[PowerPC] Collect some CallLowering arguments into a struct. [NFC]
[llvm-project.git] / llvm / lib / Target / AArch64 / AArch64TargetTransformInfo.cpp
blob4724d6b8daea773d818b13f868f0bde9e9f33c0d
1 //===-- AArch64TargetTransformInfo.cpp - AArch64 specific TTI -------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
9 #include "AArch64ExpandImm.h"
10 #include "AArch64TargetTransformInfo.h"
11 #include "MCTargetDesc/AArch64AddressingModes.h"
12 #include "llvm/Analysis/LoopInfo.h"
13 #include "llvm/Analysis/TargetTransformInfo.h"
14 #include "llvm/CodeGen/BasicTTIImpl.h"
15 #include "llvm/CodeGen/CostTable.h"
16 #include "llvm/CodeGen/TargetLowering.h"
17 #include "llvm/IR/IntrinsicInst.h"
18 #include "llvm/IR/IntrinsicsAArch64.h"
19 #include "llvm/Support/Debug.h"
20 #include <algorithm>
21 using namespace llvm;
23 #define DEBUG_TYPE "aarch64tti"
25 static cl::opt<bool> EnableFalkorHWPFUnrollFix("enable-falkor-hwpf-unroll-fix",
26 cl::init(true), cl::Hidden);
28 bool AArch64TTIImpl::areInlineCompatible(const Function *Caller,
29 const Function *Callee) const {
30 const TargetMachine &TM = getTLI()->getTargetMachine();
32 const FeatureBitset &CallerBits =
33 TM.getSubtargetImpl(*Caller)->getFeatureBits();
34 const FeatureBitset &CalleeBits =
35 TM.getSubtargetImpl(*Callee)->getFeatureBits();
37 // Inline a callee if its target-features are a subset of the callers
38 // target-features.
39 return (CallerBits & CalleeBits) == CalleeBits;
42 /// Calculate the cost of materializing a 64-bit value. This helper
43 /// method might only calculate a fraction of a larger immediate. Therefore it
44 /// is valid to return a cost of ZERO.
45 int AArch64TTIImpl::getIntImmCost(int64_t Val) {
46 // Check if the immediate can be encoded within an instruction.
47 if (Val == 0 || AArch64_AM::isLogicalImmediate(Val, 64))
48 return 0;
50 if (Val < 0)
51 Val = ~Val;
53 // Calculate how many moves we will need to materialize this constant.
54 SmallVector<AArch64_IMM::ImmInsnModel, 4> Insn;
55 AArch64_IMM::expandMOVImm(Val, 64, Insn);
56 return Insn.size();
59 /// Calculate the cost of materializing the given constant.
60 int AArch64TTIImpl::getIntImmCost(const APInt &Imm, Type *Ty) {
61 assert(Ty->isIntegerTy());
63 unsigned BitSize = Ty->getPrimitiveSizeInBits();
64 if (BitSize == 0)
65 return ~0U;
67 // Sign-extend all constants to a multiple of 64-bit.
68 APInt ImmVal = Imm;
69 if (BitSize & 0x3f)
70 ImmVal = Imm.sext((BitSize + 63) & ~0x3fU);
72 // Split the constant into 64-bit chunks and calculate the cost for each
73 // chunk.
74 int Cost = 0;
75 for (unsigned ShiftVal = 0; ShiftVal < BitSize; ShiftVal += 64) {
76 APInt Tmp = ImmVal.ashr(ShiftVal).sextOrTrunc(64);
77 int64_t Val = Tmp.getSExtValue();
78 Cost += getIntImmCost(Val);
80 // We need at least one instruction to materialze the constant.
81 return std::max(1, Cost);
84 int AArch64TTIImpl::getIntImmCostInst(unsigned Opcode, unsigned Idx,
85 const APInt &Imm, Type *Ty) {
86 assert(Ty->isIntegerTy());
88 unsigned BitSize = Ty->getPrimitiveSizeInBits();
89 // There is no cost model for constants with a bit size of 0. Return TCC_Free
90 // here, so that constant hoisting will ignore this constant.
91 if (BitSize == 0)
92 return TTI::TCC_Free;
94 unsigned ImmIdx = ~0U;
95 switch (Opcode) {
96 default:
97 return TTI::TCC_Free;
98 case Instruction::GetElementPtr:
99 // Always hoist the base address of a GetElementPtr.
100 if (Idx == 0)
101 return 2 * TTI::TCC_Basic;
102 return TTI::TCC_Free;
103 case Instruction::Store:
104 ImmIdx = 0;
105 break;
106 case Instruction::Add:
107 case Instruction::Sub:
108 case Instruction::Mul:
109 case Instruction::UDiv:
110 case Instruction::SDiv:
111 case Instruction::URem:
112 case Instruction::SRem:
113 case Instruction::And:
114 case Instruction::Or:
115 case Instruction::Xor:
116 case Instruction::ICmp:
117 ImmIdx = 1;
118 break;
119 // Always return TCC_Free for the shift value of a shift instruction.
120 case Instruction::Shl:
121 case Instruction::LShr:
122 case Instruction::AShr:
123 if (Idx == 1)
124 return TTI::TCC_Free;
125 break;
126 case Instruction::Trunc:
127 case Instruction::ZExt:
128 case Instruction::SExt:
129 case Instruction::IntToPtr:
130 case Instruction::PtrToInt:
131 case Instruction::BitCast:
132 case Instruction::PHI:
133 case Instruction::Call:
134 case Instruction::Select:
135 case Instruction::Ret:
136 case Instruction::Load:
137 break;
140 if (Idx == ImmIdx) {
141 int NumConstants = (BitSize + 63) / 64;
142 int Cost = AArch64TTIImpl::getIntImmCost(Imm, Ty);
143 return (Cost <= NumConstants * TTI::TCC_Basic)
144 ? static_cast<int>(TTI::TCC_Free)
145 : Cost;
147 return AArch64TTIImpl::getIntImmCost(Imm, Ty);
150 int AArch64TTIImpl::getIntImmCostIntrin(Intrinsic::ID IID, unsigned Idx,
151 const APInt &Imm, Type *Ty) {
152 assert(Ty->isIntegerTy());
154 unsigned BitSize = Ty->getPrimitiveSizeInBits();
155 // There is no cost model for constants with a bit size of 0. Return TCC_Free
156 // here, so that constant hoisting will ignore this constant.
157 if (BitSize == 0)
158 return TTI::TCC_Free;
160 // Most (all?) AArch64 intrinsics do not support folding immediates into the
161 // selected instruction, so we compute the materialization cost for the
162 // immediate directly.
163 if (IID >= Intrinsic::aarch64_addg && IID <= Intrinsic::aarch64_udiv)
164 return AArch64TTIImpl::getIntImmCost(Imm, Ty);
166 switch (IID) {
167 default:
168 return TTI::TCC_Free;
169 case Intrinsic::sadd_with_overflow:
170 case Intrinsic::uadd_with_overflow:
171 case Intrinsic::ssub_with_overflow:
172 case Intrinsic::usub_with_overflow:
173 case Intrinsic::smul_with_overflow:
174 case Intrinsic::umul_with_overflow:
175 if (Idx == 1) {
176 int NumConstants = (BitSize + 63) / 64;
177 int Cost = AArch64TTIImpl::getIntImmCost(Imm, Ty);
178 return (Cost <= NumConstants * TTI::TCC_Basic)
179 ? static_cast<int>(TTI::TCC_Free)
180 : Cost;
182 break;
183 case Intrinsic::experimental_stackmap:
184 if ((Idx < 2) || (Imm.getBitWidth() <= 64 && isInt<64>(Imm.getSExtValue())))
185 return TTI::TCC_Free;
186 break;
187 case Intrinsic::experimental_patchpoint_void:
188 case Intrinsic::experimental_patchpoint_i64:
189 if ((Idx < 4) || (Imm.getBitWidth() <= 64 && isInt<64>(Imm.getSExtValue())))
190 return TTI::TCC_Free;
191 break;
193 return AArch64TTIImpl::getIntImmCost(Imm, Ty);
196 TargetTransformInfo::PopcntSupportKind
197 AArch64TTIImpl::getPopcntSupport(unsigned TyWidth) {
198 assert(isPowerOf2_32(TyWidth) && "Ty width must be power of 2");
199 if (TyWidth == 32 || TyWidth == 64)
200 return TTI::PSK_FastHardware;
201 // TODO: AArch64TargetLowering::LowerCTPOP() supports 128bit popcount.
202 return TTI::PSK_Software;
205 bool AArch64TTIImpl::isWideningInstruction(Type *DstTy, unsigned Opcode,
206 ArrayRef<const Value *> Args) {
208 // A helper that returns a vector type from the given type. The number of
209 // elements in type Ty determine the vector width.
210 auto toVectorTy = [&](Type *ArgTy) {
211 return VectorType::get(ArgTy->getScalarType(),
212 DstTy->getVectorNumElements());
215 // Exit early if DstTy is not a vector type whose elements are at least
216 // 16-bits wide.
217 if (!DstTy->isVectorTy() || DstTy->getScalarSizeInBits() < 16)
218 return false;
220 // Determine if the operation has a widening variant. We consider both the
221 // "long" (e.g., usubl) and "wide" (e.g., usubw) versions of the
222 // instructions.
224 // TODO: Add additional widening operations (e.g., mul, shl, etc.) once we
225 // verify that their extending operands are eliminated during code
226 // generation.
227 switch (Opcode) {
228 case Instruction::Add: // UADDL(2), SADDL(2), UADDW(2), SADDW(2).
229 case Instruction::Sub: // USUBL(2), SSUBL(2), USUBW(2), SSUBW(2).
230 break;
231 default:
232 return false;
235 // To be a widening instruction (either the "wide" or "long" versions), the
236 // second operand must be a sign- or zero extend having a single user. We
237 // only consider extends having a single user because they may otherwise not
238 // be eliminated.
239 if (Args.size() != 2 ||
240 (!isa<SExtInst>(Args[1]) && !isa<ZExtInst>(Args[1])) ||
241 !Args[1]->hasOneUse())
242 return false;
243 auto *Extend = cast<CastInst>(Args[1]);
245 // Legalize the destination type and ensure it can be used in a widening
246 // operation.
247 auto DstTyL = TLI->getTypeLegalizationCost(DL, DstTy);
248 unsigned DstElTySize = DstTyL.second.getScalarSizeInBits();
249 if (!DstTyL.second.isVector() || DstElTySize != DstTy->getScalarSizeInBits())
250 return false;
252 // Legalize the source type and ensure it can be used in a widening
253 // operation.
254 Type *SrcTy = toVectorTy(Extend->getSrcTy());
255 auto SrcTyL = TLI->getTypeLegalizationCost(DL, SrcTy);
256 unsigned SrcElTySize = SrcTyL.second.getScalarSizeInBits();
257 if (!SrcTyL.second.isVector() || SrcElTySize != SrcTy->getScalarSizeInBits())
258 return false;
260 // Get the total number of vector elements in the legalized types.
261 unsigned NumDstEls = DstTyL.first * DstTyL.second.getVectorNumElements();
262 unsigned NumSrcEls = SrcTyL.first * SrcTyL.second.getVectorNumElements();
264 // Return true if the legalized types have the same number of vector elements
265 // and the destination element type size is twice that of the source type.
266 return NumDstEls == NumSrcEls && 2 * SrcElTySize == DstElTySize;
269 int AArch64TTIImpl::getCastInstrCost(unsigned Opcode, Type *Dst, Type *Src,
270 const Instruction *I) {
271 int ISD = TLI->InstructionOpcodeToISD(Opcode);
272 assert(ISD && "Invalid opcode");
274 // If the cast is observable, and it is used by a widening instruction (e.g.,
275 // uaddl, saddw, etc.), it may be free.
276 if (I && I->hasOneUse()) {
277 auto *SingleUser = cast<Instruction>(*I->user_begin());
278 SmallVector<const Value *, 4> Operands(SingleUser->operand_values());
279 if (isWideningInstruction(Dst, SingleUser->getOpcode(), Operands)) {
280 // If the cast is the second operand, it is free. We will generate either
281 // a "wide" or "long" version of the widening instruction.
282 if (I == SingleUser->getOperand(1))
283 return 0;
284 // If the cast is not the second operand, it will be free if it looks the
285 // same as the second operand. In this case, we will generate a "long"
286 // version of the widening instruction.
287 if (auto *Cast = dyn_cast<CastInst>(SingleUser->getOperand(1)))
288 if (I->getOpcode() == unsigned(Cast->getOpcode()) &&
289 cast<CastInst>(I)->getSrcTy() == Cast->getSrcTy())
290 return 0;
294 EVT SrcTy = TLI->getValueType(DL, Src);
295 EVT DstTy = TLI->getValueType(DL, Dst);
297 if (!SrcTy.isSimple() || !DstTy.isSimple())
298 return BaseT::getCastInstrCost(Opcode, Dst, Src);
300 static const TypeConversionCostTblEntry
301 ConversionTbl[] = {
302 { ISD::TRUNCATE, MVT::v4i16, MVT::v4i32, 1 },
303 { ISD::TRUNCATE, MVT::v4i32, MVT::v4i64, 0 },
304 { ISD::TRUNCATE, MVT::v8i8, MVT::v8i32, 3 },
305 { ISD::TRUNCATE, MVT::v16i8, MVT::v16i32, 6 },
307 // The number of shll instructions for the extension.
308 { ISD::SIGN_EXTEND, MVT::v4i64, MVT::v4i16, 3 },
309 { ISD::ZERO_EXTEND, MVT::v4i64, MVT::v4i16, 3 },
310 { ISD::SIGN_EXTEND, MVT::v4i64, MVT::v4i32, 2 },
311 { ISD::ZERO_EXTEND, MVT::v4i64, MVT::v4i32, 2 },
312 { ISD::SIGN_EXTEND, MVT::v8i32, MVT::v8i8, 3 },
313 { ISD::ZERO_EXTEND, MVT::v8i32, MVT::v8i8, 3 },
314 { ISD::SIGN_EXTEND, MVT::v8i32, MVT::v8i16, 2 },
315 { ISD::ZERO_EXTEND, MVT::v8i32, MVT::v8i16, 2 },
316 { ISD::SIGN_EXTEND, MVT::v8i64, MVT::v8i8, 7 },
317 { ISD::ZERO_EXTEND, MVT::v8i64, MVT::v8i8, 7 },
318 { ISD::SIGN_EXTEND, MVT::v8i64, MVT::v8i16, 6 },
319 { ISD::ZERO_EXTEND, MVT::v8i64, MVT::v8i16, 6 },
320 { ISD::SIGN_EXTEND, MVT::v16i16, MVT::v16i8, 2 },
321 { ISD::ZERO_EXTEND, MVT::v16i16, MVT::v16i8, 2 },
322 { ISD::SIGN_EXTEND, MVT::v16i32, MVT::v16i8, 6 },
323 { ISD::ZERO_EXTEND, MVT::v16i32, MVT::v16i8, 6 },
325 // LowerVectorINT_TO_FP:
326 { ISD::SINT_TO_FP, MVT::v2f32, MVT::v2i32, 1 },
327 { ISD::SINT_TO_FP, MVT::v4f32, MVT::v4i32, 1 },
328 { ISD::SINT_TO_FP, MVT::v2f64, MVT::v2i64, 1 },
329 { ISD::UINT_TO_FP, MVT::v2f32, MVT::v2i32, 1 },
330 { ISD::UINT_TO_FP, MVT::v4f32, MVT::v4i32, 1 },
331 { ISD::UINT_TO_FP, MVT::v2f64, MVT::v2i64, 1 },
333 // Complex: to v2f32
334 { ISD::SINT_TO_FP, MVT::v2f32, MVT::v2i8, 3 },
335 { ISD::SINT_TO_FP, MVT::v2f32, MVT::v2i16, 3 },
336 { ISD::SINT_TO_FP, MVT::v2f32, MVT::v2i64, 2 },
337 { ISD::UINT_TO_FP, MVT::v2f32, MVT::v2i8, 3 },
338 { ISD::UINT_TO_FP, MVT::v2f32, MVT::v2i16, 3 },
339 { ISD::UINT_TO_FP, MVT::v2f32, MVT::v2i64, 2 },
341 // Complex: to v4f32
342 { ISD::SINT_TO_FP, MVT::v4f32, MVT::v4i8, 4 },
343 { ISD::SINT_TO_FP, MVT::v4f32, MVT::v4i16, 2 },
344 { ISD::UINT_TO_FP, MVT::v4f32, MVT::v4i8, 3 },
345 { ISD::UINT_TO_FP, MVT::v4f32, MVT::v4i16, 2 },
347 // Complex: to v8f32
348 { ISD::SINT_TO_FP, MVT::v8f32, MVT::v8i8, 10 },
349 { ISD::SINT_TO_FP, MVT::v8f32, MVT::v8i16, 4 },
350 { ISD::UINT_TO_FP, MVT::v8f32, MVT::v8i8, 10 },
351 { ISD::UINT_TO_FP, MVT::v8f32, MVT::v8i16, 4 },
353 // Complex: to v16f32
354 { ISD::SINT_TO_FP, MVT::v16f32, MVT::v16i8, 21 },
355 { ISD::UINT_TO_FP, MVT::v16f32, MVT::v16i8, 21 },
357 // Complex: to v2f64
358 { ISD::SINT_TO_FP, MVT::v2f64, MVT::v2i8, 4 },
359 { ISD::SINT_TO_FP, MVT::v2f64, MVT::v2i16, 4 },
360 { ISD::SINT_TO_FP, MVT::v2f64, MVT::v2i32, 2 },
361 { ISD::UINT_TO_FP, MVT::v2f64, MVT::v2i8, 4 },
362 { ISD::UINT_TO_FP, MVT::v2f64, MVT::v2i16, 4 },
363 { ISD::UINT_TO_FP, MVT::v2f64, MVT::v2i32, 2 },
366 // LowerVectorFP_TO_INT
367 { ISD::FP_TO_SINT, MVT::v2i32, MVT::v2f32, 1 },
368 { ISD::FP_TO_SINT, MVT::v4i32, MVT::v4f32, 1 },
369 { ISD::FP_TO_SINT, MVT::v2i64, MVT::v2f64, 1 },
370 { ISD::FP_TO_UINT, MVT::v2i32, MVT::v2f32, 1 },
371 { ISD::FP_TO_UINT, MVT::v4i32, MVT::v4f32, 1 },
372 { ISD::FP_TO_UINT, MVT::v2i64, MVT::v2f64, 1 },
374 // Complex, from v2f32: legal type is v2i32 (no cost) or v2i64 (1 ext).
375 { ISD::FP_TO_SINT, MVT::v2i64, MVT::v2f32, 2 },
376 { ISD::FP_TO_SINT, MVT::v2i16, MVT::v2f32, 1 },
377 { ISD::FP_TO_SINT, MVT::v2i8, MVT::v2f32, 1 },
378 { ISD::FP_TO_UINT, MVT::v2i64, MVT::v2f32, 2 },
379 { ISD::FP_TO_UINT, MVT::v2i16, MVT::v2f32, 1 },
380 { ISD::FP_TO_UINT, MVT::v2i8, MVT::v2f32, 1 },
382 // Complex, from v4f32: legal type is v4i16, 1 narrowing => ~2
383 { ISD::FP_TO_SINT, MVT::v4i16, MVT::v4f32, 2 },
384 { ISD::FP_TO_SINT, MVT::v4i8, MVT::v4f32, 2 },
385 { ISD::FP_TO_UINT, MVT::v4i16, MVT::v4f32, 2 },
386 { ISD::FP_TO_UINT, MVT::v4i8, MVT::v4f32, 2 },
388 // Complex, from v2f64: legal type is v2i32, 1 narrowing => ~2.
389 { ISD::FP_TO_SINT, MVT::v2i32, MVT::v2f64, 2 },
390 { ISD::FP_TO_SINT, MVT::v2i16, MVT::v2f64, 2 },
391 { ISD::FP_TO_SINT, MVT::v2i8, MVT::v2f64, 2 },
392 { ISD::FP_TO_UINT, MVT::v2i32, MVT::v2f64, 2 },
393 { ISD::FP_TO_UINT, MVT::v2i16, MVT::v2f64, 2 },
394 { ISD::FP_TO_UINT, MVT::v2i8, MVT::v2f64, 2 },
397 if (const auto *Entry = ConvertCostTableLookup(ConversionTbl, ISD,
398 DstTy.getSimpleVT(),
399 SrcTy.getSimpleVT()))
400 return Entry->Cost;
402 return BaseT::getCastInstrCost(Opcode, Dst, Src);
405 int AArch64TTIImpl::getExtractWithExtendCost(unsigned Opcode, Type *Dst,
406 VectorType *VecTy,
407 unsigned Index) {
409 // Make sure we were given a valid extend opcode.
410 assert((Opcode == Instruction::SExt || Opcode == Instruction::ZExt) &&
411 "Invalid opcode");
413 // We are extending an element we extract from a vector, so the source type
414 // of the extend is the element type of the vector.
415 auto *Src = VecTy->getElementType();
417 // Sign- and zero-extends are for integer types only.
418 assert(isa<IntegerType>(Dst) && isa<IntegerType>(Src) && "Invalid type");
420 // Get the cost for the extract. We compute the cost (if any) for the extend
421 // below.
422 auto Cost = getVectorInstrCost(Instruction::ExtractElement, VecTy, Index);
424 // Legalize the types.
425 auto VecLT = TLI->getTypeLegalizationCost(DL, VecTy);
426 auto DstVT = TLI->getValueType(DL, Dst);
427 auto SrcVT = TLI->getValueType(DL, Src);
429 // If the resulting type is still a vector and the destination type is legal,
430 // we may get the extension for free. If not, get the default cost for the
431 // extend.
432 if (!VecLT.second.isVector() || !TLI->isTypeLegal(DstVT))
433 return Cost + getCastInstrCost(Opcode, Dst, Src);
435 // The destination type should be larger than the element type. If not, get
436 // the default cost for the extend.
437 if (DstVT.getSizeInBits() < SrcVT.getSizeInBits())
438 return Cost + getCastInstrCost(Opcode, Dst, Src);
440 switch (Opcode) {
441 default:
442 llvm_unreachable("Opcode should be either SExt or ZExt");
444 // For sign-extends, we only need a smov, which performs the extension
445 // automatically.
446 case Instruction::SExt:
447 return Cost;
449 // For zero-extends, the extend is performed automatically by a umov unless
450 // the destination type is i64 and the element type is i8 or i16.
451 case Instruction::ZExt:
452 if (DstVT.getSizeInBits() != 64u || SrcVT.getSizeInBits() == 32u)
453 return Cost;
456 // If we are unable to perform the extend for free, get the default cost.
457 return Cost + getCastInstrCost(Opcode, Dst, Src);
460 int AArch64TTIImpl::getVectorInstrCost(unsigned Opcode, Type *Val,
461 unsigned Index) {
462 assert(Val->isVectorTy() && "This must be a vector type");
464 if (Index != -1U) {
465 // Legalize the type.
466 std::pair<int, MVT> LT = TLI->getTypeLegalizationCost(DL, Val);
468 // This type is legalized to a scalar type.
469 if (!LT.second.isVector())
470 return 0;
472 // The type may be split. Normalize the index to the new type.
473 unsigned Width = LT.second.getVectorNumElements();
474 Index = Index % Width;
476 // The element at index zero is already inside the vector.
477 if (Index == 0)
478 return 0;
481 // All other insert/extracts cost this much.
482 return ST->getVectorInsertExtractBaseCost();
485 int AArch64TTIImpl::getArithmeticInstrCost(
486 unsigned Opcode, Type *Ty, TTI::OperandValueKind Opd1Info,
487 TTI::OperandValueKind Opd2Info, TTI::OperandValueProperties Opd1PropInfo,
488 TTI::OperandValueProperties Opd2PropInfo, ArrayRef<const Value *> Args,
489 const Instruction *CxtI) {
490 // Legalize the type.
491 std::pair<int, MVT> LT = TLI->getTypeLegalizationCost(DL, Ty);
493 // If the instruction is a widening instruction (e.g., uaddl, saddw, etc.),
494 // add in the widening overhead specified by the sub-target. Since the
495 // extends feeding widening instructions are performed automatically, they
496 // aren't present in the generated code and have a zero cost. By adding a
497 // widening overhead here, we attach the total cost of the combined operation
498 // to the widening instruction.
499 int Cost = 0;
500 if (isWideningInstruction(Ty, Opcode, Args))
501 Cost += ST->getWideningBaseCost();
503 int ISD = TLI->InstructionOpcodeToISD(Opcode);
505 switch (ISD) {
506 default:
507 return Cost + BaseT::getArithmeticInstrCost(Opcode, Ty, Opd1Info, Opd2Info,
508 Opd1PropInfo, Opd2PropInfo);
509 case ISD::SDIV:
510 if (Opd2Info == TargetTransformInfo::OK_UniformConstantValue &&
511 Opd2PropInfo == TargetTransformInfo::OP_PowerOf2) {
512 // On AArch64, scalar signed division by constants power-of-two are
513 // normally expanded to the sequence ADD + CMP + SELECT + SRA.
514 // The OperandValue properties many not be same as that of previous
515 // operation; conservatively assume OP_None.
516 Cost += getArithmeticInstrCost(Instruction::Add, Ty, Opd1Info, Opd2Info,
517 TargetTransformInfo::OP_None,
518 TargetTransformInfo::OP_None);
519 Cost += getArithmeticInstrCost(Instruction::Sub, Ty, Opd1Info, Opd2Info,
520 TargetTransformInfo::OP_None,
521 TargetTransformInfo::OP_None);
522 Cost += getArithmeticInstrCost(Instruction::Select, Ty, Opd1Info, Opd2Info,
523 TargetTransformInfo::OP_None,
524 TargetTransformInfo::OP_None);
525 Cost += getArithmeticInstrCost(Instruction::AShr, Ty, Opd1Info, Opd2Info,
526 TargetTransformInfo::OP_None,
527 TargetTransformInfo::OP_None);
528 return Cost;
530 LLVM_FALLTHROUGH;
531 case ISD::UDIV:
532 if (Opd2Info == TargetTransformInfo::OK_UniformConstantValue) {
533 auto VT = TLI->getValueType(DL, Ty);
534 if (TLI->isOperationLegalOrCustom(ISD::MULHU, VT)) {
535 // Vector signed division by constant are expanded to the
536 // sequence MULHS + ADD/SUB + SRA + SRL + ADD, and unsigned division
537 // to MULHS + SUB + SRL + ADD + SRL.
538 int MulCost = getArithmeticInstrCost(Instruction::Mul, Ty, Opd1Info,
539 Opd2Info,
540 TargetTransformInfo::OP_None,
541 TargetTransformInfo::OP_None);
542 int AddCost = getArithmeticInstrCost(Instruction::Add, Ty, Opd1Info,
543 Opd2Info,
544 TargetTransformInfo::OP_None,
545 TargetTransformInfo::OP_None);
546 int ShrCost = getArithmeticInstrCost(Instruction::AShr, Ty, Opd1Info,
547 Opd2Info,
548 TargetTransformInfo::OP_None,
549 TargetTransformInfo::OP_None);
550 return MulCost * 2 + AddCost * 2 + ShrCost * 2 + 1;
554 Cost += BaseT::getArithmeticInstrCost(Opcode, Ty, Opd1Info, Opd2Info,
555 Opd1PropInfo, Opd2PropInfo);
556 if (Ty->isVectorTy()) {
557 // On AArch64, vector divisions are not supported natively and are
558 // expanded into scalar divisions of each pair of elements.
559 Cost += getArithmeticInstrCost(Instruction::ExtractElement, Ty, Opd1Info,
560 Opd2Info, Opd1PropInfo, Opd2PropInfo);
561 Cost += getArithmeticInstrCost(Instruction::InsertElement, Ty, Opd1Info,
562 Opd2Info, Opd1PropInfo, Opd2PropInfo);
563 // TODO: if one of the arguments is scalar, then it's not necessary to
564 // double the cost of handling the vector elements.
565 Cost += Cost;
567 return Cost;
569 case ISD::ADD:
570 case ISD::MUL:
571 case ISD::XOR:
572 case ISD::OR:
573 case ISD::AND:
574 // These nodes are marked as 'custom' for combining purposes only.
575 // We know that they are legal. See LowerAdd in ISelLowering.
576 return (Cost + 1) * LT.first;
580 int AArch64TTIImpl::getAddressComputationCost(Type *Ty, ScalarEvolution *SE,
581 const SCEV *Ptr) {
582 // Address computations in vectorized code with non-consecutive addresses will
583 // likely result in more instructions compared to scalar code where the
584 // computation can more often be merged into the index mode. The resulting
585 // extra micro-ops can significantly decrease throughput.
586 unsigned NumVectorInstToHideOverhead = 10;
587 int MaxMergeDistance = 64;
589 if (Ty->isVectorTy() && SE &&
590 !BaseT::isConstantStridedAccessLessThan(SE, Ptr, MaxMergeDistance + 1))
591 return NumVectorInstToHideOverhead;
593 // In many cases the address computation is not merged into the instruction
594 // addressing mode.
595 return 1;
598 int AArch64TTIImpl::getCmpSelInstrCost(unsigned Opcode, Type *ValTy,
599 Type *CondTy, const Instruction *I) {
601 int ISD = TLI->InstructionOpcodeToISD(Opcode);
602 // We don't lower some vector selects well that are wider than the register
603 // width.
604 if (ValTy->isVectorTy() && ISD == ISD::SELECT) {
605 // We would need this many instructions to hide the scalarization happening.
606 const int AmortizationCost = 20;
607 static const TypeConversionCostTblEntry
608 VectorSelectTbl[] = {
609 { ISD::SELECT, MVT::v16i1, MVT::v16i16, 16 },
610 { ISD::SELECT, MVT::v8i1, MVT::v8i32, 8 },
611 { ISD::SELECT, MVT::v16i1, MVT::v16i32, 16 },
612 { ISD::SELECT, MVT::v4i1, MVT::v4i64, 4 * AmortizationCost },
613 { ISD::SELECT, MVT::v8i1, MVT::v8i64, 8 * AmortizationCost },
614 { ISD::SELECT, MVT::v16i1, MVT::v16i64, 16 * AmortizationCost }
617 EVT SelCondTy = TLI->getValueType(DL, CondTy);
618 EVT SelValTy = TLI->getValueType(DL, ValTy);
619 if (SelCondTy.isSimple() && SelValTy.isSimple()) {
620 if (const auto *Entry = ConvertCostTableLookup(VectorSelectTbl, ISD,
621 SelCondTy.getSimpleVT(),
622 SelValTy.getSimpleVT()))
623 return Entry->Cost;
626 return BaseT::getCmpSelInstrCost(Opcode, ValTy, CondTy, I);
629 AArch64TTIImpl::TTI::MemCmpExpansionOptions
630 AArch64TTIImpl::enableMemCmpExpansion(bool OptSize, bool IsZeroCmp) const {
631 TTI::MemCmpExpansionOptions Options;
632 Options.AllowOverlappingLoads = !ST->requiresStrictAlign();
633 Options.MaxNumLoads = TLI->getMaxExpandSizeMemcmp(OptSize);
634 Options.NumLoadsPerBlock = Options.MaxNumLoads;
635 // TODO: Though vector loads usually perform well on AArch64, in some targets
636 // they may wake up the FP unit, which raises the power consumption. Perhaps
637 // they could be used with no holds barred (-O3).
638 Options.LoadSizes = {8, 4, 2, 1};
639 return Options;
642 int AArch64TTIImpl::getMemoryOpCost(unsigned Opcode, Type *Ty,
643 MaybeAlign Alignment, unsigned AddressSpace,
644 const Instruction *I) {
645 auto LT = TLI->getTypeLegalizationCost(DL, Ty);
647 if (ST->isMisaligned128StoreSlow() && Opcode == Instruction::Store &&
648 LT.second.is128BitVector() && (!Alignment || *Alignment < Align(16))) {
649 // Unaligned stores are extremely inefficient. We don't split all
650 // unaligned 128-bit stores because the negative impact that has shown in
651 // practice on inlined block copy code.
652 // We make such stores expensive so that we will only vectorize if there
653 // are 6 other instructions getting vectorized.
654 const int AmortizationCost = 6;
656 return LT.first * 2 * AmortizationCost;
659 if (Ty->isVectorTy() && Ty->getVectorElementType()->isIntegerTy(8)) {
660 unsigned ProfitableNumElements;
661 if (Opcode == Instruction::Store)
662 // We use a custom trunc store lowering so v.4b should be profitable.
663 ProfitableNumElements = 4;
664 else
665 // We scalarize the loads because there is not v.4b register and we
666 // have to promote the elements to v.2.
667 ProfitableNumElements = 8;
669 if (Ty->getVectorNumElements() < ProfitableNumElements) {
670 unsigned NumVecElts = Ty->getVectorNumElements();
671 unsigned NumVectorizableInstsToAmortize = NumVecElts * 2;
672 // We generate 2 instructions per vector element.
673 return NumVectorizableInstsToAmortize * NumVecElts * 2;
677 return LT.first;
680 int AArch64TTIImpl::getInterleavedMemoryOpCost(unsigned Opcode, Type *VecTy,
681 unsigned Factor,
682 ArrayRef<unsigned> Indices,
683 unsigned Alignment,
684 unsigned AddressSpace,
685 bool UseMaskForCond,
686 bool UseMaskForGaps) {
687 assert(Factor >= 2 && "Invalid interleave factor");
688 assert(isa<VectorType>(VecTy) && "Expect a vector type");
690 if (!UseMaskForCond && !UseMaskForGaps &&
691 Factor <= TLI->getMaxSupportedInterleaveFactor()) {
692 unsigned NumElts = VecTy->getVectorNumElements();
693 auto *SubVecTy = VectorType::get(VecTy->getScalarType(), NumElts / Factor);
695 // ldN/stN only support legal vector types of size 64 or 128 in bits.
696 // Accesses having vector types that are a multiple of 128 bits can be
697 // matched to more than one ldN/stN instruction.
698 if (NumElts % Factor == 0 &&
699 TLI->isLegalInterleavedAccessType(SubVecTy, DL))
700 return Factor * TLI->getNumInterleavedAccesses(SubVecTy, DL);
703 return BaseT::getInterleavedMemoryOpCost(Opcode, VecTy, Factor, Indices,
704 Alignment, AddressSpace,
705 UseMaskForCond, UseMaskForGaps);
708 int AArch64TTIImpl::getCostOfKeepingLiveOverCall(ArrayRef<Type *> Tys) {
709 int Cost = 0;
710 for (auto *I : Tys) {
711 if (!I->isVectorTy())
712 continue;
713 if (I->getScalarSizeInBits() * I->getVectorNumElements() == 128)
714 Cost += getMemoryOpCost(Instruction::Store, I, Align(128), 0) +
715 getMemoryOpCost(Instruction::Load, I, Align(128), 0);
717 return Cost;
720 unsigned AArch64TTIImpl::getMaxInterleaveFactor(unsigned VF) {
721 return ST->getMaxInterleaveFactor();
724 // For Falkor, we want to avoid having too many strided loads in a loop since
725 // that can exhaust the HW prefetcher resources. We adjust the unroller
726 // MaxCount preference below to attempt to ensure unrolling doesn't create too
727 // many strided loads.
728 static void
729 getFalkorUnrollingPreferences(Loop *L, ScalarEvolution &SE,
730 TargetTransformInfo::UnrollingPreferences &UP) {
731 enum { MaxStridedLoads = 7 };
732 auto countStridedLoads = [](Loop *L, ScalarEvolution &SE) {
733 int StridedLoads = 0;
734 // FIXME? We could make this more precise by looking at the CFG and
735 // e.g. not counting loads in each side of an if-then-else diamond.
736 for (const auto BB : L->blocks()) {
737 for (auto &I : *BB) {
738 LoadInst *LMemI = dyn_cast<LoadInst>(&I);
739 if (!LMemI)
740 continue;
742 Value *PtrValue = LMemI->getPointerOperand();
743 if (L->isLoopInvariant(PtrValue))
744 continue;
746 const SCEV *LSCEV = SE.getSCEV(PtrValue);
747 const SCEVAddRecExpr *LSCEVAddRec = dyn_cast<SCEVAddRecExpr>(LSCEV);
748 if (!LSCEVAddRec || !LSCEVAddRec->isAffine())
749 continue;
751 // FIXME? We could take pairing of unrolled load copies into account
752 // by looking at the AddRec, but we would probably have to limit this
753 // to loops with no stores or other memory optimization barriers.
754 ++StridedLoads;
755 // We've seen enough strided loads that seeing more won't make a
756 // difference.
757 if (StridedLoads > MaxStridedLoads / 2)
758 return StridedLoads;
761 return StridedLoads;
764 int StridedLoads = countStridedLoads(L, SE);
765 LLVM_DEBUG(dbgs() << "falkor-hwpf: detected " << StridedLoads
766 << " strided loads\n");
767 // Pick the largest power of 2 unroll count that won't result in too many
768 // strided loads.
769 if (StridedLoads) {
770 UP.MaxCount = 1 << Log2_32(MaxStridedLoads / StridedLoads);
771 LLVM_DEBUG(dbgs() << "falkor-hwpf: setting unroll MaxCount to "
772 << UP.MaxCount << '\n');
776 void AArch64TTIImpl::getUnrollingPreferences(Loop *L, ScalarEvolution &SE,
777 TTI::UnrollingPreferences &UP) {
778 // Enable partial unrolling and runtime unrolling.
779 BaseT::getUnrollingPreferences(L, SE, UP);
781 // For inner loop, it is more likely to be a hot one, and the runtime check
782 // can be promoted out from LICM pass, so the overhead is less, let's try
783 // a larger threshold to unroll more loops.
784 if (L->getLoopDepth() > 1)
785 UP.PartialThreshold *= 2;
787 // Disable partial & runtime unrolling on -Os.
788 UP.PartialOptSizeThreshold = 0;
790 if (ST->getProcFamily() == AArch64Subtarget::Falkor &&
791 EnableFalkorHWPFUnrollFix)
792 getFalkorUnrollingPreferences(L, SE, UP);
795 Value *AArch64TTIImpl::getOrCreateResultFromMemIntrinsic(IntrinsicInst *Inst,
796 Type *ExpectedType) {
797 switch (Inst->getIntrinsicID()) {
798 default:
799 return nullptr;
800 case Intrinsic::aarch64_neon_st2:
801 case Intrinsic::aarch64_neon_st3:
802 case Intrinsic::aarch64_neon_st4: {
803 // Create a struct type
804 StructType *ST = dyn_cast<StructType>(ExpectedType);
805 if (!ST)
806 return nullptr;
807 unsigned NumElts = Inst->getNumArgOperands() - 1;
808 if (ST->getNumElements() != NumElts)
809 return nullptr;
810 for (unsigned i = 0, e = NumElts; i != e; ++i) {
811 if (Inst->getArgOperand(i)->getType() != ST->getElementType(i))
812 return nullptr;
814 Value *Res = UndefValue::get(ExpectedType);
815 IRBuilder<> Builder(Inst);
816 for (unsigned i = 0, e = NumElts; i != e; ++i) {
817 Value *L = Inst->getArgOperand(i);
818 Res = Builder.CreateInsertValue(Res, L, i);
820 return Res;
822 case Intrinsic::aarch64_neon_ld2:
823 case Intrinsic::aarch64_neon_ld3:
824 case Intrinsic::aarch64_neon_ld4:
825 if (Inst->getType() == ExpectedType)
826 return Inst;
827 return nullptr;
831 bool AArch64TTIImpl::getTgtMemIntrinsic(IntrinsicInst *Inst,
832 MemIntrinsicInfo &Info) {
833 switch (Inst->getIntrinsicID()) {
834 default:
835 break;
836 case Intrinsic::aarch64_neon_ld2:
837 case Intrinsic::aarch64_neon_ld3:
838 case Intrinsic::aarch64_neon_ld4:
839 Info.ReadMem = true;
840 Info.WriteMem = false;
841 Info.PtrVal = Inst->getArgOperand(0);
842 break;
843 case Intrinsic::aarch64_neon_st2:
844 case Intrinsic::aarch64_neon_st3:
845 case Intrinsic::aarch64_neon_st4:
846 Info.ReadMem = false;
847 Info.WriteMem = true;
848 Info.PtrVal = Inst->getArgOperand(Inst->getNumArgOperands() - 1);
849 break;
852 switch (Inst->getIntrinsicID()) {
853 default:
854 return false;
855 case Intrinsic::aarch64_neon_ld2:
856 case Intrinsic::aarch64_neon_st2:
857 Info.MatchingId = VECTOR_LDST_TWO_ELEMENTS;
858 break;
859 case Intrinsic::aarch64_neon_ld3:
860 case Intrinsic::aarch64_neon_st3:
861 Info.MatchingId = VECTOR_LDST_THREE_ELEMENTS;
862 break;
863 case Intrinsic::aarch64_neon_ld4:
864 case Intrinsic::aarch64_neon_st4:
865 Info.MatchingId = VECTOR_LDST_FOUR_ELEMENTS;
866 break;
868 return true;
871 /// See if \p I should be considered for address type promotion. We check if \p
872 /// I is a sext with right type and used in memory accesses. If it used in a
873 /// "complex" getelementptr, we allow it to be promoted without finding other
874 /// sext instructions that sign extended the same initial value. A getelementptr
875 /// is considered as "complex" if it has more than 2 operands.
876 bool AArch64TTIImpl::shouldConsiderAddressTypePromotion(
877 const Instruction &I, bool &AllowPromotionWithoutCommonHeader) {
878 bool Considerable = false;
879 AllowPromotionWithoutCommonHeader = false;
880 if (!isa<SExtInst>(&I))
881 return false;
882 Type *ConsideredSExtType =
883 Type::getInt64Ty(I.getParent()->getParent()->getContext());
884 if (I.getType() != ConsideredSExtType)
885 return false;
886 // See if the sext is the one with the right type and used in at least one
887 // GetElementPtrInst.
888 for (const User *U : I.users()) {
889 if (const GetElementPtrInst *GEPInst = dyn_cast<GetElementPtrInst>(U)) {
890 Considerable = true;
891 // A getelementptr is considered as "complex" if it has more than 2
892 // operands. We will promote a SExt used in such complex GEP as we
893 // expect some computation to be merged if they are done on 64 bits.
894 if (GEPInst->getNumOperands() > 2) {
895 AllowPromotionWithoutCommonHeader = true;
896 break;
900 return Considerable;
903 bool AArch64TTIImpl::useReductionIntrinsic(unsigned Opcode, Type *Ty,
904 TTI::ReductionFlags Flags) const {
905 assert(isa<VectorType>(Ty) && "Expected Ty to be a vector type");
906 unsigned ScalarBits = Ty->getScalarSizeInBits();
907 switch (Opcode) {
908 case Instruction::FAdd:
909 case Instruction::FMul:
910 case Instruction::And:
911 case Instruction::Or:
912 case Instruction::Xor:
913 case Instruction::Mul:
914 return false;
915 case Instruction::Add:
916 return ScalarBits * Ty->getVectorNumElements() >= 128;
917 case Instruction::ICmp:
918 return (ScalarBits < 64) &&
919 (ScalarBits * Ty->getVectorNumElements() >= 128);
920 case Instruction::FCmp:
921 return Flags.NoNaN;
922 default:
923 llvm_unreachable("Unhandled reduction opcode");
925 return false;
928 int AArch64TTIImpl::getArithmeticReductionCost(unsigned Opcode, Type *ValTy,
929 bool IsPairwiseForm) {
931 if (IsPairwiseForm)
932 return BaseT::getArithmeticReductionCost(Opcode, ValTy, IsPairwiseForm);
934 std::pair<int, MVT> LT = TLI->getTypeLegalizationCost(DL, ValTy);
935 MVT MTy = LT.second;
936 int ISD = TLI->InstructionOpcodeToISD(Opcode);
937 assert(ISD && "Invalid opcode");
939 // Horizontal adds can use the 'addv' instruction. We model the cost of these
940 // instructions as normal vector adds. This is the only arithmetic vector
941 // reduction operation for which we have an instruction.
942 static const CostTblEntry CostTblNoPairwise[]{
943 {ISD::ADD, MVT::v8i8, 1},
944 {ISD::ADD, MVT::v16i8, 1},
945 {ISD::ADD, MVT::v4i16, 1},
946 {ISD::ADD, MVT::v8i16, 1},
947 {ISD::ADD, MVT::v4i32, 1},
950 if (const auto *Entry = CostTableLookup(CostTblNoPairwise, ISD, MTy))
951 return LT.first * Entry->Cost;
953 return BaseT::getArithmeticReductionCost(Opcode, ValTy, IsPairwiseForm);
956 int AArch64TTIImpl::getShuffleCost(TTI::ShuffleKind Kind, Type *Tp, int Index,
957 Type *SubTp) {
958 if (Kind == TTI::SK_Broadcast || Kind == TTI::SK_Transpose ||
959 Kind == TTI::SK_Select || Kind == TTI::SK_PermuteSingleSrc) {
960 static const CostTblEntry ShuffleTbl[] = {
961 // Broadcast shuffle kinds can be performed with 'dup'.
962 { TTI::SK_Broadcast, MVT::v8i8, 1 },
963 { TTI::SK_Broadcast, MVT::v16i8, 1 },
964 { TTI::SK_Broadcast, MVT::v4i16, 1 },
965 { TTI::SK_Broadcast, MVT::v8i16, 1 },
966 { TTI::SK_Broadcast, MVT::v2i32, 1 },
967 { TTI::SK_Broadcast, MVT::v4i32, 1 },
968 { TTI::SK_Broadcast, MVT::v2i64, 1 },
969 { TTI::SK_Broadcast, MVT::v2f32, 1 },
970 { TTI::SK_Broadcast, MVT::v4f32, 1 },
971 { TTI::SK_Broadcast, MVT::v2f64, 1 },
972 // Transpose shuffle kinds can be performed with 'trn1/trn2' and
973 // 'zip1/zip2' instructions.
974 { TTI::SK_Transpose, MVT::v8i8, 1 },
975 { TTI::SK_Transpose, MVT::v16i8, 1 },
976 { TTI::SK_Transpose, MVT::v4i16, 1 },
977 { TTI::SK_Transpose, MVT::v8i16, 1 },
978 { TTI::SK_Transpose, MVT::v2i32, 1 },
979 { TTI::SK_Transpose, MVT::v4i32, 1 },
980 { TTI::SK_Transpose, MVT::v2i64, 1 },
981 { TTI::SK_Transpose, MVT::v2f32, 1 },
982 { TTI::SK_Transpose, MVT::v4f32, 1 },
983 { TTI::SK_Transpose, MVT::v2f64, 1 },
984 // Select shuffle kinds.
985 // TODO: handle vXi8/vXi16.
986 { TTI::SK_Select, MVT::v2i32, 1 }, // mov.
987 { TTI::SK_Select, MVT::v4i32, 2 }, // rev+trn (or similar).
988 { TTI::SK_Select, MVT::v2i64, 1 }, // mov.
989 { TTI::SK_Select, MVT::v2f32, 1 }, // mov.
990 { TTI::SK_Select, MVT::v4f32, 2 }, // rev+trn (or similar).
991 { TTI::SK_Select, MVT::v2f64, 1 }, // mov.
992 // PermuteSingleSrc shuffle kinds.
993 // TODO: handle vXi8/vXi16.
994 { TTI::SK_PermuteSingleSrc, MVT::v2i32, 1 }, // mov.
995 { TTI::SK_PermuteSingleSrc, MVT::v4i32, 3 }, // perfectshuffle worst case.
996 { TTI::SK_PermuteSingleSrc, MVT::v2i64, 1 }, // mov.
997 { TTI::SK_PermuteSingleSrc, MVT::v2f32, 1 }, // mov.
998 { TTI::SK_PermuteSingleSrc, MVT::v4f32, 3 }, // perfectshuffle worst case.
999 { TTI::SK_PermuteSingleSrc, MVT::v2f64, 1 }, // mov.
1001 std::pair<int, MVT> LT = TLI->getTypeLegalizationCost(DL, Tp);
1002 if (const auto *Entry = CostTableLookup(ShuffleTbl, Kind, LT.second))
1003 return LT.first * Entry->Cost;
1006 return BaseT::getShuffleCost(Kind, Tp, Index, SubTp);