predicate<"Subtarget->hasPA()">,
33 AssemblerPredicate<"FeaturePA", "pa">;
35 def HasJS : Predicate<"Subtarget->hasJS()">,
36 AssemblerPredicate<"FeatureJS", "jsconv">;
38 def HasCCIDX : Predicate<"Subtarget->hasCCIDX()">,
39 AssemblerPredicate<"FeatureCCIDX", "ccidx">;
41 def HasComplxNum : Predicate<"Subtarget->hasComplxNum()">,
42 AssemblerPredicate<"FeatureComplxNum", "complxnum">;
44 def HasNV : Predicate<"Subtarget->hasNV()">,
45 AssemblerPredicate<"FeatureNV", "nv">;
47 def HasRASv8_4 : Predicate<"Subtarget->hasRASv8_4()">,
48 AssemblerPredicate<"FeatureRASv8_4", "rasv8_4">;
50 def HasMPAM : Predicate<"Subtarget->hasMPAM()">,
51 AssemblerPredicate<"FeatureMPAM", "mpam">;
53 def HasDIT : Predicate<"Subtarget->hasDIT()">,
54 AssemblerPredicate<"FeatureDIT", "dit">;
56 def HasTRACEV8_4 : Predicate<"Subtarget->hasTRACEV8_4()">,
57 AssemblerPredicate<"FeatureTRACEV8_4", "tracev8.4">;
59 def HasAM : Predicate<"Subtarget->hasAM()">,
60 AssemblerPredicate<"FeatureAM", "am">;
62 def HasSEL2 : Predicate<"Subtarget->hasSEL2()">,
63 AssemblerPredicate<"FeatureSEL2", "sel2">;
65 def HasPMU : Predicate<"Subtarget->hasPMU()">,
66 AssemblerPredicate<"FeaturePMU", "pmu">;
68 def HasTLB_RMI : Predicate<"Subtarget->hasTLB_RMI()">,
69 AssemblerPredicate<"FeatureTLB_RMI", "tlb-rmi">;
71 def HasFMI : Predicate<"Subtarget->hasFMI()">,
72 AssemblerPredicate<"FeatureFMI", "fmi">;
74 def HasRCPC_IMMO : Predicate<"Subtarget->hasRCPCImm()">,
75 AssemblerPredicate<"FeatureRCPC_IMMO", "rcpc-immo">;
77 def HasFPARMv8 : Predicate<"Subtarget->hasFPARMv8()">,
78 AssemblerPredicate<"FeatureFPARMv8", "fp-armv8">;
79 def HasNEON : Predicate<"Subtarget->hasNEON()">,
80 AssemblerPredicate<"FeatureNEON", "neon">;
81 def HasCrypto : Predicate<"Subtarget->hasCrypto()">,
82 AssemblerPredicate<"FeatureCrypto", "crypto">;
83 def HasSM4 : Predicate<"Subtarget->hasSM4()">,
84 AssemblerPredicate<"FeatureSM4", "sm4">;
85 def HasSHA3 : Predicate<"Subtarget->hasSHA3()">,
86 AssemblerPredicate<"FeatureSHA3", "sha3">;
87 def HasSHA2 : Predicate<"Subtarget->hasSHA2()">,
88 AssemblerPredicate<"FeatureSHA2", "sha2">;
89 def HasAES : Predicate<"Subtarget->hasAES()">,
90 AssemblerPredicate<"FeatureAES", "aes">;
91 def HasDotProd : Predicate<"Subtarget->hasDotProd()">,
92 AssemblerPredicate<"FeatureDotProd", "dotprod">;
93 def HasCRC : Predicate<"Subtarget->hasCRC()">,
94 AssemblerPredicate<"FeatureCRC", "crc">;
95 def HasLSE : Predicate<"Subtarget->hasLSE()">,
96 AssemblerPredicate<"FeatureLSE", "lse">;
97 def HasRAS : Predicate<"Subtarget->hasRAS()">,
98 AssemblerPredicate<"FeatureRAS", "ras">;
99 def HasRDM : Predicate<"Subtarget->hasRDM()">,
100 AssemblerPredicate<"FeatureRDM", "rdm">;
101 def HasPerfMon : Predicate<"Subtarget->hasPerfMon()">;
102 def HasFullFP16 : Predicate<"Subtarget->hasFullFP16()">,
103 AssemblerPredicate<"FeatureFullFP16", "fullfp16">;
104 def HasFP16FML : Predicate<"Subtarget->hasFP16FML()">,
105 AssemblerPredicate<"FeatureFP16FML", "fp16fml">;
106 def HasSPE : Predicate<"Subtarget->hasSPE()">,
107 AssemblerPredicate<"FeatureSPE", "spe">;
108 def HasFuseAES : Predicate<"Subtarget->hasFuseAES()">,
109 AssemblerPredicate<"FeatureFuseAES",
111 def HasSVE : Predicate<"Subtarget->hasSVE()">,
112 AssemblerPredicate<"FeatureSVE", "sve">;
113 def HasSVE2 : Predicate<"Subtarget->hasSVE2()">,
114 AssemblerPredicate<"FeatureSVE2", "sve2">;
115 def HasSVE2AES : Predicate<"Subtarget->hasSVE2AES()">,
116 AssemblerPredicate<"FeatureSVE2AES", "sve2-aes">;
117 def HasSVE2SM4 : Predicate<"Subtarget->hasSVE2SM4()">,
118 AssemblerPredicate<"FeatureSVE2SM4", "sve2-sm4">;
119 def HasSVE2SHA3 : Predicate<"Subtarget->hasSVE2SHA3()">,
120 AssemblerPredicate<"FeatureSVE2SHA3", "sve2-sha3">;
121 def HasSVE2BitPerm : Predicate<"Subtarget->hasSVE2BitPerm()">,
122 AssemblerPredicate<"FeatureSVE2BitPerm", "sve2-bitperm">;
123 def HasRCPC : Predicate<"Subtarget->hasRCPC()">,
124 AssemblerPredicate<"FeatureRCPC", "rcpc">;
125 def HasAltNZCV : Predicate<"Subtarget->hasAlternativeNZCV()">,
126 AssemblerPredicate<"FeatureAltFPCmp", "altnzcv">;
127 def HasFRInt3264 : Predicate<"Subtarget->hasFRInt3264()">,
128 AssemblerPredicate<"FeatureFRInt3264", "frint3264">;
129 def HasSB : Predicate<"Subtarget->hasSB()">,
130 AssemblerPredicate<"FeatureSB", "sb">;
131 def HasPredRes : Predicate<"Subtarget->hasPredRes()">,
132 AssemblerPredicate<"FeaturePredRes", "predres">;
133 def HasCCDP : Predicate<"Subtarget->hasCCDP()">,
134 AssemblerPredicate<"FeatureCacheDeepPersist", "ccdp">;
135 def HasBTI : Predicate<"Subtarget->hasBTI()">,
136 AssemblerPredicate<"FeatureBranchTargetId", "bti">;
137 def HasMTE : Predicate<"Subtarget->hasMTE()">,
138 AssemblerPredicate<"FeatureMTE", "mte">;
139 def HasTME : Predicate<"Subtarget->hasTME()">,
140 AssemblerPredicate<"FeatureTME", "tme">;
141 def HasETE : Predicate<"Subtarget->hasETE()">,
142 AssemblerPredicate<"FeatureETE", "ete">;
143 def HasTRBE : Predicate<"Subtarget->hasTRBE()">,
144 AssemblerPredicate<"FeatureTRBE", "trbe">;
145 def IsLE : Predicate<"Subtarget->isLittleEndian()">;
146 def IsBE : Predicate<"!Subtarget->isLittleEndian()">;
147 def IsWindows : Predicate<"Subtarget->isTargetWindows()">;
148 def UseAlternateSExtLoadCVTF32
149 : Predicate<"Subtarget->useAlternateSExtLoadCVTF32Pattern()">;
151 def UseNegativeImmediates
152 : Predicate<"false">, AssemblerPredicate<"!FeatureNoNegativeImmediates",
153 "NegativeImmediates">;
155 def AArch64LocalRecover : SDNode<"ISD::LOCAL_RECOVER",
156 SDTypeProfile<1, 1, [SDTCisSameAs<0, 1>,
160 //===----------------------------------------------------------------------===//
161 // AArch64-specific DAG Nodes.
164 // SDTBinaryArithWithFlagsOut - RES1, FLAGS = op LHS, RHS
165 def SDTBinaryArithWithFlagsOut : SDTypeProfile<2, 2,
168 SDTCisInt<0>, SDTCisVT<1, i32>]>;
170 // SDTBinaryArithWithFlagsIn - RES1, FLAGS = op LHS, RHS, FLAGS
171 def SDTBinaryArithWithFlagsIn : SDTypeProfile<1, 3,
177 // SDTBinaryArithWithFlagsInOut - RES1, FLAGS = op LHS, RHS, FLAGS
178 def SDTBinaryArithWithFlagsInOut : SDTypeProfile<2, 3,
185 def SDT_AArch64Brcond : SDTypeProfile<0, 3,
186 [SDTCisVT<0, OtherVT>, SDTCisVT<1, i32>,
188 def SDT_AArch64cbz : SDTypeProfile<0, 2, [SDTCisInt<0>, SDTCisVT<1, OtherVT>]>;
189 def SDT_AArch64tbz : SDTypeProfile<0, 3, [SDTCisInt<0>, SDTCisInt<1>,
190 SDTCisVT<2, OtherVT>]>;
193 def SDT_AArch64CSel : SDTypeProfile<1, 4,
198 def SDT_AArch64CCMP : SDTypeProfile<1, 5,
205 def SDT_AArch64FCCMP : SDTypeProfile<1, 5,
212 def SDT_AArch64FCmp : SDTypeProfile<0, 2,
214 SDTCisSameAs<0, 1>]>;
215 def SDT_AArch64Dup : SDTypeProfile<1, 1, [SDTCisVec<0>]>;
216 def SDT_AArch64DupLane : SDTypeProfile<1, 2, [SDTCisVec<0>, SDTCisInt<2>]>;
217 def SDT_AArch64Insr : SDTypeProfile<1, 2, [SDTCisVec<0>]>;
218 def SDT_AArch64Zip : SDTypeProfile<1, 2, [SDTCisVec<0>,
220 SDTCisSameAs<0, 2>]>;
221 def SDT_AArch64MOVIedit : SDTypeProfile<1, 1, [SDTCisInt<1>]>;
222 def SDT_AArch64MOVIshift : SDTypeProfile<1, 2, [SDTCisInt<1>, SDTCisInt<2>]>;
223 def SDT_AArch64vecimm : SDTypeProfile<1, 3, [SDTCisVec<0>, SDTCisSameAs<0,1>,
224 SDTCisInt<2>, SDTCisInt<3>]>;
225 def SDT_AArch64UnaryVec: SDTypeProfile<1, 1, [SDTCisVec<0>, SDTCisSameAs<0,1>]>;
226 def SDT_AArch64ExtVec: SDTypeProfile<1, 3, [SDTCisVec<0>, SDTCisSameAs<0,1>,
227 SDTCisSameAs<0,2>, SDTCisInt<3>]>;
228 def SDT_AArch64vshift : SDTypeProfile<1, 2, [SDTCisSameAs<0,1>, SDTCisInt<2>]>;
230 def SDT_AArch64unvec : SDTypeProfile<1, 1, [SDTCisVec<0>, SDTCisSameAs<0,1>]>;
231 def SDT_AArch64fcmpz : SDTypeProfile<1, 1, []>;
232 def SDT_AArch64fcmp : SDTypeProfile<1, 2, [SDTCisSameAs<1,2>]>;
233 def SDT_AArch64binvec : SDTypeProfile<1, 2, [SDTCisVec<0>, SDTCisSameAs<0,1>,
235 def SDT_AArch64trivec : SDTypeProfile<1, 3, [SDTCisVec<0>, SDTCisSameAs<0,1>,
238 def SDT_AArch64TCRET : SDTypeProfile<0, 2, [SDTCisPtrTy<0>]>;
239 def SDT_AArch64PREFETCH : SDTypeProfile<0, 2, [SDTCisVT<0, i32>, SDTCisPtrTy<1>]>;
241 def SDT_AArch64ITOF : SDTypeProfile<1, 1, [SDTCisFP<0>, SDTCisSameAs<0,1>]>;
243 def SDT_AArch64TLSDescCall : SDTypeProfile<0, -2, [SDTCisPtrTy<0>,
246 def SDT_AArch64ldp : SDTypeProfile<2, 1, [SDTCisVT<0, i64>, SDTCisSameAs<0, 1>, SDTCisPtrTy<2>]>;
247 def SDT_AArch64stp : SDTypeProfile<0, 3, [SDTCisVT<0, i64>, SDTCisSameAs<0, 1>, SDTCisPtrTy<2>]>;
248 def SDT_AArch64stnp : SDTypeProfile<0, 3, [SDTCisVT<0, v4i32>, SDTCisSameAs<0, 1>, SDTCisPtrTy<2>]>;
250 // Generates the general dynamic sequences, i.e.
251 // adrp x0, :tlsdesc:var
252 // ldr x1, [x0, #:tlsdesc_lo12:var]
253 // add x0, x0, #:tlsdesc_lo12:var
257 // (the TPIDR_EL0 offset is put directly in X0, hence no "result" here)
258 // number of operands (the variable)
259 def SDT_AArch64TLSDescCallSeq : SDTypeProfile<0,1,
262 def SDT_AArch64WrapperLarge : SDTypeProfile<1, 4,
263 [SDTCisVT<0, i64>, SDTCisVT<1, i32>,
264 SDTCisSameAs<1, 2>, SDTCisSameAs<1, 3>,
265 SDTCisSameAs<1, 4>]>;
267 def SDT_AArch64TBL : SDTypeProfile<1, 2, [
268 SDTCisVec<0>, SDTCisSameAs<0, 1>, SDTCisInt<2>
271 // non-extending masked load fragment.
272 def nonext_masked_load :
273 PatFrag<(ops node:$ptr, node:$pred, node:$def),
274 (masked_ld node:$ptr, undef, node:$pred, node:$def), [{
275 return cast<MaskedLoadSDNode>(N)->getExtensionType() == ISD::NON_EXTLOAD &&
276 cast<MaskedLoadSDNode>(N)->isUnindexed() &&
277 !cast<MaskedLoadSDNode>(N)->isNonTemporal();
279 // sign extending masked load fragments.
280 def asext_masked_load :
281 PatFrag<(ops node:$ptr, node:$pred, node:$def),
282 (masked_ld node:$ptr, undef, node:$pred, node:$def),[{
283 return (cast<MaskedLoadSDNode>(N)->getExtensionType() == ISD::EXTLOAD ||
284 cast<MaskedLoadSDNode>(N)->getExtensionType() == ISD::SEXTLOAD) &&
285 cast<MaskedLoadSDNode>(N)->isUnindexed();
287 def asext_masked_load_i8 :
288 PatFrag<(ops node:$ptr, node:$pred, node:$def),
289 (asext_masked_load node:$ptr, node:$pred, node:$def), [{
290 return cast<MaskedLoadSDNode>(N)->getMemoryVT().getScalarType() == MVT::i8;
292 def asext_masked_load_i16 :
293 PatFrag<(ops node:$ptr, node:$pred, node:$def),
294 (asext_masked_load node:$ptr, node:$pred, node:$def), [{
295 return cast<MaskedLoadSDNode>(N)->getMemoryVT().getScalarType() == MVT::i16;
297 def asext_masked_load_i32 :
298 PatFrag<(ops node:$ptr, node:$pred, node:$def),
299 (asext_masked_load node:$ptr, node:$pred, node:$def), [{
300 return cast<MaskedLoadSDNode>(N)->getMemoryVT().getScalarType() == MVT::i32;
302 // zero extending masked load fragments.
303 def zext_masked_load :
304 PatFrag<(ops node:$ptr, node:$pred, node:$def),
305 (masked_ld node:$ptr, undef, node:$pred, node:$def), [{
306 return cast<MaskedLoadSDNode>(N)->getExtensionType() == ISD::ZEXTLOAD &&
307 cast<MaskedLoadSDNode>(N)->isUnindexed();
309 def zext_masked_load_i8 :
310 PatFrag<(ops node:$ptr, node:$pred, node:$def),
311 (zext_masked_load node:$ptr, node:$pred, node:$def), [{
312 return cast<MaskedLoadSDNode>(N)->getMemoryVT().getScalarType() == MVT::i8;
314 def zext_masked_load_i16 :
315 PatFrag<(ops node:$ptr, node:$pred, node:$def),
316 (zext_masked_load node:$ptr, node:$pred, node:$def), [{
317 return cast<MaskedLoadSDNode>(N)->getMemoryVT().getScalarType() == MVT::i16;
319 def zext_masked_load_i32 :
320 PatFrag<(ops node:$ptr, node:$pred, node:$def),
321 (zext_masked_load node:$ptr, node:$pred, node:$def), [{
322 return cast<MaskedLoadSDNode>(N)->getMemoryVT().getScalarType() == MVT::i32;
325 def non_temporal_load :
326 PatFrag<(ops node:$ptr, node:$pred, node:$def),
327 (masked_ld node:$ptr, undef, node:$pred, node:$def), [{
328 return cast<MaskedLoadSDNode>(N)->getExtensionType() == ISD::NON_EXTLOAD &&
329 cast<MaskedLoadSDNode>(N)->isUnindexed() &&
330 cast<MaskedLoadSDNode>(N)->isNonTemporal();
333 // non-truncating masked store fragment.
334 def nontrunc_masked_store :
335 PatFrag<(ops node:$val, node:$ptr, node:$pred),
336 (masked_st node:$val, node:$ptr, undef, node:$pred), [{
337 return !cast<MaskedStoreSDNode>(N)->isTruncatingStore() &&
338 cast<MaskedStoreSDNode>(N)->isUnindexed() &&
339 !cast<MaskedStoreSDNode>(N)->isNonTemporal();
341 // truncating masked store fragments.
342 def trunc_masked_store :
343 PatFrag<(ops node:$val, node:$ptr, node:$pred),
344 (masked_st node:$val, node:$ptr, undef, node:$pred), [{
345 return cast<MaskedStoreSDNode>(N)->isTruncatingStore() &&
346 cast<MaskedStoreSDNode>(N)->isUnindexed();
348 def trunc_masked_store_i8 :
349 PatFrag<(ops node:$val, node:$ptr, node:$pred),
350 (trunc_masked_store node:$val, node:$ptr, node:$pred), [{
351 return cast<MaskedStoreSDNode>(N)->getMemoryVT().getScalarType() == MVT::i8;
353 def trunc_masked_store_i16 :
354 PatFrag<(ops node:$val, node:$ptr, node:$pred),
355 (trunc_masked_store node:$val, node:$ptr, node:$pred), [{
356 return cast<MaskedStoreSDNode>(N)->getMemoryVT().getScalarType() == MVT::i16;
358 def trunc_masked_store_i32 :
359 PatFrag<(ops node:$val, node:$ptr, node:$pred),
360 (trunc_masked_store node:$val, node:$ptr, node:$pred), [{
361 return cast<MaskedStoreSDNode>(N)->getMemoryVT().getScalarType() == MVT::i32;
364 def non_temporal_store :
365 PatFrag<(ops node:$val, node:$ptr, node:$pred),
366 (masked_st node:$val, node:$ptr, undef, node:$pred), [{
367 return !cast<MaskedStoreSDNode>(N)->isTruncatingStore() &&
368 cast<MaskedStoreSDNode>(N)->isUnindexed() &&
369 cast<MaskedStoreSDNode>(N)->isNonTemporal();
373 def AArch64adrp : SDNode<"AArch64ISD::ADRP", SDTIntUnaryOp, []>;
374 def AArch64adr : SDNode<"AArch64ISD::ADR", SDTIntUnaryOp, []>;
375 def AArch64addlow : SDNode<"AArch64ISD::ADDlow", SDTIntBinOp, []>;
376 def AArch64LOADgot : SDNode<"AArch64ISD::LOADgot", SDTIntUnaryOp>;
377 def AArch64callseq_start : SDNode<"ISD::CALLSEQ_START",
378 SDCallSeqStart<[ SDTCisVT<0, i32>,
380 [SDNPHasChain, SDNPOutGlue]>;
381 def AArch64callseq_end : SDNode<"ISD::CALLSEQ_END",
382 SDCallSeqEnd<[ SDTCisVT<0, i32>,
384 [SDNPHasChain, SDNPOptInGlue, SDNPOutGlue]>;
385 def AArch64call : SDNode<"AArch64ISD::CALL",
386 SDTypeProfile<0, -1, [SDTCisPtrTy<0>]>,
387 [SDNPHasChain, SDNPOptInGlue, SDNPOutGlue,
389 def AArch64brcond : SDNode<"AArch64ISD::BRCOND", SDT_AArch64Brcond,
391 def AArch64cbz : SDNode<"AArch64ISD::CBZ", SDT_AArch64cbz,
393 def AArch64cbnz : SDNode<"AArch64ISD::CBNZ", SDT_AArch64cbz,
395 def AArch64tbz : SDNode<"AArch64ISD::TBZ", SDT_AArch64tbz,
397 def AArch64tbnz : SDNode<"AArch64ISD::TBNZ", SDT_AArch64tbz,
401 def AArch64csel : SDNode<"AArch64ISD::CSEL", SDT_AArch64CSel>;
402 def AArch64csinv : SDNode<"AArch64ISD::CSINV", SDT_AArch64CSel>;
403 def AArch64csneg : SDNode<"AArch64ISD::CSNEG", SDT_AArch64CSel>;
404 def AArch64csinc : SDNode<"AArch64ISD::CSINC", SDT_AArch64CSel>;
405 def AArch64retflag : SDNode<"AArch64ISD::RET_FLAG", SDTNone,
406 [SDNPHasChain, SDNPOptInGlue, SDNPVariadic]>;
407 def AArch64adc : SDNode<"AArch64ISD::ADC", SDTBinaryArithWithFlagsIn >;
408 def AArch64sbc : SDNode<"AArch64ISD::SBC", SDTBinaryArithWithFlagsIn>;
409 def AArch64add_flag : SDNode<"AArch64ISD::ADDS", SDTBinaryArithWithFlagsOut,
411 def AArch64sub_flag : SDNode<"AArch64ISD::SUBS", SDTBinaryArithWithFlagsOut>;
412 def AArch64and_flag : SDNode<"AArch64ISD::ANDS", SDTBinaryArithWithFlagsOut,
414 def AArch64adc_flag : SDNode<"AArch64ISD::ADCS", SDTBinaryArithWithFlagsInOut>;
415 def AArch64sbc_flag : SDNode<"AArch64ISD::SBCS", SDTBinaryArithWithFlagsInOut>;
417 def AArch64ccmp : SDNode<"AArch64ISD::CCMP", SDT_AArch64CCMP>;
418 def AArch64ccmn : SDNode<"AArch64ISD::CCMN", SDT_AArch64CCMP>;
419 def AArch64fccmp : SDNode<"AArch64ISD::FCCMP", SDT_AArch64FCCMP>;
421 def AArch64threadpointer : SDNode<"AArch64ISD::THREAD_POINTER", SDTPtrLeaf>;
423 def AArch64fcmp : SDNode<"AArch64ISD::FCMP", SDT_AArch64FCmp>;
425 def AArch64dup : SDNode<"AArch64ISD::DUP", SDT_AArch64Dup>;
426 def AArch64duplane8 : SDNode<"AArch64ISD::DUPLANE8", SDT_AArch64DupLane>;
427 def AArch64duplane16 : SDNode<"AArch64ISD::DUPLANE16", SDT_AArch64DupLane>;
428 def AArch64duplane32 : SDNode<"AArch64ISD::DUPLANE32", SDT_AArch64DupLane>;
429 def AArch64duplane64 : SDNode<"AArch64ISD::DUPLANE64", SDT_AArch64DupLane>;
431 def AArch64insr : SDNode<"AArch64ISD::INSR", SDT_AArch64Insr>;
433 def AArch64zip1 : SDNode<"AArch64ISD::ZIP1", SDT_AArch64Zip>;
434 def AArch64zip2 : SDNode<"AArch64ISD::ZIP2", SDT_AArch64Zip>;
435 def AArch64uzp1 : SDNode<"AArch64ISD::UZP1", SDT_AArch64Zip>;
436 def AArch64uzp2 : SDNode<"AArch64ISD::UZP2", SDT_AArch64Zip>;
437 def AArch64trn1 : SDNode<"AArch64ISD::TRN1", SDT_AArch64Zip>;
438 def AArch64trn2 : SDNode<"AArch64ISD::TRN2", SDT_AArch64Zip>;
440 def AArch64movi_edit : SDNode<"AArch64ISD::MOVIedit", SDT_AArch64MOVIedit>;
441 def AArch64movi_shift : SDNode<"AArch64ISD::MOVIshift", SDT_AArch64MOVIshift>;
442 def AArch64movi_msl : SDNode<"AArch64ISD::MOVImsl", SDT_AArch64MOVIshift>;
443 def AArch64mvni_shift : SDNode<"AArch64ISD::MVNIshift", SDT_AArch64MOVIshift>;
444 def AArch64mvni_msl : SDNode<"AArch64ISD::MVNImsl", SDT_AArch64MOVIshift>;
445 def AArch64movi : SDNode<"AArch64ISD::MOVI", SDT_AArch64MOVIedit>;
446 def AArch64fmov : SDNode<"AArch64ISD::FMOV", SDT_AArch64MOVIedit>;
448 def AArch64rev16 : SDNode<"AArch64ISD::REV16", SDT_AArch64UnaryVec>;
449 def AArch64rev32 : SDNode<"AArch64ISD::REV32", SDT_AArch64UnaryVec>;
450 def AArch64rev64 : SDNode<"AArch64ISD::REV64", SDT_AArch64UnaryVec>;
451 def AArch64ext : SDNode<"AArch64ISD::EXT", SDT_AArch64ExtVec>;
453 def AArch64vashr : SDNode<"AArch64ISD::VASHR", SDT_AArch64vshift>;
454 def AArch64vlshr : SDNode<"AArch64ISD::VLSHR", SDT_AArch64vshift>;
455 def AArch64vshl : SDNode<"AArch64ISD::VSHL", SDT_AArch64vshift>;
456 def AArch64sqshli : SDNode<"AArch64ISD::SQSHL_I", SDT_AArch64vshift>;
457 def AArch64uqshli : SDNode<"AArch64ISD::UQSHL_I", SDT_AArch64vshift>;
458 def AArch64sqshlui : SDNode<"AArch64ISD::SQSHLU_I", SDT_AArch64vshift>;
459 def AArch64srshri : SDNode<"AArch64ISD::SRSHR_I", SDT_AArch64vshift>;
460 def AArch64urshri : SDNode<"AArch64ISD::URSHR_I", SDT_AArch64vshift>;
462 def AArch64not: SDNode<"AArch64ISD::NOT", SDT_AArch64unvec>;
463 def AArch64bit: SDNode<"AArch64ISD::BIT", SDT_AArch64trivec>;
464 def AArch64bsl: SDNode<"AArch64ISD::BSL", SDT_AArch64trivec>;
466 def AArch64cmeq: SDNode<"AArch64ISD::CMEQ", SDT_AArch64binvec>;
467 def AArch64cmge: SDNode<"AArch64ISD::CMGE", SDT_AArch64binvec>;
468 def AArch64cmgt: SDNode<"AArch64ISD::CMGT", SDT_AArch64binvec>;
469 def AArch64cmhi: SDNode<"AArch64ISD::CMHI", SDT_AArch64binvec>;
470 def AArch64cmhs: SDNode<"AArch64ISD::CMHS", SDT_AArch64binvec>;
472 def AArch64fcmeq: SDNode<"AArch64ISD::FCMEQ", SDT_AArch64fcmp>;
473 def AArch64fcmge: SDNode<"AArch64ISD::FCMGE", SDT_AArch64fcmp>;
474 def AArch64fcmgt: SDNode<"AArch64ISD::FCMGT", SDT_AArch64fcmp>;
476 def AArch64cmeqz: SDNode<"AArch64ISD::CMEQz", SDT_AArch64unvec>;
477 def AArch64cmgez: SDNode<"AArch64ISD::CMGEz", SDT_AArch64unvec>;
478 def AArch64cmgtz: SDNode<"AArch64ISD::CMGTz", SDT_AArch64unvec>;
479 def AArch64cmlez: SDNode<"AArch64ISD::CMLEz", SDT_AArch64unvec>;
480 def AArch64cmltz: SDNode<"AArch64ISD::CMLTz", SDT_AArch64unvec>;
481 def AArch64cmtst : PatFrag<(ops node:$LHS, node:$RHS),
482 (AArch64not (AArch64cmeqz (and node:$LHS, node:$RHS)))>;
484 def AArch64fcmeqz: SDNode<"AArch64ISD::FCMEQz", SDT_AArch64fcmpz>;
485 def AArch64fcmgez: SDNode<"AArch64ISD::FCMGEz", SDT_AArch64fcmpz>;
486 def AArch64fcmgtz: SDNode<"AArch64ISD::FCMGTz", SDT_AArch64fcmpz>;
487 def AArch64fcmlez: SDNode<"AArch64ISD::FCMLEz", SDT_AArch64fcmpz>;
488 def AArch64fcmltz: SDNode<"AArch64ISD::FCMLTz", SDT_AArch64fcmpz>;
490 def AArch64bici: SDNode<"AArch64ISD::BICi", SDT_AArch64vecimm>;
491 def AArch64orri: SDNode<"AArch64ISD::ORRi", SDT_AArch64vecimm>;
493 def AArch64neg : SDNode<"AArch64ISD::NEG", SDT_AArch64unvec>;
495 def AArch64tcret: SDNode<"AArch64ISD::TC_RETURN", SDT_AArch64TCRET,
496 [SDNPHasChain, SDNPOptInGlue, SDNPVariadic]>;
498 def AArch64Prefetch : SDNode<"AArch64ISD::PREFETCH", SDT_AArch64PREFETCH,
499 [SDNPHasChain, SDNPSideEffect]>;
501 def AArch64sitof: SDNode<"AArch64ISD::SITOF", SDT_AArch64ITOF>;
502 def AArch64uitof: SDNode<"AArch64ISD::UITOF", SDT_AArch64ITOF>;
504 def AArch64tlsdesc_callseq : SDNode<"AArch64ISD::TLSDESC_CALLSEQ",
505 SDT_AArch64TLSDescCallSeq,
506 [SDNPInGlue, SDNPOutGlue, SDNPHasChain,
510 def AArch64WrapperLarge : SDNode<"AArch64ISD::WrapperLarge",
511 SDT_AArch64WrapperLarge>;
513 def AArch64NvCast : SDNode<"AArch64ISD::NVCAST", SDTUnaryOp>;
515 def SDT_AArch64mull : SDTypeProfile<1, 2, [SDTCisInt<0>, SDTCisInt<1>,
516 SDTCisSameAs<1, 2>]>;
517 def AArch64smull : SDNode<"AArch64ISD::SMULL", SDT_AArch64mull>;
518 def AArch64umull : SDNode<"AArch64ISD::UMULL", SDT_AArch64mull>;
520 def AArch64frecpe : SDNode<"AArch64ISD::FRECPE", SDTFPUnaryOp>;
521 def AArch64frecps : SDNode<"AArch64ISD::FRECPS", SDTFPBinOp>;
522 def AArch64frsqrte : SDNode<"AArch64ISD::FRSQRTE", SDTFPUnaryOp>;
523 def AArch64frsqrts : SDNode<"AArch64ISD::FRSQRTS", SDTFPBinOp>;
525 def AArch64saddv : SDNode<"AArch64ISD::SADDV", SDT_AArch64UnaryVec>;
526 def AArch64uaddv : SDNode<"AArch64ISD::UADDV", SDT_AArch64UnaryVec>;
527 def AArch64sminv : SDNode<"AArch64ISD::SMINV", SDT_AArch64UnaryVec>;
528 def AArch64uminv : SDNode<"AArch64ISD::UMINV", SDT_AArch64UnaryVec>;
529 def AArch64smaxv : SDNode<"AArch64ISD::SMAXV", SDT_AArch64UnaryVec>;
530 def AArch64umaxv : SDNode<"AArch64ISD::UMAXV", SDT_AArch64UnaryVec>;
532 def SDT_AArch64SETTAG : SDTypeProfile<0, 2, [SDTCisPtrTy<0>, SDTCisPtrTy<1>]>;
533 def AArch64stg : SDNode<"AArch64ISD::STG", SDT_AArch64SETTAG, [SDNPHasChain, SDNPMayStore, SDNPMemOperand]>;
534 def AArch64stzg : SDNode<"AArch64ISD::STZG", SDT_AArch64SETTAG, [SDNPHasChain, SDNPMayStore, SDNPMemOperand]>;
535 def AArch64st2g : SDNode<"AArch64ISD::ST2G", SDT_AArch64SETTAG, [SDNPHasChain, SDNPMayStore, SDNPMemOperand]>;
536 def AArch64stz2g : SDNode<"AArch64ISD::STZ2G", SDT_AArch64SETTAG, [SDNPHasChain, SDNPMayStore, SDNPMemOperand]>;
538 def SDT_AArch64unpk : SDTypeProfile<1, 1, [
539 SDTCisInt<0>, SDTCisInt<1>, SDTCisOpSmallerThanOp<1, 0>
541 def AArch64sunpkhi : SDNode<"AArch64ISD::SUNPKHI", SDT_AArch64unpk>;
542 def AArch64sunpklo : SDNode<"AArch64ISD::SUNPKLO", SDT_AArch64unpk>;
543 def AArch64uunpkhi : SDNode<"AArch64ISD::UUNPKHI", SDT_AArch64unpk>;
544 def AArch64uunpklo : SDNode<"AArch64ISD::UUNPKLO", SDT_AArch64unpk>;
546 def AArch64ldp : SDNode<"AArch64ISD::LDP", SDT_AArch64ldp, [SDNPHasChain, SDNPMayLoad, SDNPMemOperand]>;
547 def AArch64stp : SDNode<"AArch64ISD::STP", SDT_AArch64stp, [SDNPHasChain, SDNPMayStore, SDNPMemOperand]>;
548 def AArch64stnp : SDNode<"AArch64ISD::STNP", SDT_AArch64stnp, [SDNPHasChain, SDNPMayStore, SDNPMemOperand]>;
550 def AArch64tbl : SDNode<"AArch64ISD::TBL", SDT_AArch64TBL>;
552 def SDT_AArch64_LDNF1 : SDTypeProfile<1, 3, [
553 SDTCisVec<0>, SDTCisVec<1>, SDTCisPtrTy<2>,
554 SDTCVecEltisVT<1,i1>, SDTCisSameNumEltsAs<0,1>
557 def AArch64ldnf1 : SDNode<"AArch64ISD::LDNF1", SDT_AArch64_LDNF1, [SDNPHasChain, SDNPMayLoad, SDNPOptInGlue]>;
559 //===----------------------------------------------------------------------===//
561 //===----------------------------------------------------------------------===//
563 // AArch64 Instruction Predicate Definitions.
564 // We could compute these on a per-module basis but doing so requires accessing
565 // the Function object through the <Target>Subtarget and objections were raised
566 // to that (see post-commit review comments for r301750).
567 let RecomputePerFunction = 1 in {
568 def ForCodeSize : Predicate<"shouldOptForSize(MF)">;
569 def NotForCodeSize : Predicate<"!shouldOptForSize(MF)">;
570 // Avoid generating STRQro if it is slow, unless we're optimizing for code size.
571 def UseSTRQro : Predicate<"!Subtarget->isSTRQroSlow() || shouldOptForSize(MF)">;
573 def UseBTI : Predicate<[{ MF->getFunction().hasFnAttribute("branch-target-enforcement") }]>;
574 def NotUseBTI : Predicate<[{ !MF->getFunction().hasFnAttribute("branch-target-enforcement") }]>;
576 // Toggles patterns which aren't beneficial in GlobalISel when we aren't
577 // optimizing. This allows us to selectively use patterns without impacting
578 // SelectionDAG's behaviour.
579 // FIXME: One day there will probably be a nicer way to check for this, but
580 // today is not that day.
581 def OptimizedGISelOrOtherSelector : Predicate<"!MF->getFunction().hasOptNone() || MF->getProperties().hasProperty(MachineFunctionProperties::Property::FailedISel) || !MF->getProperties().hasProperty(MachineFunctionProperties::Property::Legalized)">;
584 include "AArch64InstrFormats.td"
585 include "SVEInstrFormats.td"
587 //===----------------------------------------------------------------------===//
589 //===----------------------------------------------------------------------===//
590 // Miscellaneous instructions.
591 //===----------------------------------------------------------------------===//
593 let Defs = [SP], Uses = [SP], hasSideEffects = 1, isCodeGenOnly = 1 in {
594 // We set Sched to empty list because we expect these instructions to simply get
595 // removed in most cases.
596 def ADJCALLSTACKDOWN : Pseudo<(outs), (ins i32imm:$amt1, i32imm:$amt2),
597 [(AArch64callseq_start timm:$amt1, timm:$amt2)]>,
599 def ADJCALLSTACKUP : Pseudo<(outs), (ins i32imm:$amt1, i32imm:$amt2),
600 [(AArch64callseq_end timm:$amt1, timm:$amt2)]>,
602 } // Defs = [SP], Uses = [SP], hasSideEffects = 1, isCodeGenOnly = 1
604 let isReMaterializable = 1, isCodeGenOnly = 1 in {
605 // FIXME: The following pseudo instructions are only needed because remat
606 // cannot handle multiple instructions. When that changes, they can be
607 // removed, along with the AArch64Wrapper node.
609 let AddedComplexity = 10 in
610 def LOADgot : Pseudo<(outs GPR64:$dst), (ins i64imm:$addr),
611 [(set GPR64:$dst, (AArch64LOADgot tglobaladdr:$addr))]>,
614 // The MOVaddr instruction should match only when the add is not folded
615 // into a load or store address.
617 : Pseudo<(outs GPR64:$dst), (ins i64imm:$hi, i64imm:$low),
618 [(set GPR64:$dst, (AArch64addlow (AArch64adrp tglobaladdr:$hi),
619 tglobaladdr:$low))]>,
620 Sched<[WriteAdrAdr]>;
622 : Pseudo<(outs GPR64:$dst), (ins i64imm:$hi, i64imm:$low),
623 [(set GPR64:$dst, (AArch64addlow (AArch64adrp tjumptable:$hi),
625 Sched<[WriteAdrAdr]>;
627 : Pseudo<(outs GPR64:$dst), (ins i64imm:$hi, i64imm:$low),
628 [(set GPR64:$dst, (AArch64addlow (AArch64adrp tconstpool:$hi),
630 Sched<[WriteAdrAdr]>;
632 : Pseudo<(outs GPR64:$dst), (ins i64imm:$hi, i64imm:$low),
633 [(set GPR64:$dst, (AArch64addlow (AArch64adrp tblockaddress:$hi),
634 tblockaddress:$low))]>,
635 Sched<[WriteAdrAdr]>;
637 : Pseudo<(outs GPR64:$dst), (ins i64imm:$hi, i64imm:$low),
638 [(set GPR64:$dst, (AArch64addlow (AArch64adrp tglobaltlsaddr:$hi),
639 tglobaltlsaddr:$low))]>,
640 Sched<[WriteAdrAdr]>;
642 : Pseudo<(outs GPR64:$dst), (ins i64imm:$hi, i64imm:$low),
643 [(set GPR64:$dst, (AArch64addlow (AArch64adrp texternalsym:$hi),
644 texternalsym:$low))]>,
645 Sched<[WriteAdrAdr]>;
646 // Normally AArch64addlow either gets folded into a following ldr/str,
647 // or together with an adrp into MOVaddr above. For cases with TLS, it
648 // might appear without either of them, so allow lowering it into a plain
651 : Pseudo<(outs GPR64:$dst), (ins GPR64:$src, i64imm:$low),
652 [(set GPR64:$dst, (AArch64addlow GPR64:$src,
653 tglobaltlsaddr:$low))]>,
656 } // isReMaterializable, isCodeGenOnly
658 def : Pat<(AArch64LOADgot tglobaltlsaddr:$addr),
659 (LOADgot tglobaltlsaddr:$addr)>;
661 def : Pat<(AArch64LOADgot texternalsym:$addr),
662 (LOADgot texternalsym:$addr)>;
664 def : Pat<(AArch64LOADgot tconstpool:$addr),
665 (LOADgot tconstpool:$addr)>;
667 // 32-bit jump table destination is actually only 2 instructions since we can
668 // use the table itself as a PC-relative base. But optimization occurs after
669 // branch relaxation so be pessimistic.
670 let Size = 12, Constraints = "@earlyclobber $dst,@earlyclobber $scratch" in {
671 def JumpTableDest32 : Pseudo<(outs GPR64:$dst, GPR64sp:$scratch),
672 (ins GPR64:$table, GPR64:$entry, i32imm:$jti), []>,
674 def JumpTableDest16 : Pseudo<(outs GPR64:$dst, GPR64sp:$scratch),
675 (ins GPR64:$table, GPR64:$entry, i32imm:$jti), []>,
677 def JumpTableDest8 : Pseudo<(outs GPR64:$dst, GPR64sp:$scratch),
678 (ins GPR64:$table, GPR64:$entry, i32imm:$jti), []>,
682 // Space-consuming pseudo to aid testing of placement and reachability
683 // algorithms. Immediate operand is the number of bytes this "instruction"
684 // occupies; register operands can be used to enforce dependency and constrain
686 let hasSideEffects = 1, mayLoad = 1, mayStore = 1 in
687 def SPACE : Pseudo<(outs GPR64:$Rd), (ins i32imm:$size, GPR64:$Rn),
688 [(set GPR64:$Rd, (int_aarch64_space imm:$size, GPR64:$Rn))]>,
691 let hasSideEffects = 1, isCodeGenOnly = 1 in {
692 def SpeculationSafeValueX
693 : Pseudo<(outs GPR64:$dst), (ins GPR64:$src), []>, Sched<[]>;
694 def SpeculationSafeValueW
695 : Pseudo<(outs GPR32:$dst), (ins GPR32:$src), []>, Sched<[]>;
699 //===----------------------------------------------------------------------===//
700 // System instructions.
701 //===----------------------------------------------------------------------===//
703 def HINT : HintI<"hint">;
704 def : InstAlias<"nop", (HINT 0b000)>;
705 def : InstAlias<"yield",(HINT 0b001)>;
706 def : InstAlias<"wfe", (HINT 0b010)>;
707 def : InstAlias<"wfi", (HINT 0b011)>;
708 def : InstAlias<"sev", (HINT 0b100)>;
709 def : InstAlias<"sevl", (HINT 0b101)>;
710 def : InstAlias<"esb", (HINT 0b10000)>, Requires<[HasRAS]>;
711 def : InstAlias<"csdb", (HINT 20)>;
712 def : InstAlias<"bti", (HINT 32)>, Requires<[HasBTI]>;
713 def : InstAlias<"bti $op", (HINT btihint_op:$op)>, Requires<[HasBTI]>;
715 // v8.2a Statistical Profiling extension
716 def : InstAlias<"psb $op", (HINT psbhint_op:$op)>, Requires<[HasSPE]>;
718 // As far as LLVM is concerned this writes to the system's exclusive monitors.
719 let mayLoad = 1, mayStore = 1 in
720 def CLREX : CRmSystemI<imm0_15, 0b010, "clrex">;
722 // NOTE: ideally, this would have mayStore = 0, mayLoad = 0, but we cannot
723 // model patterns with sufficiently fine granularity.
724 let mayLoad = ?, mayStore = ? in {
725 def DMB : CRmSystemI<barrier_op, 0b101, "dmb",
726 [(int_aarch64_dmb (i32 imm32_0_15:$CRm))]>;
728 def DSB : CRmSystemI<barrier_op, 0b100, "dsb",
729 [(int_aarch64_dsb (i32 imm32_0_15:$CRm))]>;
731 def ISB : CRmSystemI<barrier_op, 0b110, "isb",
732 [(int_aarch64_isb (i32 imm32_0_15:$CRm))]>;
734 def TSB : CRmSystemI<barrier_op, 0b010, "tsb", []> {
737 let Predicates = [HasTRACEV8_4];
741 // ARMv8.2-A Dot Product
742 let Predicates = [HasDotProd] in {
743 defm SDOT : SIMDThreeSameVectorDot<0, "sdot", int_aarch64_neon_sdot>;
744 defm UDOT : SIMDThreeSameVectorDot<1, "udot", int_aarch64_neon_udot>;
745 defm SDOTlane : SIMDThreeSameVectorDotIndex<0, "sdot", int_aarch64_neon_sdot>;
746 defm UDOTlane : SIMDThreeSameVectorDotIndex<1, "udot", int_aarch64_neon_udot>;
749 // ARMv8.2-A FP16 Fused Multiply-Add Long
750 let Predicates = [HasNEON, HasFP16FML] in {
751 defm FMLAL : SIMDThreeSameVectorFML<0, 1, 0b001, "fmlal", int_aarch64_neon_fmlal>;
752 defm FMLSL : SIMDThreeSameVectorFML<0, 1, 0b101, "fmlsl", int_aarch64_neon_fmlsl>;
753 defm FMLAL2 : SIMDThreeSameVectorFML<1, 0, 0b001, "fmlal2", int_aarch64_neon_fmlal2>;
754 defm FMLSL2 : SIMDThreeSameVectorFML<1, 0, 0b101, "fmlsl2", int_aarch64_neon_fmlsl2>;
755 defm FMLALlane : SIMDThreeSameVectorFMLIndex<0, 0b0000, "fmlal", int_aarch64_neon_fmlal>;
756 defm FMLSLlane : SIMDThreeSameVectorFMLIndex<0, 0b0100, "fmlsl", int_aarch64_neon_fmlsl>;
757 defm FMLAL2lane : SIMDThreeSameVectorFMLIndex<1, 0b1000, "fmlal2", int_aarch64_neon_fmlal2>;
758 defm FMLSL2lane : SIMDThreeSameVectorFMLIndex<1, 0b1100, "fmlsl2", int_aarch64_neon_fmlsl2>;
761 // Armv8.2-A Crypto extensions
762 let Predicates = [HasSHA3] in {
763 def SHA512H : CryptoRRRTied<0b0, 0b00, "sha512h">;
764 def SHA512H2 : CryptoRRRTied<0b0, 0b01, "sha512h2">;
765 def SHA512SU0 : CryptoRRTied_2D<0b0, 0b00, "sha512su0">;
766 def SHA512SU1 : CryptoRRRTied_2D<0b0, 0b10, "sha512su1">;
767 def RAX1 : CryptoRRR_2D<0b0,0b11, "rax1">;
768 def EOR3 : CryptoRRRR_16B<0b00, "eor3">;
769 def BCAX : CryptoRRRR_16B<0b01, "bcax">;
770 def XAR : CryptoRRRi6<"xar">;
773 let Predicates = [HasSM4] in {
774 def SM3TT1A : CryptoRRRi2Tied<0b0, 0b00, "sm3tt1a">;
775 def SM3TT1B : CryptoRRRi2Tied<0b0, 0b01, "sm3tt1b">;
776 def SM3TT2A : CryptoRRRi2Tied<0b0, 0b10, "sm3tt2a">;
777 def SM3TT2B : CryptoRRRi2Tied<0b0, 0b11, "sm3tt2b">;
778 def SM3SS1 : CryptoRRRR_4S<0b10, "sm3ss1">;
779 def SM3PARTW1 : CryptoRRRTied_4S<0b1, 0b00, "sm3partw1">;
780 def SM3PARTW2 : CryptoRRRTied_4S<0b1, 0b01, "sm3partw2">;
781 def SM4ENCKEY : CryptoRRR_4S<0b1, 0b10, "sm4ekey">;
782 def SM4E : CryptoRRTied_4S<0b0, 0b01, "sm4e">;
785 let Predicates = [HasRCPC] in {
786 // v8.3 Release Consistent Processor Consistent support, optional in v8.2.
787 def LDAPRB : RCPCLoad<0b00, "ldaprb", GPR32>;
788 def LDAPRH : RCPCLoad<0b01, "ldaprh", GPR32>;
789 def LDAPRW : RCPCLoad<0b10, "ldapr", GPR32>;
790 def LDAPRX : RCPCLoad<0b11, "ldapr", GPR64>;
793 // v8.3a complex add and multiply-accumulate. No predicate here, that is done
794 // inside the multiclass as the FP16 versions need different predicates.
795 defm FCMLA : SIMDThreeSameVectorTiedComplexHSD<1, 0b110, complexrotateop,
797 defm FCADD : SIMDThreeSameVectorComplexHSD<1, 0b111, complexrotateopodd,
799 defm FCMLA : SIMDIndexedTiedComplexHSD<1, 0, 1, complexrotateop, "fcmla",
802 let Predicates = [HasComplxNum, HasNEON, HasFullFP16] in {
803 def : Pat<(v4f16 (int_aarch64_neon_vcadd_rot90 (v4f16 V64:$Rn), (v4f16 V64:$Rm))),
804 (FCADDv4f16 (v4f16 V64:$Rn), (v4f16 V64:$Rm), (i32 0))>;
805 def : Pat<(v4f16 (int_aarch64_neon_vcadd_rot270 (v4f16 V64:$Rn), (v4f16 V64:$Rm))),
806 (FCADDv4f16 (v4f16 V64:$Rn), (v4f16 V64:$Rm), (i32 1))>;
807 def : Pat<(v8f16 (int_aarch64_neon_vcadd_rot90 (v8f16 V128:$Rn), (v8f16 V128:$Rm))),
808 (FCADDv8f16 (v8f16 V128:$Rn), (v8f16 V128:$Rm), (i32 0))>;
809 def : Pat<(v8f16 (int_aarch64_neon_vcadd_rot270 (v8f16 V128:$Rn), (v8f16 V128:$Rm))),
810 (FCADDv8f16 (v8f16 V128:$Rn), (v8f16 V128:$Rm), (i32 1))>;
812 let Predicates = [HasComplxNum, HasNEON] in {
813 def : Pat<(v2f32 (int_aarch64_neon_vcadd_rot90 (v2f32 V64:$Rn), (v2f32 V64:$Rm))),
814 (FCADDv2f32 (v2f32 V64:$Rn), (v2f32 V64:$Rm), (i32 0))>;
815 def : Pat<(v2f32 (int_aarch64_neon_vcadd_rot270 (v2f32 V64:$Rn), (v2f32 V64:$Rm))),
816 (FCADDv2f32 (v2f32 V64:$Rn), (v2f32 V64:$Rm), (i32 1))>;
817 foreach Ty = [v4f32, v2f64] in {
818 def : Pat<(Ty (int_aarch64_neon_vcadd_rot90 (Ty V128:$Rn), (Ty V128:$Rm))),
819 (!cast<Instruction>("FCADD"#Ty) (Ty V128:$Rn), (Ty V128:$Rm), (i32 0))>;
820 def : Pat<(Ty (int_aarch64_neon_vcadd_rot270 (Ty V128:$Rn), (Ty V128:$Rm))),
821 (!cast<Instruction>("FCADD"#Ty) (Ty V128:$Rn), (Ty V128:$Rm), (i32 1))>;
825 // v8.3a Pointer Authentication
826 // These instructions inhabit part of the hint space and so can be used for
827 // armv8 targets. Keeping the old HINT mnemonic when compiling without PA is
828 // important for compatibility with other assemblers (e.g. GAS) when building
829 // software compatible with both CPUs that do or don't implement PA.
830 let Uses = [LR], Defs = [LR] in {
831 def PACIAZ : SystemNoOperands<0b000, "hint #24">;
832 def PACIBZ : SystemNoOperands<0b010, "hint #26">;
833 let isAuthenticated = 1 in {
834 def AUTIAZ : SystemNoOperands<0b100, "hint #28">;
835 def AUTIBZ : SystemNoOperands<0b110, "hint #30">;
838 let Uses = [LR, SP], Defs = [LR] in {
839 def PACIASP : SystemNoOperands<0b001, "hint #25">;
840 def PACIBSP : SystemNoOperands<0b011, "hint #27">;
841 let isAuthenticated = 1 in {
842 def AUTIASP : SystemNoOperands<0b101, "hint #29">;
843 def AUTIBSP : SystemNoOperands<0b111, "hint #31">;
846 let Uses = [X16, X17], Defs = [X17], CRm = 0b0001 in {
847 def PACIA1716 : SystemNoOperands<0b000, "hint #8">;
848 def PACIB1716 : SystemNoOperands<0b010, "hint #10">;
849 let isAuthenticated = 1 in {
850 def AUTIA1716 : SystemNoOperands<0b100, "hint #12">;
851 def AUTIB1716 : SystemNoOperands<0b110, "hint #14">;
855 let Uses = [LR], Defs = [LR], CRm = 0b0000 in {
856 def XPACLRI : SystemNoOperands<0b111, "hint #7">;
859 // These pointer authentication instructions require armv8.3a
860 let Predicates = [HasPA] in {
862 // When compiling with PA, there is a better mnemonic for these instructions.
863 def : InstAlias<"paciaz", (PACIAZ), 1>;
864 def : InstAlias<"pacibz", (PACIBZ), 1>;
865 def : InstAlias<"autiaz", (AUTIAZ), 1>;
866 def : InstAlias<"autibz", (AUTIBZ), 1>;
867 def : InstAlias<"paciasp", (PACIASP), 1>;
868 def : InstAlias<"pacibsp", (PACIBSP), 1>;
869 def : InstAlias<"autiasp", (AUTIASP), 1>;
870 def : InstAlias<"autibsp", (AUTIBSP), 1>;
871 def : InstAlias<"pacia1716", (PACIA1716), 1>;
872 def : InstAlias<"pacib1716", (PACIB1716), 1>;
873 def : InstAlias<"autia1716", (AUTIA1716), 1>;
874 def : InstAlias<"autib1716", (AUTIB1716), 1>;
875 def : InstAlias<"xpaclri", (XPACLRI), 1>;
877 multiclass SignAuth<bits<3> prefix, bits<3> prefix_z, string asm> {
878 def IA : SignAuthOneData<prefix, 0b00, !strconcat(asm, "ia")>;
879 def IB : SignAuthOneData<prefix, 0b01, !strconcat(asm, "ib")>;
880 def DA : SignAuthOneData<prefix, 0b10, !strconcat(asm, "da")>;
881 def DB : SignAuthOneData<prefix, 0b11, !strconcat(asm, "db")>;
882 def IZA : SignAuthZero<prefix_z, 0b00, !strconcat(asm, "iza")>;
883 def DZA : SignAuthZero<prefix_z, 0b10, !strconcat(asm, "dza")>;
884 def IZB : SignAuthZero<prefix_z, 0b01, !strconcat(asm, "izb")>;
885 def DZB : SignAuthZero<prefix_z, 0b11, !strconcat(asm, "dzb")>;
888 defm PAC : SignAuth<0b000, 0b010, "pac">;
889 defm AUT : SignAuth<0b001, 0b011, "aut">;
891 def XPACI : SignAuthZero<0b100, 0b00, "xpaci">;
892 def XPACD : SignAuthZero<0b100, 0b01, "xpacd">;
893 def PACGA : SignAuthTwoOperand<0b1100, "pacga", null_frag>;
895 // Combined Instructions
896 def BRAA : AuthBranchTwoOperands<0, 0, "braa">;
897 def BRAB : AuthBranchTwoOperands<0, 1, "brab">;
898 def BLRAA : AuthBranchTwoOperands<1, 0, "blraa">;
899 def BLRAB : AuthBranchTwoOperands<1, 1, "blrab">;
901 def BRAAZ : AuthOneOperand<0b000, 0, "braaz">;
902 def BRABZ : AuthOneOperand<0b000, 1, "brabz">;
903 def BLRAAZ : AuthOneOperand<0b001, 0, "blraaz">;
904 def BLRABZ : AuthOneOperand<0b001, 1, "blrabz">;
906 let isReturn = 1, isTerminator = 1, isBarrier = 1 in {
907 def RETAA : AuthReturn<0b010, 0, "retaa">;
908 def RETAB : AuthReturn<0b010, 1, "retab">;
909 def ERETAA : AuthReturn<0b100, 0, "eretaa">;
910 def ERETAB : AuthReturn<0b100, 1, "eretab">;
913 defm LDRAA : AuthLoad<0, "ldraa", simm10Scaled>;
914 defm LDRAB : AuthLoad<1, "ldrab", simm10Scaled>;
918 // v8.3a floating point conversion for javascript
919 let Predicates = [HasJS, HasFPARMv8] in
920 def FJCVTZS : BaseFPToIntegerUnscaled<0b01, 0b11, 0b110, FPR64, GPR32,
923 (int_aarch64_fjcvtzs FPR64:$Rn))]> {
925 } // HasJS, HasFPARMv8
927 // v8.4 Flag manipulation instructions
928 let Predicates = [HasFMI] in {
929 def CFINV : SimpleSystemI<0, (ins), "cfinv", "">, Sched<[WriteSys]> {
930 let Inst{20-5} = 0b0000001000000000;
932 def SETF8 : BaseFlagManipulation<0, 0, (ins GPR32:$Rn), "setf8", "{\t$Rn}">;
933 def SETF16 : BaseFlagManipulation<0, 1, (ins GPR32:$Rn), "setf16", "{\t$Rn}">;
934 def RMIF : FlagRotate<(ins GPR64:$Rn, uimm6:$imm, imm0_15:$mask), "rmif",
935 "{\t$Rn, $imm, $mask}">;
938 // v8.5 flag manipulation instructions
939 let Predicates = [HasAltNZCV], Uses = [NZCV], Defs = [NZCV] in {
941 def XAFLAG : PstateWriteSimple<(ins), "xaflag", "">, Sched<[WriteSys]> {
942 let Inst{18-16} = 0b000;
943 let Inst{11-8} = 0b0000;
944 let Unpredictable{11-8} = 0b1111;
945 let Inst{7-5} = 0b001;
948 def AXFLAG : PstateWriteSimple<(ins), "axflag", "">, Sched<[WriteSys]> {
949 let Inst{18-16} = 0b000;
950 let Inst{11-8} = 0b0000;
951 let Unpredictable{11-8} = 0b1111;
952 let Inst{7-5} = 0b010;
957 // Armv8.5-A speculation barrier
958 def SB : SimpleSystemI<0, (ins), "sb", "">, Sched<[]> {
959 let Inst{20-5} = 0b0001100110000111;
960 let Unpredictable{11-8} = 0b1111;
961 let Predicates = [HasSB];
962 let hasSideEffects = 1;
965 def : InstAlias<"clrex", (CLREX 0xf)>;
966 def : InstAlias<"isb", (ISB 0xf)>;
967 def : InstAlias<"ssbb", (DSB 0)>;
968 def : InstAlias<"pssbb", (DSB 4)>;
972 def MSRpstateImm1 : MSRpstateImm0_1;
973 def MSRpstateImm4 : MSRpstateImm0_15;
975 // The thread pointer (on Linux, at least, where this has been implemented) is
977 def MOVbaseTLS : Pseudo<(outs GPR64:$dst), (ins),
978 [(set GPR64:$dst, AArch64threadpointer)]>, Sched<[WriteSys]>;
980 let Uses = [ X9 ], Defs = [ X16, X17, LR, NZCV ] in {
981 def HWASAN_CHECK_MEMACCESS : Pseudo<
982 (outs), (ins GPR64noip:$ptr, i32imm:$accessinfo),
983 [(int_hwasan_check_memaccess X9, GPR64noip:$ptr, (i32 timm:$accessinfo))]>,
985 def HWASAN_CHECK_MEMACCESS_SHORTGRANULES : Pseudo<
986 (outs), (ins GPR64noip:$ptr, i32imm:$accessinfo),
987 [(int_hwasan_check_memaccess_shortgranules X9, GPR64noip:$ptr, (i32 timm:$accessinfo))]>,
991 // The cycle counter PMC register is PMCCNTR_EL0.
992 let Predicates = [HasPerfMon] in
993 def : Pat<(readcyclecounter), (MRS 0xdce8)>;
996 def : Pat<(i64 (int_aarch64_get_fpcr)), (MRS 0xda20)>;
998 // Generic system instructions
999 def SYSxt : SystemXtI<0, "sys">;
1000 def SYSLxt : SystemLXtI<1, "sysl">;
1002 def : InstAlias<"sys $op1, $Cn, $Cm, $op2",
1003 (SYSxt imm0_7:$op1, sys_cr_op:$Cn,
1004 sys_cr_op:$Cm, imm0_7:$op2, XZR)>;
1007 let Predicates = [HasTME] in {
1009 def TSTART : TMSystemI<0b0000, "tstart",
1010 [(set GPR64:$Rt, (int_aarch64_tstart))]>;
1012 def TCOMMIT : TMSystemINoOperand<0b0000, "tcommit", [(int_aarch64_tcommit)]>;
1014 def TCANCEL : TMSystemException<0b011, "tcancel",
1015 [(int_aarch64_tcancel i64_imm0_65535:$imm)]>;
1017 def TTEST : TMSystemI<0b0001, "ttest", [(set GPR64:$Rt, (int_aarch64_ttest))]> {
1023 //===----------------------------------------------------------------------===//
1024 // Move immediate instructions.
1025 //===----------------------------------------------------------------------===//
1027 defm MOVK : InsertImmediate<0b11, "movk">;
1028 defm MOVN : MoveImmediate<0b00, "movn">;
1030 let PostEncoderMethod = "fixMOVZ" in
1031 defm MOVZ : MoveImmediate<0b10, "movz">;
1033 // First group of aliases covers an implicit "lsl #0".
1034 def : InstAlias<"movk $dst, $imm", (MOVKWi GPR32:$dst, i32_imm0_65535:$imm, 0), 0>;
1035 def : InstAlias<"movk $dst, $imm", (MOVKXi GPR64:$dst, i32_imm0_65535:$imm, 0), 0>;
1036 def : InstAlias<"movn $dst, $imm", (MOVNWi GPR32:$dst, i32_imm0_65535:$imm, 0)>;
1037 def : InstAlias<"movn $dst, $imm", (MOVNXi GPR64:$dst, i32_imm0_65535:$imm, 0)>;
1038 def : InstAlias<"movz $dst, $imm", (MOVZWi GPR32:$dst, i32_imm0_65535:$imm, 0)>;
1039 def : InstAlias<"movz $dst, $imm", (MOVZXi GPR64:$dst, i32_imm0_65535:$imm, 0)>;
1041 // Next, we have various ELF relocations with the ":XYZ_g0:sym" syntax.
1042 def : InstAlias<"movz $Rd, $sym", (MOVZXi GPR64:$Rd, movw_symbol_g3:$sym, 48)>;
1043 def : InstAlias<"movz $Rd, $sym", (MOVZXi GPR64:$Rd, movw_symbol_g2:$sym, 32)>;
1044 def : InstAlias<"movz $Rd, $sym", (MOVZXi GPR64:$Rd, movw_symbol_g1:$sym, 16)>;
1045 def : InstAlias<"movz $Rd, $sym", (MOVZXi GPR64:$Rd, movw_symbol_g0:$sym, 0)>;
1047 def : InstAlias<"movn $Rd, $sym", (MOVNXi GPR64:$Rd, movw_symbol_g3:$sym, 48)>;
1048 def : InstAlias<"movn $Rd, $sym", (MOVNXi GPR64:$Rd, movw_symbol_g2:$sym, 32)>;
1049 def : InstAlias<"movn $Rd, $sym", (MOVNXi GPR64:$Rd, movw_symbol_g1:$sym, 16)>;
1050 def : InstAlias<"movn $Rd, $sym", (MOVNXi GPR64:$Rd, movw_symbol_g0:$sym, 0)>;
1052 def : InstAlias<"movk $Rd, $sym", (MOVKXi GPR64:$Rd, movw_symbol_g3:$sym, 48), 0>;
1053 def : InstAlias<"movk $Rd, $sym", (MOVKXi GPR64:$Rd, movw_symbol_g2:$sym, 32), 0>;
1054 def : InstAlias<"movk $Rd, $sym", (MOVKXi GPR64:$Rd, movw_symbol_g1:$sym, 16), 0>;
1055 def : InstAlias<"movk $Rd, $sym", (MOVKXi GPR64:$Rd, movw_symbol_g0:$sym, 0), 0>;
1057 def : InstAlias<"movz $Rd, $sym", (MOVZWi GPR32:$Rd, movw_symbol_g1:$sym, 16)>;
1058 def : InstAlias<"movz $Rd, $sym", (MOVZWi GPR32:$Rd, movw_symbol_g0:$sym, 0)>;
1060 def : InstAlias<"movn $Rd, $sym", (MOVNWi GPR32:$Rd, movw_symbol_g1:$sym, 16)>;
1061 def : InstAlias<"movn $Rd, $sym", (MOVNWi GPR32:$Rd, movw_symbol_g0:$sym, 0)>;
1063 def : InstAlias<"movk $Rd, $sym", (MOVKWi GPR32:$Rd, movw_symbol_g1:$sym, 16), 0>;
1064 def : InstAlias<"movk $Rd, $sym", (MOVKWi GPR32:$Rd, movw_symbol_g0:$sym, 0), 0>;
1066 // Final group of aliases covers true "mov $Rd, $imm" cases.
1067 multiclass movw_mov_alias<string basename,Instruction INST, RegisterClass GPR,
1068 int width, int shift> {
1069 def _asmoperand : AsmOperandClass {
1070 let Name = basename # width # "_lsl" # shift # "MovAlias";
1071 let PredicateMethod = "is" # basename # "MovAlias<" # width # ", "
1073 let RenderMethod = "add" # basename # "MovAliasOperands<" # shift # ">";
1076 def _movimm : Operand<i32> {
1077 let ParserMatchClass = !cast<AsmOperandClass>(NAME # "_asmoperand");
1080 def : InstAlias<"mov $Rd, $imm",
1081 (INST GPR:$Rd, !cast<Operand>(NAME # "_movimm"):$imm, shift)>;
1084 defm : movw_mov_alias<"MOVZ", MOVZWi, GPR32, 32, 0>;
1085 defm : movw_mov_alias<"MOVZ", MOVZWi, GPR32, 32, 16>;
1087 defm : movw_mov_alias<"MOVZ", MOVZXi, GPR64, 64, 0>;
1088 defm : movw_mov_alias<"MOVZ", MOVZXi, GPR64, 64, 16>;
1089 defm : movw_mov_alias<"MOVZ", MOVZXi, GPR64, 64, 32>;
1090 defm : movw_mov_alias<"MOVZ", MOVZXi, GPR64, 64, 48>;
1092 defm : movw_mov_alias<"MOVN", MOVNWi, GPR32, 32, 0>;
1093 defm : movw_mov_alias<"MOVN", MOVNWi, GPR32, 32, 16>;
1095 defm : movw_mov_alias<"MOVN", MOVNXi, GPR64, 64, 0>;
1096 defm : movw_mov_alias<"MOVN", MOVNXi, GPR64, 64, 16>;
1097 defm : movw_mov_alias<"MOVN", MOVNXi, GPR64, 64, 32>;
1098 defm : movw_mov_alias<"MOVN", MOVNXi, GPR64, 64, 48>;
1100 let isReMaterializable = 1, isCodeGenOnly = 1, isMoveImm = 1,
1101 isAsCheapAsAMove = 1 in {
1102 // FIXME: The following pseudo instructions are only needed because remat
1103 // cannot handle multiple instructions. When that changes, we can select
1104 // directly to the real instructions and get rid of these pseudos.
1107 : Pseudo<(outs GPR32:$dst), (ins i32imm:$src),
1108 [(set GPR32:$dst, imm:$src)]>,
1111 : Pseudo<(outs GPR64:$dst), (ins i64imm:$src),
1112 [(set GPR64:$dst, imm:$src)]>,
1114 } // isReMaterializable, isCodeGenOnly
1116 // If possible, we want to use MOVi32imm even for 64-bit moves. This gives the
1117 // eventual expansion code fewer bits to worry about getting right. Marshalling
1118 // the types is a little tricky though:
1119 def i64imm_32bit : ImmLeaf<i64, [{
1120 return (Imm & 0xffffffffULL) == static_cast<uint64_t>(Imm);
1123 def s64imm_32bit : ImmLeaf<i64, [{
1124 int64_t Imm64 = static_cast<int64_t>(Imm);
1125 return Imm64 >= std::numeric_limits<int32_t>::min() &&
1126 Imm64 <= std::numeric_limits<int32_t>::max();
1129 def trunc_imm : SDNodeXForm<imm, [{
1130 return CurDAG->getTargetConstant(N->getZExtValue(), SDLoc(N), MVT::i32);
1133 def gi_trunc_imm : GICustomOperandRenderer<"renderTruncImm">,
1134 GISDNodeXFormEquiv<trunc_imm>;
1136 let Predicates = [OptimizedGISelOrOtherSelector] in {
1137 // The SUBREG_TO_REG isn't eliminated at -O0, which can result in pointless
1139 def : Pat<(i64 i64imm_32bit:$src),
1140 (SUBREG_TO_REG (i64 0), (MOVi32imm (trunc_imm imm:$src)), sub_32)>;
1143 // Materialize FP constants via MOVi32imm/MOVi64imm (MachO large code model).
1144 def bitcast_fpimm_to_i32 : SDNodeXForm<fpimm, [{
1145 return CurDAG->getTargetConstant(
1146 N->getValueAPF().bitcastToAPInt().getZExtValue(), SDLoc(N), MVT::i32);
1149 def bitcast_fpimm_to_i64 : SDNodeXForm<fpimm, [{
1150 return CurDAG->getTargetConstant(
1151 N->getValueAPF().bitcastToAPInt().getZExtValue(), SDLoc(N), MVT::i64);
1155 def : Pat<(f32 fpimm:$in),
1156 (COPY_TO_REGCLASS (MOVi32imm (bitcast_fpimm_to_i32 f32:$in)), FPR32)>;
1157 def : Pat<(f64 fpimm:$in),
1158 (COPY_TO_REGCLASS (MOVi64imm (bitcast_fpimm_to_i64 f64:$in)), FPR64)>;
1161 // Deal with the various forms of (ELF) large addressing with MOVZ/MOVK
1163 def : Pat<(AArch64WrapperLarge tglobaladdr:$g3, tglobaladdr:$g2,
1164 tglobaladdr:$g1, tglobaladdr:$g0),
1165 (MOVKXi (MOVKXi (MOVKXi (MOVZXi tglobaladdr:$g0, 0),
1166 tglobaladdr:$g1, 16),
1167 tglobaladdr:$g2, 32),
1168 tglobaladdr:$g3, 48)>;
1170 def : Pat<(AArch64WrapperLarge tblockaddress:$g3, tblockaddress:$g2,
1171 tblockaddress:$g1, tblockaddress:$g0),
1172 (MOVKXi (MOVKXi (MOVKXi (MOVZXi tblockaddress:$g0, 0),
1173 tblockaddress:$g1, 16),
1174 tblockaddress:$g2, 32),
1175 tblockaddress:$g3, 48)>;
1177 def : Pat<(AArch64WrapperLarge tconstpool:$g3, tconstpool:$g2,
1178 tconstpool:$g1, tconstpool:$g0),
1179 (MOVKXi (MOVKXi (MOVKXi (MOVZXi tconstpool:$g0, 0),
1180 tconstpool:$g1, 16),
1181 tconstpool:$g2, 32),
1182 tconstpool:$g3, 48)>;
1184 def : Pat<(AArch64WrapperLarge tjumptable:$g3, tjumptable:$g2,
1185 tjumptable:$g1, tjumptable:$g0),
1186 (MOVKXi (MOVKXi (MOVKXi (MOVZXi tjumptable:$g0, 0),
1187 tjumptable:$g1, 16),
1188 tjumptable:$g2, 32),
1189 tjumptable:$g3, 48)>;
1192 //===----------------------------------------------------------------------===//
1193 // Arithmetic instructions.
1194 //===----------------------------------------------------------------------===//
1196 // Add/subtract with carry.
1197 defm ADC : AddSubCarry<0, "adc", "adcs", AArch64adc, AArch64adc_flag>;
1198 defm SBC : AddSubCarry<1, "sbc", "sbcs", AArch64sbc, AArch64sbc_flag>;
1200 def : InstAlias<"ngc $dst, $src", (SBCWr GPR32:$dst, WZR, GPR32:$src)>;
1201 def : InstAlias<"ngc $dst, $src", (SBCXr GPR64:$dst, XZR, GPR64:$src)>;
1202 def : InstAlias<"ngcs $dst, $src", (SBCSWr GPR32:$dst, WZR, GPR32:$src)>;
1203 def : InstAlias<"ngcs $dst, $src", (SBCSXr GPR64:$dst, XZR, GPR64:$src)>;
1206 defm ADD : AddSub<0, "add", "sub", add>;
1207 defm SUB : AddSub<1, "sub", "add">;
1209 def : InstAlias<"mov $dst, $src",
1210 (ADDWri GPR32sponly:$dst, GPR32sp:$src, 0, 0)>;
1211 def : InstAlias<"mov $dst, $src",
1212 (ADDWri GPR32sp:$dst, GPR32sponly:$src, 0, 0)>;
1213 def : InstAlias<"mov $dst, $src",
1214 (ADDXri GPR64sponly:$dst, GPR64sp:$src, 0, 0)>;
1215 def : InstAlias<"mov $dst, $src",
1216 (ADDXri GPR64sp:$dst, GPR64sponly:$src, 0, 0)>;
1218 defm ADDS : AddSubS<0, "adds", AArch64add_flag, "cmn", "subs", "cmp">;
1219 defm SUBS : AddSubS<1, "subs", AArch64sub_flag, "cmp", "adds", "cmn">;
1221 // Use SUBS instead of SUB to enable CSE between SUBS and SUB.
1222 def : Pat<(sub GPR32sp:$Rn, addsub_shifted_imm32:$imm),
1223 (SUBSWri GPR32sp:$Rn, addsub_shifted_imm32:$imm)>;
1224 def : Pat<(sub GPR64sp:$Rn, addsub_shifted_imm64:$imm),
1225 (SUBSXri GPR64sp:$Rn, addsub_shifted_imm64:$imm)>;
1226 def : Pat<(sub GPR32:$Rn, GPR32:$Rm),
1227 (SUBSWrr GPR32:$Rn, GPR32:$Rm)>;
1228 def : Pat<(sub GPR64:$Rn, GPR64:$Rm),
1229 (SUBSXrr GPR64:$Rn, GPR64:$Rm)>;
1230 def : Pat<(sub GPR32:$Rn, arith_shifted_reg32:$Rm),
1231 (SUBSWrs GPR32:$Rn, arith_shifted_reg32:$Rm)>;
1232 def : Pat<(sub GPR64:$Rn, arith_shifted_reg64:$Rm),
1233 (SUBSXrs GPR64:$Rn, arith_shifted_reg64:$Rm)>;
1234 let AddedComplexity = 1 in {
1235 def : Pat<(sub GPR32sp:$R2, arith_extended_reg32_i32:$R3),
1236 (SUBSWrx GPR32sp:$R2, arith_extended_reg32_i32:$R3)>;
1237 def : Pat<(sub GPR64sp:$R2, arith_extended_reg32to64_i64:$R3),
1238 (SUBSXrx GPR64sp:$R2, arith_extended_reg32to64_i64:$R3)>;
1241 // Because of the immediate format for add/sub-imm instructions, the
1242 // expression (add x, -1) must be transformed to (SUB{W,X}ri x, 1).
1243 // These patterns capture that transformation.
1244 let AddedComplexity = 1 in {
1245 def : Pat<(add GPR32:$Rn, neg_addsub_shifted_imm32:$imm),
1246 (SUBSWri GPR32:$Rn, neg_addsub_shifted_imm32:$imm)>;
1247 def : Pat<(add GPR64:$Rn, neg_addsub_shifted_imm64:$imm),
1248 (SUBSXri GPR64:$Rn, neg_addsub_shifted_imm64:$imm)>;
1249 def : Pat<(sub GPR32:$Rn, neg_addsub_shifted_imm32:$imm),
1250 (ADDWri GPR32:$Rn, neg_addsub_shifted_imm32:$imm)>;
1251 def : Pat<(sub GPR64:$Rn, neg_addsub_shifted_imm64:$imm),
1252 (ADDXri GPR64:$Rn, neg_addsub_shifted_imm64:$imm)>;
1255 // Because of the immediate format for add/sub-imm instructions, the
1256 // expression (add x, -1) must be transformed to (SUB{W,X}ri x, 1).
1257 // These patterns capture that transformation.
1258 let AddedComplexity = 1 in {
1259 def : Pat<(AArch64add_flag GPR32:$Rn, neg_addsub_shifted_imm32:$imm),
1260 (SUBSWri GPR32:$Rn, neg_addsub_shifted_imm32:$imm)>;
1261 def : Pat<(AArch64add_flag GPR64:$Rn, neg_addsub_shifted_imm64:$imm),
1262 (SUBSXri GPR64:$Rn, neg_addsub_shifted_imm64:$imm)>;
1263 def : Pat<(AArch64sub_flag GPR32:$Rn, neg_addsub_shifted_imm32:$imm),
1264 (ADDSWri GPR32:$Rn, neg_addsub_shifted_imm32:$imm)>;
1265 def : Pat<(AArch64sub_flag GPR64:$Rn, neg_addsub_shifted_imm64:$imm),
1266 (ADDSXri GPR64:$Rn, neg_addsub_shifted_imm64:$imm)>;
1269 def : InstAlias<"neg $dst, $src", (SUBWrs GPR32:$dst, WZR, GPR32:$src, 0), 3>;
1270 def : InstAlias<"neg $dst, $src", (SUBXrs GPR64:$dst, XZR, GPR64:$src, 0), 3>;
1271 def : InstAlias<"neg $dst, $src$shift",
1272 (SUBWrs GPR32:$dst, WZR, GPR32:$src, arith_shift32:$shift), 2>;
1273 def : InstAlias<"neg $dst, $src$shift",
1274 (SUBXrs GPR64:$dst, XZR, GPR64:$src, arith_shift64:$shift), 2>;
1276 def : InstAlias<"negs $dst, $src", (SUBSWrs GPR32:$dst, WZR, GPR32:$src, 0), 3>;
1277 def : InstAlias<"negs $dst, $src", (SUBSXrs GPR64:$dst, XZR, GPR64:$src, 0), 3>;
1278 def : InstAlias<"negs $dst, $src$shift",
1279 (SUBSWrs GPR32:$dst, WZR, GPR32:$src, arith_shift32:$shift), 2>;
1280 def : InstAlias<"negs $dst, $src$shift",
1281 (SUBSXrs GPR64:$dst, XZR, GPR64:$src, arith_shift64:$shift), 2>;
1284 // Unsigned/Signed divide
1285 defm UDIV : Div<0, "udiv", udiv>;
1286 defm SDIV : Div<1, "sdiv", sdiv>;
1288 def : Pat<(int_aarch64_udiv GPR32:$Rn, GPR32:$Rm), (UDIVWr GPR32:$Rn, GPR32:$Rm)>;
1289 def : Pat<(int_aarch64_udiv GPR64:$Rn, GPR64:$Rm), (UDIVXr GPR64:$Rn, GPR64:$Rm)>;
1290 def : Pat<(int_aarch64_sdiv GPR32:$Rn, GPR32:$Rm), (SDIVWr GPR32:$Rn, GPR32:$Rm)>;
1291 def : Pat<(int_aarch64_sdiv GPR64:$Rn, GPR64:$Rm), (SDIVXr GPR64:$Rn, GPR64:$Rm)>;
1294 defm ASRV : Shift<0b10, "asr", sra>;
1295 defm LSLV : Shift<0b00, "lsl", shl>;
1296 defm LSRV : Shift<0b01, "lsr", srl>;
1297 defm RORV : Shift<0b11, "ror", rotr>;
1299 def : ShiftAlias<"asrv", ASRVWr, GPR32>;
1300 def : ShiftAlias<"asrv", ASRVXr, GPR64>;
1301 def : ShiftAlias<"lslv", LSLVWr, GPR32>;
1302 def : ShiftAlias<"lslv", LSLVXr, GPR64>;
1303 def : ShiftAlias<"lsrv", LSRVWr, GPR32>;
1304 def : ShiftAlias<"lsrv", LSRVXr, GPR64>;
1305 def : ShiftAlias<"rorv", RORVWr, GPR32>;
1306 def : ShiftAlias<"rorv", RORVXr, GPR64>;
1309 let AddedComplexity = 5 in {
1310 defm MADD : MulAccum<0, "madd", add>;
1311 defm MSUB : MulAccum<1, "msub", sub>;
1313 def : Pat<(i32 (mul GPR32:$Rn, GPR32:$Rm)),
1314 (MADDWrrr GPR32:$Rn, GPR32:$Rm, WZR)>;
1315 def : Pat<(i64 (mul GPR64:$Rn, GPR64:$Rm)),
1316 (MADDXrrr GPR64:$Rn, GPR64:$Rm, XZR)>;
1318 def : Pat<(i32 (ineg (mul GPR32:$Rn, GPR32:$Rm))),
1319 (MSUBWrrr GPR32:$Rn, GPR32:$Rm, WZR)>;
1320 def : Pat<(i64 (ineg (mul GPR64:$Rn, GPR64:$Rm))),
1321 (MSUBXrrr GPR64:$Rn, GPR64:$Rm, XZR)>;
1322 def : Pat<(i32 (mul (ineg GPR32:$Rn), GPR32:$Rm)),
1323 (MSUBWrrr GPR32:$Rn, GPR32:$Rm, WZR)>;
1324 def : Pat<(i64 (mul (ineg GPR64:$Rn), GPR64:$Rm)),
1325 (MSUBXrrr GPR64:$Rn, GPR64:$Rm, XZR)>;
1326 } // AddedComplexity = 5
1328 let AddedComplexity = 5 in {
1329 def SMADDLrrr : WideMulAccum<0, 0b001, "smaddl", add, sext>;
1330 def SMSUBLrrr : WideMulAccum<1, 0b001, "smsubl", sub, sext>;
1331 def UMADDLrrr : WideMulAccum<0, 0b101, "umaddl", add, zext>;
1332 def UMSUBLrrr : WideMulAccum<1, 0b101, "umsubl", sub, zext>;
1334 def : Pat<(i64 (mul (sext GPR32:$Rn), (sext GPR32:$Rm))),
1335 (SMADDLrrr GPR32:$Rn, GPR32:$Rm, XZR)>;
1336 def : Pat<(i64 (mul (zext GPR32:$Rn), (zext GPR32:$Rm))),
1337 (UMADDLrrr GPR32:$Rn, GPR32:$Rm, XZR)>;
1339 def : Pat<(i64 (ineg (mul (sext GPR32:$Rn), (sext GPR32:$Rm)))),
1340 (SMSUBLrrr GPR32:$Rn, GPR32:$Rm, XZR)>;
1341 def : Pat<(i64 (ineg (mul (zext GPR32:$Rn), (zext GPR32:$Rm)))),
1342 (UMSUBLrrr GPR32:$Rn, GPR32:$Rm, XZR)>;
1344 def : Pat<(i64 (mul (sext GPR32:$Rn), (s64imm_32bit:$C))),
1345 (SMADDLrrr GPR32:$Rn, (MOVi32imm (trunc_imm imm:$C)), XZR)>;
1346 def : Pat<(i64 (mul (zext GPR32:$Rn), (i64imm_32bit:$C))),
1347 (UMADDLrrr GPR32:$Rn, (MOVi32imm (trunc_imm imm:$C)), XZR)>;
1348 def : Pat<(i64 (mul (sext_inreg GPR64:$Rn, i32), (s64imm_32bit:$C))),
1349 (SMADDLrrr (i32 (EXTRACT_SUBREG GPR64:$Rn, sub_32)),
1350 (MOVi32imm (trunc_imm imm:$C)), XZR)>;
1352 def : Pat<(i64 (ineg (mul (sext GPR32:$Rn), (s64imm_32bit:$C)))),
1353 (SMSUBLrrr GPR32:$Rn, (MOVi32imm (trunc_imm imm:$C)), XZR)>;
1354 def : Pat<(i64 (ineg (mul (zext GPR32:$Rn), (i64imm_32bit:$C)))),
1355 (UMSUBLrrr GPR32:$Rn, (MOVi32imm (trunc_imm imm:$C)), XZR)>;
1356 def : Pat<(i64 (ineg (mul (sext_inreg GPR64:$Rn, i32), (s64imm_32bit:$C)))),
1357 (SMSUBLrrr (i32 (EXTRACT_SUBREG GPR64:$Rn, sub_32)),
1358 (MOVi32imm (trunc_imm imm:$C)), XZR)>;
1360 def : Pat<(i64 (add (mul (sext GPR32:$Rn), (s64imm_32bit:$C)), GPR64:$Ra)),
1361 (SMADDLrrr GPR32:$Rn, (MOVi32imm (trunc_imm imm:$C)), GPR64:$Ra)>;
1362 def : Pat<(i64 (add (mul (zext GPR32:$Rn), (i64imm_32bit:$C)), GPR64:$Ra)),
1363 (UMADDLrrr GPR32:$Rn, (MOVi32imm (trunc_imm imm:$C)), GPR64:$Ra)>;
1364 def : Pat<(i64 (add (mul (sext_inreg GPR64:$Rn, i32), (s64imm_32bit:$C)),
1366 (SMADDLrrr (i32 (EXTRACT_SUBREG GPR64:$Rn, sub_32)),
1367 (MOVi32imm (trunc_imm imm:$C)), GPR64:$Ra)>;
1369 def : Pat<(i64 (sub GPR64:$Ra, (mul (sext GPR32:$Rn), (s64imm_32bit:$C)))),
1370 (SMSUBLrrr GPR32:$Rn, (MOVi32imm (trunc_imm imm:$C)), GPR64:$Ra)>;
1371 def : Pat<(i64 (sub GPR64:$Ra, (mul (zext GPR32:$Rn), (i64imm_32bit:$C)))),
1372 (UMSUBLrrr GPR32:$Rn, (MOVi32imm (trunc_imm imm:$C)), GPR64:$Ra)>;
1373 def : Pat<(i64 (sub GPR64:$Ra, (mul (sext_inreg GPR64:$Rn, i32),
1374 (s64imm_32bit:$C)))),
1375 (SMSUBLrrr (i32 (EXTRACT_SUBREG GPR64:$Rn, sub_32)),
1376 (MOVi32imm (trunc_imm imm:$C)), GPR64:$Ra)>;
1377 } // AddedComplexity = 5
1379 def : MulAccumWAlias<"mul", MADDWrrr>;
1380 def : MulAccumXAlias<"mul", MADDXrrr>;
1381 def : MulAccumWAlias<"mneg", MSUBWrrr>;
1382 def : MulAccumXAlias<"mneg", MSUBXrrr>;
1383 def : WideMulAccumAlias<"smull", SMADDLrrr>;
1384 def : WideMulAccumAlias<"smnegl", SMSUBLrrr>;
1385 def : WideMulAccumAlias<"umull", UMADDLrrr>;
1386 def : WideMulAccumAlias<"umnegl", UMSUBLrrr>;
1389 def SMULHrr : MulHi<0b010, "smulh", mulhs>;
1390 def UMULHrr : MulHi<0b110, "umulh", mulhu>;
1393 def CRC32Brr : BaseCRC32<0, 0b00, 0, GPR32, int_aarch64_crc32b, "crc32b">;
1394 def CRC32Hrr : BaseCRC32<0, 0b01, 0, GPR32, int_aarch64_crc32h, "crc32h">;
1395 def CRC32Wrr : BaseCRC32<0, 0b10, 0, GPR32, int_aarch64_crc32w, "crc32w">;
1396 def CRC32Xrr : BaseCRC32<1, 0b11, 0, GPR64, int_aarch64_crc32x, "crc32x">;
1398 def CRC32CBrr : BaseCRC32<0, 0b00, 1, GPR32, int_aarch64_crc32cb, "crc32cb">;
1399 def CRC32CHrr : BaseCRC32<0, 0b01, 1, GPR32, int_aarch64_crc32ch, "crc32ch">;
1400 def CRC32CWrr : BaseCRC32<0, 0b10, 1, GPR32, int_aarch64_crc32cw, "crc32cw">;
1401 def CRC32CXrr : BaseCRC32<1, 0b11, 1, GPR64, int_aarch64_crc32cx, "crc32cx">;
1404 defm CAS : CompareAndSwap<0, 0, "">;
1405 defm CASA : CompareAndSwap<1, 0, "a">;
1406 defm CASL : CompareAndSwap<0, 1, "l">;
1407 defm CASAL : CompareAndSwap<1, 1, "al">;
1410 defm CASP : CompareAndSwapPair<0, 0, "">;
1411 defm CASPA : CompareAndSwapPair<1, 0, "a">;
1412 defm CASPL : CompareAndSwapPair<0, 1, "l">;
1413 defm CASPAL : CompareAndSwapPair<1, 1, "al">;
1416 defm SWP : Swap<0, 0, "">;
1417 defm SWPA : Swap<1, 0, "a">;
1418 defm SWPL : Swap<0, 1, "l">;
1419 defm SWPAL : Swap<1, 1, "al">;
1421 // v8.1 atomic LD<OP>(register). Performs load and then ST<OP>(register)
1422 defm LDADD : LDOPregister<0b000, "add", 0, 0, "">;
1423 defm LDADDA : LDOPregister<0b000, "add", 1, 0, "a">;
1424 defm LDADDL : LDOPregister<0b000, "add", 0, 1, "l">;
1425 defm LDADDAL : LDOPregister<0b000, "add", 1, 1, "al">;
1427 defm LDCLR : LDOPregister<0b001, "clr", 0, 0, "">;
1428 defm LDCLRA : LDOPregister<0b001, "clr", 1, 0, "a">;
1429 defm LDCLRL : LDOPregister<0b001, "clr", 0, 1, "l">;
1430 defm LDCLRAL : LDOPregister<0b001, "clr", 1, 1, "al">;
1432 defm LDEOR : LDOPregister<0b010, "eor", 0, 0, "">;
1433 defm LDEORA : LDOPregister<0b010, "eor", 1, 0, "a">;
1434 defm LDEORL : LDOPregister<0b010, "eor", 0, 1, "l">;
1435 defm LDEORAL : LDOPregister<0b010, "eor", 1, 1, "al">;
1437 defm LDSET : LDOPregister<0b011, "set", 0, 0, "">;
1438 defm LDSETA : LDOPregister<0b011, "set", 1, 0, "a">;
1439 defm LDSETL : LDOPregister<0b011, "set", 0, 1, "l">;
1440 defm LDSETAL : LDOPregister<0b011, "set", 1, 1, "al">;
1442 defm LDSMAX : LDOPregister<0b100, "smax", 0, 0, "">;
1443 defm LDSMAXA : LDOPregister<0b100, "smax", 1, 0, "a">;
1444 defm LDSMAXL : LDOPregister<0b100, "smax", 0, 1, "l">;
1445 defm LDSMAXAL : LDOPregister<0b100, "smax", 1, 1, "al">;
1447 defm LDSMIN : LDOPregister<0b101, "smin", 0, 0, "">;
1448 defm LDSMINA : LDOPregister<0b101, "smin", 1, 0, "a">;
1449 defm LDSMINL : LDOPregister<0b101, "smin", 0, 1, "l">;
1450 defm LDSMINAL : LDOPregister<0b101, "smin", 1, 1, "al">;
1452 defm LDUMAX : LDOPregister<0b110, "umax", 0, 0, "">;
1453 defm LDUMAXA : LDOPregister<0b110, "umax", 1, 0, "a">;
1454 defm LDUMAXL : LDOPregister<0b110, "umax", 0, 1, "l">;
1455 defm LDUMAXAL : LDOPregister<0b110, "umax", 1, 1, "al">;
1457 defm LDUMIN : LDOPregister<0b111, "umin", 0, 0, "">;
1458 defm LDUMINA : LDOPregister<0b111, "umin", 1, 0, "a">;
1459 defm LDUMINL : LDOPregister<0b111, "umin", 0, 1, "l">;
1460 defm LDUMINAL : LDOPregister<0b111, "umin", 1, 1, "al">;
1462 // v8.1 atomic ST<OP>(register) as aliases to "LD<OP>(register) when Rt=xZR"
1463 defm : STOPregister<"stadd","LDADD">; // STADDx
1464 defm : STOPregister<"stclr","LDCLR">; // STCLRx
1465 defm : STOPregister<"steor","LDEOR">; // STEORx
1466 defm : STOPregister<"stset","LDSET">; // STSETx
1467 defm : STOPregister<"stsmax","LDSMAX">;// STSMAXx
1468 defm : STOPregister<"stsmin","LDSMIN">;// STSMINx
1469 defm : STOPregister<"stumax","LDUMAX">;// STUMAXx
1470 defm : STOPregister<"stumin","LDUMIN">;// STUMINx
1472 // v8.5 Memory Tagging Extension
1473 let Predicates = [HasMTE] in {
1475 def IRG : BaseTwoOperand<0b0100, GPR64sp, "irg", int_aarch64_irg, GPR64sp, GPR64>,
1479 def GMI : BaseTwoOperand<0b0101, GPR64, "gmi", int_aarch64_gmi, GPR64sp>, Sched<[]>{
1481 let isNotDuplicable = 1;
1483 def ADDG : AddSubG<0, "addg", null_frag>;
1484 def SUBG : AddSubG<1, "subg", null_frag>;
1486 def : InstAlias<"irg $dst, $src", (IRG GPR64sp:$dst, GPR64sp:$src, XZR), 1>;
1488 def SUBP : SUBP<0, "subp", int_aarch64_subp>, Sched<[]>;
1489 def SUBPS : SUBP<1, "subps", null_frag>, Sched<[]>{
1493 def : InstAlias<"cmpp $lhs, $rhs", (SUBPS XZR, GPR64sp:$lhs, GPR64sp:$rhs), 0>;
1495 def LDG : MemTagLoad<"ldg", "\t$Rt, [$Rn, $offset]">;
1497 def : Pat<(int_aarch64_addg (am_indexedu6s128 GPR64sp:$Rn, uimm6s16:$imm6), imm0_15:$imm4),
1498 (ADDG GPR64sp:$Rn, imm0_63:$imm6, imm0_15:$imm4)>;
1499 def : Pat<(int_aarch64_ldg GPR64:$Rt, (am_indexeds9s128 GPR64sp:$Rn, simm9s16:$offset)),
1500 (LDG GPR64:$Rt, GPR64sp:$Rn, simm9s16:$offset)>;
1502 def : InstAlias<"ldg $Rt, [$Rn]", (LDG GPR64:$Rt, GPR64sp:$Rn, 0), 1>;
1504 def LDGM : MemTagVector<1, "ldgm", "\t$Rt, [$Rn]",
1505 (outs GPR64:$Rt), (ins GPR64sp:$Rn)>;
1506 def STGM : MemTagVector<0, "stgm", "\t$Rt, [$Rn]",
1507 (outs), (ins GPR64:$Rt, GPR64sp:$Rn)>;
1508 def STZGM : MemTagVector<0, "stzgm", "\t$Rt, [$Rn]",
1509 (outs), (ins GPR64:$Rt, GPR64sp:$Rn)> {
1513 defm STG : MemTagStore<0b00, "stg">;
1514 defm STZG : MemTagStore<0b01, "stzg">;
1515 defm ST2G : MemTagStore<0b10, "st2g">;
1516 defm STZ2G : MemTagStore<0b11, "stz2g">;
1518 def : Pat<(AArch64stg GPR64sp:$Rn, (am_indexeds9s128 GPR64sp:$Rm, simm9s16:$imm)),
1519 (STGOffset $Rn, $Rm, $imm)>;
1520 def : Pat<(AArch64stzg GPR64sp:$Rn, (am_indexeds9s128 GPR64sp:$Rm, simm9s16:$imm)),
1521 (STZGOffset $Rn, $Rm, $imm)>;
1522 def : Pat<(AArch64st2g GPR64sp:$Rn, (am_indexeds9s128 GPR64sp:$Rm, simm9s16:$imm)),
1523 (ST2GOffset $Rn, $Rm, $imm)>;
1524 def : Pat<(AArch64stz2g GPR64sp:$Rn, (am_indexeds9s128 GPR64sp:$Rm, simm9s16:$imm)),
1525 (STZ2GOffset $Rn, $Rm, $imm)>;
1527 defm STGP : StorePairOffset <0b01, 0, GPR64z, simm7s16, "stgp">;
1528 def STGPpre : StorePairPreIdx <0b01, 0, GPR64z, simm7s16, "stgp">;
1529 def STGPpost : StorePairPostIdx<0b01, 0, GPR64z, simm7s16, "stgp">;
1531 def : Pat<(int_aarch64_stg GPR64:$Rt, (am_indexeds9s128 GPR64sp:$Rn, simm9s16:$offset)),
1532 (STGOffset GPR64:$Rt, GPR64sp:$Rn, simm9s16:$offset)>;
1534 def : Pat<(int_aarch64_stgp (am_indexed7s128 GPR64sp:$Rn, simm7s16:$imm), GPR64:$Rt, GPR64:$Rt2),
1535 (STGPi $Rt, $Rt2, $Rn, $imm)>;
1538 : Pseudo<(outs GPR64sp:$Rd), (ins GPR64sp:$Rsp, GPR64:$Rm), []>,
1541 : Pseudo<(outs GPR64sp:$Rd), (ins GPR64sp:$Rn, uimm6s16:$imm6, GPR64sp:$Rm, imm0_15:$imm4), []>,
1544 // Explicit SP in the first operand prevents ShrinkWrap optimization
1545 // from leaving this instruction out of the stack frame. When IRGstack
1546 // is transformed into IRG, this operand is replaced with the actual
1547 // register / expression for the tagged base pointer of the current function.
1548 def : Pat<(int_aarch64_irg_sp i64:$Rm), (IRGstack SP, i64:$Rm)>;
1550 // Large STG to be expanded into a loop. $sz is the size, $Rn is start address.
1551 // $Rn_wback is one past the end of the range. $Rm is the loop counter.
1552 let isCodeGenOnly=1, mayStore=1 in {
1554 : Pseudo<(outs GPR64common:$Rm, GPR64sp:$Rn_wback), (ins i64imm:$sz, GPR64sp:$Rn),
1555 [], "$Rn = $Rn_wback,@earlyclobber $Rn_wback,@earlyclobber $Rm" >,
1556 Sched<[WriteAdr, WriteST]>;
1559 : Pseudo<(outs GPR64common:$Rm, GPR64sp:$Rn_wback), (ins i64imm:$sz, GPR64sp:$Rn),
1560 [], "$Rn = $Rn_wback,@earlyclobber $Rn_wback,@earlyclobber $Rm" >,
1561 Sched<[WriteAdr, WriteST]>;
1563 // A variant of the above where $Rn2 is an independent register not tied to the input register $Rn.
1564 // Their purpose is to use a FrameIndex operand as $Rn (which of course can not be written back).
1566 : Pseudo<(outs GPR64common:$Rm, GPR64sp:$Rn2), (ins i64imm:$sz, GPR64sp:$Rn),
1567 [], "@earlyclobber $Rn2,@earlyclobber $Rm" >,
1568 Sched<[WriteAdr, WriteST]>;
1571 : Pseudo<(outs GPR64common:$Rm, GPR64sp:$Rn2), (ins i64imm:$sz, GPR64sp:$Rn),
1572 [], "@earlyclobber $Rn2,@earlyclobber $Rm" >,
1573 Sched<[WriteAdr, WriteST]>;
1576 } // Predicates = [HasMTE]
1578 //===----------------------------------------------------------------------===//
1579 // Logical instructions.
1580 //===----------------------------------------------------------------------===//
1583 defm ANDS : LogicalImmS<0b11, "ands", AArch64and_flag, "bics">;
1584 defm AND : LogicalImm<0b00, "and", and, "bic">;
1585 defm EOR : LogicalImm<0b10, "eor", xor, "eon">;
1586 defm ORR : LogicalImm<0b01, "orr", or, "orn">;
1588 // FIXME: these aliases *are* canonical sometimes (when movz can't be
1589 // used). Actually, it seems to be working right now, but putting logical_immXX
1590 // here is a bit dodgy on the AsmParser side too.
1591 def : InstAlias<"mov $dst, $imm", (ORRWri GPR32sp:$dst, WZR,
1592 logical_imm32:$imm), 0>;
1593 def : InstAlias<"mov $dst, $imm", (ORRXri GPR64sp:$dst, XZR,
1594 logical_imm64:$imm), 0>;
1598 defm ANDS : LogicalRegS<0b11, 0, "ands", AArch64and_flag>;
1599 defm BICS : LogicalRegS<0b11, 1, "bics",
1600 BinOpFrag<(AArch64and_flag node:$LHS, (not node:$RHS))>>;
1601 defm AND : LogicalReg<0b00, 0, "and", and>;
1602 defm BIC : LogicalReg<0b00, 1, "bic",
1603 BinOpFrag<(and node:$LHS, (not node:$RHS))>>;
1604 defm EON : LogicalReg<0b10, 1, "eon",
1605 BinOpFrag<(not (xor node:$LHS, node:$RHS))>>;
1606 defm EOR : LogicalReg<0b10, 0, "eor", xor>;
1607 defm ORN : LogicalReg<0b01, 1, "orn",
1608 BinOpFrag<(or node:$LHS, (not node:$RHS))>>;
1609 defm ORR : LogicalReg<0b01, 0, "orr", or>;
1611 def : InstAlias<"mov $dst, $src", (ORRWrs GPR32:$dst, WZR, GPR32:$src, 0), 2>;
1612 def : InstAlias<"mov $dst, $src", (ORRXrs GPR64:$dst, XZR, GPR64:$src, 0), 2>;
1614 def : InstAlias<"mvn $Wd, $Wm", (ORNWrs GPR32:$Wd, WZR, GPR32:$Wm, 0), 3>;
1615 def : InstAlias<"mvn $Xd, $Xm", (ORNXrs GPR64:$Xd, XZR, GPR64:$Xm, 0), 3>;
1617 def : InstAlias<"mvn $Wd, $Wm$sh",
1618 (ORNWrs GPR32:$Wd, WZR, GPR32:$Wm, logical_shift32:$sh), 2>;
1619 def : InstAlias<"mvn $Xd, $Xm$sh",
1620 (ORNXrs GPR64:$Xd, XZR, GPR64:$Xm, logical_shift64:$sh), 2>;
1622 def : InstAlias<"tst $src1, $src2",
1623 (ANDSWri WZR, GPR32:$src1, logical_imm32:$src2), 2>;
1624 def : InstAlias<"tst $src1, $src2",
1625 (ANDSXri XZR, GPR64:$src1, logical_imm64:$src2), 2>;
1627 def : InstAlias<"tst $src1, $src2",
1628 (ANDSWrs WZR, GPR32:$src1, GPR32:$src2, 0), 3>;
1629 def : InstAlias<"tst $src1, $src2",
1630 (ANDSXrs XZR, GPR64:$src1, GPR64:$src2, 0), 3>;
1632 def : InstAlias<"tst $src1, $src2$sh",
1633 (ANDSWrs WZR, GPR32:$src1, GPR32:$src2, logical_shift32:$sh), 2>;
1634 def : InstAlias<"tst $src1, $src2$sh",
1635 (ANDSXrs XZR, GPR64:$src1, GPR64:$src2, logical_shift64:$sh), 2>;
1638 def : Pat<(not GPR32:$Wm), (ORNWrr WZR, GPR32:$Wm)>;
1639 def : Pat<(not GPR64:$Xm), (ORNXrr XZR, GPR64:$Xm)>;
1642 //===----------------------------------------------------------------------===//
1643 // One operand data processing instructions.
1644 //===----------------------------------------------------------------------===//
1646 defm CLS : OneOperandData<0b101, "cls">;
1647 defm CLZ : OneOperandData<0b100, "clz", ctlz>;
1648 defm RBIT : OneOperandData<0b000, "rbit", bitreverse>;
1650 def REV16Wr : OneWRegData<0b001, "rev16",
1651 UnOpFrag<(rotr (bswap node:$LHS), (i64 16))>>;
1652 def REV16Xr : OneXRegData<0b001, "rev16", null_frag>;
1654 def : Pat<(cttz GPR32:$Rn),
1655 (CLZWr (RBITWr GPR32:$Rn))>;
1656 def : Pat<(cttz GPR64:$Rn),
1657 (CLZXr (RBITXr GPR64:$Rn))>;
1658 def : Pat<(ctlz (or (shl (xor (sra GPR32:$Rn, (i64 31)), GPR32:$Rn), (i64 1)),
1661 def : Pat<(ctlz (or (shl (xor (sra GPR64:$Rn, (i64 63)), GPR64:$Rn), (i64 1)),
1664 def : Pat<(int_aarch64_cls GPR32:$Rn), (CLSWr GPR32:$Rn)>;
1665 def : Pat<(int_aarch64_cls64 GPR64:$Rm), (EXTRACT_SUBREG (CLSXr GPR64:$Rm), sub_32)>;
1667 // Unlike the other one operand instructions, the instructions with the "rev"
1668 // mnemonic do *not* just different in the size bit, but actually use different
1669 // opcode bits for the different sizes.
1670 def REVWr : OneWRegData<0b010, "rev", bswap>;
1671 def REVXr : OneXRegData<0b011, "rev", bswap>;
1672 def REV32Xr : OneXRegData<0b010, "rev32",
1673 UnOpFrag<(rotr (bswap node:$LHS), (i64 32))>>;
1675 def : InstAlias<"rev64 $Rd, $Rn", (REVXr GPR64:$Rd, GPR64:$Rn), 0>;
1677 // The bswap commutes with the rotr so we want a pattern for both possible
1679 def : Pat<(bswap (rotr GPR32:$Rn, (i64 16))), (REV16Wr GPR32:$Rn)>;
1680 def : Pat<(bswap (rotr GPR64:$Rn, (i64 32))), (REV32Xr GPR64:$Rn)>;
1682 //===----------------------------------------------------------------------===//
1683 // Bitfield immediate extraction instruction.
1684 //===----------------------------------------------------------------------===//
1685 let hasSideEffects = 0 in
1686 defm EXTR : ExtractImm<"extr">;
1687 def : InstAlias<"ror $dst, $src, $shift",
1688 (EXTRWrri GPR32:$dst, GPR32:$src, GPR32:$src, imm0_31:$shift)>;
1689 def : InstAlias<"ror $dst, $src, $shift",
1690 (EXTRXrri GPR64:$dst, GPR64:$src, GPR64:$src, imm0_63:$shift)>;
1692 def : Pat<(rotr GPR32:$Rn, (i64 imm0_31:$imm)),
1693 (EXTRWrri GPR32:$Rn, GPR32:$Rn, imm0_31:$imm)>;
1694 def : Pat<(rotr GPR64:$Rn, (i64 imm0_63:$imm)),
1695 (EXTRXrri GPR64:$Rn, GPR64:$Rn, imm0_63:$imm)>;
1697 //===----------------------------------------------------------------------===//
1698 // Other bitfield immediate instructions.
1699 //===----------------------------------------------------------------------===//
1700 let hasSideEffects = 0 in {
1701 defm BFM : BitfieldImmWith2RegArgs<0b01, "bfm">;
1702 defm SBFM : BitfieldImm<0b00, "sbfm">;
1703 defm UBFM : BitfieldImm<0b10, "ubfm">;
1706 def i32shift_a : Operand<i64>, SDNodeXForm<imm, [{
1707 uint64_t enc = (32 - N->getZExtValue()) & 0x1f;
1708 return CurDAG->getTargetConstant(enc, SDLoc(N), MVT::i64);
1711 def i32shift_b : Operand<i64>, SDNodeXForm<imm, [{
1712 uint64_t enc = 31 - N->getZExtValue();
1713 return CurDAG->getTargetConstant(enc, SDLoc(N), MVT::i64);
1716 // min(7, 31 - shift_amt)
1717 def i32shift_sext_i8 : Operand<i64>, SDNodeXForm<imm, [{
1718 uint64_t enc = 31 - N->getZExtValue();
1719 enc = enc > 7 ? 7 : enc;
1720 return CurDAG->getTargetConstant(enc, SDLoc(N), MVT::i64);
1723 // min(15, 31 - shift_amt)
1724 def i32shift_sext_i16 : Operand<i64>, SDNodeXForm<imm, [{
1725 uint64_t enc = 31 - N->getZExtValue();
1726 enc = enc > 15 ? 15 : enc;
1727 return CurDAG->getTargetConstant(enc, SDLoc(N), MVT::i64);
1730 def i64shift_a : Operand<i64>, SDNodeXForm<imm, [{
1731 uint64_t enc = (64 - N->getZExtValue()) & 0x3f;
1732 return CurDAG->getTargetConstant(enc, SDLoc(N), MVT::i64);
1735 def i64shift_b : Operand<i64>, SDNodeXForm<imm, [{
1736 uint64_t enc = 63 - N->getZExtValue();
1737 return CurDAG->getTargetConstant(enc, SDLoc(N), MVT::i64);
1740 // min(7, 63 - shift_amt)
1741 def i64shift_sext_i8 : Operand<i64>, SDNodeXForm<imm, [{
1742 uint64_t enc = 63 - N->getZExtValue();
1743 enc = enc > 7 ? 7 : enc;
1744 return CurDAG->getTargetConstant(enc, SDLoc(N), MVT::i64);
1747 // min(15, 63 - shift_amt)
1748 def i64shift_sext_i16 : Operand<i64>, SDNodeXForm<imm, [{
1749 uint64_t enc = 63 - N->getZExtValue();
1750 enc = enc > 15 ? 15 : enc;
1751 return CurDAG->getTargetConstant(enc, SDLoc(N), MVT::i64);
1754 // min(31, 63 - shift_amt)
1755 def i64shift_sext_i32 : Operand<i64>, SDNodeXForm<imm, [{
1756 uint64_t enc = 63 - N->getZExtValue();
1757 enc = enc > 31 ? 31 : enc;
1758 return CurDAG->getTargetConstant(enc, SDLoc(N), MVT::i64);
1761 def : Pat<(shl GPR32:$Rn, (i64 imm0_31:$imm)),
1762 (UBFMWri GPR32:$Rn, (i64 (i32shift_a imm0_31:$imm)),
1763 (i64 (i32shift_b imm0_31:$imm)))>;
1764 def : Pat<(shl GPR64:$Rn, (i64 imm0_63:$imm)),
1765 (UBFMXri GPR64:$Rn, (i64 (i64shift_a imm0_63:$imm)),
1766 (i64 (i64shift_b imm0_63:$imm)))>;
1768 let AddedComplexity = 10 in {
1769 def : Pat<(sra GPR32:$Rn, (i64 imm0_31:$imm)),
1770 (SBFMWri GPR32:$Rn, imm0_31:$imm, 31)>;
1771 def : Pat<(sra GPR64:$Rn, (i64 imm0_63:$imm)),
1772 (SBFMXri GPR64:$Rn, imm0_63:$imm, 63)>;
1775 def : InstAlias<"asr $dst, $src, $shift",
1776 (SBFMWri GPR32:$dst, GPR32:$src, imm0_31:$shift, 31)>;
1777 def : InstAlias<"asr $dst, $src, $shift",
1778 (SBFMXri GPR64:$dst, GPR64:$src, imm0_63:$shift, 63)>;
1779 def : InstAlias<"sxtb $dst, $src", (SBFMWri GPR32:$dst, GPR32:$src, 0, 7)>;
1780 def : InstAlias<"sxtb $dst, $src", (SBFMXri GPR64:$dst, GPR64:$src, 0, 7)>;
1781 def : InstAlias<"sxth $dst, $src", (SBFMWri GPR32:$dst, GPR32:$src, 0, 15)>;
1782 def : InstAlias<"sxth $dst, $src", (SBFMXri GPR64:$dst, GPR64:$src, 0, 15)>;
1783 def : InstAlias<"sxtw $dst, $src", (SBFMXri GPR64:$dst, GPR64:$src, 0, 31)>;
1785 def : Pat<(srl GPR32:$Rn, (i64 imm0_31:$imm)),
1786 (UBFMWri GPR32:$Rn, imm0_31:$imm, 31)>;
1787 def : Pat<(srl GPR64:$Rn, (i64 imm0_63:$imm)),
1788 (UBFMXri GPR64:$Rn, imm0_63:$imm, 63)>;
1790 def : InstAlias<"lsr $dst, $src, $shift",
1791 (UBFMWri GPR32:$dst, GPR32:$src, imm0_31:$shift, 31)>;
1792 def : InstAlias<"lsr $dst, $src, $shift",
1793 (UBFMXri GPR64:$dst, GPR64:$src, imm0_63:$shift, 63)>;
1794 def : InstAlias<"uxtb $dst, $src", (UBFMWri GPR32:$dst, GPR32:$src, 0, 7)>;
1795 def : InstAlias<"uxtb $dst, $src", (UBFMXri GPR64:$dst, GPR64:$src, 0, 7)>;
1796 def : InstAlias<"uxth $dst, $src", (UBFMWri GPR32:$dst, GPR32:$src, 0, 15)>;
1797 def : InstAlias<"uxth $dst, $src", (UBFMXri GPR64:$dst, GPR64:$src, 0, 15)>;
1798 def : InstAlias<"uxtw $dst, $src", (UBFMXri GPR64:$dst, GPR64:$src, 0, 31)>;
1800 //===----------------------------------------------------------------------===//
1801 // Conditional comparison instructions.
1802 //===----------------------------------------------------------------------===//
1803 defm CCMN : CondComparison<0, "ccmn", AArch64ccmn>;
1804 defm CCMP : CondComparison<1, "ccmp", AArch64ccmp>;
1806 //===----------------------------------------------------------------------===//
1807 // Conditional select instructions.
1808 //===----------------------------------------------------------------------===//
1809 defm CSEL : CondSelect<0, 0b00, "csel">;
1811 def inc : PatFrag<(ops node:$in), (add node:$in, 1)>;
1812 defm CSINC : CondSelectOp<0, 0b01, "csinc", inc>;
1813 defm CSINV : CondSelectOp<1, 0b00, "csinv", not>;
1814 defm CSNEG : CondSelectOp<1, 0b01, "csneg", ineg>;
1816 def : Pat<(AArch64csinv GPR32:$tval, GPR32:$fval, (i32 imm:$cc), NZCV),
1817 (CSINVWr GPR32:$tval, GPR32:$fval, (i32 imm:$cc))>;
1818 def : Pat<(AArch64csinv GPR64:$tval, GPR64:$fval, (i32 imm:$cc), NZCV),
1819 (CSINVXr GPR64:$tval, GPR64:$fval, (i32 imm:$cc))>;
1820 def : Pat<(AArch64csneg GPR32:$tval, GPR32:$fval, (i32 imm:$cc), NZCV),
1821 (CSNEGWr GPR32:$tval, GPR32:$fval, (i32 imm:$cc))>;
1822 def : Pat<(AArch64csneg GPR64:$tval, GPR64:$fval, (i32 imm:$cc), NZCV),
1823 (CSNEGXr GPR64:$tval, GPR64:$fval, (i32 imm:$cc))>;
1824 def : Pat<(AArch64csinc GPR32:$tval, GPR32:$fval, (i32 imm:$cc), NZCV),
1825 (CSINCWr GPR32:$tval, GPR32:$fval, (i32 imm:$cc))>;
1826 def : Pat<(AArch64csinc GPR64:$tval, GPR64:$fval, (i32 imm:$cc), NZCV),
1827 (CSINCXr GPR64:$tval, GPR64:$fval, (i32 imm:$cc))>;
1829 def : Pat<(AArch64csel (i32 0), (i32 1), (i32 imm:$cc), NZCV),
1830 (CSINCWr WZR, WZR, (i32 imm:$cc))>;
1831 def : Pat<(AArch64csel (i64 0), (i64 1), (i32 imm:$cc), NZCV),
1832 (CSINCXr XZR, XZR, (i32 imm:$cc))>;
1833 def : Pat<(AArch64csel GPR32:$tval, (i32 1), (i32 imm:$cc), NZCV),
1834 (CSINCWr GPR32:$tval, WZR, (i32 imm:$cc))>;
1835 def : Pat<(AArch64csel GPR64:$tval, (i64 1), (i32 imm:$cc), NZCV),
1836 (CSINCXr GPR64:$tval, XZR, (i32 imm:$cc))>;
1837 def : Pat<(AArch64csel (i32 1), GPR32:$fval, (i32 imm:$cc), NZCV),
1838 (CSINCWr GPR32:$fval, WZR, (i32 (inv_cond_XFORM imm:$cc)))>;
1839 def : Pat<(AArch64csel (i64 1), GPR64:$fval, (i32 imm:$cc), NZCV),
1840 (CSINCXr GPR64:$fval, XZR, (i32 (inv_cond_XFORM imm:$cc)))>;
1841 def : Pat<(AArch64csel (i32 0), (i32 -1), (i32 imm:$cc), NZCV),
1842 (CSINVWr WZR, WZR, (i32 imm:$cc))>;
1843 def : Pat<(AArch64csel (i64 0), (i64 -1), (i32 imm:$cc), NZCV),
1844 (CSINVXr XZR, XZR, (i32 imm:$cc))>;
1845 def : Pat<(AArch64csel GPR32:$tval, (i32 -1), (i32 imm:$cc), NZCV),
1846 (CSINVWr GPR32:$tval, WZR, (i32 imm:$cc))>;
1847 def : Pat<(AArch64csel GPR64:$tval, (i64 -1), (i32 imm:$cc), NZCV),
1848 (CSINVXr GPR64:$tval, XZR, (i32 imm:$cc))>;
1849 def : Pat<(AArch64csel (i32 -1), GPR32:$fval, (i32 imm:$cc), NZCV),
1850 (CSINVWr GPR32:$fval, WZR, (i32 (inv_cond_XFORM imm:$cc)))>;
1851 def : Pat<(AArch64csel (i64 -1), GPR64:$fval, (i32 imm:$cc), NZCV),
1852 (CSINVXr GPR64:$fval, XZR, (i32 (inv_cond_XFORM imm:$cc)))>;
1854 // The inverse of the condition code from the alias instruction is what is used
1855 // in the aliased instruction. The parser all ready inverts the condition code
1856 // for these aliases.
1857 def : InstAlias<"cset $dst, $cc",
1858 (CSINCWr GPR32:$dst, WZR, WZR, inv_ccode:$cc)>;
1859 def : InstAlias<"cset $dst, $cc",
1860 (CSINCXr GPR64:$dst, XZR, XZR, inv_ccode:$cc)>;
1862 def : InstAlias<"csetm $dst, $cc",
1863 (CSINVWr GPR32:$dst, WZR, WZR, inv_ccode:$cc)>;
1864 def : InstAlias<"csetm $dst, $cc",
1865 (CSINVXr GPR64:$dst, XZR, XZR, inv_ccode:$cc)>;
1867 def : InstAlias<"cinc $dst, $src, $cc",
1868 (CSINCWr GPR32:$dst, GPR32:$src, GPR32:$src, inv_ccode:$cc)>;
1869 def : InstAlias<"cinc $dst, $src, $cc",
1870 (CSINCXr GPR64:$dst, GPR64:$src, GPR64:$src, inv_ccode:$cc)>;
1872 def : InstAlias<"cinv $dst, $src, $cc",
1873 (CSINVWr GPR32:$dst, GPR32:$src, GPR32:$src, inv_ccode:$cc)>;
1874 def : InstAlias<"cinv $dst, $src, $cc",
1875 (CSINVXr GPR64:$dst, GPR64:$src, GPR64:$src, inv_ccode:$cc)>;
1877 def : InstAlias<"cneg $dst, $src, $cc",
1878 (CSNEGWr GPR32:$dst, GPR32:$src, GPR32:$src, inv_ccode:$cc)>;
1879 def : InstAlias<"cneg $dst, $src, $cc",
1880 (CSNEGXr GPR64:$dst, GPR64:$src, GPR64:$src, inv_ccode:$cc)>;
1882 //===----------------------------------------------------------------------===//
1883 // PC-relative instructions.
1884 //===----------------------------------------------------------------------===//
1885 let isReMaterializable = 1 in {
1886 let hasSideEffects = 0, mayStore = 0, mayLoad = 0 in {
1887 def ADR : ADRI<0, "adr", adrlabel,
1888 [(set GPR64:$Xd, (AArch64adr tglobaladdr:$label))]>;
1889 } // hasSideEffects = 0
1891 def ADRP : ADRI<1, "adrp", adrplabel,
1892 [(set GPR64:$Xd, (AArch64adrp tglobaladdr:$label))]>;
1893 } // isReMaterializable = 1
1895 // page address of a constant pool entry, block address
1896 def : Pat<(AArch64adr tconstpool:$cp), (ADR tconstpool:$cp)>;
1897 def : Pat<(AArch64adr tblockaddress:$cp), (ADR tblockaddress:$cp)>;
1898 def : Pat<(AArch64adr texternalsym:$sym), (ADR texternalsym:$sym)>;
1899 def : Pat<(AArch64adr tjumptable:$sym), (ADR tjumptable:$sym)>;
1900 def : Pat<(AArch64adrp tconstpool:$cp), (ADRP tconstpool:$cp)>;
1901 def : Pat<(AArch64adrp tblockaddress:$cp), (ADRP tblockaddress:$cp)>;
1902 def : Pat<(AArch64adrp texternalsym:$sym), (ADRP texternalsym:$sym)>;
1904 //===----------------------------------------------------------------------===//
1905 // Unconditional branch (register) instructions.
1906 //===----------------------------------------------------------------------===//
1908 let isReturn = 1, isTerminator = 1, isBarrier = 1 in {
1909 def RET : BranchReg<0b0010, "ret", []>;
1910 def DRPS : SpecialReturn<0b0101, "drps">;
1911 def ERET : SpecialReturn<0b0100, "eret">;
1912 } // isReturn = 1, isTerminator = 1, isBarrier = 1
1914 // Default to the LR register.
1915 def : InstAlias<"ret", (RET LR)>;
1917 let isCall = 1, Defs = [LR], Uses = [SP] in {
1918 def BLR : BranchReg<0b0001, "blr", [(AArch64call GPR64:$Rn)]>;
1921 let isBranch = 1, isTerminator = 1, isBarrier = 1, isIndirectBranch = 1 in {
1922 def BR : BranchReg<0b0000, "br", [(brind GPR64:$Rn)]>;
1923 } // isBranch, isTerminator, isBarrier, isIndirectBranch
1925 // Create a separate pseudo-instruction for codegen to use so that we don't
1926 // flag lr as used in every function. It'll be restored before the RET by the
1927 // epilogue if it's legitimately used.
1928 def RET_ReallyLR : Pseudo<(outs), (ins), [(AArch64retflag)]>,
1929 Sched<[WriteBrReg]> {
1930 let isTerminator = 1;
1935 // This is a directive-like pseudo-instruction. The purpose is to insert an
1936 // R_AARCH64_TLSDESC_CALL relocation at the offset of the following instruction
1937 // (which in the usual case is a BLR).
1938 let hasSideEffects = 1 in
1939 def TLSDESCCALL : Pseudo<(outs), (ins i64imm:$sym), []>, Sched<[]> {
1940 let AsmString = ".tlsdesccall $sym";
1943 // Pseudo instruction to tell the streamer to emit a 'B' character into the
1944 // augmentation string.
1945 def EMITBKEY : Pseudo<(outs), (ins), []>, Sched<[]> {}
1947 // FIXME: maybe the scratch register used shouldn't be fixed to X1?
1948 // FIXME: can "hasSideEffects be dropped?
1949 let isCall = 1, Defs = [LR, X0, X1], hasSideEffects = 1,
1950 isCodeGenOnly = 1 in
1952 : Pseudo<(outs), (ins i64imm:$sym),
1953 [(AArch64tlsdesc_callseq tglobaltlsaddr:$sym)]>,
1954 Sched<[WriteI, WriteLD, WriteI, WriteBrReg]>;
1955 def : Pat<(AArch64tlsdesc_callseq texternalsym:$sym),
1956 (TLSDESC_CALLSEQ texternalsym:$sym)>;
1958 //===----------------------------------------------------------------------===//
1959 // Conditional branch (immediate) instruction.
1960 //===----------------------------------------------------------------------===//
1961 def Bcc : BranchCond;
1963 //===----------------------------------------------------------------------===//
1964 // Compare-and-branch instructions.
1965 //===----------------------------------------------------------------------===//
1966 defm CBZ : CmpBranch<0, "cbz", AArch64cbz>;
1967 defm CBNZ : CmpBranch<1, "cbnz", AArch64cbnz>;
1969 //===----------------------------------------------------------------------===//
1970 // Test-bit-and-branch instructions.
1971 //===----------------------------------------------------------------------===//
1972 defm TBZ : TestBranch<0, "tbz", AArch64tbz>;
1973 defm TBNZ : TestBranch<1, "tbnz", AArch64tbnz>;
1975 //===----------------------------------------------------------------------===//
1976 // Unconditional branch (immediate) instructions.
1977 //===----------------------------------------------------------------------===//
1978 let isBranch = 1, isTerminator = 1, isBarrier = 1 in {
1979 def B : BranchImm<0, "b", [(br bb:$addr)]>;
1980 } // isBranch, isTerminator, isBarrier
1982 let isCall = 1, Defs = [LR], Uses = [SP] in {
1983 def BL : CallImm<1, "bl", [(AArch64call tglobaladdr:$addr)]>;
1985 def : Pat<(AArch64call texternalsym:$func), (BL texternalsym:$func)>;
1987 //===----------------------------------------------------------------------===//
1988 // Exception generation instructions.
1989 //===----------------------------------------------------------------------===//
1991 def BRK : ExceptionGeneration<0b001, 0b00, "brk">;
1993 def DCPS1 : ExceptionGeneration<0b101, 0b01, "dcps1">;
1994 def DCPS2 : ExceptionGeneration<0b101, 0b10, "dcps2">;
1995 def DCPS3 : ExceptionGeneration<0b101, 0b11, "dcps3">;
1996 def HLT : ExceptionGeneration<0b010, 0b00, "hlt">;
1997 def HVC : ExceptionGeneration<0b000, 0b10, "hvc">;
1998 def SMC : ExceptionGeneration<0b000, 0b11, "smc">;
1999 def SVC : ExceptionGeneration<0b000, 0b01, "svc">;
2001 // DCPSn defaults to an immediate operand of zero if unspecified.
2002 def : InstAlias<"dcps1", (DCPS1 0)>;
2003 def : InstAlias<"dcps2", (DCPS2 0)>;
2004 def : InstAlias<"dcps3", (DCPS3 0)>;
2006 def UDF : UDFType<0, "udf">;
2008 //===----------------------------------------------------------------------===//
2009 // Load instructions.
2010 //===----------------------------------------------------------------------===//
2012 // Pair (indexed, offset)
2013 defm LDPW : LoadPairOffset<0b00, 0, GPR32z, simm7s4, "ldp">;
2014 defm LDPX : LoadPairOffset<0b10, 0, GPR64z, simm7s8, "ldp">;
2015 defm LDPS : LoadPairOffset<0b00, 1, FPR32Op, simm7s4, "ldp">;
2016 defm LDPD : LoadPairOffset<0b01, 1, FPR64Op, simm7s8, "ldp">;
2017 defm LDPQ : LoadPairOffset<0b10, 1, FPR128Op, simm7s16, "ldp">;
2019 defm LDPSW : LoadPairOffset<0b01, 0, GPR64z, simm7s4, "ldpsw">;
2021 // Pair (pre-indexed)
2022 def LDPWpre : LoadPairPreIdx<0b00, 0, GPR32z, simm7s4, "ldp">;
2023 def LDPXpre : LoadPairPreIdx<0b10, 0, GPR64z, simm7s8, "ldp">;
2024 def LDPSpre : LoadPairPreIdx<0b00, 1, FPR32Op, simm7s4, "ldp">;
2025 def LDPDpre : LoadPairPreIdx<0b01, 1, FPR64Op, simm7s8, "ldp">;
2026 def LDPQpre : LoadPairPreIdx<0b10, 1, FPR128Op, simm7s16, "ldp">;
2028 def LDPSWpre : LoadPairPreIdx<0b01, 0, GPR64z, simm7s4, "ldpsw">;
2030 // Pair (post-indexed)
2031 def LDPWpost : LoadPairPostIdx<0b00, 0, GPR32z, simm7s4, "ldp">;
2032 def LDPXpost : LoadPairPostIdx<0b10, 0, GPR64z, simm7s8, "ldp">;
2033 def LDPSpost : LoadPairPostIdx<0b00, 1, FPR32Op, simm7s4, "ldp">;
2034 def LDPDpost : LoadPairPostIdx<0b01, 1, FPR64Op, simm7s8, "ldp">;
2035 def LDPQpost : LoadPairPostIdx<0b10, 1, FPR128Op, simm7s16, "ldp">;
2037 def LDPSWpost : LoadPairPostIdx<0b01, 0, GPR64z, simm7s4, "ldpsw">;
2040 // Pair (no allocate)
2041 defm LDNPW : LoadPairNoAlloc<0b00, 0, GPR32z, simm7s4, "ldnp">;
2042 defm LDNPX : LoadPairNoAlloc<0b10, 0, GPR64z, simm7s8, "ldnp">;
2043 defm LDNPS : LoadPairNoAlloc<0b00, 1, FPR32Op, simm7s4, "ldnp">;
2044 defm LDNPD : LoadPairNoAlloc<0b01, 1, FPR64Op, simm7s8, "ldnp">;
2045 defm LDNPQ : LoadPairNoAlloc<0b10, 1, FPR128Op, simm7s16, "ldnp">;
2047 def : Pat<(AArch64ldp (am_indexed7s64 GPR64sp:$Rn, simm7s8:$offset)),
2048 (LDPXi GPR64sp:$Rn, simm7s8:$offset)>;
2051 // (register offset)
2055 defm LDRBB : Load8RO<0b00, 0, 0b01, GPR32, "ldrb", i32, zextloadi8>;
2056 defm LDRHH : Load16RO<0b01, 0, 0b01, GPR32, "ldrh", i32, zextloadi16>;
2057 defm LDRW : Load32RO<0b10, 0, 0b01, GPR32, "ldr", i32, load>;
2058 defm LDRX : Load64RO<0b11, 0, 0b01, GPR64, "ldr", i64, load>;
2061 defm LDRB : Load8RO<0b00, 1, 0b01, FPR8Op, "ldr", untyped, load>;
2062 defm LDRH : Load16RO<0b01, 1, 0b01, FPR16Op, "ldr", f16, load>;
2063 defm LDRS : Load32RO<0b10, 1, 0b01, FPR32Op, "ldr", f32, load>;
2064 defm LDRD : Load64RO<0b11, 1, 0b01, FPR64Op, "ldr", f64, load>;
2065 defm LDRQ : Load128RO<0b00, 1, 0b11, FPR128Op, "ldr", f128, load>;
2067 // Load sign-extended half-word
2068 defm LDRSHW : Load16RO<0b01, 0, 0b11, GPR32, "ldrsh", i32, sextloadi16>;
2069 defm LDRSHX : Load16RO<0b01, 0, 0b10, GPR64, "ldrsh", i64, sextloadi16>;
2071 // Load sign-extended byte
2072 defm LDRSBW : Load8RO<0b00, 0, 0b11, GPR32, "ldrsb", i32, sextloadi8>;
2073 defm LDRSBX : Load8RO<0b00, 0, 0b10, GPR64, "ldrsb", i64, sextloadi8>;
2075 // Load sign-extended word
2076 defm LDRSW : Load32RO<0b10, 0, 0b10, GPR64, "ldrsw", i64, sextloadi32>;
2079 defm PRFM : PrefetchRO<0b11, 0, 0b10, "prfm">;
2081 // For regular load, we do not have any alignment requirement.
2082 // Thus, it is safe to directly map the vector loads with interesting
2083 // addressing modes.
2084 // FIXME: We could do the same for bitconvert to floating point vectors.
2085 multiclass ScalToVecROLoadPat<ROAddrMode ro, SDPatternOperator loadop,
2086 ValueType ScalTy, ValueType VecTy,
2087 Instruction LOADW, Instruction LOADX,
2089 def : Pat<(VecTy (scalar_to_vector (ScalTy
2090 (loadop (ro.Wpat GPR64sp:$Rn, GPR32:$Rm, ro.Wext:$offset))))),
2091 (INSERT_SUBREG (VecTy (IMPLICIT_DEF)),
2092 (LOADW GPR64sp:$Rn, GPR32:$Rm, ro.Wext:$offset),
2095 def : Pat<(VecTy (scalar_to_vector (ScalTy
2096 (loadop (ro.Xpat GPR64sp:$Rn, GPR64:$Rm, ro.Xext:$offset))))),
2097 (INSERT_SUBREG (VecTy (IMPLICIT_DEF)),
2098 (LOADX GPR64sp:$Rn, GPR64:$Rm, ro.Xext:$offset),
2102 let AddedComplexity = 10 in {
2103 defm : ScalToVecROLoadPat<ro8, extloadi8, i32, v8i8, LDRBroW, LDRBroX, bsub>;
2104 defm : ScalToVecROLoadPat<ro8, extloadi8, i32, v16i8, LDRBroW, LDRBroX, bsub>;
2106 defm : ScalToVecROLoadPat<ro16, extloadi16, i32, v4i16, LDRHroW, LDRHroX, hsub>;
2107 defm : ScalToVecROLoadPat<ro16, extloadi16, i32, v8i16, LDRHroW, LDRHroX, hsub>;
2109 defm : ScalToVecROLoadPat<ro16, load, i32, v4f16, LDRHroW, LDRHroX, hsub>;
2110 defm : ScalToVecROLoadPat<ro16, load, i32, v8f16, LDRHroW, LDRHroX, hsub>;
2112 defm : ScalToVecROLoadPat<ro32, load, i32, v2i32, LDRSroW, LDRSroX, ssub>;
2113 defm : ScalToVecROLoadPat<ro32, load, i32, v4i32, LDRSroW, LDRSroX, ssub>;
2115 defm : ScalToVecROLoadPat<ro32, load, f32, v2f32, LDRSroW, LDRSroX, ssub>;
2116 defm : ScalToVecROLoadPat<ro32, load, f32, v4f32, LDRSroW, LDRSroX, ssub>;
2118 defm : ScalToVecROLoadPat<ro64, load, i64, v2i64, LDRDroW, LDRDroX, dsub>;
2120 defm : ScalToVecROLoadPat<ro64, load, f64, v2f64, LDRDroW, LDRDroX, dsub>;
2123 def : Pat <(v1i64 (scalar_to_vector (i64
2124 (load (ro_Windexed64 GPR64sp:$Rn, GPR32:$Rm,
2125 ro_Wextend64:$extend))))),
2126 (LDRDroW GPR64sp:$Rn, GPR32:$Rm, ro_Wextend64:$extend)>;
2128 def : Pat <(v1i64 (scalar_to_vector (i64
2129 (load (ro_Xindexed64 GPR64sp:$Rn, GPR64:$Rm,
2130 ro_Xextend64:$extend))))),
2131 (LDRDroX GPR64sp:$Rn, GPR64:$Rm, ro_Xextend64:$extend)>;
2134 // Match all load 64 bits width whose type is compatible with FPR64
2135 multiclass VecROLoadPat<ROAddrMode ro, ValueType VecTy,
2136 Instruction LOADW, Instruction LOADX> {
2138 def : Pat<(VecTy (load (ro.Wpat GPR64sp:$Rn, GPR32:$Rm, ro.Wext:$extend))),
2139 (LOADW GPR64sp:$Rn, GPR32:$Rm, ro.Wext:$extend)>;
2141 def : Pat<(VecTy (load (ro.Xpat GPR64sp:$Rn, GPR64:$Rm, ro.Xext:$extend))),
2142 (LOADX GPR64sp:$Rn, GPR64:$Rm, ro.Xext:$extend)>;
2145 let AddedComplexity = 10 in {
2146 let Predicates = [IsLE] in {
2147 // We must do vector loads with LD1 in big-endian.
2148 defm : VecROLoadPat<ro64, v2i32, LDRDroW, LDRDroX>;
2149 defm : VecROLoadPat<ro64, v2f32, LDRDroW, LDRDroX>;
2150 defm : VecROLoadPat<ro64, v8i8, LDRDroW, LDRDroX>;
2151 defm : VecROLoadPat<ro64, v4i16, LDRDroW, LDRDroX>;
2152 defm : VecROLoadPat<ro64, v4f16, LDRDroW, LDRDroX>;
2155 defm : VecROLoadPat<ro64, v1i64, LDRDroW, LDRDroX>;
2156 defm : VecROLoadPat<ro64, v1f64, LDRDroW, LDRDroX>;
2158 // Match all load 128 bits width whose type is compatible with FPR128
2159 let Predicates = [IsLE] in {
2160 // We must do vector loads with LD1 in big-endian.
2161 defm : VecROLoadPat<ro128, v2i64, LDRQroW, LDRQroX>;
2162 defm : VecROLoadPat<ro128, v2f64, LDRQroW, LDRQroX>;
2163 defm : VecROLoadPat<ro128, v4i32, LDRQroW, LDRQroX>;
2164 defm : VecROLoadPat<ro128, v4f32, LDRQroW, LDRQroX>;
2165 defm : VecROLoadPat<ro128, v8i16, LDRQroW, LDRQroX>;
2166 defm : VecROLoadPat<ro128, v8f16, LDRQroW, LDRQroX>;
2167 defm : VecROLoadPat<ro128, v16i8, LDRQroW, LDRQroX>;
2169 } // AddedComplexity = 10
2172 multiclass ExtLoadTo64ROPat<ROAddrMode ro, SDPatternOperator loadop,
2173 Instruction INSTW, Instruction INSTX> {
2174 def : Pat<(i64 (loadop (ro.Wpat GPR64sp:$Rn, GPR32:$Rm, ro.Wext:$extend))),
2175 (SUBREG_TO_REG (i64 0),
2176 (INSTW GPR64sp:$Rn, GPR32:$Rm, ro.Wext:$extend),
2179 def : Pat<(i64 (loadop (ro.Xpat GPR64sp:$Rn, GPR64:$Rm, ro.Xext:$extend))),
2180 (SUBREG_TO_REG (i64 0),
2181 (INSTX GPR64sp:$Rn, GPR64:$Rm, ro.Xext:$extend),
2185 let AddedComplexity = 10 in {
2186 defm : ExtLoadTo64ROPat<ro8, zextloadi8, LDRBBroW, LDRBBroX>;
2187 defm : ExtLoadTo64ROPat<ro16, zextloadi16, LDRHHroW, LDRHHroX>;
2188 defm : ExtLoadTo64ROPat<ro32, zextloadi32, LDRWroW, LDRWroX>;
2190 // zextloadi1 -> zextloadi8
2191 defm : ExtLoadTo64ROPat<ro8, zextloadi1, LDRBBroW, LDRBBroX>;
2193 // extload -> zextload
2194 defm : ExtLoadTo64ROPat<ro8, extloadi8, LDRBBroW, LDRBBroX>;
2195 defm : ExtLoadTo64ROPat<ro16, extloadi16, LDRHHroW, LDRHHroX>;
2196 defm : ExtLoadTo64ROPat<ro32, extloadi32, LDRWroW, LDRWroX>;
2198 // extloadi1 -> zextloadi8
2199 defm : ExtLoadTo64ROPat<ro8, extloadi1, LDRBBroW, LDRBBroX>;
2204 multiclass ExtLoadTo32ROPat<ROAddrMode ro, SDPatternOperator loadop,
2205 Instruction INSTW, Instruction INSTX> {
2206 def : Pat<(i32 (loadop (ro.Wpat GPR64sp:$Rn, GPR32:$Rm, ro.Wext:$extend))),
2207 (INSTW GPR64sp:$Rn, GPR32:$Rm, ro.Wext:$extend)>;
2209 def : Pat<(i32 (loadop (ro.Xpat GPR64sp:$Rn, GPR64:$Rm, ro.Xext:$extend))),
2210 (INSTX GPR64sp:$Rn, GPR64:$Rm, ro.Xext:$extend)>;
2214 let AddedComplexity = 10 in {
2215 // extload -> zextload
2216 defm : ExtLoadTo32ROPat<ro8, extloadi8, LDRBBroW, LDRBBroX>;
2217 defm : ExtLoadTo32ROPat<ro16, extloadi16, LDRHHroW, LDRHHroX>;
2218 defm : ExtLoadTo32ROPat<ro32, extloadi32, LDRWroW, LDRWroX>;
2220 // zextloadi1 -> zextloadi8
2221 defm : ExtLoadTo32ROPat<ro8, zextloadi1, LDRBBroW, LDRBBroX>;
2225 // (unsigned immediate)
2227 defm LDRX : LoadUI<0b11, 0, 0b01, GPR64z, uimm12s8, "ldr",
2229 (load (am_indexed64 GPR64sp:$Rn, uimm12s8:$offset)))]>;
2230 defm LDRW : LoadUI<0b10, 0, 0b01, GPR32z, uimm12s4, "ldr",
2232 (load (am_indexed32 GPR64sp:$Rn, uimm12s4:$offset)))]>;
2233 defm LDRB : LoadUI<0b00, 1, 0b01, FPR8Op, uimm12s1, "ldr",
2235 (load (am_indexed8 GPR64sp:$Rn, uimm12s1:$offset)))]>;
2236 defm LDRH : LoadUI<0b01, 1, 0b01, FPR16Op, uimm12s2, "ldr",
2237 [(set (f16 FPR16Op:$Rt),
2238 (load (am_indexed16 GPR64sp:$Rn, uimm12s2:$offset)))]>;
2239 defm LDRS : LoadUI<0b10, 1, 0b01, FPR32Op, uimm12s4, "ldr",
2240 [(set (f32 FPR32Op:$Rt),
2241 (load (am_indexed32 GPR64sp:$Rn, uimm12s4:$offset)))]>;
2242 defm LDRD : LoadUI<0b11, 1, 0b01, FPR64Op, uimm12s8, "ldr",
2243 [(set (f64 FPR64Op:$Rt),
2244 (load (am_indexed64 GPR64sp:$Rn, uimm12s8:$offset)))]>;
2245 defm LDRQ : LoadUI<0b00, 1, 0b11, FPR128Op, uimm12s16, "ldr",
2246 [(set (f128 FPR128Op:$Rt),
2247 (load (am_indexed128 GPR64sp:$Rn, uimm12s16:$offset)))]>;
2249 // For regular load, we do not have any alignment requirement.
2250 // Thus, it is safe to directly map the vector loads with interesting
2251 // addressing modes.
2252 // FIXME: We could do the same for bitconvert to floating point vectors.
2253 def : Pat <(v8i8 (scalar_to_vector (i32
2254 (extloadi8 (am_indexed8 GPR64sp:$Rn, uimm12s1:$offset))))),
2255 (INSERT_SUBREG (v8i8 (IMPLICIT_DEF)),
2256 (LDRBui GPR64sp:$Rn, uimm12s1:$offset), bsub)>;
2257 def : Pat <(v16i8 (scalar_to_vector (i32
2258 (extloadi8 (am_indexed8 GPR64sp:$Rn, uimm12s1:$offset))))),
2259 (INSERT_SUBREG (v16i8 (IMPLICIT_DEF)),
2260 (LDRBui GPR64sp:$Rn, uimm12s1:$offset), bsub)>;
2261 def : Pat <(v4i16 (scalar_to_vector (i32
2262 (extloadi16 (am_indexed16 GPR64sp:$Rn, uimm12s2:$offset))))),
2263 (INSERT_SUBREG (v4i16 (IMPLICIT_DEF)),
2264 (LDRHui GPR64sp:$Rn, uimm12s2:$offset), hsub)>;
2265 def : Pat <(v8i16 (scalar_to_vector (i32
2266 (extloadi16 (am_indexed16 GPR64sp:$Rn, uimm12s2:$offset))))),
2267 (INSERT_SUBREG (v8i16 (IMPLICIT_DEF)),
2268 (LDRHui GPR64sp:$Rn, uimm12s2:$offset), hsub)>;
2269 def : Pat <(v2i32 (scalar_to_vector (i32
2270 (load (am_indexed32 GPR64sp:$Rn, uimm12s4:$offset))))),
2271 (INSERT_SUBREG (v2i32 (IMPLICIT_DEF)),
2272 (LDRSui GPR64sp:$Rn, uimm12s4:$offset), ssub)>;
2273 def : Pat <(v4i32 (scalar_to_vector (i32
2274 (load (am_indexed32 GPR64sp:$Rn, uimm12s4:$offset))))),
2275 (INSERT_SUBREG (v4i32 (IMPLICIT_DEF)),
2276 (LDRSui GPR64sp:$Rn, uimm12s4:$offset), ssub)>;
2277 def : Pat <(v1i64 (scalar_to_vector (i64
2278 (load (am_indexed64 GPR64sp:$Rn, uimm12s8:$offset))))),
2279 (LDRDui GPR64sp:$Rn, uimm12s8:$offset)>;
2280 def : Pat <(v2i64 (scalar_to_vector (i64
2281 (load (am_indexed64 GPR64sp:$Rn, uimm12s8:$offset))))),
2282 (INSERT_SUBREG (v2i64 (IMPLICIT_DEF)),
2283 (LDRDui GPR64sp:$Rn, uimm12s8:$offset), dsub)>;
2285 // Match all load 64 bits width whose type is compatible with FPR64
2286 let Predicates = [IsLE] in {
2287 // We must use LD1 to perform vector loads in big-endian.
2288 def : Pat<(v2f32 (load (am_indexed64 GPR64sp:$Rn, uimm12s8:$offset))),
2289 (LDRDui GPR64sp:$Rn, uimm12s8:$offset)>;
2290 def : Pat<(v8i8 (load (am_indexed64 GPR64sp:$Rn, uimm12s8:$offset))),
2291 (LDRDui GPR64sp:$Rn, uimm12s8:$offset)>;
2292 def : Pat<(v4i16 (load (am_indexed64 GPR64sp:$Rn, uimm12s8:$offset))),
2293 (LDRDui GPR64sp:$Rn, uimm12s8:$offset)>;
2294 def : Pat<(v2i32 (load (am_indexed64 GPR64sp:$Rn, uimm12s8:$offset))),
2295 (LDRDui GPR64sp:$Rn, uimm12s8:$offset)>;
2296 def : Pat<(v4f16 (load (am_indexed64 GPR64sp:$Rn, uimm12s8:$offset))),
2297 (LDRDui GPR64sp:$Rn, uimm12s8:$offset)>;
2299 def : Pat<(v1f64 (load (am_indexed64 GPR64sp:$Rn, uimm12s8:$offset))),
2300 (LDRDui GPR64sp:$Rn, uimm12s8:$offset)>;
2301 def : Pat<(v1i64 (load (am_indexed64 GPR64sp:$Rn, uimm12s8:$offset))),
2302 (LDRDui GPR64sp:$Rn, uimm12s8:$offset)>;
2304 // Match all load 128 bits width whose type is compatible with FPR128
2305 let Predicates = [IsLE] in {
2306 // We must use LD1 to perform vector loads in big-endian.
2307 def : Pat<(v4f32 (load (am_indexed128 GPR64sp:$Rn, uimm12s16:$offset))),
2308 (LDRQui GPR64sp:$Rn, uimm12s16:$offset)>;
2309 def : Pat<(v2f64 (load (am_indexed128 GPR64sp:$Rn, uimm12s16:$offset))),
2310 (LDRQui GPR64sp:$Rn, uimm12s16:$offset)>;
2311 def : Pat<(v16i8 (load (am_indexed128 GPR64sp:$Rn, uimm12s16:$offset))),
2312 (LDRQui GPR64sp:$Rn, uimm12s16:$offset)>;
2313 def : Pat<(v8i16 (load (am_indexed128 GPR64sp:$Rn, uimm12s16:$offset))),
2314 (LDRQui GPR64sp:$Rn, uimm12s16:$offset)>;
2315 def : Pat<(v4i32 (load (am_indexed128 GPR64sp:$Rn, uimm12s16:$offset))),
2316 (LDRQui GPR64sp:$Rn, uimm12s16:$offset)>;
2317 def : Pat<(v2i64 (load (am_indexed128 GPR64sp:$Rn, uimm12s16:$offset))),
2318 (LDRQui GPR64sp:$Rn, uimm12s16:$offset)>;
2319 def : Pat<(v8f16 (load (am_indexed128 GPR64sp:$Rn, uimm12s16:$offset))),
2320 (LDRQui GPR64sp:$Rn, uimm12s16:$offset)>;
2322 def : Pat<(f128 (load (am_indexed128 GPR64sp:$Rn, uimm12s16:$offset))),
2323 (LDRQui GPR64sp:$Rn, uimm12s16:$offset)>;
2325 defm LDRHH : LoadUI<0b01, 0, 0b01, GPR32, uimm12s2, "ldrh",
2327 (zextloadi16 (am_indexed16 GPR64sp:$Rn,
2328 uimm12s2:$offset)))]>;
2329 defm LDRBB : LoadUI<0b00, 0, 0b01, GPR32, uimm12s1, "ldrb",
2331 (zextloadi8 (am_indexed8 GPR64sp:$Rn,
2332 uimm12s1:$offset)))]>;
2334 def : Pat<(i64 (zextloadi8 (am_indexed8 GPR64sp:$Rn, uimm12s1:$offset))),
2335 (SUBREG_TO_REG (i64 0), (LDRBBui GPR64sp:$Rn, uimm12s1:$offset), sub_32)>;
2336 def : Pat<(i64 (zextloadi16 (am_indexed16 GPR64sp:$Rn, uimm12s2:$offset))),
2337 (SUBREG_TO_REG (i64 0), (LDRHHui GPR64sp:$Rn, uimm12s2:$offset), sub_32)>;
2339 // zextloadi1 -> zextloadi8
2340 def : Pat<(i32 (zextloadi1 (am_indexed8 GPR64sp:$Rn, uimm12s1:$offset))),
2341 (LDRBBui GPR64sp:$Rn, uimm12s1:$offset)>;
2342 def : Pat<(i64 (zextloadi1 (am_indexed8 GPR64sp:$Rn, uimm12s1:$offset))),
2343 (SUBREG_TO_REG (i64 0), (LDRBBui GPR64sp:$Rn, uimm12s1:$offset), sub_32)>;
2345 // extload -> zextload
2346 def : Pat<(i32 (extloadi16 (am_indexed16 GPR64sp:$Rn, uimm12s2:$offset))),
2347 (LDRHHui GPR64sp:$Rn, uimm12s2:$offset)>;
2348 def : Pat<(i32 (extloadi8 (am_indexed8 GPR64sp:$Rn, uimm12s1:$offset))),
2349 (LDRBBui GPR64sp:$Rn, uimm12s1:$offset)>;
2350 def : Pat<(i32 (extloadi1 (am_indexed8 GPR64sp:$Rn, uimm12s1:$offset))),
2351 (LDRBBui GPR64sp:$Rn, uimm12s1:$offset)>;
2352 def : Pat<(i64 (extloadi32 (am_indexed32 GPR64sp:$Rn, uimm12s4:$offset))),
2353 (SUBREG_TO_REG (i64 0), (LDRWui GPR64sp:$Rn, uimm12s4:$offset), sub_32)>;
2354 def : Pat<(i64 (extloadi16 (am_indexed16 GPR64sp:$Rn, uimm12s2:$offset))),
2355 (SUBREG_TO_REG (i64 0), (LDRHHui GPR64sp:$Rn, uimm12s2:$offset), sub_32)>;
2356 def : Pat<(i64 (extloadi8 (am_indexed8 GPR64sp:$Rn, uimm12s1:$offset))),
2357 (SUBREG_TO_REG (i64 0), (LDRBBui GPR64sp:$Rn, uimm12s1:$offset), sub_32)>;
2358 def : Pat<(i64 (extloadi1 (am_indexed8 GPR64sp:$Rn, uimm12s1:$offset))),
2359 (SUBREG_TO_REG (i64 0), (LDRBBui GPR64sp:$Rn, uimm12s1:$offset), sub_32)>;
2361 // load sign-extended half-word
2362 defm LDRSHW : LoadUI<0b01, 0, 0b11, GPR32, uimm12s2, "ldrsh",
2364 (sextloadi16 (am_indexed16 GPR64sp:$Rn,
2365 uimm12s2:$offset)))]>;
2366 defm LDRSHX : LoadUI<0b01, 0, 0b10, GPR64, uimm12s2, "ldrsh",
2368 (sextloadi16 (am_indexed16 GPR64sp:$Rn,
2369 uimm12s2:$offset)))]>;
2371 // load sign-extended byte
2372 defm LDRSBW : LoadUI<0b00, 0, 0b11, GPR32, uimm12s1, "ldrsb",
2374 (sextloadi8 (am_indexed8 GPR64sp:$Rn,
2375 uimm12s1:$offset)))]>;
2376 defm LDRSBX : LoadUI<0b00, 0, 0b10, GPR64, uimm12s1, "ldrsb",
2378 (sextloadi8 (am_indexed8 GPR64sp:$Rn,
2379 uimm12s1:$offset)))]>;
2381 // load sign-extended word
2382 defm LDRSW : LoadUI<0b10, 0, 0b10, GPR64, uimm12s4, "ldrsw",
2384 (sextloadi32 (am_indexed32 GPR64sp:$Rn,
2385 uimm12s4:$offset)))]>;
2387 // load zero-extended word
2388 def : Pat<(i64 (zextloadi32 (am_indexed32 GPR64sp:$Rn, uimm12s4:$offset))),
2389 (SUBREG_TO_REG (i64 0), (LDRWui GPR64sp:$Rn, uimm12s4:$offset), sub_32)>;
2392 def PRFMui : PrefetchUI<0b11, 0, 0b10, "prfm",
2393 [(AArch64Prefetch imm:$Rt,
2394 (am_indexed64 GPR64sp:$Rn,
2395 uimm12s8:$offset))]>;
2397 def : InstAlias<"prfm $Rt, [$Rn]", (PRFMui prfop:$Rt, GPR64sp:$Rn, 0)>;
2402 def alignedglobal : PatLeaf<(iPTR iPTR:$label), [{
2403 if (auto *G = dyn_cast<GlobalAddressSDNode>(N)) {
2404 const DataLayout &DL = MF->getDataLayout();
2405 MaybeAlign Align = G->getGlobal()->getPointerAlignment(DL);
2406 return Align && *Align >= 4 && G->getOffset() % 4 == 0;
2408 if (auto *C = dyn_cast<ConstantPoolSDNode>(N))
2409 return C->getAlignment() >= 4 && C->getOffset() % 4 == 0;
2413 def LDRWl : LoadLiteral<0b00, 0, GPR32z, "ldr",
2414 [(set GPR32z:$Rt, (load (AArch64adr alignedglobal:$label)))]>;
2415 def LDRXl : LoadLiteral<0b01, 0, GPR64z, "ldr",
2416 [(set GPR64z:$Rt, (load (AArch64adr alignedglobal:$label)))]>;
2417 def LDRSl : LoadLiteral<0b00, 1, FPR32Op, "ldr",
2418 [(set (f32 FPR32Op:$Rt), (load (AArch64adr alignedglobal:$label)))]>;
2419 def LDRDl : LoadLiteral<0b01, 1, FPR64Op, "ldr",
2420 [(set (f64 FPR64Op:$Rt), (load (AArch64adr alignedglobal:$label)))]>;
2421 def LDRQl : LoadLiteral<0b10, 1, FPR128Op, "ldr",
2422 [(set (f128 FPR128Op:$Rt), (load (AArch64adr alignedglobal:$label)))]>;
2424 // load sign-extended word
2425 def LDRSWl : LoadLiteral<0b10, 0, GPR64z, "ldrsw",
2426 [(set GPR64z:$Rt, (sextloadi32 (AArch64adr alignedglobal:$label)))]>;
2428 let AddedComplexity = 20 in {
2429 def : Pat<(i64 (zextloadi32 (AArch64adr alignedglobal:$label))),
2430 (SUBREG_TO_REG (i64 0), (LDRWl $label), sub_32)>;
2434 def PRFMl : PrefetchLiteral<0b11, 0, "prfm", []>;
2435 // [(AArch64Prefetch imm:$Rt, tglobaladdr:$label)]>;
2438 // (unscaled immediate)
2439 defm LDURX : LoadUnscaled<0b11, 0, 0b01, GPR64z, "ldur",
2441 (load (am_unscaled64 GPR64sp:$Rn, simm9:$offset)))]>;
2442 defm LDURW : LoadUnscaled<0b10, 0, 0b01, GPR32z, "ldur",
2444 (load (am_unscaled32 GPR64sp:$Rn, simm9:$offset)))]>;
2445 defm LDURB : LoadUnscaled<0b00, 1, 0b01, FPR8Op, "ldur",
2447 (load (am_unscaled8 GPR64sp:$Rn, simm9:$offset)))]>;
2448 defm LDURH : LoadUnscaled<0b01, 1, 0b01, FPR16Op, "ldur",
2450 (load (am_unscaled16 GPR64sp:$Rn, simm9:$offset)))]>;
2451 defm LDURS : LoadUnscaled<0b10, 1, 0b01, FPR32Op, "ldur",
2452 [(set (f32 FPR32Op:$Rt),
2453 (load (am_unscaled32 GPR64sp:$Rn, simm9:$offset)))]>;
2454 defm LDURD : LoadUnscaled<0b11, 1, 0b01, FPR64Op, "ldur",
2455 [(set (f64 FPR64Op:$Rt),
2456 (load (am_unscaled64 GPR64sp:$Rn, simm9:$offset)))]>;
2457 defm LDURQ : LoadUnscaled<0b00, 1, 0b11, FPR128Op, "ldur",
2458 [(set (f128 FPR128Op:$Rt),
2459 (load (am_unscaled128 GPR64sp:$Rn, simm9:$offset)))]>;
2462 : LoadUnscaled<0b01, 0, 0b01, GPR32, "ldurh",
2464 (zextloadi16 (am_unscaled16 GPR64sp:$Rn, simm9:$offset)))]>;
2466 : LoadUnscaled<0b00, 0, 0b01, GPR32, "ldurb",
2468 (zextloadi8 (am_unscaled16 GPR64sp:$Rn, simm9:$offset)))]>;
2470 // Match all load 64 bits width whose type is compatible with FPR64
2471 let Predicates = [IsLE] in {
2472 def : Pat<(v2f32 (load (am_unscaled64 GPR64sp:$Rn, simm9:$offset))),
2473 (LDURDi GPR64sp:$Rn, simm9:$offset)>;
2474 def : Pat<(v2i32 (load (am_unscaled64 GPR64sp:$Rn, simm9:$offset))),
2475 (LDURDi GPR64sp:$Rn, simm9:$offset)>;
2476 def : Pat<(v4i16 (load (am_unscaled64 GPR64sp:$Rn, simm9:$offset))),
2477 (LDURDi GPR64sp:$Rn, simm9:$offset)>;
2478 def : Pat<(v8i8 (load (am_unscaled64 GPR64sp:$Rn, simm9:$offset))),
2479 (LDURDi GPR64sp:$Rn, simm9:$offset)>;
2480 def : Pat<(v4f16 (load (am_unscaled64 GPR64sp:$Rn, simm9:$offset))),
2481 (LDURDi GPR64sp:$Rn, simm9:$offset)>;
2483 def : Pat<(v1f64 (load (am_unscaled64 GPR64sp:$Rn, simm9:$offset))),
2484 (LDURDi GPR64sp:$Rn, simm9:$offset)>;
2485 def : Pat<(v1i64 (load (am_unscaled64 GPR64sp:$Rn, simm9:$offset))),
2486 (LDURDi GPR64sp:$Rn, simm9:$offset)>;
2488 // Match all load 128 bits width whose type is compatible with FPR128
2489 let Predicates = [IsLE] in {
2490 def : Pat<(v2f64 (load (am_unscaled128 GPR64sp:$Rn, simm9:$offset))),
2491 (LDURQi GPR64sp:$Rn, simm9:$offset)>;
2492 def : Pat<(v2i64 (load (am_unscaled128 GPR64sp:$Rn, simm9:$offset))),
2493 (LDURQi GPR64sp:$Rn, simm9:$offset)>;
2494 def : Pat<(v4f32 (load (am_unscaled128 GPR64sp:$Rn, simm9:$offset))),
2495 (LDURQi GPR64sp:$Rn, simm9:$offset)>;
2496 def : Pat<(v4i32 (load (am_unscaled128 GPR64sp:$Rn, simm9:$offset))),
2497 (LDURQi GPR64sp:$Rn, simm9:$offset)>;
2498 def : Pat<(v8i16 (load (am_unscaled128 GPR64sp:$Rn, simm9:$offset))),
2499 (LDURQi GPR64sp:$Rn, simm9:$offset)>;
2500 def : Pat<(v16i8 (load (am_unscaled128 GPR64sp:$Rn, simm9:$offset))),
2501 (LDURQi GPR64sp:$Rn, simm9:$offset)>;
2502 def : Pat<(v8f16 (load (am_unscaled128 GPR64sp:$Rn, simm9:$offset))),
2503 (LDURQi GPR64sp:$Rn, simm9:$offset)>;
2507 def : Pat<(i32 (extloadi16 (am_unscaled16 GPR64sp:$Rn, simm9:$offset))),
2508 (LDURHHi GPR64sp:$Rn, simm9:$offset)>;
2509 def : Pat<(i32 (extloadi8 (am_unscaled8 GPR64sp:$Rn, simm9:$offset))),
2510 (LDURBBi GPR64sp:$Rn, simm9:$offset)>;
2511 def : Pat<(i32 (extloadi1 (am_unscaled8 GPR64sp:$Rn, simm9:$offset))),
2512 (LDURBBi GPR64sp:$Rn, simm9:$offset)>;
2513 def : Pat<(i64 (extloadi32 (am_unscaled32 GPR64sp:$Rn, simm9:$offset))),
2514 (SUBREG_TO_REG (i64 0), (LDURWi GPR64sp:$Rn, simm9:$offset), sub_32)>;
2515 def : Pat<(i64 (extloadi16 (am_unscaled16 GPR64sp:$Rn, simm9:$offset))),
2516 (SUBREG_TO_REG (i64 0), (LDURHHi GPR64sp:$Rn, simm9:$offset), sub_32)>;
2517 def : Pat<(i64 (extloadi8 (am_unscaled8 GPR64sp:$Rn, simm9:$offset))),
2518 (SUBREG_TO_REG (i64 0), (LDURBBi GPR64sp:$Rn, simm9:$offset), sub_32)>;
2519 def : Pat<(i64 (extloadi1 (am_unscaled8 GPR64sp:$Rn, simm9:$offset))),
2520 (SUBREG_TO_REG (i64 0), (LDURBBi GPR64sp:$Rn, simm9:$offset), sub_32)>;
2522 def : Pat<(i32 (zextloadi16 (am_unscaled16 GPR64sp:$Rn, simm9:$offset))),
2523 (LDURHHi GPR64sp:$Rn, simm9:$offset)>;
2524 def : Pat<(i32 (zextloadi8 (am_unscaled8 GPR64sp:$Rn, simm9:$offset))),
2525 (LDURBBi GPR64sp:$Rn, simm9:$offset)>;
2526 def : Pat<(i32 (zextloadi1 (am_unscaled8 GPR64sp:$Rn, simm9:$offset))),
2527 (LDURBBi GPR64sp:$Rn, simm9:$offset)>;
2528 def : Pat<(i64 (zextloadi32 (am_unscaled32 GPR64sp:$Rn, simm9:$offset))),
2529 (SUBREG_TO_REG (i64 0), (LDURWi GPR64sp:$Rn, simm9:$offset), sub_32)>;
2530 def : Pat<(i64 (zextloadi16 (am_unscaled16 GPR64sp:$Rn, simm9:$offset))),
2531 (SUBREG_TO_REG (i64 0), (LDURHHi GPR64sp:$Rn, simm9:$offset), sub_32)>;
2532 def : Pat<(i64 (zextloadi8 (am_unscaled8 GPR64sp:$Rn, simm9:$offset))),
2533 (SUBREG_TO_REG (i64 0), (LDURBBi GPR64sp:$Rn, simm9:$offset), sub_32)>;
2534 def : Pat<(i64 (zextloadi1 (am_unscaled8 GPR64sp:$Rn, simm9:$offset))),
2535 (SUBREG_TO_REG (i64 0), (LDURBBi GPR64sp:$Rn, simm9:$offset), sub_32)>;
2539 // LDR mnemonics fall back to LDUR for negative or unaligned offsets.
2541 // Define new assembler match classes as we want to only match these when
2542 // the don't otherwise match the scaled addressing mode for LDR/STR. Don't
2543 // associate a DiagnosticType either, as we want the diagnostic for the
2544 // canonical form (the scaled operand) to take precedence.
2545 class SImm9OffsetOperand<int Width> : AsmOperandClass {
2546 let Name = "SImm9OffsetFB" # Width;
2547 let PredicateMethod = "isSImm9OffsetFB<" # Width # ">";
2548 let RenderMethod = "addImmOperands";
2551 def SImm9OffsetFB8Operand : SImm9OffsetOperand<8>;
2552 def SImm9OffsetFB16Operand : SImm9OffsetOperand<16>;
2553 def SImm9OffsetFB32Operand : SImm9OffsetOperand<32>;
2554 def SImm9OffsetFB64Operand : SImm9OffsetOperand<64>;
2555 def SImm9OffsetFB128Operand : SImm9OffsetOperand<128>;
2557 def simm9_offset_fb8 : Operand<i64> {
2558 let ParserMatchClass = SImm9OffsetFB8Operand;
2560 def simm9_offset_fb16 : Operand<i64> {
2561 let ParserMatchClass = SImm9OffsetFB16Operand;
2563 def simm9_offset_fb32 : Operand<i64> {
2564 let ParserMatchClass = SImm9OffsetFB32Operand;
2566 def simm9_offset_fb64 : Operand<i64> {
2567 let ParserMatchClass = SImm9OffsetFB64Operand;
2569 def simm9_offset_fb128 : Operand<i64> {
2570 let ParserMatchClass = SImm9OffsetFB128Operand;
2573 def : InstAlias<"ldr $Rt, [$Rn, $offset]",
2574 (LDURXi GPR64:$Rt, GPR64sp:$Rn, simm9_offset_fb64:$offset), 0>;
2575 def : InstAlias<"ldr $Rt, [$Rn, $offset]",
2576 (LDURWi GPR32:$Rt, GPR64sp:$Rn, simm9_offset_fb32:$offset), 0>;
2577 def : InstAlias<"ldr $Rt, [$Rn, $offset]",
2578 (LDURBi FPR8Op:$Rt, GPR64sp:$Rn, simm9_offset_fb8:$offset), 0>;
2579 def : InstAlias<"ldr $Rt, [$Rn, $offset]",
2580 (LDURHi FPR16Op:$Rt, GPR64sp:$Rn, simm9_offset_fb16:$offset), 0>;
2581 def : InstAlias<"ldr $Rt, [$Rn, $offset]",
2582 (LDURSi FPR32Op:$Rt, GPR64sp:$Rn, simm9_offset_fb32:$offset), 0>;
2583 def : InstAlias<"ldr $Rt, [$Rn, $offset]",
2584 (LDURDi FPR64Op:$Rt, GPR64sp:$Rn, simm9_offset_fb64:$offset), 0>;
2585 def : InstAlias<"ldr $Rt, [$Rn, $offset]",
2586 (LDURQi FPR128Op:$Rt, GPR64sp:$Rn, simm9_offset_fb128:$offset), 0>;
2589 def : Pat<(i64 (zextloadi8 (am_unscaled8 GPR64sp:$Rn, simm9:$offset))),
2590 (SUBREG_TO_REG (i64 0), (LDURBBi GPR64sp:$Rn, simm9:$offset), sub_32)>;
2591 def : Pat<(i64 (zextloadi16 (am_unscaled16 GPR64sp:$Rn, simm9:$offset))),
2592 (SUBREG_TO_REG (i64 0), (LDURHHi GPR64sp:$Rn, simm9:$offset), sub_32)>;
2594 // load sign-extended half-word
2596 : LoadUnscaled<0b01, 0, 0b11, GPR32, "ldursh",
2598 (sextloadi16 (am_unscaled16 GPR64sp:$Rn, simm9:$offset)))]>;
2600 : LoadUnscaled<0b01, 0, 0b10, GPR64, "ldursh",
2602 (sextloadi16 (am_unscaled16 GPR64sp:$Rn, simm9:$offset)))]>;
2604 // load sign-extended byte
2606 : LoadUnscaled<0b00, 0, 0b11, GPR32, "ldursb",
2608 (sextloadi8 (am_unscaled8 GPR64sp:$Rn, simm9:$offset)))]>;
2610 : LoadUnscaled<0b00, 0, 0b10, GPR64, "ldursb",
2612 (sextloadi8 (am_unscaled8 GPR64sp:$Rn, simm9:$offset)))]>;
2614 // load sign-extended word
2616 : LoadUnscaled<0b10, 0, 0b10, GPR64, "ldursw",
2618 (sextloadi32 (am_unscaled32 GPR64sp:$Rn, simm9:$offset)))]>;
2620 // zero and sign extending aliases from generic LDR* mnemonics to LDUR*.
2621 def : InstAlias<"ldrb $Rt, [$Rn, $offset]",
2622 (LDURBBi GPR32:$Rt, GPR64sp:$Rn, simm9_offset_fb8:$offset), 0>;
2623 def : InstAlias<"ldrh $Rt, [$Rn, $offset]",
2624 (LDURHHi GPR32:$Rt, GPR64sp:$Rn, simm9_offset_fb16:$offset), 0>;
2625 def : InstAlias<"ldrsb $Rt, [$Rn, $offset]",
2626 (LDURSBWi GPR32:$Rt, GPR64sp:$Rn, simm9_offset_fb8:$offset), 0>;
2627 def : InstAlias<"ldrsb $Rt, [$Rn, $offset]",
2628 (LDURSBXi GPR64:$Rt, GPR64sp:$Rn, simm9_offset_fb8:$offset), 0>;
2629 def : InstAlias<"ldrsh $Rt, [$Rn, $offset]",
2630 (LDURSHWi GPR32:$Rt, GPR64sp:$Rn, simm9_offset_fb16:$offset), 0>;
2631 def : InstAlias<"ldrsh $Rt, [$Rn, $offset]",
2632 (LDURSHXi GPR64:$Rt, GPR64sp:$Rn, simm9_offset_fb16:$offset), 0>;
2633 def : InstAlias<"ldrsw $Rt, [$Rn, $offset]",
2634 (LDURSWi GPR64:$Rt, GPR64sp:$Rn, simm9_offset_fb32:$offset), 0>;
2637 defm PRFUM : PrefetchUnscaled<0b11, 0, 0b10, "prfum",
2638 [(AArch64Prefetch imm:$Rt,
2639 (am_unscaled64 GPR64sp:$Rn, simm9:$offset))]>;
2642 // (unscaled immediate, unprivileged)
2643 defm LDTRX : LoadUnprivileged<0b11, 0, 0b01, GPR64, "ldtr">;
2644 defm LDTRW : LoadUnprivileged<0b10, 0, 0b01, GPR32, "ldtr">;
2646 defm LDTRH : LoadUnprivileged<0b01, 0, 0b01, GPR32, "ldtrh">;
2647 defm LDTRB : LoadUnprivileged<0b00, 0, 0b01, GPR32, "ldtrb">;
2649 // load sign-extended half-word
2650 defm LDTRSHW : LoadUnprivileged<0b01, 0, 0b11, GPR32, "ldtrsh">;
2651 defm LDTRSHX : LoadUnprivileged<0b01, 0, 0b10, GPR64, "ldtrsh">;
2653 // load sign-extended byte
2654 defm LDTRSBW : LoadUnprivileged<0b00, 0, 0b11, GPR32, "ldtrsb">;
2655 defm LDTRSBX : LoadUnprivileged<0b00, 0, 0b10, GPR64, "ldtrsb">;
2657 // load sign-extended word
2658 defm LDTRSW : LoadUnprivileged<0b10, 0, 0b10, GPR64, "ldtrsw">;
2661 // (immediate pre-indexed)
2662 def LDRWpre : LoadPreIdx<0b10, 0, 0b01, GPR32z, "ldr">;
2663 def LDRXpre : LoadPreIdx<0b11, 0, 0b01, GPR64z, "ldr">;
2664 def LDRBpre : LoadPreIdx<0b00, 1, 0b01, FPR8Op, "ldr">;
2665 def LDRHpre : LoadPreIdx<0b01, 1, 0b01, FPR16Op, "ldr">;
2666 def LDRSpre : LoadPreIdx<0b10, 1, 0b01, FPR32Op, "ldr">;
2667 def LDRDpre : LoadPreIdx<0b11, 1, 0b01, FPR64Op, "ldr">;
2668 def LDRQpre : LoadPreIdx<0b00, 1, 0b11, FPR128Op, "ldr">;
2670 // load sign-extended half-word
2671 def LDRSHWpre : LoadPreIdx<0b01, 0, 0b11, GPR32z, "ldrsh">;
2672 def LDRSHXpre : LoadPreIdx<0b01, 0, 0b10, GPR64z, "ldrsh">;
2674 // load sign-extended byte
2675 def LDRSBWpre : LoadPreIdx<0b00, 0, 0b11, GPR32z, "ldrsb">;
2676 def LDRSBXpre : LoadPreIdx<0b00, 0, 0b10, GPR64z, "ldrsb">;
2678 // load zero-extended byte
2679 def LDRBBpre : LoadPreIdx<0b00, 0, 0b01, GPR32z, "ldrb">;
2680 def LDRHHpre : LoadPreIdx<0b01, 0, 0b01, GPR32z, "ldrh">;
2682 // load sign-extended word
2683 def LDRSWpre : LoadPreIdx<0b10, 0, 0b10, GPR64z, "ldrsw">;
2686 // (immediate post-indexed)
2687 def LDRWpost : LoadPostIdx<0b10, 0, 0b01, GPR32z, "ldr">;
2688 def LDRXpost : LoadPostIdx<0b11, 0, 0b01, GPR64z, "ldr">;
2689 def LDRBpost : LoadPostIdx<0b00, 1, 0b01, FPR8Op, "ldr">;
2690 def LDRHpost : LoadPostIdx<0b01, 1, 0b01, FPR16Op, "ldr">;
2691 def LDRSpost : LoadPostIdx<0b10, 1, 0b01, FPR32Op, "ldr">;
2692 def LDRDpost : LoadPostIdx<0b11, 1, 0b01, FPR64Op, "ldr">;
2693 def LDRQpost : LoadPostIdx<0b00, 1, 0b11, FPR128Op, "ldr">;
2695 // load sign-extended half-word
2696 def LDRSHWpost : LoadPostIdx<0b01, 0, 0b11, GPR32z, "ldrsh">;
2697 def LDRSHXpost : LoadPostIdx<0b01, 0, 0b10, GPR64z, "ldrsh">;
2699 // load sign-extended byte
2700 def LDRSBWpost : LoadPostIdx<0b00, 0, 0b11, GPR32z, "ldrsb">;
2701 def LDRSBXpost : LoadPostIdx<0b00, 0, 0b10, GPR64z, "ldrsb">;
2703 // load zero-extended byte
2704 def LDRBBpost : LoadPostIdx<0b00, 0, 0b01, GPR32z, "ldrb">;
2705 def LDRHHpost : LoadPostIdx<0b01, 0, 0b01, GPR32z, "ldrh">;
2707 // load sign-extended word
2708 def LDRSWpost : LoadPostIdx<0b10, 0, 0b10, GPR64z, "ldrsw">;
2710 //===----------------------------------------------------------------------===//
2711 // Store instructions.
2712 //===----------------------------------------------------------------------===//
2714 // Pair (indexed, offset)
2715 // FIXME: Use dedicated range-checked addressing mode operand here.
2716 defm STPW : StorePairOffset<0b00, 0, GPR32z, simm7s4, "stp">;
2717 defm STPX : StorePairOffset<0b10, 0, GPR64z, simm7s8, "stp">;
2718 defm STPS : StorePairOffset<0b00, 1, FPR32Op, simm7s4, "stp">;
2719 defm STPD : StorePairOffset<0b01, 1, FPR64Op, simm7s8, "stp">;
2720 defm STPQ : StorePairOffset<0b10, 1, FPR128Op, simm7s16, "stp">;
2722 // Pair (pre-indexed)
2723 def STPWpre : StorePairPreIdx<0b00, 0, GPR32z, simm7s4, "stp">;
2724 def STPXpre : StorePairPreIdx<0b10, 0, GPR64z, simm7s8, "stp">;
2725 def STPSpre : StorePairPreIdx<0b00, 1, FPR32Op, simm7s4, "stp">;
2726 def STPDpre : StorePairPreIdx<0b01, 1, FPR64Op, simm7s8, "stp">;
2727 def STPQpre : StorePairPreIdx<0b10, 1, FPR128Op, simm7s16, "stp">;
2729 // Pair (pre-indexed)
2730 def STPWpost : StorePairPostIdx<0b00, 0, GPR32z, simm7s4, "stp">;
2731 def STPXpost : StorePairPostIdx<0b10, 0, GPR64z, simm7s8, "stp">;
2732 def STPSpost : StorePairPostIdx<0b00, 1, FPR32Op, simm7s4, "stp">;
2733 def STPDpost : StorePairPostIdx<0b01, 1, FPR64Op, simm7s8, "stp">;
2734 def STPQpost : StorePairPostIdx<0b10, 1, FPR128Op, simm7s16, "stp">;
2736 // Pair (no allocate)
2737 defm STNPW : StorePairNoAlloc<0b00, 0, GPR32z, simm7s4, "stnp">;
2738 defm STNPX : StorePairNoAlloc<0b10, 0, GPR64z, simm7s8, "stnp">;
2739 defm STNPS : StorePairNoAlloc<0b00, 1, FPR32Op, simm7s4, "stnp">;
2740 defm STNPD : StorePairNoAlloc<0b01, 1, FPR64Op, simm7s8, "stnp">;
2741 defm STNPQ : StorePairNoAlloc<0b10, 1, FPR128Op, simm7s16, "stnp">;
2743 def : Pat<(AArch64stp GPR64z:$Rt, GPR64z:$Rt2, (am_indexed7s64 GPR64sp:$Rn, simm7s8:$offset)),
2744 (STPXi GPR64z:$Rt, GPR64z:$Rt2, GPR64sp:$Rn, simm7s8:$offset)>;
2746 def : Pat<(AArch64stnp FPR128:$Rt, FPR128:$Rt2, (am_indexed7s128 GPR64sp:$Rn, simm7s16:$offset)),
2747 (STNPQi FPR128:$Rt, FPR128:$Rt2, GPR64sp:$Rn, simm7s16:$offset)>;
2751 // (Register offset)
2754 defm STRBB : Store8RO< 0b00, 0, 0b00, GPR32, "strb", i32, truncstorei8>;
2755 defm STRHH : Store16RO<0b01, 0, 0b00, GPR32, "strh", i32, truncstorei16>;
2756 defm STRW : Store32RO<0b10, 0, 0b00, GPR32, "str", i32, store>;
2757 defm STRX : Store64RO<0b11, 0, 0b00, GPR64, "str", i64, store>;
2761 defm STRB : Store8RO< 0b00, 1, 0b00, FPR8Op, "str", untyped, store>;
2762 defm STRH : Store16RO<0b01, 1, 0b00, FPR16Op, "str", f16, store>;
2763 defm STRS : Store32RO<0b10, 1, 0b00, FPR32Op, "str", f32, store>;
2764 defm STRD : Store64RO<0b11, 1, 0b00, FPR64Op, "str", f64, store>;
2765 defm STRQ : Store128RO<0b00, 1, 0b10, FPR128Op, "str", f128, store>;
2767 let Predicates = [UseSTRQro], AddedComplexity = 10 in {
2768 def : Pat<(store (f128 FPR128:$Rt),
2769 (ro_Windexed128 GPR64sp:$Rn, GPR32:$Rm,
2770 ro_Wextend128:$extend)),
2771 (STRQroW FPR128:$Rt, GPR64sp:$Rn, GPR32:$Rm, ro_Wextend128:$extend)>;
2772 def : Pat<(store (f128 FPR128:$Rt),
2773 (ro_Xindexed128 GPR64sp:$Rn, GPR64:$Rm,
2774 ro_Xextend128:$extend)),
2775 (STRQroX FPR128:$Rt, GPR64sp:$Rn, GPR64:$Rm, ro_Wextend128:$extend)>;
2778 multiclass TruncStoreFrom64ROPat<ROAddrMode ro, SDPatternOperator storeop,
2779 Instruction STRW, Instruction STRX> {
2781 def : Pat<(storeop GPR64:$Rt,
2782 (ro.Wpat GPR64sp:$Rn, GPR32:$Rm, ro.Wext:$extend)),
2783 (STRW (EXTRACT_SUBREG GPR64:$Rt, sub_32),
2784 GPR64sp:$Rn, GPR32:$Rm, ro.Wext:$extend)>;
2786 def : Pat<(storeop GPR64:$Rt,
2787 (ro.Xpat GPR64sp:$Rn, GPR64:$Rm, ro.Xext:$extend)),
2788 (STRX (EXTRACT_SUBREG GPR64:$Rt, sub_32),
2789 GPR64sp:$Rn, GPR64:$Rm, ro.Xext:$extend)>;
2792 let AddedComplexity = 10 in {
2794 defm : TruncStoreFrom64ROPat<ro8, truncstorei8, STRBBroW, STRBBroX>;
2795 defm : TruncStoreFrom64ROPat<ro16, truncstorei16, STRHHroW, STRHHroX>;
2796 defm : TruncStoreFrom64ROPat<ro32, truncstorei32, STRWroW, STRWroX>;
2799 multiclass VecROStorePat<ROAddrMode ro, ValueType VecTy, RegisterClass FPR,
2800 Instruction STRW, Instruction STRX> {
2801 def : Pat<(store (VecTy FPR:$Rt),
2802 (ro.Wpat GPR64sp:$Rn, GPR32:$Rm, ro.Wext:$extend)),
2803 (STRW FPR:$Rt, GPR64sp:$Rn, GPR32:$Rm, ro.Wext:$extend)>;
2805 def : Pat<(store (VecTy FPR:$Rt),
2806 (ro.Xpat GPR64sp:$Rn, GPR64:$Rm, ro.Xext:$extend)),
2807 (STRX FPR:$Rt, GPR64sp:$Rn, GPR64:$Rm, ro.Xext:$extend)>;
2810 let AddedComplexity = 10 in {
2811 // Match all store 64 bits width whose type is compatible with FPR64
2812 let Predicates = [IsLE] in {
2813 // We must use ST1 to store vectors in big-endian.
2814 defm : VecROStorePat<ro64, v2i32, FPR64, STRDroW, STRDroX>;
2815 defm : VecROStorePat<ro64, v2f32, FPR64, STRDroW, STRDroX>;
2816 defm : VecROStorePat<ro64, v4i16, FPR64, STRDroW, STRDroX>;
2817 defm : VecROStorePat<ro64, v8i8, FPR64, STRDroW, STRDroX>;
2818 defm : VecROStorePat<ro64, v4f16, FPR64, STRDroW, STRDroX>;
2821 defm : VecROStorePat<ro64, v1i64, FPR64, STRDroW, STRDroX>;
2822 defm : VecROStorePat<ro64, v1f64, FPR64, STRDroW, STRDroX>;
2824 // Match all store 128 bits width whose type is compatible with FPR128
2825 let Predicates = [IsLE, UseSTRQro] in {
2826 // We must use ST1 to store vectors in big-endian.
2827 defm : VecROStorePat<ro128, v2i64, FPR128, STRQroW, STRQroX>;
2828 defm : VecROStorePat<ro128, v2f64, FPR128, STRQroW, STRQroX>;
2829 defm : VecROStorePat<ro128, v4i32, FPR128, STRQroW, STRQroX>;
2830 defm : VecROStorePat<ro128, v4f32, FPR128, STRQroW, STRQroX>;
2831 defm : VecROStorePat<ro128, v8i16, FPR128, STRQroW, STRQroX>;
2832 defm : VecROStorePat<ro128, v16i8, FPR128, STRQroW, STRQroX>;
2833 defm : VecROStorePat<ro128, v8f16, FPR128, STRQroW, STRQroX>;
2835 } // AddedComplexity = 10
2837 // Match stores from lane 0 to the appropriate subreg's store.
2838 multiclass VecROStoreLane0Pat<ROAddrMode ro, SDPatternOperator storeop,
2839 ValueType VecTy, ValueType STy,
2840 SubRegIndex SubRegIdx,
2841 Instruction STRW, Instruction STRX> {
2843 def : Pat<(storeop (STy (vector_extract (VecTy VecListOne128:$Vt), 0)),
2844 (ro.Wpat GPR64sp:$Rn, GPR32:$Rm, ro.Wext:$extend)),
2845 (STRW (EXTRACT_SUBREG VecListOne128:$Vt, SubRegIdx),
2846 GPR64sp:$Rn, GPR32:$Rm, ro.Wext:$extend)>;
2848 def : Pat<(storeop (STy (vector_extract (VecTy VecListOne128:$Vt), 0)),
2849 (ro.Xpat GPR64sp:$Rn, GPR64:$Rm, ro.Xext:$extend)),
2850 (STRX (EXTRACT_SUBREG VecListOne128:$Vt, SubRegIdx),
2851 GPR64sp:$Rn, GPR64:$Rm, ro.Xext:$extend)>;
2854 let AddedComplexity = 19 in {
2855 defm : VecROStoreLane0Pat<ro16, truncstorei16, v8i16, i32, hsub, STRHroW, STRHroX>;
2856 defm : VecROStoreLane0Pat<ro16, store, v8f16, f16, hsub, STRHroW, STRHroX>;
2857 defm : VecROStoreLane0Pat<ro32, store, v4i32, i32, ssub, STRSroW, STRSroX>;
2858 defm : VecROStoreLane0Pat<ro32, store, v4f32, f32, ssub, STRSroW, STRSroX>;
2859 defm : VecROStoreLane0Pat<ro64, store, v2i64, i64, dsub, STRDroW, STRDroX>;
2860 defm : VecROStoreLane0Pat<ro64, store, v2f64, f64, dsub, STRDroW, STRDroX>;
2864 // (unsigned immediate)
2865 defm STRX : StoreUIz<0b11, 0, 0b00, GPR64z, uimm12s8, "str",
2867 (am_indexed64 GPR64sp:$Rn, uimm12s8:$offset))]>;
2868 defm STRW : StoreUIz<0b10, 0, 0b00, GPR32z, uimm12s4, "str",
2870 (am_indexed32 GPR64sp:$Rn, uimm12s4:$offset))]>;
2871 defm STRB : StoreUI<0b00, 1, 0b00, FPR8Op, uimm12s1, "str",
2873 (am_indexed8 GPR64sp:$Rn, uimm12s1:$offset))]>;
2874 defm STRH : StoreUI<0b01, 1, 0b00, FPR16Op, uimm12s2, "str",
2875 [(store (f16 FPR16Op:$Rt),
2876 (am_indexed16 GPR64sp:$Rn, uimm12s2:$offset))]>;
2877 defm STRS : StoreUI<0b10, 1, 0b00, FPR32Op, uimm12s4, "str",
2878 [(store (f32 FPR32Op:$Rt),
2879 (am_indexed32 GPR64sp:$Rn, uimm12s4:$offset))]>;
2880 defm STRD : StoreUI<0b11, 1, 0b00, FPR64Op, uimm12s8, "str",
2881 [(store (f64 FPR64Op:$Rt),
2882 (am_indexed64 GPR64sp:$Rn, uimm12s8:$offset))]>;
2883 defm STRQ : StoreUI<0b00, 1, 0b10, FPR128Op, uimm12s16, "str", []>;
2885 defm STRHH : StoreUIz<0b01, 0, 0b00, GPR32z, uimm12s2, "strh",
2886 [(truncstorei16 GPR32z:$Rt,
2887 (am_indexed16 GPR64sp:$Rn,
2888 uimm12s2:$offset))]>;
2889 defm STRBB : StoreUIz<0b00, 0, 0b00, GPR32z, uimm12s1, "strb",
2890 [(truncstorei8 GPR32z:$Rt,
2891 (am_indexed8 GPR64sp:$Rn,
2892 uimm12s1:$offset))]>;
2894 let AddedComplexity = 10 in {
2896 // Match all store 64 bits width whose type is compatible with FPR64
2897 def : Pat<(store (v1i64 FPR64:$Rt),
2898 (am_indexed64 GPR64sp:$Rn, uimm12s8:$offset)),
2899 (STRDui FPR64:$Rt, GPR64sp:$Rn, uimm12s8:$offset)>;
2900 def : Pat<(store (v1f64 FPR64:$Rt),
2901 (am_indexed64 GPR64sp:$Rn, uimm12s8:$offset)),
2902 (STRDui FPR64:$Rt, GPR64sp:$Rn, uimm12s8:$offset)>;
2904 let Predicates = [IsLE] in {
2905 // We must use ST1 to store vectors in big-endian.
2906 def : Pat<(store (v2f32 FPR64:$Rt),
2907 (am_indexed64 GPR64sp:$Rn, uimm12s8:$offset)),
2908 (STRDui FPR64:$Rt, GPR64sp:$Rn, uimm12s8:$offset)>;
2909 def : Pat<(store (v8i8 FPR64:$Rt),
2910 (am_indexed64 GPR64sp:$Rn, uimm12s8:$offset)),
2911 (STRDui FPR64:$Rt, GPR64sp:$Rn, uimm12s8:$offset)>;
2912 def : Pat<(store (v4i16 FPR64:$Rt),
2913 (am_indexed64 GPR64sp:$Rn, uimm12s8:$offset)),
2914 (STRDui FPR64:$Rt, GPR64sp:$Rn, uimm12s8:$offset)>;
2915 def : Pat<(store (v2i32 FPR64:$Rt),
2916 (am_indexed64 GPR64sp:$Rn, uimm12s8:$offset)),
2917 (STRDui FPR64:$Rt, GPR64sp:$Rn, uimm12s8:$offset)>;
2918 def : Pat<(store (v4f16 FPR64:$Rt),
2919 (am_indexed64 GPR64sp:$Rn, uimm12s8:$offset)),
2920 (STRDui FPR64:$Rt, GPR64sp:$Rn, uimm12s8:$offset)>;
2923 // Match all store 128 bits width whose type is compatible with FPR128
2924 def : Pat<(store (f128 FPR128:$Rt),
2925 (am_indexed128 GPR64sp:$Rn, uimm12s16:$offset)),
2926 (STRQui FPR128:$Rt, GPR64sp:$Rn, uimm12s16:$offset)>;
2928 let Predicates = [IsLE] in {
2929 // We must use ST1 to store vectors in big-endian.
2930 def : Pat<(store (v4f32 FPR128:$Rt),
2931 (am_indexed128 GPR64sp:$Rn, uimm12s16:$offset)),
2932 (STRQui FPR128:$Rt, GPR64sp:$Rn, uimm12s16:$offset)>;
2933 def : Pat<(store (v2f64 FPR128:$Rt),
2934 (am_indexed128 GPR64sp:$Rn, uimm12s16:$offset)),
2935 (STRQui FPR128:$Rt, GPR64sp:$Rn, uimm12s16:$offset)>;
2936 def : Pat<(store (v16i8 FPR128:$Rt),
2937 (am_indexed128 GPR64sp:$Rn, uimm12s16:$offset)),
2938 (STRQui FPR128:$Rt, GPR64sp:$Rn, uimm12s16:$offset)>;
2939 def : Pat<(store (v8i16 FPR128:$Rt),
2940 (am_indexed128 GPR64sp:$Rn, uimm12s16:$offset)),
2941 (STRQui FPR128:$Rt, GPR64sp:$Rn, uimm12s16:$offset)>;
2942 def : Pat<(store (v4i32 FPR128:$Rt),
2943 (am_indexed128 GPR64sp:$Rn, uimm12s16:$offset)),
2944 (STRQui FPR128:$Rt, GPR64sp:$Rn, uimm12s16:$offset)>;
2945 def : Pat<(store (v2i64 FPR128:$Rt),
2946 (am_indexed128 GPR64sp:$Rn, uimm12s16:$offset)),
2947 (STRQui FPR128:$Rt, GPR64sp:$Rn, uimm12s16:$offset)>;
2948 def : Pat<(store (v8f16 FPR128:$Rt),
2949 (am_indexed128 GPR64sp:$Rn, uimm12s16:$offset)),
2950 (STRQui FPR128:$Rt, GPR64sp:$Rn, uimm12s16:$offset)>;
2954 def : Pat<(truncstorei32 GPR64:$Rt,
2955 (am_indexed32 GPR64sp:$Rn, uimm12s4:$offset)),
2956 (STRWui (EXTRACT_SUBREG GPR64:$Rt, sub_32), GPR64sp:$Rn, uimm12s4:$offset)>;
2957 def : Pat<(truncstorei16 GPR64:$Rt,
2958 (am_indexed16 GPR64sp:$Rn, uimm12s2:$offset)),
2959 (STRHHui (EXTRACT_SUBREG GPR64:$Rt, sub_32), GPR64sp:$Rn, uimm12s2:$offset)>;
2960 def : Pat<(truncstorei8 GPR64:$Rt, (am_indexed8 GPR64sp:$Rn, uimm12s1:$offset)),
2961 (STRBBui (EXTRACT_SUBREG GPR64:$Rt, sub_32), GPR64sp:$Rn, uimm12s1:$offset)>;
2963 } // AddedComplexity = 10
2965 // Match stores from lane 0 to the appropriate subreg's store.
2966 multiclass VecStoreLane0Pat<Operand UIAddrMode, SDPatternOperator storeop,
2967 ValueType VTy, ValueType STy,
2968 SubRegIndex SubRegIdx, Operand IndexType,
2970 def : Pat<(storeop (STy (vector_extract (VTy VecListOne128:$Vt), 0)),
2971 (UIAddrMode GPR64sp:$Rn, IndexType:$offset)),
2972 (STR (EXTRACT_SUBREG VecListOne128:$Vt, SubRegIdx),
2973 GPR64sp:$Rn, IndexType:$offset)>;
2976 let AddedComplexity = 19 in {
2977 defm : VecStoreLane0Pat<am_indexed16, truncstorei16, v8i16, i32, hsub, uimm12s2, STRHui>;
2978 defm : VecStoreLane0Pat<am_indexed16, store, v8f16, f16, hsub, uimm12s2, STRHui>;
2979 defm : VecStoreLane0Pat<am_indexed32, store, v4i32, i32, ssub, uimm12s4, STRSui>;
2980 defm : VecStoreLane0Pat<am_indexed32, store, v4f32, f32, ssub, uimm12s4, STRSui>;
2981 defm : VecStoreLane0Pat<am_indexed64, store, v2i64, i64, dsub, uimm12s8, STRDui>;
2982 defm : VecStoreLane0Pat<am_indexed64, store, v2f64, f64, dsub, uimm12s8, STRDui>;
2986 // (unscaled immediate)
2987 defm STURX : StoreUnscaled<0b11, 0, 0b00, GPR64z, "stur",
2989 (am_unscaled64 GPR64sp:$Rn, simm9:$offset))]>;
2990 defm STURW : StoreUnscaled<0b10, 0, 0b00, GPR32z, "stur",
2992 (am_unscaled32 GPR64sp:$Rn, simm9:$offset))]>;
2993 defm STURB : StoreUnscaled<0b00, 1, 0b00, FPR8Op, "stur",
2995 (am_unscaled8 GPR64sp:$Rn, simm9:$offset))]>;
2996 defm STURH : StoreUnscaled<0b01, 1, 0b00, FPR16Op, "stur",
2997 [(store (f16 FPR16Op:$Rt),
2998 (am_unscaled16 GPR64sp:$Rn, simm9:$offset))]>;
2999 defm STURS : StoreUnscaled<0b10, 1, 0b00, FPR32Op, "stur",
3000 [(store (f32 FPR32Op:$Rt),
3001 (am_unscaled32 GPR64sp:$Rn, simm9:$offset))]>;
3002 defm STURD : StoreUnscaled<0b11, 1, 0b00, FPR64Op, "stur",
3003 [(store (f64 FPR64Op:$Rt),
3004 (am_unscaled64 GPR64sp:$Rn, simm9:$offset))]>;
3005 defm STURQ : StoreUnscaled<0b00, 1, 0b10, FPR128Op, "stur",
3006 [(store (f128 FPR128Op:$Rt),
3007 (am_unscaled128 GPR64sp:$Rn, simm9:$offset))]>;
3008 defm STURHH : StoreUnscaled<0b01, 0, 0b00, GPR32z, "sturh",
3009 [(truncstorei16 GPR32z:$Rt,
3010 (am_unscaled16 GPR64sp:$Rn, simm9:$offset))]>;
3011 defm STURBB : StoreUnscaled<0b00, 0, 0b00, GPR32z, "sturb",
3012 [(truncstorei8 GPR32z:$Rt,
3013 (am_unscaled8 GPR64sp:$Rn, simm9:$offset))]>;
3015 // Armv8.4 Weaker Release Consistency enhancements
3016 // LDAPR & STLR with Immediate Offset instructions
3017 let Predicates = [HasRCPC_IMMO] in {
3018 defm STLURB : BaseStoreUnscaleV84<"stlurb", 0b00, 0b00, GPR32>;
3019 defm STLURH : BaseStoreUnscaleV84<"stlurh", 0b01, 0b00, GPR32>;
3020 defm STLURW : BaseStoreUnscaleV84<"stlur", 0b10, 0b00, GPR32>;
3021 defm STLURX : BaseStoreUnscaleV84<"stlur", 0b11, 0b00, GPR64>;
3022 defm LDAPURB : BaseLoadUnscaleV84<"ldapurb", 0b00, 0b01, GPR32>;
3023 defm LDAPURSBW : BaseLoadUnscaleV84<"ldapursb", 0b00, 0b11, GPR32>;
3024 defm LDAPURSBX : BaseLoadUnscaleV84<"ldapursb", 0b00, 0b10, GPR64>;
3025 defm LDAPURH : BaseLoadUnscaleV84<"ldapurh", 0b01, 0b01, GPR32>;
3026 defm LDAPURSHW : BaseLoadUnscaleV84<"ldapursh", 0b01, 0b11, GPR32>;
3027 defm LDAPURSHX : BaseLoadUnscaleV84<"ldapursh", 0b01, 0b10, GPR64>;
3028 defm LDAPUR : BaseLoadUnscaleV84<"ldapur", 0b10, 0b01, GPR32>;
3029 defm LDAPURSW : BaseLoadUnscaleV84<"ldapursw", 0b10, 0b10, GPR64>;
3030 defm LDAPURX : BaseLoadUnscaleV84<"ldapur", 0b11, 0b01, GPR64>;
3033 // Match all store 64 bits width whose type is compatible with FPR64
3034 def : Pat<(store (v1f64 FPR64:$Rt), (am_unscaled64 GPR64sp:$Rn, simm9:$offset)),
3035 (STURDi FPR64:$Rt, GPR64sp:$Rn, simm9:$offset)>;
3036 def : Pat<(store (v1i64 FPR64:$Rt), (am_unscaled64 GPR64sp:$Rn, simm9:$offset)),
3037 (STURDi FPR64:$Rt, GPR64sp:$Rn, simm9:$offset)>;
3039 let AddedComplexity = 10 in {
3041 let Predicates = [IsLE] in {
3042 // We must use ST1 to store vectors in big-endian.
3043 def : Pat<(store (v2f32 FPR64:$Rt),
3044 (am_unscaled64 GPR64sp:$Rn, simm9:$offset)),
3045 (STURDi FPR64:$Rt, GPR64sp:$Rn, simm9:$offset)>;
3046 def : Pat<(store (v8i8 FPR64:$Rt),
3047 (am_unscaled64 GPR64sp:$Rn, simm9:$offset)),
3048 (STURDi FPR64:$Rt, GPR64sp:$Rn, simm9:$offset)>;
3049 def : Pat<(store (v4i16 FPR64:$Rt),
3050 (am_unscaled64 GPR64sp:$Rn, simm9:$offset)),
3051 (STURDi FPR64:$Rt, GPR64sp:$Rn, simm9:$offset)>;
3052 def : Pat<(store (v2i32 FPR64:$Rt),
3053 (am_unscaled64 GPR64sp:$Rn, simm9:$offset)),
3054 (STURDi FPR64:$Rt, GPR64sp:$Rn, simm9:$offset)>;
3055 def : Pat<(store (v4f16 FPR64:$Rt),
3056 (am_unscaled64 GPR64sp:$Rn, simm9:$offset)),
3057 (STURDi FPR64:$Rt, GPR64sp:$Rn, simm9:$offset)>;
3060 // Match all store 128 bits width whose type is compatible with FPR128
3061 def : Pat<(store (f128 FPR128:$Rt), (am_unscaled128 GPR64sp:$Rn, simm9:$offset)),
3062 (STURQi FPR128:$Rt, GPR64sp:$Rn, simm9:$offset)>;
3064 let Predicates = [IsLE] in {
3065 // We must use ST1 to store vectors in big-endian.
3066 def : Pat<(store (v4f32 FPR128:$Rt),
3067 (am_unscaled128 GPR64sp:$Rn, simm9:$offset)),
3068 (STURQi FPR128:$Rt, GPR64sp:$Rn, simm9:$offset)>;
3069 def : Pat<(store (v2f64 FPR128:$Rt),
3070 (am_unscaled128 GPR64sp:$Rn, simm9:$offset)),
3071 (STURQi FPR128:$Rt, GPR64sp:$Rn, simm9:$offset)>;
3072 def : Pat<(store (v16i8 FPR128:$Rt),
3073 (am_unscaled128 GPR64sp:$Rn, simm9:$offset)),
3074 (STURQi FPR128:$Rt, GPR64sp:$Rn, simm9:$offset)>;
3075 def : Pat<(store (v8i16 FPR128:$Rt),
3076 (am_unscaled128 GPR64sp:$Rn, simm9:$offset)),
3077 (STURQi FPR128:$Rt, GPR64sp:$Rn, simm9:$offset)>;
3078 def : Pat<(store (v4i32 FPR128:$Rt),
3079 (am_unscaled128 GPR64sp:$Rn, simm9:$offset)),
3080 (STURQi FPR128:$Rt, GPR64sp:$Rn, simm9:$offset)>;
3081 def : Pat<(store (v2i64 FPR128:$Rt),
3082 (am_unscaled128 GPR64sp:$Rn, simm9:$offset)),
3083 (STURQi FPR128:$Rt, GPR64sp:$Rn, simm9:$offset)>;
3084 def : Pat<(store (v2f64 FPR128:$Rt),
3085 (am_unscaled128 GPR64sp:$Rn, simm9:$offset)),
3086 (STURQi FPR128:$Rt, GPR64sp:$Rn, simm9:$offset)>;
3087 def : Pat<(store (v8f16 FPR128:$Rt),
3088 (am_unscaled128 GPR64sp:$Rn, simm9:$offset)),
3089 (STURQi FPR128:$Rt, GPR64sp:$Rn, simm9:$offset)>;
3092 } // AddedComplexity = 10
3094 // unscaled i64 truncating stores
3095 def : Pat<(truncstorei32 GPR64:$Rt, (am_unscaled32 GPR64sp:$Rn, simm9:$offset)),
3096 (STURWi (EXTRACT_SUBREG GPR64:$Rt, sub_32), GPR64sp:$Rn, simm9:$offset)>;
3097 def : Pat<(truncstorei16 GPR64:$Rt, (am_unscaled16 GPR64sp:$Rn, simm9:$offset)),
3098 (STURHHi (EXTRACT_SUBREG GPR64:$Rt, sub_32), GPR64sp:$Rn, simm9:$offset)>;
3099 def : Pat<(truncstorei8 GPR64:$Rt, (am_unscaled8 GPR64sp:$Rn, simm9:$offset)),
3100 (STURBBi (EXTRACT_SUBREG GPR64:$Rt, sub_32), GPR64sp:$Rn, simm9:$offset)>;
3102 // Match stores from lane 0 to the appropriate subreg's store.
3103 multiclass VecStoreULane0Pat<SDPatternOperator StoreOp,
3104 ValueType VTy, ValueType STy,
3105 SubRegIndex SubRegIdx, Instruction STR> {
3106 defm : VecStoreLane0Pat<am_unscaled128, StoreOp, VTy, STy, SubRegIdx, simm9, STR>;
3109 let AddedComplexity = 19 in {
3110 defm : VecStoreULane0Pat<truncstorei16, v8i16, i32, hsub, STURHi>;
3111 defm : VecStoreULane0Pat<store, v8f16, f16, hsub, STURHi>;
3112 defm : VecStoreULane0Pat<store, v4i32, i32, ssub, STURSi>;
3113 defm : VecStoreULane0Pat<store, v4f32, f32, ssub, STURSi>;
3114 defm : VecStoreULane0Pat<store, v2i64, i64, dsub, STURDi>;
3115 defm : VecStoreULane0Pat<store, v2f64, f64, dsub, STURDi>;
3119 // STR mnemonics fall back to STUR for negative or unaligned offsets.
3120 def : InstAlias<"str $Rt, [$Rn, $offset]",
3121 (STURXi GPR64:$Rt, GPR64sp:$Rn, simm9_offset_fb64:$offset), 0>;
3122 def : InstAlias<"str $Rt, [$Rn, $offset]",
3123 (STURWi GPR32:$Rt, GPR64sp:$Rn, simm9_offset_fb32:$offset), 0>;
3124 def : InstAlias<"str $Rt, [$Rn, $offset]",
3125 (STURBi FPR8Op:$Rt, GPR64sp:$Rn, simm9_offset_fb8:$offset), 0>;
3126 def : InstAlias<"str $Rt, [$Rn, $offset]",
3127 (STURHi FPR16Op:$Rt, GPR64sp:$Rn, simm9_offset_fb16:$offset), 0>;
3128 def : InstAlias<"str $Rt, [$Rn, $offset]",
3129 (STURSi FPR32Op:$Rt, GPR64sp:$Rn, simm9_offset_fb32:$offset), 0>;
3130 def : InstAlias<"str $Rt, [$Rn, $offset]",
3131 (STURDi FPR64Op:$Rt, GPR64sp:$Rn, simm9_offset_fb64:$offset), 0>;
3132 def : InstAlias<"str $Rt, [$Rn, $offset]",
3133 (STURQi FPR128Op:$Rt, GPR64sp:$Rn, simm9_offset_fb128:$offset), 0>;
3135 def : InstAlias<"strb $Rt, [$Rn, $offset]",
3136 (STURBBi GPR32:$Rt, GPR64sp:$Rn, simm9_offset_fb8:$offset), 0>;
3137 def : InstAlias<"strh $Rt, [$Rn, $offset]",
3138 (STURHHi GPR32:$Rt, GPR64sp:$Rn, simm9_offset_fb16:$offset), 0>;
3141 // (unscaled immediate, unprivileged)
3142 defm STTRW : StoreUnprivileged<0b10, 0, 0b00, GPR32, "sttr">;
3143 defm STTRX : StoreUnprivileged<0b11, 0, 0b00, GPR64, "sttr">;
3145 defm STTRH : StoreUnprivileged<0b01, 0, 0b00, GPR32, "sttrh">;
3146 defm STTRB : StoreUnprivileged<0b00, 0, 0b00, GPR32, "sttrb">;
3149 // (immediate pre-indexed)
3150 def STRWpre : StorePreIdx<0b10, 0, 0b00, GPR32z, "str", pre_store, i32>;
3151 def STRXpre : StorePreIdx<0b11, 0, 0b00, GPR64z, "str", pre_store, i64>;
3152 def STRBpre : StorePreIdx<0b00, 1, 0b00, FPR8Op, "str", pre_store, untyped>;
3153 def STRHpre : StorePreIdx<0b01, 1, 0b00, FPR16Op, "str", pre_store, f16>;
3154 def STRSpre : StorePreIdx<0b10, 1, 0b00, FPR32Op, "str", pre_store, f32>;
3155 def STRDpre : StorePreIdx<0b11, 1, 0b00, FPR64Op, "str", pre_store, f64>;
3156 def STRQpre : StorePreIdx<0b00, 1, 0b10, FPR128Op, "str", pre_store, f128>;
3158 def STRBBpre : StorePreIdx<0b00, 0, 0b00, GPR32z, "strb", pre_truncsti8, i32>;
3159 def STRHHpre : StorePreIdx<0b01, 0, 0b00, GPR32z, "strh", pre_truncsti16, i32>;
3162 def : Pat<(pre_truncsti32 GPR64:$Rt, GPR64sp:$addr, simm9:$off),
3163 (STRWpre (EXTRACT_SUBREG GPR64:$Rt, sub_32), GPR64sp:$addr,
3165 def : Pat<(pre_truncsti16 GPR64:$Rt, GPR64sp:$addr, simm9:$off),
3166 (STRHHpre (EXTRACT_SUBREG GPR64:$Rt, sub_32), GPR64sp:$addr,
3168 def : Pat<(pre_truncsti8 GPR64:$Rt, GPR64sp:$addr, simm9:$off),
3169 (STRBBpre (EXTRACT_SUBREG GPR64:$Rt, sub_32), GPR64sp:$addr,
3172 def : Pat<(pre_store (v8i8 FPR64:$Rt), GPR64sp:$addr, simm9:$off),
3173 (STRDpre FPR64:$Rt, GPR64sp:$addr, simm9:$off)>;
3174 def : Pat<(pre_store (v4i16 FPR64:$Rt), GPR64sp:$addr, simm9:$off),
3175 (STRDpre FPR64:$Rt, GPR64sp:$addr, simm9:$off)>;
3176 def : Pat<(pre_store (v2i32 FPR64:$Rt), GPR64sp:$addr, simm9:$off),
3177 (STRDpre FPR64:$Rt, GPR64sp:$addr, simm9:$off)>;
3178 def : Pat<(pre_store (v2f32 FPR64:$Rt), GPR64sp:$addr, simm9:$off),
3179 (STRDpre FPR64:$Rt, GPR64sp:$addr, simm9:$off)>;
3180 def : Pat<(pre_store (v1i64 FPR64:$Rt), GPR64sp:$addr, simm9:$off),
3181 (STRDpre FPR64:$Rt, GPR64sp:$addr, simm9:$off)>;
3182 def : Pat<(pre_store (v1f64 FPR64:$Rt), GPR64sp:$addr, simm9:$off),
3183 (STRDpre FPR64:$Rt, GPR64sp:$addr, simm9:$off)>;
3184 def : Pat<(pre_store (v4f16 FPR64:$Rt), GPR64sp:$addr, simm9:$off),
3185 (STRDpre FPR64:$Rt, GPR64sp:$addr, simm9:$off)>;
3187 def : Pat<(pre_store (v16i8 FPR128:$Rt), GPR64sp:$addr, simm9:$off),
3188 (STRQpre FPR128:$Rt, GPR64sp:$addr, simm9:$off)>;
3189 def : Pat<(pre_store (v8i16 FPR128:$Rt), GPR64sp:$addr, simm9:$off),
3190 (STRQpre FPR128:$Rt, GPR64sp:$addr, simm9:$off)>;
3191 def : Pat<(pre_store (v4i32 FPR128:$Rt), GPR64sp:$addr, simm9:$off),
3192 (STRQpre FPR128:$Rt, GPR64sp:$addr, simm9:$off)>;
3193 def : Pat<(pre_store (v4f32 FPR128:$Rt), GPR64sp:$addr, simm9:$off),
3194 (STRQpre FPR128:$Rt, GPR64sp:$addr, simm9:$off)>;
3195 def : Pat<(pre_store (v2i64 FPR128:$Rt), GPR64sp:$addr, simm9:$off),
3196 (STRQpre FPR128:$Rt, GPR64sp:$addr, simm9:$off)>;
3197 def : Pat<(pre_store (v2f64 FPR128:$Rt), GPR64sp:$addr, simm9:$off),
3198 (STRQpre FPR128:$Rt, GPR64sp:$addr, simm9:$off)>;
3199 def : Pat<(pre_store (v8f16 FPR128:$Rt), GPR64sp:$addr, simm9:$off),
3200 (STRQpre FPR128:$Rt, GPR64sp:$addr, simm9:$off)>;
3203 // (immediate post-indexed)
3204 def STRWpost : StorePostIdx<0b10, 0, 0b00, GPR32z, "str", post_store, i32>;
3205 def STRXpost : StorePostIdx<0b11, 0, 0b00, GPR64z, "str", post_store, i64>;
3206 def STRBpost : StorePostIdx<0b00, 1, 0b00, FPR8Op, "str", post_store, untyped>;
3207 def STRHpost : StorePostIdx<0b01, 1, 0b00, FPR16Op, "str", post_store, f16>;
3208 def STRSpost : StorePostIdx<0b10, 1, 0b00, FPR32Op, "str", post_store, f32>;
3209 def STRDpost : StorePostIdx<0b11, 1, 0b00, FPR64Op, "str", post_store, f64>;
3210 def STRQpost : StorePostIdx<0b00, 1, 0b10, FPR128Op, "str", post_store, f128>;
3212 def STRBBpost : StorePostIdx<0b00, 0, 0b00, GPR32z, "strb", post_truncsti8, i32>;
3213 def STRHHpost : StorePostIdx<0b01, 0, 0b00, GPR32z, "strh", post_truncsti16, i32>;
3216 def : Pat<(post_truncsti32 GPR64:$Rt, GPR64sp:$addr, simm9:$off),
3217 (STRWpost (EXTRACT_SUBREG GPR64:$Rt, sub_32), GPR64sp:$addr,
3219 def : Pat<(post_truncsti16 GPR64:$Rt, GPR64sp:$addr, simm9:$off),
3220 (STRHHpost (EXTRACT_SUBREG GPR64:$Rt, sub_32), GPR64sp:$addr,
3222 def : Pat<(post_truncsti8 GPR64:$Rt, GPR64sp:$addr, simm9:$off),
3223 (STRBBpost (EXTRACT_SUBREG GPR64:$Rt, sub_32), GPR64sp:$addr,
3226 def : Pat<(post_store (v8i8 FPR64:$Rt), GPR64sp:$addr, simm9:$off),
3227 (STRDpost FPR64:$Rt, GPR64sp:$addr, simm9:$off)>;
3228 def : Pat<(post_store (v4i16 FPR64:$Rt), GPR64sp:$addr, simm9:$off),
3229 (STRDpost FPR64:$Rt, GPR64sp:$addr, simm9:$off)>;
3230 def : Pat<(post_store (v2i32 FPR64:$Rt), GPR64sp:$addr, simm9:$off),
3231 (STRDpost FPR64:$Rt, GPR64sp:$addr, simm9:$off)>;
3232 def : Pat<(post_store (v2f32 FPR64:$Rt), GPR64sp:$addr, simm9:$off),
3233 (STRDpost FPR64:$Rt, GPR64sp:$addr, simm9:$off)>;
3234 def : Pat<(post_store (v1i64 FPR64:$Rt), GPR64sp:$addr, simm9:$off),
3235 (STRDpost FPR64:$Rt, GPR64sp:$addr, simm9:$off)>;
3236 def : Pat<(post_store (v1f64 FPR64:$Rt), GPR64sp:$addr, simm9:$off),
3237 (STRDpost FPR64:$Rt, GPR64sp:$addr, simm9:$off)>;
3238 def : Pat<(post_store (v4f16 FPR64:$Rt), GPR64sp:$addr, simm9:$off),
3239 (STRDpost FPR64:$Rt, GPR64sp:$addr, simm9:$off)>;
3241 def : Pat<(post_store (v16i8 FPR128:$Rt), GPR64sp:$addr, simm9:$off),
3242 (STRQpost FPR128:$Rt, GPR64sp:$addr, simm9:$off)>;
3243 def : Pat<(post_store (v8i16 FPR128:$Rt), GPR64sp:$addr, simm9:$off),
3244 (STRQpost FPR128:$Rt, GPR64sp:$addr, simm9:$off)>;
3245 def : Pat<(post_store (v4i32 FPR128:$Rt), GPR64sp:$addr, simm9:$off),
3246 (STRQpost FPR128:$Rt, GPR64sp:$addr, simm9:$off)>;
3247 def : Pat<(post_store (v4f32 FPR128:$Rt), GPR64sp:$addr, simm9:$off),
3248 (STRQpost FPR128:$Rt, GPR64sp:$addr, simm9:$off)>;
3249 def : Pat<(post_store (v2i64 FPR128:$Rt), GPR64sp:$addr, simm9:$off),
3250 (STRQpost FPR128:$Rt, GPR64sp:$addr, simm9:$off)>;
3251 def : Pat<(post_store (v2f64 FPR128:$Rt), GPR64sp:$addr, simm9:$off),
3252 (STRQpost FPR128:$Rt, GPR64sp:$addr, simm9:$off)>;
3253 def : Pat<(post_store (v8f16 FPR128:$Rt), GPR64sp:$addr, simm9:$off),
3254 (STRQpost FPR128:$Rt, GPR64sp:$addr, simm9:$off)>;
3256 //===----------------------------------------------------------------------===//
3257 // Load/store exclusive instructions.
3258 //===----------------------------------------------------------------------===//
3260 def LDARW : LoadAcquire <0b10, 1, 1, 0, 1, GPR32, "ldar">;
3261 def LDARX : LoadAcquire <0b11, 1, 1, 0, 1, GPR64, "ldar">;
3262 def LDARB : LoadAcquire <0b00, 1, 1, 0, 1, GPR32, "ldarb">;
3263 def LDARH : LoadAcquire <0b01, 1, 1, 0, 1, GPR32, "ldarh">;
3265 def LDAXRW : LoadExclusive <0b10, 0, 1, 0, 1, GPR32, "ldaxr">;
3266 def LDAXRX : LoadExclusive <0b11, 0, 1, 0, 1, GPR64, "ldaxr">;
3267 def LDAXRB : LoadExclusive <0b00, 0, 1, 0, 1, GPR32, "ldaxrb">;
3268 def LDAXRH : LoadExclusive <0b01, 0, 1, 0, 1, GPR32, "ldaxrh">;
3270 def LDXRW : LoadExclusive <0b10, 0, 1, 0, 0, GPR32, "ldxr">;
3271 def LDXRX : LoadExclusive <0b11, 0, 1, 0, 0, GPR64, "ldxr">;
3272 def LDXRB : LoadExclusive <0b00, 0, 1, 0, 0, GPR32, "ldxrb">;
3273 def LDXRH : LoadExclusive <0b01, 0, 1, 0, 0, GPR32, "ldxrh">;
3275 def STLRW : StoreRelease <0b10, 1, 0, 0, 1, GPR32, "stlr">;
3276 def STLRX : StoreRelease <0b11, 1, 0, 0, 1, GPR64, "stlr">;
3277 def STLRB : StoreRelease <0b00, 1, 0, 0, 1, GPR32, "stlrb">;
3278 def STLRH : StoreRelease <0b01, 1, 0, 0, 1, GPR32, "stlrh">;
3280 def STLXRW : StoreExclusive<0b10, 0, 0, 0, 1, GPR32, "stlxr">;
3281 def STLXRX : StoreExclusive<0b11, 0, 0, 0, 1, GPR64, "stlxr">;
3282 def STLXRB : StoreExclusive<0b00, 0, 0, 0, 1, GPR32, "stlxrb">;
3283 def STLXRH : StoreExclusive<0b01, 0, 0, 0, 1, GPR32, "stlxrh">;
3285 def STXRW : StoreExclusive<0b10, 0, 0, 0, 0, GPR32, "stxr">;
3286 def STXRX : StoreExclusive<0b11, 0, 0, 0, 0, GPR64, "stxr">;
3287 def STXRB : StoreExclusive<0b00, 0, 0, 0, 0, GPR32, "stxrb">;
3288 def STXRH : StoreExclusive<0b01, 0, 0, 0, 0, GPR32, "stxrh">;
3290 def LDAXPW : LoadExclusivePair<0b10, 0, 1, 1, 1, GPR32, "ldaxp">;
3291 def LDAXPX : LoadExclusivePair<0b11, 0, 1, 1, 1, GPR64, "ldaxp">;
3293 def LDXPW : LoadExclusivePair<0b10, 0, 1, 1, 0, GPR32, "ldxp">;
3294 def LDXPX : LoadExclusivePair<0b11, 0, 1, 1, 0, GPR64, "ldxp">;
3296 def STLXPW : StoreExclusivePair<0b10, 0, 0, 1, 1, GPR32, "stlxp">;
3297 def STLXPX : StoreExclusivePair<0b11, 0, 0, 1, 1, GPR64, "stlxp">;
3299 def STXPW : StoreExclusivePair<0b10, 0, 0, 1, 0, GPR32, "stxp">;
3300 def STXPX : StoreExclusivePair<0b11, 0, 0, 1, 0, GPR64, "stxp">;
3302 let Predicates = [HasLOR] in {
3303 // v8.1a "Limited Order Region" extension load-acquire instructions
3304 def LDLARW : LoadAcquire <0b10, 1, 1, 0, 0, GPR32, "ldlar">;
3305 def LDLARX : LoadAcquire <0b11, 1, 1, 0, 0, GPR64, "ldlar">;
3306 def LDLARB : LoadAcquire <0b00, 1, 1, 0, 0, GPR32, "ldlarb">;
3307 def LDLARH : LoadAcquire <0b01, 1, 1, 0, 0, GPR32, "ldlarh">;
3309 // v8.1a "Limited Order Region" extension store-release instructions
3310 def STLLRW : StoreRelease <0b10, 1, 0, 0, 0, GPR32, "stllr">;
3311 def STLLRX : StoreRelease <0b11, 1, 0, 0, 0, GPR64, "stllr">;
3312 def STLLRB : StoreRelease <0b00, 1, 0, 0, 0, GPR32, "stllrb">;
3313 def STLLRH : StoreRelease <0b01, 1, 0, 0, 0, GPR32, "stllrh">;
3316 //===----------------------------------------------------------------------===//
3317 // Scaled floating point to integer conversion instructions.
3318 //===----------------------------------------------------------------------===//
3320 defm FCVTAS : FPToIntegerUnscaled<0b00, 0b100, "fcvtas", int_aarch64_neon_fcvtas>;
3321 defm FCVTAU : FPToIntegerUnscaled<0b00, 0b101, "fcvtau", int_aarch64_neon_fcvtau>;
3322 defm FCVTMS : FPToIntegerUnscaled<0b10, 0b000, "fcvtms", int_aarch64_neon_fcvtms>;
3323 defm FCVTMU : FPToIntegerUnscaled<0b10, 0b001, "fcvtmu", int_aarch64_neon_fcvtmu>;
3324 defm FCVTNS : FPToIntegerUnscaled<0b00, 0b000, "fcvtns", int_aarch64_neon_fcvtns>;
3325 defm FCVTNU : FPToIntegerUnscaled<0b00, 0b001, "fcvtnu", int_aarch64_neon_fcvtnu>;
3326 defm FCVTPS : FPToIntegerUnscaled<0b01, 0b000, "fcvtps", int_aarch64_neon_fcvtps>;
3327 defm FCVTPU : FPToIntegerUnscaled<0b01, 0b001, "fcvtpu", int_aarch64_neon_fcvtpu>;
3328 defm FCVTZS : FPToIntegerUnscaled<0b11, 0b000, "fcvtzs", fp_to_sint>;
3329 defm FCVTZU : FPToIntegerUnscaled<0b11, 0b001, "fcvtzu", fp_to_uint>;
3330 defm FCVTZS : FPToIntegerScaled<0b11, 0b000, "fcvtzs", fp_to_sint>;
3331 defm FCVTZU : FPToIntegerScaled<0b11, 0b001, "fcvtzu", fp_to_uint>;
3333 multiclass FPToIntegerIntPats<Intrinsic round, string INST> {
3334 def : Pat<(i32 (round f16:$Rn)), (!cast<Instruction>(INST # UWHr) $Rn)>;
3335 def : Pat<(i64 (round f16:$Rn)), (!cast<Instruction>(INST # UXHr) $Rn)>;
3336 def : Pat<(i32 (round f32:$Rn)), (!cast<Instruction>(INST # UWSr) $Rn)>;
3337 def : Pat<(i64 (round f32:$Rn)), (!cast<Instruction>(INST # UXSr) $Rn)>;
3338 def : Pat<(i32 (round f64:$Rn)), (!cast<Instruction>(INST # UWDr) $Rn)>;
3339 def : Pat<(i64 (round f64:$Rn)), (!cast<Instruction>(INST # UXDr) $Rn)>;
3341 def : Pat<(i32 (round (fmul f16:$Rn, fixedpoint_f16_i32:$scale))),
3342 (!cast<Instruction>(INST # SWHri) $Rn, $scale)>;
3343 def : Pat<(i64 (round (fmul f16:$Rn, fixedpoint_f16_i64:$scale))),
3344 (!cast<Instruction>(INST # SXHri) $Rn, $scale)>;
3345 def : Pat<(i32 (round (fmul f32:$Rn, fixedpoint_f32_i32:$scale))),
3346 (!cast<Instruction>(INST # SWSri) $Rn, $scale)>;
3347 def : Pat<(i64 (round (fmul f32:$Rn, fixedpoint_f32_i64:$scale))),
3348 (!cast<Instruction>(INST # SXSri) $Rn, $scale)>;
3349 def : Pat<(i32 (round (fmul f64:$Rn, fixedpoint_f64_i32:$scale))),
3350 (!cast<Instruction>(INST # SWDri) $Rn, $scale)>;
3351 def : Pat<(i64 (round (fmul f64:$Rn, fixedpoint_f64_i64:$scale))),
3352 (!cast<Instruction>(INST # SXDri) $Rn, $scale)>;
3355 defm : FPToIntegerIntPats<int_aarch64_neon_fcvtzs, "FCVTZS">;
3356 defm : FPToIntegerIntPats<int_aarch64_neon_fcvtzu, "FCVTZU">;
3358 multiclass FPToIntegerPats<SDNode to_int, SDNode round, string INST> {
3359 def : Pat<(i32 (to_int (round f32:$Rn))),
3360 (!cast<Instruction>(INST # UWSr) f32:$Rn)>;
3361 def : Pat<(i64 (to_int (round f32:$Rn))),
3362 (!cast<Instruction>(INST # UXSr) f32:$Rn)>;
3363 def : Pat<(i32 (to_int (round f64:$Rn))),
3364 (!cast<Instruction>(INST # UWDr) f64:$Rn)>;
3365 def : Pat<(i64 (to_int (round f64:$Rn))),
3366 (!cast<Instruction>(INST # UXDr) f64:$Rn)>;
3369 defm : FPToIntegerPats<fp_to_sint, fceil, "FCVTPS">;
3370 defm : FPToIntegerPats<fp_to_uint, fceil, "FCVTPU">;
3371 defm : FPToIntegerPats<fp_to_sint, ffloor, "FCVTMS">;
3372 defm : FPToIntegerPats<fp_to_uint, ffloor, "FCVTMU">;
3373 defm : FPToIntegerPats<fp_to_sint, ftrunc, "FCVTZS">;
3374 defm : FPToIntegerPats<fp_to_uint, ftrunc, "FCVTZU">;
3375 defm : FPToIntegerPats<fp_to_sint, fround, "FCVTAS">;
3376 defm : FPToIntegerPats<fp_to_uint, fround, "FCVTAU">;
3378 let Predicates = [HasFullFP16] in {
3379 def : Pat<(i32 (lround f16:$Rn)),
3380 (!cast<Instruction>(FCVTASUWHr) f16:$Rn)>;
3381 def : Pat<(i64 (lround f16:$Rn)),
3382 (!cast<Instruction>(FCVTASUXHr) f16:$Rn)>;
3383 def : Pat<(i64 (llround f16:$Rn)),
3384 (!cast<Instruction>(FCVTASUXHr) f16:$Rn)>;
3386 def : Pat<(i32 (lround f32:$Rn)),
3387 (!cast<Instruction>(FCVTASUWSr) f32:$Rn)>;
3388 def : Pat<(i32 (lround f64:$Rn)),
3389 (!cast<Instruction>(FCVTASUWDr) f64:$Rn)>;
3390 def : Pat<(i64 (lround f32:$Rn)),
3391 (!cast<Instruction>(FCVTASUXSr) f32:$Rn)>;
3392 def : Pat<(i64 (lround f64:$Rn)),
3393 (!cast<Instruction>(FCVTASUXDr) f64:$Rn)>;
3394 def : Pat<(i64 (llround f32:$Rn)),
3395 (!cast<Instruction>(FCVTASUXSr) f32:$Rn)>;
3396 def : Pat<(i64 (llround f64:$Rn)),
3397 (!cast<Instruction>(FCVTASUXDr) f64:$Rn)>;
3399 //===----------------------------------------------------------------------===//
3400 // Scaled integer to floating point conversion instructions.
3401 //===----------------------------------------------------------------------===//
3403 defm SCVTF : IntegerToFP<0, "scvtf", sint_to_fp>;
3404 defm UCVTF : IntegerToFP<1, "ucvtf", uint_to_fp>;
3406 //===----------------------------------------------------------------------===//
3407 // Unscaled integer to floating point conversion instruction.
3408 //===----------------------------------------------------------------------===//
3410 defm FMOV : UnscaledConversion<"fmov">;
3412 // Add pseudo ops for FMOV 0 so we can mark them as isReMaterializable
3413 let isReMaterializable = 1, isCodeGenOnly = 1, isAsCheapAsAMove = 1 in {
3414 def FMOVH0 : Pseudo<(outs FPR16:$Rd), (ins), [(set f16:$Rd, (fpimm0))]>,
3415 Sched<[WriteF]>, Requires<[HasFullFP16]>;
3416 def FMOVS0 : Pseudo<(outs FPR32:$Rd), (ins), [(set f32:$Rd, (fpimm0))]>,
3418 def FMOVD0 : Pseudo<(outs FPR64:$Rd), (ins), [(set f64:$Rd, (fpimm0))]>,
3421 // Similarly add aliases
3422 def : InstAlias<"fmov $Rd, #0.0", (FMOVWHr FPR16:$Rd, WZR), 0>,
3423 Requires<[HasFullFP16]>;
3424 def : InstAlias<"fmov $Rd, #0.0", (FMOVWSr FPR32:$Rd, WZR), 0>;
3425 def : InstAlias<"fmov $Rd, #0.0", (FMOVXDr FPR64:$Rd, XZR), 0>;
3427 //===----------------------------------------------------------------------===//
3428 // Floating point conversion instruction.
3429 //===----------------------------------------------------------------------===//
3431 defm FCVT : FPConversion<"fcvt">;
3433 //===----------------------------------------------------------------------===//
3434 // Floating point single operand instructions.
3435 //===----------------------------------------------------------------------===//
3437 defm FABS : SingleOperandFPData<0b0001, "fabs", fabs>;
3438 defm FMOV : SingleOperandFPData<0b0000, "fmov">;
3439 defm FNEG : SingleOperandFPData<0b0010, "fneg", fneg>;
3440 defm FRINTA : SingleOperandFPData<0b1100, "frinta", fround>;
3441 defm FRINTI : SingleOperandFPData<0b1111, "frinti", fnearbyint>;
3442 defm FRINTM : SingleOperandFPData<0b1010, "frintm", ffloor>;
3443 defm FRINTN : SingleOperandFPData<0b1000, "frintn", int_aarch64_neon_frintn>;
3444 defm FRINTP : SingleOperandFPData<0b1001, "frintp", fceil>;
3446 def : Pat<(v1f64 (int_aarch64_neon_frintn (v1f64 FPR64:$Rn))),
3447 (FRINTNDr FPR64:$Rn)>;
3449 defm FRINTX : SingleOperandFPData<0b1110, "frintx", frint>;
3450 defm FRINTZ : SingleOperandFPData<0b1011, "frintz", ftrunc>;
3452 let SchedRW = [WriteFDiv] in {
3453 defm FSQRT : SingleOperandFPData<0b0011, "fsqrt", fsqrt>;
3456 let Predicates = [HasFRInt3264] in {
3457 defm FRINT32Z : FRIntNNT<0b00, "frint32z">;
3458 defm FRINT64Z : FRIntNNT<0b10, "frint64z">;
3459 defm FRINT32X : FRIntNNT<0b01, "frint32x">;
3460 defm FRINT64X : FRIntNNT<0b11, "frint64x">;
3463 let Predicates = [HasFullFP16] in {
3464 def : Pat<(i32 (lrint f16:$Rn)),
3465 (FCVTZSUWHr (!cast<Instruction>(FRINTXHr) f16:$Rn))>;
3466 def : Pat<(i64 (lrint f16:$Rn)),
3467 (FCVTZSUXHr (!cast<Instruction>(FRINTXHr) f16:$Rn))>;
3468 def : Pat<(i64 (llrint f16:$Rn)),
3469 (FCVTZSUXHr (!cast<Instruction>(FRINTXHr) f16:$Rn))>;
3471 def : Pat<(i32 (lrint f32:$Rn)),
3472 (FCVTZSUWSr (!cast<Instruction>(FRINTXSr) f32:$Rn))>;
3473 def : Pat<(i32 (lrint f64:$Rn)),
3474 (FCVTZSUWDr (!cast<Instruction>(FRINTXDr) f64:$Rn))>;
3475 def : Pat<(i64 (lrint f32:$Rn)),
3476 (FCVTZSUXSr (!cast<Instruction>(FRINTXSr) f32:$Rn))>;
3477 def : Pat<(i64 (lrint f64:$Rn)),
3478 (FCVTZSUXDr (!cast<Instruction>(FRINTXDr) f64:$Rn))>;
3479 def : Pat<(i64 (llrint f32:$Rn)),
3480 (FCVTZSUXSr (!cast<Instruction>(FRINTXSr) f32:$Rn))>;
3481 def : Pat<(i64 (llrint f64:$Rn)),
3482 (FCVTZSUXDr (!cast<Instruction>(FRINTXDr) f64:$Rn))>;
3484 //===----------------------------------------------------------------------===//
3485 // Floating point two operand instructions.
3486 //===----------------------------------------------------------------------===//
3488 defm FADD : TwoOperandFPData<0b0010, "fadd", fadd>;
3489 let SchedRW = [WriteFDiv] in {
3490 defm FDIV : TwoOperandFPData<0b0001, "fdiv", fdiv>;
3492 defm FMAXNM : TwoOperandFPData<0b0110, "fmaxnm", fmaxnum>;
3493 defm FMAX : TwoOperandFPData<0b0100, "fmax", fmaximum>;
3494 defm FMINNM : TwoOperandFPData<0b0111, "fminnm", fminnum>;
3495 defm FMIN : TwoOperandFPData<0b0101, "fmin", fminimum>;
3496 let SchedRW = [WriteFMul] in {
3497 defm FMUL : TwoOperandFPData<0b0000, "fmul", fmul>;
3498 defm FNMUL : TwoOperandFPDataNeg<0b1000, "fnmul", fmul>;
3500 defm FSUB : TwoOperandFPData<0b0011, "fsub", fsub>;
3502 def : Pat<(v1f64 (fmaximum (v1f64 FPR64:$Rn), (v1f64 FPR64:$Rm))),
3503 (FMAXDrr FPR64:$Rn, FPR64:$Rm)>;
3504 def : Pat<(v1f64 (fminimum (v1f64 FPR64:$Rn), (v1f64 FPR64:$Rm))),
3505 (FMINDrr FPR64:$Rn, FPR64:$Rm)>;
3506 def : Pat<(v1f64 (fmaxnum (v1f64 FPR64:$Rn), (v1f64 FPR64:$Rm))),
3507 (FMAXNMDrr FPR64:$Rn, FPR64:$Rm)>;
3508 def : Pat<(v1f64 (fminnum (v1f64 FPR64:$Rn), (v1f64 FPR64:$Rm))),
3509 (FMINNMDrr FPR64:$Rn, FPR64:$Rm)>;
3511 //===----------------------------------------------------------------------===//
3512 // Floating point three operand instructions.
3513 //===----------------------------------------------------------------------===//
3515 defm FMADD : ThreeOperandFPData<0, 0, "fmadd", fma>;
3516 defm FMSUB : ThreeOperandFPData<0, 1, "fmsub",
3517 TriOpFrag<(fma node:$LHS, (fneg node:$MHS), node:$RHS)> >;
3518 defm FNMADD : ThreeOperandFPData<1, 0, "fnmadd",
3519 TriOpFrag<(fneg (fma node:$LHS, node:$MHS, node:$RHS))> >;
3520 defm FNMSUB : ThreeOperandFPData<1, 1, "fnmsub",
3521 TriOpFrag<(fma node:$LHS, node:$MHS, (fneg node:$RHS))> >;
3523 // The following def pats catch the case where the LHS of an FMA is negated.
3524 // The TriOpFrag above catches the case where the middle operand is negated.
3526 // N.b. FMSUB etc have the accumulator at the *end* of (outs), unlike
3527 // the NEON variant.
3529 // Here we handle first -(a + b*c) for FNMADD:
3531 let Predicates = [HasNEON, HasFullFP16] in
3532 def : Pat<(f16 (fma (fneg FPR16:$Rn), FPR16:$Rm, FPR16:$Ra)),
3533 (FMSUBHrrr FPR16:$Rn, FPR16:$Rm, FPR16:$Ra)>;
3535 def : Pat<(f32 (fma (fneg FPR32:$Rn), FPR32:$Rm, FPR32:$Ra)),
3536 (FMSUBSrrr FPR32:$Rn, FPR32:$Rm, FPR32:$Ra)>;
3538 def : Pat<(f64 (fma (fneg FPR64:$Rn), FPR64:$Rm, FPR64:$Ra)),
3539 (FMSUBDrrr FPR64:$Rn, FPR64:$Rm, FPR64:$Ra)>;
3541 // Now it's time for "(-a) + (-b)*c"
3543 let Predicates = [HasNEON, HasFullFP16] in
3544 def : Pat<(f16 (fma (fneg FPR16:$Rn), FPR16:$Rm, (fneg FPR16:$Ra))),
3545 (FNMADDHrrr FPR16:$Rn, FPR16:$Rm, FPR16:$Ra)>;
3547 def : Pat<(f32 (fma (fneg FPR32:$Rn), FPR32:$Rm, (fneg FPR32:$Ra))),
3548 (FNMADDSrrr FPR32:$Rn, FPR32:$Rm, FPR32:$Ra)>;
3550 def : Pat<(f64 (fma (fneg FPR64:$Rn), FPR64:$Rm, (fneg FPR64:$Ra))),
3551 (FNMADDDrrr FPR64:$Rn, FPR64:$Rm, FPR64:$Ra)>;
3553 // And here "(-a) + b*(-c)"
3555 let Predicates = [HasNEON, HasFullFP16] in
3556 def : Pat<(f16 (fma FPR16:$Rn, (fneg FPR16:$Rm), (fneg FPR16:$Ra))),
3557 (FNMADDHrrr FPR16:$Rn, FPR16:$Rm, FPR16:$Ra)>;
3559 def : Pat<(f32 (fma FPR32:$Rn, (fneg FPR32:$Rm), (fneg FPR32:$Ra))),
3560 (FNMADDSrrr FPR32:$Rn, FPR32:$Rm, FPR32:$Ra)>;
3562 def : Pat<(f64 (fma FPR64:$Rn, (fneg FPR64:$Rm), (fneg FPR64:$Ra))),
3563 (FNMADDDrrr FPR64:$Rn, FPR64:$Rm, FPR64:$Ra)>;
3565 //===----------------------------------------------------------------------===//
3566 // Floating point comparison instructions.
3567 //===----------------------------------------------------------------------===//
3569 defm FCMPE : FPComparison<1, "fcmpe">;
3570 defm FCMP : FPComparison<0, "fcmp", AArch64fcmp>;
3572 //===----------------------------------------------------------------------===//
3573 // Floating point conditional comparison instructions.
3574 //===----------------------------------------------------------------------===//
3576 defm FCCMPE : FPCondComparison<1, "fccmpe">;
3577 defm FCCMP : FPCondComparison<0, "fccmp", AArch64fccmp>;
3579 //===----------------------------------------------------------------------===//
3580 // Floating point conditional select instruction.
3581 //===----------------------------------------------------------------------===//
3583 defm FCSEL : FPCondSelect<"fcsel">;
3585 // CSEL instructions providing f128 types need to be handled by a
3586 // pseudo-instruction since the eventual code will need to introduce basic
3587 // blocks and control flow.
3588 def F128CSEL : Pseudo<(outs FPR128:$Rd),
3589 (ins FPR128:$Rn, FPR128:$Rm, ccode:$cond),
3590 [(set (f128 FPR128:$Rd),
3591 (AArch64csel FPR128:$Rn, FPR128:$Rm,
3592 (i32 imm:$cond), NZCV))]> {
3594 let usesCustomInserter = 1;
3595 let hasNoSchedulingInfo = 1;
3598 //===----------------------------------------------------------------------===//
3599 // Instructions used for emitting unwind opcodes on ARM64 Windows.
3600 //===----------------------------------------------------------------------===//
3601 let isPseudo = 1 in {
3602 def SEH_StackAlloc : Pseudo<(outs), (ins i32imm:$size), []>, Sched<[]>;
3603 def SEH_SaveFPLR : Pseudo<(outs), (ins i32imm:$offs), []>, Sched<[]>;
3604 def SEH_SaveFPLR_X : Pseudo<(outs), (ins i32imm:$offs), []>, Sched<[]>;
3605 def SEH_SaveReg : Pseudo<(outs), (ins i32imm:$reg, i32imm:$offs), []>, Sched<[]>;
3606 def SEH_SaveReg_X : Pseudo<(outs), (ins i32imm:$reg, i32imm:$offs), []>, Sched<[]>;
3607 def SEH_SaveRegP : Pseudo<(outs), (ins i32imm:$reg0, i32imm:$reg1, i32imm:$offs), []>, Sched<[]>;
3608 def SEH_SaveRegP_X : Pseudo<(outs), (ins i32imm:$reg0, i32imm:$reg1, i32imm:$offs), []>, Sched<[]>;
3609 def SEH_SaveFReg : Pseudo<(outs), (ins i32imm:$reg, i32imm:$offs), []>, Sched<[]>;
3610 def SEH_SaveFReg_X : Pseudo<(outs), (ins i32imm:$reg, i32imm:$offs), []>, Sched<[]>;
3611 def SEH_SaveFRegP : Pseudo<(outs), (ins i32imm:$reg0, i32imm:$reg1, i32imm:$offs), []>, Sched<[]>;
3612 def SEH_SaveFRegP_X : Pseudo<(outs), (ins i32imm:$reg0, i32imm:$reg1, i32imm:$offs), []>, Sched<[]>;
3613 def SEH_SetFP : Pseudo<(outs), (ins), []>, Sched<[]>;
3614 def SEH_AddFP : Pseudo<(outs), (ins i32imm:$offs), []>, Sched<[]>;
3615 def SEH_Nop : Pseudo<(outs), (ins), []>, Sched<[]>;
3616 def SEH_PrologEnd : Pseudo<(outs), (ins), []>, Sched<[]>;
3617 def SEH_EpilogStart : Pseudo<(outs), (ins), []>, Sched<[]>;
3618 def SEH_EpilogEnd : Pseudo<(outs), (ins), []>, Sched<[]>;
3621 // Pseudo instructions for Windows EH
3622 //===----------------------------------------------------------------------===//
3623 let isTerminator = 1, hasSideEffects = 1, isBarrier = 1, hasCtrlDep = 1,
3624 isCodeGenOnly = 1, isReturn = 1, isEHScopeReturn = 1, isPseudo = 1 in {
3625 def CLEANUPRET : Pseudo<(outs), (ins), [(cleanupret)]>, Sched<[]>;
3626 let usesCustomInserter = 1 in
3627 def CATCHRET : Pseudo<(outs), (ins am_brcond:$dst, am_brcond:$src), [(catchret bb:$dst, bb:$src)]>,
3631 let hasSideEffects = 1, hasCtrlDep = 1, isCodeGenOnly = 1,
3632 usesCustomInserter = 1 in
3633 def CATCHPAD : Pseudo<(outs), (ins), [(catchpad)]>, Sched<[]>;
3635 //===----------------------------------------------------------------------===//
3636 // Floating point immediate move.
3637 //===----------------------------------------------------------------------===//
3639 let isReMaterializable = 1 in {
3640 defm FMOV : FPMoveImmediate<"fmov">;
3643 //===----------------------------------------------------------------------===//
3644 // Advanced SIMD two vector instructions.
3645 //===----------------------------------------------------------------------===//
3647 defm UABDL : SIMDLongThreeVectorBHSabdl<1, 0b0111, "uabdl",
3648 int_aarch64_neon_uabd>;
3649 // Match UABDL in log2-shuffle patterns.
3650 def : Pat<(abs (v8i16 (sub (zext (v8i8 V64:$opA)),
3651 (zext (v8i8 V64:$opB))))),
3652 (UABDLv8i8_v8i16 V64:$opA, V64:$opB)>;
3653 def : Pat<(xor (v8i16 (AArch64vashr v8i16:$src, (i32 15))),
3654 (v8i16 (add (sub (zext (v8i8 V64:$opA)),
3655 (zext (v8i8 V64:$opB))),
3656 (AArch64vashr v8i16:$src, (i32 15))))),
3657 (UABDLv8i8_v8i16 V64:$opA, V64:$opB)>;
3658 def : Pat<(abs (v8i16 (sub (zext (extract_high_v16i8 V128:$opA)),
3659 (zext (extract_high_v16i8 V128:$opB))))),
3660 (UABDLv16i8_v8i16 V128:$opA, V128:$opB)>;
3661 def : Pat<(xor (v8i16 (AArch64vashr v8i16:$src, (i32 15))),
3662 (v8i16 (add (sub (zext (extract_high_v16i8 V128:$opA)),
3663 (zext (extract_high_v16i8 V128:$opB))),
3664 (AArch64vashr v8i16:$src, (i32 15))))),
3665 (UABDLv16i8_v8i16 V128:$opA, V128:$opB)>;
3666 def : Pat<(abs (v4i32 (sub (zext (v4i16 V64:$opA)),
3667 (zext (v4i16 V64:$opB))))),
3668 (UABDLv4i16_v4i32 V64:$opA, V64:$opB)>;
3669 def : Pat<(abs (v4i32 (sub (zext (extract_high_v8i16 V128:$opA)),
3670 (zext (extract_high_v8i16 V128:$opB))))),
3671 (UABDLv8i16_v4i32 V128:$opA, V128:$opB)>;
3672 def : Pat<(abs (v2i64 (sub (zext (v2i32 V64:$opA)),
3673 (zext (v2i32 V64:$opB))))),
3674 (UABDLv2i32_v2i64 V64:$opA, V64:$opB)>;
3675 def : Pat<(abs (v2i64 (sub (zext (extract_high_v4i32 V128:$opA)),
3676 (zext (extract_high_v4i32 V128:$opB))))),
3677 (UABDLv4i32_v2i64 V128:$opA, V128:$opB)>;
3679 defm ABS : SIMDTwoVectorBHSD<0, 0b01011, "abs", abs>;
3680 defm CLS : SIMDTwoVectorBHS<0, 0b00100, "cls", int_aarch64_neon_cls>;
3681 defm CLZ : SIMDTwoVectorBHS<1, 0b00100, "clz", ctlz>;
3682 defm CMEQ : SIMDCmpTwoVector<0, 0b01001, "cmeq", AArch64cmeqz>;
3683 defm CMGE : SIMDCmpTwoVector<1, 0b01000, "cmge", AArch64cmgez>;
3684 defm CMGT : SIMDCmpTwoVector<0, 0b01000, "cmgt", AArch64cmgtz>;
3685 defm CMLE : SIMDCmpTwoVector<1, 0b01001, "cmle", AArch64cmlez>;
3686 defm CMLT : SIMDCmpTwoVector<0, 0b01010, "cmlt", AArch64cmltz>;
3687 defm CNT : SIMDTwoVectorB<0, 0b00, 0b00101, "cnt", ctpop>;
3688 defm FABS : SIMDTwoVectorFP<0, 1, 0b01111, "fabs", fabs>;
3690 defm FCMEQ : SIMDFPCmpTwoVector<0, 1, 0b01101, "fcmeq", AArch64fcmeqz>;
3691 defm FCMGE : SIMDFPCmpTwoVector<1, 1, 0b01100, "fcmge", AArch64fcmgez>;
3692 defm FCMGT : SIMDFPCmpTwoVector<0, 1, 0b01100, "fcmgt", AArch64fcmgtz>;
3693 defm FCMLE : SIMDFPCmpTwoVector<1, 1, 0b01101, "fcmle", AArch64fcmlez>;
3694 defm FCMLT : SIMDFPCmpTwoVector<0, 1, 0b01110, "fcmlt", AArch64fcmltz>;
3695 defm FCVTAS : SIMDTwoVectorFPToInt<0,0,0b11100, "fcvtas",int_aarch64_neon_fcvtas>;
3696 defm FCVTAU : SIMDTwoVectorFPToInt<1,0,0b11100, "fcvtau",int_aarch64_neon_fcvtau>;
3697 defm FCVTL : SIMDFPWidenTwoVector<0, 0, 0b10111, "fcvtl">;
3698 def : Pat<(v4f32 (int_aarch64_neon_vcvthf2fp (v4i16 V64:$Rn))),
3699 (FCVTLv4i16 V64:$Rn)>;
3700 def : Pat<(v4f32 (int_aarch64_neon_vcvthf2fp (extract_subvector (v8i16 V128:$Rn),
3702 (FCVTLv8i16 V128:$Rn)>;
3703 def : Pat<(v2f64 (fpextend (v2f32 V64:$Rn))), (FCVTLv2i32 V64:$Rn)>;
3705 def : Pat<(v4f32 (fpextend (v4f16 V64:$Rn))), (FCVTLv4i16 V64:$Rn)>;
3707 defm FCVTMS : SIMDTwoVectorFPToInt<0,0,0b11011, "fcvtms",int_aarch64_neon_fcvtms>;
3708 defm FCVTMU : SIMDTwoVectorFPToInt<1,0,0b11011, "fcvtmu",int_aarch64_neon_fcvtmu>;
3709 defm FCVTNS : SIMDTwoVectorFPToInt<0,0,0b11010, "fcvtns",int_aarch64_neon_fcvtns>;
3710 defm FCVTNU : SIMDTwoVectorFPToInt<1,0,0b11010, "fcvtnu",int_aarch64_neon_fcvtnu>;
3711 defm FCVTN : SIMDFPNarrowTwoVector<0, 0, 0b10110, "fcvtn">;
3712 def : Pat<(v4i16 (int_aarch64_neon_vcvtfp2hf (v4f32 V128:$Rn))),
3713 (FCVTNv4i16 V128:$Rn)>;
3714 def : Pat<(concat_vectors V64:$Rd,
3715 (v4i16 (int_aarch64_neon_vcvtfp2hf (v4f32 V128:$Rn)))),
3716 (FCVTNv8i16 (INSERT_SUBREG (IMPLICIT_DEF), V64:$Rd, dsub), V128:$Rn)>;
3717 def : Pat<(v2f32 (fpround (v2f64 V128:$Rn))), (FCVTNv2i32 V128:$Rn)>;
3718 def : Pat<(v4f16 (fpround (v4f32 V128:$Rn))), (FCVTNv4i16 V128:$Rn)>;
3719 def : Pat<(concat_vectors V64:$Rd, (v2f32 (fpround (v2f64 V128:$Rn)))),
3720 (FCVTNv4i32 (INSERT_SUBREG (IMPLICIT_DEF), V64:$Rd, dsub), V128:$Rn)>;
3721 defm FCVTPS : SIMDTwoVectorFPToInt<0,1,0b11010, "fcvtps",int_aarch64_neon_fcvtps>;
3722 defm FCVTPU : SIMDTwoVectorFPToInt<1,1,0b11010, "fcvtpu",int_aarch64_neon_fcvtpu>;
3723 defm FCVTXN : SIMDFPInexactCvtTwoVector<1, 0, 0b10110, "fcvtxn",
3724 int_aarch64_neon_fcvtxn>;
3725 defm FCVTZS : SIMDTwoVectorFPToInt<0, 1, 0b11011, "fcvtzs", fp_to_sint>;
3726 defm FCVTZU : SIMDTwoVectorFPToInt<1, 1, 0b11011, "fcvtzu", fp_to_uint>;
3728 def : Pat<(v4i16 (int_aarch64_neon_fcvtzs v4f16:$Rn)), (FCVTZSv4f16 $Rn)>;
3729 def : Pat<(v8i16 (int_aarch64_neon_fcvtzs v8f16:$Rn)), (FCVTZSv8f16 $Rn)>;
3730 def : Pat<(v2i32 (int_aarch64_neon_fcvtzs v2f32:$Rn)), (FCVTZSv2f32 $Rn)>;
3731 def : Pat<(v4i32 (int_aarch64_neon_fcvtzs v4f32:$Rn)), (FCVTZSv4f32 $Rn)>;
3732 def : Pat<(v2i64 (int_aarch64_neon_fcvtzs v2f64:$Rn)), (FCVTZSv2f64 $Rn)>;
3734 def : Pat<(v4i16 (int_aarch64_neon_fcvtzu v4f16:$Rn)), (FCVTZUv4f16 $Rn)>;
3735 def : Pat<(v8i16 (int_aarch64_neon_fcvtzu v8f16:$Rn)), (FCVTZUv8f16 $Rn)>;
3736 def : Pat<(v2i32 (int_aarch64_neon_fcvtzu v2f32:$Rn)), (FCVTZUv2f32 $Rn)>;
3737 def : Pat<(v4i32 (int_aarch64_neon_fcvtzu v4f32:$Rn)), (FCVTZUv4f32 $Rn)>;
3738 def : Pat<(v2i64 (int_aarch64_neon_fcvtzu v2f64:$Rn)), (FCVTZUv2f64 $Rn)>;
3740 defm FNEG : SIMDTwoVectorFP<1, 1, 0b01111, "fneg", fneg>;
3741 defm FRECPE : SIMDTwoVectorFP<0, 1, 0b11101, "frecpe", int_aarch64_neon_frecpe>;
3742 defm FRINTA : SIMDTwoVectorFP<1, 0, 0b11000, "frinta", fround>;
3743 defm FRINTI : SIMDTwoVectorFP<1, 1, 0b11001, "frinti", fnearbyint>;
3744 defm FRINTM : SIMDTwoVectorFP<0, 0, 0b11001, "frintm", ffloor>;
3745 defm FRINTN : SIMDTwoVectorFP<0, 0, 0b11000, "frintn", int_aarch64_neon_frintn>;
3746 defm FRINTP : SIMDTwoVectorFP<0, 1, 0b11000, "frintp", fceil>;
3747 defm FRINTX : SIMDTwoVectorFP<1, 0, 0b11001, "frintx", frint>;
3748 defm FRINTZ : SIMDTwoVectorFP<0, 1, 0b11001, "frintz", ftrunc>;
3750 let Predicates = [HasFRInt3264] in {
3751 defm FRINT32Z : FRIntNNTVector<0, 0, "frint32z">;
3752 defm FRINT64Z : FRIntNNTVector<0, 1, "frint64z">;
3753 defm FRINT32X : FRIntNNTVector<1, 0, "frint32x">;
3754 defm FRINT64X : FRIntNNTVector<1, 1, "frint64x">;
3757 defm FRSQRTE: SIMDTwoVectorFP<1, 1, 0b11101, "frsqrte", int_aarch64_neon_frsqrte>;
3758 defm FSQRT : SIMDTwoVectorFP<1, 1, 0b11111, "fsqrt", fsqrt>;
3759 defm NEG : SIMDTwoVectorBHSD<1, 0b01011, "neg",
3760 UnOpFrag<(sub immAllZerosV, node:$LHS)> >;
3761 defm NOT : SIMDTwoVectorB<1, 0b00, 0b00101, "not", vnot>;
3762 // Aliases for MVN -> NOT.
3763 def : InstAlias<"mvn{ $Vd.8b, $Vn.8b|.8b $Vd, $Vn}",
3764 (NOTv8i8 V64:$Vd, V64:$Vn)>;
3765 def : InstAlias<"mvn{ $Vd.16b, $Vn.16b|.16b $Vd, $Vn}",
3766 (NOTv16i8 V128:$Vd, V128:$Vn)>;
3768 def : Pat<(AArch64neg (v8i8 V64:$Rn)), (NEGv8i8 V64:$Rn)>;
3769 def : Pat<(AArch64neg (v16i8 V128:$Rn)), (NEGv16i8 V128:$Rn)>;
3770 def : Pat<(AArch64neg (v4i16 V64:$Rn)), (NEGv4i16 V64:$Rn)>;
3771 def : Pat<(AArch64neg (v8i16 V128:$Rn)), (NEGv8i16 V128:$Rn)>;
3772 def : Pat<(AArch64neg (v2i32 V64:$Rn)), (NEGv2i32 V64:$Rn)>;
3773 def : Pat<(AArch64neg (v4i32 V128:$Rn)), (NEGv4i32 V128:$Rn)>;
3774 def : Pat<(AArch64neg (v2i64 V128:$Rn)), (NEGv2i64 V128:$Rn)>;
3776 def : Pat<(AArch64not (v8i8 V64:$Rn)), (NOTv8i8 V64:$Rn)>;
3777 def : Pat<(AArch64not (v16i8 V128:$Rn)), (NOTv16i8 V128:$Rn)>;
3778 def : Pat<(AArch64not (v4i16 V64:$Rn)), (NOTv8i8 V64:$Rn)>;
3779 def : Pat<(AArch64not (v8i16 V128:$Rn)), (NOTv16i8 V128:$Rn)>;
3780 def : Pat<(AArch64not (v2i32 V64:$Rn)), (NOTv8i8 V64:$Rn)>;
3781 def : Pat<(AArch64not (v1i64 V64:$Rn)), (NOTv8i8 V64:$Rn)>;
3782 def : Pat<(AArch64not (v4i32 V128:$Rn)), (NOTv16i8 V128:$Rn)>;
3783 def : Pat<(AArch64not (v2i64 V128:$Rn)), (NOTv16i8 V128:$Rn)>;
3785 def : Pat<(vnot (v4i16 V64:$Rn)), (NOTv8i8 V64:$Rn)>;
3786 def : Pat<(vnot (v8i16 V128:$Rn)), (NOTv16i8 V128:$Rn)>;
3787 def : Pat<(vnot (v2i32 V64:$Rn)), (NOTv8i8 V64:$Rn)>;
3788 def : Pat<(vnot (v4i32 V128:$Rn)), (NOTv16i8 V128:$Rn)>;
3789 def : Pat<(vnot (v2i64 V128:$Rn)), (NOTv16i8 V128:$Rn)>;
3791 defm RBIT : SIMDTwoVectorB<1, 0b01, 0b00101, "rbit", int_aarch64_neon_rbit>;
3792 defm REV16 : SIMDTwoVectorB<0, 0b00, 0b00001, "rev16", AArch64rev16>;
3793 defm REV32 : SIMDTwoVectorBH<1, 0b00000, "rev32", AArch64rev32>;
3794 defm REV64 : SIMDTwoVectorBHS<0, 0b00000, "rev64", AArch64rev64>;
3795 defm SADALP : SIMDLongTwoVectorTied<0, 0b00110, "sadalp",
3796 BinOpFrag<(add node:$LHS, (int_aarch64_neon_saddlp node:$RHS))> >;
3797 defm SADDLP : SIMDLongTwoVector<0, 0b00010, "saddlp", int_aarch64_neon_saddlp>;
3798 defm SCVTF : SIMDTwoVectorIntToFP<0, 0, 0b11101, "scvtf", sint_to_fp>;
3799 defm SHLL : SIMDVectorLShiftLongBySizeBHS;
3800 defm SQABS : SIMDTwoVectorBHSD<0, 0b00111, "sqabs", int_aarch64_neon_sqabs>;
3801 defm SQNEG : SIMDTwoVectorBHSD<1, 0b00111, "sqneg", int_aarch64_neon_sqneg>;
3802 defm SQXTN : SIMDMixedTwoVector<0, 0b10100, "sqxtn", int_aarch64_neon_sqxtn>;
3803 defm SQXTUN : SIMDMixedTwoVector<1, 0b10010, "sqxtun", int_aarch64_neon_sqxtun>;
3804 defm SUQADD : SIMDTwoVectorBHSDTied<0, 0b00011, "suqadd",int_aarch64_neon_suqadd>;
3805 defm UADALP : SIMDLongTwoVectorTied<1, 0b00110, "uadalp",
3806 BinOpFrag<(add node:$LHS, (int_aarch64_neon_uaddlp node:$RHS))> >;
3807 defm UADDLP : SIMDLongTwoVector<1, 0b00010, "uaddlp",
3808 int_aarch64_neon_uaddlp>;
3809 defm UCVTF : SIMDTwoVectorIntToFP<1, 0, 0b11101, "ucvtf", uint_to_fp>;
3810 defm UQXTN : SIMDMixedTwoVector<1, 0b10100, "uqxtn", int_aarch64_neon_uqxtn>;
3811 defm URECPE : SIMDTwoVectorS<0, 1, 0b11100, "urecpe", int_aarch64_neon_urecpe>;
3812 defm URSQRTE: SIMDTwoVectorS<1, 1, 0b11100, "ursqrte", int_aarch64_neon_ursqrte>;
3813 defm USQADD : SIMDTwoVectorBHSDTied<1, 0b00011, "usqadd",int_aarch64_neon_usqadd>;
3814 defm XTN : SIMDMixedTwoVector<0, 0b10010, "xtn", trunc>;
3816 def : Pat<(v4f16 (AArch64rev32 V64:$Rn)), (REV32v4i16 V64:$Rn)>;
3817 def : Pat<(v4f16 (AArch64rev64 V64:$Rn)), (REV64v4i16 V64:$Rn)>;
3818 def : Pat<(v8f16 (AArch64rev32 V128:$Rn)), (REV32v8i16 V128:$Rn)>;
3819 def : Pat<(v8f16 (AArch64rev64 V128:$Rn)), (REV64v8i16 V128:$Rn)>;
3820 def : Pat<(v2f32 (AArch64rev64 V64:$Rn)), (REV64v2i32 V64:$Rn)>;
3821 def : Pat<(v4f32 (AArch64rev64 V128:$Rn)), (REV64v4i32 V128:$Rn)>;
3823 // Patterns for vector long shift (by element width). These need to match all
3824 // three of zext, sext and anyext so it's easier to pull the patterns out of the
3826 multiclass SIMDVectorLShiftLongBySizeBHSPats<SDPatternOperator ext> {
3827 def : Pat<(AArch64vshl (v8i16 (ext (v8i8 V64:$Rn))), (i32 8)),
3828 (SHLLv8i8 V64:$Rn)>;
3829 def : Pat<(AArch64vshl (v8i16 (ext (extract_high_v16i8 V128:$Rn))), (i32 8)),
3830 (SHLLv16i8 V128:$Rn)>;
3831 def : Pat<(AArch64vshl (v4i32 (ext (v4i16 V64:$Rn))), (i32 16)),
3832 (SHLLv4i16 V64:$Rn)>;
3833 def : Pat<(AArch64vshl (v4i32 (ext (extract_high_v8i16 V128:$Rn))), (i32 16)),
3834 (SHLLv8i16 V128:$Rn)>;
3835 def : Pat<(AArch64vshl (v2i64 (ext (v2i32 V64:$Rn))), (i32 32)),
3836 (SHLLv2i32 V64:$Rn)>;
3837 def : Pat<(AArch64vshl (v2i64 (ext (extract_high_v4i32 V128:$Rn))), (i32 32)),
3838 (SHLLv4i32 V128:$Rn)>;
3841 defm : SIMDVectorLShiftLongBySizeBHSPats<anyext>;
3842 defm : SIMDVectorLShiftLongBySizeBHSPats<zext>;
3843 defm : SIMDVectorLShiftLongBySizeBHSPats<sext>;
3845 //===----------------------------------------------------------------------===//
3846 // Advanced SIMD three vector instructions.
3847 //===----------------------------------------------------------------------===//
3849 defm ADD : SIMDThreeSameVector<0, 0b10000, "add", add>;
3850 defm ADDP : SIMDThreeSameVector<0, 0b10111, "addp", int_aarch64_neon_addp>;
3851 defm CMEQ : SIMDThreeSameVector<1, 0b10001, "cmeq", AArch64cmeq>;
3852 defm CMGE : SIMDThreeSameVector<0, 0b00111, "cmge", AArch64cmge>;
3853 defm CMGT : SIMDThreeSameVector<0, 0b00110, "cmgt", AArch64cmgt>;
3854 defm CMHI : SIMDThreeSameVector<1, 0b00110, "cmhi", AArch64cmhi>;
3855 defm CMHS : SIMDThreeSameVector<1, 0b00111, "cmhs", AArch64cmhs>;
3856 defm CMTST : SIMDThreeSameVector<0, 0b10001, "cmtst", AArch64cmtst>;
3857 defm FABD : SIMDThreeSameVectorFP<1,1,0b010,"fabd", int_aarch64_neon_fabd>;
3858 let Predicates = [HasNEON] in {
3859 foreach VT = [ v2f32, v4f32, v2f64 ] in
3860 def : Pat<(fabs (fsub VT:$Rn, VT:$Rm)), (!cast<Instruction>("FABD"#VT) VT:$Rn, VT:$Rm)>;
3862 let Predicates = [HasNEON, HasFullFP16] in {
3863 foreach VT = [ v4f16, v8f16 ] in
3864 def : Pat<(fabs (fsub VT:$Rn, VT:$Rm)), (!cast<Instruction>("FABD"#VT) VT:$Rn, VT:$Rm)>;
3866 defm FACGE : SIMDThreeSameVectorFPCmp<1,0,0b101,"facge",int_aarch64_neon_facge>;
3867 defm FACGT : SIMDThreeSameVectorFPCmp<1,1,0b101,"facgt",int_aarch64_neon_facgt>;
3868 defm FADDP : SIMDThreeSameVectorFP<1,0,0b010,"faddp",int_aarch64_neon_faddp>;
3869 defm FADD : SIMDThreeSameVectorFP<0,0,0b010,"fadd", fadd>;
3870 defm FCMEQ : SIMDThreeSameVectorFPCmp<0, 0, 0b100, "fcmeq", AArch64fcmeq>;
3871 defm FCMGE : SIMDThreeSameVectorFPCmp<1, 0, 0b100, "fcmge", AArch64fcmge>;
3872 defm FCMGT : SIMDThreeSameVectorFPCmp<1, 1, 0b100, "fcmgt", AArch64fcmgt>;
3873 defm FDIV : SIMDThreeSameVectorFP<1,0,0b111,"fdiv", fdiv>;
3874 defm FMAXNMP : SIMDThreeSameVectorFP<1,0,0b000,"fmaxnmp", int_aarch64_neon_fmaxnmp>;
3875 defm FMAXNM : SIMDThreeSameVectorFP<0,0,0b000,"fmaxnm", fmaxnum>;
3876 defm FMAXP : SIMDThreeSameVectorFP<1,0,0b110,"fmaxp", int_aarch64_neon_fmaxp>;
3877 defm FMAX : SIMDThreeSameVectorFP<0,0,0b110,"fmax", fmaximum>;
3878 defm FMINNMP : SIMDThreeSameVectorFP<1,1,0b000,"fminnmp", int_aarch64_neon_fminnmp>;
3879 defm FMINNM : SIMDThreeSameVectorFP<0,1,0b000,"fminnm", fminnum>;
3880 defm FMINP : SIMDThreeSameVectorFP<1,1,0b110,"fminp", int_aarch64_neon_fminp>;
3881 defm FMIN : SIMDThreeSameVectorFP<0,1,0b110,"fmin", fminimum>;
3883 // NOTE: The operands of the PatFrag are reordered on FMLA/FMLS because the
3884 // instruction expects the addend first, while the fma intrinsic puts it last.
3885 defm FMLA : SIMDThreeSameVectorFPTied<0, 0, 0b001, "fmla",
3886 TriOpFrag<(fma node:$RHS, node:$MHS, node:$LHS)> >;
3887 defm FMLS : SIMDThreeSameVectorFPTied<0, 1, 0b001, "fmls",
3888 TriOpFrag<(fma node:$MHS, (fneg node:$RHS), node:$LHS)> >;
3890 // The following def pats catch the case where the LHS of an FMA is negated.
3891 // The TriOpFrag above catches the case where the middle operand is negated.
3892 def : Pat<(v2f32 (fma (fneg V64:$Rn), V64:$Rm, V64:$Rd)),
3893 (FMLSv2f32 V64:$Rd, V64:$Rn, V64:$Rm)>;
3895 def : Pat<(v4f32 (fma (fneg V128:$Rn), V128:$Rm, V128:$Rd)),
3896 (FMLSv4f32 V128:$Rd, V128:$Rn, V128:$Rm)>;
3898 def : Pat<(v2f64 (fma (fneg V128:$Rn), V128:$Rm, V128:$Rd)),
3899 (FMLSv2f64 V128:$Rd, V128:$Rn, V128:$Rm)>;
3901 defm FMULX : SIMDThreeSameVectorFP<0,0,0b011,"fmulx", int_aarch64_neon_fmulx>;
3902 defm FMUL : SIMDThreeSameVectorFP<1,0,0b011,"fmul", fmul>;
3903 defm FRECPS : SIMDThreeSameVectorFP<0,0,0b111,"frecps", int_aarch64_neon_frecps>;
3904 defm FRSQRTS : SIMDThreeSameVectorFP<0,1,0b111,"frsqrts", int_aarch64_neon_frsqrts>;
3905 defm FSUB : SIMDThreeSameVectorFP<0,1,0b010,"fsub", fsub>;
3907 // MLA and MLS are generated in MachineCombine
3908 defm MLA : SIMDThreeSameVectorBHSTied<0, 0b10010, "mla", null_frag>;
3909 defm MLS : SIMDThreeSameVectorBHSTied<1, 0b10010, "mls", null_frag>;
3911 defm MUL : SIMDThreeSameVectorBHS<0, 0b10011, "mul", mul>;
3912 defm PMUL : SIMDThreeSameVectorB<1, 0b10011, "pmul", int_aarch64_neon_pmul>;
3913 defm SABA : SIMDThreeSameVectorBHSTied<0, 0b01111, "saba",
3914 TriOpFrag<(add node:$LHS, (int_aarch64_neon_sabd node:$MHS, node:$RHS))> >;
3915 defm SABD : SIMDThreeSameVectorBHS<0,0b01110,"sabd", int_aarch64_neon_sabd>;
3916 defm SHADD : SIMDThreeSameVectorBHS<0,0b00000,"shadd", int_aarch64_neon_shadd>;
3917 defm SHSUB : SIMDThreeSameVectorBHS<0,0b00100,"shsub", int_aarch64_neon_shsub>;
3918 defm SMAXP : SIMDThreeSameVectorBHS<0,0b10100,"smaxp", int_aarch64_neon_smaxp>;
3919 defm SMAX : SIMDThreeSameVectorBHS<0,0b01100,"smax", smax>;
3920 defm SMINP : SIMDThreeSameVectorBHS<0,0b10101,"sminp", int_aarch64_neon_sminp>;
3921 defm SMIN : SIMDThreeSameVectorBHS<0,0b01101,"smin", smin>;
3922 defm SQADD : SIMDThreeSameVector<0,0b00001,"sqadd", int_aarch64_neon_sqadd>;
3923 defm SQDMULH : SIMDThreeSameVectorHS<0,0b10110,"sqdmulh",int_aarch64_neon_sqdmulh>;
3924 defm SQRDMULH : SIMDThreeSameVectorHS<1,0b10110,"sqrdmulh",int_aarch64_neon_sqrdmulh>;
3925 defm SQRSHL : SIMDThreeSameVector<0,0b01011,"sqrshl", int_aarch64_neon_sqrshl>;
3926 defm SQSHL : SIMDThreeSameVector<0,0b01001,"sqshl", int_aarch64_neon_sqshl>;
3927 defm SQSUB : SIMDThreeSameVector<0,0b00101,"sqsub", int_aarch64_neon_sqsub>;
3928 defm SRHADD : SIMDThreeSameVectorBHS<0,0b00010,"srhadd",int_aarch64_neon_srhadd>;
3929 defm SRSHL : SIMDThreeSameVector<0,0b01010,"srshl", int_aarch64_neon_srshl>;
3930 defm SSHL : SIMDThreeSameVector<0,0b01000,"sshl", int_aarch64_neon_sshl>;
3931 defm SUB : SIMDThreeSameVector<1,0b10000,"sub", sub>;
3932 defm UABA : SIMDThreeSameVectorBHSTied<1, 0b01111, "uaba",
3933 TriOpFrag<(add node:$LHS, (int_aarch64_neon_uabd node:$MHS, node:$RHS))> >;
3934 defm UABD : SIMDThreeSameVectorBHS<1,0b01110,"uabd", int_aarch64_neon_uabd>;
3935 defm UHADD : SIMDThreeSameVectorBHS<1,0b00000,"uhadd", int_aarch64_neon_uhadd>;
3936 defm UHSUB : SIMDThreeSameVectorBHS<1,0b00100,"uhsub", int_aarch64_neon_uhsub>;
3937 defm UMAXP : SIMDThreeSameVectorBHS<1,0b10100,"umaxp", int_aarch64_neon_umaxp>;
3938 defm UMAX : SIMDThreeSameVectorBHS<1,0b01100,"umax", umax>;
3939 defm UMINP : SIMDThreeSameVectorBHS<1,0b10101,"uminp", int_aarch64_neon_uminp>;
3940 defm UMIN : SIMDThreeSameVectorBHS<1,0b01101,"umin", umin>;
3941 defm UQADD : SIMDThreeSameVector<1,0b00001,"uqadd", int_aarch64_neon_uqadd>;
3942 defm UQRSHL : SIMDThreeSameVector<1,0b01011,"uqrshl", int_aarch64_neon_uqrshl>;
3943 defm UQSHL : SIMDThreeSameVector<1,0b01001,"uqshl", int_aarch64_neon_uqshl>;
3944 defm UQSUB : SIMDThreeSameVector<1,0b00101,"uqsub", int_aarch64_neon_uqsub>;
3945 defm URHADD : SIMDThreeSameVectorBHS<1,0b00010,"urhadd", int_aarch64_neon_urhadd>;
3946 defm URSHL : SIMDThreeSameVector<1,0b01010,"urshl", int_aarch64_neon_urshl>;
3947 defm USHL : SIMDThreeSameVector<1,0b01000,"ushl", int_aarch64_neon_ushl>;
3948 defm SQRDMLAH : SIMDThreeSameVectorSQRDMLxHTiedHS<1,0b10000,"sqrdmlah",
3949 int_aarch64_neon_sqadd>;
3950 defm SQRDMLSH : SIMDThreeSameVectorSQRDMLxHTiedHS<1,0b10001,"sqrdmlsh",
3951 int_aarch64_neon_sqsub>;
3953 // Extra saturate patterns, other than the intrinsics matches above
3954 defm : SIMDThreeSameVectorExtraPatterns<"SQADD", saddsat>;
3955 defm : SIMDThreeSameVectorExtraPatterns<"UQADD", uaddsat>;
3956 defm : SIMDThreeSameVectorExtraPatterns<"SQSUB", ssubsat>;
3957 defm : SIMDThreeSameVectorExtraPatterns<"UQSUB", usubsat>;
3959 defm AND : SIMDLogicalThreeVector<0, 0b00, "and", and>;
3960 defm BIC : SIMDLogicalThreeVector<0, 0b01, "bic",
3961 BinOpFrag<(and node:$LHS, (vnot node:$RHS))> >;
3962 defm BIF : SIMDLogicalThreeVector<1, 0b11, "bif">;
3963 defm BIT : SIMDLogicalThreeVectorTied<1, 0b10, "bit", AArch64bit>;
3964 defm BSL : SIMDLogicalThreeVectorTied<1, 0b01, "bsl",
3965 TriOpFrag<(or (and node:$LHS, node:$MHS), (and (vnot node:$LHS), node:$RHS))>>;
3966 defm EOR : SIMDLogicalThreeVector<1, 0b00, "eor", xor>;
3967 defm ORN : SIMDLogicalThreeVector<0, 0b11, "orn",
3968 BinOpFrag<(or node:$LHS, (vnot node:$RHS))> >;
3969 defm ORR : SIMDLogicalThreeVector<0, 0b10, "orr", or>;
3972 def : Pat<(AArch64bsl (v8i8 V64:$Rd), V64:$Rn, V64:$Rm),
3973 (BSLv8i8 V64:$Rd, V64:$Rn, V64:$Rm)>;
3974 def : Pat<(AArch64bsl (v4i16 V64:$Rd), V64:$Rn, V64:$Rm),
3975 (BSLv8i8 V64:$Rd, V64:$Rn, V64:$Rm)>;
3976 def : Pat<(AArch64bsl (v2i32 V64:$Rd), V64:$Rn, V64:$Rm),
3977 (BSLv8i8 V64:$Rd, V64:$Rn, V64:$Rm)>;
3978 def : Pat<(AArch64bsl (v1i64 V64:$Rd), V64:$Rn, V64:$Rm),
3979 (BSLv8i8 V64:$Rd, V64:$Rn, V64:$Rm)>;
3981 def : Pat<(AArch64bsl (v16i8 V128:$Rd), V128:$Rn, V128:$Rm),
3982 (BSLv16i8 V128:$Rd, V128:$Rn, V128:$Rm)>;
3983 def : Pat<(AArch64bsl (v8i16 V128:$Rd), V128:$Rn, V128:$Rm),
3984 (BSLv16i8 V128:$Rd, V128:$Rn, V128:$Rm)>;
3985 def : Pat<(AArch64bsl (v4i32 V128:$Rd), V128:$Rn, V128:$Rm),
3986 (BSLv16i8 V128:$Rd, V128:$Rn, V128:$Rm)>;
3987 def : Pat<(AArch64bsl (v2i64 V128:$Rd), V128:$Rn, V128:$Rm),
3988 (BSLv16i8 V128:$Rd, V128:$Rn, V128:$Rm)>;
3990 def : InstAlias<"mov{\t$dst.16b, $src.16b|.16b\t$dst, $src}",
3991 (ORRv16i8 V128:$dst, V128:$src, V128:$src), 1>;
3992 def : InstAlias<"mov{\t$dst.8h, $src.8h|.8h\t$dst, $src}",
3993 (ORRv16i8 V128:$dst, V128:$src, V128:$src), 0>;
3994 def : InstAlias<"mov{\t$dst.4s, $src.4s|.4s\t$dst, $src}",
3995 (ORRv16i8 V128:$dst, V128:$src, V128:$src), 0>;
3996 def : InstAlias<"mov{\t$dst.2d, $src.2d|.2d\t$dst, $src}",
3997 (ORRv16i8 V128:$dst, V128:$src, V128:$src), 0>;
3999 def : InstAlias<"mov{\t$dst.8b, $src.8b|.8b\t$dst, $src}",
4000 (ORRv8i8 V64:$dst, V64:$src, V64:$src), 1>;
4001 def : InstAlias<"mov{\t$dst.4h, $src.4h|.4h\t$dst, $src}",
4002 (ORRv8i8 V64:$dst, V64:$src, V64:$src), 0>;
4003 def : InstAlias<"mov{\t$dst.2s, $src.2s|.2s\t$dst, $src}",
4004 (ORRv8i8 V64:$dst, V64:$src, V64:$src), 0>;
4005 def : InstAlias<"mov{\t$dst.1d, $src.1d|.1d\t$dst, $src}",
4006 (ORRv8i8 V64:$dst, V64:$src, V64:$src), 0>;
4008 def : InstAlias<"{cmls\t$dst.8b, $src1.8b, $src2.8b" #
4009 "|cmls.8b\t$dst, $src1, $src2}",
4010 (CMHSv8i8 V64:$dst, V64:$src2, V64:$src1), 0>;
4011 def : InstAlias<"{cmls\t$dst.16b, $src1.16b, $src2.16b" #
4012 "|cmls.16b\t$dst, $src1, $src2}",
4013 (CMHSv16i8 V128:$dst, V128:$src2, V128:$src1), 0>;
4014 def : InstAlias<"{cmls\t$dst.4h, $src1.4h, $src2.4h" #
4015 "|cmls.4h\t$dst, $src1, $src2}",
4016 (CMHSv4i16 V64:$dst, V64:$src2, V64:$src1), 0>;
4017 def : InstAlias<"{cmls\t$dst.8h, $src1.8h, $src2.8h" #
4018 "|cmls.8h\t$dst, $src1, $src2}",
4019 (CMHSv8i16 V128:$dst, V128:$src2, V128:$src1), 0>;
4020 def : InstAlias<"{cmls\t$dst.2s, $src1.2s, $src2.2s" #
4021 "|cmls.2s\t$dst, $src1, $src2}",
4022 (CMHSv2i32 V64:$dst, V64:$src2, V64:$src1), 0>;
4023 def : InstAlias<"{cmls\t$dst.4s, $src1.4s, $src2.4s" #
4024 "|cmls.4s\t$dst, $src1, $src2}",
4025 (CMHSv4i32 V128:$dst, V128:$src2, V128:$src1), 0>;
4026 def : InstAlias<"{cmls\t$dst.2d, $src1.2d, $src2.2d" #
4027 "|cmls.2d\t$dst, $src1, $src2}",
4028 (CMHSv2i64 V128:$dst, V128:$src2, V128:$src1), 0>;
4030 def : InstAlias<"{cmlo\t$dst.8b, $src1.8b, $src2.8b" #
4031 "|cmlo.8b\t$dst, $src1, $src2}",
4032 (CMHIv8i8 V64:$dst, V64:$src2, V64:$src1), 0>;
4033 def : InstAlias<"{cmlo\t$dst.16b, $src1.16b, $src2.16b" #
4034 "|cmlo.16b\t$dst, $src1, $src2}",
4035 (CMHIv16i8 V128:$dst, V128:$src2, V128:$src1), 0>;
4036 def : InstAlias<"{cmlo\t$dst.4h, $src1.4h, $src2.4h" #
4037 "|cmlo.4h\t$dst, $src1, $src2}",
4038 (CMHIv4i16 V64:$dst, V64:$src2, V64:$src1), 0>;
4039 def : InstAlias<"{cmlo\t$dst.8h, $src1.8h, $src2.8h" #
4040 "|cmlo.8h\t$dst, $src1, $src2}",
4041 (CMHIv8i16 V128:$dst, V128:$src2, V128:$src1), 0>;
4042 def : InstAlias<"{cmlo\t$dst.2s, $src1.2s, $src2.2s" #
4043 "|cmlo.2s\t$dst, $src1, $src2}",
4044 (CMHIv2i32 V64:$dst, V64:$src2, V64:$src1), 0>;
4045 def : InstAlias<"{cmlo\t$dst.4s, $src1.4s, $src2.4s" #
4046 "|cmlo.4s\t$dst, $src1, $src2}",
4047 (CMHIv4i32 V128:$dst, V128:$src2, V128:$src1), 0>;
4048 def : InstAlias<"{cmlo\t$dst.2d, $src1.2d, $src2.2d" #
4049 "|cmlo.2d\t$dst, $src1, $src2}",
4050 (CMHIv2i64 V128:$dst, V128:$src2, V128:$src1), 0>;
4052 def : InstAlias<"{cmle\t$dst.8b, $src1.8b, $src2.8b" #
4053 "|cmle.8b\t$dst, $src1, $src2}",
4054 (CMGEv8i8 V64:$dst, V64:$src2, V64:$src1), 0>;
4055 def : InstAlias<"{cmle\t$dst.16b, $src1.16b, $src2.16b" #
4056 "|cmle.16b\t$dst, $src1, $src2}",
4057 (CMGEv16i8 V128:$dst, V128:$src2, V128:$src1), 0>;
4058 def : InstAlias<"{cmle\t$dst.4h, $src1.4h, $src2.4h" #
4059 "|cmle.4h\t$dst, $src1, $src2}",
4060 (CMGEv4i16 V64:$dst, V64:$src2, V64:$src1), 0>;
4061 def : InstAlias<"{cmle\t$dst.8h, $src1.8h, $src2.8h" #
4062 "|cmle.8h\t$dst, $src1, $src2}",
4063 (CMGEv8i16 V128:$dst, V128:$src2, V128:$src1), 0>;
4064 def : InstAlias<"{cmle\t$dst.2s, $src1.2s, $src2.2s" #
4065 "|cmle.2s\t$dst, $src1, $src2}",
4066 (CMGEv2i32 V64:$dst, V64:$src2, V64:$src1), 0>;
4067 def : InstAlias<"{cmle\t$dst.4s, $src1.4s, $src2.4s" #
4068 "|cmle.4s\t$dst, $src1, $src2}",
4069 (CMGEv4i32 V128:$dst, V128:$src2, V128:$src1), 0>;
4070 def : InstAlias<"{cmle\t$dst.2d, $src1.2d, $src2.2d" #
4071 "|cmle.2d\t$dst, $src1, $src2}",
4072 (CMGEv2i64 V128:$dst, V128:$src2, V128:$src1), 0>;
4074 def : InstAlias<"{cmlt\t$dst.8b, $src1.8b, $src2.8b" #
4075 "|cmlt.8b\t$dst, $src1, $src2}",
4076 (CMGTv8i8 V64:$dst, V64:$src2, V64:$src1), 0>;
4077 def : InstAlias<"{cmlt\t$dst.16b, $src1.16b, $src2.16b" #
4078 "|cmlt.16b\t$dst, $src1, $src2}",
4079 (CMGTv16i8 V128:$dst, V128:$src2, V128:$src1), 0>;
4080 def : InstAlias<"{cmlt\t$dst.4h, $src1.4h, $src2.4h" #
4081 "|cmlt.4h\t$dst, $src1, $src2}",
4082 (CMGTv4i16 V64:$dst, V64:$src2, V64:$src1), 0>;
4083 def : InstAlias<"{cmlt\t$dst.8h, $src1.8h, $src2.8h" #
4084 "|cmlt.8h\t$dst, $src1, $src2}",
4085 (CMGTv8i16 V128:$dst, V128:$src2, V128:$src1), 0>;
4086 def : InstAlias<"{cmlt\t$dst.2s, $src1.2s, $src2.2s" #
4087 "|cmlt.2s\t$dst, $src1, $src2}",
4088 (CMGTv2i32 V64:$dst, V64:$src2, V64:$src1), 0>;
4089 def : InstAlias<"{cmlt\t$dst.4s, $src1.4s, $src2.4s" #
4090 "|cmlt.4s\t$dst, $src1, $src2}",
4091 (CMGTv4i32 V128:$dst, V128:$src2, V128:$src1), 0>;
4092 def : InstAlias<"{cmlt\t$dst.2d, $src1.2d, $src2.2d" #
4093 "|cmlt.2d\t$dst, $src1, $src2}",
4094 (CMGTv2i64 V128:$dst, V128:$src2, V128:$src1), 0>;
4096 let Predicates = [HasNEON, HasFullFP16] in {
4097 def : InstAlias<"{fcmle\t$dst.4h, $src1.4h, $src2.4h" #
4098 "|fcmle.4h\t$dst, $src1, $src2}",
4099 (FCMGEv4f16 V64:$dst, V64:$src2, V64:$src1), 0>;
4100 def : InstAlias<"{fcmle\t$dst.8h, $src1.8h, $src2.8h" #
4101 "|fcmle.8h\t$dst, $src1, $src2}",
4102 (FCMGEv8f16 V128:$dst, V128:$src2, V128:$src1), 0>;
4104 def : InstAlias<"{fcmle\t$dst.2s, $src1.2s, $src2.2s" #
4105 "|fcmle.2s\t$dst, $src1, $src2}",
4106 (FCMGEv2f32 V64:$dst, V64:$src2, V64:$src1), 0>;
4107 def : InstAlias<"{fcmle\t$dst.4s, $src1.4s, $src2.4s" #
4108 "|fcmle.4s\t$dst, $src1, $src2}",
4109 (FCMGEv4f32 V128:$dst, V128:$src2, V128:$src1), 0>;
4110 def : InstAlias<"{fcmle\t$dst.2d, $src1.2d, $src2.2d" #
4111 "|fcmle.2d\t$dst, $src1, $src2}",
4112 (FCMGEv2f64 V128:$dst, V128:$src2, V128:$src1), 0>;
4114 let Predicates = [HasNEON, HasFullFP16] in {
4115 def : InstAlias<"{fcmlt\t$dst.4h, $src1.4h, $src2.4h" #
4116 "|fcmlt.4h\t$dst, $src1, $src2}",
4117 (FCMGTv4f16 V64:$dst, V64:$src2, V64:$src1), 0>;
4118 def : InstAlias<"{fcmlt\t$dst.8h, $src1.8h, $src2.8h" #
4119 "|fcmlt.8h\t$dst, $src1, $src2}",
4120 (FCMGTv8f16 V128:$dst, V128:$src2, V128:$src1), 0>;
4122 def : InstAlias<"{fcmlt\t$dst.2s, $src1.2s, $src2.2s" #
4123 "|fcmlt.2s\t$dst, $src1, $src2}",
4124 (FCMGTv2f32 V64:$dst, V64:$src2, V64:$src1), 0>;
4125 def : InstAlias<"{fcmlt\t$dst.4s, $src1.4s, $src2.4s" #
4126 "|fcmlt.4s\t$dst, $src1, $src2}",
4127 (FCMGTv4f32 V128:$dst, V128:$src2, V128:$src1), 0>;
4128 def : InstAlias<"{fcmlt\t$dst.2d, $src1.2d, $src2.2d" #
4129 "|fcmlt.2d\t$dst, $src1, $src2}",
4130 (FCMGTv2f64 V128:$dst, V128:$src2, V128:$src1), 0>;
4132 let Predicates = [HasNEON, HasFullFP16] in {
4133 def : InstAlias<"{facle\t$dst.4h, $src1.4h, $src2.4h" #
4134 "|facle.4h\t$dst, $src1, $src2}",
4135 (FACGEv4f16 V64:$dst, V64:$src2, V64:$src1), 0>;
4136 def : InstAlias<"{facle\t$dst.8h, $src1.8h, $src2.8h" #
4137 "|facle.8h\t$dst, $src1, $src2}",
4138 (FACGEv8f16 V128:$dst, V128:$src2, V128:$src1), 0>;
4140 def : InstAlias<"{facle\t$dst.2s, $src1.2s, $src2.2s" #
4141 "|facle.2s\t$dst, $src1, $src2}",
4142 (FACGEv2f32 V64:$dst, V64:$src2, V64:$src1), 0>;
4143 def : InstAlias<"{facle\t$dst.4s, $src1.4s, $src2.4s" #
4144 "|facle.4s\t$dst, $src1, $src2}",
4145 (FACGEv4f32 V128:$dst, V128:$src2, V128:$src1), 0>;
4146 def : InstAlias<"{facle\t$dst.2d, $src1.2d, $src2.2d" #
4147 "|facle.2d\t$dst, $src1, $src2}",
4148 (FACGEv2f64 V128:$dst, V128:$src2, V128:$src1), 0>;
4150 let Predicates = [HasNEON, HasFullFP16] in {
4151 def : InstAlias<"{faclt\t$dst.4h, $src1.4h, $src2.4h" #
4152 "|faclt.4h\t$dst, $src1, $src2}",
4153 (FACGTv4f16 V64:$dst, V64:$src2, V64:$src1), 0>;
4154 def : InstAlias<"{faclt\t$dst.8h, $src1.8h, $src2.8h" #
4155 "|faclt.8h\t$dst, $src1, $src2}",
4156 (FACGTv8f16 V128:$dst, V128:$src2, V128:$src1), 0>;
4158 def : InstAlias<"{faclt\t$dst.2s, $src1.2s, $src2.2s" #
4159 "|faclt.2s\t$dst, $src1, $src2}",
4160 (FACGTv2f32 V64:$dst, V64:$src2, V64:$src1), 0>;
4161 def : InstAlias<"{faclt\t$dst.4s, $src1.4s, $src2.4s" #
4162 "|faclt.4s\t$dst, $src1, $src2}",
4163 (FACGTv4f32 V128:$dst, V128:$src2, V128:$src1), 0>;
4164 def : InstAlias<"{faclt\t$dst.2d, $src1.2d, $src2.2d" #
4165 "|faclt.2d\t$dst, $src1, $src2}",
4166 (FACGTv2f64 V128:$dst, V128:$src2, V128:$src1), 0>;
4168 //===----------------------------------------------------------------------===//
4169 // Advanced SIMD three scalar instructions.
4170 //===----------------------------------------------------------------------===//
4172 defm ADD : SIMDThreeScalarD<0, 0b10000, "add", add>;
4173 defm CMEQ : SIMDThreeScalarD<1, 0b10001, "cmeq", AArch64cmeq>;
4174 defm CMGE : SIMDThreeScalarD<0, 0b00111, "cmge", AArch64cmge>;
4175 defm CMGT : SIMDThreeScalarD<0, 0b00110, "cmgt", AArch64cmgt>;
4176 defm CMHI : SIMDThreeScalarD<1, 0b00110, "cmhi", AArch64cmhi>;
4177 defm CMHS : SIMDThreeScalarD<1, 0b00111, "cmhs", AArch64cmhs>;
4178 defm CMTST : SIMDThreeScalarD<0, 0b10001, "cmtst", AArch64cmtst>;
4179 defm FABD : SIMDFPThreeScalar<1, 1, 0b010, "fabd", int_aarch64_sisd_fabd>;
4180 def : Pat<(v1f64 (int_aarch64_neon_fabd (v1f64 FPR64:$Rn), (v1f64 FPR64:$Rm))),
4181 (FABD64 FPR64:$Rn, FPR64:$Rm)>;
4182 let Predicates = [HasFullFP16] in {
4183 def : Pat<(fabs (fsub f16:$Rn, f16:$Rm)), (FABD16 f16:$Rn, f16:$Rm)>;
4185 def : Pat<(fabs (fsub f32:$Rn, f32:$Rm)), (FABD32 f32:$Rn, f32:$Rm)>;
4186 def : Pat<(fabs (fsub f64:$Rn, f64:$Rm)), (FABD64 f64:$Rn, f64:$Rm)>;
4187 defm FACGE : SIMDThreeScalarFPCmp<1, 0, 0b101, "facge",
4188 int_aarch64_neon_facge>;
4189 defm FACGT : SIMDThreeScalarFPCmp<1, 1, 0b101, "facgt",
4190 int_aarch64_neon_facgt>;
4191 defm FCMEQ : SIMDThreeScalarFPCmp<0, 0, 0b100, "fcmeq", AArch64fcmeq>;
4192 defm FCMGE : SIMDThreeScalarFPCmp<1, 0, 0b100, "fcmge", AArch64fcmge>;
4193 defm FCMGT : SIMDThreeScalarFPCmp<1, 1, 0b100, "fcmgt", AArch64fcmgt>;
4194 defm FMULX : SIMDFPThreeScalar<0, 0, 0b011, "fmulx", int_aarch64_neon_fmulx>;
4195 defm FRECPS : SIMDFPThreeScalar<0, 0, 0b111, "frecps", int_aarch64_neon_frecps>;
4196 defm FRSQRTS : SIMDFPThreeScalar<0, 1, 0b111, "frsqrts", int_aarch64_neon_frsqrts>;
4197 defm SQADD : SIMDThreeScalarBHSD<0, 0b00001, "sqadd", int_aarch64_neon_sqadd>;
4198 defm SQDMULH : SIMDThreeScalarHS< 0, 0b10110, "sqdmulh", int_aarch64_neon_sqdmulh>;
4199 defm SQRDMULH : SIMDThreeScalarHS< 1, 0b10110, "sqrdmulh", int_aarch64_neon_sqrdmulh>;
4200 defm SQRSHL : SIMDThreeScalarBHSD<0, 0b01011, "sqrshl",int_aarch64_neon_sqrshl>;
4201 defm SQSHL : SIMDThreeScalarBHSD<0, 0b01001, "sqshl", int_aarch64_neon_sqshl>;
4202 defm SQSUB : SIMDThreeScalarBHSD<0, 0b00101, "sqsub", int_aarch64_neon_sqsub>;
4203 defm SRSHL : SIMDThreeScalarD< 0, 0b01010, "srshl", int_aarch64_neon_srshl>;
4204 defm SSHL : SIMDThreeScalarD< 0, 0b01000, "sshl", int_aarch64_neon_sshl>;
4205 defm SUB : SIMDThreeScalarD< 1, 0b10000, "sub", sub>;
4206 defm UQADD : SIMDThreeScalarBHSD<1, 0b00001, "uqadd", int_aarch64_neon_uqadd>;
4207 defm UQRSHL : SIMDThreeScalarBHSD<1, 0b01011, "uqrshl",int_aarch64_neon_uqrshl>;
4208 defm UQSHL : SIMDThreeScalarBHSD<1, 0b01001, "uqshl", int_aarch64_neon_uqshl>;
4209 defm UQSUB : SIMDThreeScalarBHSD<1, 0b00101, "uqsub", int_aarch64_neon_uqsub>;
4210 defm URSHL : SIMDThreeScalarD< 1, 0b01010, "urshl", int_aarch64_neon_urshl>;
4211 defm USHL : SIMDThreeScalarD< 1, 0b01000, "ushl", int_aarch64_neon_ushl>;
4212 let Predicates = [HasRDM] in {
4213 defm SQRDMLAH : SIMDThreeScalarHSTied<1, 0, 0b10000, "sqrdmlah">;
4214 defm SQRDMLSH : SIMDThreeScalarHSTied<1, 0, 0b10001, "sqrdmlsh">;
4215 def : Pat<(i32 (int_aarch64_neon_sqadd
4217 (i32 (int_aarch64_neon_sqrdmulh (i32 FPR32:$Rn),
4218 (i32 FPR32:$Rm))))),
4219 (SQRDMLAHv1i32 FPR32:$Rd, FPR32:$Rn, FPR32:$Rm)>;
4220 def : Pat<(i32 (int_aarch64_neon_sqsub
4222 (i32 (int_aarch64_neon_sqrdmulh (i32 FPR32:$Rn),
4223 (i32 FPR32:$Rm))))),
4224 (SQRDMLSHv1i32 FPR32:$Rd, FPR32:$Rn, FPR32:$Rm)>;
4227 def : InstAlias<"cmls $dst, $src1, $src2",
4228 (CMHSv1i64 FPR64:$dst, FPR64:$src2, FPR64:$src1), 0>;
4229 def : InstAlias<"cmle $dst, $src1, $src2",
4230 (CMGEv1i64 FPR64:$dst, FPR64:$src2, FPR64:$src1), 0>;
4231 def : InstAlias<"cmlo $dst, $src1, $src2",
4232 (CMHIv1i64 FPR64:$dst, FPR64:$src2, FPR64:$src1), 0>;
4233 def : InstAlias<"cmlt $dst, $src1, $src2",
4234 (CMGTv1i64 FPR64:$dst, FPR64:$src2, FPR64:$src1), 0>;
4235 def : InstAlias<"fcmle $dst, $src1, $src2",
4236 (FCMGE32 FPR32:$dst, FPR32:$src2, FPR32:$src1), 0>;
4237 def : InstAlias<"fcmle $dst, $src1, $src2",
4238 (FCMGE64 FPR64:$dst, FPR64:$src2, FPR64:$src1), 0>;
4239 def : InstAlias<"fcmlt $dst, $src1, $src2",
4240 (FCMGT32 FPR32:$dst, FPR32:$src2, FPR32:$src1), 0>;
4241 def : InstAlias<"fcmlt $dst, $src1, $src2",
4242 (FCMGT64 FPR64:$dst, FPR64:$src2, FPR64:$src1), 0>;
4243 def : InstAlias<"facle $dst, $src1, $src2",
4244 (FACGE32 FPR32:$dst, FPR32:$src2, FPR32:$src1), 0>;
4245 def : InstAlias<"facle $dst, $src1, $src2",
4246 (FACGE64 FPR64:$dst, FPR64:$src2, FPR64:$src1), 0>;
4247 def : InstAlias<"faclt $dst, $src1, $src2",
4248 (FACGT32 FPR32:$dst, FPR32:$src2, FPR32:$src1), 0>;
4249 def : InstAlias<"faclt $dst, $src1, $src2",
4250 (FACGT64 FPR64:$dst, FPR64:$src2, FPR64:$src1), 0>;
4252 //===----------------------------------------------------------------------===//
4253 // Advanced SIMD three scalar instructions (mixed operands).
4254 //===----------------------------------------------------------------------===//
4255 defm SQDMULL : SIMDThreeScalarMixedHS<0, 0b11010, "sqdmull",
4256 int_aarch64_neon_sqdmulls_scalar>;
4257 defm SQDMLAL : SIMDThreeScalarMixedTiedHS<0, 0b10010, "sqdmlal">;
4258 defm SQDMLSL : SIMDThreeScalarMixedTiedHS<0, 0b10110, "sqdmlsl">;
4260 def : Pat<(i64 (int_aarch64_neon_sqadd (i64 FPR64:$Rd),
4261 (i64 (int_aarch64_neon_sqdmulls_scalar (i32 FPR32:$Rn),
4262 (i32 FPR32:$Rm))))),
4263 (SQDMLALi32 FPR64:$Rd, FPR32:$Rn, FPR32:$Rm)>;
4264 def : Pat<(i64 (int_aarch64_neon_sqsub (i64 FPR64:$Rd),
4265 (i64 (int_aarch64_neon_sqdmulls_scalar (i32 FPR32:$Rn),
4266 (i32 FPR32:$Rm))))),
4267 (SQDMLSLi32 FPR64:$Rd, FPR32:$Rn, FPR32:$Rm)>;
4269 //===----------------------------------------------------------------------===//
4270 // Advanced SIMD two scalar instructions.
4271 //===----------------------------------------------------------------------===//
4273 defm ABS : SIMDTwoScalarD< 0, 0b01011, "abs", abs>;
4274 defm CMEQ : SIMDCmpTwoScalarD< 0, 0b01001, "cmeq", AArch64cmeqz>;
4275 defm CMGE : SIMDCmpTwoScalarD< 1, 0b01000, "cmge", AArch64cmgez>;
4276 defm CMGT : SIMDCmpTwoScalarD< 0, 0b01000, "cmgt", AArch64cmgtz>;
4277 defm CMLE : SIMDCmpTwoScalarD< 1, 0b01001, "cmle", AArch64cmlez>;
4278 defm CMLT : SIMDCmpTwoScalarD< 0, 0b01010, "cmlt", AArch64cmltz>;
4279 defm FCMEQ : SIMDFPCmpTwoScalar<0, 1, 0b01101, "fcmeq", AArch64fcmeqz>;
4280 defm FCMGE : SIMDFPCmpTwoScalar<1, 1, 0b01100, "fcmge", AArch64fcmgez>;
4281 defm FCMGT : SIMDFPCmpTwoScalar<0, 1, 0b01100, "fcmgt", AArch64fcmgtz>;
4282 defm FCMLE : SIMDFPCmpTwoScalar<1, 1, 0b01101, "fcmle", AArch64fcmlez>;
4283 defm FCMLT : SIMDFPCmpTwoScalar<0, 1, 0b01110, "fcmlt", AArch64fcmltz>;
4284 defm FCVTAS : SIMDFPTwoScalar< 0, 0, 0b11100, "fcvtas">;
4285 defm FCVTAU : SIMDFPTwoScalar< 1, 0, 0b11100, "fcvtau">;
4286 defm FCVTMS : SIMDFPTwoScalar< 0, 0, 0b11011, "fcvtms">;
4287 defm FCVTMU : SIMDFPTwoScalar< 1, 0, 0b11011, "fcvtmu">;
4288 defm FCVTNS : SIMDFPTwoScalar< 0, 0, 0b11010, "fcvtns">;
4289 defm FCVTNU : SIMDFPTwoScalar< 1, 0, 0b11010, "fcvtnu">;
4290 defm FCVTPS : SIMDFPTwoScalar< 0, 1, 0b11010, "fcvtps">;
4291 defm FCVTPU : SIMDFPTwoScalar< 1, 1, 0b11010, "fcvtpu">;
4292 def FCVTXNv1i64 : SIMDInexactCvtTwoScalar<0b10110, "fcvtxn">;
4293 defm FCVTZS : SIMDFPTwoScalar< 0, 1, 0b11011, "fcvtzs">;
4294 defm FCVTZU : SIMDFPTwoScalar< 1, 1, 0b11011, "fcvtzu">;
4295 defm FRECPE : SIMDFPTwoScalar< 0, 1, 0b11101, "frecpe">;
4296 defm FRECPX : SIMDFPTwoScalar< 0, 1, 0b11111, "frecpx">;
4297 defm FRSQRTE : SIMDFPTwoScalar< 1, 1, 0b11101, "frsqrte">;
4298 defm NEG : SIMDTwoScalarD< 1, 0b01011, "neg",
4299 UnOpFrag<(sub immAllZerosV, node:$LHS)> >;
4300 defm SCVTF : SIMDFPTwoScalarCVT< 0, 0, 0b11101, "scvtf", AArch64sitof>;
4301 defm SQABS : SIMDTwoScalarBHSD< 0, 0b00111, "sqabs", int_aarch64_neon_sqabs>;
4302 defm SQNEG : SIMDTwoScalarBHSD< 1, 0b00111, "sqneg", int_aarch64_neon_sqneg>;
4303 defm SQXTN : SIMDTwoScalarMixedBHS< 0, 0b10100, "sqxtn", int_aarch64_neon_scalar_sqxtn>;
4304 defm SQXTUN : SIMDTwoScalarMixedBHS< 1, 0b10010, "sqxtun", int_aarch64_neon_scalar_sqxtun>;
4305 defm SUQADD : SIMDTwoScalarBHSDTied< 0, 0b00011, "suqadd",
4306 int_aarch64_neon_suqadd>;
4307 defm UCVTF : SIMDFPTwoScalarCVT< 1, 0, 0b11101, "ucvtf", AArch64uitof>;
4308 defm UQXTN : SIMDTwoScalarMixedBHS<1, 0b10100, "uqxtn", int_aarch64_neon_scalar_uqxtn>;
4309 defm USQADD : SIMDTwoScalarBHSDTied< 1, 0b00011, "usqadd",
4310 int_aarch64_neon_usqadd>;
4312 def : Pat<(AArch64neg (v1i64 V64:$Rn)), (NEGv1i64 V64:$Rn)>;
4314 def : Pat<(v1i64 (int_aarch64_neon_fcvtas (v1f64 FPR64:$Rn))),
4315 (FCVTASv1i64 FPR64:$Rn)>;
4316 def : Pat<(v1i64 (int_aarch64_neon_fcvtau (v1f64 FPR64:$Rn))),
4317 (FCVTAUv1i64 FPR64:$Rn)>;
4318 def : Pat<(v1i64 (int_aarch64_neon_fcvtms (v1f64 FPR64:$Rn))),
4319 (FCVTMSv1i64 FPR64:$Rn)>;
4320 def : Pat<(v1i64 (int_aarch64_neon_fcvtmu (v1f64 FPR64:$Rn))),
4321 (FCVTMUv1i64 FPR64:$Rn)>;
4322 def : Pat<(v1i64 (int_aarch64_neon_fcvtns (v1f64 FPR64:$Rn))),
4323 (FCVTNSv1i64 FPR64:$Rn)>;
4324 def : Pat<(v1i64 (int_aarch64_neon_fcvtnu (v1f64 FPR64:$Rn))),
4325 (FCVTNUv1i64 FPR64:$Rn)>;
4326 def : Pat<(v1i64 (int_aarch64_neon_fcvtps (v1f64 FPR64:$Rn))),
4327 (FCVTPSv1i64 FPR64:$Rn)>;
4328 def : Pat<(v1i64 (int_aarch64_neon_fcvtpu (v1f64 FPR64:$Rn))),
4329 (FCVTPUv1i64 FPR64:$Rn)>;
4331 def : Pat<(f16 (int_aarch64_neon_frecpe (f16 FPR16:$Rn))),
4332 (FRECPEv1f16 FPR16:$Rn)>;
4333 def : Pat<(f32 (int_aarch64_neon_frecpe (f32 FPR32:$Rn))),
4334 (FRECPEv1i32 FPR32:$Rn)>;
4335 def : Pat<(f64 (int_aarch64_neon_frecpe (f64 FPR64:$Rn))),
4336 (FRECPEv1i64 FPR64:$Rn)>;
4337 def : Pat<(v1f64 (int_aarch64_neon_frecpe (v1f64 FPR64:$Rn))),
4338 (FRECPEv1i64 FPR64:$Rn)>;
4340 def : Pat<(f32 (AArch64frecpe (f32 FPR32:$Rn))),
4341 (FRECPEv1i32 FPR32:$Rn)>;
4342 def : Pat<(v2f32 (AArch64frecpe (v2f32 V64:$Rn))),
4343 (FRECPEv2f32 V64:$Rn)>;
4344 def : Pat<(v4f32 (AArch64frecpe (v4f32 FPR128:$Rn))),
4345 (FRECPEv4f32 FPR128:$Rn)>;
4346 def : Pat<(f64 (AArch64frecpe (f64 FPR64:$Rn))),
4347 (FRECPEv1i64 FPR64:$Rn)>;
4348 def : Pat<(v1f64 (AArch64frecpe (v1f64 FPR64:$Rn))),
4349 (FRECPEv1i64 FPR64:$Rn)>;
4350 def : Pat<(v2f64 (AArch64frecpe (v2f64 FPR128:$Rn))),
4351 (FRECPEv2f64 FPR128:$Rn)>;
4353 def : Pat<(f32 (AArch64frecps (f32 FPR32:$Rn), (f32 FPR32:$Rm))),
4354 (FRECPS32 FPR32:$Rn, FPR32:$Rm)>;
4355 def : Pat<(v2f32 (AArch64frecps (v2f32 V64:$Rn), (v2f32 V64:$Rm))),
4356 (FRECPSv2f32 V64:$Rn, V64:$Rm)>;
4357 def : Pat<(v4f32 (AArch64frecps (v4f32 FPR128:$Rn), (v4f32 FPR128:$Rm))),
4358 (FRECPSv4f32 FPR128:$Rn, FPR128:$Rm)>;
4359 def : Pat<(f64 (AArch64frecps (f64 FPR64:$Rn), (f64 FPR64:$Rm))),
4360 (FRECPS64 FPR64:$Rn, FPR64:$Rm)>;
4361 def : Pat<(v2f64 (AArch64frecps (v2f64 FPR128:$Rn), (v2f64 FPR128:$Rm))),
4362 (FRECPSv2f64 FPR128:$Rn, FPR128:$Rm)>;
4364 def : Pat<(f16 (int_aarch64_neon_frecpx (f16 FPR16:$Rn))),
4365 (FRECPXv1f16 FPR16:$Rn)>;
4366 def : Pat<(f32 (int_aarch64_neon_frecpx (f32 FPR32:$Rn))),
4367 (FRECPXv1i32 FPR32:$Rn)>;
4368 def : Pat<(f64 (int_aarch64_neon_frecpx (f64 FPR64:$Rn))),
4369 (FRECPXv1i64 FPR64:$Rn)>;
4371 def : Pat<(f16 (int_aarch64_neon_frsqrte (f16 FPR16:$Rn))),
4372 (FRSQRTEv1f16 FPR16:$Rn)>;
4373 def : Pat<(f32 (int_aarch64_neon_frsqrte (f32 FPR32:$Rn))),
4374 (FRSQRTEv1i32 FPR32:$Rn)>;
4375 def : Pat<(f64 (int_aarch64_neon_frsqrte (f64 FPR64:$Rn))),
4376 (FRSQRTEv1i64 FPR64:$Rn)>;
4377 def : Pat<(v1f64 (int_aarch64_neon_frsqrte (v1f64 FPR64:$Rn))),
4378 (FRSQRTEv1i64 FPR64:$Rn)>;
4380 def : Pat<(f32 (AArch64frsqrte (f32 FPR32:$Rn))),
4381 (FRSQRTEv1i32 FPR32:$Rn)>;
4382 def : Pat<(v2f32 (AArch64frsqrte (v2f32 V64:$Rn))),
4383 (FRSQRTEv2f32 V64:$Rn)>;
4384 def : Pat<(v4f32 (AArch64frsqrte (v4f32 FPR128:$Rn))),
4385 (FRSQRTEv4f32 FPR128:$Rn)>;
4386 def : Pat<(f64 (AArch64frsqrte (f64 FPR64:$Rn))),
4387 (FRSQRTEv1i64 FPR64:$Rn)>;
4388 def : Pat<(v1f64 (AArch64frsqrte (v1f64 FPR64:$Rn))),
4389 (FRSQRTEv1i64 FPR64:$Rn)>;
4390 def : Pat<(v2f64 (AArch64frsqrte (v2f64 FPR128:$Rn))),
4391 (FRSQRTEv2f64 FPR128:$Rn)>;
4393 def : Pat<(f32 (AArch64frsqrts (f32 FPR32:$Rn), (f32 FPR32:$Rm))),
4394 (FRSQRTS32 FPR32:$Rn, FPR32:$Rm)>;
4395 def : Pat<(v2f32 (AArch64frsqrts (v2f32 V64:$Rn), (v2f32 V64:$Rm))),
4396 (FRSQRTSv2f32 V64:$Rn, V64:$Rm)>;
4397 def : Pat<(v4f32 (AArch64frsqrts (v4f32 FPR128:$Rn), (v4f32 FPR128:$Rm))),
4398 (FRSQRTSv4f32 FPR128:$Rn, FPR128:$Rm)>;
4399 def : Pat<(f64 (AArch64frsqrts (f64 FPR64:$Rn), (f64 FPR64:$Rm))),
4400 (FRSQRTS64 FPR64:$Rn, FPR64:$Rm)>;
4401 def : Pat<(v2f64 (AArch64frsqrts (v2f64 FPR128:$Rn), (v2f64 FPR128:$Rm))),
4402 (FRSQRTSv2f64 FPR128:$Rn, FPR128:$Rm)>;
4404 // If an integer is about to be converted to a floating point value,
4405 // just load it on the floating point unit.
4406 // Here are the patterns for 8 and 16-bits to float.
4408 multiclass UIntToFPROLoadPat<ValueType DstTy, ValueType SrcTy,
4409 SDPatternOperator loadop, Instruction UCVTF,
4410 ROAddrMode ro, Instruction LDRW, Instruction LDRX,
4412 def : Pat<(DstTy (uint_to_fp (SrcTy
4413 (loadop (ro.Wpat GPR64sp:$Rn, GPR32:$Rm,
4414 ro.Wext:$extend))))),
4415 (UCVTF (INSERT_SUBREG (DstTy (IMPLICIT_DEF)),
4416 (LDRW GPR64sp:$Rn, GPR32:$Rm, ro.Wext:$extend),
4419 def : Pat<(DstTy (uint_to_fp (SrcTy
4420 (loadop (ro.Xpat GPR64sp:$Rn, GPR64:$Rm,
4421 ro.Wext:$extend))))),
4422 (UCVTF (INSERT_SUBREG (DstTy (IMPLICIT_DEF)),
4423 (LDRX GPR64sp:$Rn, GPR64:$Rm, ro.Xext:$extend),
4427 defm : UIntToFPROLoadPat<f32, i32, zextloadi8,
4428 UCVTFv1i32, ro8, LDRBroW, LDRBroX, bsub>;
4429 def : Pat <(f32 (uint_to_fp (i32
4430 (zextloadi8 (am_indexed8 GPR64sp:$Rn, uimm12s1:$offset))))),
4431 (UCVTFv1i32 (INSERT_SUBREG (f32 (IMPLICIT_DEF)),
4432 (LDRBui GPR64sp:$Rn, uimm12s1:$offset), bsub))>;
4433 def : Pat <(f32 (uint_to_fp (i32
4434 (zextloadi8 (am_unscaled8 GPR64sp:$Rn, simm9:$offset))))),
4435 (UCVTFv1i32 (INSERT_SUBREG (f32 (IMPLICIT_DEF)),
4436 (LDURBi GPR64sp:$Rn, simm9:$offset), bsub))>;
4437 // 16-bits -> float.
4438 defm : UIntToFPROLoadPat<f32, i32, zextloadi16,
4439 UCVTFv1i32, ro16, LDRHroW, LDRHroX, hsub>;
4440 def : Pat <(f32 (uint_to_fp (i32
4441 (zextloadi16 (am_indexed16 GPR64sp:$Rn, uimm12s2:$offset))))),
4442 (UCVTFv1i32 (INSERT_SUBREG (f32 (IMPLICIT_DEF)),
4443 (LDRHui GPR64sp:$Rn, uimm12s2:$offset), hsub))>;
4444 def : Pat <(f32 (uint_to_fp (i32
4445 (zextloadi16 (am_unscaled16 GPR64sp:$Rn, simm9:$offset))))),
4446 (UCVTFv1i32 (INSERT_SUBREG (f32 (IMPLICIT_DEF)),
4447 (LDURHi GPR64sp:$Rn, simm9:$offset), hsub))>;
4448 // 32-bits are handled in target specific dag combine:
4449 // performIntToFpCombine.
4450 // 64-bits integer to 32-bits floating point, not possible with
4451 // UCVTF on floating point registers (both source and destination
4452 // must have the same size).
4454 // Here are the patterns for 8, 16, 32, and 64-bits to double.
4455 // 8-bits -> double.
4456 defm : UIntToFPROLoadPat<f64, i32, zextloadi8,
4457 UCVTFv1i64, ro8, LDRBroW, LDRBroX, bsub>;
4458 def : Pat <(f64 (uint_to_fp (i32
4459 (zextloadi8 (am_indexed8 GPR64sp:$Rn, uimm12s1:$offset))))),
4460 (UCVTFv1i64 (INSERT_SUBREG (f64 (IMPLICIT_DEF)),
4461 (LDRBui GPR64sp:$Rn, uimm12s1:$offset), bsub))>;
4462 def : Pat <(f64 (uint_to_fp (i32
4463 (zextloadi8 (am_unscaled8 GPR64sp:$Rn, simm9:$offset))))),
4464 (UCVTFv1i64 (INSERT_SUBREG (f64 (IMPLICIT_DEF)),
4465 (LDURBi GPR64sp:$Rn, simm9:$offset), bsub))>;
4466 // 16-bits -> double.
4467 defm : UIntToFPROLoadPat<f64, i32, zextloadi16,
4468 UCVTFv1i64, ro16, LDRHroW, LDRHroX, hsub>;
4469 def : Pat <(f64 (uint_to_fp (i32
4470 (zextloadi16 (am_indexed16 GPR64sp:$Rn, uimm12s2:$offset))))),
4471 (UCVTFv1i64 (INSERT_SUBREG (f64 (IMPLICIT_DEF)),
4472 (LDRHui GPR64sp:$Rn, uimm12s2:$offset), hsub))>;
4473 def : Pat <(f64 (uint_to_fp (i32
4474 (zextloadi16 (am_unscaled16 GPR64sp:$Rn, simm9:$offset))))),
4475 (UCVTFv1i64 (INSERT_SUBREG (f64 (IMPLICIT_DEF)),
4476 (LDURHi GPR64sp:$Rn, simm9:$offset), hsub))>;
4477 // 32-bits -> double.
4478 defm : UIntToFPROLoadPat<f64, i32, load,
4479 UCVTFv1i64, ro32, LDRSroW, LDRSroX, ssub>;
4480 def : Pat <(f64 (uint_to_fp (i32
4481 (load (am_indexed32 GPR64sp:$Rn, uimm12s4:$offset))))),
4482 (UCVTFv1i64 (INSERT_SUBREG (f64 (IMPLICIT_DEF)),
4483 (LDRSui GPR64sp:$Rn, uimm12s4:$offset), ssub))>;
4484 def : Pat <(f64 (uint_to_fp (i32
4485 (load (am_unscaled32 GPR64sp:$Rn, simm9:$offset))))),
4486 (UCVTFv1i64 (INSERT_SUBREG (f64 (IMPLICIT_DEF)),
4487 (LDURSi GPR64sp:$Rn, simm9:$offset), ssub))>;
4488 // 64-bits -> double are handled in target specific dag combine:
4489 // performIntToFpCombine.
4491 //===----------------------------------------------------------------------===//
4492 // Advanced SIMD three different-sized vector instructions.
4493 //===----------------------------------------------------------------------===//
4495 defm ADDHN : SIMDNarrowThreeVectorBHS<0,0b0100,"addhn", int_aarch64_neon_addhn>;
4496 defm SUBHN : SIMDNarrowThreeVectorBHS<0,0b0110,"subhn", int_aarch64_neon_subhn>;
4497 defm RADDHN : SIMDNarrowThreeVectorBHS<1,0b0100,"raddhn",int_aarch64_neon_raddhn>;
4498 defm RSUBHN : SIMDNarrowThreeVectorBHS<1,0b0110,"rsubhn",int_aarch64_neon_rsubhn>;
4499 defm PMULL : SIMDDifferentThreeVectorBD<0,0b1110,"pmull",int_aarch64_neon_pmull>;
4500 defm SABAL : SIMDLongThreeVectorTiedBHSabal<0,0b0101,"sabal",
4501 int_aarch64_neon_sabd>;
4502 defm SABDL : SIMDLongThreeVectorBHSabdl<0, 0b0111, "sabdl",
4503 int_aarch64_neon_sabd>;
4504 defm SADDL : SIMDLongThreeVectorBHS< 0, 0b0000, "saddl",
4505 BinOpFrag<(add (sext node:$LHS), (sext node:$RHS))>>;
4506 defm SADDW : SIMDWideThreeVectorBHS< 0, 0b0001, "saddw",
4507 BinOpFrag<(add node:$LHS, (sext node:$RHS))>>;
4508 defm SMLAL : SIMDLongThreeVectorTiedBHS<0, 0b1000, "smlal",
4509 TriOpFrag<(add node:$LHS, (int_aarch64_neon_smull node:$MHS, node:$RHS))>>;
4510 defm SMLSL : SIMDLongThreeVectorTiedBHS<0, 0b1010, "smlsl",
4511 TriOpFrag<(sub node:$LHS, (int_aarch64_neon_smull node:$MHS, node:$RHS))>>;
4512 defm SMULL : SIMDLongThreeVectorBHS<0, 0b1100, "smull", int_aarch64_neon_smull>;
4513 defm SQDMLAL : SIMDLongThreeVectorSQDMLXTiedHS<0, 0b1001, "sqdmlal",
4514 int_aarch64_neon_sqadd>;
4515 defm SQDMLSL : SIMDLongThreeVectorSQDMLXTiedHS<0, 0b1011, "sqdmlsl",
4516 int_aarch64_neon_sqsub>;
4517 defm SQDMULL : SIMDLongThreeVectorHS<0, 0b1101, "sqdmull",
4518 int_aarch64_neon_sqdmull>;
4519 defm SSUBL : SIMDLongThreeVectorBHS<0, 0b0010, "ssubl",
4520 BinOpFrag<(sub (sext node:$LHS), (sext node:$RHS))>>;
4521 defm SSUBW : SIMDWideThreeVectorBHS<0, 0b0011, "ssubw",
4522 BinOpFrag<(sub node:$LHS, (sext node:$RHS))>>;
4523 defm UABAL : SIMDLongThreeVectorTiedBHSabal<1, 0b0101, "uabal",
4524 int_aarch64_neon_uabd>;
4525 defm UADDL : SIMDLongThreeVectorBHS<1, 0b0000, "uaddl",
4526 BinOpFrag<(add (zext node:$LHS), (zext node:$RHS))>>;
4527 defm UADDW : SIMDWideThreeVectorBHS<1, 0b0001, "uaddw",
4528 BinOpFrag<(add node:$LHS, (zext node:$RHS))>>;
4529 defm UMLAL : SIMDLongThreeVectorTiedBHS<1, 0b1000, "umlal",
4530 TriOpFrag<(add node:$LHS, (int_aarch64_neon_umull node:$MHS, node:$RHS))>>;
4531 defm UMLSL : SIMDLongThreeVectorTiedBHS<1, 0b1010, "umlsl",
4532 TriOpFrag<(sub node:$LHS, (int_aarch64_neon_umull node:$MHS, node:$RHS))>>;
4533 defm UMULL : SIMDLongThreeVectorBHS<1, 0b1100, "umull", int_aarch64_neon_umull>;
4534 defm USUBL : SIMDLongThreeVectorBHS<1, 0b0010, "usubl",
4535 BinOpFrag<(sub (zext node:$LHS), (zext node:$RHS))>>;
4536 defm USUBW : SIMDWideThreeVectorBHS< 1, 0b0011, "usubw",
4537 BinOpFrag<(sub node:$LHS, (zext node:$RHS))>>;
4539 // Additional patterns for SMULL and UMULL
4540 multiclass Neon_mul_widen_patterns<SDPatternOperator opnode,
4541 Instruction INST8B, Instruction INST4H, Instruction INST2S> {
4542 def : Pat<(v8i16 (opnode (v8i8 V64:$Rn), (v8i8 V64:$Rm))),
4543 (INST8B V64:$Rn, V64:$Rm)>;
4544 def : Pat<(v4i32 (opnode (v4i16 V64:$Rn), (v4i16 V64:$Rm))),
4545 (INST4H V64:$Rn, V64:$Rm)>;
4546 def : Pat<(v2i64 (opnode (v2i32 V64:$Rn), (v2i32 V64:$Rm))),
4547 (INST2S V64:$Rn, V64:$Rm)>;
4550 defm : Neon_mul_widen_patterns<AArch64smull, SMULLv8i8_v8i16,
4551 SMULLv4i16_v4i32, SMULLv2i32_v2i64>;
4552 defm : Neon_mul_widen_patterns<AArch64umull, UMULLv8i8_v8i16,
4553 UMULLv4i16_v4i32, UMULLv2i32_v2i64>;
4555 // Patterns for smull2/umull2.
4556 multiclass Neon_mul_high_patterns<SDPatternOperator opnode,
4557 Instruction INST8B, Instruction INST4H, Instruction INST2S> {
4558 def : Pat<(v8i16 (opnode (extract_high_v16i8 V128:$Rn),
4559 (extract_high_v16i8 V128:$Rm))),
4560 (INST8B V128:$Rn, V128:$Rm)>;
4561 def : Pat<(v4i32 (opnode (extract_high_v8i16 V128:$Rn),
4562 (extract_high_v8i16 V128:$Rm))),
4563 (INST4H V128:$Rn, V128:$Rm)>;
4564 def : Pat<(v2i64 (opnode (extract_high_v4i32 V128:$Rn),
4565 (extract_high_v4i32 V128:$Rm))),
4566 (INST2S V128:$Rn, V128:$Rm)>;
4569 defm : Neon_mul_high_patterns<AArch64smull, SMULLv16i8_v8i16,
4570 SMULLv8i16_v4i32, SMULLv4i32_v2i64>;
4571 defm : Neon_mul_high_patterns<AArch64umull, UMULLv16i8_v8i16,
4572 UMULLv8i16_v4i32, UMULLv4i32_v2i64>;
4574 // Additional patterns for SMLAL/SMLSL and UMLAL/UMLSL
4575 multiclass Neon_mulacc_widen_patterns<SDPatternOperator opnode,
4576 Instruction INST8B, Instruction INST4H, Instruction INST2S> {
4577 def : Pat<(v8i16 (opnode (v8i16 V128:$Rd), (v8i8 V64:$Rn), (v8i8 V64:$Rm))),
4578 (INST8B V128:$Rd, V64:$Rn, V64:$Rm)>;
4579 def : Pat<(v4i32 (opnode (v4i32 V128:$Rd), (v4i16 V64:$Rn), (v4i16 V64:$Rm))),
4580 (INST4H V128:$Rd, V64:$Rn, V64:$Rm)>;
4581 def : Pat<(v2i64 (opnode (v2i64 V128:$Rd), (v2i32 V64:$Rn), (v2i32 V64:$Rm))),
4582 (INST2S V128:$Rd, V64:$Rn, V64:$Rm)>;
4585 defm : Neon_mulacc_widen_patterns<
4586 TriOpFrag<(add node:$LHS, (AArch64smull node:$MHS, node:$RHS))>,
4587 SMLALv8i8_v8i16, SMLALv4i16_v4i32, SMLALv2i32_v2i64>;
4588 defm : Neon_mulacc_widen_patterns<
4589 TriOpFrag<(add node:$LHS, (AArch64umull node:$MHS, node:$RHS))>,
4590 UMLALv8i8_v8i16, UMLALv4i16_v4i32, UMLALv2i32_v2i64>;
4591 defm : Neon_mulacc_widen_patterns<
4592 TriOpFrag<(sub node:$LHS, (AArch64smull node:$MHS, node:$RHS))>,
4593 SMLSLv8i8_v8i16, SMLSLv4i16_v4i32, SMLSLv2i32_v2i64>;
4594 defm : Neon_mulacc_widen_patterns<
4595 TriOpFrag<(sub node:$LHS, (AArch64umull node:$MHS, node:$RHS))>,
4596 UMLSLv8i8_v8i16, UMLSLv4i16_v4i32, UMLSLv2i32_v2i64>;
4598 // Patterns for 64-bit pmull
4599 def : Pat<(int_aarch64_neon_pmull64 V64:$Rn, V64:$Rm),
4600 (PMULLv1i64 V64:$Rn, V64:$Rm)>;
4601 def : Pat<(int_aarch64_neon_pmull64 (extractelt (v2i64 V128:$Rn), (i64 1)),
4602 (extractelt (v2i64 V128:$Rm), (i64 1))),
4603 (PMULLv2i64 V128:$Rn, V128:$Rm)>;
4605 // CodeGen patterns for addhn and subhn instructions, which can actually be
4606 // written in LLVM IR without too much difficulty.
4609 def : Pat<(v8i8 (trunc (v8i16 (AArch64vlshr (add V128:$Rn, V128:$Rm), (i32 8))))),
4610 (ADDHNv8i16_v8i8 V128:$Rn, V128:$Rm)>;
4611 def : Pat<(v4i16 (trunc (v4i32 (AArch64vlshr (add V128:$Rn, V128:$Rm),
4613 (ADDHNv4i32_v4i16 V128:$Rn, V128:$Rm)>;
4614 def : Pat<(v2i32 (trunc (v2i64 (AArch64vlshr (add V128:$Rn, V128:$Rm),
4616 (ADDHNv2i64_v2i32 V128:$Rn, V128:$Rm)>;
4617 def : Pat<(concat_vectors (v8i8 V64:$Rd),
4618 (trunc (v8i16 (AArch64vlshr (add V128:$Rn, V128:$Rm),
4620 (ADDHNv8i16_v16i8 (SUBREG_TO_REG (i32 0), V64:$Rd, dsub),
4621 V128:$Rn, V128:$Rm)>;
4622 def : Pat<(concat_vectors (v4i16 V64:$Rd),
4623 (trunc (v4i32 (AArch64vlshr (add V128:$Rn, V128:$Rm),
4625 (ADDHNv4i32_v8i16 (SUBREG_TO_REG (i32 0), V64:$Rd, dsub),
4626 V128:$Rn, V128:$Rm)>;
4627 def : Pat<(concat_vectors (v2i32 V64:$Rd),
4628 (trunc (v2i64 (AArch64vlshr (add V128:$Rn, V128:$Rm),
4630 (ADDHNv2i64_v4i32 (SUBREG_TO_REG (i32 0), V64:$Rd, dsub),
4631 V128:$Rn, V128:$Rm)>;
4634 def : Pat<(v8i8 (trunc (v8i16 (AArch64vlshr (sub V128:$Rn, V128:$Rm), (i32 8))))),
4635 (SUBHNv8i16_v8i8 V128:$Rn, V128:$Rm)>;
4636 def : Pat<(v4i16 (trunc (v4i32 (AArch64vlshr (sub V128:$Rn, V128:$Rm),
4638 (SUBHNv4i32_v4i16 V128:$Rn, V128:$Rm)>;
4639 def : Pat<(v2i32 (trunc (v2i64 (AArch64vlshr (sub V128:$Rn, V128:$Rm),
4641 (SUBHNv2i64_v2i32 V128:$Rn, V128:$Rm)>;
4642 def : Pat<(concat_vectors (v8i8 V64:$Rd),
4643 (trunc (v8i16 (AArch64vlshr (sub V128:$Rn, V128:$Rm),
4645 (SUBHNv8i16_v16i8 (SUBREG_TO_REG (i32 0), V64:$Rd, dsub),
4646 V128:$Rn, V128:$Rm)>;
4647 def : Pat<(concat_vectors (v4i16 V64:$Rd),
4648 (trunc (v4i32 (AArch64vlshr (sub V128:$Rn, V128:$Rm),
4650 (SUBHNv4i32_v8i16 (SUBREG_TO_REG (i32 0), V64:$Rd, dsub),
4651 V128:$Rn, V128:$Rm)>;
4652 def : Pat<(concat_vectors (v2i32 V64:$Rd),
4653 (trunc (v2i64 (AArch64vlshr (sub V128:$Rn, V128:$Rm),
4655 (SUBHNv2i64_v4i32 (SUBREG_TO_REG (i32 0), V64:$Rd, dsub),
4656 V128:$Rn, V128:$Rm)>;
4658 //----------------------------------------------------------------------------
4659 // AdvSIMD bitwise extract from vector instruction.
4660 //----------------------------------------------------------------------------
4662 defm EXT : SIMDBitwiseExtract<"ext">;
4664 def AdjustExtImm : SDNodeXForm<imm, [{
4665 return CurDAG->getTargetConstant(8 + N->getZExtValue(), SDLoc(N), MVT::i32);
4667 multiclass ExtPat<ValueType VT64, ValueType VT128, int N> {
4668 def : Pat<(VT64 (AArch64ext V64:$Rn, V64:$Rm, (i32 imm:$imm))),
4669 (EXTv8i8 V64:$Rn, V64:$Rm, imm:$imm)>;
4670 def : Pat<(VT128 (AArch64ext V128:$Rn, V128:$Rm, (i32 imm:$imm))),
4671 (EXTv16i8 V128:$Rn, V128:$Rm, imm:$imm)>;
4672 // We use EXT to handle extract_subvector to copy the upper 64-bits of a
4674 def : Pat<(VT64 (extract_subvector V128:$Rn, (i64 N))),
4675 (EXTRACT_SUBREG (EXTv16i8 V128:$Rn, V128:$Rn, 8), dsub)>;
4676 // A 64-bit EXT of two halves of the same 128-bit register can be done as a
4677 // single 128-bit EXT.
4678 def : Pat<(VT64 (AArch64ext (extract_subvector V128:$Rn, (i64 0)),
4679 (extract_subvector V128:$Rn, (i64 N)),
4681 (EXTRACT_SUBREG (EXTv16i8 V128:$Rn, V128:$Rn, imm:$imm), dsub)>;
4682 // A 64-bit EXT of the high half of a 128-bit register can be done using a
4683 // 128-bit EXT of the whole register with an adjustment to the immediate. The
4684 // top half of the other operand will be unset, but that doesn't matter as it
4685 // will not be used.
4686 def : Pat<(VT64 (AArch64ext (extract_subvector V128:$Rn, (i64 N)),
4689 (EXTRACT_SUBREG (EXTv16i8 V128:$Rn,
4690 (SUBREG_TO_REG (i32 0), V64:$Rm, dsub),
4691 (AdjustExtImm imm:$imm)), dsub)>;
4694 defm : ExtPat<v8i8, v16i8, 8>;
4695 defm : ExtPat<v4i16, v8i16, 4>;
4696 defm : ExtPat<v4f16, v8f16, 4>;
4697 defm : ExtPat<v2i32, v4i32, 2>;
4698 defm : ExtPat<v2f32, v4f32, 2>;
4699 defm : ExtPat<v1i64, v2i64, 1>;
4700 defm : ExtPat<v1f64, v2f64, 1>;
4702 //----------------------------------------------------------------------------
4703 // AdvSIMD zip vector
4704 //----------------------------------------------------------------------------
4706 defm TRN1 : SIMDZipVector<0b010, "trn1", AArch64trn1>;
4707 defm TRN2 : SIMDZipVector<0b110, "trn2", AArch64trn2>;
4708 defm UZP1 : SIMDZipVector<0b001, "uzp1", AArch64uzp1>;
4709 defm UZP2 : SIMDZipVector<0b101, "uzp2", AArch64uzp2>;
4710 defm ZIP1 : SIMDZipVector<0b011, "zip1", AArch64zip1>;
4711 defm ZIP2 : SIMDZipVector<0b111, "zip2", AArch64zip2>;
4713 //----------------------------------------------------------------------------
4714 // AdvSIMD TBL/TBX instructions
4715 //----------------------------------------------------------------------------
4717 defm TBL : SIMDTableLookup< 0, "tbl">;
4718 defm TBX : SIMDTableLookupTied<1, "tbx">;
4720 def : Pat<(v8i8 (int_aarch64_neon_tbl1 (v16i8 VecListOne128:$Rn), (v8i8 V64:$Ri))),
4721 (TBLv8i8One VecListOne128:$Rn, V64:$Ri)>;
4722 def : Pat<(v16i8 (int_aarch64_neon_tbl1 (v16i8 V128:$Ri), (v16i8 V128:$Rn))),
4723 (TBLv16i8One V128:$Ri, V128:$Rn)>;
4725 def : Pat<(v8i8 (int_aarch64_neon_tbx1 (v8i8 V64:$Rd),
4726 (v16i8 VecListOne128:$Rn), (v8i8 V64:$Ri))),
4727 (TBXv8i8One V64:$Rd, VecListOne128:$Rn, V64:$Ri)>;
4728 def : Pat<(v16i8 (int_aarch64_neon_tbx1 (v16i8 V128:$Rd),
4729 (v16i8 V128:$Ri), (v16i8 V128:$Rn))),
4730 (TBXv16i8One V128:$Rd, V128:$Ri, V128:$Rn)>;
4733 //----------------------------------------------------------------------------
4734 // AdvSIMD scalar CPY instruction
4735 //----------------------------------------------------------------------------
4737 defm CPY : SIMDScalarCPY<"cpy">;
4739 //----------------------------------------------------------------------------
4740 // AdvSIMD scalar pairwise instructions
4741 //----------------------------------------------------------------------------
4743 defm ADDP : SIMDPairwiseScalarD<0, 0b11011, "addp">;
4744 defm FADDP : SIMDFPPairwiseScalar<0, 0b01101, "faddp">;
4745 defm FMAXNMP : SIMDFPPairwiseScalar<0, 0b01100, "fmaxnmp">;
4746 defm FMAXP : SIMDFPPairwiseScalar<0, 0b01111, "fmaxp">;
4747 defm FMINNMP : SIMDFPPairwiseScalar<1, 0b01100, "fminnmp">;
4748 defm FMINP : SIMDFPPairwiseScalar<1, 0b01111, "fminp">;
4749 def : Pat<(v2i64 (AArch64saddv V128:$Rn)),
4750 (INSERT_SUBREG (v2i64 (IMPLICIT_DEF)), (ADDPv2i64p V128:$Rn), dsub)>;
4751 def : Pat<(v2i64 (AArch64uaddv V128:$Rn)),
4752 (INSERT_SUBREG (v2i64 (IMPLICIT_DEF)), (ADDPv2i64p V128:$Rn), dsub)>;
4753 def : Pat<(f32 (int_aarch64_neon_faddv (v2f32 V64:$Rn))),
4754 (FADDPv2i32p V64:$Rn)>;
4755 def : Pat<(f32 (int_aarch64_neon_faddv (v4f32 V128:$Rn))),
4756 (FADDPv2i32p (EXTRACT_SUBREG (FADDPv4f32 V128:$Rn, V128:$Rn), dsub))>;
4757 def : Pat<(f64 (int_aarch64_neon_faddv (v2f64 V128:$Rn))),
4758 (FADDPv2i64p V128:$Rn)>;
4759 def : Pat<(f32 (int_aarch64_neon_fmaxnmv (v2f32 V64:$Rn))),
4760 (FMAXNMPv2i32p V64:$Rn)>;
4761 def : Pat<(f64 (int_aarch64_neon_fmaxnmv (v2f64 V128:$Rn))),
4762 (FMAXNMPv2i64p V128:$Rn)>;
4763 def : Pat<(f32 (int_aarch64_neon_fmaxv (v2f32 V64:$Rn))),
4764 (FMAXPv2i32p V64:$Rn)>;
4765 def : Pat<(f64 (int_aarch64_neon_fmaxv (v2f64 V128:$Rn))),
4766 (FMAXPv2i64p V128:$Rn)>;
4767 def : Pat<(f32 (int_aarch64_neon_fminnmv (v2f32 V64:$Rn))),
4768 (FMINNMPv2i32p V64:$Rn)>;
4769 def : Pat<(f64 (int_aarch64_neon_fminnmv (v2f64 V128:$Rn))),
4770 (FMINNMPv2i64p V128:$Rn)>;
4771 def : Pat<(f32 (int_aarch64_neon_fminv (v2f32 V64:$Rn))),
4772 (FMINPv2i32p V64:$Rn)>;
4773 def : Pat<(f64 (int_aarch64_neon_fminv (v2f64 V128:$Rn))),
4774 (FMINPv2i64p V128:$Rn)>;
4776 //----------------------------------------------------------------------------
4777 // AdvSIMD INS/DUP instructions
4778 //----------------------------------------------------------------------------
4780 def DUPv8i8gpr : SIMDDupFromMain<0, {?,?,?,?,1}, ".8b", v8i8, V64, GPR32>;
4781 def DUPv16i8gpr : SIMDDupFromMain<1, {?,?,?,?,1}, ".16b", v16i8, V128, GPR32>;
4782 def DUPv4i16gpr : SIMDDupFromMain<0, {?,?,?,1,0}, ".4h", v4i16, V64, GPR32>;
4783 def DUPv8i16gpr : SIMDDupFromMain<1, {?,?,?,1,0}, ".8h", v8i16, V128, GPR32>;
4784 def DUPv2i32gpr : SIMDDupFromMain<0, {?,?,1,0,0}, ".2s", v2i32, V64, GPR32>;
4785 def DUPv4i32gpr : SIMDDupFromMain<1, {?,?,1,0,0}, ".4s", v4i32, V128, GPR32>;
4786 def DUPv2i64gpr : SIMDDupFromMain<1, {?,1,0,0,0}, ".2d", v2i64, V128, GPR64>;
4788 def DUPv2i64lane : SIMDDup64FromElement;
4789 def DUPv2i32lane : SIMDDup32FromElement<0, ".2s", v2i32, V64>;
4790 def DUPv4i32lane : SIMDDup32FromElement<1, ".4s", v4i32, V128>;
4791 def DUPv4i16lane : SIMDDup16FromElement<0, ".4h", v4i16, V64>;
4792 def DUPv8i16lane : SIMDDup16FromElement<1, ".8h", v8i16, V128>;
4793 def DUPv8i8lane : SIMDDup8FromElement <0, ".8b", v8i8, V64>;
4794 def DUPv16i8lane : SIMDDup8FromElement <1, ".16b", v16i8, V128>;
4796 // DUP from a 64-bit register to a 64-bit register is just a copy
4797 def : Pat<(v1i64 (AArch64dup (i64 GPR64:$Rn))),
4798 (COPY_TO_REGCLASS GPR64:$Rn, FPR64)>;
4799 def : Pat<(v1f64 (AArch64dup (f64 FPR64:$Rn))),
4800 (COPY_TO_REGCLASS FPR64:$Rn, FPR64)>;
4802 def : Pat<(v2f32 (AArch64dup (f32 FPR32:$Rn))),
4803 (v2f32 (DUPv2i32lane
4804 (INSERT_SUBREG (v4i32 (IMPLICIT_DEF)), FPR32:$Rn, ssub),
4806 def : Pat<(v4f32 (AArch64dup (f32 FPR32:$Rn))),
4807 (v4f32 (DUPv4i32lane
4808 (INSERT_SUBREG (v4i32 (IMPLICIT_DEF)), FPR32:$Rn, ssub),
4810 def : Pat<(v2f64 (AArch64dup (f64 FPR64:$Rn))),
4811 (v2f64 (DUPv2i64lane
4812 (INSERT_SUBREG (v4i32 (IMPLICIT_DEF)), FPR64:$Rn, dsub),
4814 def : Pat<(v4f16 (AArch64dup (f16 FPR16:$Rn))),
4815 (v4f16 (DUPv4i16lane
4816 (INSERT_SUBREG (v8i16 (IMPLICIT_DEF)), FPR16:$Rn, hsub),
4818 def : Pat<(v8f16 (AArch64dup (f16 FPR16:$Rn))),
4819 (v8f16 (DUPv8i16lane
4820 (INSERT_SUBREG (v8i16 (IMPLICIT_DEF)), FPR16:$Rn, hsub),
4823 def : Pat<(v4f16 (AArch64duplane16 (v8f16 V128:$Rn), VectorIndexH:$imm)),
4824 (DUPv4i16lane V128:$Rn, VectorIndexH:$imm)>;
4825 def : Pat<(v8f16 (AArch64duplane16 (v8f16 V128:$Rn), VectorIndexH:$imm)),
4826 (DUPv8i16lane V128:$Rn, VectorIndexH:$imm)>;
4828 def : Pat<(v2f32 (AArch64duplane32 (v4f32 V128:$Rn), VectorIndexS:$imm)),
4829 (DUPv2i32lane V128:$Rn, VectorIndexS:$imm)>;
4830 def : Pat<(v4f32 (AArch64duplane32 (v4f32 V128:$Rn), VectorIndexS:$imm)),
4831 (DUPv4i32lane V128:$Rn, VectorIndexS:$imm)>;
4832 def : Pat<(v2f64 (AArch64duplane64 (v2f64 V128:$Rn), VectorIndexD:$imm)),
4833 (DUPv2i64lane V128:$Rn, VectorIndexD:$imm)>;
4835 // If there's an (AArch64dup (vector_extract ...) ...), we can use a duplane
4836 // instruction even if the types don't match: we just have to remap the lane
4837 // carefully. N.b. this trick only applies to truncations.
4838 def VecIndex_x2 : SDNodeXForm<imm, [{
4839 return CurDAG->getTargetConstant(2 * N->getZExtValue(), SDLoc(N), MVT::i64);
4841 def VecIndex_x4 : SDNodeXForm<imm, [{
4842 return CurDAG->getTargetConstant(4 * N->getZExtValue(), SDLoc(N), MVT::i64);
4844 def VecIndex_x8 : SDNodeXForm<imm, [{
4845 return CurDAG->getTargetConstant(8 * N->getZExtValue(), SDLoc(N), MVT::i64);
4848 multiclass DUPWithTruncPats<ValueType ResVT, ValueType Src64VT,
4849 ValueType Src128VT, ValueType ScalVT,
4850 Instruction DUP, SDNodeXForm IdxXFORM> {
4851 def : Pat<(ResVT (AArch64dup (ScalVT (vector_extract (Src128VT V128:$Rn),
4853 (DUP V128:$Rn, (IdxXFORM imm:$idx))>;
4855 def : Pat<(ResVT (AArch64dup (ScalVT (vector_extract (Src64VT V64:$Rn),
4857 (DUP (SUBREG_TO_REG (i64 0), V64:$Rn, dsub), (IdxXFORM imm:$idx))>;
4860 defm : DUPWithTruncPats<v8i8, v4i16, v8i16, i32, DUPv8i8lane, VecIndex_x2>;
4861 defm : DUPWithTruncPats<v8i8, v2i32, v4i32, i32, DUPv8i8lane, VecIndex_x4>;
4862 defm : DUPWithTruncPats<v4i16, v2i32, v4i32, i32, DUPv4i16lane, VecIndex_x2>;
4864 defm : DUPWithTruncPats<v16i8, v4i16, v8i16, i32, DUPv16i8lane, VecIndex_x2>;
4865 defm : DUPWithTruncPats<v16i8, v2i32, v4i32, i32, DUPv16i8lane, VecIndex_x4>;
4866 defm : DUPWithTruncPats<v8i16, v2i32, v4i32, i32, DUPv8i16lane, VecIndex_x2>;
4868 multiclass DUPWithTrunci64Pats<ValueType ResVT, Instruction DUP,
4869 SDNodeXForm IdxXFORM> {
4870 def : Pat<(ResVT (AArch64dup (i32 (trunc (extractelt (v2i64 V128:$Rn),
4872 (DUP V128:$Rn, (IdxXFORM imm:$idx))>;
4874 def : Pat<(ResVT (AArch64dup (i32 (trunc (extractelt (v1i64 V64:$Rn),
4876 (DUP (SUBREG_TO_REG (i64 0), V64:$Rn, dsub), (IdxXFORM imm:$idx))>;
4879 defm : DUPWithTrunci64Pats<v8i8, DUPv8i8lane, VecIndex_x8>;
4880 defm : DUPWithTrunci64Pats<v4i16, DUPv4i16lane, VecIndex_x4>;
4881 defm : DUPWithTrunci64Pats<v2i32, DUPv2i32lane, VecIndex_x2>;
4883 defm : DUPWithTrunci64Pats<v16i8, DUPv16i8lane, VecIndex_x8>;
4884 defm : DUPWithTrunci64Pats<v8i16, DUPv8i16lane, VecIndex_x4>;
4885 defm : DUPWithTrunci64Pats<v4i32, DUPv4i32lane, VecIndex_x2>;
4887 // SMOV and UMOV definitions, with some extra patterns for convenience
4891 def : Pat<(sext_inreg (vector_extract (v16i8 V128:$Rn), VectorIndexB:$idx), i8),
4892 (i32 (SMOVvi8to32 V128:$Rn, VectorIndexB:$idx))>;
4893 def : Pat<(sext_inreg (vector_extract (v16i8 V128:$Rn), VectorIndexB:$idx), i8),
4894 (i64 (SMOVvi8to64 V128:$Rn, VectorIndexB:$idx))>;
4895 def : Pat<(sext_inreg (vector_extract (v8i16 V128:$Rn), VectorIndexH:$idx),i16),
4896 (i32 (SMOVvi16to32 V128:$Rn, VectorIndexH:$idx))>;
4897 def : Pat<(sext_inreg (vector_extract (v8i16 V128:$Rn), VectorIndexH:$idx),i16),
4898 (i64 (SMOVvi16to64 V128:$Rn, VectorIndexH:$idx))>;
4899 def : Pat<(sext_inreg (vector_extract (v8i16 V128:$Rn), VectorIndexH:$idx),i16),
4900 (i32 (SMOVvi16to32 V128:$Rn, VectorIndexH:$idx))>;
4901 def : Pat<(sext (i32 (vector_extract (v4i32 V128:$Rn), VectorIndexS:$idx))),
4902 (i64 (SMOVvi32to64 V128:$Rn, VectorIndexS:$idx))>;
4904 def : Pat<(sext_inreg (i64 (anyext (i32 (vector_extract (v16i8 V128:$Rn),
4905 VectorIndexB:$idx)))), i8),
4906 (i64 (SMOVvi8to64 V128:$Rn, VectorIndexB:$idx))>;
4907 def : Pat<(sext_inreg (i64 (anyext (i32 (vector_extract (v8i16 V128:$Rn),
4908 VectorIndexH:$idx)))), i16),
4909 (i64 (SMOVvi16to64 V128:$Rn, VectorIndexH:$idx))>;
4911 // Extracting i8 or i16 elements will have the zero-extend transformed to
4912 // an 'and' mask by type legalization since neither i8 nor i16 are legal types
4913 // for AArch64. Match these patterns here since UMOV already zeroes out the high
4914 // bits of the destination register.
4915 def : Pat<(and (vector_extract (v16i8 V128:$Rn), VectorIndexB:$idx),
4917 (i32 (UMOVvi8 V128:$Rn, VectorIndexB:$idx))>;
4918 def : Pat<(and (vector_extract (v8i16 V128:$Rn), VectorIndexH:$idx),
4920 (i32 (UMOVvi16 V128:$Rn, VectorIndexH:$idx))>;
4924 def : Pat<(v16i8 (scalar_to_vector GPR32:$Rn)),
4925 (SUBREG_TO_REG (i32 0),
4926 (f32 (COPY_TO_REGCLASS GPR32:$Rn, FPR32)), ssub)>;
4927 def : Pat<(v8i8 (scalar_to_vector GPR32:$Rn)),
4928 (SUBREG_TO_REG (i32 0),
4929 (f32 (COPY_TO_REGCLASS GPR32:$Rn, FPR32)), ssub)>;
4931 def : Pat<(v8i16 (scalar_to_vector GPR32:$Rn)),
4932 (SUBREG_TO_REG (i32 0),
4933 (f32 (COPY_TO_REGCLASS GPR32:$Rn, FPR32)), ssub)>;
4934 def : Pat<(v4i16 (scalar_to_vector GPR32:$Rn)),
4935 (SUBREG_TO_REG (i32 0),
4936 (f32 (COPY_TO_REGCLASS GPR32:$Rn, FPR32)), ssub)>;
4938 def : Pat<(v4f16 (scalar_to_vector (f16 FPR16:$Rn))),
4939 (INSERT_SUBREG (v4f16 (IMPLICIT_DEF)), FPR16:$Rn, hsub)>;
4940 def : Pat<(v8f16 (scalar_to_vector (f16 FPR16:$Rn))),
4941 (INSERT_SUBREG (v8f16 (IMPLICIT_DEF)), FPR16:$Rn, hsub)>;
4943 def : Pat<(v2i32 (scalar_to_vector (i32 FPR32:$Rn))),
4944 (v2i32 (INSERT_SUBREG (v2i32 (IMPLICIT_DEF)),
4945 (i32 FPR32:$Rn), ssub))>;
4946 def : Pat<(v4i32 (scalar_to_vector (i32 FPR32:$Rn))),
4947 (v4i32 (INSERT_SUBREG (v4i32 (IMPLICIT_DEF)),
4948 (i32 FPR32:$Rn), ssub))>;
4950 def : Pat<(v2i64 (scalar_to_vector (i64 FPR64:$Rn))),
4951 (v2i64 (INSERT_SUBREG (v2i64 (IMPLICIT_DEF)),
4952 (i64 FPR64:$Rn), dsub))>;
4954 def : Pat<(v4f16 (scalar_to_vector (f16 FPR16:$Rn))),
4955 (INSERT_SUBREG (v4f16 (IMPLICIT_DEF)), FPR16:$Rn, hsub)>;
4956 def : Pat<(v8f16 (scalar_to_vector (f16 FPR16:$Rn))),
4957 (INSERT_SUBREG (v8f16 (IMPLICIT_DEF)), FPR16:$Rn, hsub)>;
4959 def : Pat<(v4f32 (scalar_to_vector (f32 FPR32:$Rn))),
4960 (INSERT_SUBREG (v4f32 (IMPLICIT_DEF)), FPR32:$Rn, ssub)>;
4961 def : Pat<(v2f32 (scalar_to_vector (f32 FPR32:$Rn))),
4962 (INSERT_SUBREG (v2f32 (IMPLICIT_DEF)), FPR32:$Rn, ssub)>;
4964 def : Pat<(v2f64 (scalar_to_vector (f64 FPR64:$Rn))),
4965 (INSERT_SUBREG (v2f64 (IMPLICIT_DEF)), FPR64:$Rn, dsub)>;
4967 def : Pat<(v4f16 (vector_insert (v4f16 V64:$Rn),
4968 (f16 FPR16:$Rm), (i64 VectorIndexS:$imm))),
4971 (v8f16 (INSERT_SUBREG (v8f16 (IMPLICIT_DEF)), V64:$Rn, dsub)),
4973 (v8f16 (INSERT_SUBREG (v8f16 (IMPLICIT_DEF)), FPR16:$Rm, hsub)),
4977 def : Pat<(v8f16 (vector_insert (v8f16 V128:$Rn),
4978 (f16 FPR16:$Rm), (i64 VectorIndexH:$imm))),
4980 V128:$Rn, VectorIndexH:$imm,
4981 (v8f16 (INSERT_SUBREG (v8f16 (IMPLICIT_DEF)), FPR16:$Rm, hsub)),
4984 def : Pat<(v2f32 (vector_insert (v2f32 V64:$Rn),
4985 (f32 FPR32:$Rm), (i64 VectorIndexS:$imm))),
4988 (v4f32 (INSERT_SUBREG (v4f32 (IMPLICIT_DEF)), V64:$Rn, dsub)),
4990 (v4f32 (INSERT_SUBREG (v4f32 (IMPLICIT_DEF)), FPR32:$Rm, ssub)),
4993 def : Pat<(v4f32 (vector_insert (v4f32 V128:$Rn),
4994 (f32 FPR32:$Rm), (i64 VectorIndexS:$imm))),
4996 V128:$Rn, VectorIndexS:$imm,
4997 (v4f32 (INSERT_SUBREG (v4f32 (IMPLICIT_DEF)), FPR32:$Rm, ssub)),
4999 def : Pat<(v2f64 (vector_insert (v2f64 V128:$Rn),
5000 (f64 FPR64:$Rm), (i64 VectorIndexD:$imm))),
5002 V128:$Rn, VectorIndexD:$imm,
5003 (v2f64 (INSERT_SUBREG (v2f64 (IMPLICIT_DEF)), FPR64:$Rm, dsub)),
5006 // Copy an element at a constant index in one vector into a constant indexed
5007 // element of another.
5008 // FIXME refactor to a shared class/dev parameterized on vector type, vector
5009 // index type and INS extension
5010 def : Pat<(v16i8 (int_aarch64_neon_vcopy_lane
5011 (v16i8 V128:$Vd), VectorIndexB:$idx, (v16i8 V128:$Vs),
5012 VectorIndexB:$idx2)),
5014 V128:$Vd, VectorIndexB:$idx, V128:$Vs, VectorIndexB:$idx2)
5016 def : Pat<(v8i16 (int_aarch64_neon_vcopy_lane
5017 (v8i16 V128:$Vd), VectorIndexH:$idx, (v8i16 V128:$Vs),
5018 VectorIndexH:$idx2)),
5020 V128:$Vd, VectorIndexH:$idx, V128:$Vs, VectorIndexH:$idx2)
5022 def : Pat<(v4i32 (int_aarch64_neon_vcopy_lane
5023 (v4i32 V128:$Vd), VectorIndexS:$idx, (v4i32 V128:$Vs),
5024 VectorIndexS:$idx2)),
5026 V128:$Vd, VectorIndexS:$idx, V128:$Vs, VectorIndexS:$idx2)
5028 def : Pat<(v2i64 (int_aarch64_neon_vcopy_lane
5029 (v2i64 V128:$Vd), VectorIndexD:$idx, (v2i64 V128:$Vs),
5030 VectorIndexD:$idx2)),
5032 V128:$Vd, VectorIndexD:$idx, V128:$Vs, VectorIndexD:$idx2)
5035 multiclass Neon_INS_elt_pattern<ValueType VT128, ValueType VT64,
5036 ValueType VTScal, Instruction INS> {
5037 def : Pat<(VT128 (vector_insert V128:$src,
5038 (VTScal (vector_extract (VT128 V128:$Rn), imm:$Immn)),
5040 (INS V128:$src, imm:$Immd, V128:$Rn, imm:$Immn)>;
5042 def : Pat<(VT128 (vector_insert V128:$src,
5043 (VTScal (vector_extract (VT64 V64:$Rn), imm:$Immn)),
5045 (INS V128:$src, imm:$Immd,
5046 (SUBREG_TO_REG (i64 0), V64:$Rn, dsub), imm:$Immn)>;
5048 def : Pat<(VT64 (vector_insert V64:$src,
5049 (VTScal (vector_extract (VT128 V128:$Rn), imm:$Immn)),
5051 (EXTRACT_SUBREG (INS (SUBREG_TO_REG (i64 0), V64:$src, dsub),
5052 imm:$Immd, V128:$Rn, imm:$Immn),
5055 def : Pat<(VT64 (vector_insert V64:$src,
5056 (VTScal (vector_extract (VT64 V64:$Rn), imm:$Immn)),
5059 (INS (SUBREG_TO_REG (i64 0), V64:$src, dsub), imm:$Immd,
5060 (SUBREG_TO_REG (i64 0), V64:$Rn, dsub), imm:$Immn),
5064 defm : Neon_INS_elt_pattern<v8f16, v4f16, f16, INSvi16lane>;
5065 defm : Neon_INS_elt_pattern<v4f32, v2f32, f32, INSvi32lane>;
5066 defm : Neon_INS_elt_pattern<v2f64, v1f64, f64, INSvi64lane>;
5069 // Floating point vector extractions are codegen'd as either a sequence of
5070 // subregister extractions, or a MOV (aka CPY here, alias for DUP) if
5071 // the lane number is anything other than zero.
5072 def : Pat<(vector_extract (v2f64 V128:$Rn), 0),
5073 (f64 (EXTRACT_SUBREG V128:$Rn, dsub))>;
5074 def : Pat<(vector_extract (v4f32 V128:$Rn), 0),
5075 (f32 (EXTRACT_SUBREG V128:$Rn, ssub))>;
5076 def : Pat<(vector_extract (v8f16 V128:$Rn), 0),
5077 (f16 (EXTRACT_SUBREG V128:$Rn, hsub))>;
5079 def : Pat<(vector_extract (v2f64 V128:$Rn), VectorIndexD:$idx),
5080 (f64 (CPYi64 V128:$Rn, VectorIndexD:$idx))>;
5081 def : Pat<(vector_extract (v4f32 V128:$Rn), VectorIndexS:$idx),
5082 (f32 (CPYi32 V128:$Rn, VectorIndexS:$idx))>;
5083 def : Pat<(vector_extract (v8f16 V128:$Rn), VectorIndexH:$idx),
5084 (f16 (CPYi16 V128:$Rn, VectorIndexH:$idx))>;
5086 // All concat_vectors operations are canonicalised to act on i64 vectors for
5087 // AArch64. In the general case we need an instruction, which had just as well be
5089 class ConcatPat<ValueType DstTy, ValueType SrcTy>
5090 : Pat<(DstTy (concat_vectors (SrcTy V64:$Rd), V64:$Rn)),
5091 (INSvi64lane (INSERT_SUBREG (IMPLICIT_DEF), V64:$Rd, dsub), 1,
5092 (INSERT_SUBREG (IMPLICIT_DEF), V64:$Rn, dsub), 0)>;
5094 def : ConcatPat<v2i64, v1i64>;
5095 def : ConcatPat<v2f64, v1f64>;
5096 def : ConcatPat<v4i32, v2i32>;
5097 def : ConcatPat<v4f32, v2f32>;
5098 def : ConcatPat<v8i16, v4i16>;
5099 def : ConcatPat<v8f16, v4f16>;
5100 def : ConcatPat<v16i8, v8i8>;
5102 // If the high lanes are undef, though, we can just ignore them:
5103 class ConcatUndefPat<ValueType DstTy, ValueType SrcTy>
5104 : Pat<(DstTy (concat_vectors (SrcTy V64:$Rn), undef)),
5105 (INSERT_SUBREG (IMPLICIT_DEF), V64:$Rn, dsub)>;
5107 def : ConcatUndefPat<v2i64, v1i64>;
5108 def : ConcatUndefPat<v2f64, v1f64>;
5109 def : ConcatUndefPat<v4i32, v2i32>;
5110 def : ConcatUndefPat<v4f32, v2f32>;
5111 def : ConcatUndefPat<v8i16, v4i16>;
5112 def : ConcatUndefPat<v16i8, v8i8>;
5114 //----------------------------------------------------------------------------
5115 // AdvSIMD across lanes instructions
5116 //----------------------------------------------------------------------------
5118 defm ADDV : SIMDAcrossLanesBHS<0, 0b11011, "addv">;
5119 defm SMAXV : SIMDAcrossLanesBHS<0, 0b01010, "smaxv">;
5120 defm SMINV : SIMDAcrossLanesBHS<0, 0b11010, "sminv">;
5121 defm UMAXV : SIMDAcrossLanesBHS<1, 0b01010, "umaxv">;
5122 defm UMINV : SIMDAcrossLanesBHS<1, 0b11010, "uminv">;
5123 defm SADDLV : SIMDAcrossLanesHSD<0, 0b00011, "saddlv">;
5124 defm UADDLV : SIMDAcrossLanesHSD<1, 0b00011, "uaddlv">;
5125 defm FMAXNMV : SIMDFPAcrossLanes<0b01100, 0, "fmaxnmv", int_aarch64_neon_fmaxnmv>;
5126 defm FMAXV : SIMDFPAcrossLanes<0b01111, 0, "fmaxv", int_aarch64_neon_fmaxv>;
5127 defm FMINNMV : SIMDFPAcrossLanes<0b01100, 1, "fminnmv", int_aarch64_neon_fminnmv>;
5128 defm FMINV : SIMDFPAcrossLanes<0b01111, 1, "fminv", int_aarch64_neon_fminv>;
5130 // Patterns for across-vector intrinsics, that have a node equivalent, that
5131 // returns a vector (with only the low lane defined) instead of a scalar.
5132 // In effect, opNode is the same as (scalar_to_vector (IntNode)).
5133 multiclass SIMDAcrossLanesIntrinsic<string baseOpc,
5134 SDPatternOperator opNode> {
5135 // If a lane instruction caught the vector_extract around opNode, we can
5136 // directly match the latter to the instruction.
5137 def : Pat<(v8i8 (opNode V64:$Rn)),
5138 (INSERT_SUBREG (v8i8 (IMPLICIT_DEF)),
5139 (!cast<Instruction>(!strconcat(baseOpc, "v8i8v")) V64:$Rn), bsub)>;
5140 def : Pat<(v16i8 (opNode V128:$Rn)),
5141 (INSERT_SUBREG (v16i8 (IMPLICIT_DEF)),
5142 (!cast<Instruction>(!strconcat(baseOpc, "v16i8v")) V128:$Rn), bsub)>;
5143 def : Pat<(v4i16 (opNode V64:$Rn)),
5144 (INSERT_SUBREG (v4i16 (IMPLICIT_DEF)),
5145 (!cast<Instruction>(!strconcat(baseOpc, "v4i16v")) V64:$Rn), hsub)>;
5146 def : Pat<(v8i16 (opNode V128:$Rn)),
5147 (INSERT_SUBREG (v8i16 (IMPLICIT_DEF)),
5148 (!cast<Instruction>(!strconcat(baseOpc, "v8i16v")) V128:$Rn), hsub)>;
5149 def : Pat<(v4i32 (opNode V128:$Rn)),
5150 (INSERT_SUBREG (v4i32 (IMPLICIT_DEF)),
5151 (!cast<Instruction>(!strconcat(baseOpc, "v4i32v")) V128:$Rn), ssub)>;
5154 // If none did, fallback to the explicit patterns, consuming the vector_extract.
5155 def : Pat<(i32 (vector_extract (insert_subvector undef, (v8i8 (opNode V64:$Rn)),
5156 (i32 0)), (i64 0))),
5157 (EXTRACT_SUBREG (INSERT_SUBREG (v8i8 (IMPLICIT_DEF)),
5158 (!cast<Instruction>(!strconcat(baseOpc, "v8i8v")) V64:$Rn),
5160 def : Pat<(i32 (vector_extract (v16i8 (opNode V128:$Rn)), (i64 0))),
5161 (EXTRACT_SUBREG (INSERT_SUBREG (v16i8 (IMPLICIT_DEF)),
5162 (!cast<Instruction>(!strconcat(baseOpc, "v16i8v")) V128:$Rn),
5164 def : Pat<(i32 (vector_extract (insert_subvector undef,
5165 (v4i16 (opNode V64:$Rn)), (i32 0)), (i64 0))),
5166 (EXTRACT_SUBREG (INSERT_SUBREG (v4i16 (IMPLICIT_DEF)),
5167 (!cast<Instruction>(!strconcat(baseOpc, "v4i16v")) V64:$Rn),
5169 def : Pat<(i32 (vector_extract (v8i16 (opNode V128:$Rn)), (i64 0))),
5170 (EXTRACT_SUBREG (INSERT_SUBREG (v8i16 (IMPLICIT_DEF)),
5171 (!cast<Instruction>(!strconcat(baseOpc, "v8i16v")) V128:$Rn),
5173 def : Pat<(i32 (vector_extract (v4i32 (opNode V128:$Rn)), (i64 0))),
5174 (EXTRACT_SUBREG (INSERT_SUBREG (v4i32 (IMPLICIT_DEF)),
5175 (!cast<Instruction>(!strconcat(baseOpc, "v4i32v")) V128:$Rn),
5180 multiclass SIMDAcrossLanesSignedIntrinsic<string baseOpc,
5181 SDPatternOperator opNode>
5182 : SIMDAcrossLanesIntrinsic<baseOpc, opNode> {
5183 // If there is a sign extension after this intrinsic, consume it as smov already
5185 def : Pat<(i32 (sext_inreg (i32 (vector_extract (insert_subvector undef,
5186 (opNode (v8i8 V64:$Rn)), (i32 0)), (i64 0))), i8)),
5188 (INSERT_SUBREG (v16i8 (IMPLICIT_DEF)),
5189 (!cast<Instruction>(!strconcat(baseOpc, "v8i8v")) V64:$Rn), bsub),
5191 def : Pat<(i32 (sext_inreg (i32 (vector_extract
5192 (opNode (v16i8 V128:$Rn)), (i64 0))), i8)),
5194 (INSERT_SUBREG (v16i8 (IMPLICIT_DEF)),
5195 (!cast<Instruction>(!strconcat(baseOpc, "v16i8v")) V128:$Rn), bsub),
5197 def : Pat<(i32 (sext_inreg (i32 (vector_extract (insert_subvector undef,
5198 (opNode (v4i16 V64:$Rn)), (i32 0)), (i64 0))), i16)),
5200 (INSERT_SUBREG (v16i8 (IMPLICIT_DEF)),
5201 (!cast<Instruction>(!strconcat(baseOpc, "v4i16v")) V64:$Rn), hsub),
5203 def : Pat<(i32 (sext_inreg (i32 (vector_extract
5204 (opNode (v8i16 V128:$Rn)), (i64 0))), i16)),
5206 (INSERT_SUBREG (v16i8 (IMPLICIT_DEF)),
5207 (!cast<Instruction>(!strconcat(baseOpc, "v8i16v")) V128:$Rn), hsub),
5211 multiclass SIMDAcrossLanesUnsignedIntrinsic<string baseOpc,
5212 SDPatternOperator opNode>
5213 : SIMDAcrossLanesIntrinsic<baseOpc, opNode> {
5214 // If there is a masking operation keeping only what has been actually
5215 // generated, consume it.
5216 def : Pat<(i32 (and (i32 (vector_extract (insert_subvector undef,
5217 (opNode (v8i8 V64:$Rn)), (i32 0)), (i64 0))), maski8_or_more)),
5218 (i32 (EXTRACT_SUBREG
5219 (INSERT_SUBREG (v16i8 (IMPLICIT_DEF)),
5220 (!cast<Instruction>(!strconcat(baseOpc, "v8i8v")) V64:$Rn), bsub),
5222 def : Pat<(i32 (and (i32 (vector_extract (opNode (v16i8 V128:$Rn)), (i64 0))),
5224 (i32 (EXTRACT_SUBREG
5225 (INSERT_SUBREG (v16i8 (IMPLICIT_DEF)),
5226 (!cast<Instruction>(!strconcat(baseOpc, "v16i8v")) V128:$Rn), bsub),
5228 def : Pat<(i32 (and (i32 (vector_extract (insert_subvector undef,
5229 (opNode (v4i16 V64:$Rn)), (i32 0)), (i64 0))), maski16_or_more)),
5230 (i32 (EXTRACT_SUBREG
5231 (INSERT_SUBREG (v16i8 (IMPLICIT_DEF)),
5232 (!cast<Instruction>(!strconcat(baseOpc, "v4i16v")) V64:$Rn), hsub),
5234 def : Pat<(i32 (and (i32 (vector_extract (opNode (v8i16 V128:$Rn)), (i64 0))),
5236 (i32 (EXTRACT_SUBREG
5237 (INSERT_SUBREG (v16i8 (IMPLICIT_DEF)),
5238 (!cast<Instruction>(!strconcat(baseOpc, "v8i16v")) V128:$Rn), hsub),
5242 defm : SIMDAcrossLanesSignedIntrinsic<"ADDV", AArch64saddv>;
5243 // vaddv_[su]32 is special; -> ADDP Vd.2S,Vn.2S,Vm.2S; return Vd.s[0];Vn==Vm
5244 def : Pat<(v2i32 (AArch64saddv (v2i32 V64:$Rn))),
5245 (ADDPv2i32 V64:$Rn, V64:$Rn)>;
5247 defm : SIMDAcrossLanesUnsignedIntrinsic<"ADDV", AArch64uaddv>;
5248 // vaddv_[su]32 is special; -> ADDP Vd.2S,Vn.2S,Vm.2S; return Vd.s[0];Vn==Vm
5249 def : Pat<(v2i32 (AArch64uaddv (v2i32 V64:$Rn))),
5250 (ADDPv2i32 V64:$Rn, V64:$Rn)>;
5252 defm : SIMDAcrossLanesSignedIntrinsic<"SMAXV", AArch64smaxv>;
5253 def : Pat<(v2i32 (AArch64smaxv (v2i32 V64:$Rn))),
5254 (SMAXPv2i32 V64:$Rn, V64:$Rn)>;
5256 defm : SIMDAcrossLanesSignedIntrinsic<"SMINV", AArch64sminv>;
5257 def : Pat<(v2i32 (AArch64sminv (v2i32 V64:$Rn))),
5258 (SMINPv2i32 V64:$Rn, V64:$Rn)>;
5260 defm : SIMDAcrossLanesUnsignedIntrinsic<"UMAXV", AArch64umaxv>;
5261 def : Pat<(v2i32 (AArch64umaxv (v2i32 V64:$Rn))),
5262 (UMAXPv2i32 V64:$Rn, V64:$Rn)>;
5264 defm : SIMDAcrossLanesUnsignedIntrinsic<"UMINV", AArch64uminv>;
5265 def : Pat<(v2i32 (AArch64uminv (v2i32 V64:$Rn))),
5266 (UMINPv2i32 V64:$Rn, V64:$Rn)>;
5268 multiclass SIMDAcrossLanesSignedLongIntrinsic<string baseOpc, Intrinsic intOp> {
5269 def : Pat<(i32 (intOp (v8i8 V64:$Rn))),
5271 (INSERT_SUBREG (v16i8 (IMPLICIT_DEF)),
5272 (!cast<Instruction>(!strconcat(baseOpc, "v8i8v")) V64:$Rn), hsub),
5274 def : Pat<(i32 (intOp (v16i8 V128:$Rn))),
5276 (INSERT_SUBREG (v16i8 (IMPLICIT_DEF)),
5277 (!cast<Instruction>(!strconcat(baseOpc, "v16i8v")) V128:$Rn), hsub),
5280 def : Pat<(i32 (intOp (v4i16 V64:$Rn))),
5281 (i32 (EXTRACT_SUBREG
5282 (INSERT_SUBREG (v16i8 (IMPLICIT_DEF)),
5283 (!cast<Instruction>(!strconcat(baseOpc, "v4i16v")) V64:$Rn), ssub),
5285 def : Pat<(i32 (intOp (v8i16 V128:$Rn))),
5286 (i32 (EXTRACT_SUBREG
5287 (INSERT_SUBREG (v16i8 (IMPLICIT_DEF)),
5288 (!cast<Instruction>(!strconcat(baseOpc, "v8i16v")) V128:$Rn), ssub),
5291 def : Pat<(i64 (intOp (v4i32 V128:$Rn))),
5292 (i64 (EXTRACT_SUBREG
5293 (INSERT_SUBREG (v16i8 (IMPLICIT_DEF)),
5294 (!cast<Instruction>(!strconcat(baseOpc, "v4i32v")) V128:$Rn), dsub),
5298 multiclass SIMDAcrossLanesUnsignedLongIntrinsic<string baseOpc,
5300 def : Pat<(i32 (intOp (v8i8 V64:$Rn))),
5301 (i32 (EXTRACT_SUBREG
5302 (INSERT_SUBREG (v16i8 (IMPLICIT_DEF)),
5303 (!cast<Instruction>(!strconcat(baseOpc, "v8i8v")) V64:$Rn), hsub),
5305 def : Pat<(i32 (intOp (v16i8 V128:$Rn))),
5306 (i32 (EXTRACT_SUBREG
5307 (INSERT_SUBREG (v16i8 (IMPLICIT_DEF)),
5308 (!cast<Instruction>(!strconcat(baseOpc, "v16i8v")) V128:$Rn), hsub),
5311 def : Pat<(i32 (intOp (v4i16 V64:$Rn))),
5312 (i32 (EXTRACT_SUBREG
5313 (INSERT_SUBREG (v16i8 (IMPLICIT_DEF)),
5314 (!cast<Instruction>(!strconcat(baseOpc, "v4i16v")) V64:$Rn), ssub),
5316 def : Pat<(i32 (intOp (v8i16 V128:$Rn))),
5317 (i32 (EXTRACT_SUBREG
5318 (INSERT_SUBREG (v16i8 (IMPLICIT_DEF)),
5319 (!cast<Instruction>(!strconcat(baseOpc, "v8i16v")) V128:$Rn), ssub),
5322 def : Pat<(i64 (intOp (v4i32 V128:$Rn))),
5323 (i64 (EXTRACT_SUBREG
5324 (INSERT_SUBREG (v16i8 (IMPLICIT_DEF)),
5325 (!cast<Instruction>(!strconcat(baseOpc, "v4i32v")) V128:$Rn), dsub),
5329 defm : SIMDAcrossLanesSignedLongIntrinsic<"SADDLV", int_aarch64_neon_saddlv>;
5330 defm : SIMDAcrossLanesUnsignedLongIntrinsic<"UADDLV", int_aarch64_neon_uaddlv>;
5332 // The vaddlv_s32 intrinsic gets mapped to SADDLP.
5333 def : Pat<(i64 (int_aarch64_neon_saddlv (v2i32 V64:$Rn))),
5334 (i64 (EXTRACT_SUBREG
5335 (INSERT_SUBREG (v16i8 (IMPLICIT_DEF)),
5336 (SADDLPv2i32_v1i64 V64:$Rn), dsub),
5338 // The vaddlv_u32 intrinsic gets mapped to UADDLP.
5339 def : Pat<(i64 (int_aarch64_neon_uaddlv (v2i32 V64:$Rn))),
5340 (i64 (EXTRACT_SUBREG
5341 (INSERT_SUBREG (v16i8 (IMPLICIT_DEF)),
5342 (UADDLPv2i32_v1i64 V64:$Rn), dsub),
5345 //------------------------------------------------------------------------------
5346 // AdvSIMD modified immediate instructions
5347 //------------------------------------------------------------------------------
5350 defm BIC : SIMDModifiedImmVectorShiftTied<1, 0b11, 0b01, "bic", AArch64bici>;
5352 defm ORR : SIMDModifiedImmVectorShiftTied<0, 0b11, 0b01, "orr", AArch64orri>;
5354 def : InstAlias<"bic $Vd.4h, $imm", (BICv4i16 V64:$Vd, imm0_255:$imm, 0)>;
5355 def : InstAlias<"bic $Vd.8h, $imm", (BICv8i16 V128:$Vd, imm0_255:$imm, 0)>;
5356 def : InstAlias<"bic $Vd.2s, $imm", (BICv2i32 V64:$Vd, imm0_255:$imm, 0)>;
5357 def : InstAlias<"bic $Vd.4s, $imm", (BICv4i32 V128:$Vd, imm0_255:$imm, 0)>;
5359 def : InstAlias<"bic.4h $Vd, $imm", (BICv4i16 V64:$Vd, imm0_255:$imm, 0)>;
5360 def : InstAlias<"bic.8h $Vd, $imm", (BICv8i16 V128:$Vd, imm0_255:$imm, 0)>;
5361 def : InstAlias<"bic.2s $Vd, $imm", (BICv2i32 V64:$Vd, imm0_255:$imm, 0)>;
5362 def : InstAlias<"bic.4s $Vd, $imm", (BICv4i32 V128:$Vd, imm0_255:$imm, 0)>;
5364 def : InstAlias<"orr $Vd.4h, $imm", (ORRv4i16 V64:$Vd, imm0_255:$imm, 0)>;
5365 def : InstAlias<"orr $Vd.8h, $imm", (ORRv8i16 V128:$Vd, imm0_255:$imm, 0)>;
5366 def : InstAlias<"orr $Vd.2s, $imm", (ORRv2i32 V64:$Vd, imm0_255:$imm, 0)>;
5367 def : InstAlias<"orr $Vd.4s, $imm", (ORRv4i32 V128:$Vd, imm0_255:$imm, 0)>;
5369 def : InstAlias<"orr.4h $Vd, $imm", (ORRv4i16 V64:$Vd, imm0_255:$imm, 0)>;
5370 def : InstAlias<"orr.8h $Vd, $imm", (ORRv8i16 V128:$Vd, imm0_255:$imm, 0)>;
5371 def : InstAlias<"orr.2s $Vd, $imm", (ORRv2i32 V64:$Vd, imm0_255:$imm, 0)>;
5372 def : InstAlias<"orr.4s $Vd, $imm", (ORRv4i32 V128:$Vd, imm0_255:$imm, 0)>;
5375 def FMOVv2f64_ns : SIMDModifiedImmVectorNoShift<1, 1, 0, 0b1111, V128, fpimm8,
5377 [(set (v2f64 V128:$Rd), (AArch64fmov imm0_255:$imm8))]>;
5378 def FMOVv2f32_ns : SIMDModifiedImmVectorNoShift<0, 0, 0, 0b1111, V64, fpimm8,
5380 [(set (v2f32 V64:$Rd), (AArch64fmov imm0_255:$imm8))]>;
5381 def FMOVv4f32_ns : SIMDModifiedImmVectorNoShift<1, 0, 0, 0b1111, V128, fpimm8,
5383 [(set (v4f32 V128:$Rd), (AArch64fmov imm0_255:$imm8))]>;
5384 let Predicates = [HasNEON, HasFullFP16] in {
5385 def FMOVv4f16_ns : SIMDModifiedImmVectorNoShift<0, 0, 1, 0b1111, V64, fpimm8,
5387 [(set (v4f16 V64:$Rd), (AArch64fmov imm0_255:$imm8))]>;
5388 def FMOVv8f16_ns : SIMDModifiedImmVectorNoShift<1, 0, 1, 0b1111, V128, fpimm8,
5390 [(set (v8f16 V128:$Rd), (AArch64fmov imm0_255:$imm8))]>;
5391 } // Predicates = [HasNEON, HasFullFP16]
5395 // EDIT byte mask: scalar
5396 let isReMaterializable = 1, isAsCheapAsAMove = 1 in
5397 def MOVID : SIMDModifiedImmScalarNoShift<0, 1, 0b1110, "movi",
5398 [(set FPR64:$Rd, simdimmtype10:$imm8)]>;
5399 // The movi_edit node has the immediate value already encoded, so we use
5400 // a plain imm0_255 here.
5401 def : Pat<(f64 (AArch64movi_edit imm0_255:$shift)),
5402 (MOVID imm0_255:$shift)>;
5404 // EDIT byte mask: 2d
5406 // The movi_edit node has the immediate value already encoded, so we use
5407 // a plain imm0_255 in the pattern
5408 let isReMaterializable = 1, isAsCheapAsAMove = 1 in
5409 def MOVIv2d_ns : SIMDModifiedImmVectorNoShift<1, 1, 0, 0b1110, V128,
5412 [(set (v2i64 V128:$Rd), (AArch64movi_edit imm0_255:$imm8))]>;
5414 def : Pat<(v2i64 immAllZerosV), (MOVIv2d_ns (i32 0))>;
5415 def : Pat<(v4i32 immAllZerosV), (MOVIv2d_ns (i32 0))>;
5416 def : Pat<(v8i16 immAllZerosV), (MOVIv2d_ns (i32 0))>;
5417 def : Pat<(v16i8 immAllZerosV), (MOVIv2d_ns (i32 0))>;
5419 def : Pat<(v2i64 immAllOnesV), (MOVIv2d_ns (i32 255))>;
5420 def : Pat<(v4i32 immAllOnesV), (MOVIv2d_ns (i32 255))>;
5421 def : Pat<(v8i16 immAllOnesV), (MOVIv2d_ns (i32 255))>;
5422 def : Pat<(v16i8 immAllOnesV), (MOVIv2d_ns (i32 255))>;
5424 // Set 64-bit vectors to all 0/1 by extracting from a 128-bit register as the
5425 // extract is free and this gives better MachineCSE results.
5426 def : Pat<(v1i64 immAllZerosV), (EXTRACT_SUBREG (MOVIv2d_ns (i32 0)), dsub)>;
5427 def : Pat<(v2i32 immAllZerosV), (EXTRACT_SUBREG (MOVIv2d_ns (i32 0)), dsub)>;
5428 def : Pat<(v4i16 immAllZerosV), (EXTRACT_SUBREG (MOVIv2d_ns (i32 0)), dsub)>;
5429 def : Pat<(v8i8 immAllZerosV), (EXTRACT_SUBREG (MOVIv2d_ns (i32 0)), dsub)>;
5431 def : Pat<(v1i64 immAllOnesV), (EXTRACT_SUBREG (MOVIv2d_ns (i32 255)), dsub)>;
5432 def : Pat<(v2i32 immAllOnesV), (EXTRACT_SUBREG (MOVIv2d_ns (i32 255)), dsub)>;
5433 def : Pat<(v4i16 immAllOnesV), (EXTRACT_SUBREG (MOVIv2d_ns (i32 255)), dsub)>;
5434 def : Pat<(v8i8 immAllOnesV), (EXTRACT_SUBREG (MOVIv2d_ns (i32 255)), dsub)>;
5436 // EDIT per word & halfword: 2s, 4h, 4s, & 8h
5437 let isReMaterializable = 1, isAsCheapAsAMove = 1 in
5438 defm MOVI : SIMDModifiedImmVectorShift<0, 0b10, 0b00, "movi">;
5440 def : InstAlias<"movi $Vd.4h, $imm", (MOVIv4i16 V64:$Vd, imm0_255:$imm, 0), 0>;
5441 def : InstAlias<"movi $Vd.8h, $imm", (MOVIv8i16 V128:$Vd, imm0_255:$imm, 0), 0>;
5442 def : InstAlias<"movi $Vd.2s, $imm", (MOVIv2i32 V64:$Vd, imm0_255:$imm, 0), 0>;
5443 def : InstAlias<"movi $Vd.4s, $imm", (MOVIv4i32 V128:$Vd, imm0_255:$imm, 0), 0>;
5445 def : InstAlias<"movi.4h $Vd, $imm", (MOVIv4i16 V64:$Vd, imm0_255:$imm, 0), 0>;
5446 def : InstAlias<"movi.8h $Vd, $imm", (MOVIv8i16 V128:$Vd, imm0_255:$imm, 0), 0>;
5447 def : InstAlias<"movi.2s $Vd, $imm", (MOVIv2i32 V64:$Vd, imm0_255:$imm, 0), 0>;
5448 def : InstAlias<"movi.4s $Vd, $imm", (MOVIv4i32 V128:$Vd, imm0_255:$imm, 0), 0>;
5450 def : Pat<(v2i32 (AArch64movi_shift imm0_255:$imm8, (i32 imm:$shift))),
5451 (MOVIv2i32 imm0_255:$imm8, imm:$shift)>;
5452 def : Pat<(v4i32 (AArch64movi_shift imm0_255:$imm8, (i32 imm:$shift))),
5453 (MOVIv4i32 imm0_255:$imm8, imm:$shift)>;
5454 def : Pat<(v4i16 (AArch64movi_shift imm0_255:$imm8, (i32 imm:$shift))),
5455 (MOVIv4i16 imm0_255:$imm8, imm:$shift)>;
5456 def : Pat<(v8i16 (AArch64movi_shift imm0_255:$imm8, (i32 imm:$shift))),
5457 (MOVIv8i16 imm0_255:$imm8, imm:$shift)>;
5459 let isReMaterializable = 1, isAsCheapAsAMove = 1 in {
5460 // EDIT per word: 2s & 4s with MSL shifter
5461 def MOVIv2s_msl : SIMDModifiedImmMoveMSL<0, 0, {1,1,0,?}, V64, "movi", ".2s",
5462 [(set (v2i32 V64:$Rd),
5463 (AArch64movi_msl imm0_255:$imm8, (i32 imm:$shift)))]>;
5464 def MOVIv4s_msl : SIMDModifiedImmMoveMSL<1, 0, {1,1,0,?}, V128, "movi", ".4s",
5465 [(set (v4i32 V128:$Rd),
5466 (AArch64movi_msl imm0_255:$imm8, (i32 imm:$shift)))]>;
5468 // Per byte: 8b & 16b
5469 def MOVIv8b_ns : SIMDModifiedImmVectorNoShift<0, 0, 0, 0b1110, V64, imm0_255,
5471 [(set (v8i8 V64:$Rd), (AArch64movi imm0_255:$imm8))]>;
5473 def MOVIv16b_ns : SIMDModifiedImmVectorNoShift<1, 0, 0, 0b1110, V128, imm0_255,
5475 [(set (v16i8 V128:$Rd), (AArch64movi imm0_255:$imm8))]>;
5480 // EDIT per word & halfword: 2s, 4h, 4s, & 8h
5481 let isReMaterializable = 1, isAsCheapAsAMove = 1 in
5482 defm MVNI : SIMDModifiedImmVectorShift<1, 0b10, 0b00, "mvni">;
5484 def : InstAlias<"mvni $Vd.4h, $imm", (MVNIv4i16 V64:$Vd, imm0_255:$imm, 0), 0>;
5485 def : InstAlias<"mvni $Vd.8h, $imm", (MVNIv8i16 V128:$Vd, imm0_255:$imm, 0), 0>;
5486 def : InstAlias<"mvni $Vd.2s, $imm", (MVNIv2i32 V64:$Vd, imm0_255:$imm, 0), 0>;
5487 def : InstAlias<"mvni $Vd.4s, $imm", (MVNIv4i32 V128:$Vd, imm0_255:$imm, 0), 0>;
5489 def : InstAlias<"mvni.4h $Vd, $imm", (MVNIv4i16 V64:$Vd, imm0_255:$imm, 0), 0>;
5490 def : InstAlias<"mvni.8h $Vd, $imm", (MVNIv8i16 V128:$Vd, imm0_255:$imm, 0), 0>;
5491 def : InstAlias<"mvni.2s $Vd, $imm", (MVNIv2i32 V64:$Vd, imm0_255:$imm, 0), 0>;
5492 def : InstAlias<"mvni.4s $Vd, $imm", (MVNIv4i32 V128:$Vd, imm0_255:$imm, 0), 0>;
5494 def : Pat<(v2i32 (AArch64mvni_shift imm0_255:$imm8, (i32 imm:$shift))),
5495 (MVNIv2i32 imm0_255:$imm8, imm:$shift)>;
5496 def : Pat<(v4i32 (AArch64mvni_shift imm0_255:$imm8, (i32 imm:$shift))),
5497 (MVNIv4i32 imm0_255:$imm8, imm:$shift)>;
5498 def : Pat<(v4i16 (AArch64mvni_shift imm0_255:$imm8, (i32 imm:$shift))),
5499 (MVNIv4i16 imm0_255:$imm8, imm:$shift)>;
5500 def : Pat<(v8i16 (AArch64mvni_shift imm0_255:$imm8, (i32 imm:$shift))),
5501 (MVNIv8i16 imm0_255:$imm8, imm:$shift)>;
5503 // EDIT per word: 2s & 4s with MSL shifter
5504 let isReMaterializable = 1, isAsCheapAsAMove = 1 in {
5505 def MVNIv2s_msl : SIMDModifiedImmMoveMSL<0, 1, {1,1,0,?}, V64, "mvni", ".2s",
5506 [(set (v2i32 V64:$Rd),
5507 (AArch64mvni_msl imm0_255:$imm8, (i32 imm:$shift)))]>;
5508 def MVNIv4s_msl : SIMDModifiedImmMoveMSL<1, 1, {1,1,0,?}, V128, "mvni", ".4s",
5509 [(set (v4i32 V128:$Rd),
5510 (AArch64mvni_msl imm0_255:$imm8, (i32 imm:$shift)))]>;
5513 //----------------------------------------------------------------------------
5514 // AdvSIMD indexed element
5515 //----------------------------------------------------------------------------
5517 let hasSideEffects = 0 in {
5518 defm FMLA : SIMDFPIndexedTied<0, 0b0001, "fmla">;
5519 defm FMLS : SIMDFPIndexedTied<0, 0b0101, "fmls">;
5522 // NOTE: Operands are reordered in the FMLA/FMLS PatFrags because the
5523 // instruction expects the addend first, while the intrinsic expects it last.
5525 // On the other hand, there are quite a few valid combinatorial options due to
5526 // the commutativity of multiplication and the fact that (-x) * y = x * (-y).
5527 defm : SIMDFPIndexedTiedPatterns<"FMLA",
5528 TriOpFrag<(fma node:$RHS, node:$MHS, node:$LHS)>>;
5529 defm : SIMDFPIndexedTiedPatterns<"FMLA",
5530 TriOpFrag<(fma node:$MHS, node:$RHS, node:$LHS)>>;
5532 defm : SIMDFPIndexedTiedPatterns<"FMLS",
5533 TriOpFrag<(fma node:$MHS, (fneg node:$RHS), node:$LHS)> >;
5534 defm : SIMDFPIndexedTiedPatterns<"FMLS",
5535 TriOpFrag<(fma node:$RHS, (fneg node:$MHS), node:$LHS)> >;
5536 defm : SIMDFPIndexedTiedPatterns<"FMLS",
5537 TriOpFrag<(fma (fneg node:$RHS), node:$MHS, node:$LHS)> >;
5538 defm : SIMDFPIndexedTiedPatterns<"FMLS",
5539 TriOpFrag<(fma (fneg node:$MHS), node:$RHS, node:$LHS)> >;
5541 multiclass FMLSIndexedAfterNegPatterns<SDPatternOperator OpNode> {
5542 // 3 variants for the .2s version: DUPLANE from 128-bit, DUPLANE from 64-bit
5544 def : Pat<(v2f32 (OpNode (v2f32 V64:$Rd), (v2f32 V64:$Rn),
5545 (AArch64duplane32 (v4f32 (fneg V128:$Rm)),
5546 VectorIndexS:$idx))),
5547 (FMLSv2i32_indexed V64:$Rd, V64:$Rn, V128:$Rm, VectorIndexS:$idx)>;
5548 def : Pat<(v2f32 (OpNode (v2f32 V64:$Rd), (v2f32 V64:$Rn),
5549 (v2f32 (AArch64duplane32
5550 (v4f32 (insert_subvector undef,
5551 (v2f32 (fneg V64:$Rm)),
5553 VectorIndexS:$idx)))),
5554 (FMLSv2i32_indexed V64:$Rd, V64:$Rn,
5555 (SUBREG_TO_REG (i32 0), V64:$Rm, dsub),
5556 VectorIndexS:$idx)>;
5557 def : Pat<(v2f32 (OpNode (v2f32 V64:$Rd), (v2f32 V64:$Rn),
5558 (AArch64dup (f32 (fneg FPR32Op:$Rm))))),
5559 (FMLSv2i32_indexed V64:$Rd, V64:$Rn,
5560 (SUBREG_TO_REG (i32 0), FPR32Op:$Rm, ssub), (i64 0))>;
5562 // 3 variants for the .4s version: DUPLANE from 128-bit, DUPLANE from 64-bit
5564 def : Pat<(v4f32 (OpNode (v4f32 V128:$Rd), (v4f32 V128:$Rn),
5565 (AArch64duplane32 (v4f32 (fneg V128:$Rm)),
5566 VectorIndexS:$idx))),
5567 (FMLSv4i32_indexed V128:$Rd, V128:$Rn, V128:$Rm,
5568 VectorIndexS:$idx)>;
5569 def : Pat<(v4f32 (OpNode (v4f32 V128:$Rd), (v4f32 V128:$Rn),
5570 (v4f32 (AArch64duplane32
5571 (v4f32 (insert_subvector undef,
5572 (v2f32 (fneg V64:$Rm)),
5574 VectorIndexS:$idx)))),
5575 (FMLSv4i32_indexed V128:$Rd, V128:$Rn,
5576 (SUBREG_TO_REG (i32 0), V64:$Rm, dsub),
5577 VectorIndexS:$idx)>;
5578 def : Pat<(v4f32 (OpNode (v4f32 V128:$Rd), (v4f32 V128:$Rn),
5579 (AArch64dup (f32 (fneg FPR32Op:$Rm))))),
5580 (FMLSv4i32_indexed V128:$Rd, V128:$Rn,
5581 (SUBREG_TO_REG (i32 0), FPR32Op:$Rm, ssub), (i64 0))>;
5583 // 2 variants for the .2d version: DUPLANE from 128-bit, and DUP scalar
5584 // (DUPLANE from 64-bit would be trivial).
5585 def : Pat<(v2f64 (OpNode (v2f64 V128:$Rd), (v2f64 V128:$Rn),
5586 (AArch64duplane64 (v2f64 (fneg V128:$Rm)),
5587 VectorIndexD:$idx))),
5589 V128:$Rd, V128:$Rn, V128:$Rm, VectorIndexS:$idx)>;
5590 def : Pat<(v2f64 (OpNode (v2f64 V128:$Rd), (v2f64 V128:$Rn),
5591 (AArch64dup (f64 (fneg FPR64Op:$Rm))))),
5592 (FMLSv2i64_indexed V128:$Rd, V128:$Rn,
5593 (SUBREG_TO_REG (i32 0), FPR64Op:$Rm, dsub), (i64 0))>;
5595 // 2 variants for 32-bit scalar version: extract from .2s or from .4s
5596 def : Pat<(f32 (OpNode (f32 FPR32:$Rd), (f32 FPR32:$Rn),
5597 (vector_extract (v4f32 (fneg V128:$Rm)),
5598 VectorIndexS:$idx))),
5599 (FMLSv1i32_indexed FPR32:$Rd, FPR32:$Rn,
5600 V128:$Rm, VectorIndexS:$idx)>;
5601 def : Pat<(f32 (OpNode (f32 FPR32:$Rd), (f32 FPR32:$Rn),
5602 (vector_extract (v4f32 (insert_subvector undef,
5603 (v2f32 (fneg V64:$Rm)),
5605 VectorIndexS:$idx))),
5606 (FMLSv1i32_indexed FPR32:$Rd, FPR32:$Rn,
5607 (SUBREG_TO_REG (i32 0), V64:$Rm, dsub), VectorIndexS:$idx)>;
5609 // 1 variant for 64-bit scalar version: extract from .1d or from .2d
5610 def : Pat<(f64 (OpNode (f64 FPR64:$Rd), (f64 FPR64:$Rn),
5611 (vector_extract (v2f64 (fneg V128:$Rm)),
5612 VectorIndexS:$idx))),
5613 (FMLSv1i64_indexed FPR64:$Rd, FPR64:$Rn,
5614 V128:$Rm, VectorIndexS:$idx)>;
5617 defm : FMLSIndexedAfterNegPatterns<
5618 TriOpFrag<(fma node:$RHS, node:$MHS, node:$LHS)> >;
5619 defm : FMLSIndexedAfterNegPatterns<
5620 TriOpFrag<(fma node:$MHS, node:$RHS, node:$LHS)> >;
5622 defm FMULX : SIMDFPIndexed<1, 0b1001, "fmulx", int_aarch64_neon_fmulx>;
5623 defm FMUL : SIMDFPIndexed<0, 0b1001, "fmul", fmul>;
5625 def : Pat<(v2f32 (fmul V64:$Rn, (AArch64dup (f32 FPR32:$Rm)))),
5626 (FMULv2i32_indexed V64:$Rn,
5627 (INSERT_SUBREG (v4i32 (IMPLICIT_DEF)), FPR32:$Rm, ssub),
5629 def : Pat<(v4f32 (fmul V128:$Rn, (AArch64dup (f32 FPR32:$Rm)))),
5630 (FMULv4i32_indexed V128:$Rn,
5631 (INSERT_SUBREG (v4i32 (IMPLICIT_DEF)), FPR32:$Rm, ssub),
5633 def : Pat<(v2f64 (fmul V128:$Rn, (AArch64dup (f64 FPR64:$Rm)))),
5634 (FMULv2i64_indexed V128:$Rn,
5635 (INSERT_SUBREG (v4i32 (IMPLICIT_DEF)), FPR64:$Rm, dsub),
5638 defm SQDMULH : SIMDIndexedHS<0, 0b1100, "sqdmulh", int_aarch64_neon_sqdmulh>;
5639 defm SQRDMULH : SIMDIndexedHS<0, 0b1101, "sqrdmulh", int_aarch64_neon_sqrdmulh>;
5641 // Generated by MachineCombine
5642 defm MLA : SIMDVectorIndexedHSTied<1, 0b0000, "mla", null_frag>;
5643 defm MLS : SIMDVectorIndexedHSTied<1, 0b0100, "mls", null_frag>;
5645 defm MUL : SIMDVectorIndexedHS<0, 0b1000, "mul", mul>;
5646 defm SMLAL : SIMDVectorIndexedLongSDTied<0, 0b0010, "smlal",
5647 TriOpFrag<(add node:$LHS, (int_aarch64_neon_smull node:$MHS, node:$RHS))>>;
5648 defm SMLSL : SIMDVectorIndexedLongSDTied<0, 0b0110, "smlsl",
5649 TriOpFrag<(sub node:$LHS, (int_aarch64_neon_smull node:$MHS, node:$RHS))>>;
5650 defm SMULL : SIMDVectorIndexedLongSD<0, 0b1010, "smull",
5651 int_aarch64_neon_smull>;
5652 defm SQDMLAL : SIMDIndexedLongSQDMLXSDTied<0, 0b0011, "sqdmlal",
5653 int_aarch64_neon_sqadd>;
5654 defm SQDMLSL : SIMDIndexedLongSQDMLXSDTied<0, 0b0111, "sqdmlsl",
5655 int_aarch64_neon_sqsub>;
5656 defm SQRDMLAH : SIMDIndexedSQRDMLxHSDTied<1, 0b1101, "sqrdmlah",
5657 int_aarch64_neon_sqadd>;
5658 defm SQRDMLSH : SIMDIndexedSQRDMLxHSDTied<1, 0b1111, "sqrdmlsh",
5659 int_aarch64_neon_sqsub>;
5660 defm SQDMULL : SIMDIndexedLongSD<0, 0b1011, "sqdmull", int_aarch64_neon_sqdmull>;
5661 defm UMLAL : SIMDVectorIndexedLongSDTied<1, 0b0010, "umlal",
5662 TriOpFrag<(add node:$LHS, (int_aarch64_neon_umull node:$MHS, node:$RHS))>>;
5663 defm UMLSL : SIMDVectorIndexedLongSDTied<1, 0b0110, "umlsl",
5664 TriOpFrag<(sub node:$LHS, (int_aarch64_neon_umull node:$MHS, node:$RHS))>>;
5665 defm UMULL : SIMDVectorIndexedLongSD<1, 0b1010, "umull",
5666 int_aarch64_neon_umull>;
5668 // A scalar sqdmull with the second operand being a vector lane can be
5669 // handled directly with the indexed instruction encoding.
5670 def : Pat<(int_aarch64_neon_sqdmulls_scalar (i32 FPR32:$Rn),
5671 (vector_extract (v4i32 V128:$Vm),
5672 VectorIndexS:$idx)),
5673 (SQDMULLv1i64_indexed FPR32:$Rn, V128:$Vm, VectorIndexS:$idx)>;
5675 //----------------------------------------------------------------------------
5676 // AdvSIMD scalar shift instructions
5677 //----------------------------------------------------------------------------
5678 defm FCVTZS : SIMDFPScalarRShift<0, 0b11111, "fcvtzs">;
5679 defm FCVTZU : SIMDFPScalarRShift<1, 0b11111, "fcvtzu">;
5680 defm SCVTF : SIMDFPScalarRShift<0, 0b11100, "scvtf">;
5681 defm UCVTF : SIMDFPScalarRShift<1, 0b11100, "ucvtf">;
5682 // Codegen patterns for the above. We don't put these directly on the
5683 // instructions because TableGen's type inference can't handle the truth.
5684 // Having the same base pattern for fp <--> int totally freaks it out.
5685 def : Pat<(int_aarch64_neon_vcvtfp2fxs FPR32:$Rn, vecshiftR32:$imm),
5686 (FCVTZSs FPR32:$Rn, vecshiftR32:$imm)>;
5687 def : Pat<(int_aarch64_neon_vcvtfp2fxu FPR32:$Rn, vecshiftR32:$imm),
5688 (FCVTZUs FPR32:$Rn, vecshiftR32:$imm)>;
5689 def : Pat<(i64 (int_aarch64_neon_vcvtfp2fxs (f64 FPR64:$Rn), vecshiftR64:$imm)),
5690 (FCVTZSd FPR64:$Rn, vecshiftR64:$imm)>;
5691 def : Pat<(i64 (int_aarch64_neon_vcvtfp2fxu (f64 FPR64:$Rn), vecshiftR64:$imm)),
5692 (FCVTZUd FPR64:$Rn, vecshiftR64:$imm)>;
5693 def : Pat<(v1i64 (int_aarch64_neon_vcvtfp2fxs (v1f64 FPR64:$Rn),
5695 (FCVTZSd FPR64:$Rn, vecshiftR64:$imm)>;
5696 def : Pat<(v1i64 (int_aarch64_neon_vcvtfp2fxu (v1f64 FPR64:$Rn),
5698 (FCVTZUd FPR64:$Rn, vecshiftR64:$imm)>;
5699 def : Pat<(int_aarch64_neon_vcvtfxu2fp FPR32:$Rn, vecshiftR32:$imm),
5700 (UCVTFs FPR32:$Rn, vecshiftR32:$imm)>;
5701 def : Pat<(f64 (int_aarch64_neon_vcvtfxu2fp (i64 FPR64:$Rn), vecshiftR64:$imm)),
5702 (UCVTFd FPR64:$Rn, vecshiftR64:$imm)>;
5703 def : Pat<(v1f64 (int_aarch64_neon_vcvtfxs2fp (v1i64 FPR64:$Rn),
5705 (SCVTFd FPR64:$Rn, vecshiftR64:$imm)>;
5706 def : Pat<(f64 (int_aarch64_neon_vcvtfxs2fp (i64 FPR64:$Rn), vecshiftR64:$imm)),
5707 (SCVTFd FPR64:$Rn, vecshiftR64:$imm)>;
5708 def : Pat<(v1f64 (int_aarch64_neon_vcvtfxu2fp (v1i64 FPR64:$Rn),
5710 (UCVTFd FPR64:$Rn, vecshiftR64:$imm)>;
5711 def : Pat<(int_aarch64_neon_vcvtfxs2fp FPR32:$Rn, vecshiftR32:$imm),
5712 (SCVTFs FPR32:$Rn, vecshiftR32:$imm)>;
5714 // Patterns for FP16 Instrinsics - requires reg copy to/from as i16s not supported.
5716 def : Pat<(f16 (int_aarch64_neon_vcvtfxs2fp (i32 (sext_inreg FPR32:$Rn, i16)), vecshiftR16:$imm)),
5717 (SCVTFh (EXTRACT_SUBREG FPR32:$Rn, hsub), vecshiftR16:$imm)>;
5718 def : Pat<(f16 (int_aarch64_neon_vcvtfxs2fp (i32 FPR32:$Rn), vecshiftR16:$imm)),
5719 (SCVTFh (EXTRACT_SUBREG FPR32:$Rn, hsub), vecshiftR16:$imm)>;
5720 def : Pat<(f16 (int_aarch64_neon_vcvtfxs2fp (i64 FPR64:$Rn), vecshiftR16:$imm)),
5721 (SCVTFh (EXTRACT_SUBREG FPR64:$Rn, hsub), vecshiftR16:$imm)>;
5722 def : Pat<(f16 (int_aarch64_neon_vcvtfxu2fp
5723 (and FPR32:$Rn, (i32 65535)),
5725 (UCVTFh (EXTRACT_SUBREG FPR32:$Rn, hsub), vecshiftR16:$imm)>;
5726 def : Pat<(f16 (int_aarch64_neon_vcvtfxu2fp FPR32:$Rn, vecshiftR16:$imm)),
5727 (UCVTFh (EXTRACT_SUBREG FPR32:$Rn, hsub), vecshiftR16:$imm)>;
5728 def : Pat<(f16 (int_aarch64_neon_vcvtfxu2fp (i64 FPR64:$Rn), vecshiftR16:$imm)),
5729 (UCVTFh (EXTRACT_SUBREG FPR64:$Rn, hsub), vecshiftR16:$imm)>;
5730 def : Pat<(i32 (int_aarch64_neon_vcvtfp2fxs (f16 FPR16:$Rn), vecshiftR32:$imm)),
5732 (i32 (IMPLICIT_DEF)),
5733 (FCVTZSh FPR16:$Rn, vecshiftR32:$imm),
5735 def : Pat<(i64 (int_aarch64_neon_vcvtfp2fxs (f16 FPR16:$Rn), vecshiftR64:$imm)),
5737 (i64 (IMPLICIT_DEF)),
5738 (FCVTZSh FPR16:$Rn, vecshiftR64:$imm),
5740 def : Pat<(i32 (int_aarch64_neon_vcvtfp2fxu (f16 FPR16:$Rn), vecshiftR32:$imm)),
5742 (i32 (IMPLICIT_DEF)),
5743 (FCVTZUh FPR16:$Rn, vecshiftR32:$imm),
5745 def : Pat<(i64 (int_aarch64_neon_vcvtfp2fxu (f16 FPR16:$Rn), vecshiftR64:$imm)),
5747 (i64 (IMPLICIT_DEF)),
5748 (FCVTZUh FPR16:$Rn, vecshiftR64:$imm),
5750 def : Pat<(i32 (int_aarch64_neon_facge (f16 FPR16:$Rn), (f16 FPR16:$Rm))),
5752 (i32 (IMPLICIT_DEF)),
5753 (FACGE16 FPR16:$Rn, FPR16:$Rm),
5755 def : Pat<(i32 (int_aarch64_neon_facgt (f16 FPR16:$Rn), (f16 FPR16:$Rm))),
5757 (i32 (IMPLICIT_DEF)),
5758 (FACGT16 FPR16:$Rn, FPR16:$Rm),
5761 defm SHL : SIMDScalarLShiftD< 0, 0b01010, "shl", AArch64vshl>;
5762 defm SLI : SIMDScalarLShiftDTied<1, 0b01010, "sli">;
5763 defm SQRSHRN : SIMDScalarRShiftBHS< 0, 0b10011, "sqrshrn",
5764 int_aarch64_neon_sqrshrn>;
5765 defm SQRSHRUN : SIMDScalarRShiftBHS< 1, 0b10001, "sqrshrun",
5766 int_aarch64_neon_sqrshrun>;
5767 defm SQSHLU : SIMDScalarLShiftBHSD<1, 0b01100, "sqshlu", AArch64sqshlui>;
5768 defm SQSHL : SIMDScalarLShiftBHSD<0, 0b01110, "sqshl", AArch64sqshli>;
5769 defm SQSHRN : SIMDScalarRShiftBHS< 0, 0b10010, "sqshrn",
5770 int_aarch64_neon_sqshrn>;
5771 defm SQSHRUN : SIMDScalarRShiftBHS< 1, 0b10000, "sqshrun",
5772 int_aarch64_neon_sqshrun>;
5773 defm SRI : SIMDScalarRShiftDTied< 1, 0b01000, "sri">;
5774 defm SRSHR : SIMDScalarRShiftD< 0, 0b00100, "srshr", AArch64srshri>;
5775 defm SRSRA : SIMDScalarRShiftDTied< 0, 0b00110, "srsra",
5776 TriOpFrag<(add node:$LHS,
5777 (AArch64srshri node:$MHS, node:$RHS))>>;
5778 defm SSHR : SIMDScalarRShiftD< 0, 0b00000, "sshr", AArch64vashr>;
5779 defm SSRA : SIMDScalarRShiftDTied< 0, 0b00010, "ssra",
5780 TriOpFrag<(add node:$LHS,
5781 (AArch64vashr node:$MHS, node:$RHS))>>;
5782 defm UQRSHRN : SIMDScalarRShiftBHS< 1, 0b10011, "uqrshrn",
5783 int_aarch64_neon_uqrshrn>;
5784 defm UQSHL : SIMDScalarLShiftBHSD<1, 0b01110, "uqshl", AArch64uqshli>;
5785 defm UQSHRN : SIMDScalarRShiftBHS< 1, 0b10010, "uqshrn",
5786 int_aarch64_neon_uqshrn>;
5787 defm URSHR : SIMDScalarRShiftD< 1, 0b00100, "urshr", AArch64urshri>;
5788 defm URSRA : SIMDScalarRShiftDTied< 1, 0b00110, "ursra",
5789 TriOpFrag<(add node:$LHS,
5790 (AArch64urshri node:$MHS, node:$RHS))>>;
5791 defm USHR : SIMDScalarRShiftD< 1, 0b00000, "ushr", AArch64vlshr>;
5792 defm USRA : SIMDScalarRShiftDTied< 1, 0b00010, "usra",
5793 TriOpFrag<(add node:$LHS,
5794 (AArch64vlshr node:$MHS, node:$RHS))>>;
5796 //----------------------------------------------------------------------------
5797 // AdvSIMD vector shift instructions
5798 //----------------------------------------------------------------------------
5799 defm FCVTZS:SIMDVectorRShiftSD<0, 0b11111, "fcvtzs", int_aarch64_neon_vcvtfp2fxs>;
5800 defm FCVTZU:SIMDVectorRShiftSD<1, 0b11111, "fcvtzu", int_aarch64_neon_vcvtfp2fxu>;
5801 defm SCVTF: SIMDVectorRShiftToFP<0, 0b11100, "scvtf",
5802 int_aarch64_neon_vcvtfxs2fp>;
5803 defm RSHRN : SIMDVectorRShiftNarrowBHS<0, 0b10001, "rshrn",
5804 int_aarch64_neon_rshrn>;
5805 defm SHL : SIMDVectorLShiftBHSD<0, 0b01010, "shl", AArch64vshl>;
5806 defm SHRN : SIMDVectorRShiftNarrowBHS<0, 0b10000, "shrn",
5807 BinOpFrag<(trunc (AArch64vashr node:$LHS, node:$RHS))>>;
5808 defm SLI : SIMDVectorLShiftBHSDTied<1, 0b01010, "sli", int_aarch64_neon_vsli>;
5809 def : Pat<(v1i64 (int_aarch64_neon_vsli (v1i64 FPR64:$Rd), (v1i64 FPR64:$Rn),
5810 (i32 vecshiftL64:$imm))),
5811 (SLId FPR64:$Rd, FPR64:$Rn, vecshiftL64:$imm)>;
5812 defm SQRSHRN : SIMDVectorRShiftNarrowBHS<0, 0b10011, "sqrshrn",
5813 int_aarch64_neon_sqrshrn>;
5814 defm SQRSHRUN: SIMDVectorRShiftNarrowBHS<1, 0b10001, "sqrshrun",
5815 int_aarch64_neon_sqrshrun>;
5816 defm SQSHLU : SIMDVectorLShiftBHSD<1, 0b01100, "sqshlu", AArch64sqshlui>;
5817 defm SQSHL : SIMDVectorLShiftBHSD<0, 0b01110, "sqshl", AArch64sqshli>;
5818 defm SQSHRN : SIMDVectorRShiftNarrowBHS<0, 0b10010, "sqshrn",
5819 int_aarch64_neon_sqshrn>;
5820 defm SQSHRUN : SIMDVectorRShiftNarrowBHS<1, 0b10000, "sqshrun",
5821 int_aarch64_neon_sqshrun>;
5822 defm SRI : SIMDVectorRShiftBHSDTied<1, 0b01000, "sri", int_aarch64_neon_vsri>;
5823 def : Pat<(v1i64 (int_aarch64_neon_vsri (v1i64 FPR64:$Rd), (v1i64 FPR64:$Rn),
5824 (i32 vecshiftR64:$imm))),
5825 (SRId FPR64:$Rd, FPR64:$Rn, vecshiftR64:$imm)>;
5826 defm SRSHR : SIMDVectorRShiftBHSD<0, 0b00100, "srshr", AArch64srshri>;
5827 defm SRSRA : SIMDVectorRShiftBHSDTied<0, 0b00110, "srsra",
5828 TriOpFrag<(add node:$LHS,
5829 (AArch64srshri node:$MHS, node:$RHS))> >;
5830 defm SSHLL : SIMDVectorLShiftLongBHSD<0, 0b10100, "sshll",
5831 BinOpFrag<(AArch64vshl (sext node:$LHS), node:$RHS)>>;
5833 defm SSHR : SIMDVectorRShiftBHSD<0, 0b00000, "sshr", AArch64vashr>;
5834 defm SSRA : SIMDVectorRShiftBHSDTied<0, 0b00010, "ssra",
5835 TriOpFrag<(add node:$LHS, (AArch64vashr node:$MHS, node:$RHS))>>;
5836 defm UCVTF : SIMDVectorRShiftToFP<1, 0b11100, "ucvtf",
5837 int_aarch64_neon_vcvtfxu2fp>;
5838 defm UQRSHRN : SIMDVectorRShiftNarrowBHS<1, 0b10011, "uqrshrn",
5839 int_aarch64_neon_uqrshrn>;
5840 defm UQSHL : SIMDVectorLShiftBHSD<1, 0b01110, "uqshl", AArch64uqshli>;
5841 defm UQSHRN : SIMDVectorRShiftNarrowBHS<1, 0b10010, "uqshrn",
5842 int_aarch64_neon_uqshrn>;
5843 defm URSHR : SIMDVectorRShiftBHSD<1, 0b00100, "urshr", AArch64urshri>;
5844 defm URSRA : SIMDVectorRShiftBHSDTied<1, 0b00110, "ursra",
5845 TriOpFrag<(add node:$LHS,
5846 (AArch64urshri node:$MHS, node:$RHS))> >;
5847 defm USHLL : SIMDVectorLShiftLongBHSD<1, 0b10100, "ushll",
5848 BinOpFrag<(AArch64vshl (zext node:$LHS), node:$RHS)>>;
5849 defm USHR : SIMDVectorRShiftBHSD<1, 0b00000, "ushr", AArch64vlshr>;
5850 defm USRA : SIMDVectorRShiftBHSDTied<1, 0b00010, "usra",
5851 TriOpFrag<(add node:$LHS, (AArch64vlshr node:$MHS, node:$RHS))> >;
5853 // SHRN patterns for when a logical right shift was used instead of arithmetic
5854 // (the immediate guarantees no sign bits actually end up in the result so it
5856 def : Pat<(v8i8 (trunc (AArch64vlshr (v8i16 V128:$Rn), vecshiftR16Narrow:$imm))),
5857 (SHRNv8i8_shift V128:$Rn, vecshiftR16Narrow:$imm)>;
5858 def : Pat<(v4i16 (trunc (AArch64vlshr (v4i32 V128:$Rn), vecshiftR32Narrow:$imm))),
5859 (SHRNv4i16_shift V128:$Rn, vecshiftR32Narrow:$imm)>;
5860 def : Pat<(v2i32 (trunc (AArch64vlshr (v2i64 V128:$Rn), vecshiftR64Narrow:$imm))),
5861 (SHRNv2i32_shift V128:$Rn, vecshiftR64Narrow:$imm)>;
5863 def : Pat<(v16i8 (concat_vectors (v8i8 V64:$Rd),
5864 (trunc (AArch64vlshr (v8i16 V128:$Rn),
5865 vecshiftR16Narrow:$imm)))),
5866 (SHRNv16i8_shift (INSERT_SUBREG (IMPLICIT_DEF), V64:$Rd, dsub),
5867 V128:$Rn, vecshiftR16Narrow:$imm)>;
5868 def : Pat<(v8i16 (concat_vectors (v4i16 V64:$Rd),
5869 (trunc (AArch64vlshr (v4i32 V128:$Rn),
5870 vecshiftR32Narrow:$imm)))),
5871 (SHRNv8i16_shift (INSERT_SUBREG (IMPLICIT_DEF), V64:$Rd, dsub),
5872 V128:$Rn, vecshiftR32Narrow:$imm)>;
5873 def : Pat<(v4i32 (concat_vectors (v2i32 V64:$Rd),
5874 (trunc (AArch64vlshr (v2i64 V128:$Rn),
5875 vecshiftR64Narrow:$imm)))),
5876 (SHRNv4i32_shift (INSERT_SUBREG (IMPLICIT_DEF), V64:$Rd, dsub),
5877 V128:$Rn, vecshiftR32Narrow:$imm)>;
5879 // Vector sign and zero extensions are implemented with SSHLL and USSHLL.
5880 // Anyexts are implemented as zexts.
5881 def : Pat<(v8i16 (sext (v8i8 V64:$Rn))), (SSHLLv8i8_shift V64:$Rn, (i32 0))>;
5882 def : Pat<(v8i16 (zext (v8i8 V64:$Rn))), (USHLLv8i8_shift V64:$Rn, (i32 0))>;
5883 def : Pat<(v8i16 (anyext (v8i8 V64:$Rn))), (USHLLv8i8_shift V64:$Rn, (i32 0))>;
5884 def : Pat<(v4i32 (sext (v4i16 V64:$Rn))), (SSHLLv4i16_shift V64:$Rn, (i32 0))>;
5885 def : Pat<(v4i32 (zext (v4i16 V64:$Rn))), (USHLLv4i16_shift V64:$Rn, (i32 0))>;
5886 def : Pat<(v4i32 (anyext (v4i16 V64:$Rn))), (USHLLv4i16_shift V64:$Rn, (i32 0))>;
5887 def : Pat<(v2i64 (sext (v2i32 V64:$Rn))), (SSHLLv2i32_shift V64:$Rn, (i32 0))>;
5888 def : Pat<(v2i64 (zext (v2i32 V64:$Rn))), (USHLLv2i32_shift V64:$Rn, (i32 0))>;
5889 def : Pat<(v2i64 (anyext (v2i32 V64:$Rn))), (USHLLv2i32_shift V64:$Rn, (i32 0))>;
5890 // Also match an extend from the upper half of a 128 bit source register.
5891 def : Pat<(v8i16 (anyext (v8i8 (extract_subvector V128:$Rn, (i64 8)) ))),
5892 (USHLLv16i8_shift V128:$Rn, (i32 0))>;
5893 def : Pat<(v8i16 (zext (v8i8 (extract_subvector V128:$Rn, (i64 8)) ))),
5894 (USHLLv16i8_shift V128:$Rn, (i32 0))>;
5895 def : Pat<(v8i16 (sext (v8i8 (extract_subvector V128:$Rn, (i64 8)) ))),
5896 (SSHLLv16i8_shift V128:$Rn, (i32 0))>;
5897 def : Pat<(v4i32 (anyext (v4i16 (extract_subvector V128:$Rn, (i64 4)) ))),
5898 (USHLLv8i16_shift V128:$Rn, (i32 0))>;
5899 def : Pat<(v4i32 (zext (v4i16 (extract_subvector V128:$Rn, (i64 4)) ))),
5900 (USHLLv8i16_shift V128:$Rn, (i32 0))>;
5901 def : Pat<(v4i32 (sext (v4i16 (extract_subvector V128:$Rn, (i64 4)) ))),
5902 (SSHLLv8i16_shift V128:$Rn, (i32 0))>;
5903 def : Pat<(v2i64 (anyext (v2i32 (extract_subvector V128:$Rn, (i64 2)) ))),
5904 (USHLLv4i32_shift V128:$Rn, (i32 0))>;
5905 def : Pat<(v2i64 (zext (v2i32 (extract_subvector V128:$Rn, (i64 2)) ))),
5906 (USHLLv4i32_shift V128:$Rn, (i32 0))>;
5907 def : Pat<(v2i64 (sext (v2i32 (extract_subvector V128:$Rn, (i64 2)) ))),
5908 (SSHLLv4i32_shift V128:$Rn, (i32 0))>;
5910 // Vector shift sxtl aliases
5911 def : InstAlias<"sxtl.8h $dst, $src1",
5912 (SSHLLv8i8_shift V128:$dst, V64:$src1, 0)>;
5913 def : InstAlias<"sxtl $dst.8h, $src1.8b",
5914 (SSHLLv8i8_shift V128:$dst, V64:$src1, 0)>;
5915 def : InstAlias<"sxtl.4s $dst, $src1",
5916 (SSHLLv4i16_shift V128:$dst, V64:$src1, 0)>;
5917 def : InstAlias<"sxtl $dst.4s, $src1.4h",
5918 (SSHLLv4i16_shift V128:$dst, V64:$src1, 0)>;
5919 def : InstAlias<"sxtl.2d $dst, $src1",
5920 (SSHLLv2i32_shift V128:$dst, V64:$src1, 0)>;
5921 def : InstAlias<"sxtl $dst.2d, $src1.2s",
5922 (SSHLLv2i32_shift V128:$dst, V64:$src1, 0)>;
5924 // Vector shift sxtl2 aliases
5925 def : InstAlias<"sxtl2.8h $dst, $src1",
5926 (SSHLLv16i8_shift V128:$dst, V128:$src1, 0)>;
5927 def : InstAlias<"sxtl2 $dst.8h, $src1.16b",
5928 (SSHLLv16i8_shift V128:$dst, V128:$src1, 0)>;
5929 def : InstAlias<"sxtl2.4s $dst, $src1",
5930 (SSHLLv8i16_shift V128:$dst, V128:$src1, 0)>;
5931 def : InstAlias<"sxtl2 $dst.4s, $src1.8h",
5932 (SSHLLv8i16_shift V128:$dst, V128:$src1, 0)>;
5933 def : InstAlias<"sxtl2.2d $dst, $src1",
5934 (SSHLLv4i32_shift V128:$dst, V128:$src1, 0)>;
5935 def : InstAlias<"sxtl2 $dst.2d, $src1.4s",
5936 (SSHLLv4i32_shift V128:$dst, V128:$src1, 0)>;
5938 // Vector shift uxtl aliases
5939 def : InstAlias<"uxtl.8h $dst, $src1",
5940 (USHLLv8i8_shift V128:$dst, V64:$src1, 0)>;
5941 def : InstAlias<"uxtl $dst.8h, $src1.8b",
5942 (USHLLv8i8_shift V128:$dst, V64:$src1, 0)>;
5943 def : InstAlias<"uxtl.4s $dst, $src1",
5944 (USHLLv4i16_shift V128:$dst, V64:$src1, 0)>;
5945 def : InstAlias<"uxtl $dst.4s, $src1.4h",
5946 (USHLLv4i16_shift V128:$dst, V64:$src1, 0)>;
5947 def : InstAlias<"uxtl.2d $dst, $src1",
5948 (USHLLv2i32_shift V128:$dst, V64:$src1, 0)>;
5949 def : InstAlias<"uxtl $dst.2d, $src1.2s",
5950 (USHLLv2i32_shift V128:$dst, V64:$src1, 0)>;
5952 // Vector shift uxtl2 aliases
5953 def : InstAlias<"uxtl2.8h $dst, $src1",
5954 (USHLLv16i8_shift V128:$dst, V128:$src1, 0)>;
5955 def : InstAlias<"uxtl2 $dst.8h, $src1.16b",
5956 (USHLLv16i8_shift V128:$dst, V128:$src1, 0)>;
5957 def : InstAlias<"uxtl2.4s $dst, $src1",
5958 (USHLLv8i16_shift V128:$dst, V128:$src1, 0)>;
5959 def : InstAlias<"uxtl2 $dst.4s, $src1.8h",
5960 (USHLLv8i16_shift V128:$dst, V128:$src1, 0)>;
5961 def : InstAlias<"uxtl2.2d $dst, $src1",
5962 (USHLLv4i32_shift V128:$dst, V128:$src1, 0)>;
5963 def : InstAlias<"uxtl2 $dst.2d, $src1.4s",
5964 (USHLLv4i32_shift V128:$dst, V128:$src1, 0)>;
5966 // If an integer is about to be converted to a floating point value,
5967 // just load it on the floating point unit.
5968 // These patterns are more complex because floating point loads do not
5969 // support sign extension.
5970 // The sign extension has to be explicitly added and is only supported for
5971 // one step: byte-to-half, half-to-word, word-to-doubleword.
5972 // SCVTF GPR -> FPR is 9 cycles.
5973 // SCVTF FPR -> FPR is 4 cyclces.
5974 // (sign extension with lengthen) SXTL FPR -> FPR is 2 cycles.
5975 // Therefore, we can do 2 sign extensions and one SCVTF FPR -> FPR
5976 // and still being faster.
5977 // However, this is not good for code size.
5978 // 8-bits -> float. 2 sizes step-up.
5979 class SExtLoadi8CVTf32Pat<dag addrmode, dag INST>
5980 : Pat<(f32 (sint_to_fp (i32 (sextloadi8 addrmode)))),
5981 (SCVTFv1i32 (f32 (EXTRACT_SUBREG
5986 (INSERT_SUBREG (f64 (IMPLICIT_DEF)),
5993 Requires<[NotForCodeSize, UseAlternateSExtLoadCVTF32]>;
5995 def : SExtLoadi8CVTf32Pat<(ro8.Wpat GPR64sp:$Rn, GPR32:$Rm, ro8.Wext:$ext),
5996 (LDRBroW GPR64sp:$Rn, GPR32:$Rm, ro8.Wext:$ext)>;
5997 def : SExtLoadi8CVTf32Pat<(ro8.Xpat GPR64sp:$Rn, GPR64:$Rm, ro8.Xext:$ext),
5998 (LDRBroX GPR64sp:$Rn, GPR64:$Rm, ro8.Xext:$ext)>;
5999 def : SExtLoadi8CVTf32Pat<(am_indexed8 GPR64sp:$Rn, uimm12s1:$offset),
6000 (LDRBui GPR64sp:$Rn, uimm12s1:$offset)>;
6001 def : SExtLoadi8CVTf32Pat<(am_unscaled8 GPR64sp:$Rn, simm9:$offset),
6002 (LDURBi GPR64sp:$Rn, simm9:$offset)>;
6004 // 16-bits -> float. 1 size step-up.
6005 class SExtLoadi16CVTf32Pat<dag addrmode, dag INST>
6006 : Pat<(f32 (sint_to_fp (i32 (sextloadi16 addrmode)))),
6007 (SCVTFv1i32 (f32 (EXTRACT_SUBREG
6009 (INSERT_SUBREG (f64 (IMPLICIT_DEF)),
6013 ssub)))>, Requires<[NotForCodeSize]>;
6015 def : SExtLoadi16CVTf32Pat<(ro16.Wpat GPR64sp:$Rn, GPR32:$Rm, ro16.Wext:$ext),
6016 (LDRHroW GPR64sp:$Rn, GPR32:$Rm, ro16.Wext:$ext)>;
6017 def : SExtLoadi16CVTf32Pat<(ro16.Xpat GPR64sp:$Rn, GPR64:$Rm, ro16.Xext:$ext),
6018 (LDRHroX GPR64sp:$Rn, GPR64:$Rm, ro16.Xext:$ext)>;
6019 def : SExtLoadi16CVTf32Pat<(am_indexed16 GPR64sp:$Rn, uimm12s2:$offset),
6020 (LDRHui GPR64sp:$Rn, uimm12s2:$offset)>;
6021 def : SExtLoadi16CVTf32Pat<(am_unscaled16 GPR64sp:$Rn, simm9:$offset),
6022 (LDURHi GPR64sp:$Rn, simm9:$offset)>;
6024 // 32-bits to 32-bits are handled in target specific dag combine:
6025 // performIntToFpCombine.
6026 // 64-bits integer to 32-bits floating point, not possible with
6027 // SCVTF on floating point registers (both source and destination
6028 // must have the same size).
6030 // Here are the patterns for 8, 16, 32, and 64-bits to double.
6031 // 8-bits -> double. 3 size step-up: give up.
6032 // 16-bits -> double. 2 size step.
6033 class SExtLoadi16CVTf64Pat<dag addrmode, dag INST>
6034 : Pat <(f64 (sint_to_fp (i32 (sextloadi16 addrmode)))),
6035 (SCVTFv1i64 (f64 (EXTRACT_SUBREG
6040 (INSERT_SUBREG (f64 (IMPLICIT_DEF)),
6047 Requires<[NotForCodeSize, UseAlternateSExtLoadCVTF32]>;
6049 def : SExtLoadi16CVTf64Pat<(ro16.Wpat GPR64sp:$Rn, GPR32:$Rm, ro16.Wext:$ext),
6050 (LDRHroW GPR64sp:$Rn, GPR32:$Rm, ro16.Wext:$ext)>;
6051 def : SExtLoadi16CVTf64Pat<(ro16.Xpat GPR64sp:$Rn, GPR64:$Rm, ro16.Xext:$ext),
6052 (LDRHroX GPR64sp:$Rn, GPR64:$Rm, ro16.Xext:$ext)>;
6053 def : SExtLoadi16CVTf64Pat<(am_indexed16 GPR64sp:$Rn, uimm12s2:$offset),
6054 (LDRHui GPR64sp:$Rn, uimm12s2:$offset)>;
6055 def : SExtLoadi16CVTf64Pat<(am_unscaled16 GPR64sp:$Rn, simm9:$offset),
6056 (LDURHi GPR64sp:$Rn, simm9:$offset)>;
6057 // 32-bits -> double. 1 size step-up.
6058 class SExtLoadi32CVTf64Pat<dag addrmode, dag INST>
6059 : Pat <(f64 (sint_to_fp (i32 (load addrmode)))),
6060 (SCVTFv1i64 (f64 (EXTRACT_SUBREG
6062 (INSERT_SUBREG (f64 (IMPLICIT_DEF)),
6066 dsub)))>, Requires<[NotForCodeSize]>;
6068 def : SExtLoadi32CVTf64Pat<(ro32.Wpat GPR64sp:$Rn, GPR32:$Rm, ro32.Wext:$ext),
6069 (LDRSroW GPR64sp:$Rn, GPR32:$Rm, ro32.Wext:$ext)>;
6070 def : SExtLoadi32CVTf64Pat<(ro32.Xpat GPR64sp:$Rn, GPR64:$Rm, ro32.Xext:$ext),
6071 (LDRSroX GPR64sp:$Rn, GPR64:$Rm, ro32.Xext:$ext)>;
6072 def : SExtLoadi32CVTf64Pat<(am_indexed32 GPR64sp:$Rn, uimm12s4:$offset),
6073 (LDRSui GPR64sp:$Rn, uimm12s4:$offset)>;
6074 def : SExtLoadi32CVTf64Pat<(am_unscaled32 GPR64sp:$Rn, simm9:$offset),
6075 (LDURSi GPR64sp:$Rn, simm9:$offset)>;
6077 // 64-bits -> double are handled in target specific dag combine:
6078 // performIntToFpCombine.
6081 //----------------------------------------------------------------------------
6082 // AdvSIMD Load-Store Structure
6083 //----------------------------------------------------------------------------
6084 defm LD1 : SIMDLd1Multiple<"ld1">;
6085 defm LD2 : SIMDLd2Multiple<"ld2">;
6086 defm LD3 : SIMDLd3Multiple<"ld3">;
6087 defm LD4 : SIMDLd4Multiple<"ld4">;
6089 defm ST1 : SIMDSt1Multiple<"st1">;
6090 defm ST2 : SIMDSt2Multiple<"st2">;
6091 defm ST3 : SIMDSt3Multiple<"st3">;
6092 defm ST4 : SIMDSt4Multiple<"st4">;
6094 class Ld1Pat<ValueType ty, Instruction INST>
6095 : Pat<(ty (load GPR64sp:$Rn)), (INST GPR64sp:$Rn)>;
6097 def : Ld1Pat<v16i8, LD1Onev16b>;
6098 def : Ld1Pat<v8i16, LD1Onev8h>;
6099 def : Ld1Pat<v4i32, LD1Onev4s>;
6100 def : Ld1Pat<v2i64, LD1Onev2d>;
6101 def : Ld1Pat<v8i8, LD1Onev8b>;
6102 def : Ld1Pat<v4i16, LD1Onev4h>;
6103 def : Ld1Pat<v2i32, LD1Onev2s>;
6104 def : Ld1Pat<v1i64, LD1Onev1d>;
6106 class St1Pat<ValueType ty, Instruction INST>
6107 : Pat<(store ty:$Vt, GPR64sp:$Rn),
6108 (INST ty:$Vt, GPR64sp:$Rn)>;
6110 def : St1Pat<v16i8, ST1Onev16b>;
6111 def : St1Pat<v8i16, ST1Onev8h>;
6112 def : St1Pat<v4i32, ST1Onev4s>;
6113 def : St1Pat<v2i64, ST1Onev2d>;
6114 def : St1Pat<v8i8, ST1Onev8b>;
6115 def : St1Pat<v4i16, ST1Onev4h>;
6116 def : St1Pat<v2i32, ST1Onev2s>;
6117 def : St1Pat<v1i64, ST1Onev1d>;
6123 defm LD1R : SIMDLdR<0, 0b110, 0, "ld1r", "One", 1, 2, 4, 8>;
6124 defm LD2R : SIMDLdR<1, 0b110, 0, "ld2r", "Two", 2, 4, 8, 16>;
6125 defm LD3R : SIMDLdR<0, 0b111, 0, "ld3r", "Three", 3, 6, 12, 24>;
6126 defm LD4R : SIMDLdR<1, 0b111, 0, "ld4r", "Four", 4, 8, 16, 32>;
6127 let mayLoad = 1, hasSideEffects = 0 in {
6128 defm LD1 : SIMDLdSingleBTied<0, 0b000, "ld1", VecListOneb, GPR64pi1>;
6129 defm LD1 : SIMDLdSingleHTied<0, 0b010, 0, "ld1", VecListOneh, GPR64pi2>;
6130 defm LD1 : SIMDLdSingleSTied<0, 0b100, 0b00, "ld1", VecListOnes, GPR64pi4>;
6131 defm LD1 : SIMDLdSingleDTied<0, 0b100, 0b01, "ld1", VecListOned, GPR64pi8>;
6132 defm LD2 : SIMDLdSingleBTied<1, 0b000, "ld2", VecListTwob, GPR64pi2>;
6133 defm LD2 : SIMDLdSingleHTied<1, 0b010, 0, "ld2", VecListTwoh, GPR64pi4>;
6134 defm LD2 : SIMDLdSingleSTied<1, 0b100, 0b00, "ld2", VecListTwos, GPR64pi8>;
6135 defm LD2 : SIMDLdSingleDTied<1, 0b100, 0b01, "ld2", VecListTwod, GPR64pi16>;
6136 defm LD3 : SIMDLdSingleBTied<0, 0b001, "ld3", VecListThreeb, GPR64pi3>;
6137 defm LD3 : SIMDLdSingleHTied<0, 0b011, 0, "ld3", VecListThreeh, GPR64pi6>;
6138 defm LD3 : SIMDLdSingleSTied<0, 0b101, 0b00, "ld3", VecListThrees, GPR64pi12>;
6139 defm LD3 : SIMDLdSingleDTied<0, 0b101, 0b01, "ld3", VecListThreed, GPR64pi24>;
6140 defm LD4 : SIMDLdSingleBTied<1, 0b001, "ld4", VecListFourb, GPR64pi4>;
6141 defm LD4 : SIMDLdSingleHTied<1, 0b011, 0, "ld4", VecListFourh, GPR64pi8>;
6142 defm LD4 : SIMDLdSingleSTied<1, 0b101, 0b00, "ld4", VecListFours, GPR64pi16>;
6143 defm LD4 : SIMDLdSingleDTied<1, 0b101, 0b01, "ld4", VecListFourd, GPR64pi32>;
6146 def : Pat<(v8i8 (AArch64dup (i32 (extloadi8 GPR64sp:$Rn)))),
6147 (LD1Rv8b GPR64sp:$Rn)>;
6148 def : Pat<(v16i8 (AArch64dup (i32 (extloadi8 GPR64sp:$Rn)))),
6149 (LD1Rv16b GPR64sp:$Rn)>;
6150 def : Pat<(v4i16 (AArch64dup (i32 (extloadi16 GPR64sp:$Rn)))),
6151 (LD1Rv4h GPR64sp:$Rn)>;
6152 def : Pat<(v8i16 (AArch64dup (i32 (extloadi16 GPR64sp:$Rn)))),
6153 (LD1Rv8h GPR64sp:$Rn)>;
6154 def : Pat<(v2i32 (AArch64dup (i32 (load GPR64sp:$Rn)))),
6155 (LD1Rv2s GPR64sp:$Rn)>;
6156 def : Pat<(v4i32 (AArch64dup (i32 (load GPR64sp:$Rn)))),
6157 (LD1Rv4s GPR64sp:$Rn)>;
6158 def : Pat<(v2i64 (AArch64dup (i64 (load GPR64sp:$Rn)))),
6159 (LD1Rv2d GPR64sp:$Rn)>;
6160 def : Pat<(v1i64 (AArch64dup (i64 (load GPR64sp:$Rn)))),
6161 (LD1Rv1d GPR64sp:$Rn)>;
6162 // Grab the floating point version too
6163 def : Pat<(v2f32 (AArch64dup (f32 (load GPR64sp:$Rn)))),
6164 (LD1Rv2s GPR64sp:$Rn)>;
6165 def : Pat<(v4f32 (AArch64dup (f32 (load GPR64sp:$Rn)))),
6166 (LD1Rv4s GPR64sp:$Rn)>;
6167 def : Pat<(v2f64 (AArch64dup (f64 (load GPR64sp:$Rn)))),
6168 (LD1Rv2d GPR64sp:$Rn)>;
6169 def : Pat<(v1f64 (AArch64dup (f64 (load GPR64sp:$Rn)))),
6170 (LD1Rv1d GPR64sp:$Rn)>;
6171 def : Pat<(v4f16 (AArch64dup (f16 (load GPR64sp:$Rn)))),
6172 (LD1Rv4h GPR64sp:$Rn)>;
6173 def : Pat<(v8f16 (AArch64dup (f16 (load GPR64sp:$Rn)))),
6174 (LD1Rv8h GPR64sp:$Rn)>;
6176 class Ld1Lane128Pat<SDPatternOperator scalar_load, Operand VecIndex,
6177 ValueType VTy, ValueType STy, Instruction LD1>
6178 : Pat<(vector_insert (VTy VecListOne128:$Rd),
6179 (STy (scalar_load GPR64sp:$Rn)), VecIndex:$idx),
6180 (LD1 VecListOne128:$Rd, VecIndex:$idx, GPR64sp:$Rn)>;
6182 def : Ld1Lane128Pat<extloadi8, VectorIndexB, v16i8, i32, LD1i8>;
6183 def : Ld1Lane128Pat<extloadi16, VectorIndexH, v8i16, i32, LD1i16>;
6184 def : Ld1Lane128Pat<load, VectorIndexS, v4i32, i32, LD1i32>;
6185 def : Ld1Lane128Pat<load, VectorIndexS, v4f32, f32, LD1i32>;
6186 def : Ld1Lane128Pat<load, VectorIndexD, v2i64, i64, LD1i64>;
6187 def : Ld1Lane128Pat<load, VectorIndexD, v2f64, f64, LD1i64>;
6188 def : Ld1Lane128Pat<load, VectorIndexH, v8f16, f16, LD1i16>;
6190 class Ld1Lane64Pat<SDPatternOperator scalar_load, Operand VecIndex,
6191 ValueType VTy, ValueType STy, Instruction LD1>
6192 : Pat<(vector_insert (VTy VecListOne64:$Rd),
6193 (STy (scalar_load GPR64sp:$Rn)), VecIndex:$idx),
6195 (LD1 (SUBREG_TO_REG (i32 0), VecListOne64:$Rd, dsub),
6196 VecIndex:$idx, GPR64sp:$Rn),
6199 def : Ld1Lane64Pat<extloadi8, VectorIndexB, v8i8, i32, LD1i8>;
6200 def : Ld1Lane64Pat<extloadi16, VectorIndexH, v4i16, i32, LD1i16>;
6201 def : Ld1Lane64Pat<load, VectorIndexS, v2i32, i32, LD1i32>;
6202 def : Ld1Lane64Pat<load, VectorIndexS, v2f32, f32, LD1i32>;
6203 def : Ld1Lane64Pat<load, VectorIndexH, v4f16, f16, LD1i16>;
6206 defm LD1 : SIMDLdSt1SingleAliases<"ld1">;
6207 defm LD2 : SIMDLdSt2SingleAliases<"ld2">;
6208 defm LD3 : SIMDLdSt3SingleAliases<"ld3">;
6209 defm LD4 : SIMDLdSt4SingleAliases<"ld4">;
6212 defm ST1 : SIMDStSingleB<0, 0b000, "st1", VecListOneb, GPR64pi1>;
6213 defm ST1 : SIMDStSingleH<0, 0b010, 0, "st1", VecListOneh, GPR64pi2>;
6214 defm ST1 : SIMDStSingleS<0, 0b100, 0b00, "st1", VecListOnes, GPR64pi4>;
6215 defm ST1 : SIMDStSingleD<0, 0b100, 0b01, "st1", VecListOned, GPR64pi8>;
6217 let AddedComplexity = 19 in
6218 class St1Lane128Pat<SDPatternOperator scalar_store, Operand VecIndex,
6219 ValueType VTy, ValueType STy, Instruction ST1>
6221 (STy (vector_extract (VTy VecListOne128:$Vt), VecIndex:$idx)),
6223 (ST1 VecListOne128:$Vt, VecIndex:$idx, GPR64sp:$Rn)>;
6225 def : St1Lane128Pat<truncstorei8, VectorIndexB, v16i8, i32, ST1i8>;
6226 def : St1Lane128Pat<truncstorei16, VectorIndexH, v8i16, i32, ST1i16>;
6227 def : St1Lane128Pat<store, VectorIndexS, v4i32, i32, ST1i32>;
6228 def : St1Lane128Pat<store, VectorIndexS, v4f32, f32, ST1i32>;
6229 def : St1Lane128Pat<store, VectorIndexD, v2i64, i64, ST1i64>;
6230 def : St1Lane128Pat<store, VectorIndexD, v2f64, f64, ST1i64>;
6231 def : St1Lane128Pat<store, VectorIndexH, v8f16, f16, ST1i16>;
6233 let AddedComplexity = 19 in
6234 class St1Lane64Pat<SDPatternOperator scalar_store, Operand VecIndex,
6235 ValueType VTy, ValueType STy, Instruction ST1>
6237 (STy (vector_extract (VTy VecListOne64:$Vt), VecIndex:$idx)),
6239 (ST1 (SUBREG_TO_REG (i32 0), VecListOne64:$Vt, dsub),
6240 VecIndex:$idx, GPR64sp:$Rn)>;
6242 def : St1Lane64Pat<truncstorei8, VectorIndexB, v8i8, i32, ST1i8>;
6243 def : St1Lane64Pat<truncstorei16, VectorIndexH, v4i16, i32, ST1i16>;
6244 def : St1Lane64Pat<store, VectorIndexS, v2i32, i32, ST1i32>;
6245 def : St1Lane64Pat<store, VectorIndexS, v2f32, f32, ST1i32>;
6246 def : St1Lane64Pat<store, VectorIndexH, v4f16, f16, ST1i16>;
6248 multiclass St1LanePost64Pat<SDPatternOperator scalar_store, Operand VecIndex,
6249 ValueType VTy, ValueType STy, Instruction ST1,
6251 def : Pat<(scalar_store
6252 (STy (vector_extract (VTy VecListOne64:$Vt), VecIndex:$idx)),
6253 GPR64sp:$Rn, offset),
6254 (ST1 (SUBREG_TO_REG (i32 0), VecListOne64:$Vt, dsub),
6255 VecIndex:$idx, GPR64sp:$Rn, XZR)>;
6257 def : Pat<(scalar_store
6258 (STy (vector_extract (VTy VecListOne64:$Vt), VecIndex:$idx)),
6259 GPR64sp:$Rn, GPR64:$Rm),
6260 (ST1 (SUBREG_TO_REG (i32 0), VecListOne64:$Vt, dsub),
6261 VecIndex:$idx, GPR64sp:$Rn, $Rm)>;
6264 defm : St1LanePost64Pat<post_truncsti8, VectorIndexB, v8i8, i32, ST1i8_POST, 1>;
6265 defm : St1LanePost64Pat<post_truncsti16, VectorIndexH, v4i16, i32, ST1i16_POST,
6267 defm : St1LanePost64Pat<post_store, VectorIndexS, v2i32, i32, ST1i32_POST, 4>;
6268 defm : St1LanePost64Pat<post_store, VectorIndexS, v2f32, f32, ST1i32_POST, 4>;
6269 defm : St1LanePost64Pat<post_store, VectorIndexD, v1i64, i64, ST1i64_POST, 8>;
6270 defm : St1LanePost64Pat<post_store, VectorIndexD, v1f64, f64, ST1i64_POST, 8>;
6271 defm : St1LanePost64Pat<post_store, VectorIndexH, v4f16, f16, ST1i16_POST, 2>;
6273 multiclass St1LanePost128Pat<SDPatternOperator scalar_store, Operand VecIndex,
6274 ValueType VTy, ValueType STy, Instruction ST1,
6276 def : Pat<(scalar_store
6277 (STy (vector_extract (VTy VecListOne128:$Vt), VecIndex:$idx)),
6278 GPR64sp:$Rn, offset),
6279 (ST1 VecListOne128:$Vt, VecIndex:$idx, GPR64sp:$Rn, XZR)>;
6281 def : Pat<(scalar_store
6282 (STy (vector_extract (VTy VecListOne128:$Vt), VecIndex:$idx)),
6283 GPR64sp:$Rn, GPR64:$Rm),
6284 (ST1 VecListOne128:$Vt, VecIndex:$idx, GPR64sp:$Rn, $Rm)>;
6287 defm : St1LanePost128Pat<post_truncsti8, VectorIndexB, v16i8, i32, ST1i8_POST,
6289 defm : St1LanePost128Pat<post_truncsti16, VectorIndexH, v8i16, i32, ST1i16_POST,
6291 defm : St1LanePost128Pat<post_store, VectorIndexS, v4i32, i32, ST1i32_POST, 4>;
6292 defm : St1LanePost128Pat<post_store, VectorIndexS, v4f32, f32, ST1i32_POST, 4>;
6293 defm : St1LanePost128Pat<post_store, VectorIndexD, v2i64, i64, ST1i64_POST, 8>;
6294 defm : St1LanePost128Pat<post_store, VectorIndexD, v2f64, f64, ST1i64_POST, 8>;
6295 defm : St1LanePost128Pat<post_store, VectorIndexH, v8f16, f16, ST1i16_POST, 2>;
6297 let mayStore = 1, hasSideEffects = 0 in {
6298 defm ST2 : SIMDStSingleB<1, 0b000, "st2", VecListTwob, GPR64pi2>;
6299 defm ST2 : SIMDStSingleH<1, 0b010, 0, "st2", VecListTwoh, GPR64pi4>;
6300 defm ST2 : SIMDStSingleS<1, 0b100, 0b00, "st2", VecListTwos, GPR64pi8>;
6301 defm ST2 : SIMDStSingleD<1, 0b100, 0b01, "st2", VecListTwod, GPR64pi16>;
6302 defm ST3 : SIMDStSingleB<0, 0b001, "st3", VecListThreeb, GPR64pi3>;
6303 defm ST3 : SIMDStSingleH<0, 0b011, 0, "st3", VecListThreeh, GPR64pi6>;
6304 defm ST3 : SIMDStSingleS<0, 0b101, 0b00, "st3", VecListThrees, GPR64pi12>;
6305 defm ST3 : SIMDStSingleD<0, 0b101, 0b01, "st3", VecListThreed, GPR64pi24>;
6306 defm ST4 : SIMDStSingleB<1, 0b001, "st4", VecListFourb, GPR64pi4>;
6307 defm ST4 : SIMDStSingleH<1, 0b011, 0, "st4", VecListFourh, GPR64pi8>;
6308 defm ST4 : SIMDStSingleS<1, 0b101, 0b00, "st4", VecListFours, GPR64pi16>;
6309 defm ST4 : SIMDStSingleD<1, 0b101, 0b01, "st4", VecListFourd, GPR64pi32>;
6312 defm ST1 : SIMDLdSt1SingleAliases<"st1">;
6313 defm ST2 : SIMDLdSt2SingleAliases<"st2">;
6314 defm ST3 : SIMDLdSt3SingleAliases<"st3">;
6315 defm ST4 : SIMDLdSt4SingleAliases<"st4">;
6317 //----------------------------------------------------------------------------
6318 // Crypto extensions
6319 //----------------------------------------------------------------------------
6321 let Predicates = [HasAES] in {
6322 def AESErr : AESTiedInst<0b0100, "aese", int_aarch64_crypto_aese>;
6323 def AESDrr : AESTiedInst<0b0101, "aesd", int_aarch64_crypto_aesd>;
6324 def AESMCrr : AESInst< 0b0110, "aesmc", int_aarch64_crypto_aesmc>;
6325 def AESIMCrr : AESInst< 0b0111, "aesimc", int_aarch64_crypto_aesimc>;
6328 // Pseudo instructions for AESMCrr/AESIMCrr with a register constraint required
6329 // for AES fusion on some CPUs.
6330 let hasSideEffects = 0, mayStore = 0, mayLoad = 0 in {
6331 def AESMCrrTied: Pseudo<(outs V128:$Rd), (ins V128:$Rn), [], "$Rn = $Rd">,
6333 def AESIMCrrTied: Pseudo<(outs V128:$Rd), (ins V128:$Rn), [], "$Rn = $Rd">,
6337 // Only use constrained versions of AES(I)MC instructions if they are paired with
6339 def : Pat<(v16i8 (int_aarch64_crypto_aesmc
6340 (v16i8 (int_aarch64_crypto_aese (v16i8 V128:$src1),
6341 (v16i8 V128:$src2))))),
6342 (v16i8 (AESMCrrTied (v16i8 (AESErr (v16i8 V128:$src1),
6343 (v16i8 V128:$src2)))))>,
6344 Requires<[HasFuseAES]>;
6346 def : Pat<(v16i8 (int_aarch64_crypto_aesimc
6347 (v16i8 (int_aarch64_crypto_aesd (v16i8 V128:$src1),
6348 (v16i8 V128:$src2))))),
6349 (v16i8 (AESIMCrrTied (v16i8 (AESDrr (v16i8 V128:$src1),
6350 (v16i8 V128:$src2)))))>,
6351 Requires<[HasFuseAES]>;
6353 let Predicates = [HasSHA2] in {
6354 def SHA1Crrr : SHATiedInstQSV<0b000, "sha1c", int_aarch64_crypto_sha1c>;
6355 def SHA1Prrr : SHATiedInstQSV<0b001, "sha1p", int_aarch64_crypto_sha1p>;
6356 def SHA1Mrrr : SHATiedInstQSV<0b010, "sha1m", int_aarch64_crypto_sha1m>;
6357 def SHA1SU0rrr : SHATiedInstVVV<0b011, "sha1su0", int_aarch64_crypto_sha1su0>;
6358 def SHA256Hrrr : SHATiedInstQQV<0b100, "sha256h", int_aarch64_crypto_sha256h>;
6359 def SHA256H2rrr : SHATiedInstQQV<0b101, "sha256h2",int_aarch64_crypto_sha256h2>;
6360 def SHA256SU1rrr :SHATiedInstVVV<0b110, "sha256su1",int_aarch64_crypto_sha256su1>;
6362 def SHA1Hrr : SHAInstSS< 0b0000, "sha1h", int_aarch64_crypto_sha1h>;
6363 def SHA1SU1rr : SHATiedInstVV<0b0001, "sha1su1", int_aarch64_crypto_sha1su1>;
6364 def SHA256SU0rr : SHATiedInstVV<0b0010, "sha256su0",int_aarch64_crypto_sha256su0>;
6367 //----------------------------------------------------------------------------
6369 //----------------------------------------------------------------------------
6370 // FIXME: Like for X86, these should go in their own separate .td file.
6372 def def32 : PatLeaf<(i32 GPR32:$src), [{
6376 // In the case of a 32-bit def that is known to implicitly zero-extend,
6377 // we can use a SUBREG_TO_REG.
6378 def : Pat<(i64 (zext def32:$src)), (SUBREG_TO_REG (i64 0), GPR32:$src, sub_32)>;
6380 // For an anyext, we don't care what the high bits are, so we can perform an
6381 // INSERT_SUBREF into an IMPLICIT_DEF.
6382 def : Pat<(i64 (anyext GPR32:$src)),
6383 (INSERT_SUBREG (i64 (IMPLICIT_DEF)), GPR32:$src, sub_32)>;
6385 // When we need to explicitly zero-extend, we use a 32-bit MOV instruction and
6386 // then assert the extension has happened.
6387 def : Pat<(i64 (zext GPR32:$src)),
6388 (SUBREG_TO_REG (i32 0), (ORRWrs WZR, GPR32:$src, 0), sub_32)>;
6390 // To sign extend, we use a signed bitfield move instruction (SBFM) on the
6391 // containing super-reg.
6392 def : Pat<(i64 (sext GPR32:$src)),
6393 (SBFMXri (INSERT_SUBREG (i64 (IMPLICIT_DEF)), GPR32:$src, sub_32), 0, 31)>;
6394 def : Pat<(i64 (sext_inreg GPR64:$src, i32)), (SBFMXri GPR64:$src, 0, 31)>;
6395 def : Pat<(i64 (sext_inreg GPR64:$src, i16)), (SBFMXri GPR64:$src, 0, 15)>;
6396 def : Pat<(i64 (sext_inreg GPR64:$src, i8)), (SBFMXri GPR64:$src, 0, 7)>;
6397 def : Pat<(i64 (sext_inreg GPR64:$src, i1)), (SBFMXri GPR64:$src, 0, 0)>;
6398 def : Pat<(i32 (sext_inreg GPR32:$src, i16)), (SBFMWri GPR32:$src, 0, 15)>;
6399 def : Pat<(i32 (sext_inreg GPR32:$src, i8)), (SBFMWri GPR32:$src, 0, 7)>;
6400 def : Pat<(i32 (sext_inreg GPR32:$src, i1)), (SBFMWri GPR32:$src, 0, 0)>;
6402 def : Pat<(shl (sext_inreg GPR32:$Rn, i8), (i64 imm0_31:$imm)),
6403 (SBFMWri GPR32:$Rn, (i64 (i32shift_a imm0_31:$imm)),
6404 (i64 (i32shift_sext_i8 imm0_31:$imm)))>;
6405 def : Pat<(shl (sext_inreg GPR64:$Rn, i8), (i64 imm0_63:$imm)),
6406 (SBFMXri GPR64:$Rn, (i64 (i64shift_a imm0_63:$imm)),
6407 (i64 (i64shift_sext_i8 imm0_63:$imm)))>;
6409 def : Pat<(shl (sext_inreg GPR32:$Rn, i16), (i64 imm0_31:$imm)),
6410 (SBFMWri GPR32:$Rn, (i64 (i32shift_a imm0_31:$imm)),
6411 (i64 (i32shift_sext_i16 imm0_31:$imm)))>;
6412 def : Pat<(shl (sext_inreg GPR64:$Rn, i16), (i64 imm0_63:$imm)),
6413 (SBFMXri GPR64:$Rn, (i64 (i64shift_a imm0_63:$imm)),
6414 (i64 (i64shift_sext_i16 imm0_63:$imm)))>;
6416 def : Pat<(shl (i64 (sext GPR32:$Rn)), (i64 imm0_63:$imm)),
6417 (SBFMXri (INSERT_SUBREG (i64 (IMPLICIT_DEF)), GPR32:$Rn, sub_32),
6418 (i64 (i64shift_a imm0_63:$imm)),
6419 (i64 (i64shift_sext_i32 imm0_63:$imm)))>;
6421 // sra patterns have an AddedComplexity of 10, so make sure we have a higher
6422 // AddedComplexity for the following patterns since we want to match sext + sra
6423 // patterns before we attempt to match a single sra node.
6424 let AddedComplexity = 20 in {
6425 // We support all sext + sra combinations which preserve at least one bit of the
6426 // original value which is to be sign extended. E.g. we support shifts up to
6428 def : Pat<(sra (sext_inreg GPR32:$Rn, i8), (i64 imm0_7:$imm)),
6429 (SBFMWri GPR32:$Rn, (i64 imm0_7:$imm), 7)>;
6430 def : Pat<(sra (sext_inreg GPR64:$Rn, i8), (i64 imm0_7:$imm)),
6431 (SBFMXri GPR64:$Rn, (i64 imm0_7:$imm), 7)>;
6433 def : Pat<(sra (sext_inreg GPR32:$Rn, i16), (i64 imm0_15:$imm)),
6434 (SBFMWri GPR32:$Rn, (i64 imm0_15:$imm), 15)>;
6435 def : Pat<(sra (sext_inreg GPR64:$Rn, i16), (i64 imm0_15:$imm)),
6436 (SBFMXri GPR64:$Rn, (i64 imm0_15:$imm), 15)>;
6438 def : Pat<(sra (i64 (sext GPR32:$Rn)), (i64 imm0_31:$imm)),
6439 (SBFMXri (INSERT_SUBREG (i64 (IMPLICIT_DEF)), GPR32:$Rn, sub_32),
6440 (i64 imm0_31:$imm), 31)>;
6441 } // AddedComplexity = 20
6443 // To truncate, we can simply extract from a subregister.
6444 def : Pat<(i32 (trunc GPR64sp:$src)),
6445 (i32 (EXTRACT_SUBREG GPR64sp:$src, sub_32))>;
6447 // __builtin_trap() uses the BRK instruction on AArch64.
6448 def : Pat<(trap), (BRK 1)>;
6449 def : Pat<(debugtrap), (BRK 0xF000)>, Requires<[IsWindows]>;
6451 // Multiply high patterns which multiply the lower subvector using smull/umull
6452 // and the upper subvector with smull2/umull2. Then shuffle the high the high
6453 // part of both results together.
6454 def : Pat<(v16i8 (mulhs V128:$Rn, V128:$Rm)),
6456 (SMULLv8i8_v8i16 (EXTRACT_SUBREG V128:$Rn, dsub),
6457 (EXTRACT_SUBREG V128:$Rm, dsub)),
6458 (SMULLv16i8_v8i16 V128:$Rn, V128:$Rm))>;
6459 def : Pat<(v8i16 (mulhs V128:$Rn, V128:$Rm)),
6461 (SMULLv4i16_v4i32 (EXTRACT_SUBREG V128:$Rn, dsub),
6462 (EXTRACT_SUBREG V128:$Rm, dsub)),
6463 (SMULLv8i16_v4i32 V128:$Rn, V128:$Rm))>;
6464 def : Pat<(v4i32 (mulhs V128:$Rn, V128:$Rm)),
6466 (SMULLv2i32_v2i64 (EXTRACT_SUBREG V128:$Rn, dsub),
6467 (EXTRACT_SUBREG V128:$Rm, dsub)),
6468 (SMULLv4i32_v2i64 V128:$Rn, V128:$Rm))>;
6470 def : Pat<(v16i8 (mulhu V128:$Rn, V128:$Rm)),
6472 (UMULLv8i8_v8i16 (EXTRACT_SUBREG V128:$Rn, dsub),
6473 (EXTRACT_SUBREG V128:$Rm, dsub)),
6474 (UMULLv16i8_v8i16 V128:$Rn, V128:$Rm))>;
6475 def : Pat<(v8i16 (mulhu V128:$Rn, V128:$Rm)),
6477 (UMULLv4i16_v4i32 (EXTRACT_SUBREG V128:$Rn, dsub),
6478 (EXTRACT_SUBREG V128:$Rm, dsub)),
6479 (UMULLv8i16_v4i32 V128:$Rn, V128:$Rm))>;
6480 def : Pat<(v4i32 (mulhu V128:$Rn, V128:$Rm)),
6482 (UMULLv2i32_v2i64 (EXTRACT_SUBREG V128:$Rn, dsub),
6483 (EXTRACT_SUBREG V128:$Rm, dsub)),
6484 (UMULLv4i32_v2i64 V128:$Rn, V128:$Rm))>;
6486 // Conversions within AdvSIMD types in the same register size are free.
6487 // But because we need a consistent lane ordering, in big endian many
6488 // conversions require one or more REV instructions.
6490 // Consider a simple memory load followed by a bitconvert then a store.
6492 // v1 = BITCAST v2i32 v0 to v4i16
6495 // In big endian mode every memory access has an implicit byte swap. LDR and
6496 // STR do a 64-bit byte swap, whereas LD1/ST1 do a byte swap per lane - that
6497 // is, they treat the vector as a sequence of elements to be byte-swapped.
6498 // The two pairs of instructions are fundamentally incompatible. We've decided
6499 // to use LD1/ST1 only to simplify compiler implementation.
6501 // LD1/ST1 perform the equivalent of a sequence of LDR/STR + REV. This makes
6502 // the original code sequence:
6504 // v1 = REV v2i32 (implicit)
6505 // v2 = BITCAST v2i32 v1 to v4i16
6506 // v3 = REV v4i16 v2 (implicit)
6509 // But this is now broken - the value stored is different to the value loaded
6510 // due to lane reordering. To fix this, on every BITCAST we must perform two
6513 // v1 = REV v2i32 (implicit)
6515 // v3 = BITCAST v2i32 v2 to v4i16
6517 // v5 = REV v4i16 v4 (implicit)
6520 // This means an extra two instructions, but actually in most cases the two REV
6521 // instructions can be combined into one. For example:
6522 // (REV64_2s (REV64_4h X)) === (REV32_4h X)
6524 // There is also no 128-bit REV instruction. This must be synthesized with an
6527 // Most bitconverts require some sort of conversion. The only exceptions are:
6528 // a) Identity conversions - vNfX <-> vNiX
6529 // b) Single-lane-to-scalar - v1fX <-> fX or v1iX <-> iX
6532 // Natural vector casts (64 bit)
6533 def : Pat<(v8i8 (AArch64NvCast (v2i32 FPR64:$src))), (v8i8 FPR64:$src)>;
6534 def : Pat<(v4i16 (AArch64NvCast (v2i32 FPR64:$src))), (v4i16 FPR64:$src)>;
6535 def : Pat<(v4f16 (AArch64NvCast (v2i32 FPR64:$src))), (v4f16 FPR64:$src)>;
6536 def : Pat<(v2i32 (AArch64NvCast (v2i32 FPR64:$src))), (v2i32 FPR64:$src)>;
6537 def : Pat<(v2f32 (AArch64NvCast (v2i32 FPR64:$src))), (v2f32 FPR64:$src)>;
6538 def : Pat<(v1i64 (AArch64NvCast (v2i32 FPR64:$src))), (v1i64 FPR64:$src)>;
6540 def : Pat<(v8i8 (AArch64NvCast (v4i16 FPR64:$src))), (v8i8 FPR64:$src)>;
6541 def : Pat<(v4i16 (AArch64NvCast (v4i16 FPR64:$src))), (v4i16 FPR64:$src)>;
6542 def : Pat<(v4f16 (AArch64NvCast (v4i16 FPR64:$src))), (v4f16 FPR64:$src)>;
6543 def : Pat<(v2i32 (AArch64NvCast (v4i16 FPR64:$src))), (v2i32 FPR64:$src)>;
6544 def : Pat<(v1i64 (AArch64NvCast (v4i16 FPR64:$src))), (v1i64 FPR64:$src)>;
6546 def : Pat<(v8i8 (AArch64NvCast (v8i8 FPR64:$src))), (v8i8 FPR64:$src)>;
6547 def : Pat<(v4i16 (AArch64NvCast (v8i8 FPR64:$src))), (v4i16 FPR64:$src)>;
6548 def : Pat<(v4f16 (AArch64NvCast (v8i8 FPR64:$src))), (v4f16 FPR64:$src)>;
6549 def : Pat<(v2i32 (AArch64NvCast (v8i8 FPR64:$src))), (v2i32 FPR64:$src)>;
6550 def : Pat<(v2f32 (AArch64NvCast (v8i8 FPR64:$src))), (v2f32 FPR64:$src)>;
6551 def : Pat<(v1i64 (AArch64NvCast (v8i8 FPR64:$src))), (v1i64 FPR64:$src)>;
6553 def : Pat<(v8i8 (AArch64NvCast (f64 FPR64:$src))), (v8i8 FPR64:$src)>;
6554 def : Pat<(v4i16 (AArch64NvCast (f64 FPR64:$src))), (v4i16 FPR64:$src)>;
6555 def : Pat<(v4f16 (AArch64NvCast (f64 FPR64:$src))), (v4f16 FPR64:$src)>;
6556 def : Pat<(v2i32 (AArch64NvCast (f64 FPR64:$src))), (v2i32 FPR64:$src)>;
6557 def : Pat<(v2f32 (AArch64NvCast (f64 FPR64:$src))), (v2f32 FPR64:$src)>;
6558 def : Pat<(v1i64 (AArch64NvCast (f64 FPR64:$src))), (v1i64 FPR64:$src)>;
6559 def : Pat<(v1f64 (AArch64NvCast (f64 FPR64:$src))), (v1f64 FPR64:$src)>;
6561 def : Pat<(v8i8 (AArch64NvCast (v2f32 FPR64:$src))), (v8i8 FPR64:$src)>;
6562 def : Pat<(v4i16 (AArch64NvCast (v2f32 FPR64:$src))), (v4i16 FPR64:$src)>;
6563 def : Pat<(v2i32 (AArch64NvCast (v2f32 FPR64:$src))), (v2i32 FPR64:$src)>;
6564 def : Pat<(v2f32 (AArch64NvCast (v2f32 FPR64:$src))), (v2f32 FPR64:$src)>;
6565 def : Pat<(v1i64 (AArch64NvCast (v2f32 FPR64:$src))), (v1i64 FPR64:$src)>;
6566 def : Pat<(v1f64 (AArch64NvCast (v2f32 FPR64:$src))), (v1f64 FPR64:$src)>;
6568 // Natural vector casts (128 bit)
6569 def : Pat<(v16i8 (AArch64NvCast (v4i32 FPR128:$src))), (v16i8 FPR128:$src)>;
6570 def : Pat<(v8i16 (AArch64NvCast (v4i32 FPR128:$src))), (v8i16 FPR128:$src)>;
6571 def : Pat<(v8f16 (AArch64NvCast (v4i32 FPR128:$src))), (v8f16 FPR128:$src)>;
6572 def : Pat<(v4i32 (AArch64NvCast (v4i32 FPR128:$src))), (v4i32 FPR128:$src)>;
6573 def : Pat<(v4f32 (AArch64NvCast (v4i32 FPR128:$src))), (v4f32 FPR128:$src)>;
6574 def : Pat<(v2i64 (AArch64NvCast (v4i32 FPR128:$src))), (v2i64 FPR128:$src)>;
6575 def : Pat<(v2f64 (AArch64NvCast (v4i32 FPR128:$src))), (v2f64 FPR128:$src)>;
6577 def : Pat<(v16i8 (AArch64NvCast (v8i16 FPR128:$src))), (v16i8 FPR128:$src)>;
6578 def : Pat<(v8i16 (AArch64NvCast (v8i16 FPR128:$src))), (v8i16 FPR128:$src)>;
6579 def : Pat<(v8f16 (AArch64NvCast (v8i16 FPR128:$src))), (v8f16 FPR128:$src)>;
6580 def : Pat<(v4i32 (AArch64NvCast (v8i16 FPR128:$src))), (v4i32 FPR128:$src)>;
6581 def : Pat<(v2i64 (AArch64NvCast (v8i16 FPR128:$src))), (v2i64 FPR128:$src)>;
6582 def : Pat<(v4f32 (AArch64NvCast (v8i16 FPR128:$src))), (v4f32 FPR128:$src)>;
6583 def : Pat<(v2f64 (AArch64NvCast (v8i16 FPR128:$src))), (v2f64 FPR128:$src)>;
6585 def : Pat<(v16i8 (AArch64NvCast (v16i8 FPR128:$src))), (v16i8 FPR128:$src)>;
6586 def : Pat<(v8i16 (AArch64NvCast (v16i8 FPR128:$src))), (v8i16 FPR128:$src)>;
6587 def : Pat<(v8f16 (AArch64NvCast (v16i8 FPR128:$src))), (v8f16 FPR128:$src)>;
6588 def : Pat<(v4i32 (AArch64NvCast (v16i8 FPR128:$src))), (v4i32 FPR128:$src)>;
6589 def : Pat<(v2i64 (AArch64NvCast (v16i8 FPR128:$src))), (v2i64 FPR128:$src)>;
6590 def : Pat<(v4f32 (AArch64NvCast (v16i8 FPR128:$src))), (v4f32 FPR128:$src)>;
6591 def : Pat<(v2f64 (AArch64NvCast (v16i8 FPR128:$src))), (v2f64 FPR128:$src)>;
6593 def : Pat<(v16i8 (AArch64NvCast (v2i64 FPR128:$src))), (v16i8 FPR128:$src)>;
6594 def : Pat<(v8i16 (AArch64NvCast (v2i64 FPR128:$src))), (v8i16 FPR128:$src)>;
6595 def : Pat<(v8f16 (AArch64NvCast (v2i64 FPR128:$src))), (v8f16 FPR128:$src)>;
6596 def : Pat<(v4i32 (AArch64NvCast (v2i64 FPR128:$src))), (v4i32 FPR128:$src)>;
6597 def : Pat<(v2i64 (AArch64NvCast (v2i64 FPR128:$src))), (v2i64 FPR128:$src)>;
6598 def : Pat<(v4f32 (AArch64NvCast (v2i64 FPR128:$src))), (v4f32 FPR128:$src)>;
6599 def : Pat<(v2f64 (AArch64NvCast (v2i64 FPR128:$src))), (v2f64 FPR128:$src)>;
6601 def : Pat<(v16i8 (AArch64NvCast (v4f32 FPR128:$src))), (v16i8 FPR128:$src)>;
6602 def : Pat<(v8i16 (AArch64NvCast (v4f32 FPR128:$src))), (v8i16 FPR128:$src)>;
6603 def : Pat<(v4i32 (AArch64NvCast (v4f32 FPR128:$src))), (v4i32 FPR128:$src)>;
6604 def : Pat<(v4f32 (AArch64NvCast (v4f32 FPR128:$src))), (v4f32 FPR128:$src)>;
6605 def : Pat<(v2i64 (AArch64NvCast (v4f32 FPR128:$src))), (v2i64 FPR128:$src)>;
6606 def : Pat<(v8f16 (AArch64NvCast (v4f32 FPR128:$src))), (v8f16 FPR128:$src)>;
6607 def : Pat<(v2f64 (AArch64NvCast (v4f32 FPR128:$src))), (v2f64 FPR128:$src)>;
6609 def : Pat<(v16i8 (AArch64NvCast (v2f64 FPR128:$src))), (v16i8 FPR128:$src)>;
6610 def : Pat<(v8i16 (AArch64NvCast (v2f64 FPR128:$src))), (v8i16 FPR128:$src)>;
6611 def : Pat<(v4i32 (AArch64NvCast (v2f64 FPR128:$src))), (v4i32 FPR128:$src)>;
6612 def : Pat<(v2i64 (AArch64NvCast (v2f64 FPR128:$src))), (v2i64 FPR128:$src)>;
6613 def : Pat<(v2f64 (AArch64NvCast (v2f64 FPR128:$src))), (v2f64 FPR128:$src)>;
6614 def : Pat<(v8f16 (AArch64NvCast (v2f64 FPR128:$src))), (v8f16 FPR128:$src)>;
6615 def : Pat<(v4f32 (AArch64NvCast (v2f64 FPR128:$src))), (v4f32 FPR128:$src)>;
6617 let Predicates = [IsLE] in {
6618 def : Pat<(v8i8 (bitconvert GPR64:$Xn)), (COPY_TO_REGCLASS GPR64:$Xn, FPR64)>;
6619 def : Pat<(v4i16 (bitconvert GPR64:$Xn)), (COPY_TO_REGCLASS GPR64:$Xn, FPR64)>;
6620 def : Pat<(v2i32 (bitconvert GPR64:$Xn)), (COPY_TO_REGCLASS GPR64:$Xn, FPR64)>;
6621 def : Pat<(v4f16 (bitconvert GPR64:$Xn)), (COPY_TO_REGCLASS GPR64:$Xn, FPR64)>;
6622 def : Pat<(v2f32 (bitconvert GPR64:$Xn)), (COPY_TO_REGCLASS GPR64:$Xn, FPR64)>;
6624 def : Pat<(i64 (bitconvert (v8i8 V64:$Vn))),
6625 (COPY_TO_REGCLASS V64:$Vn, GPR64)>;
6626 def : Pat<(i64 (bitconvert (v4i16 V64:$Vn))),
6627 (COPY_TO_REGCLASS V64:$Vn, GPR64)>;
6628 def : Pat<(i64 (bitconvert (v2i32 V64:$Vn))),
6629 (COPY_TO_REGCLASS V64:$Vn, GPR64)>;
6630 def : Pat<(i64 (bitconvert (v4f16 V64:$Vn))),
6631 (COPY_TO_REGCLASS V64:$Vn, GPR64)>;
6632 def : Pat<(i64 (bitconvert (v2f32 V64:$Vn))),
6633 (COPY_TO_REGCLASS V64:$Vn, GPR64)>;
6634 def : Pat<(i64 (bitconvert (v1f64 V64:$Vn))),
6635 (COPY_TO_REGCLASS V64:$Vn, GPR64)>;
6637 let Predicates = [IsBE] in {
6638 def : Pat<(v8i8 (bitconvert GPR64:$Xn)),
6639 (REV64v8i8 (COPY_TO_REGCLASS GPR64:$Xn, FPR64))>;
6640 def : Pat<(v4i16 (bitconvert GPR64:$Xn)),
6641 (REV64v4i16 (COPY_TO_REGCLASS GPR64:$Xn, FPR64))>;
6642 def : Pat<(v2i32 (bitconvert GPR64:$Xn)),
6643 (REV64v2i32 (COPY_TO_REGCLASS GPR64:$Xn, FPR64))>;
6644 def : Pat<(v4f16 (bitconvert GPR64:$Xn)),
6645 (REV64v4i16 (COPY_TO_REGCLASS GPR64:$Xn, FPR64))>;
6646 def : Pat<(v2f32 (bitconvert GPR64:$Xn)),
6647 (REV64v2i32 (COPY_TO_REGCLASS GPR64:$Xn, FPR64))>;
6649 def : Pat<(i64 (bitconvert (v8i8 V64:$Vn))),
6650 (REV64v8i8 (COPY_TO_REGCLASS V64:$Vn, GPR64))>;
6651 def : Pat<(i64 (bitconvert (v4i16 V64:$Vn))),
6652 (REV64v4i16 (COPY_TO_REGCLASS V64:$Vn, GPR64))>;
6653 def : Pat<(i64 (bitconvert (v2i32 V64:$Vn))),
6654 (REV64v2i32 (COPY_TO_REGCLASS V64:$Vn, GPR64))>;
6655 def : Pat<(i64 (bitconvert (v4f16 V64:$Vn))),
6656 (REV64v4i16 (COPY_TO_REGCLASS V64:$Vn, GPR64))>;
6657 def : Pat<(i64 (bitconvert (v2f32 V64:$Vn))),
6658 (REV64v2i32 (COPY_TO_REGCLASS V64:$Vn, GPR64))>;
6660 def : Pat<(v1i64 (bitconvert GPR64:$Xn)), (COPY_TO_REGCLASS GPR64:$Xn, FPR64)>;
6661 def : Pat<(v1f64 (bitconvert GPR64:$Xn)), (COPY_TO_REGCLASS GPR64:$Xn, FPR64)>;
6662 def : Pat<(i64 (bitconvert (v1i64 V64:$Vn))),
6663 (COPY_TO_REGCLASS V64:$Vn, GPR64)>;
6664 def : Pat<(v1i64 (scalar_to_vector GPR64:$Xn)),
6665 (COPY_TO_REGCLASS GPR64:$Xn, FPR64)>;
6666 def : Pat<(v1f64 (scalar_to_vector GPR64:$Xn)),
6667 (COPY_TO_REGCLASS GPR64:$Xn, FPR64)>;
6668 def : Pat<(v1f64 (scalar_to_vector (f64 FPR64:$Xn))), (v1f64 FPR64:$Xn)>;
6670 def : Pat<(f32 (bitconvert (i32 GPR32:$Xn))),
6671 (COPY_TO_REGCLASS GPR32:$Xn, FPR32)>;
6672 def : Pat<(i32 (bitconvert (f32 FPR32:$Xn))),
6673 (COPY_TO_REGCLASS FPR32:$Xn, GPR32)>;
6674 def : Pat<(f64 (bitconvert (i64 GPR64:$Xn))),
6675 (COPY_TO_REGCLASS GPR64:$Xn, FPR64)>;
6676 def : Pat<(i64 (bitconvert (f64 FPR64:$Xn))),
6677 (COPY_TO_REGCLASS FPR64:$Xn, GPR64)>;
6678 def : Pat<(i64 (bitconvert (v1f64 V64:$Vn))),
6679 (COPY_TO_REGCLASS V64:$Vn, GPR64)>;
6681 let Predicates = [IsLE] in {
6682 def : Pat<(v1i64 (bitconvert (v2i32 FPR64:$src))), (v1i64 FPR64:$src)>;
6683 def : Pat<(v1i64 (bitconvert (v4i16 FPR64:$src))), (v1i64 FPR64:$src)>;
6684 def : Pat<(v1i64 (bitconvert (v8i8 FPR64:$src))), (v1i64 FPR64:$src)>;
6685 def : Pat<(v1i64 (bitconvert (v4f16 FPR64:$src))), (v1i64 FPR64:$src)>;
6686 def : Pat<(v1i64 (bitconvert (v2f32 FPR64:$src))), (v1i64 FPR64:$src)>;
6688 let Predicates = [IsBE] in {
6689 def : Pat<(v1i64 (bitconvert (v2i32 FPR64:$src))),
6690 (v1i64 (REV64v2i32 FPR64:$src))>;
6691 def : Pat<(v1i64 (bitconvert (v4i16 FPR64:$src))),
6692 (v1i64 (REV64v4i16 FPR64:$src))>;
6693 def : Pat<(v1i64 (bitconvert (v8i8 FPR64:$src))),
6694 (v1i64 (REV64v8i8 FPR64:$src))>;
6695 def : Pat<(v1i64 (bitconvert (v4f16 FPR64:$src))),
6696 (v1i64 (REV64v4i16 FPR64:$src))>;
6697 def : Pat<(v1i64 (bitconvert (v2f32 FPR64:$src))),
6698 (v1i64 (REV64v2i32 FPR64:$src))>;
6700 def : Pat<(v1i64 (bitconvert (v1f64 FPR64:$src))), (v1i64 FPR64:$src)>;
6701 def : Pat<(v1i64 (bitconvert (f64 FPR64:$src))), (v1i64 FPR64:$src)>;
6703 let Predicates = [IsLE] in {
6704 def : Pat<(v2i32 (bitconvert (v1i64 FPR64:$src))), (v2i32 FPR64:$src)>;
6705 def : Pat<(v2i32 (bitconvert (v4i16 FPR64:$src))), (v2i32 FPR64:$src)>;
6706 def : Pat<(v2i32 (bitconvert (v8i8 FPR64:$src))), (v2i32 FPR64:$src)>;
6707 def : Pat<(v2i32 (bitconvert (f64 FPR64:$src))), (v2i32 FPR64:$src)>;
6708 def : Pat<(v2i32 (bitconvert (v1f64 FPR64:$src))), (v2i32 FPR64:$src)>;
6709 def : Pat<(v2i32 (bitconvert (v4f16 FPR64:$src))), (v2i32 FPR64:$src)>;
6711 let Predicates = [IsBE] in {
6712 def : Pat<(v2i32 (bitconvert (v1i64 FPR64:$src))),
6713 (v2i32 (REV64v2i32 FPR64:$src))>;
6714 def : Pat<(v2i32 (bitconvert (v4i16 FPR64:$src))),
6715 (v2i32 (REV32v4i16 FPR64:$src))>;
6716 def : Pat<(v2i32 (bitconvert (v8i8 FPR64:$src))),
6717 (v2i32 (REV32v8i8 FPR64:$src))>;
6718 def : Pat<(v2i32 (bitconvert (f64 FPR64:$src))),
6719 (v2i32 (REV64v2i32 FPR64:$src))>;
6720 def : Pat<(v2i32 (bitconvert (v1f64 FPR64:$src))),
6721 (v2i32 (REV64v2i32 FPR64:$src))>;
6722 def : Pat<(v2i32 (bitconvert (v4f16 FPR64:$src))),
6723 (v2i32 (REV32v4i16 FPR64:$src))>;
6725 def : Pat<(v2i32 (bitconvert (v2f32 FPR64:$src))), (v2i32 FPR64:$src)>;
6727 let Predicates = [IsLE] in {
6728 def : Pat<(v4i16 (bitconvert (v1i64 FPR64:$src))), (v4i16 FPR64:$src)>;
6729 def : Pat<(v4i16 (bitconvert (v2i32 FPR64:$src))), (v4i16 FPR64:$src)>;
6730 def : Pat<(v4i16 (bitconvert (v8i8 FPR64:$src))), (v4i16 FPR64:$src)>;
6731 def : Pat<(v4i16 (bitconvert (f64 FPR64:$src))), (v4i16 FPR64:$src)>;
6732 def : Pat<(v4i16 (bitconvert (v2f32 FPR64:$src))), (v4i16 FPR64:$src)>;
6733 def : Pat<(v4i16 (bitconvert (v1f64 FPR64:$src))), (v4i16 FPR64:$src)>;
6735 let Predicates = [IsBE] in {
6736 def : Pat<(v4i16 (bitconvert (v1i64 FPR64:$src))),
6737 (v4i16 (REV64v4i16 FPR64:$src))>;
6738 def : Pat<(v4i16 (bitconvert (v2i32 FPR64:$src))),
6739 (v4i16 (REV32v4i16 FPR64:$src))>;
6740 def : Pat<(v4i16 (bitconvert (v8i8 FPR64:$src))),
6741 (v4i16 (REV16v8i8 FPR64:$src))>;
6742 def : Pat<(v4i16 (bitconvert (f64 FPR64:$src))),
6743 (v4i16 (REV64v4i16 FPR64:$src))>;
6744 def : Pat<(v4i16 (bitconvert (v2f32 FPR64:$src))),
6745 (v4i16 (REV32v4i16 FPR64:$src))>;
6746 def : Pat<(v4i16 (bitconvert (v1f64 FPR64:$src))),
6747 (v4i16 (REV64v4i16 FPR64:$src))>;
6749 def : Pat<(v4i16 (bitconvert (v4f16 FPR64:$src))), (v4i16 FPR64:$src)>;
6751 let Predicates = [IsLE] in {
6752 def : Pat<(v4f16 (bitconvert (v1i64 FPR64:$src))), (v4f16 FPR64:$src)>;
6753 def : Pat<(v4f16 (bitconvert (v2i32 FPR64:$src))), (v4f16 FPR64:$src)>;
6754 def : Pat<(v4f16 (bitconvert (v8i8 FPR64:$src))), (v4f16 FPR64:$src)>;
6755 def : Pat<(v4f16 (bitconvert (f64 FPR64:$src))), (v4f16 FPR64:$src)>;
6756 def : Pat<(v4f16 (bitconvert (v2f32 FPR64:$src))), (v4f16 FPR64:$src)>;
6757 def : Pat<(v4f16 (bitconvert (v1f64 FPR64:$src))), (v4f16 FPR64:$src)>;
6759 let Predicates = [IsBE] in {
6760 def : Pat<(v4f16 (bitconvert (v1i64 FPR64:$src))),
6761 (v4f16 (REV64v4i16 FPR64:$src))>;
6762 def : Pat<(v4f16 (bitconvert (v2i32 FPR64:$src))),
6763 (v4f16 (REV32v4i16 FPR64:$src))>;
6764 def : Pat<(v4f16 (bitconvert (v8i8 FPR64:$src))),
6765 (v4f16 (REV16v8i8 FPR64:$src))>;
6766 def : Pat<(v4f16 (bitconvert (f64 FPR64:$src))),
6767 (v4f16 (REV64v4i16 FPR64:$src))>;
6768 def : Pat<(v4f16 (bitconvert (v2f32 FPR64:$src))),
6769 (v4f16 (REV32v4i16 FPR64:$src))>;
6770 def : Pat<(v4f16 (bitconvert (v1f64 FPR64:$src))),
6771 (v4f16 (REV64v4i16 FPR64:$src))>;
6773 def : Pat<(v4f16 (bitconvert (v4i16 FPR64:$src))), (v4f16 FPR64:$src)>;
6775 let Predicates = [IsLE] in {
6776 def : Pat<(v8i8 (bitconvert (v1i64 FPR64:$src))), (v8i8 FPR64:$src)>;
6777 def : Pat<(v8i8 (bitconvert (v2i32 FPR64:$src))), (v8i8 FPR64:$src)>;
6778 def : Pat<(v8i8 (bitconvert (v4i16 FPR64:$src))), (v8i8 FPR64:$src)>;
6779 def : Pat<(v8i8 (bitconvert (f64 FPR64:$src))), (v8i8 FPR64:$src)>;
6780 def : Pat<(v8i8 (bitconvert (v2f32 FPR64:$src))), (v8i8 FPR64:$src)>;
6781 def : Pat<(v8i8 (bitconvert (v1f64 FPR64:$src))), (v8i8 FPR64:$src)>;
6782 def : Pat<(v8i8 (bitconvert (v4f16 FPR64:$src))), (v8i8 FPR64:$src)>;
6784 let Predicates = [IsBE] in {
6785 def : Pat<(v8i8 (bitconvert (v1i64 FPR64:$src))),
6786 (v8i8 (REV64v8i8 FPR64:$src))>;
6787 def : Pat<(v8i8 (bitconvert (v2i32 FPR64:$src))),
6788 (v8i8 (REV32v8i8 FPR64:$src))>;
6789 def : Pat<(v8i8 (bitconvert (v4i16 FPR64:$src))),
6790 (v8i8 (REV16v8i8 FPR64:$src))>;
6791 def : Pat<(v8i8 (bitconvert (f64 FPR64:$src))),
6792 (v8i8 (REV64v8i8 FPR64:$src))>;
6793 def : Pat<(v8i8 (bitconvert (v2f32 FPR64:$src))),
6794 (v8i8 (REV32v8i8 FPR64:$src))>;
6795 def : Pat<(v8i8 (bitconvert (v1f64 FPR64:$src))),
6796 (v8i8 (REV64v8i8 FPR64:$src))>;
6797 def : Pat<(v8i8 (bitconvert (v4f16 FPR64:$src))),
6798 (v8i8 (REV16v8i8 FPR64:$src))>;
6801 let Predicates = [IsLE] in {
6802 def : Pat<(f64 (bitconvert (v2i32 FPR64:$src))), (f64 FPR64:$src)>;
6803 def : Pat<(f64 (bitconvert (v4i16 FPR64:$src))), (f64 FPR64:$src)>;
6804 def : Pat<(f64 (bitconvert (v2f32 FPR64:$src))), (f64 FPR64:$src)>;
6805 def : Pat<(f64 (bitconvert (v8i8 FPR64:$src))), (f64 FPR64:$src)>;
6806 def : Pat<(f64 (bitconvert (v4f16 FPR64:$src))), (f64 FPR64:$src)>;
6808 let Predicates = [IsBE] in {
6809 def : Pat<(f64 (bitconvert (v2i32 FPR64:$src))),
6810 (f64 (REV64v2i32 FPR64:$src))>;
6811 def : Pat<(f64 (bitconvert (v4i16 FPR64:$src))),
6812 (f64 (REV64v4i16 FPR64:$src))>;
6813 def : Pat<(f64 (bitconvert (v2f32 FPR64:$src))),
6814 (f64 (REV64v2i32 FPR64:$src))>;
6815 def : Pat<(f64 (bitconvert (v8i8 FPR64:$src))),
6816 (f64 (REV64v8i8 FPR64:$src))>;
6817 def : Pat<(f64 (bitconvert (v4f16 FPR64:$src))),
6818 (f64 (REV64v4i16 FPR64:$src))>;
6820 def : Pat<(f64 (bitconvert (v1i64 FPR64:$src))), (f64 FPR64:$src)>;
6821 def : Pat<(f64 (bitconvert (v1f64 FPR64:$src))), (f64 FPR64:$src)>;
6823 let Predicates = [IsLE] in {
6824 def : Pat<(v1f64 (bitconvert (v2i32 FPR64:$src))), (v1f64 FPR64:$src)>;
6825 def : Pat<(v1f64 (bitconvert (v4i16 FPR64:$src))), (v1f64 FPR64:$src)>;
6826 def : Pat<(v1f64 (bitconvert (v8i8 FPR64:$src))), (v1f64 FPR64:$src)>;
6827 def : Pat<(v1f64 (bitconvert (v2f32 FPR64:$src))), (v1f64 FPR64:$src)>;
6828 def : Pat<(v1f64 (bitconvert (v4f16 FPR64:$src))), (v1f64 FPR64:$src)>;
6830 let Predicates = [IsBE] in {
6831 def : Pat<(v1f64 (bitconvert (v2i32 FPR64:$src))),
6832 (v1f64 (REV64v2i32 FPR64:$src))>;
6833 def : Pat<(v1f64 (bitconvert (v4i16 FPR64:$src))),
6834 (v1f64 (REV64v4i16 FPR64:$src))>;
6835 def : Pat<(v1f64 (bitconvert (v8i8 FPR64:$src))),
6836 (v1f64 (REV64v8i8 FPR64:$src))>;
6837 def : Pat<(v1f64 (bitconvert (v2f32 FPR64:$src))),
6838 (v1f64 (REV64v2i32 FPR64:$src))>;
6839 def : Pat<(v1f64 (bitconvert (v4f16 FPR64:$src))),
6840 (v1f64 (REV64v4i16 FPR64:$src))>;
6842 def : Pat<(v1f64 (bitconvert (v1i64 FPR64:$src))), (v1f64 FPR64:$src)>;
6843 def : Pat<(v1f64 (bitconvert (f64 FPR64:$src))), (v1f64 FPR64:$src)>;
6845 let Predicates = [IsLE] in {
6846 def : Pat<(v2f32 (bitconvert (v1i64 FPR64:$src))), (v2f32 FPR64:$src)>;
6847 def : Pat<(v2f32 (bitconvert (v4i16 FPR64:$src))), (v2f32 FPR64:$src)>;
6848 def : Pat<(v2f32 (bitconvert (v8i8 FPR64:$src))), (v2f32 FPR64:$src)>;
6849 def : Pat<(v2f32 (bitconvert (v1f64 FPR64:$src))), (v2f32 FPR64:$src)>;
6850 def : Pat<(v2f32 (bitconvert (f64 FPR64:$src))), (v2f32 FPR64:$src)>;
6851 def : Pat<(v2f32 (bitconvert (v4f16 FPR64:$src))), (v2f32 FPR64:$src)>;
6853 let Predicates = [IsBE] in {
6854 def : Pat<(v2f32 (bitconvert (v1i64 FPR64:$src))),
6855 (v2f32 (REV64v2i32 FPR64:$src))>;
6856 def : Pat<(v2f32 (bitconvert (v4i16 FPR64:$src))),
6857 (v2f32 (REV32v4i16 FPR64:$src))>;
6858 def : Pat<(v2f32 (bitconvert (v8i8 FPR64:$src))),
6859 (v2f32 (REV32v8i8 FPR64:$src))>;
6860 def : Pat<(v2f32 (bitconvert (v1f64 FPR64:$src))),
6861 (v2f32 (REV64v2i32 FPR64:$src))>;
6862 def : Pat<(v2f32 (bitconvert (f64 FPR64:$src))),
6863 (v2f32 (REV64v2i32 FPR64:$src))>;
6864 def : Pat<(v2f32 (bitconvert (v4f16 FPR64:$src))),
6865 (v2f32 (REV32v4i16 FPR64:$src))>;
6867 def : Pat<(v2f32 (bitconvert (v2i32 FPR64:$src))), (v2f32 FPR64:$src)>;
6869 let Predicates = [IsLE] in {
6870 def : Pat<(f128 (bitconvert (v2i64 FPR128:$src))), (f128 FPR128:$src)>;
6871 def : Pat<(f128 (bitconvert (v4i32 FPR128:$src))), (f128 FPR128:$src)>;
6872 def : Pat<(f128 (bitconvert (v8i16 FPR128:$src))), (f128 FPR128:$src)>;
6873 def : Pat<(f128 (bitconvert (v2f64 FPR128:$src))), (f128 FPR128:$src)>;
6874 def : Pat<(f128 (bitconvert (v4f32 FPR128:$src))), (f128 FPR128:$src)>;
6875 def : Pat<(f128 (bitconvert (v8f16 FPR128:$src))), (f128 FPR128:$src)>;
6876 def : Pat<(f128 (bitconvert (v16i8 FPR128:$src))), (f128 FPR128:$src)>;
6878 let Predicates = [IsBE] in {
6879 def : Pat<(f128 (bitconvert (v2i64 FPR128:$src))),
6880 (f128 (EXTv16i8 FPR128:$src, FPR128:$src, (i32 8)))>;
6881 def : Pat<(f128 (bitconvert (v4i32 FPR128:$src))),
6882 (f128 (EXTv16i8 (REV64v4i32 FPR128:$src),
6883 (REV64v4i32 FPR128:$src), (i32 8)))>;
6884 def : Pat<(f128 (bitconvert (v8i16 FPR128:$src))),
6885 (f128 (EXTv16i8 (REV64v8i16 FPR128:$src),
6886 (REV64v8i16 FPR128:$src), (i32 8)))>;
6887 def : Pat<(f128 (bitconvert (v8f16 FPR128:$src))),
6888 (f128 (EXTv16i8 (REV64v8i16 FPR128:$src),
6889 (REV64v8i16 FPR128:$src), (i32 8)))>;
6890 def : Pat<(f128 (bitconvert (v2f64 FPR128:$src))),
6891 (f128 (EXTv16i8 FPR128:$src, FPR128:$src, (i32 8)))>;
6892 def : Pat<(f128 (bitconvert (v4f32 FPR128:$src))),
6893 (f128 (EXTv16i8 (REV64v4i32 FPR128:$src),
6894 (REV64v4i32 FPR128:$src), (i32 8)))>;
6895 def : Pat<(f128 (bitconvert (v16i8 FPR128:$src))),
6896 (f128 (EXTv16i8 (REV64v16i8 FPR128:$src),
6897 (REV64v16i8 FPR128:$src), (i32 8)))>;
6900 let Predicates = [IsLE] in {
6901 def : Pat<(v2f64 (bitconvert (f128 FPR128:$src))), (v2f64 FPR128:$src)>;
6902 def : Pat<(v2f64 (bitconvert (v4i32 FPR128:$src))), (v2f64 FPR128:$src)>;
6903 def : Pat<(v2f64 (bitconvert (v8i16 FPR128:$src))), (v2f64 FPR128:$src)>;
6904 def : Pat<(v2f64 (bitconvert (v8f16 FPR128:$src))), (v2f64 FPR128:$src)>;
6905 def : Pat<(v2f64 (bitconvert (v16i8 FPR128:$src))), (v2f64 FPR128:$src)>;
6906 def : Pat<(v2f64 (bitconvert (v4f32 FPR128:$src))), (v2f64 FPR128:$src)>;
6908 let Predicates = [IsBE] in {
6909 def : Pat<(v2f64 (bitconvert (f128 FPR128:$src))),
6910 (v2f64 (EXTv16i8 FPR128:$src,
6911 FPR128:$src, (i32 8)))>;
6912 def : Pat<(v2f64 (bitconvert (v4i32 FPR128:$src))),
6913 (v2f64 (REV64v4i32 FPR128:$src))>;
6914 def : Pat<(v2f64 (bitconvert (v8i16 FPR128:$src))),
6915 (v2f64 (REV64v8i16 FPR128:$src))>;
6916 def : Pat<(v2f64 (bitconvert (v8f16 FPR128:$src))),
6917 (v2f64 (REV64v8i16 FPR128:$src))>;
6918 def : Pat<(v2f64 (bitconvert (v16i8 FPR128:$src))),
6919 (v2f64 (REV64v16i8 FPR128:$src))>;
6920 def : Pat<(v2f64 (bitconvert (v4f32 FPR128:$src))),
6921 (v2f64 (REV64v4i32 FPR128:$src))>;
6923 def : Pat<(v2f64 (bitconvert (v2i64 FPR128:$src))), (v2f64 FPR128:$src)>;
6925 let Predicates = [IsLE] in {
6926 def : Pat<(v4f32 (bitconvert (f128 FPR128:$src))), (v4f32 FPR128:$src)>;
6927 def : Pat<(v4f32 (bitconvert (v8i16 FPR128:$src))), (v4f32 FPR128:$src)>;
6928 def : Pat<(v4f32 (bitconvert (v8f16 FPR128:$src))), (v4f32 FPR128:$src)>;
6929 def : Pat<(v4f32 (bitconvert (v16i8 FPR128:$src))), (v4f32 FPR128:$src)>;
6930 def : Pat<(v4f32 (bitconvert (v2i64 FPR128:$src))), (v4f32 FPR128:$src)>;
6931 def : Pat<(v4f32 (bitconvert (v2f64 FPR128:$src))), (v4f32 FPR128:$src)>;
6933 let Predicates = [IsBE] in {
6934 def : Pat<(v4f32 (bitconvert (f128 FPR128:$src))),
6935 (v4f32 (EXTv16i8 (REV64v4i32 FPR128:$src),
6936 (REV64v4i32 FPR128:$src), (i32 8)))>;
6937 def : Pat<(v4f32 (bitconvert (v8i16 FPR128:$src))),
6938 (v4f32 (REV32v8i16 FPR128:$src))>;
6939 def : Pat<(v4f32 (bitconvert (v8f16 FPR128:$src))),
6940 (v4f32 (REV32v8i16 FPR128:$src))>;
6941 def : Pat<(v4f32 (bitconvert (v16i8 FPR128:$src))),
6942 (v4f32 (REV32v16i8 FPR128:$src))>;
6943 def : Pat<(v4f32 (bitconvert (v2i64 FPR128:$src))),
6944 (v4f32 (REV64v4i32 FPR128:$src))>;
6945 def : Pat<(v4f32 (bitconvert (v2f64 FPR128:$src))),
6946 (v4f32 (REV64v4i32 FPR128:$src))>;
6948 def : Pat<(v4f32 (bitconvert (v4i32 FPR128:$src))), (v4f32 FPR128:$src)>;
6950 let Predicates = [IsLE] in {
6951 def : Pat<(v2i64 (bitconvert (f128 FPR128:$src))), (v2i64 FPR128:$src)>;
6952 def : Pat<(v2i64 (bitconvert (v4i32 FPR128:$src))), (v2i64 FPR128:$src)>;
6953 def : Pat<(v2i64 (bitconvert (v8i16 FPR128:$src))), (v2i64 FPR128:$src)>;
6954 def : Pat<(v2i64 (bitconvert (v16i8 FPR128:$src))), (v2i64 FPR128:$src)>;
6955 def : Pat<(v2i64 (bitconvert (v4f32 FPR128:$src))), (v2i64 FPR128:$src)>;
6956 def : Pat<(v2i64 (bitconvert (v8f16 FPR128:$src))), (v2i64 FPR128:$src)>;
6958 let Predicates = [IsBE] in {
6959 def : Pat<(v2i64 (bitconvert (f128 FPR128:$src))),
6960 (v2i64 (EXTv16i8 FPR128:$src,
6961 FPR128:$src, (i32 8)))>;
6962 def : Pat<(v2i64 (bitconvert (v4i32 FPR128:$src))),
6963 (v2i64 (REV64v4i32 FPR128:$src))>;
6964 def : Pat<(v2i64 (bitconvert (v8i16 FPR128:$src))),
6965 (v2i64 (REV64v8i16 FPR128:$src))>;
6966 def : Pat<(v2i64 (bitconvert (v16i8 FPR128:$src))),
6967 (v2i64 (REV64v16i8 FPR128:$src))>;
6968 def : Pat<(v2i64 (bitconvert (v4f32 FPR128:$src))),
6969 (v2i64 (REV64v4i32 FPR128:$src))>;
6970 def : Pat<(v2i64 (bitconvert (v8f16 FPR128:$src))),
6971 (v2i64 (REV64v8i16 FPR128:$src))>;
6973 def : Pat<(v2i64 (bitconvert (v2f64 FPR128:$src))), (v2i64 FPR128:$src)>;
6975 let Predicates = [IsLE] in {
6976 def : Pat<(v4i32 (bitconvert (f128 FPR128:$src))), (v4i32 FPR128:$src)>;
6977 def : Pat<(v4i32 (bitconvert (v2i64 FPR128:$src))), (v4i32 FPR128:$src)>;
6978 def : Pat<(v4i32 (bitconvert (v8i16 FPR128:$src))), (v4i32 FPR128:$src)>;
6979 def : Pat<(v4i32 (bitconvert (v16i8 FPR128:$src))), (v4i32 FPR128:$src)>;
6980 def : Pat<(v4i32 (bitconvert (v2f64 FPR128:$src))), (v4i32 FPR128:$src)>;
6981 def : Pat<(v4i32 (bitconvert (v8f16 FPR128:$src))), (v4i32 FPR128:$src)>;
6983 let Predicates = [IsBE] in {
6984 def : Pat<(v4i32 (bitconvert (f128 FPR128:$src))),
6985 (v4i32 (EXTv16i8 (REV64v4i32 FPR128:$src),
6986 (REV64v4i32 FPR128:$src),
6988 def : Pat<(v4i32 (bitconvert (v2i64 FPR128:$src))),
6989 (v4i32 (REV64v4i32 FPR128:$src))>;
6990 def : Pat<(v4i32 (bitconvert (v8i16 FPR128:$src))),
6991 (v4i32 (REV32v8i16 FPR128:$src))>;
6992 def : Pat<(v4i32 (bitconvert (v16i8 FPR128:$src))),
6993 (v4i32 (REV32v16i8 FPR128:$src))>;
6994 def : Pat<(v4i32 (bitconvert (v2f64 FPR128:$src))),
6995 (v4i32 (REV64v4i32 FPR128:$src))>;
6996 def : Pat<(v4i32 (bitconvert (v8f16 FPR128:$src))),
6997 (v4i32 (REV32v8i16 FPR128:$src))>;
6999 def : Pat<(v4i32 (bitconvert (v4f32 FPR128:$src))), (v4i32 FPR128:$src)>;
7001 let Predicates = [IsLE] in {
7002 def : Pat<(v8i16 (bitconvert (f128 FPR128:$src))), (v8i16 FPR128:$src)>;
7003 def : Pat<(v8i16 (bitconvert (v2i64 FPR128:$src))), (v8i16 FPR128:$src)>;
7004 def : Pat<(v8i16 (bitconvert (v4i32 FPR128:$src))), (v8i16 FPR128:$src)>;
7005 def : Pat<(v8i16 (bitconvert (v16i8 FPR128:$src))), (v8i16 FPR128:$src)>;
7006 def : Pat<(v8i16 (bitconvert (v2f64 FPR128:$src))), (v8i16 FPR128:$src)>;
7007 def : Pat<(v8i16 (bitconvert (v4f32 FPR128:$src))), (v8i16 FPR128:$src)>;
7009 let Predicates = [IsBE] in {
7010 def : Pat<(v8i16 (bitconvert (f128 FPR128:$src))),
7011 (v8i16 (EXTv16i8 (REV64v8i16 FPR128:$src),
7012 (REV64v8i16 FPR128:$src),
7014 def : Pat<(v8i16 (bitconvert (v2i64 FPR128:$src))),
7015 (v8i16 (REV64v8i16 FPR128:$src))>;
7016 def : Pat<(v8i16 (bitconvert (v4i32 FPR128:$src))),
7017 (v8i16 (REV32v8i16 FPR128:$src))>;
7018 def : Pat<(v8i16 (bitconvert (v16i8 FPR128:$src))),
7019 (v8i16 (REV16v16i8 FPR128:$src))>;
7020 def : Pat<(v8i16 (bitconvert (v2f64 FPR128:$src))),
7021 (v8i16 (REV64v8i16 FPR128:$src))>;
7022 def : Pat<(v8i16 (bitconvert (v4f32 FPR128:$src))),
7023 (v8i16 (REV32v8i16 FPR128:$src))>;
7025 def : Pat<(v8i16 (bitconvert (v8f16 FPR128:$src))), (v8i16 FPR128:$src)>;
7027 let Predicates = [IsLE] in {
7028 def : Pat<(v8f16 (bitconvert (f128 FPR128:$src))), (v8f16 FPR128:$src)>;
7029 def : Pat<(v8f16 (bitconvert (v2i64 FPR128:$src))), (v8f16 FPR128:$src)>;
7030 def : Pat<(v8f16 (bitconvert (v4i32 FPR128:$src))), (v8f16 FPR128:$src)>;
7031 def : Pat<(v8f16 (bitconvert (v16i8 FPR128:$src))), (v8f16 FPR128:$src)>;
7032 def : Pat<(v8f16 (bitconvert (v2f64 FPR128:$src))), (v8f16 FPR128:$src)>;
7033 def : Pat<(v8f16 (bitconvert (v4f32 FPR128:$src))), (v8f16 FPR128:$src)>;
7035 let Predicates = [IsBE] in {
7036 def : Pat<(v8f16 (bitconvert (f128 FPR128:$src))),
7037 (v8f16 (EXTv16i8 (REV64v8i16 FPR128:$src),
7038 (REV64v8i16 FPR128:$src),
7040 def : Pat<(v8f16 (bitconvert (v2i64 FPR128:$src))),
7041 (v8f16 (REV64v8i16 FPR128:$src))>;
7042 def : Pat<(v8f16 (bitconvert (v4i32 FPR128:$src))),
7043 (v8f16 (REV32v8i16 FPR128:$src))>;
7044 def : Pat<(v8f16 (bitconvert (v16i8 FPR128:$src))),
7045 (v8f16 (REV16v16i8 FPR128:$src))>;
7046 def : Pat<(v8f16 (bitconvert (v2f64 FPR128:$src))),
7047 (v8f16 (REV64v8i16 FPR128:$src))>;
7048 def : Pat<(v8f16 (bitconvert (v4f32 FPR128:$src))),
7049 (v8f16 (REV32v8i16 FPR128:$src))>;
7051 def : Pat<(v8f16 (bitconvert (v8i16 FPR128:$src))), (v8f16 FPR128:$src)>;
7053 let Predicates = [IsLE] in {
7054 def : Pat<(v16i8 (bitconvert (f128 FPR128:$src))), (v16i8 FPR128:$src)>;
7055 def : Pat<(v16i8 (bitconvert (v2i64 FPR128:$src))), (v16i8 FPR128:$src)>;
7056 def : Pat<(v16i8 (bitconvert (v4i32 FPR128:$src))), (v16i8 FPR128:$src)>;
7057 def : Pat<(v16i8 (bitconvert (v8i16 FPR128:$src))), (v16i8 FPR128:$src)>;
7058 def : Pat<(v16i8 (bitconvert (v2f64 FPR128:$src))), (v16i8 FPR128:$src)>;
7059 def : Pat<(v16i8 (bitconvert (v4f32 FPR128:$src))), (v16i8 FPR128:$src)>;
7060 def : Pat<(v16i8 (bitconvert (v8f16 FPR128:$src))), (v16i8 FPR128:$src)>;
7062 let Predicates = [IsBE] in {
7063 def : Pat<(v16i8 (bitconvert (f128 FPR128:$src))),
7064 (v16i8 (EXTv16i8 (REV64v16i8 FPR128:$src),
7065 (REV64v16i8 FPR128:$src),
7067 def : Pat<(v16i8 (bitconvert (v2i64 FPR128:$src))),
7068 (v16i8 (REV64v16i8 FPR128:$src))>;
7069 def : Pat<(v16i8 (bitconvert (v4i32 FPR128:$src))),
7070 (v16i8 (REV32v16i8 FPR128:$src))>;
7071 def : Pat<(v16i8 (bitconvert (v8i16 FPR128:$src))),
7072 (v16i8 (REV16v16i8 FPR128:$src))>;
7073 def : Pat<(v16i8 (bitconvert (v2f64 FPR128:$src))),
7074 (v16i8 (REV64v16i8 FPR128:$src))>;
7075 def : Pat<(v16i8 (bitconvert (v4f32 FPR128:$src))),
7076 (v16i8 (REV32v16i8 FPR128:$src))>;
7077 def : Pat<(v16i8 (bitconvert (v8f16 FPR128:$src))),
7078 (v16i8 (REV16v16i8 FPR128:$src))>;
7081 def : Pat<(v4i16 (extract_subvector V128:$Rn, (i64 0))),
7082 (EXTRACT_SUBREG V128:$Rn, dsub)>;
7083 def : Pat<(v8i8 (extract_subvector V128:$Rn, (i64 0))),
7084 (EXTRACT_SUBREG V128:$Rn, dsub)>;
7085 def : Pat<(v2f32 (extract_subvector V128:$Rn, (i64 0))),
7086 (EXTRACT_SUBREG V128:$Rn, dsub)>;
7087 def : Pat<(v4f16 (extract_subvector V128:$Rn, (i64 0))),
7088 (EXTRACT_SUBREG V128:$Rn, dsub)>;
7089 def : Pat<(v2i32 (extract_subvector V128:$Rn, (i64 0))),
7090 (EXTRACT_SUBREG V128:$Rn, dsub)>;
7091 def : Pat<(v1i64 (extract_subvector V128:$Rn, (i64 0))),
7092 (EXTRACT_SUBREG V128:$Rn, dsub)>;
7093 def : Pat<(v1f64 (extract_subvector V128:$Rn, (i64 0))),
7094 (EXTRACT_SUBREG V128:$Rn, dsub)>;
7096 def : Pat<(v8i8 (extract_subvector (v16i8 FPR128:$Rn), (i64 1))),
7097 (EXTRACT_SUBREG (DUPv2i64lane FPR128:$Rn, 1), dsub)>;
7098 def : Pat<(v4i16 (extract_subvector (v8i16 FPR128:$Rn), (i64 1))),
7099 (EXTRACT_SUBREG (DUPv2i64lane FPR128:$Rn, 1), dsub)>;
7100 def : Pat<(v2i32 (extract_subvector (v4i32 FPR128:$Rn), (i64 1))),
7101 (EXTRACT_SUBREG (DUPv2i64lane FPR128:$Rn, 1), dsub)>;
7102 def : Pat<(v1i64 (extract_subvector (v2i64 FPR128:$Rn), (i64 1))),
7103 (EXTRACT_SUBREG (DUPv2i64lane FPR128:$Rn, 1), dsub)>;
7105 // A 64-bit subvector insert to the first 128-bit vector position
7106 // is a subregister copy that needs no instruction.
7107 multiclass InsertSubvectorUndef<ValueType Ty> {
7108 def : Pat<(insert_subvector undef, (v1i64 FPR64:$src), (Ty 0)),
7109 (INSERT_SUBREG (v2i64 (IMPLICIT_DEF)), FPR64:$src, dsub)>;
7110 def : Pat<(insert_subvector undef, (v1f64 FPR64:$src), (Ty 0)),
7111 (INSERT_SUBREG (v2f64 (IMPLICIT_DEF)), FPR64:$src, dsub)>;
7112 def : Pat<(insert_subvector undef, (v2i32 FPR64:$src), (Ty 0)),
7113 (INSERT_SUBREG (v4i32 (IMPLICIT_DEF)), FPR64:$src, dsub)>;
7114 def : Pat<(insert_subvector undef, (v2f32 FPR64:$src), (Ty 0)),
7115 (INSERT_SUBREG (v4f32 (IMPLICIT_DEF)), FPR64:$src, dsub)>;
7116 def : Pat<(insert_subvector undef, (v4i16 FPR64:$src), (Ty 0)),
7117 (INSERT_SUBREG (v8i16 (IMPLICIT_DEF)), FPR64:$src, dsub)>;
7118 def : Pat<(insert_subvector undef, (v4f16 FPR64:$src), (Ty 0)),
7119 (INSERT_SUBREG (v8f16 (IMPLICIT_DEF)), FPR64:$src, dsub)>;
7120 def : Pat<(insert_subvector undef, (v8i8 FPR64:$src), (Ty 0)),
7121 (INSERT_SUBREG (v16i8 (IMPLICIT_DEF)), FPR64:$src, dsub)>;
7124 defm : InsertSubvectorUndef<i32>;
7125 defm : InsertSubvectorUndef<i64>;
7127 // Use pair-wise add instructions when summing up the lanes for v2f64, v2i64
7129 def : Pat<(i64 (add (vector_extract (v2i64 FPR128:$Rn), (i64 0)),
7130 (vector_extract (v2i64 FPR128:$Rn), (i64 1)))),
7131 (i64 (ADDPv2i64p (v2i64 FPR128:$Rn)))>;
7132 def : Pat<(f64 (fadd (vector_extract (v2f64 FPR128:$Rn), (i64 0)),
7133 (vector_extract (v2f64 FPR128:$Rn), (i64 1)))),
7134 (f64 (FADDPv2i64p (v2f64 FPR128:$Rn)))>;
7135 // vector_extract on 64-bit vectors gets promoted to a 128 bit vector,
7136 // so we match on v4f32 here, not v2f32. This will also catch adding
7137 // the low two lanes of a true v4f32 vector.
7138 def : Pat<(fadd (vector_extract (v4f32 FPR128:$Rn), (i64 0)),
7139 (vector_extract (v4f32 FPR128:$Rn), (i64 1))),
7140 (f32 (FADDPv2i32p (EXTRACT_SUBREG FPR128:$Rn, dsub)))>;
7142 // Scalar 64-bit shifts in FPR64 registers.
7143 def : Pat<(i64 (int_aarch64_neon_sshl (i64 FPR64:$Rn), (i64 FPR64:$Rm))),
7144 (SSHLv1i64 FPR64:$Rn, FPR64:$Rm)>;
7145 def : Pat<(i64 (int_aarch64_neon_ushl (i64 FPR64:$Rn), (i64 FPR64:$Rm))),
7146 (USHLv1i64 FPR64:$Rn, FPR64:$Rm)>;
7147 def : Pat<(i64 (int_aarch64_neon_srshl (i64 FPR64:$Rn), (i64 FPR64:$Rm))),
7148 (SRSHLv1i64 FPR64:$Rn, FPR64:$Rm)>;
7149 def : Pat<(i64 (int_aarch64_neon_urshl (i64 FPR64:$Rn), (i64 FPR64:$Rm))),
7150 (URSHLv1i64 FPR64:$Rn, FPR64:$Rm)>;
7152 // Patterns for nontemporal/no-allocate stores.
7153 // We have to resort to tricks to turn a single-input store into a store pair,
7154 // because there is no single-input nontemporal store, only STNP.
7155 let Predicates = [IsLE] in {
7156 let AddedComplexity = 15 in {
7157 class NTStore128Pat<ValueType VT> :
7158 Pat<(nontemporalstore (VT FPR128:$Rt),
7159 (am_indexed7s64 GPR64sp:$Rn, simm7s8:$offset)),
7160 (STNPDi (EXTRACT_SUBREG FPR128:$Rt, dsub),
7161 (CPYi64 FPR128:$Rt, (i64 1)),
7162 GPR64sp:$Rn, simm7s8:$offset)>;
7164 def : NTStore128Pat<v2i64>;
7165 def : NTStore128Pat<v4i32>;
7166 def : NTStore128Pat<v8i16>;
7167 def : NTStore128Pat<v16i8>;
7169 class NTStore64Pat<ValueType VT> :
7170 Pat<(nontemporalstore (VT FPR64:$Rt),
7171 (am_indexed7s32 GPR64sp:$Rn, simm7s4:$offset)),
7172 (STNPSi (EXTRACT_SUBREG FPR64:$Rt, ssub),
7173 (CPYi32 (SUBREG_TO_REG (i64 0), FPR64:$Rt, dsub), (i64 1)),
7174 GPR64sp:$Rn, simm7s4:$offset)>;
7176 // FIXME: Shouldn't v1f64 loads/stores be promoted to v1i64?
7177 def : NTStore64Pat<v1f64>;
7178 def : NTStore64Pat<v1i64>;
7179 def : NTStore64Pat<v2i32>;
7180 def : NTStore64Pat<v4i16>;
7181 def : NTStore64Pat<v8i8>;
7183 def : Pat<(nontemporalstore GPR64:$Rt,
7184 (am_indexed7s32 GPR64sp:$Rn, simm7s4:$offset)),
7185 (STNPWi (EXTRACT_SUBREG GPR64:$Rt, sub_32),
7186 (EXTRACT_SUBREG (UBFMXri GPR64:$Rt, 32, 63), sub_32),
7187 GPR64sp:$Rn, simm7s4:$offset)>;
7188 } // AddedComplexity=10
7189 } // Predicates = [IsLE]
7191 // Tail call return handling. These are all compiler pseudo-instructions,
7192 // so no encoding information or anything like that.
7193 let isCall = 1, isTerminator = 1, isReturn = 1, isBarrier = 1, Uses = [SP] in {
7194 def TCRETURNdi : Pseudo<(outs), (ins i64imm:$dst, i32imm:$FPDiff), []>,
7195 Sched<[WriteBrReg]>;
7196 def TCRETURNri : Pseudo<(outs), (ins tcGPR64:$dst, i32imm:$FPDiff), []>,
7197 Sched<[WriteBrReg]>;
7198 // Indirect tail-call with any register allowed, used by MachineOutliner when
7199 // this is proven safe.
7200 // FIXME: If we have to add any more hacks like this, we should instead relax
7201 // some verifier checks for outlined functions.
7202 def TCRETURNriALL : Pseudo<(outs), (ins GPR64:$dst, i32imm:$FPDiff), []>,
7203 Sched<[WriteBrReg]>;
7204 // Indirect tail-call limited to only use registers (x16 and x17) which are
7205 // allowed to tail-call a "BTI c" instruction.
7206 def TCRETURNriBTI : Pseudo<(outs), (ins rtcGPR64:$dst, i32imm:$FPDiff), []>,
7207 Sched<[WriteBrReg]>;
7210 def : Pat<(AArch64tcret tcGPR64:$dst, (i32 timm:$FPDiff)),
7211 (TCRETURNri tcGPR64:$dst, imm:$FPDiff)>,
7212 Requires<[NotUseBTI]>;
7213 def : Pat<(AArch64tcret rtcGPR64:$dst, (i32 timm:$FPDiff)),
7214 (TCRETURNriBTI rtcGPR64:$dst, imm:$FPDiff)>,
7216 def : Pat<(AArch64tcret tglobaladdr:$dst, (i32 timm:$FPDiff)),
7217 (TCRETURNdi texternalsym:$dst, imm:$FPDiff)>;
7218 def : Pat<(AArch64tcret texternalsym:$dst, (i32 timm:$FPDiff)),
7219 (TCRETURNdi texternalsym:$dst, imm:$FPDiff)>;
7221 def MOVMCSym : Pseudo<(outs GPR64:$dst), (ins i64imm:$sym), []>, Sched<[]>;
7222 def : Pat<(i64 (AArch64LocalRecover mcsym:$sym)), (MOVMCSym mcsym:$sym)>;
7224 // Extracting lane zero is a special case where we can just use a plain
7225 // EXTRACT_SUBREG instruction, which will become FMOV. This is easier for the
7226 // rest of the compiler, especially the register allocator and copy propagation,
7227 // to reason about, so is preferred when it's possible to use it.
7228 let AddedComplexity = 10 in {
7229 def : Pat<(i64 (extractelt (v2i64 V128:$V), (i64 0))), (EXTRACT_SUBREG V128:$V, dsub)>;
7230 def : Pat<(i32 (extractelt (v4i32 V128:$V), (i64 0))), (EXTRACT_SUBREG V128:$V, ssub)>;
7231 def : Pat<(i32 (extractelt (v2i32 V64:$V), (i64 0))), (EXTRACT_SUBREG V64:$V, ssub)>;
7235 class mul_v4i8<SDPatternOperator ldop> :
7236 PatFrag<(ops node:$Rn, node:$Rm, node:$offset),
7237 (mul (ldop (add node:$Rn, node:$offset)),
7238 (ldop (add node:$Rm, node:$offset)))>;
7239 class mulz_v4i8<SDPatternOperator ldop> :
7240 PatFrag<(ops node:$Rn, node:$Rm),
7241 (mul (ldop node:$Rn), (ldop node:$Rm))>;
7244 OutPatFrag<(ops node:$R),
7246 (v2i32 (IMPLICIT_DEF)),
7247 (i32 (COPY_TO_REGCLASS (LDRWui node:$R, (i64 0)), FPR32)),
7250 class dot_v4i8<Instruction DOT, SDPatternOperator ldop> :
7251 Pat<(i32 (add (mul_v4i8<ldop> GPR64sp:$Rn, GPR64sp:$Rm, (i64 3)),
7252 (add (mul_v4i8<ldop> GPR64sp:$Rn, GPR64sp:$Rm, (i64 2)),
7253 (add (mul_v4i8<ldop> GPR64sp:$Rn, GPR64sp:$Rm, (i64 1)),
7254 (mulz_v4i8<ldop> GPR64sp:$Rn, GPR64sp:$Rm))))),
7255 (EXTRACT_SUBREG (i64 (DOT (DUPv2i32gpr WZR),
7256 (load_v4i8 GPR64sp:$Rn),
7257 (load_v4i8 GPR64sp:$Rm))),
7258 sub_32)>, Requires<[HasDotProd]>;
7261 class ee_v8i8<SDPatternOperator extend> :
7262 PatFrag<(ops node:$V, node:$K),
7263 (v4i16 (extract_subvector (v8i16 (extend node:$V)), node:$K))>;
7265 class mul_v8i8<SDPatternOperator mulop, SDPatternOperator extend> :
7266 PatFrag<(ops node:$M, node:$N, node:$K),
7267 (mulop (v4i16 (ee_v8i8<extend> node:$M, node:$K)),
7268 (v4i16 (ee_v8i8<extend> node:$N, node:$K)))>;
7270 class idot_v8i8<SDPatternOperator mulop, SDPatternOperator extend> :
7271 PatFrag<(ops node:$M, node:$N),
7273 (v4i32 (AArch64uaddv
7274 (add (mul_v8i8<mulop, extend> node:$M, node:$N, (i64 0)),
7275 (mul_v8i8<mulop, extend> node:$M, node:$N, (i64 4))))),
7278 // vaddv_[su]32 is special; -> ADDP Vd.2S,Vn.2S,Vm.2S; return Vd.s[0];Vn==Vm
7279 def VADDV_32 : OutPatFrag<(ops node:$R), (ADDPv2i32 node:$R, node:$R)>;
7281 class odot_v8i8<Instruction DOT> :
7282 OutPatFrag<(ops node:$Vm, node:$Vn),
7285 (i64 (DOT (DUPv2i32gpr WZR),
7290 class dot_v8i8<Instruction DOT, SDPatternOperator mulop,
7291 SDPatternOperator extend> :
7292 Pat<(idot_v8i8<mulop, extend> V64:$Vm, V64:$Vn),
7293 (odot_v8i8<DOT> V64:$Vm, V64:$Vn)>,
7294 Requires<[HasDotProd]>;
7297 class ee_v16i8<SDPatternOperator extend> :
7298 PatFrag<(ops node:$V, node:$K1, node:$K2),
7299 (v4i16 (extract_subvector
7301 (v8i8 (extract_subvector node:$V, node:$K1)))), node:$K2))>;
7303 class mul_v16i8<SDPatternOperator mulop, SDPatternOperator extend> :
7304 PatFrag<(ops node:$M, node:$N, node:$K1, node:$K2),
7306 (mulop (v4i16 (ee_v16i8<extend> node:$M, node:$K1, node:$K2)),
7307 (v4i16 (ee_v16i8<extend> node:$N, node:$K1, node:$K2))))>;
7309 class idot_v16i8<SDPatternOperator m, SDPatternOperator x> :
7310 PatFrag<(ops node:$M, node:$N),
7312 (v4i32 (AArch64uaddv
7314 (add (mul_v16i8<m, x> node:$M, node:$N, (i64 0), (i64 0)),
7315 (mul_v16i8<m, x> node:$M, node:$N, (i64 8), (i64 0))),
7316 (add (mul_v16i8<m, x> node:$M, node:$N, (i64 0), (i64 4)),
7317 (mul_v16i8<m, x> node:$M, node:$N, (i64 8), (i64 4)))))),
7320 class odot_v16i8<Instruction DOT> :
7321 OutPatFrag<(ops node:$Vm, node:$Vn),
7323 (DOT (DUPv4i32gpr WZR), node:$Vm, node:$Vn)))>;
7325 class dot_v16i8<Instruction DOT, SDPatternOperator mulop,
7326 SDPatternOperator extend> :
7327 Pat<(idot_v16i8<mulop, extend> V128:$Vm, V128:$Vn),
7328 (odot_v16i8<DOT> V128:$Vm, V128:$Vn)>,
7329 Requires<[HasDotProd]>;
7331 let AddedComplexity = 10 in {
7332 def : dot_v4i8<SDOTv8i8, sextloadi8>;
7333 def : dot_v4i8<UDOTv8i8, zextloadi8>;
7334 def : dot_v8i8<SDOTv8i8, AArch64smull, sext>;
7335 def : dot_v8i8<UDOTv8i8, AArch64umull, zext>;
7336 def : dot_v16i8<SDOTv16i8, AArch64smull, sext>;
7337 def : dot_v16i8<UDOTv16i8, AArch64umull, zext>;
7339 // FIXME: add patterns to generate vector by element dot product.
7340 // FIXME: add SVE dot-product patterns.
7343 include "AArch64InstrAtomics.td"
7344 include "AArch64SVEInstrInfo.td"