1 //===-- SystemZISelLowering.h - SystemZ DAG lowering interface --*- C++ -*-===//
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
7 //===----------------------------------------------------------------------===//
9 // This file defines the interfaces that SystemZ uses to lower LLVM code into a
12 //===----------------------------------------------------------------------===//
14 #ifndef LLVM_LIB_TARGET_SYSTEMZ_SYSTEMZISELLOWERING_H
15 #define LLVM_LIB_TARGET_SYSTEMZ_SYSTEMZISELLOWERING_H
18 #include "SystemZInstrInfo.h"
19 #include "llvm/CodeGen/MachineBasicBlock.h"
20 #include "llvm/CodeGen/SelectionDAG.h"
21 #include "llvm/CodeGen/TargetLowering.h"
24 namespace SystemZISD
{
25 enum NodeType
: unsigned {
26 FIRST_NUMBER
= ISD::BUILTIN_OP_END
,
28 // Return with a flag operand. Operand 0 is the chain operand.
31 // Calls a function. Operand 0 is the chain operand and operand 1
32 // is the target address. The arguments start at operand 2.
33 // There is an optional glue operand at the end.
37 // TLS calls. Like regular calls, except operand 1 is the TLS symbol.
38 // (The call target is implicitly __tls_get_offset.)
42 // Wraps a TargetGlobalAddress that should be loaded using PC-relative
43 // accesses (LARL). Operand 0 is the address.
46 // Used in cases where an offset is applied to a TargetGlobalAddress.
47 // Operand 0 is the full TargetGlobalAddress and operand 1 is a
48 // PCREL_WRAPPER for an anchor point. This is used so that we can
49 // cheaply refer to either the full address or the anchor point
50 // as a register base.
56 // Integer comparisons. There are three operands: the two values
57 // to compare, and an integer of type SystemZICMP.
60 // Floating-point comparisons. The two operands are the values to compare.
63 // Test under mask. The first operand is ANDed with the second operand
64 // and the condition codes are set on the result. The third operand is
65 // a boolean that is true if the condition codes need to distinguish
66 // between CCMASK_TM_MIXED_MSB_0 and CCMASK_TM_MIXED_MSB_1 (which the
67 // register forms do but the memory forms don't).
70 // Branches if a condition is true. Operand 0 is the chain operand;
71 // operand 1 is the 4-bit condition-code mask, with bit N in
72 // big-endian order meaning "branch if CC=N"; operand 2 is the
73 // target block and operand 3 is the flag operand.
76 // Selects between operand 0 and operand 1. Operand 2 is the
77 // mask of condition-code values for which operand 0 should be
78 // chosen over operand 1; it has the same form as BR_CCMASK.
79 // Operand 3 is the flag operand.
82 // Evaluates to the gap between the stack pointer and the
83 // base of the dynamically-allocatable area.
86 // Count number of bits set in operand 0 per byte.
89 // Wrappers around the ISD opcodes of the same name. The output is GR128.
90 // Input operands may be GR64 or GR32, depending on the instruction.
96 // Add/subtract with overflow/carry. These have the same operands as
97 // the corresponding standard operations, except with the carry flag
98 // replaced by a condition code value.
99 SADDO
, SSUBO
, UADDO
, USUBO
, ADDCARRY
, SUBCARRY
,
101 // Set the condition code from a boolean value in operand 0.
102 // Operand 1 is a mask of all condition-code values that may result of this
103 // operation, operand 2 is a mask of condition-code values that may result
104 // if the boolean is true.
105 // Note that this operation is always optimized away, we will never
106 // generate any code for it.
109 // Use a series of MVCs to copy bytes from one memory location to another.
111 // - the target address
112 // - the source address
113 // - the constant length
115 // This isn't a memory opcode because we'd need to attach two
116 // MachineMemOperands rather than one.
119 // Like MVC, but implemented as a loop that handles X*256 bytes
120 // followed by straight-line code to handle the rest (if any).
121 // The value of X is passed as an additional operand.
124 // Similar to MVC and MVC_LOOP, but for logic operations (AND, OR, XOR).
132 // Use CLC to compare two blocks of memory, with the same comments
133 // as for MVC and MVC_LOOP.
137 // Use an MVST-based sequence to implement stpcpy().
140 // Use a CLST-based sequence to implement strcmp(). The two input operands
141 // are the addresses of the strings to compare.
144 // Use an SRST-based sequence to search a block of memory. The first
145 // operand is the end address, the second is the start, and the third
146 // is the character to search for. CC is set to 1 on success and 2
150 // Store the CC value in bits 29 and 28 of an integer.
153 // Compiler barrier only; generate a no-op.
156 // Transaction begin. The first operand is the chain, the second
157 // the TDB pointer, and the third the immediate control field.
158 // Returns CC value and chain.
162 // Transaction end. Just the chain operand. Returns CC value and chain.
165 // Create a vector constant by filling byte N of the result with bit
166 // 15-N of the single operand.
169 // Create a vector constant by replicating an element-sized RISBG-style mask.
170 // The first operand specifies the starting set bit and the second operand
171 // specifies the ending set bit. Both operands count from the MSB of the
175 // Replicate a GPR scalar value into all elements of a vector.
178 // Create a vector from two i64 GPRs.
181 // Replicate one element of a vector into all elements. The first operand
182 // is the vector and the second is the index of the element to replicate.
185 // Interleave elements from the high half of operand 0 and the high half
189 // Likewise for the low halves.
192 // Concatenate the vectors in the first two operands, shift them left
193 // by the third operand, and take the first half of the result.
196 // Take one element of the first v2i64 operand and the one element of
197 // the second v2i64 operand and concatenate them to form a v2i64 result.
198 // The third operand is a 4-bit value of the form 0A0B, where A and B
199 // are the element selectors for the first operand and second operands
203 // Perform a general vector permute on vector operands 0 and 1.
204 // Each byte of operand 2 controls the corresponding byte of the result,
205 // in the same way as a byte-level VECTOR_SHUFFLE mask.
208 // Pack vector operands 0 and 1 into a single vector with half-sized elements.
211 // Likewise, but saturate the result and set CC. PACKS_CC does signed
212 // saturation and PACKLS_CC does unsigned saturation.
216 // Unpack the first half of vector operand 0 into double-sized elements.
217 // UNPACK_HIGH sign-extends and UNPACKL_HIGH zero-extends.
221 // Likewise for the second half.
225 // Shift each element of vector operand 0 by the number of bits specified
226 // by scalar operand 1.
231 // For each element of the output type, sum across all sub-elements of
232 // operand 0 belonging to the corresponding element, and add in the
233 // rightmost sub-element of the corresponding element of operand 1.
236 // Compare integer vector operands 0 and 1 to produce the usual 0/-1
237 // vector result. VICMPE is for equality, VICMPH for "signed greater than"
238 // and VICMPHL for "unsigned greater than".
243 // Likewise, but also set the condition codes on the result.
248 // Compare floating-point vector operands 0 and 1 to produce the usual 0/-1
249 // vector result. VFCMPE is for "ordered and equal", VFCMPH for "ordered and
250 // greater than" and VFCMPHE for "ordered and greater than or equal to".
255 // Likewise, but also set the condition codes on the result.
260 // Test floating-point data class for vectors.
263 // Extend the even f32 elements of vector operand 0 to produce a vector
267 // Round the f64 elements of vector operand 0 to f32s and store them in the
268 // even elements of the result.
271 // AND the two vector operands together and set CC based on the result.
274 // String operations that set CC as a side-effect.
289 // Operand 0: the value to test
290 // Operand 1: the bit mask
293 // Strict variants of scalar floating-point comparisons.
294 // Quiet and signaling versions.
295 STRICT_FCMP
= ISD::FIRST_TARGET_STRICTFP_OPCODE
,
298 // Strict variants of vector floating-point comparisons.
299 // Quiet and signaling versions.
307 // Strict variants of VEXTEND and VROUND.
311 // Wrappers around the inner loop of an 8- or 16-bit ATOMIC_SWAP or
314 // Operand 0: the address of the containing 32-bit-aligned field
315 // Operand 1: the second operand of <op>, in the high bits of an i32
316 // for everything except ATOMIC_SWAPW
317 // Operand 2: how many bits to rotate the i32 left to bring the first
318 // operand into the high bits
319 // Operand 3: the negative of operand 2, for rotating the other way
320 // Operand 4: the width of the field in bits (8 or 16)
321 ATOMIC_SWAPW
= ISD::FIRST_TARGET_MEMORY_OPCODE
,
333 // A wrapper around the inner loop of an ATOMIC_CMP_SWAP.
335 // Operand 0: the address of the containing 32-bit-aligned field
336 // Operand 1: the compare value, in the low bits of an i32
337 // Operand 2: the swap value, in the low bits of an i32
338 // Operand 3: how many bits to rotate the i32 left to bring the first
339 // operand into the high bits
340 // Operand 4: the negative of operand 2, for rotating the other way
341 // Operand 5: the width of the field in bits (8 or 16)
344 // Atomic compare-and-swap returning CC value.
345 // Val, CC, OUTCHAIN = ATOMIC_CMP_SWAP(INCHAIN, ptr, cmp, swap)
348 // 128-bit atomic load.
349 // Val, OUTCHAIN = ATOMIC_LOAD_128(INCHAIN, ptr)
352 // 128-bit atomic store.
353 // OUTCHAIN = ATOMIC_STORE_128(INCHAIN, val, ptr)
356 // 128-bit atomic compare-and-swap.
357 // Val, CC, OUTCHAIN = ATOMIC_CMP_SWAP(INCHAIN, ptr, cmp, swap)
360 // Byte swapping load/store. Same operands as regular load/store.
363 // Element swapping load/store. Same operands as regular load/store.
366 // Prefetch from the second operand using the 4-bit control code in
367 // the first operand. The code is 1 for a load prefetch and 2 for
372 // Return true if OPCODE is some kind of PC-relative address.
373 inline bool isPCREL(unsigned Opcode
) {
374 return Opcode
== PCREL_WRAPPER
|| Opcode
== PCREL_OFFSET
;
376 } // end namespace SystemZISD
378 namespace SystemZICMP
{
379 // Describes whether an integer comparison needs to be signed or unsigned,
380 // or whether either type is OK.
386 } // end namespace SystemZICMP
388 class SystemZSubtarget
;
389 class SystemZTargetMachine
;
391 class SystemZTargetLowering
: public TargetLowering
{
393 explicit SystemZTargetLowering(const TargetMachine
&TM
,
394 const SystemZSubtarget
&STI
);
396 // Override TargetLowering.
397 MVT
getScalarShiftAmountTy(const DataLayout
&, EVT
) const override
{
400 MVT
getVectorIdxTy(const DataLayout
&DL
) const override
{
401 // Only the lower 12 bits of an element index are used, so we don't
402 // want to clobber the upper 32 bits of a GPR unnecessarily.
405 TargetLoweringBase::LegalizeTypeAction
getPreferredVectorAction(MVT VT
)
407 // Widen subvectors to the full width rather than promoting integer
408 // elements. This is better because:
410 // (a) it means that we can handle the ABI for passing and returning
411 // sub-128 vectors without having to handle them as legal types.
413 // (b) we don't have instructions to extend on load and truncate on store,
414 // so promoting the integers is less efficient.
416 // (c) there are no multiplication instructions for the widest integer
418 if (VT
.getScalarSizeInBits() % 8 == 0)
419 return TypeWidenVector
;
420 return TargetLoweringBase::getPreferredVectorAction(VT
);
422 bool isCheapToSpeculateCtlz() const override
{ return true; }
423 EVT
getSetCCResultType(const DataLayout
&DL
, LLVMContext
&,
425 bool isFMAFasterThanFMulAndFAdd(const MachineFunction
&MF
,
426 EVT VT
) const override
;
427 bool isFPImmLegal(const APFloat
&Imm
, EVT VT
,
428 bool ForCodeSize
) const override
;
429 bool isLegalICmpImmediate(int64_t Imm
) const override
;
430 bool isLegalAddImmediate(int64_t Imm
) const override
;
431 bool isLegalAddressingMode(const DataLayout
&DL
, const AddrMode
&AM
, Type
*Ty
,
433 Instruction
*I
= nullptr) const override
;
434 bool allowsMisalignedMemoryAccesses(EVT VT
, unsigned AS
,
436 MachineMemOperand::Flags Flags
,
437 bool *Fast
) const override
;
438 bool isTruncateFree(Type
*, Type
*) const override
;
439 bool isTruncateFree(EVT
, EVT
) const override
;
440 const char *getTargetNodeName(unsigned Opcode
) const override
;
441 std::pair
<unsigned, const TargetRegisterClass
*>
442 getRegForInlineAsmConstraint(const TargetRegisterInfo
*TRI
,
443 StringRef Constraint
, MVT VT
) const override
;
444 TargetLowering::ConstraintType
445 getConstraintType(StringRef Constraint
) const override
;
446 TargetLowering::ConstraintWeight
447 getSingleConstraintMatchWeight(AsmOperandInfo
&info
,
448 const char *constraint
) const override
;
449 void LowerAsmOperandForConstraint(SDValue Op
,
450 std::string
&Constraint
,
451 std::vector
<SDValue
> &Ops
,
452 SelectionDAG
&DAG
) const override
;
454 unsigned getInlineAsmMemConstraint(StringRef ConstraintCode
) const override
{
455 if (ConstraintCode
.size() == 1) {
456 switch(ConstraintCode
[0]) {
460 return InlineAsm::Constraint_o
;
462 return InlineAsm::Constraint_Q
;
464 return InlineAsm::Constraint_R
;
466 return InlineAsm::Constraint_S
;
468 return InlineAsm::Constraint_T
;
471 return TargetLowering::getInlineAsmMemConstraint(ConstraintCode
);
474 /// If a physical register, this returns the register that receives the
475 /// exception address on entry to an EH pad.
477 getExceptionPointerRegister(const Constant
*PersonalityFn
) const override
{
481 /// If a physical register, this returns the register that receives the
482 /// exception typeid on entry to a landing pad.
484 getExceptionSelectorRegister(const Constant
*PersonalityFn
) const override
{
488 /// Override to support customized stack guard loading.
489 bool useLoadStackGuardNode() const override
{
492 void insertSSPDeclarations(Module
&M
) const override
{
496 EmitInstrWithCustomInserter(MachineInstr
&MI
,
497 MachineBasicBlock
*BB
) const override
;
498 SDValue
LowerOperation(SDValue Op
, SelectionDAG
&DAG
) const override
;
499 void LowerOperationWrapper(SDNode
*N
, SmallVectorImpl
<SDValue
> &Results
,
500 SelectionDAG
&DAG
) const override
;
501 void ReplaceNodeResults(SDNode
*N
, SmallVectorImpl
<SDValue
>&Results
,
502 SelectionDAG
&DAG
) const override
;
503 const MCPhysReg
*getScratchRegisters(CallingConv::ID CC
) const override
;
504 bool allowTruncateForTailCall(Type
*, Type
*) const override
;
505 bool mayBeEmittedAsTailCall(const CallInst
*CI
) const override
;
506 SDValue
LowerFormalArguments(SDValue Chain
, CallingConv::ID CallConv
,
508 const SmallVectorImpl
<ISD::InputArg
> &Ins
,
509 const SDLoc
&DL
, SelectionDAG
&DAG
,
510 SmallVectorImpl
<SDValue
> &InVals
) const override
;
511 SDValue
LowerCall(CallLoweringInfo
&CLI
,
512 SmallVectorImpl
<SDValue
> &InVals
) const override
;
514 bool CanLowerReturn(CallingConv::ID CallConv
, MachineFunction
&MF
,
516 const SmallVectorImpl
<ISD::OutputArg
> &Outs
,
517 LLVMContext
&Context
) const override
;
518 SDValue
LowerReturn(SDValue Chain
, CallingConv::ID CallConv
, bool IsVarArg
,
519 const SmallVectorImpl
<ISD::OutputArg
> &Outs
,
520 const SmallVectorImpl
<SDValue
> &OutVals
, const SDLoc
&DL
,
521 SelectionDAG
&DAG
) const override
;
522 SDValue
PerformDAGCombine(SDNode
*N
, DAGCombinerInfo
&DCI
) const override
;
524 /// Determine which of the bits specified in Mask are known to be either
525 /// zero or one and return them in the KnownZero/KnownOne bitsets.
526 void computeKnownBitsForTargetNode(const SDValue Op
,
528 const APInt
&DemandedElts
,
529 const SelectionDAG
&DAG
,
530 unsigned Depth
= 0) const override
;
532 /// Determine the number of bits in the operation that are sign bits.
533 unsigned ComputeNumSignBitsForTargetNode(SDValue Op
,
534 const APInt
&DemandedElts
,
535 const SelectionDAG
&DAG
,
536 unsigned Depth
) const override
;
538 ISD::NodeType
getExtendForAtomicOps() const override
{
539 return ISD::ANY_EXTEND
;
542 bool supportSwiftError() const override
{
547 const SystemZSubtarget
&Subtarget
;
549 // Implement LowerOperation for individual opcodes.
550 SDValue
getVectorCmp(SelectionDAG
&DAG
, unsigned Opcode
,
551 const SDLoc
&DL
, EVT VT
,
552 SDValue CmpOp0
, SDValue CmpOp1
, SDValue Chain
) const;
553 SDValue
lowerVectorSETCC(SelectionDAG
&DAG
, const SDLoc
&DL
,
554 EVT VT
, ISD::CondCode CC
,
555 SDValue CmpOp0
, SDValue CmpOp1
,
556 SDValue Chain
= SDValue(),
557 bool IsSignaling
= false) const;
558 SDValue
lowerSETCC(SDValue Op
, SelectionDAG
&DAG
) const;
559 SDValue
lowerSTRICT_FSETCC(SDValue Op
, SelectionDAG
&DAG
,
560 bool IsSignaling
) const;
561 SDValue
lowerBR_CC(SDValue Op
, SelectionDAG
&DAG
) const;
562 SDValue
lowerSELECT_CC(SDValue Op
, SelectionDAG
&DAG
) const;
563 SDValue
lowerGlobalAddress(GlobalAddressSDNode
*Node
,
564 SelectionDAG
&DAG
) const;
565 SDValue
lowerTLSGetOffset(GlobalAddressSDNode
*Node
,
566 SelectionDAG
&DAG
, unsigned Opcode
,
567 SDValue GOTOffset
) const;
568 SDValue
lowerThreadPointer(const SDLoc
&DL
, SelectionDAG
&DAG
) const;
569 SDValue
lowerGlobalTLSAddress(GlobalAddressSDNode
*Node
,
570 SelectionDAG
&DAG
) const;
571 SDValue
lowerBlockAddress(BlockAddressSDNode
*Node
,
572 SelectionDAG
&DAG
) const;
573 SDValue
lowerJumpTable(JumpTableSDNode
*JT
, SelectionDAG
&DAG
) const;
574 SDValue
lowerConstantPool(ConstantPoolSDNode
*CP
, SelectionDAG
&DAG
) const;
575 SDValue
lowerFRAMEADDR(SDValue Op
, SelectionDAG
&DAG
) const;
576 SDValue
lowerRETURNADDR(SDValue Op
, SelectionDAG
&DAG
) const;
577 SDValue
lowerVASTART(SDValue Op
, SelectionDAG
&DAG
) const;
578 SDValue
lowerVACOPY(SDValue Op
, SelectionDAG
&DAG
) const;
579 SDValue
lowerDYNAMIC_STACKALLOC(SDValue Op
, SelectionDAG
&DAG
) const;
580 SDValue
lowerGET_DYNAMIC_AREA_OFFSET(SDValue Op
, SelectionDAG
&DAG
) const;
581 SDValue
lowerSMUL_LOHI(SDValue Op
, SelectionDAG
&DAG
) const;
582 SDValue
lowerUMUL_LOHI(SDValue Op
, SelectionDAG
&DAG
) const;
583 SDValue
lowerSDIVREM(SDValue Op
, SelectionDAG
&DAG
) const;
584 SDValue
lowerUDIVREM(SDValue Op
, SelectionDAG
&DAG
) const;
585 SDValue
lowerXALUO(SDValue Op
, SelectionDAG
&DAG
) const;
586 SDValue
lowerADDSUBCARRY(SDValue Op
, SelectionDAG
&DAG
) const;
587 SDValue
lowerBITCAST(SDValue Op
, SelectionDAG
&DAG
) const;
588 SDValue
lowerOR(SDValue Op
, SelectionDAG
&DAG
) const;
589 SDValue
lowerCTPOP(SDValue Op
, SelectionDAG
&DAG
) const;
590 SDValue
lowerATOMIC_FENCE(SDValue Op
, SelectionDAG
&DAG
) const;
591 SDValue
lowerATOMIC_LOAD(SDValue Op
, SelectionDAG
&DAG
) const;
592 SDValue
lowerATOMIC_STORE(SDValue Op
, SelectionDAG
&DAG
) const;
593 SDValue
lowerATOMIC_LOAD_OP(SDValue Op
, SelectionDAG
&DAG
,
594 unsigned Opcode
) const;
595 SDValue
lowerATOMIC_LOAD_SUB(SDValue Op
, SelectionDAG
&DAG
) const;
596 SDValue
lowerATOMIC_CMP_SWAP(SDValue Op
, SelectionDAG
&DAG
) const;
597 SDValue
lowerSTACKSAVE(SDValue Op
, SelectionDAG
&DAG
) const;
598 SDValue
lowerSTACKRESTORE(SDValue Op
, SelectionDAG
&DAG
) const;
599 SDValue
lowerPREFETCH(SDValue Op
, SelectionDAG
&DAG
) const;
600 SDValue
lowerINTRINSIC_W_CHAIN(SDValue Op
, SelectionDAG
&DAG
) const;
601 SDValue
lowerINTRINSIC_WO_CHAIN(SDValue Op
, SelectionDAG
&DAG
) const;
602 bool isVectorElementLoad(SDValue Op
) const;
603 SDValue
buildVector(SelectionDAG
&DAG
, const SDLoc
&DL
, EVT VT
,
604 SmallVectorImpl
<SDValue
> &Elems
) const;
605 SDValue
lowerBUILD_VECTOR(SDValue Op
, SelectionDAG
&DAG
) const;
606 SDValue
lowerVECTOR_SHUFFLE(SDValue Op
, SelectionDAG
&DAG
) const;
607 SDValue
lowerSCALAR_TO_VECTOR(SDValue Op
, SelectionDAG
&DAG
) const;
608 SDValue
lowerINSERT_VECTOR_ELT(SDValue Op
, SelectionDAG
&DAG
) const;
609 SDValue
lowerEXTRACT_VECTOR_ELT(SDValue Op
, SelectionDAG
&DAG
) const;
610 SDValue
lowerExtendVectorInreg(SDValue Op
, SelectionDAG
&DAG
,
611 unsigned UnpackHigh
) const;
612 SDValue
lowerShift(SDValue Op
, SelectionDAG
&DAG
, unsigned ByScalar
) const;
614 bool canTreatAsByteVector(EVT VT
) const;
615 SDValue
combineExtract(const SDLoc
&DL
, EVT ElemVT
, EVT VecVT
, SDValue OrigOp
,
616 unsigned Index
, DAGCombinerInfo
&DCI
,
618 SDValue
combineTruncateExtract(const SDLoc
&DL
, EVT TruncVT
, SDValue Op
,
619 DAGCombinerInfo
&DCI
) const;
620 SDValue
combineZERO_EXTEND(SDNode
*N
, DAGCombinerInfo
&DCI
) const;
621 SDValue
combineSIGN_EXTEND(SDNode
*N
, DAGCombinerInfo
&DCI
) const;
622 SDValue
combineSIGN_EXTEND_INREG(SDNode
*N
, DAGCombinerInfo
&DCI
) const;
623 SDValue
combineMERGE(SDNode
*N
, DAGCombinerInfo
&DCI
) const;
624 bool canLoadStoreByteSwapped(EVT VT
) const;
625 SDValue
combineLOAD(SDNode
*N
, DAGCombinerInfo
&DCI
) const;
626 SDValue
combineSTORE(SDNode
*N
, DAGCombinerInfo
&DCI
) const;
627 SDValue
combineVECTOR_SHUFFLE(SDNode
*N
, DAGCombinerInfo
&DCI
) const;
628 SDValue
combineEXTRACT_VECTOR_ELT(SDNode
*N
, DAGCombinerInfo
&DCI
) const;
629 SDValue
combineJOIN_DWORDS(SDNode
*N
, DAGCombinerInfo
&DCI
) const;
630 SDValue
combineFP_ROUND(SDNode
*N
, DAGCombinerInfo
&DCI
) const;
631 SDValue
combineFP_EXTEND(SDNode
*N
, DAGCombinerInfo
&DCI
) const;
632 SDValue
combineBSWAP(SDNode
*N
, DAGCombinerInfo
&DCI
) const;
633 SDValue
combineBR_CCMASK(SDNode
*N
, DAGCombinerInfo
&DCI
) const;
634 SDValue
combineSELECT_CCMASK(SDNode
*N
, DAGCombinerInfo
&DCI
) const;
635 SDValue
combineGET_CCMASK(SDNode
*N
, DAGCombinerInfo
&DCI
) const;
636 SDValue
combineIntDIVREM(SDNode
*N
, DAGCombinerInfo
&DCI
) const;
638 SDValue
unwrapAddress(SDValue N
) const override
;
640 // If the last instruction before MBBI in MBB was some form of COMPARE,
641 // try to replace it with a COMPARE AND BRANCH just before MBBI.
642 // CCMask and Target are the BRC-like operands for the branch.
643 // Return true if the change was made.
644 bool convertPrevCompareToBranch(MachineBasicBlock
*MBB
,
645 MachineBasicBlock::iterator MBBI
,
647 MachineBasicBlock
*Target
) const;
649 // Implement EmitInstrWithCustomInserter for individual operation types.
650 MachineBasicBlock
*emitSelect(MachineInstr
&MI
, MachineBasicBlock
*BB
) const;
651 MachineBasicBlock
*emitCondStore(MachineInstr
&MI
, MachineBasicBlock
*BB
,
652 unsigned StoreOpcode
, unsigned STOCOpcode
,
654 MachineBasicBlock
*emitPair128(MachineInstr
&MI
,
655 MachineBasicBlock
*MBB
) const;
656 MachineBasicBlock
*emitExt128(MachineInstr
&MI
, MachineBasicBlock
*MBB
,
657 bool ClearEven
) const;
658 MachineBasicBlock
*emitAtomicLoadBinary(MachineInstr
&MI
,
659 MachineBasicBlock
*BB
,
660 unsigned BinOpcode
, unsigned BitSize
,
661 bool Invert
= false) const;
662 MachineBasicBlock
*emitAtomicLoadMinMax(MachineInstr
&MI
,
663 MachineBasicBlock
*MBB
,
664 unsigned CompareOpcode
,
665 unsigned KeepOldMask
,
666 unsigned BitSize
) const;
667 MachineBasicBlock
*emitAtomicCmpSwapW(MachineInstr
&MI
,
668 MachineBasicBlock
*BB
) const;
669 MachineBasicBlock
*emitMemMemWrapper(MachineInstr
&MI
, MachineBasicBlock
*BB
,
670 unsigned Opcode
) const;
671 MachineBasicBlock
*emitStringWrapper(MachineInstr
&MI
, MachineBasicBlock
*BB
,
672 unsigned Opcode
) const;
673 MachineBasicBlock
*emitTransactionBegin(MachineInstr
&MI
,
674 MachineBasicBlock
*MBB
,
675 unsigned Opcode
, bool NoFloat
) const;
676 MachineBasicBlock
*emitLoadAndTestCmp0(MachineInstr
&MI
,
677 MachineBasicBlock
*MBB
,
678 unsigned Opcode
) const;
680 MachineMemOperand::Flags
681 getTargetMMOFlags(const Instruction
&I
) const override
;
682 const TargetRegisterClass
*getRepRegClassFor(MVT VT
) const override
;
685 struct SystemZVectorConstantInfo
{
687 APInt IntBits
; // The 128 bits as an integer.
688 APInt SplatBits
; // Smallest splat value.
689 APInt SplatUndef
; // Bits correspoding to undef operands of the BVN.
690 unsigned SplatBitSize
= 0;
691 bool isFP128
= false;
695 SmallVector
<unsigned, 2> OpVals
;
697 SystemZVectorConstantInfo(APFloat FPImm
);
698 SystemZVectorConstantInfo(BuildVectorSDNode
*BVN
);
699 bool isVectorConstantLegal(const SystemZSubtarget
&Subtarget
);
702 } // end namespace llvm