1 //===-- PPCISelLowering.h - PPC32 DAG Lowering Interface --------*- C++ -*-===//
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
7 //===----------------------------------------------------------------------===//
9 // This file defines the interfaces that PPC uses to lower LLVM code into a
12 //===----------------------------------------------------------------------===//
14 #ifndef LLVM_LIB_TARGET_POWERPC_PPCISELLOWERING_H
15 #define LLVM_LIB_TARGET_POWERPC_PPCISELLOWERING_H
17 #include "PPCInstrInfo.h"
18 #include "llvm/CodeGen/CallingConvLower.h"
19 #include "llvm/CodeGen/MachineFunction.h"
20 #include "llvm/CodeGen/MachineMemOperand.h"
21 #include "llvm/CodeGen/SelectionDAG.h"
22 #include "llvm/CodeGen/SelectionDAGNodes.h"
23 #include "llvm/CodeGen/TargetLowering.h"
24 #include "llvm/CodeGen/ValueTypes.h"
25 #include "llvm/IR/Attributes.h"
26 #include "llvm/IR/CallingConv.h"
27 #include "llvm/IR/Function.h"
28 #include "llvm/IR/InlineAsm.h"
29 #include "llvm/IR/Metadata.h"
30 #include "llvm/IR/Type.h"
31 #include "llvm/Support/MachineValueType.h"
38 // When adding a NEW PPCISD node please add it to the correct position in
39 // the enum. The order of elements in this enum matters!
40 // Values that are added after this entry:
41 // STBRX = ISD::FIRST_TARGET_MEMORY_OPCODE
42 // are considered memory opcodes and are treated differently than entries
43 // that come before it. For example, ADD or MUL should be placed before
44 // the ISD::FIRST_TARGET_MEMORY_OPCODE while a LOAD or STORE should come
46 enum NodeType
: unsigned {
47 // Start the numbering where the builtin ops and target ops leave off.
48 FIRST_NUMBER
= ISD::BUILTIN_OP_END
,
50 /// FSEL - Traditional three-operand fsel node.
54 /// XSMAXCDP, XSMINCDP - C-type min/max instructions.
58 /// FCFID - The FCFID instruction, taking an f64 operand and producing
59 /// and f64 value containing the FP representation of the integer that
60 /// was temporarily in the f64 operand.
63 /// Newer FCFID[US] integer-to-floating-point conversion instructions for
64 /// unsigned integers and single-precision outputs.
69 /// FCTI[D,W]Z - The FCTIDZ and FCTIWZ instructions, taking an f32 or f64
70 /// operand, producing an f64 value containing the integer representation
75 /// Newer FCTI[D,W]UZ floating-point-to-integer conversion instructions for
76 /// unsigned integers with round toward zero.
80 /// Floating-point-to-interger conversion instructions
84 /// VEXTS, ByteWidth - takes an input in VSFRC and produces an output in
85 /// VSFRC that is sign-extended from ByteWidth to a 64-byte integer.
88 /// SExtVElems, takes an input vector of a smaller type and sign
89 /// extends to an output vector of a larger type.
92 /// Reciprocal estimate instructions (unary FP ops).
96 // VMADDFP, VNMSUBFP - The VMADDFP and VNMSUBFP instructions, taking
97 // three v4f32 operands and producing a v4f32 result.
101 /// VPERM - The PPC VPERM Instruction.
105 /// XXSPLT - The PPC VSX splat instructions
109 /// VECINSERT - The PPC vector insert instruction
113 /// VECSHL - The PPC vector shift left instruction
117 /// XXPERMDI - The PPC XXPERMDI instruction
121 /// The CMPB instruction (takes two operands of i32 or i64).
124 /// Hi/Lo - These represent the high and low 16-bit parts of a global
125 /// address respectively. These nodes have two operands, the first of
126 /// which must be a TargetGlobalAddress, and the second of which must be a
127 /// Constant. Selected naively, these turn into 'lis G+C' and 'li G+C',
128 /// though these are usually folded into other nodes.
132 /// The following two target-specific nodes are used for calls through
133 /// function pointers in the 64-bit SVR4 ABI.
135 /// OPRC, CHAIN = DYNALLOC(CHAIN, NEGSIZE, FRAME_INDEX)
136 /// This instruction is lowered in PPCRegisterInfo::eliminateFrameIndex to
137 /// compute an allocation on the stack.
140 /// This instruction is lowered in PPCRegisterInfo::eliminateFrameIndex to
141 /// compute an offset from native SP to the address of the most recent
145 /// GlobalBaseReg - On Darwin, this node represents the result of the mflr
146 /// at function entry, used for PIC code.
149 /// These nodes represent PPC shifts.
151 /// For scalar types, only the last `n + 1` bits of the shift amounts
152 /// are used, where n is log2(sizeof(element) * 8). See sld/slw, etc.
153 /// for exact behaviors.
155 /// For vector types, only the last n bits are used. See vsld.
160 /// EXTSWSLI = The PPC extswsli instruction, which does an extend-sign
161 /// word and shift left immediate.
164 /// The combination of sra[wd]i and addze used to implemented signed
165 /// integer division by a power of 2. The first operand is the dividend,
166 /// and the second is the constant shift amount (representing the
170 /// CALL - A direct function call.
171 /// CALL_NOP is a call with the special NOP which follows 64-bit
172 /// SVR4 calls and 32-bit/64-bit AIX calls.
176 /// CHAIN,FLAG = MTCTR(VAL, CHAIN[, INFLAG]) - Directly corresponds to a
177 /// MTCTR instruction.
180 /// CHAIN,FLAG = BCTRL(CHAIN, INFLAG) - Directly corresponds to a
181 /// BCTRL instruction.
184 /// CHAIN,FLAG = BCTRL(CHAIN, ADDR, INFLAG) - The combination of a bctrl
185 /// instruction and the TOC reload required on 64-bit ELF, 32-bit AIX
189 /// Return with a flag operand, matched by 'blr'
192 /// R32 = MFOCRF(CRREG, INFLAG) - Represents the MFOCRF instruction.
193 /// This copies the bits corresponding to the specified CRREG into the
194 /// resultant GPR. Bits corresponding to other CR regs are undefined.
197 /// Direct move from a VSX register to a GPR
200 /// Direct move from a GPR to a VSX register (algebraic)
203 /// Direct move from a GPR to a VSX register (zero)
206 /// Direct move of 2 consecutive GPR to a VSX register.
209 /// BUILD_SPE64 and EXTRACT_SPE are analogous to BUILD_PAIR and
210 /// EXTRACT_ELEMENT but take f64 arguments instead of i64, as i64 is
211 /// unsupported for this target.
212 /// Merge 2 GPRs to a single SPE register.
215 /// Extract SPE register component, second argument is high or low.
218 /// Extract a subvector from signed integer vector and convert to FP.
219 /// It is primarily used to convert a (widened) illegal integer vector
220 /// type to a legal floating point vector type.
221 /// For example v2i32 -> widened to v4i32 -> v2f64
224 /// Extract a subvector from unsigned integer vector and convert to FP.
225 /// As with SINT_VEC_TO_FP, used for converting illegal types.
228 // FIXME: Remove these once the ANDI glue bug is fixed:
229 /// i1 = ANDI_rec_1_[EQ|GT]_BIT(i32 or i64 x) - Represents the result of the
230 /// eq or gt bit of CR0 after executing andi. x, 1. This is used to
231 /// implement truncation of i32 or i64 to i1.
235 // READ_TIME_BASE - A read of the 64-bit time-base register on a 32-bit
236 // target (returns (Lo, Hi)). It takes a chain operand.
239 // EH_SJLJ_SETJMP - SjLj exception handling setjmp.
242 // EH_SJLJ_LONGJMP - SjLj exception handling longjmp.
245 /// RESVEC = VCMP(LHS, RHS, OPC) - Represents one of the altivec VCMP*
246 /// instructions. For lack of better number, we use the opcode number
247 /// encoding for the OPC field to identify the compare. For example, 838
251 /// RESVEC, OUTFLAG = VCMPo(LHS, RHS, OPC) - Represents one of the
252 /// altivec VCMP*o instructions. For lack of better number, we use the
253 /// opcode number encoding for the OPC field to identify the compare. For
254 /// example, 838 is VCMPGTSH.
257 /// CHAIN = COND_BRANCH CHAIN, CRRC, OPC, DESTBB [, INFLAG] - This
258 /// corresponds to the COND_BRANCH pseudo instruction. CRRC is the
259 /// condition register to branch on, OPC is the branch opcode to use (e.g.
260 /// PPC::BLE), DESTBB is the destination block to branch to, and INFLAG is
261 /// an optional input flag argument.
264 /// CHAIN = BDNZ CHAIN, DESTBB - These are used to create counter-based
269 /// F8RC = FADDRTZ F8RC, F8RC - This is an FADD done with rounding
270 /// towards zero. Used only as part of the long double-to-int
271 /// conversion sequence.
274 /// F8RC = MFFS - This moves the FPSCR (not modeled) into the register.
277 /// TC_RETURN - A tail call return.
279 /// operand #1 callee (register or absolute)
280 /// operand #2 stack adjustment
281 /// operand #3 optional in flag
284 /// ch, gl = CR6[UN]SET ch, inglue - Toggle CR bit 6 for SVR4 vararg calls
288 /// GPRC = address of _GLOBAL_OFFSET_TABLE_. Used by initial-exec TLS
289 /// for non-position independent code on PPC32.
292 /// GPRC = address of _GLOBAL_OFFSET_TABLE_. Used by general dynamic and
293 /// local dynamic TLS and position indendepent code on PPC32.
296 /// G8RC = ADDIS_GOT_TPREL_HA %x2, Symbol - Used by the initial-exec
297 /// TLS model, produces an ADDIS8 instruction that adds the GOT
298 /// base to sym\@got\@tprel\@ha.
301 /// G8RC = LD_GOT_TPREL_L Symbol, G8RReg - Used by the initial-exec
302 /// TLS model, produces a LD instruction with base register G8RReg
303 /// and offset sym\@got\@tprel\@l. This completes the addition that
304 /// finds the offset of "sym" relative to the thread pointer.
307 /// G8RC = ADD_TLS G8RReg, Symbol - Used by the initial-exec TLS
308 /// model, produces an ADD instruction that adds the contents of
309 /// G8RReg to the thread pointer. Symbol contains a relocation
310 /// sym\@tls which is to be replaced by the thread pointer and
311 /// identifies to the linker that the instruction is part of a
315 /// G8RC = ADDIS_TLSGD_HA %x2, Symbol - For the general-dynamic TLS
316 /// model, produces an ADDIS8 instruction that adds the GOT base
317 /// register to sym\@got\@tlsgd\@ha.
320 /// %x3 = ADDI_TLSGD_L G8RReg, Symbol - For the general-dynamic TLS
321 /// model, produces an ADDI8 instruction that adds G8RReg to
322 /// sym\@got\@tlsgd\@l and stores the result in X3. Hidden by
323 /// ADDIS_TLSGD_L_ADDR until after register assignment.
326 /// %x3 = GET_TLS_ADDR %x3, Symbol - For the general-dynamic TLS
327 /// model, produces a call to __tls_get_addr(sym\@tlsgd). Hidden by
328 /// ADDIS_TLSGD_L_ADDR until after register assignment.
331 /// G8RC = ADDI_TLSGD_L_ADDR G8RReg, Symbol, Symbol - Op that
332 /// combines ADDI_TLSGD_L and GET_TLS_ADDR until expansion following
333 /// register assignment.
336 /// G8RC = ADDIS_TLSLD_HA %x2, Symbol - For the local-dynamic TLS
337 /// model, produces an ADDIS8 instruction that adds the GOT base
338 /// register to sym\@got\@tlsld\@ha.
341 /// %x3 = ADDI_TLSLD_L G8RReg, Symbol - For the local-dynamic TLS
342 /// model, produces an ADDI8 instruction that adds G8RReg to
343 /// sym\@got\@tlsld\@l and stores the result in X3. Hidden by
344 /// ADDIS_TLSLD_L_ADDR until after register assignment.
347 /// %x3 = GET_TLSLD_ADDR %x3, Symbol - For the local-dynamic TLS
348 /// model, produces a call to __tls_get_addr(sym\@tlsld). Hidden by
349 /// ADDIS_TLSLD_L_ADDR until after register assignment.
352 /// G8RC = ADDI_TLSLD_L_ADDR G8RReg, Symbol, Symbol - Op that
353 /// combines ADDI_TLSLD_L and GET_TLSLD_ADDR until expansion
354 /// following register assignment.
357 /// G8RC = ADDIS_DTPREL_HA %x3, Symbol - For the local-dynamic TLS
358 /// model, produces an ADDIS8 instruction that adds X3 to
362 /// G8RC = ADDI_DTPREL_L G8RReg, Symbol - For the local-dynamic TLS
363 /// model, produces an ADDI8 instruction that adds G8RReg to
364 /// sym\@got\@dtprel\@l.
367 /// VRRC = VADD_SPLAT Elt, EltSize - Temporary node to be expanded
368 /// during instruction selection to optimize a BUILD_VECTOR into
369 /// operations on splats. This is necessary to avoid losing these
370 /// optimizations due to constant folding.
373 /// CHAIN = SC CHAIN, Imm128 - System call. The 7-bit unsigned
374 /// operand identifies the operating system entry point.
377 /// CHAIN = CLRBHRB CHAIN - Clear branch history rolling buffer.
380 /// GPRC, CHAIN = MFBHRBE CHAIN, Entry, Dummy - Move from branch
381 /// history rolling buffer entry.
384 /// CHAIN = RFEBB CHAIN, State - Return from event-based branch.
387 /// VSRC, CHAIN = XXSWAPD CHAIN, VSRC - Occurs only for little
388 /// endian. Maps to an xxswapd instruction that corrects an lxvd2x
389 /// or stxvd2x instruction. The chain is necessary because the
390 /// sequence replaces a load and needs to provide the same number
394 /// An SDNode for swaps that are not associated with any loads/stores
395 /// and thereby have no chain.
398 /// An SDNode for Power9 vector absolute value difference.
399 /// operand #0 vector
400 /// operand #1 vector
401 /// operand #2 constant i32 0 or 1, to indicate whether needs to patch
402 /// the most significant bit for signed i32
404 /// Power9 VABSD* instructions are designed to support unsigned integer
405 /// vectors (byte/halfword/word), if we want to make use of them for signed
406 /// integer vectors, we have to flip their sign bits first. To flip sign bit
407 /// for byte/halfword integer vector would become inefficient, but for word
408 /// integer vector, we can leverage XVNEGSP to make it efficiently. eg:
409 /// abs(sub(a,b)) => VABSDUW(a+0x80000000, b+0x80000000)
410 /// => VABSDUW((XVNEGSP a), (XVNEGSP b))
413 /// QVFPERM = This corresponds to the QPX qvfperm instruction.
416 /// QVGPCI = This corresponds to the QPX qvgpci instruction.
419 /// QVALIGNI = This corresponds to the QPX qvaligni instruction.
422 /// QVESPLATI = This corresponds to the QPX qvesplati instruction.
425 /// QBFLT = Access the underlying QPX floating-point boolean
429 /// FP_EXTEND_HALF(VECTOR, IDX) - Custom extend upper (IDX=0) half or
430 /// lower (IDX=1) half of v4f32 to v2f64.
433 /// CHAIN = STBRX CHAIN, GPRC, Ptr, Type - This is a
434 /// byte-swapping store instruction. It byte-swaps the low "Type" bits of
435 /// the GPRC input, then stores it through Ptr. Type can be either i16 or
437 STBRX
= ISD::FIRST_TARGET_MEMORY_OPCODE
,
439 /// GPRC, CHAIN = LBRX CHAIN, Ptr, Type - This is a
440 /// byte-swapping load instruction. It loads "Type" bits, byte swaps it,
441 /// then puts it in the bottom bits of the GPRC. TYPE can be either i16
445 /// STFIWX - The STFIWX instruction. The first operand is an input token
446 /// chain, then an f64 value to store, then an address to store it to.
449 /// GPRC, CHAIN = LFIWAX CHAIN, Ptr - This is a floating-point
450 /// load which sign-extends from a 32-bit integer value into the
451 /// destination 64-bit register.
454 /// GPRC, CHAIN = LFIWZX CHAIN, Ptr - This is a floating-point
455 /// load which zero-extends from a 32-bit integer value into the
456 /// destination 64-bit register.
459 /// GPRC, CHAIN = LXSIZX, CHAIN, Ptr, ByteWidth - This is a load of an
460 /// integer smaller than 64 bits into a VSR. The integer is zero-extended.
461 /// This can be used for converting loaded integers to floating point.
464 /// STXSIX - The STXSI[bh]X instruction. The first operand is an input
465 /// chain, then an f64 value to store, then an address to store it to,
466 /// followed by a byte-width for the store.
469 /// VSRC, CHAIN = LXVD2X_LE CHAIN, Ptr - Occurs only for little endian.
470 /// Maps directly to an lxvd2x instruction that will be followed by
474 /// VSRC, CHAIN = LOAD_VEC_BE CHAIN, Ptr - Occurs only for little endian.
475 /// Maps directly to one of lxvd2x/lxvw4x/lxvh8x/lxvb16x depending on
476 /// the vector type to load vector in big-endian element order.
479 /// VSRC, CHAIN = LD_VSX_LH CHAIN, Ptr - This is a floating-point load of a
480 /// v2f32 value into the lower half of a VSR register.
483 /// VSRC, CHAIN = LD_SPLAT, CHAIN, Ptr - a splatting load memory
484 /// instructions such as LXVDSX, LXVWSX.
487 /// CHAIN = STXVD2X CHAIN, VSRC, Ptr - Occurs only for little endian.
488 /// Maps directly to an stxvd2x instruction that will be preceded by
492 /// CHAIN = STORE_VEC_BE CHAIN, VSRC, Ptr - Occurs only for little endian.
493 /// Maps directly to one of stxvd2x/stxvw4x/stxvh8x/stxvb16x depending on
494 /// the vector type to store vector in big-endian element order.
497 /// Store scalar integers from VSR.
500 /// QBRC, CHAIN = QVLFSb CHAIN, Ptr
501 /// The 4xf32 load used for v4i1 constants.
504 /// ATOMIC_CMP_SWAP - the exact same as the target-independent nodes
505 /// except they ensure that the compare input is zero-extended for
506 /// sub-word versions because the atomic loads zero-extend.
510 /// GPRC = TOC_ENTRY GA, TOC
511 /// Loads the entry for GA from the TOC, where the TOC base is given by
512 /// the last operand.
516 } // end namespace PPCISD
518 /// Define some predicates that are used for node matching.
521 /// isVPKUHUMShuffleMask - Return true if this is the shuffle mask for a
522 /// VPKUHUM instruction.
523 bool isVPKUHUMShuffleMask(ShuffleVectorSDNode
*N
, unsigned ShuffleKind
,
526 /// isVPKUWUMShuffleMask - Return true if this is the shuffle mask for a
527 /// VPKUWUM instruction.
528 bool isVPKUWUMShuffleMask(ShuffleVectorSDNode
*N
, unsigned ShuffleKind
,
531 /// isVPKUDUMShuffleMask - Return true if this is the shuffle mask for a
532 /// VPKUDUM instruction.
533 bool isVPKUDUMShuffleMask(ShuffleVectorSDNode
*N
, unsigned ShuffleKind
,
536 /// isVMRGLShuffleMask - Return true if this is a shuffle mask suitable for
537 /// a VRGL* instruction with the specified unit size (1,2 or 4 bytes).
538 bool isVMRGLShuffleMask(ShuffleVectorSDNode
*N
, unsigned UnitSize
,
539 unsigned ShuffleKind
, SelectionDAG
&DAG
);
541 /// isVMRGHShuffleMask - Return true if this is a shuffle mask suitable for
542 /// a VRGH* instruction with the specified unit size (1,2 or 4 bytes).
543 bool isVMRGHShuffleMask(ShuffleVectorSDNode
*N
, unsigned UnitSize
,
544 unsigned ShuffleKind
, SelectionDAG
&DAG
);
546 /// isVMRGEOShuffleMask - Return true if this is a shuffle mask suitable for
547 /// a VMRGEW or VMRGOW instruction
548 bool isVMRGEOShuffleMask(ShuffleVectorSDNode
*N
, bool CheckEven
,
549 unsigned ShuffleKind
, SelectionDAG
&DAG
);
550 /// isXXSLDWIShuffleMask - Return true if this is a shuffle mask suitable
551 /// for a XXSLDWI instruction.
552 bool isXXSLDWIShuffleMask(ShuffleVectorSDNode
*N
, unsigned &ShiftElts
,
553 bool &Swap
, bool IsLE
);
555 /// isXXBRHShuffleMask - Return true if this is a shuffle mask suitable
556 /// for a XXBRH instruction.
557 bool isXXBRHShuffleMask(ShuffleVectorSDNode
*N
);
559 /// isXXBRWShuffleMask - Return true if this is a shuffle mask suitable
560 /// for a XXBRW instruction.
561 bool isXXBRWShuffleMask(ShuffleVectorSDNode
*N
);
563 /// isXXBRDShuffleMask - Return true if this is a shuffle mask suitable
564 /// for a XXBRD instruction.
565 bool isXXBRDShuffleMask(ShuffleVectorSDNode
*N
);
567 /// isXXBRQShuffleMask - Return true if this is a shuffle mask suitable
568 /// for a XXBRQ instruction.
569 bool isXXBRQShuffleMask(ShuffleVectorSDNode
*N
);
571 /// isXXPERMDIShuffleMask - Return true if this is a shuffle mask suitable
572 /// for a XXPERMDI instruction.
573 bool isXXPERMDIShuffleMask(ShuffleVectorSDNode
*N
, unsigned &ShiftElts
,
574 bool &Swap
, bool IsLE
);
576 /// isVSLDOIShuffleMask - If this is a vsldoi shuffle mask, return the
577 /// shift amount, otherwise return -1.
578 int isVSLDOIShuffleMask(SDNode
*N
, unsigned ShuffleKind
,
581 /// isSplatShuffleMask - Return true if the specified VECTOR_SHUFFLE operand
582 /// specifies a splat of a single element that is suitable for input to
583 /// VSPLTB/VSPLTH/VSPLTW.
584 bool isSplatShuffleMask(ShuffleVectorSDNode
*N
, unsigned EltSize
);
586 /// isXXINSERTWMask - Return true if this VECTOR_SHUFFLE can be handled by
587 /// the XXINSERTW instruction introduced in ISA 3.0. This is essentially any
588 /// shuffle of v4f32/v4i32 vectors that just inserts one element from one
589 /// vector into the other. This function will also set a couple of
590 /// output parameters for how much the source vector needs to be shifted and
591 /// what byte number needs to be specified for the instruction to put the
592 /// element in the desired location of the target vector.
593 bool isXXINSERTWMask(ShuffleVectorSDNode
*N
, unsigned &ShiftElts
,
594 unsigned &InsertAtByte
, bool &Swap
, bool IsLE
);
596 /// getSplatIdxForPPCMnemonics - Return the splat index as a value that is
597 /// appropriate for PPC mnemonics (which have a big endian bias - namely
598 /// elements are counted from the left of the vector register).
599 unsigned getSplatIdxForPPCMnemonics(SDNode
*N
, unsigned EltSize
,
602 /// get_VSPLTI_elt - If this is a build_vector of constants which can be
603 /// formed by using a vspltis[bhw] instruction of the specified element
604 /// size, return the constant being splatted. The ByteSize field indicates
605 /// the number of bytes of each element [124] -> [bhw].
606 SDValue
get_VSPLTI_elt(SDNode
*N
, unsigned ByteSize
, SelectionDAG
&DAG
);
608 /// If this is a qvaligni shuffle mask, return the shift
609 /// amount, otherwise return -1.
610 int isQVALIGNIShuffleMask(SDNode
*N
);
612 } // end namespace PPC
614 class PPCTargetLowering
: public TargetLowering
{
615 const PPCSubtarget
&Subtarget
;
618 explicit PPCTargetLowering(const PPCTargetMachine
&TM
,
619 const PPCSubtarget
&STI
);
621 /// getTargetNodeName() - This method returns the name of a target specific
623 const char *getTargetNodeName(unsigned Opcode
) const override
;
625 bool isSelectSupported(SelectSupportKind Kind
) const override
{
626 // PowerPC does not support scalar condition selects on vectors.
627 return (Kind
!= SelectSupportKind::ScalarCondVectorVal
);
630 /// getPreferredVectorAction - The code we generate when vector types are
631 /// legalized by promoting the integer element type is often much worse
632 /// than code we generate if we widen the type for applicable vector types.
633 /// The issue with promoting is that the vector is scalaraized, individual
634 /// elements promoted and then the vector is rebuilt. So say we load a pair
635 /// of v4i8's and shuffle them. This will turn into a mess of 8 extending
636 /// loads, moves back into VSR's (or memory ops if we don't have moves) and
637 /// then the VPERM for the shuffle. All in all a very slow sequence.
638 TargetLoweringBase::LegalizeTypeAction
getPreferredVectorAction(MVT VT
)
640 if (VT
.getScalarSizeInBits() % 8 == 0)
641 return TypeWidenVector
;
642 return TargetLoweringBase::getPreferredVectorAction(VT
);
645 bool useSoftFloat() const override
;
649 MVT
getScalarShiftAmountTy(const DataLayout
&, EVT
) const override
{
653 bool isCheapToSpeculateCttz() const override
{
657 bool isCheapToSpeculateCtlz() const override
{
661 bool isCtlzFast() const override
{
665 bool isEqualityCmpFoldedWithSignedCmp() const override
{
669 bool hasAndNotCompare(SDValue
) const override
{
673 bool preferIncOfAddToSubOfNot(EVT VT
) const override
;
675 bool convertSetCCLogicToBitwiseLogic(EVT VT
) const override
{
676 return VT
.isScalarInteger();
679 bool supportSplitCSR(MachineFunction
*MF
) const override
{
681 MF
->getFunction().getCallingConv() == CallingConv::CXX_FAST_TLS
&&
682 MF
->getFunction().hasFnAttribute(Attribute::NoUnwind
);
685 void initializeSplitCSR(MachineBasicBlock
*Entry
) const override
;
687 void insertCopiesSplitCSR(
688 MachineBasicBlock
*Entry
,
689 const SmallVectorImpl
<MachineBasicBlock
*> &Exits
) const override
;
691 /// getSetCCResultType - Return the ISD::SETCC ValueType
692 EVT
getSetCCResultType(const DataLayout
&DL
, LLVMContext
&Context
,
693 EVT VT
) const override
;
695 /// Return true if target always beneficiates from combining into FMA for a
696 /// given value type. This must typically return false on targets where FMA
697 /// takes more cycles to execute than FADD.
698 bool enableAggressiveFMAFusion(EVT VT
) const override
;
700 /// getPreIndexedAddressParts - returns true by value, base pointer and
701 /// offset pointer and addressing mode by reference if the node's address
702 /// can be legally represented as pre-indexed load / store address.
703 bool getPreIndexedAddressParts(SDNode
*N
, SDValue
&Base
,
705 ISD::MemIndexedMode
&AM
,
706 SelectionDAG
&DAG
) const override
;
708 /// SelectAddressEVXRegReg - Given the specified addressed, check to see if
709 /// it can be more efficiently represented as [r+imm].
710 bool SelectAddressEVXRegReg(SDValue N
, SDValue
&Base
, SDValue
&Index
,
711 SelectionDAG
&DAG
) const;
713 /// SelectAddressRegReg - Given the specified addressed, check to see if it
714 /// can be more efficiently represented as [r+imm]. If \p EncodingAlignment
715 /// is non-zero, only accept displacement which is not suitable for [r+imm].
716 /// Returns false if it can be represented by [r+imm], which are preferred.
717 bool SelectAddressRegReg(SDValue N
, SDValue
&Base
, SDValue
&Index
,
719 unsigned EncodingAlignment
= 0) const;
721 /// SelectAddressRegImm - Returns true if the address N can be represented
722 /// by a base register plus a signed 16-bit displacement [r+imm], and if it
723 /// is not better represented as reg+reg. If \p EncodingAlignment is
724 /// non-zero, only accept displacements suitable for instruction encoding
725 /// requirement, i.e. multiples of 4 for DS form.
726 bool SelectAddressRegImm(SDValue N
, SDValue
&Disp
, SDValue
&Base
,
728 unsigned EncodingAlignment
) const;
730 /// SelectAddressRegRegOnly - Given the specified addressed, force it to be
731 /// represented as an indexed [r+r] operation.
732 bool SelectAddressRegRegOnly(SDValue N
, SDValue
&Base
, SDValue
&Index
,
733 SelectionDAG
&DAG
) const;
735 Sched::Preference
getSchedulingPreference(SDNode
*N
) const override
;
737 /// LowerOperation - Provide custom lowering hooks for some operations.
739 SDValue
LowerOperation(SDValue Op
, SelectionDAG
&DAG
) const override
;
741 /// ReplaceNodeResults - Replace the results of node with an illegal result
742 /// type with new values built out of custom code.
744 void ReplaceNodeResults(SDNode
*N
, SmallVectorImpl
<SDValue
>&Results
,
745 SelectionDAG
&DAG
) const override
;
747 SDValue
expandVSXLoadForLE(SDNode
*N
, DAGCombinerInfo
&DCI
) const;
748 SDValue
expandVSXStoreForLE(SDNode
*N
, DAGCombinerInfo
&DCI
) const;
750 SDValue
PerformDAGCombine(SDNode
*N
, DAGCombinerInfo
&DCI
) const override
;
752 SDValue
BuildSDIVPow2(SDNode
*N
, const APInt
&Divisor
, SelectionDAG
&DAG
,
753 SmallVectorImpl
<SDNode
*> &Created
) const override
;
755 Register
getRegisterByName(const char* RegName
, LLT VT
,
756 const MachineFunction
&MF
) const override
;
758 void computeKnownBitsForTargetNode(const SDValue Op
,
760 const APInt
&DemandedElts
,
761 const SelectionDAG
&DAG
,
762 unsigned Depth
= 0) const override
;
764 Align
getPrefLoopAlignment(MachineLoop
*ML
) const override
;
766 bool shouldInsertFencesForAtomic(const Instruction
*I
) const override
{
770 Instruction
*emitLeadingFence(IRBuilder
<> &Builder
, Instruction
*Inst
,
771 AtomicOrdering Ord
) const override
;
772 Instruction
*emitTrailingFence(IRBuilder
<> &Builder
, Instruction
*Inst
,
773 AtomicOrdering Ord
) const override
;
776 EmitInstrWithCustomInserter(MachineInstr
&MI
,
777 MachineBasicBlock
*MBB
) const override
;
778 MachineBasicBlock
*EmitAtomicBinary(MachineInstr
&MI
,
779 MachineBasicBlock
*MBB
,
782 unsigned CmpOpcode
= 0,
783 unsigned CmpPred
= 0) const;
784 MachineBasicBlock
*EmitPartwordAtomicBinary(MachineInstr
&MI
,
785 MachineBasicBlock
*MBB
,
788 unsigned CmpOpcode
= 0,
789 unsigned CmpPred
= 0) const;
791 MachineBasicBlock
*emitEHSjLjSetJmp(MachineInstr
&MI
,
792 MachineBasicBlock
*MBB
) const;
794 MachineBasicBlock
*emitEHSjLjLongJmp(MachineInstr
&MI
,
795 MachineBasicBlock
*MBB
) const;
797 ConstraintType
getConstraintType(StringRef Constraint
) const override
;
799 /// Examine constraint string and operand type and determine a weight value.
800 /// The operand object must already have been set up with the operand type.
801 ConstraintWeight
getSingleConstraintMatchWeight(
802 AsmOperandInfo
&info
, const char *constraint
) const override
;
804 std::pair
<unsigned, const TargetRegisterClass
*>
805 getRegForInlineAsmConstraint(const TargetRegisterInfo
*TRI
,
806 StringRef Constraint
, MVT VT
) const override
;
808 /// getByValTypeAlignment - Return the desired alignment for ByVal aggregate
809 /// function arguments in the caller parameter area. This is the actual
810 /// alignment, not its logarithm.
811 unsigned getByValTypeAlignment(Type
*Ty
,
812 const DataLayout
&DL
) const override
;
814 /// LowerAsmOperandForConstraint - Lower the specified operand into the Ops
815 /// vector. If it is invalid, don't add anything to Ops.
816 void LowerAsmOperandForConstraint(SDValue Op
,
817 std::string
&Constraint
,
818 std::vector
<SDValue
> &Ops
,
819 SelectionDAG
&DAG
) const override
;
822 getInlineAsmMemConstraint(StringRef ConstraintCode
) const override
{
823 if (ConstraintCode
== "es")
824 return InlineAsm::Constraint_es
;
825 else if (ConstraintCode
== "o")
826 return InlineAsm::Constraint_o
;
827 else if (ConstraintCode
== "Q")
828 return InlineAsm::Constraint_Q
;
829 else if (ConstraintCode
== "Z")
830 return InlineAsm::Constraint_Z
;
831 else if (ConstraintCode
== "Zy")
832 return InlineAsm::Constraint_Zy
;
833 return TargetLowering::getInlineAsmMemConstraint(ConstraintCode
);
836 /// isLegalAddressingMode - Return true if the addressing mode represented
837 /// by AM is legal for this target, for a load/store of the specified type.
838 bool isLegalAddressingMode(const DataLayout
&DL
, const AddrMode
&AM
,
839 Type
*Ty
, unsigned AS
,
840 Instruction
*I
= nullptr) const override
;
842 /// isLegalICmpImmediate - Return true if the specified immediate is legal
843 /// icmp immediate, that is the target has icmp instructions which can
844 /// compare a register against the immediate without having to materialize
845 /// the immediate into a register.
846 bool isLegalICmpImmediate(int64_t Imm
) const override
;
848 /// isLegalAddImmediate - Return true if the specified immediate is legal
849 /// add immediate, that is the target has add instructions which can
850 /// add a register and the immediate without having to materialize
851 /// the immediate into a register.
852 bool isLegalAddImmediate(int64_t Imm
) const override
;
854 /// isTruncateFree - Return true if it's free to truncate a value of
855 /// type Ty1 to type Ty2. e.g. On PPC it's free to truncate a i64 value in
856 /// register X1 to i32 by referencing its sub-register R1.
857 bool isTruncateFree(Type
*Ty1
, Type
*Ty2
) const override
;
858 bool isTruncateFree(EVT VT1
, EVT VT2
) const override
;
860 bool isZExtFree(SDValue Val
, EVT VT2
) const override
;
862 bool isFPExtFree(EVT DestVT
, EVT SrcVT
) const override
;
864 /// Returns true if it is beneficial to convert a load of a constant
865 /// to just the constant itself.
866 bool shouldConvertConstantLoadToIntImm(const APInt
&Imm
,
867 Type
*Ty
) const override
;
869 bool convertSelectOfConstantsToMath(EVT VT
) const override
{
873 bool isDesirableToTransformToIntegerOp(unsigned Opc
,
874 EVT VT
) const override
{
875 // Only handle float load/store pair because float(fpr) load/store
876 // instruction has more cycles than integer(gpr) load/store in PPC.
877 if (Opc
!= ISD::LOAD
&& Opc
!= ISD::STORE
)
879 if (VT
!= MVT::f32
&& VT
!= MVT::f64
)
885 // Returns true if the address of the global is stored in TOC entry.
886 bool isAccessedAsGotIndirect(SDValue N
) const;
888 bool isOffsetFoldingLegal(const GlobalAddressSDNode
*GA
) const override
;
890 bool getTgtMemIntrinsic(IntrinsicInfo
&Info
,
893 unsigned Intrinsic
) const override
;
895 /// getOptimalMemOpType - Returns the target specific optimal type for load
896 /// and store operations as a result of memset, memcpy, and memmove
897 /// lowering. If DstAlign is zero that means it's safe to destination
898 /// alignment can satisfy any constraint. Similarly if SrcAlign is zero it
899 /// means there isn't a need to check it against alignment requirement,
900 /// probably because the source does not need to be loaded. If 'IsMemset' is
901 /// true, that means it's expanding a memset. If 'ZeroMemset' is true, that
902 /// means it's a memset of zero. 'MemcpyStrSrc' indicates whether the memcpy
903 /// source is constant so it does not need to be loaded.
904 /// It returns EVT::Other if the type should be determined using generic
905 /// target-independent logic.
907 getOptimalMemOpType(uint64_t Size
, unsigned DstAlign
, unsigned SrcAlign
,
908 bool IsMemset
, bool ZeroMemset
, bool MemcpyStrSrc
,
909 const AttributeList
&FuncAttributes
) const override
;
911 /// Is unaligned memory access allowed for the given type, and is it fast
912 /// relative to software emulation.
913 bool allowsMisalignedMemoryAccesses(
914 EVT VT
, unsigned AddrSpace
, unsigned Align
= 1,
915 MachineMemOperand::Flags Flags
= MachineMemOperand::MONone
,
916 bool *Fast
= nullptr) const override
;
918 /// isFMAFasterThanFMulAndFAdd - Return true if an FMA operation is faster
919 /// than a pair of fmul and fadd instructions. fmuladd intrinsics will be
920 /// expanded to FMAs when this method returns true, otherwise fmuladd is
921 /// expanded to fmul + fadd.
922 bool isFMAFasterThanFMulAndFAdd(const MachineFunction
&MF
,
923 EVT VT
) const override
;
925 const MCPhysReg
*getScratchRegisters(CallingConv::ID CC
) const override
;
927 // Should we expand the build vector with shuffles?
929 shouldExpandBuildVectorWithShuffles(EVT VT
,
930 unsigned DefinedValues
) const override
;
932 /// createFastISel - This method returns a target-specific FastISel object,
933 /// or null if the target does not support "fast" instruction selection.
934 FastISel
*createFastISel(FunctionLoweringInfo
&FuncInfo
,
935 const TargetLibraryInfo
*LibInfo
) const override
;
937 /// Returns true if an argument of type Ty needs to be passed in a
938 /// contiguous block of registers in calling convention CallConv.
939 bool functionArgumentNeedsConsecutiveRegisters(
940 Type
*Ty
, CallingConv::ID CallConv
, bool isVarArg
) const override
{
941 // We support any array type as "consecutive" block in the parameter
942 // save area. The element type defines the alignment requirement and
943 // whether the argument should go in GPRs, FPRs, or VRs if available.
945 // Note that clang uses this capability both to implement the ELFv2
946 // homogeneous float/vector aggregate ABI, and to avoid having to use
947 // "byval" when passing aggregates that might fully fit in registers.
948 return Ty
->isArrayTy();
951 /// If a physical register, this returns the register that receives the
952 /// exception address on entry to an EH pad.
954 getExceptionPointerRegister(const Constant
*PersonalityFn
) const override
;
956 /// If a physical register, this returns the register that receives the
957 /// exception typeid on entry to a landing pad.
959 getExceptionSelectorRegister(const Constant
*PersonalityFn
) const override
;
961 /// Override to support customized stack guard loading.
962 bool useLoadStackGuardNode() const override
;
963 void insertSSPDeclarations(Module
&M
) const override
;
965 bool isFPImmLegal(const APFloat
&Imm
, EVT VT
,
966 bool ForCodeSize
) const override
;
968 unsigned getJumpTableEncoding() const override
;
969 bool isJumpTableRelative() const override
;
970 SDValue
getPICJumpTableRelocBase(SDValue Table
,
971 SelectionDAG
&DAG
) const override
;
972 const MCExpr
*getPICJumpTableRelocBaseExpr(const MachineFunction
*MF
,
974 MCContext
&Ctx
) const override
;
976 /// Structure that collects some common arguments that get passed around
977 /// between the functions for call lowering.
979 const CallingConv::ID CallConv
;
980 const bool IsTailCall
: 1;
981 const bool IsVarArg
: 1;
982 const bool IsPatchPoint
: 1;
983 const bool IsIndirect
: 1;
984 const bool HasNest
: 1;
986 CallFlags(CallingConv::ID CC
, bool IsTailCall
, bool IsVarArg
,
987 bool IsPatchPoint
, bool IsIndirect
, bool HasNest
)
988 : CallConv(CC
), IsTailCall(IsTailCall
), IsVarArg(IsVarArg
),
989 IsPatchPoint(IsPatchPoint
), IsIndirect(IsIndirect
),
994 struct ReuseLoadInfo
{
998 MachinePointerInfo MPI
;
999 bool IsDereferenceable
= false;
1000 bool IsInvariant
= false;
1001 unsigned Alignment
= 0;
1003 const MDNode
*Ranges
= nullptr;
1005 ReuseLoadInfo() = default;
1007 MachineMemOperand::Flags
MMOFlags() const {
1008 MachineMemOperand::Flags F
= MachineMemOperand::MONone
;
1009 if (IsDereferenceable
)
1010 F
|= MachineMemOperand::MODereferenceable
;
1012 F
|= MachineMemOperand::MOInvariant
;
1017 bool isNoopAddrSpaceCast(unsigned SrcAS
, unsigned DestAS
) const override
{
1018 // Addrspacecasts are always noops.
1022 bool canReuseLoadAddress(SDValue Op
, EVT MemVT
, ReuseLoadInfo
&RLI
,
1024 ISD::LoadExtType ET
= ISD::NON_EXTLOAD
) const;
1025 void spliceIntoChain(SDValue ResChain
, SDValue NewResChain
,
1026 SelectionDAG
&DAG
) const;
1028 void LowerFP_TO_INTForReuse(SDValue Op
, ReuseLoadInfo
&RLI
,
1029 SelectionDAG
&DAG
, const SDLoc
&dl
) const;
1030 SDValue
LowerFP_TO_INTDirectMove(SDValue Op
, SelectionDAG
&DAG
,
1031 const SDLoc
&dl
) const;
1033 bool directMoveIsProfitable(const SDValue
&Op
) const;
1034 SDValue
LowerINT_TO_FPDirectMove(SDValue Op
, SelectionDAG
&DAG
,
1035 const SDLoc
&dl
) const;
1037 SDValue
LowerINT_TO_FPVector(SDValue Op
, SelectionDAG
&DAG
,
1038 const SDLoc
&dl
) const;
1040 SDValue
LowerTRUNCATEVector(SDValue Op
, SelectionDAG
&DAG
) const;
1042 SDValue
getFramePointerFrameIndex(SelectionDAG
& DAG
) const;
1043 SDValue
getReturnAddrFrameIndex(SelectionDAG
& DAG
) const;
1046 IsEligibleForTailCallOptimization(SDValue Callee
,
1047 CallingConv::ID CalleeCC
,
1049 const SmallVectorImpl
<ISD::InputArg
> &Ins
,
1050 SelectionDAG
& DAG
) const;
1053 IsEligibleForTailCallOptimization_64SVR4(
1055 CallingConv::ID CalleeCC
,
1056 ImmutableCallSite CS
,
1058 const SmallVectorImpl
<ISD::OutputArg
> &Outs
,
1059 const SmallVectorImpl
<ISD::InputArg
> &Ins
,
1060 SelectionDAG
& DAG
) const;
1062 SDValue
EmitTailCallLoadFPAndRetAddr(SelectionDAG
&DAG
, int SPDiff
,
1063 SDValue Chain
, SDValue
&LROpOut
,
1065 const SDLoc
&dl
) const;
1067 SDValue
getTOCEntry(SelectionDAG
&DAG
, const SDLoc
&dl
, SDValue GA
) const;
1069 SDValue
LowerRETURNADDR(SDValue Op
, SelectionDAG
&DAG
) const;
1070 SDValue
LowerFRAMEADDR(SDValue Op
, SelectionDAG
&DAG
) const;
1071 SDValue
LowerConstantPool(SDValue Op
, SelectionDAG
&DAG
) const;
1072 SDValue
LowerBlockAddress(SDValue Op
, SelectionDAG
&DAG
) const;
1073 SDValue
LowerGlobalTLSAddress(SDValue Op
, SelectionDAG
&DAG
) const;
1074 SDValue
LowerGlobalAddress(SDValue Op
, SelectionDAG
&DAG
) const;
1075 SDValue
LowerJumpTable(SDValue Op
, SelectionDAG
&DAG
) const;
1076 SDValue
LowerSETCC(SDValue Op
, SelectionDAG
&DAG
) const;
1077 SDValue
LowerINIT_TRAMPOLINE(SDValue Op
, SelectionDAG
&DAG
) const;
1078 SDValue
LowerADJUST_TRAMPOLINE(SDValue Op
, SelectionDAG
&DAG
) const;
1079 SDValue
LowerVASTART(SDValue Op
, SelectionDAG
&DAG
) const;
1080 SDValue
LowerVAARG(SDValue Op
, SelectionDAG
&DAG
) const;
1081 SDValue
LowerVACOPY(SDValue Op
, SelectionDAG
&DAG
) const;
1082 SDValue
LowerSTACKRESTORE(SDValue Op
, SelectionDAG
&DAG
) const;
1083 SDValue
LowerGET_DYNAMIC_AREA_OFFSET(SDValue Op
, SelectionDAG
&DAG
) const;
1084 SDValue
LowerDYNAMIC_STACKALLOC(SDValue Op
, SelectionDAG
&DAG
) const;
1085 SDValue
LowerEH_DWARF_CFA(SDValue Op
, SelectionDAG
&DAG
) const;
1086 SDValue
LowerLOAD(SDValue Op
, SelectionDAG
&DAG
) const;
1087 SDValue
LowerSTORE(SDValue Op
, SelectionDAG
&DAG
) const;
1088 SDValue
LowerTRUNCATE(SDValue Op
, SelectionDAG
&DAG
) const;
1089 SDValue
LowerSELECT_CC(SDValue Op
, SelectionDAG
&DAG
) const;
1090 SDValue
LowerFP_TO_INT(SDValue Op
, SelectionDAG
&DAG
,
1091 const SDLoc
&dl
) const;
1092 SDValue
LowerINT_TO_FP(SDValue Op
, SelectionDAG
&DAG
) const;
1093 SDValue
LowerFLT_ROUNDS_(SDValue Op
, SelectionDAG
&DAG
) const;
1094 SDValue
LowerSHL_PARTS(SDValue Op
, SelectionDAG
&DAG
) const;
1095 SDValue
LowerSRL_PARTS(SDValue Op
, SelectionDAG
&DAG
) const;
1096 SDValue
LowerSRA_PARTS(SDValue Op
, SelectionDAG
&DAG
) const;
1097 SDValue
LowerBUILD_VECTOR(SDValue Op
, SelectionDAG
&DAG
) const;
1098 SDValue
LowerVECTOR_SHUFFLE(SDValue Op
, SelectionDAG
&DAG
) const;
1099 SDValue
LowerINSERT_VECTOR_ELT(SDValue Op
, SelectionDAG
&DAG
) const;
1100 SDValue
LowerEXTRACT_VECTOR_ELT(SDValue Op
, SelectionDAG
&DAG
) const;
1101 SDValue
LowerINTRINSIC_WO_CHAIN(SDValue Op
, SelectionDAG
&DAG
) const;
1102 SDValue
LowerINTRINSIC_VOID(SDValue Op
, SelectionDAG
&DAG
) const;
1103 SDValue
LowerREM(SDValue Op
, SelectionDAG
&DAG
) const;
1104 SDValue
LowerBSWAP(SDValue Op
, SelectionDAG
&DAG
) const;
1105 SDValue
LowerATOMIC_CMP_SWAP(SDValue Op
, SelectionDAG
&DAG
) const;
1106 SDValue
LowerSCALAR_TO_VECTOR(SDValue Op
, SelectionDAG
&DAG
) const;
1107 SDValue
LowerSIGN_EXTEND_INREG(SDValue Op
, SelectionDAG
&DAG
) const;
1108 SDValue
LowerMUL(SDValue Op
, SelectionDAG
&DAG
) const;
1109 SDValue
LowerABS(SDValue Op
, SelectionDAG
&DAG
) const;
1110 SDValue
LowerFP_EXTEND(SDValue Op
, SelectionDAG
&DAG
) const;
1112 SDValue
LowerVectorLoad(SDValue Op
, SelectionDAG
&DAG
) const;
1113 SDValue
LowerVectorStore(SDValue Op
, SelectionDAG
&DAG
) const;
1115 SDValue
LowerCallResult(SDValue Chain
, SDValue InFlag
,
1116 CallingConv::ID CallConv
, bool isVarArg
,
1117 const SmallVectorImpl
<ISD::InputArg
> &Ins
,
1118 const SDLoc
&dl
, SelectionDAG
&DAG
,
1119 SmallVectorImpl
<SDValue
> &InVals
) const;
1121 SDValue
FinishCall(CallFlags CFlags
, const SDLoc
&dl
, SelectionDAG
&DAG
,
1122 SmallVector
<std::pair
<unsigned, SDValue
>, 8> &RegsToPass
,
1123 SDValue InFlag
, SDValue Chain
, SDValue CallSeqStart
,
1124 SDValue
&Callee
, int SPDiff
, unsigned NumBytes
,
1125 const SmallVectorImpl
<ISD::InputArg
> &Ins
,
1126 SmallVectorImpl
<SDValue
> &InVals
,
1127 ImmutableCallSite CS
) const;
1130 LowerFormalArguments(SDValue Chain
, CallingConv::ID CallConv
, bool isVarArg
,
1131 const SmallVectorImpl
<ISD::InputArg
> &Ins
,
1132 const SDLoc
&dl
, SelectionDAG
&DAG
,
1133 SmallVectorImpl
<SDValue
> &InVals
) const override
;
1135 SDValue
LowerCall(TargetLowering::CallLoweringInfo
&CLI
,
1136 SmallVectorImpl
<SDValue
> &InVals
) const override
;
1138 bool CanLowerReturn(CallingConv::ID CallConv
, MachineFunction
&MF
,
1140 const SmallVectorImpl
<ISD::OutputArg
> &Outs
,
1141 LLVMContext
&Context
) const override
;
1143 SDValue
LowerReturn(SDValue Chain
, CallingConv::ID CallConv
, bool isVarArg
,
1144 const SmallVectorImpl
<ISD::OutputArg
> &Outs
,
1145 const SmallVectorImpl
<SDValue
> &OutVals
,
1146 const SDLoc
&dl
, SelectionDAG
&DAG
) const override
;
1148 SDValue
extendArgForPPC64(ISD::ArgFlagsTy Flags
, EVT ObjectVT
,
1149 SelectionDAG
&DAG
, SDValue ArgVal
,
1150 const SDLoc
&dl
) const;
1152 SDValue
LowerFormalArguments_AIX(
1153 SDValue Chain
, CallingConv::ID CallConv
, bool isVarArg
,
1154 const SmallVectorImpl
<ISD::InputArg
> &Ins
, const SDLoc
&dl
,
1155 SelectionDAG
&DAG
, SmallVectorImpl
<SDValue
> &InVals
) const;
1156 SDValue
LowerFormalArguments_Darwin(
1157 SDValue Chain
, CallingConv::ID CallConv
, bool isVarArg
,
1158 const SmallVectorImpl
<ISD::InputArg
> &Ins
, const SDLoc
&dl
,
1159 SelectionDAG
&DAG
, SmallVectorImpl
<SDValue
> &InVals
) const;
1160 SDValue
LowerFormalArguments_64SVR4(
1161 SDValue Chain
, CallingConv::ID CallConv
, bool isVarArg
,
1162 const SmallVectorImpl
<ISD::InputArg
> &Ins
, const SDLoc
&dl
,
1163 SelectionDAG
&DAG
, SmallVectorImpl
<SDValue
> &InVals
) const;
1164 SDValue
LowerFormalArguments_32SVR4(
1165 SDValue Chain
, CallingConv::ID CallConv
, bool isVarArg
,
1166 const SmallVectorImpl
<ISD::InputArg
> &Ins
, const SDLoc
&dl
,
1167 SelectionDAG
&DAG
, SmallVectorImpl
<SDValue
> &InVals
) const;
1169 SDValue
createMemcpyOutsideCallSeq(SDValue Arg
, SDValue PtrOff
,
1170 SDValue CallSeqStart
,
1171 ISD::ArgFlagsTy Flags
, SelectionDAG
&DAG
,
1172 const SDLoc
&dl
) const;
1174 SDValue
LowerCall_Darwin(SDValue Chain
, SDValue Callee
, CallFlags CFlags
,
1175 const SmallVectorImpl
<ISD::OutputArg
> &Outs
,
1176 const SmallVectorImpl
<SDValue
> &OutVals
,
1177 const SmallVectorImpl
<ISD::InputArg
> &Ins
,
1178 const SDLoc
&dl
, SelectionDAG
&DAG
,
1179 SmallVectorImpl
<SDValue
> &InVals
,
1180 ImmutableCallSite CS
) const;
1181 SDValue
LowerCall_64SVR4(SDValue Chain
, SDValue Callee
, CallFlags CFlags
,
1182 const SmallVectorImpl
<ISD::OutputArg
> &Outs
,
1183 const SmallVectorImpl
<SDValue
> &OutVals
,
1184 const SmallVectorImpl
<ISD::InputArg
> &Ins
,
1185 const SDLoc
&dl
, SelectionDAG
&DAG
,
1186 SmallVectorImpl
<SDValue
> &InVals
,
1187 ImmutableCallSite CS
) const;
1188 SDValue
LowerCall_32SVR4(SDValue Chain
, SDValue Callee
, CallFlags CFlags
,
1189 const SmallVectorImpl
<ISD::OutputArg
> &Outs
,
1190 const SmallVectorImpl
<SDValue
> &OutVals
,
1191 const SmallVectorImpl
<ISD::InputArg
> &Ins
,
1192 const SDLoc
&dl
, SelectionDAG
&DAG
,
1193 SmallVectorImpl
<SDValue
> &InVals
,
1194 ImmutableCallSite CS
) const;
1195 SDValue
LowerCall_AIX(SDValue Chain
, SDValue Callee
, CallFlags CFlags
,
1196 const SmallVectorImpl
<ISD::OutputArg
> &Outs
,
1197 const SmallVectorImpl
<SDValue
> &OutVals
,
1198 const SmallVectorImpl
<ISD::InputArg
> &Ins
,
1199 const SDLoc
&dl
, SelectionDAG
&DAG
,
1200 SmallVectorImpl
<SDValue
> &InVals
,
1201 ImmutableCallSite CS
) const;
1203 SDValue
lowerEH_SJLJ_SETJMP(SDValue Op
, SelectionDAG
&DAG
) const;
1204 SDValue
lowerEH_SJLJ_LONGJMP(SDValue Op
, SelectionDAG
&DAG
) const;
1205 SDValue
LowerBITCAST(SDValue Op
, SelectionDAG
&DAG
) const;
1207 SDValue
DAGCombineExtBoolTrunc(SDNode
*N
, DAGCombinerInfo
&DCI
) const;
1208 SDValue
DAGCombineBuildVector(SDNode
*N
, DAGCombinerInfo
&DCI
) const;
1209 SDValue
DAGCombineTruncBoolExt(SDNode
*N
, DAGCombinerInfo
&DCI
) const;
1210 SDValue
combineStoreFPToInt(SDNode
*N
, DAGCombinerInfo
&DCI
) const;
1211 SDValue
combineFPToIntToFP(SDNode
*N
, DAGCombinerInfo
&DCI
) const;
1212 SDValue
combineSHL(SDNode
*N
, DAGCombinerInfo
&DCI
) const;
1213 SDValue
combineSRA(SDNode
*N
, DAGCombinerInfo
&DCI
) const;
1214 SDValue
combineSRL(SDNode
*N
, DAGCombinerInfo
&DCI
) const;
1215 SDValue
combineMUL(SDNode
*N
, DAGCombinerInfo
&DCI
) const;
1216 SDValue
combineADD(SDNode
*N
, DAGCombinerInfo
&DCI
) const;
1217 SDValue
combineTRUNCATE(SDNode
*N
, DAGCombinerInfo
&DCI
) const;
1218 SDValue
combineSetCC(SDNode
*N
, DAGCombinerInfo
&DCI
) const;
1219 SDValue
combineABS(SDNode
*N
, DAGCombinerInfo
&DCI
) const;
1220 SDValue
combineVSelect(SDNode
*N
, DAGCombinerInfo
&DCI
) const;
1221 SDValue
combineVReverseMemOP(ShuffleVectorSDNode
*SVN
, LSBaseSDNode
*LSBase
,
1222 DAGCombinerInfo
&DCI
) const;
1224 /// ConvertSETCCToSubtract - looks at SETCC that compares ints. It replaces
1225 /// SETCC with integer subtraction when (1) there is a legal way of doing it
1226 /// (2) keeping the result of comparison in GPR has performance benefit.
1227 SDValue
ConvertSETCCToSubtract(SDNode
*N
, DAGCombinerInfo
&DCI
) const;
1229 SDValue
getSqrtEstimate(SDValue Operand
, SelectionDAG
&DAG
, int Enabled
,
1230 int &RefinementSteps
, bool &UseOneConstNR
,
1231 bool Reciprocal
) const override
;
1232 SDValue
getRecipEstimate(SDValue Operand
, SelectionDAG
&DAG
, int Enabled
,
1233 int &RefinementSteps
) const override
;
1234 unsigned combineRepeatedFPDivisors() const override
;
1237 combineElementTruncationToVectorTruncation(SDNode
*N
,
1238 DAGCombinerInfo
&DCI
) const;
1240 /// lowerToVINSERTH - Return the SDValue if this VECTOR_SHUFFLE can be
1241 /// handled by the VINSERTH instruction introduced in ISA 3.0. This is
1242 /// essentially any shuffle of v8i16 vectors that just inserts one element
1243 /// from one vector into the other.
1244 SDValue
lowerToVINSERTH(ShuffleVectorSDNode
*N
, SelectionDAG
&DAG
) const;
1246 /// lowerToVINSERTB - Return the SDValue if this VECTOR_SHUFFLE can be
1247 /// handled by the VINSERTB instruction introduced in ISA 3.0. This is
1248 /// essentially v16i8 vector version of VINSERTH.
1249 SDValue
lowerToVINSERTB(ShuffleVectorSDNode
*N
, SelectionDAG
&DAG
) const;
1251 // Return whether the call instruction can potentially be optimized to a
1252 // tail call. This will cause the optimizers to attempt to move, or
1253 // duplicate return instructions to help enable tail call optimizations.
1254 bool mayBeEmittedAsTailCall(const CallInst
*CI
) const override
;
1255 bool hasBitPreservingFPLogic(EVT VT
) const override
;
1256 bool isMaskAndCmp0FoldingBeneficial(const Instruction
&AndI
) const override
;
1257 }; // end class PPCTargetLowering
1261 FastISel
*createFastISel(FunctionLoweringInfo
&FuncInfo
,
1262 const TargetLibraryInfo
*LibInfo
);
1264 } // end namespace PPC
1266 bool isIntS16Immediate(SDNode
*N
, int16_t &Imm
);
1267 bool isIntS16Immediate(SDValue Op
, int16_t &Imm
);
1269 } // end namespace llvm
1271 #endif // LLVM_TARGET_POWERPC_PPC32ISELLOWERING_H