[PowerPC] Collect some CallLowering arguments into a struct. [NFC]
[llvm-project.git] / llvm / lib / Target / SystemZ / SystemZInstrInfo.cpp
blob191792ad41e1746afe8fcd9a5424a3b2f3cb65f6
1 //===-- SystemZInstrInfo.cpp - SystemZ instruction information ------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file contains the SystemZ implementation of the TargetInstrInfo class.
11 //===----------------------------------------------------------------------===//
13 #include "SystemZInstrInfo.h"
14 #include "MCTargetDesc/SystemZMCTargetDesc.h"
15 #include "SystemZ.h"
16 #include "SystemZInstrBuilder.h"
17 #include "SystemZSubtarget.h"
18 #include "llvm/ADT/Statistic.h"
19 #include "llvm/CodeGen/LiveInterval.h"
20 #include "llvm/CodeGen/LiveIntervals.h"
21 #include "llvm/CodeGen/LiveVariables.h"
22 #include "llvm/CodeGen/MachineBasicBlock.h"
23 #include "llvm/CodeGen/MachineFrameInfo.h"
24 #include "llvm/CodeGen/MachineFunction.h"
25 #include "llvm/CodeGen/MachineInstr.h"
26 #include "llvm/CodeGen/MachineMemOperand.h"
27 #include "llvm/CodeGen/MachineOperand.h"
28 #include "llvm/CodeGen/MachineRegisterInfo.h"
29 #include "llvm/CodeGen/SlotIndexes.h"
30 #include "llvm/CodeGen/TargetInstrInfo.h"
31 #include "llvm/CodeGen/TargetSubtargetInfo.h"
32 #include "llvm/MC/MCInstrDesc.h"
33 #include "llvm/MC/MCRegisterInfo.h"
34 #include "llvm/Support/BranchProbability.h"
35 #include "llvm/Support/ErrorHandling.h"
36 #include "llvm/Support/MathExtras.h"
37 #include "llvm/Target/TargetMachine.h"
38 #include <cassert>
39 #include <cstdint>
40 #include <iterator>
42 using namespace llvm;
44 #define GET_INSTRINFO_CTOR_DTOR
45 #define GET_INSTRMAP_INFO
46 #include "SystemZGenInstrInfo.inc"
48 #define DEBUG_TYPE "systemz-II"
50 // Return a mask with Count low bits set.
51 static uint64_t allOnes(unsigned int Count) {
52 return Count == 0 ? 0 : (uint64_t(1) << (Count - 1) << 1) - 1;
55 // Pin the vtable to this file.
56 void SystemZInstrInfo::anchor() {}
58 SystemZInstrInfo::SystemZInstrInfo(SystemZSubtarget &sti)
59 : SystemZGenInstrInfo(SystemZ::ADJCALLSTACKDOWN, SystemZ::ADJCALLSTACKUP),
60 RI(), STI(sti) {
63 // MI is a 128-bit load or store. Split it into two 64-bit loads or stores,
64 // each having the opcode given by NewOpcode.
65 void SystemZInstrInfo::splitMove(MachineBasicBlock::iterator MI,
66 unsigned NewOpcode) const {
67 MachineBasicBlock *MBB = MI->getParent();
68 MachineFunction &MF = *MBB->getParent();
70 // Get two load or store instructions. Use the original instruction for one
71 // of them (arbitrarily the second here) and create a clone for the other.
72 MachineInstr *EarlierMI = MF.CloneMachineInstr(&*MI);
73 MBB->insert(MI, EarlierMI);
75 // Set up the two 64-bit registers and remember super reg and its flags.
76 MachineOperand &HighRegOp = EarlierMI->getOperand(0);
77 MachineOperand &LowRegOp = MI->getOperand(0);
78 Register Reg128 = LowRegOp.getReg();
79 unsigned Reg128Killed = getKillRegState(LowRegOp.isKill());
80 unsigned Reg128Undef = getUndefRegState(LowRegOp.isUndef());
81 HighRegOp.setReg(RI.getSubReg(HighRegOp.getReg(), SystemZ::subreg_h64));
82 LowRegOp.setReg(RI.getSubReg(LowRegOp.getReg(), SystemZ::subreg_l64));
84 if (MI->mayStore()) {
85 // Add implicit uses of the super register in case one of the subregs is
86 // undefined. We could track liveness and skip storing an undefined
87 // subreg, but this is hopefully rare (discovered with llvm-stress).
88 // If Reg128 was killed, set kill flag on MI.
89 unsigned Reg128UndefImpl = (Reg128Undef | RegState::Implicit);
90 MachineInstrBuilder(MF, EarlierMI).addReg(Reg128, Reg128UndefImpl);
91 MachineInstrBuilder(MF, MI).addReg(Reg128, (Reg128UndefImpl | Reg128Killed));
94 // The address in the first (high) instruction is already correct.
95 // Adjust the offset in the second (low) instruction.
96 MachineOperand &HighOffsetOp = EarlierMI->getOperand(2);
97 MachineOperand &LowOffsetOp = MI->getOperand(2);
98 LowOffsetOp.setImm(LowOffsetOp.getImm() + 8);
100 // Clear the kill flags on the registers in the first instruction.
101 if (EarlierMI->getOperand(0).isReg() && EarlierMI->getOperand(0).isUse())
102 EarlierMI->getOperand(0).setIsKill(false);
103 EarlierMI->getOperand(1).setIsKill(false);
104 EarlierMI->getOperand(3).setIsKill(false);
106 // Set the opcodes.
107 unsigned HighOpcode = getOpcodeForOffset(NewOpcode, HighOffsetOp.getImm());
108 unsigned LowOpcode = getOpcodeForOffset(NewOpcode, LowOffsetOp.getImm());
109 assert(HighOpcode && LowOpcode && "Both offsets should be in range");
111 EarlierMI->setDesc(get(HighOpcode));
112 MI->setDesc(get(LowOpcode));
115 // Split ADJDYNALLOC instruction MI.
116 void SystemZInstrInfo::splitAdjDynAlloc(MachineBasicBlock::iterator MI) const {
117 MachineBasicBlock *MBB = MI->getParent();
118 MachineFunction &MF = *MBB->getParent();
119 MachineFrameInfo &MFFrame = MF.getFrameInfo();
120 MachineOperand &OffsetMO = MI->getOperand(2);
122 uint64_t Offset = (MFFrame.getMaxCallFrameSize() +
123 SystemZMC::CallFrameSize +
124 OffsetMO.getImm());
125 unsigned NewOpcode = getOpcodeForOffset(SystemZ::LA, Offset);
126 assert(NewOpcode && "No support for huge argument lists yet");
127 MI->setDesc(get(NewOpcode));
128 OffsetMO.setImm(Offset);
131 // MI is an RI-style pseudo instruction. Replace it with LowOpcode
132 // if the first operand is a low GR32 and HighOpcode if the first operand
133 // is a high GR32. ConvertHigh is true if LowOpcode takes a signed operand
134 // and HighOpcode takes an unsigned 32-bit operand. In those cases,
135 // MI has the same kind of operand as LowOpcode, so needs to be converted
136 // if HighOpcode is used.
137 void SystemZInstrInfo::expandRIPseudo(MachineInstr &MI, unsigned LowOpcode,
138 unsigned HighOpcode,
139 bool ConvertHigh) const {
140 Register Reg = MI.getOperand(0).getReg();
141 bool IsHigh = SystemZ::isHighReg(Reg);
142 MI.setDesc(get(IsHigh ? HighOpcode : LowOpcode));
143 if (IsHigh && ConvertHigh)
144 MI.getOperand(1).setImm(uint32_t(MI.getOperand(1).getImm()));
147 // MI is a three-operand RIE-style pseudo instruction. Replace it with
148 // LowOpcodeK if the registers are both low GR32s, otherwise use a move
149 // followed by HighOpcode or LowOpcode, depending on whether the target
150 // is a high or low GR32.
151 void SystemZInstrInfo::expandRIEPseudo(MachineInstr &MI, unsigned LowOpcode,
152 unsigned LowOpcodeK,
153 unsigned HighOpcode) const {
154 Register DestReg = MI.getOperand(0).getReg();
155 Register SrcReg = MI.getOperand(1).getReg();
156 bool DestIsHigh = SystemZ::isHighReg(DestReg);
157 bool SrcIsHigh = SystemZ::isHighReg(SrcReg);
158 if (!DestIsHigh && !SrcIsHigh)
159 MI.setDesc(get(LowOpcodeK));
160 else {
161 if (DestReg != SrcReg) {
162 emitGRX32Move(*MI.getParent(), MI, MI.getDebugLoc(), DestReg, SrcReg,
163 SystemZ::LR, 32, MI.getOperand(1).isKill(),
164 MI.getOperand(1).isUndef());
165 MI.getOperand(1).setReg(DestReg);
167 MI.setDesc(get(DestIsHigh ? HighOpcode : LowOpcode));
168 MI.tieOperands(0, 1);
172 // MI is an RXY-style pseudo instruction. Replace it with LowOpcode
173 // if the first operand is a low GR32 and HighOpcode if the first operand
174 // is a high GR32.
175 void SystemZInstrInfo::expandRXYPseudo(MachineInstr &MI, unsigned LowOpcode,
176 unsigned HighOpcode) const {
177 Register Reg = MI.getOperand(0).getReg();
178 unsigned Opcode = getOpcodeForOffset(
179 SystemZ::isHighReg(Reg) ? HighOpcode : LowOpcode,
180 MI.getOperand(2).getImm());
181 MI.setDesc(get(Opcode));
184 // MI is a load-on-condition pseudo instruction with a single register
185 // (source or destination) operand. Replace it with LowOpcode if the
186 // register is a low GR32 and HighOpcode if the register is a high GR32.
187 void SystemZInstrInfo::expandLOCPseudo(MachineInstr &MI, unsigned LowOpcode,
188 unsigned HighOpcode) const {
189 Register Reg = MI.getOperand(0).getReg();
190 unsigned Opcode = SystemZ::isHighReg(Reg) ? HighOpcode : LowOpcode;
191 MI.setDesc(get(Opcode));
194 // MI is an RR-style pseudo instruction that zero-extends the low Size bits
195 // of one GRX32 into another. Replace it with LowOpcode if both operands
196 // are low registers, otherwise use RISB[LH]G.
197 void SystemZInstrInfo::expandZExtPseudo(MachineInstr &MI, unsigned LowOpcode,
198 unsigned Size) const {
199 MachineInstrBuilder MIB =
200 emitGRX32Move(*MI.getParent(), MI, MI.getDebugLoc(),
201 MI.getOperand(0).getReg(), MI.getOperand(1).getReg(), LowOpcode,
202 Size, MI.getOperand(1).isKill(), MI.getOperand(1).isUndef());
204 // Keep the remaining operands as-is.
205 for (unsigned I = 2; I < MI.getNumOperands(); ++I)
206 MIB.add(MI.getOperand(I));
208 MI.eraseFromParent();
211 void SystemZInstrInfo::expandLoadStackGuard(MachineInstr *MI) const {
212 MachineBasicBlock *MBB = MI->getParent();
213 MachineFunction &MF = *MBB->getParent();
214 const Register Reg64 = MI->getOperand(0).getReg();
215 const Register Reg32 = RI.getSubReg(Reg64, SystemZ::subreg_l32);
217 // EAR can only load the low subregister so us a shift for %a0 to produce
218 // the GR containing %a0 and %a1.
220 // ear <reg>, %a0
221 BuildMI(*MBB, MI, MI->getDebugLoc(), get(SystemZ::EAR), Reg32)
222 .addReg(SystemZ::A0)
223 .addReg(Reg64, RegState::ImplicitDefine);
225 // sllg <reg>, <reg>, 32
226 BuildMI(*MBB, MI, MI->getDebugLoc(), get(SystemZ::SLLG), Reg64)
227 .addReg(Reg64)
228 .addReg(0)
229 .addImm(32);
231 // ear <reg>, %a1
232 BuildMI(*MBB, MI, MI->getDebugLoc(), get(SystemZ::EAR), Reg32)
233 .addReg(SystemZ::A1);
235 // lg <reg>, 40(<reg>)
236 MI->setDesc(get(SystemZ::LG));
237 MachineInstrBuilder(MF, MI).addReg(Reg64).addImm(40).addReg(0);
240 // Emit a zero-extending move from 32-bit GPR SrcReg to 32-bit GPR
241 // DestReg before MBBI in MBB. Use LowLowOpcode when both DestReg and SrcReg
242 // are low registers, otherwise use RISB[LH]G. Size is the number of bits
243 // taken from the low end of SrcReg (8 for LLCR, 16 for LLHR and 32 for LR).
244 // KillSrc is true if this move is the last use of SrcReg.
245 MachineInstrBuilder
246 SystemZInstrInfo::emitGRX32Move(MachineBasicBlock &MBB,
247 MachineBasicBlock::iterator MBBI,
248 const DebugLoc &DL, unsigned DestReg,
249 unsigned SrcReg, unsigned LowLowOpcode,
250 unsigned Size, bool KillSrc,
251 bool UndefSrc) const {
252 unsigned Opcode;
253 bool DestIsHigh = SystemZ::isHighReg(DestReg);
254 bool SrcIsHigh = SystemZ::isHighReg(SrcReg);
255 if (DestIsHigh && SrcIsHigh)
256 Opcode = SystemZ::RISBHH;
257 else if (DestIsHigh && !SrcIsHigh)
258 Opcode = SystemZ::RISBHL;
259 else if (!DestIsHigh && SrcIsHigh)
260 Opcode = SystemZ::RISBLH;
261 else {
262 return BuildMI(MBB, MBBI, DL, get(LowLowOpcode), DestReg)
263 .addReg(SrcReg, getKillRegState(KillSrc) | getUndefRegState(UndefSrc));
265 unsigned Rotate = (DestIsHigh != SrcIsHigh ? 32 : 0);
266 return BuildMI(MBB, MBBI, DL, get(Opcode), DestReg)
267 .addReg(DestReg, RegState::Undef)
268 .addReg(SrcReg, getKillRegState(KillSrc) | getUndefRegState(UndefSrc))
269 .addImm(32 - Size).addImm(128 + 31).addImm(Rotate);
272 MachineInstr *SystemZInstrInfo::commuteInstructionImpl(MachineInstr &MI,
273 bool NewMI,
274 unsigned OpIdx1,
275 unsigned OpIdx2) const {
276 auto cloneIfNew = [NewMI](MachineInstr &MI) -> MachineInstr & {
277 if (NewMI)
278 return *MI.getParent()->getParent()->CloneMachineInstr(&MI);
279 return MI;
282 switch (MI.getOpcode()) {
283 case SystemZ::SELRMux:
284 case SystemZ::SELFHR:
285 case SystemZ::SELR:
286 case SystemZ::SELGR:
287 case SystemZ::LOCRMux:
288 case SystemZ::LOCFHR:
289 case SystemZ::LOCR:
290 case SystemZ::LOCGR: {
291 auto &WorkingMI = cloneIfNew(MI);
292 // Invert condition.
293 unsigned CCValid = WorkingMI.getOperand(3).getImm();
294 unsigned CCMask = WorkingMI.getOperand(4).getImm();
295 WorkingMI.getOperand(4).setImm(CCMask ^ CCValid);
296 return TargetInstrInfo::commuteInstructionImpl(WorkingMI, /*NewMI=*/false,
297 OpIdx1, OpIdx2);
299 default:
300 return TargetInstrInfo::commuteInstructionImpl(MI, NewMI, OpIdx1, OpIdx2);
304 // If MI is a simple load or store for a frame object, return the register
305 // it loads or stores and set FrameIndex to the index of the frame object.
306 // Return 0 otherwise.
308 // Flag is SimpleBDXLoad for loads and SimpleBDXStore for stores.
309 static int isSimpleMove(const MachineInstr &MI, int &FrameIndex,
310 unsigned Flag) {
311 const MCInstrDesc &MCID = MI.getDesc();
312 if ((MCID.TSFlags & Flag) && MI.getOperand(1).isFI() &&
313 MI.getOperand(2).getImm() == 0 && MI.getOperand(3).getReg() == 0) {
314 FrameIndex = MI.getOperand(1).getIndex();
315 return MI.getOperand(0).getReg();
317 return 0;
320 unsigned SystemZInstrInfo::isLoadFromStackSlot(const MachineInstr &MI,
321 int &FrameIndex) const {
322 return isSimpleMove(MI, FrameIndex, SystemZII::SimpleBDXLoad);
325 unsigned SystemZInstrInfo::isStoreToStackSlot(const MachineInstr &MI,
326 int &FrameIndex) const {
327 return isSimpleMove(MI, FrameIndex, SystemZII::SimpleBDXStore);
330 bool SystemZInstrInfo::isStackSlotCopy(const MachineInstr &MI,
331 int &DestFrameIndex,
332 int &SrcFrameIndex) const {
333 // Check for MVC 0(Length,FI1),0(FI2)
334 const MachineFrameInfo &MFI = MI.getParent()->getParent()->getFrameInfo();
335 if (MI.getOpcode() != SystemZ::MVC || !MI.getOperand(0).isFI() ||
336 MI.getOperand(1).getImm() != 0 || !MI.getOperand(3).isFI() ||
337 MI.getOperand(4).getImm() != 0)
338 return false;
340 // Check that Length covers the full slots.
341 int64_t Length = MI.getOperand(2).getImm();
342 unsigned FI1 = MI.getOperand(0).getIndex();
343 unsigned FI2 = MI.getOperand(3).getIndex();
344 if (MFI.getObjectSize(FI1) != Length ||
345 MFI.getObjectSize(FI2) != Length)
346 return false;
348 DestFrameIndex = FI1;
349 SrcFrameIndex = FI2;
350 return true;
353 bool SystemZInstrInfo::analyzeBranch(MachineBasicBlock &MBB,
354 MachineBasicBlock *&TBB,
355 MachineBasicBlock *&FBB,
356 SmallVectorImpl<MachineOperand> &Cond,
357 bool AllowModify) const {
358 // Most of the code and comments here are boilerplate.
360 // Start from the bottom of the block and work up, examining the
361 // terminator instructions.
362 MachineBasicBlock::iterator I = MBB.end();
363 while (I != MBB.begin()) {
364 --I;
365 if (I->isDebugInstr())
366 continue;
368 // Working from the bottom, when we see a non-terminator instruction, we're
369 // done.
370 if (!isUnpredicatedTerminator(*I))
371 break;
373 // A terminator that isn't a branch can't easily be handled by this
374 // analysis.
375 if (!I->isBranch())
376 return true;
378 // Can't handle indirect branches.
379 SystemZII::Branch Branch(getBranchInfo(*I));
380 if (!Branch.hasMBBTarget())
381 return true;
383 // Punt on compound branches.
384 if (Branch.Type != SystemZII::BranchNormal)
385 return true;
387 if (Branch.CCMask == SystemZ::CCMASK_ANY) {
388 // Handle unconditional branches.
389 if (!AllowModify) {
390 TBB = Branch.getMBBTarget();
391 continue;
394 // If the block has any instructions after a JMP, delete them.
395 while (std::next(I) != MBB.end())
396 std::next(I)->eraseFromParent();
398 Cond.clear();
399 FBB = nullptr;
401 // Delete the JMP if it's equivalent to a fall-through.
402 if (MBB.isLayoutSuccessor(Branch.getMBBTarget())) {
403 TBB = nullptr;
404 I->eraseFromParent();
405 I = MBB.end();
406 continue;
409 // TBB is used to indicate the unconditinal destination.
410 TBB = Branch.getMBBTarget();
411 continue;
414 // Working from the bottom, handle the first conditional branch.
415 if (Cond.empty()) {
416 // FIXME: add X86-style branch swap
417 FBB = TBB;
418 TBB = Branch.getMBBTarget();
419 Cond.push_back(MachineOperand::CreateImm(Branch.CCValid));
420 Cond.push_back(MachineOperand::CreateImm(Branch.CCMask));
421 continue;
424 // Handle subsequent conditional branches.
425 assert(Cond.size() == 2 && TBB && "Should have seen a conditional branch");
427 // Only handle the case where all conditional branches branch to the same
428 // destination.
429 if (TBB != Branch.getMBBTarget())
430 return true;
432 // If the conditions are the same, we can leave them alone.
433 unsigned OldCCValid = Cond[0].getImm();
434 unsigned OldCCMask = Cond[1].getImm();
435 if (OldCCValid == Branch.CCValid && OldCCMask == Branch.CCMask)
436 continue;
438 // FIXME: Try combining conditions like X86 does. Should be easy on Z!
439 return false;
442 return false;
445 unsigned SystemZInstrInfo::removeBranch(MachineBasicBlock &MBB,
446 int *BytesRemoved) const {
447 assert(!BytesRemoved && "code size not handled");
449 // Most of the code and comments here are boilerplate.
450 MachineBasicBlock::iterator I = MBB.end();
451 unsigned Count = 0;
453 while (I != MBB.begin()) {
454 --I;
455 if (I->isDebugInstr())
456 continue;
457 if (!I->isBranch())
458 break;
459 if (!getBranchInfo(*I).hasMBBTarget())
460 break;
461 // Remove the branch.
462 I->eraseFromParent();
463 I = MBB.end();
464 ++Count;
467 return Count;
470 bool SystemZInstrInfo::
471 reverseBranchCondition(SmallVectorImpl<MachineOperand> &Cond) const {
472 assert(Cond.size() == 2 && "Invalid condition");
473 Cond[1].setImm(Cond[1].getImm() ^ Cond[0].getImm());
474 return false;
477 unsigned SystemZInstrInfo::insertBranch(MachineBasicBlock &MBB,
478 MachineBasicBlock *TBB,
479 MachineBasicBlock *FBB,
480 ArrayRef<MachineOperand> Cond,
481 const DebugLoc &DL,
482 int *BytesAdded) const {
483 // In this function we output 32-bit branches, which should always
484 // have enough range. They can be shortened and relaxed by later code
485 // in the pipeline, if desired.
487 // Shouldn't be a fall through.
488 assert(TBB && "insertBranch must not be told to insert a fallthrough");
489 assert((Cond.size() == 2 || Cond.size() == 0) &&
490 "SystemZ branch conditions have one component!");
491 assert(!BytesAdded && "code size not handled");
493 if (Cond.empty()) {
494 // Unconditional branch?
495 assert(!FBB && "Unconditional branch with multiple successors!");
496 BuildMI(&MBB, DL, get(SystemZ::J)).addMBB(TBB);
497 return 1;
500 // Conditional branch.
501 unsigned Count = 0;
502 unsigned CCValid = Cond[0].getImm();
503 unsigned CCMask = Cond[1].getImm();
504 BuildMI(&MBB, DL, get(SystemZ::BRC))
505 .addImm(CCValid).addImm(CCMask).addMBB(TBB);
506 ++Count;
508 if (FBB) {
509 // Two-way Conditional branch. Insert the second branch.
510 BuildMI(&MBB, DL, get(SystemZ::J)).addMBB(FBB);
511 ++Count;
513 return Count;
516 bool SystemZInstrInfo::analyzeCompare(const MachineInstr &MI, unsigned &SrcReg,
517 unsigned &SrcReg2, int &Mask,
518 int &Value) const {
519 assert(MI.isCompare() && "Caller should have checked for a comparison");
521 if (MI.getNumExplicitOperands() == 2 && MI.getOperand(0).isReg() &&
522 MI.getOperand(1).isImm()) {
523 SrcReg = MI.getOperand(0).getReg();
524 SrcReg2 = 0;
525 Value = MI.getOperand(1).getImm();
526 Mask = ~0;
527 return true;
530 return false;
533 bool SystemZInstrInfo::canInsertSelect(const MachineBasicBlock &MBB,
534 ArrayRef<MachineOperand> Pred,
535 unsigned DstReg, unsigned TrueReg,
536 unsigned FalseReg, int &CondCycles,
537 int &TrueCycles,
538 int &FalseCycles) const {
539 // Not all subtargets have LOCR instructions.
540 if (!STI.hasLoadStoreOnCond())
541 return false;
542 if (Pred.size() != 2)
543 return false;
545 // Check register classes.
546 const MachineRegisterInfo &MRI = MBB.getParent()->getRegInfo();
547 const TargetRegisterClass *RC =
548 RI.getCommonSubClass(MRI.getRegClass(TrueReg), MRI.getRegClass(FalseReg));
549 if (!RC)
550 return false;
552 // We have LOCR instructions for 32 and 64 bit general purpose registers.
553 if ((STI.hasLoadStoreOnCond2() &&
554 SystemZ::GRX32BitRegClass.hasSubClassEq(RC)) ||
555 SystemZ::GR32BitRegClass.hasSubClassEq(RC) ||
556 SystemZ::GR64BitRegClass.hasSubClassEq(RC)) {
557 CondCycles = 2;
558 TrueCycles = 2;
559 FalseCycles = 2;
560 return true;
563 // Can't do anything else.
564 return false;
567 void SystemZInstrInfo::insertSelect(MachineBasicBlock &MBB,
568 MachineBasicBlock::iterator I,
569 const DebugLoc &DL, unsigned DstReg,
570 ArrayRef<MachineOperand> Pred,
571 unsigned TrueReg,
572 unsigned FalseReg) const {
573 MachineRegisterInfo &MRI = MBB.getParent()->getRegInfo();
574 const TargetRegisterClass *RC = MRI.getRegClass(DstReg);
576 assert(Pred.size() == 2 && "Invalid condition");
577 unsigned CCValid = Pred[0].getImm();
578 unsigned CCMask = Pred[1].getImm();
580 unsigned Opc;
581 if (SystemZ::GRX32BitRegClass.hasSubClassEq(RC)) {
582 if (STI.hasMiscellaneousExtensions3())
583 Opc = SystemZ::SELRMux;
584 else if (STI.hasLoadStoreOnCond2())
585 Opc = SystemZ::LOCRMux;
586 else {
587 Opc = SystemZ::LOCR;
588 MRI.constrainRegClass(DstReg, &SystemZ::GR32BitRegClass);
589 Register TReg = MRI.createVirtualRegister(&SystemZ::GR32BitRegClass);
590 Register FReg = MRI.createVirtualRegister(&SystemZ::GR32BitRegClass);
591 BuildMI(MBB, I, DL, get(TargetOpcode::COPY), TReg).addReg(TrueReg);
592 BuildMI(MBB, I, DL, get(TargetOpcode::COPY), FReg).addReg(FalseReg);
593 TrueReg = TReg;
594 FalseReg = FReg;
596 } else if (SystemZ::GR64BitRegClass.hasSubClassEq(RC)) {
597 if (STI.hasMiscellaneousExtensions3())
598 Opc = SystemZ::SELGR;
599 else
600 Opc = SystemZ::LOCGR;
601 } else
602 llvm_unreachable("Invalid register class");
604 BuildMI(MBB, I, DL, get(Opc), DstReg)
605 .addReg(FalseReg).addReg(TrueReg)
606 .addImm(CCValid).addImm(CCMask);
609 bool SystemZInstrInfo::FoldImmediate(MachineInstr &UseMI, MachineInstr &DefMI,
610 unsigned Reg,
611 MachineRegisterInfo *MRI) const {
612 unsigned DefOpc = DefMI.getOpcode();
613 if (DefOpc != SystemZ::LHIMux && DefOpc != SystemZ::LHI &&
614 DefOpc != SystemZ::LGHI)
615 return false;
616 if (DefMI.getOperand(0).getReg() != Reg)
617 return false;
618 int32_t ImmVal = (int32_t)DefMI.getOperand(1).getImm();
620 unsigned UseOpc = UseMI.getOpcode();
621 unsigned NewUseOpc;
622 unsigned UseIdx;
623 int CommuteIdx = -1;
624 bool TieOps = false;
625 switch (UseOpc) {
626 case SystemZ::SELRMux:
627 TieOps = true;
628 LLVM_FALLTHROUGH;
629 case SystemZ::LOCRMux:
630 if (!STI.hasLoadStoreOnCond2())
631 return false;
632 NewUseOpc = SystemZ::LOCHIMux;
633 if (UseMI.getOperand(2).getReg() == Reg)
634 UseIdx = 2;
635 else if (UseMI.getOperand(1).getReg() == Reg)
636 UseIdx = 2, CommuteIdx = 1;
637 else
638 return false;
639 break;
640 case SystemZ::SELGR:
641 TieOps = true;
642 LLVM_FALLTHROUGH;
643 case SystemZ::LOCGR:
644 if (!STI.hasLoadStoreOnCond2())
645 return false;
646 NewUseOpc = SystemZ::LOCGHI;
647 if (UseMI.getOperand(2).getReg() == Reg)
648 UseIdx = 2;
649 else if (UseMI.getOperand(1).getReg() == Reg)
650 UseIdx = 2, CommuteIdx = 1;
651 else
652 return false;
653 break;
654 default:
655 return false;
658 if (CommuteIdx != -1)
659 if (!commuteInstruction(UseMI, false, CommuteIdx, UseIdx))
660 return false;
662 bool DeleteDef = MRI->hasOneNonDBGUse(Reg);
663 UseMI.setDesc(get(NewUseOpc));
664 if (TieOps)
665 UseMI.tieOperands(0, 1);
666 UseMI.getOperand(UseIdx).ChangeToImmediate(ImmVal);
667 if (DeleteDef)
668 DefMI.eraseFromParent();
670 return true;
673 bool SystemZInstrInfo::isPredicable(const MachineInstr &MI) const {
674 unsigned Opcode = MI.getOpcode();
675 if (Opcode == SystemZ::Return ||
676 Opcode == SystemZ::Trap ||
677 Opcode == SystemZ::CallJG ||
678 Opcode == SystemZ::CallBR)
679 return true;
680 return false;
683 bool SystemZInstrInfo::
684 isProfitableToIfCvt(MachineBasicBlock &MBB,
685 unsigned NumCycles, unsigned ExtraPredCycles,
686 BranchProbability Probability) const {
687 // Avoid using conditional returns at the end of a loop (since then
688 // we'd need to emit an unconditional branch to the beginning anyway,
689 // making the loop body longer). This doesn't apply for low-probability
690 // loops (eg. compare-and-swap retry), so just decide based on branch
691 // probability instead of looping structure.
692 // However, since Compare and Trap instructions cost the same as a regular
693 // Compare instruction, we should allow the if conversion to convert this
694 // into a Conditional Compare regardless of the branch probability.
695 if (MBB.getLastNonDebugInstr()->getOpcode() != SystemZ::Trap &&
696 MBB.succ_empty() && Probability < BranchProbability(1, 8))
697 return false;
698 // For now only convert single instructions.
699 return NumCycles == 1;
702 bool SystemZInstrInfo::
703 isProfitableToIfCvt(MachineBasicBlock &TMBB,
704 unsigned NumCyclesT, unsigned ExtraPredCyclesT,
705 MachineBasicBlock &FMBB,
706 unsigned NumCyclesF, unsigned ExtraPredCyclesF,
707 BranchProbability Probability) const {
708 // For now avoid converting mutually-exclusive cases.
709 return false;
712 bool SystemZInstrInfo::
713 isProfitableToDupForIfCvt(MachineBasicBlock &MBB, unsigned NumCycles,
714 BranchProbability Probability) const {
715 // For now only duplicate single instructions.
716 return NumCycles == 1;
719 bool SystemZInstrInfo::PredicateInstruction(
720 MachineInstr &MI, ArrayRef<MachineOperand> Pred) const {
721 assert(Pred.size() == 2 && "Invalid condition");
722 unsigned CCValid = Pred[0].getImm();
723 unsigned CCMask = Pred[1].getImm();
724 assert(CCMask > 0 && CCMask < 15 && "Invalid predicate");
725 unsigned Opcode = MI.getOpcode();
726 if (Opcode == SystemZ::Trap) {
727 MI.setDesc(get(SystemZ::CondTrap));
728 MachineInstrBuilder(*MI.getParent()->getParent(), MI)
729 .addImm(CCValid).addImm(CCMask)
730 .addReg(SystemZ::CC, RegState::Implicit);
731 return true;
733 if (Opcode == SystemZ::Return) {
734 MI.setDesc(get(SystemZ::CondReturn));
735 MachineInstrBuilder(*MI.getParent()->getParent(), MI)
736 .addImm(CCValid).addImm(CCMask)
737 .addReg(SystemZ::CC, RegState::Implicit);
738 return true;
740 if (Opcode == SystemZ::CallJG) {
741 MachineOperand FirstOp = MI.getOperand(0);
742 const uint32_t *RegMask = MI.getOperand(1).getRegMask();
743 MI.RemoveOperand(1);
744 MI.RemoveOperand(0);
745 MI.setDesc(get(SystemZ::CallBRCL));
746 MachineInstrBuilder(*MI.getParent()->getParent(), MI)
747 .addImm(CCValid)
748 .addImm(CCMask)
749 .add(FirstOp)
750 .addRegMask(RegMask)
751 .addReg(SystemZ::CC, RegState::Implicit);
752 return true;
754 if (Opcode == SystemZ::CallBR) {
755 const uint32_t *RegMask = MI.getOperand(0).getRegMask();
756 MI.RemoveOperand(0);
757 MI.setDesc(get(SystemZ::CallBCR));
758 MachineInstrBuilder(*MI.getParent()->getParent(), MI)
759 .addImm(CCValid).addImm(CCMask)
760 .addRegMask(RegMask)
761 .addReg(SystemZ::CC, RegState::Implicit);
762 return true;
764 return false;
767 void SystemZInstrInfo::copyPhysReg(MachineBasicBlock &MBB,
768 MachineBasicBlock::iterator MBBI,
769 const DebugLoc &DL, MCRegister DestReg,
770 MCRegister SrcReg, bool KillSrc) const {
771 // Split 128-bit GPR moves into two 64-bit moves. Add implicit uses of the
772 // super register in case one of the subregs is undefined.
773 // This handles ADDR128 too.
774 if (SystemZ::GR128BitRegClass.contains(DestReg, SrcReg)) {
775 copyPhysReg(MBB, MBBI, DL, RI.getSubReg(DestReg, SystemZ::subreg_h64),
776 RI.getSubReg(SrcReg, SystemZ::subreg_h64), KillSrc);
777 MachineInstrBuilder(*MBB.getParent(), std::prev(MBBI))
778 .addReg(SrcReg, RegState::Implicit);
779 copyPhysReg(MBB, MBBI, DL, RI.getSubReg(DestReg, SystemZ::subreg_l64),
780 RI.getSubReg(SrcReg, SystemZ::subreg_l64), KillSrc);
781 MachineInstrBuilder(*MBB.getParent(), std::prev(MBBI))
782 .addReg(SrcReg, (getKillRegState(KillSrc) | RegState::Implicit));
783 return;
786 if (SystemZ::GRX32BitRegClass.contains(DestReg, SrcReg)) {
787 emitGRX32Move(MBB, MBBI, DL, DestReg, SrcReg, SystemZ::LR, 32, KillSrc,
788 false);
789 return;
792 // Move 128-bit floating-point values between VR128 and FP128.
793 if (SystemZ::VR128BitRegClass.contains(DestReg) &&
794 SystemZ::FP128BitRegClass.contains(SrcReg)) {
795 MCRegister SrcRegHi =
796 RI.getMatchingSuperReg(RI.getSubReg(SrcReg, SystemZ::subreg_h64),
797 SystemZ::subreg_h64, &SystemZ::VR128BitRegClass);
798 MCRegister SrcRegLo =
799 RI.getMatchingSuperReg(RI.getSubReg(SrcReg, SystemZ::subreg_l64),
800 SystemZ::subreg_h64, &SystemZ::VR128BitRegClass);
802 BuildMI(MBB, MBBI, DL, get(SystemZ::VMRHG), DestReg)
803 .addReg(SrcRegHi, getKillRegState(KillSrc))
804 .addReg(SrcRegLo, getKillRegState(KillSrc));
805 return;
807 if (SystemZ::FP128BitRegClass.contains(DestReg) &&
808 SystemZ::VR128BitRegClass.contains(SrcReg)) {
809 MCRegister DestRegHi =
810 RI.getMatchingSuperReg(RI.getSubReg(DestReg, SystemZ::subreg_h64),
811 SystemZ::subreg_h64, &SystemZ::VR128BitRegClass);
812 MCRegister DestRegLo =
813 RI.getMatchingSuperReg(RI.getSubReg(DestReg, SystemZ::subreg_l64),
814 SystemZ::subreg_h64, &SystemZ::VR128BitRegClass);
816 if (DestRegHi != SrcReg)
817 copyPhysReg(MBB, MBBI, DL, DestRegHi, SrcReg, false);
818 BuildMI(MBB, MBBI, DL, get(SystemZ::VREPG), DestRegLo)
819 .addReg(SrcReg, getKillRegState(KillSrc)).addImm(1);
820 return;
823 // Move CC value from/to a GR32.
824 if (SrcReg == SystemZ::CC) {
825 auto MIB = BuildMI(MBB, MBBI, DL, get(SystemZ::IPM), DestReg);
826 if (KillSrc) {
827 const MachineFunction *MF = MBB.getParent();
828 const TargetRegisterInfo *TRI = MF->getSubtarget().getRegisterInfo();
829 MIB->addRegisterKilled(SrcReg, TRI);
831 return;
833 if (DestReg == SystemZ::CC) {
834 BuildMI(MBB, MBBI, DL, get(SystemZ::TMLH))
835 .addReg(SrcReg, getKillRegState(KillSrc))
836 .addImm(3 << (SystemZ::IPM_CC - 16));
837 return;
840 // Everything else needs only one instruction.
841 unsigned Opcode;
842 if (SystemZ::GR64BitRegClass.contains(DestReg, SrcReg))
843 Opcode = SystemZ::LGR;
844 else if (SystemZ::FP32BitRegClass.contains(DestReg, SrcReg))
845 // For z13 we prefer LDR over LER to avoid partial register dependencies.
846 Opcode = STI.hasVector() ? SystemZ::LDR32 : SystemZ::LER;
847 else if (SystemZ::FP64BitRegClass.contains(DestReg, SrcReg))
848 Opcode = SystemZ::LDR;
849 else if (SystemZ::FP128BitRegClass.contains(DestReg, SrcReg))
850 Opcode = SystemZ::LXR;
851 else if (SystemZ::VR32BitRegClass.contains(DestReg, SrcReg))
852 Opcode = SystemZ::VLR32;
853 else if (SystemZ::VR64BitRegClass.contains(DestReg, SrcReg))
854 Opcode = SystemZ::VLR64;
855 else if (SystemZ::VR128BitRegClass.contains(DestReg, SrcReg))
856 Opcode = SystemZ::VLR;
857 else if (SystemZ::AR32BitRegClass.contains(DestReg, SrcReg))
858 Opcode = SystemZ::CPYA;
859 else if (SystemZ::AR32BitRegClass.contains(DestReg) &&
860 SystemZ::GR32BitRegClass.contains(SrcReg))
861 Opcode = SystemZ::SAR;
862 else if (SystemZ::GR32BitRegClass.contains(DestReg) &&
863 SystemZ::AR32BitRegClass.contains(SrcReg))
864 Opcode = SystemZ::EAR;
865 else
866 llvm_unreachable("Impossible reg-to-reg copy");
868 BuildMI(MBB, MBBI, DL, get(Opcode), DestReg)
869 .addReg(SrcReg, getKillRegState(KillSrc));
872 void SystemZInstrInfo::storeRegToStackSlot(
873 MachineBasicBlock &MBB, MachineBasicBlock::iterator MBBI, unsigned SrcReg,
874 bool isKill, int FrameIdx, const TargetRegisterClass *RC,
875 const TargetRegisterInfo *TRI) const {
876 DebugLoc DL = MBBI != MBB.end() ? MBBI->getDebugLoc() : DebugLoc();
878 // Callers may expect a single instruction, so keep 128-bit moves
879 // together for now and lower them after register allocation.
880 unsigned LoadOpcode, StoreOpcode;
881 getLoadStoreOpcodes(RC, LoadOpcode, StoreOpcode);
882 addFrameReference(BuildMI(MBB, MBBI, DL, get(StoreOpcode))
883 .addReg(SrcReg, getKillRegState(isKill)),
884 FrameIdx);
887 void SystemZInstrInfo::loadRegFromStackSlot(
888 MachineBasicBlock &MBB, MachineBasicBlock::iterator MBBI, unsigned DestReg,
889 int FrameIdx, const TargetRegisterClass *RC,
890 const TargetRegisterInfo *TRI) const {
891 DebugLoc DL = MBBI != MBB.end() ? MBBI->getDebugLoc() : DebugLoc();
893 // Callers may expect a single instruction, so keep 128-bit moves
894 // together for now and lower them after register allocation.
895 unsigned LoadOpcode, StoreOpcode;
896 getLoadStoreOpcodes(RC, LoadOpcode, StoreOpcode);
897 addFrameReference(BuildMI(MBB, MBBI, DL, get(LoadOpcode), DestReg),
898 FrameIdx);
901 // Return true if MI is a simple load or store with a 12-bit displacement
902 // and no index. Flag is SimpleBDXLoad for loads and SimpleBDXStore for stores.
903 static bool isSimpleBD12Move(const MachineInstr *MI, unsigned Flag) {
904 const MCInstrDesc &MCID = MI->getDesc();
905 return ((MCID.TSFlags & Flag) &&
906 isUInt<12>(MI->getOperand(2).getImm()) &&
907 MI->getOperand(3).getReg() == 0);
910 namespace {
912 struct LogicOp {
913 LogicOp() = default;
914 LogicOp(unsigned regSize, unsigned immLSB, unsigned immSize)
915 : RegSize(regSize), ImmLSB(immLSB), ImmSize(immSize) {}
917 explicit operator bool() const { return RegSize; }
919 unsigned RegSize = 0;
920 unsigned ImmLSB = 0;
921 unsigned ImmSize = 0;
924 } // end anonymous namespace
926 static LogicOp interpretAndImmediate(unsigned Opcode) {
927 switch (Opcode) {
928 case SystemZ::NILMux: return LogicOp(32, 0, 16);
929 case SystemZ::NIHMux: return LogicOp(32, 16, 16);
930 case SystemZ::NILL64: return LogicOp(64, 0, 16);
931 case SystemZ::NILH64: return LogicOp(64, 16, 16);
932 case SystemZ::NIHL64: return LogicOp(64, 32, 16);
933 case SystemZ::NIHH64: return LogicOp(64, 48, 16);
934 case SystemZ::NIFMux: return LogicOp(32, 0, 32);
935 case SystemZ::NILF64: return LogicOp(64, 0, 32);
936 case SystemZ::NIHF64: return LogicOp(64, 32, 32);
937 default: return LogicOp();
941 static void transferDeadCC(MachineInstr *OldMI, MachineInstr *NewMI) {
942 if (OldMI->registerDefIsDead(SystemZ::CC)) {
943 MachineOperand *CCDef = NewMI->findRegisterDefOperand(SystemZ::CC);
944 if (CCDef != nullptr)
945 CCDef->setIsDead(true);
949 static void transferMIFlag(MachineInstr *OldMI, MachineInstr *NewMI,
950 MachineInstr::MIFlag Flag) {
951 if (OldMI->getFlag(Flag))
952 NewMI->setFlag(Flag);
955 MachineInstr *SystemZInstrInfo::convertToThreeAddress(
956 MachineFunction::iterator &MFI, MachineInstr &MI, LiveVariables *LV) const {
957 MachineBasicBlock *MBB = MI.getParent();
959 // Try to convert an AND into an RISBG-type instruction.
960 // TODO: It might be beneficial to select RISBG and shorten to AND instead.
961 if (LogicOp And = interpretAndImmediate(MI.getOpcode())) {
962 uint64_t Imm = MI.getOperand(2).getImm() << And.ImmLSB;
963 // AND IMMEDIATE leaves the other bits of the register unchanged.
964 Imm |= allOnes(And.RegSize) & ~(allOnes(And.ImmSize) << And.ImmLSB);
965 unsigned Start, End;
966 if (isRxSBGMask(Imm, And.RegSize, Start, End)) {
967 unsigned NewOpcode;
968 if (And.RegSize == 64) {
969 NewOpcode = SystemZ::RISBG;
970 // Prefer RISBGN if available, since it does not clobber CC.
971 if (STI.hasMiscellaneousExtensions())
972 NewOpcode = SystemZ::RISBGN;
973 } else {
974 NewOpcode = SystemZ::RISBMux;
975 Start &= 31;
976 End &= 31;
978 MachineOperand &Dest = MI.getOperand(0);
979 MachineOperand &Src = MI.getOperand(1);
980 MachineInstrBuilder MIB =
981 BuildMI(*MBB, MI, MI.getDebugLoc(), get(NewOpcode))
982 .add(Dest)
983 .addReg(0)
984 .addReg(Src.getReg(), getKillRegState(Src.isKill()),
985 Src.getSubReg())
986 .addImm(Start)
987 .addImm(End + 128)
988 .addImm(0);
989 if (LV) {
990 unsigned NumOps = MI.getNumOperands();
991 for (unsigned I = 1; I < NumOps; ++I) {
992 MachineOperand &Op = MI.getOperand(I);
993 if (Op.isReg() && Op.isKill())
994 LV->replaceKillInstruction(Op.getReg(), MI, *MIB);
997 transferDeadCC(&MI, MIB);
998 return MIB;
1001 return nullptr;
1004 MachineInstr *SystemZInstrInfo::foldMemoryOperandImpl(
1005 MachineFunction &MF, MachineInstr &MI, ArrayRef<unsigned> Ops,
1006 MachineBasicBlock::iterator InsertPt, int FrameIndex,
1007 LiveIntervals *LIS, VirtRegMap *VRM) const {
1008 const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo();
1009 const MachineFrameInfo &MFI = MF.getFrameInfo();
1010 unsigned Size = MFI.getObjectSize(FrameIndex);
1011 unsigned Opcode = MI.getOpcode();
1013 if (Ops.size() == 2 && Ops[0] == 0 && Ops[1] == 1) {
1014 if (LIS != nullptr && (Opcode == SystemZ::LA || Opcode == SystemZ::LAY) &&
1015 isInt<8>(MI.getOperand(2).getImm()) && !MI.getOperand(3).getReg()) {
1017 // Check CC liveness, since new instruction introduces a dead
1018 // def of CC.
1019 MCRegUnitIterator CCUnit(SystemZ::CC, TRI);
1020 LiveRange &CCLiveRange = LIS->getRegUnit(*CCUnit);
1021 ++CCUnit;
1022 assert(!CCUnit.isValid() && "CC only has one reg unit.");
1023 SlotIndex MISlot =
1024 LIS->getSlotIndexes()->getInstructionIndex(MI).getRegSlot();
1025 if (!CCLiveRange.liveAt(MISlot)) {
1026 // LA(Y) %reg, CONST(%reg) -> AGSI %mem, CONST
1027 MachineInstr *BuiltMI = BuildMI(*InsertPt->getParent(), InsertPt,
1028 MI.getDebugLoc(), get(SystemZ::AGSI))
1029 .addFrameIndex(FrameIndex)
1030 .addImm(0)
1031 .addImm(MI.getOperand(2).getImm());
1032 BuiltMI->findRegisterDefOperand(SystemZ::CC)->setIsDead(true);
1033 CCLiveRange.createDeadDef(MISlot, LIS->getVNInfoAllocator());
1034 return BuiltMI;
1037 return nullptr;
1040 // All other cases require a single operand.
1041 if (Ops.size() != 1)
1042 return nullptr;
1044 unsigned OpNum = Ops[0];
1045 assert(Size * 8 ==
1046 TRI->getRegSizeInBits(*MF.getRegInfo()
1047 .getRegClass(MI.getOperand(OpNum).getReg())) &&
1048 "Invalid size combination");
1050 if ((Opcode == SystemZ::AHI || Opcode == SystemZ::AGHI) && OpNum == 0 &&
1051 isInt<8>(MI.getOperand(2).getImm())) {
1052 // A(G)HI %reg, CONST -> A(G)SI %mem, CONST
1053 Opcode = (Opcode == SystemZ::AHI ? SystemZ::ASI : SystemZ::AGSI);
1054 MachineInstr *BuiltMI =
1055 BuildMI(*InsertPt->getParent(), InsertPt, MI.getDebugLoc(), get(Opcode))
1056 .addFrameIndex(FrameIndex)
1057 .addImm(0)
1058 .addImm(MI.getOperand(2).getImm());
1059 transferDeadCC(&MI, BuiltMI);
1060 transferMIFlag(&MI, BuiltMI, MachineInstr::NoSWrap);
1061 return BuiltMI;
1064 if ((Opcode == SystemZ::ALFI && OpNum == 0 &&
1065 isInt<8>((int32_t)MI.getOperand(2).getImm())) ||
1066 (Opcode == SystemZ::ALGFI && OpNum == 0 &&
1067 isInt<8>((int64_t)MI.getOperand(2).getImm()))) {
1068 // AL(G)FI %reg, CONST -> AL(G)SI %mem, CONST
1069 Opcode = (Opcode == SystemZ::ALFI ? SystemZ::ALSI : SystemZ::ALGSI);
1070 MachineInstr *BuiltMI =
1071 BuildMI(*InsertPt->getParent(), InsertPt, MI.getDebugLoc(), get(Opcode))
1072 .addFrameIndex(FrameIndex)
1073 .addImm(0)
1074 .addImm((int8_t)MI.getOperand(2).getImm());
1075 transferDeadCC(&MI, BuiltMI);
1076 return BuiltMI;
1079 if ((Opcode == SystemZ::SLFI && OpNum == 0 &&
1080 isInt<8>((int32_t)-MI.getOperand(2).getImm())) ||
1081 (Opcode == SystemZ::SLGFI && OpNum == 0 &&
1082 isInt<8>((int64_t)-MI.getOperand(2).getImm()))) {
1083 // SL(G)FI %reg, CONST -> AL(G)SI %mem, -CONST
1084 Opcode = (Opcode == SystemZ::SLFI ? SystemZ::ALSI : SystemZ::ALGSI);
1085 MachineInstr *BuiltMI =
1086 BuildMI(*InsertPt->getParent(), InsertPt, MI.getDebugLoc(), get(Opcode))
1087 .addFrameIndex(FrameIndex)
1088 .addImm(0)
1089 .addImm((int8_t)-MI.getOperand(2).getImm());
1090 transferDeadCC(&MI, BuiltMI);
1091 return BuiltMI;
1094 if (Opcode == SystemZ::LGDR || Opcode == SystemZ::LDGR) {
1095 bool Op0IsGPR = (Opcode == SystemZ::LGDR);
1096 bool Op1IsGPR = (Opcode == SystemZ::LDGR);
1097 // If we're spilling the destination of an LDGR or LGDR, store the
1098 // source register instead.
1099 if (OpNum == 0) {
1100 unsigned StoreOpcode = Op1IsGPR ? SystemZ::STG : SystemZ::STD;
1101 return BuildMI(*InsertPt->getParent(), InsertPt, MI.getDebugLoc(),
1102 get(StoreOpcode))
1103 .add(MI.getOperand(1))
1104 .addFrameIndex(FrameIndex)
1105 .addImm(0)
1106 .addReg(0);
1108 // If we're spilling the source of an LDGR or LGDR, load the
1109 // destination register instead.
1110 if (OpNum == 1) {
1111 unsigned LoadOpcode = Op0IsGPR ? SystemZ::LG : SystemZ::LD;
1112 return BuildMI(*InsertPt->getParent(), InsertPt, MI.getDebugLoc(),
1113 get(LoadOpcode))
1114 .add(MI.getOperand(0))
1115 .addFrameIndex(FrameIndex)
1116 .addImm(0)
1117 .addReg(0);
1121 // Look for cases where the source of a simple store or the destination
1122 // of a simple load is being spilled. Try to use MVC instead.
1124 // Although MVC is in practice a fast choice in these cases, it is still
1125 // logically a bytewise copy. This means that we cannot use it if the
1126 // load or store is volatile. We also wouldn't be able to use MVC if
1127 // the two memories partially overlap, but that case cannot occur here,
1128 // because we know that one of the memories is a full frame index.
1130 // For performance reasons, we also want to avoid using MVC if the addresses
1131 // might be equal. We don't worry about that case here, because spill slot
1132 // coloring happens later, and because we have special code to remove
1133 // MVCs that turn out to be redundant.
1134 if (OpNum == 0 && MI.hasOneMemOperand()) {
1135 MachineMemOperand *MMO = *MI.memoperands_begin();
1136 if (MMO->getSize() == Size && !MMO->isVolatile() && !MMO->isAtomic()) {
1137 // Handle conversion of loads.
1138 if (isSimpleBD12Move(&MI, SystemZII::SimpleBDXLoad)) {
1139 return BuildMI(*InsertPt->getParent(), InsertPt, MI.getDebugLoc(),
1140 get(SystemZ::MVC))
1141 .addFrameIndex(FrameIndex)
1142 .addImm(0)
1143 .addImm(Size)
1144 .add(MI.getOperand(1))
1145 .addImm(MI.getOperand(2).getImm())
1146 .addMemOperand(MMO);
1148 // Handle conversion of stores.
1149 if (isSimpleBD12Move(&MI, SystemZII::SimpleBDXStore)) {
1150 return BuildMI(*InsertPt->getParent(), InsertPt, MI.getDebugLoc(),
1151 get(SystemZ::MVC))
1152 .add(MI.getOperand(1))
1153 .addImm(MI.getOperand(2).getImm())
1154 .addImm(Size)
1155 .addFrameIndex(FrameIndex)
1156 .addImm(0)
1157 .addMemOperand(MMO);
1162 // If the spilled operand is the final one or the instruction is
1163 // commutable, try to change <INSN>R into <INSN>.
1164 unsigned NumOps = MI.getNumExplicitOperands();
1165 int MemOpcode = SystemZ::getMemOpcode(Opcode);
1167 // See if this is a 3-address instruction that is convertible to 2-address
1168 // and suitable for folding below. Only try this with virtual registers
1169 // and a provided VRM (during regalloc).
1170 bool NeedsCommute = false;
1171 if (SystemZ::getTwoOperandOpcode(Opcode) != -1 && MemOpcode != -1) {
1172 if (VRM == nullptr)
1173 MemOpcode = -1;
1174 else {
1175 assert(NumOps == 3 && "Expected two source registers.");
1176 Register DstReg = MI.getOperand(0).getReg();
1177 Register DstPhys =
1178 (Register::isVirtualRegister(DstReg) ? VRM->getPhys(DstReg) : DstReg);
1179 Register SrcReg = (OpNum == 2 ? MI.getOperand(1).getReg()
1180 : ((OpNum == 1 && MI.isCommutable())
1181 ? MI.getOperand(2).getReg()
1182 : Register()));
1183 if (DstPhys && !SystemZ::GRH32BitRegClass.contains(DstPhys) && SrcReg &&
1184 Register::isVirtualRegister(SrcReg) &&
1185 DstPhys == VRM->getPhys(SrcReg))
1186 NeedsCommute = (OpNum == 1);
1187 else
1188 MemOpcode = -1;
1192 if (MemOpcode >= 0) {
1193 if ((OpNum == NumOps - 1) || NeedsCommute) {
1194 const MCInstrDesc &MemDesc = get(MemOpcode);
1195 uint64_t AccessBytes = SystemZII::getAccessSize(MemDesc.TSFlags);
1196 assert(AccessBytes != 0 && "Size of access should be known");
1197 assert(AccessBytes <= Size && "Access outside the frame index");
1198 uint64_t Offset = Size - AccessBytes;
1199 MachineInstrBuilder MIB = BuildMI(*InsertPt->getParent(), InsertPt,
1200 MI.getDebugLoc(), get(MemOpcode));
1201 MIB.add(MI.getOperand(0));
1202 if (NeedsCommute)
1203 MIB.add(MI.getOperand(2));
1204 else
1205 for (unsigned I = 1; I < OpNum; ++I)
1206 MIB.add(MI.getOperand(I));
1207 MIB.addFrameIndex(FrameIndex).addImm(Offset);
1208 if (MemDesc.TSFlags & SystemZII::HasIndex)
1209 MIB.addReg(0);
1210 transferDeadCC(&MI, MIB);
1211 transferMIFlag(&MI, MIB, MachineInstr::NoSWrap);
1212 return MIB;
1216 return nullptr;
1219 MachineInstr *SystemZInstrInfo::foldMemoryOperandImpl(
1220 MachineFunction &MF, MachineInstr &MI, ArrayRef<unsigned> Ops,
1221 MachineBasicBlock::iterator InsertPt, MachineInstr &LoadMI,
1222 LiveIntervals *LIS) const {
1223 return nullptr;
1226 bool SystemZInstrInfo::expandPostRAPseudo(MachineInstr &MI) const {
1227 switch (MI.getOpcode()) {
1228 case SystemZ::L128:
1229 splitMove(MI, SystemZ::LG);
1230 return true;
1232 case SystemZ::ST128:
1233 splitMove(MI, SystemZ::STG);
1234 return true;
1236 case SystemZ::LX:
1237 splitMove(MI, SystemZ::LD);
1238 return true;
1240 case SystemZ::STX:
1241 splitMove(MI, SystemZ::STD);
1242 return true;
1244 case SystemZ::LBMux:
1245 expandRXYPseudo(MI, SystemZ::LB, SystemZ::LBH);
1246 return true;
1248 case SystemZ::LHMux:
1249 expandRXYPseudo(MI, SystemZ::LH, SystemZ::LHH);
1250 return true;
1252 case SystemZ::LLCRMux:
1253 expandZExtPseudo(MI, SystemZ::LLCR, 8);
1254 return true;
1256 case SystemZ::LLHRMux:
1257 expandZExtPseudo(MI, SystemZ::LLHR, 16);
1258 return true;
1260 case SystemZ::LLCMux:
1261 expandRXYPseudo(MI, SystemZ::LLC, SystemZ::LLCH);
1262 return true;
1264 case SystemZ::LLHMux:
1265 expandRXYPseudo(MI, SystemZ::LLH, SystemZ::LLHH);
1266 return true;
1268 case SystemZ::LMux:
1269 expandRXYPseudo(MI, SystemZ::L, SystemZ::LFH);
1270 return true;
1272 case SystemZ::LOCMux:
1273 expandLOCPseudo(MI, SystemZ::LOC, SystemZ::LOCFH);
1274 return true;
1276 case SystemZ::LOCHIMux:
1277 expandLOCPseudo(MI, SystemZ::LOCHI, SystemZ::LOCHHI);
1278 return true;
1280 case SystemZ::STCMux:
1281 expandRXYPseudo(MI, SystemZ::STC, SystemZ::STCH);
1282 return true;
1284 case SystemZ::STHMux:
1285 expandRXYPseudo(MI, SystemZ::STH, SystemZ::STHH);
1286 return true;
1288 case SystemZ::STMux:
1289 expandRXYPseudo(MI, SystemZ::ST, SystemZ::STFH);
1290 return true;
1292 case SystemZ::STOCMux:
1293 expandLOCPseudo(MI, SystemZ::STOC, SystemZ::STOCFH);
1294 return true;
1296 case SystemZ::LHIMux:
1297 expandRIPseudo(MI, SystemZ::LHI, SystemZ::IIHF, true);
1298 return true;
1300 case SystemZ::IIFMux:
1301 expandRIPseudo(MI, SystemZ::IILF, SystemZ::IIHF, false);
1302 return true;
1304 case SystemZ::IILMux:
1305 expandRIPseudo(MI, SystemZ::IILL, SystemZ::IIHL, false);
1306 return true;
1308 case SystemZ::IIHMux:
1309 expandRIPseudo(MI, SystemZ::IILH, SystemZ::IIHH, false);
1310 return true;
1312 case SystemZ::NIFMux:
1313 expandRIPseudo(MI, SystemZ::NILF, SystemZ::NIHF, false);
1314 return true;
1316 case SystemZ::NILMux:
1317 expandRIPseudo(MI, SystemZ::NILL, SystemZ::NIHL, false);
1318 return true;
1320 case SystemZ::NIHMux:
1321 expandRIPseudo(MI, SystemZ::NILH, SystemZ::NIHH, false);
1322 return true;
1324 case SystemZ::OIFMux:
1325 expandRIPseudo(MI, SystemZ::OILF, SystemZ::OIHF, false);
1326 return true;
1328 case SystemZ::OILMux:
1329 expandRIPseudo(MI, SystemZ::OILL, SystemZ::OIHL, false);
1330 return true;
1332 case SystemZ::OIHMux:
1333 expandRIPseudo(MI, SystemZ::OILH, SystemZ::OIHH, false);
1334 return true;
1336 case SystemZ::XIFMux:
1337 expandRIPseudo(MI, SystemZ::XILF, SystemZ::XIHF, false);
1338 return true;
1340 case SystemZ::TMLMux:
1341 expandRIPseudo(MI, SystemZ::TMLL, SystemZ::TMHL, false);
1342 return true;
1344 case SystemZ::TMHMux:
1345 expandRIPseudo(MI, SystemZ::TMLH, SystemZ::TMHH, false);
1346 return true;
1348 case SystemZ::AHIMux:
1349 expandRIPseudo(MI, SystemZ::AHI, SystemZ::AIH, false);
1350 return true;
1352 case SystemZ::AHIMuxK:
1353 expandRIEPseudo(MI, SystemZ::AHI, SystemZ::AHIK, SystemZ::AIH);
1354 return true;
1356 case SystemZ::AFIMux:
1357 expandRIPseudo(MI, SystemZ::AFI, SystemZ::AIH, false);
1358 return true;
1360 case SystemZ::CHIMux:
1361 expandRIPseudo(MI, SystemZ::CHI, SystemZ::CIH, false);
1362 return true;
1364 case SystemZ::CFIMux:
1365 expandRIPseudo(MI, SystemZ::CFI, SystemZ::CIH, false);
1366 return true;
1368 case SystemZ::CLFIMux:
1369 expandRIPseudo(MI, SystemZ::CLFI, SystemZ::CLIH, false);
1370 return true;
1372 case SystemZ::CMux:
1373 expandRXYPseudo(MI, SystemZ::C, SystemZ::CHF);
1374 return true;
1376 case SystemZ::CLMux:
1377 expandRXYPseudo(MI, SystemZ::CL, SystemZ::CLHF);
1378 return true;
1380 case SystemZ::RISBMux: {
1381 bool DestIsHigh = SystemZ::isHighReg(MI.getOperand(0).getReg());
1382 bool SrcIsHigh = SystemZ::isHighReg(MI.getOperand(2).getReg());
1383 if (SrcIsHigh == DestIsHigh)
1384 MI.setDesc(get(DestIsHigh ? SystemZ::RISBHH : SystemZ::RISBLL));
1385 else {
1386 MI.setDesc(get(DestIsHigh ? SystemZ::RISBHL : SystemZ::RISBLH));
1387 MI.getOperand(5).setImm(MI.getOperand(5).getImm() ^ 32);
1389 return true;
1392 case SystemZ::ADJDYNALLOC:
1393 splitAdjDynAlloc(MI);
1394 return true;
1396 case TargetOpcode::LOAD_STACK_GUARD:
1397 expandLoadStackGuard(&MI);
1398 return true;
1400 default:
1401 return false;
1405 unsigned SystemZInstrInfo::getInstSizeInBytes(const MachineInstr &MI) const {
1406 if (MI.isInlineAsm()) {
1407 const MachineFunction *MF = MI.getParent()->getParent();
1408 const char *AsmStr = MI.getOperand(0).getSymbolName();
1409 return getInlineAsmLength(AsmStr, *MF->getTarget().getMCAsmInfo());
1411 return MI.getDesc().getSize();
1414 SystemZII::Branch
1415 SystemZInstrInfo::getBranchInfo(const MachineInstr &MI) const {
1416 switch (MI.getOpcode()) {
1417 case SystemZ::BR:
1418 case SystemZ::BI:
1419 case SystemZ::J:
1420 case SystemZ::JG:
1421 return SystemZII::Branch(SystemZII::BranchNormal, SystemZ::CCMASK_ANY,
1422 SystemZ::CCMASK_ANY, &MI.getOperand(0));
1424 case SystemZ::BRC:
1425 case SystemZ::BRCL:
1426 return SystemZII::Branch(SystemZII::BranchNormal, MI.getOperand(0).getImm(),
1427 MI.getOperand(1).getImm(), &MI.getOperand(2));
1429 case SystemZ::BRCT:
1430 case SystemZ::BRCTH:
1431 return SystemZII::Branch(SystemZII::BranchCT, SystemZ::CCMASK_ICMP,
1432 SystemZ::CCMASK_CMP_NE, &MI.getOperand(2));
1434 case SystemZ::BRCTG:
1435 return SystemZII::Branch(SystemZII::BranchCTG, SystemZ::CCMASK_ICMP,
1436 SystemZ::CCMASK_CMP_NE, &MI.getOperand(2));
1438 case SystemZ::CIJ:
1439 case SystemZ::CRJ:
1440 return SystemZII::Branch(SystemZII::BranchC, SystemZ::CCMASK_ICMP,
1441 MI.getOperand(2).getImm(), &MI.getOperand(3));
1443 case SystemZ::CLIJ:
1444 case SystemZ::CLRJ:
1445 return SystemZII::Branch(SystemZII::BranchCL, SystemZ::CCMASK_ICMP,
1446 MI.getOperand(2).getImm(), &MI.getOperand(3));
1448 case SystemZ::CGIJ:
1449 case SystemZ::CGRJ:
1450 return SystemZII::Branch(SystemZII::BranchCG, SystemZ::CCMASK_ICMP,
1451 MI.getOperand(2).getImm(), &MI.getOperand(3));
1453 case SystemZ::CLGIJ:
1454 case SystemZ::CLGRJ:
1455 return SystemZII::Branch(SystemZII::BranchCLG, SystemZ::CCMASK_ICMP,
1456 MI.getOperand(2).getImm(), &MI.getOperand(3));
1458 case SystemZ::INLINEASM_BR:
1459 // Don't try to analyze asm goto, so pass nullptr as branch target argument.
1460 return SystemZII::Branch(SystemZII::AsmGoto, 0, 0, nullptr);
1462 default:
1463 llvm_unreachable("Unrecognized branch opcode");
1467 void SystemZInstrInfo::getLoadStoreOpcodes(const TargetRegisterClass *RC,
1468 unsigned &LoadOpcode,
1469 unsigned &StoreOpcode) const {
1470 if (RC == &SystemZ::GR32BitRegClass || RC == &SystemZ::ADDR32BitRegClass) {
1471 LoadOpcode = SystemZ::L;
1472 StoreOpcode = SystemZ::ST;
1473 } else if (RC == &SystemZ::GRH32BitRegClass) {
1474 LoadOpcode = SystemZ::LFH;
1475 StoreOpcode = SystemZ::STFH;
1476 } else if (RC == &SystemZ::GRX32BitRegClass) {
1477 LoadOpcode = SystemZ::LMux;
1478 StoreOpcode = SystemZ::STMux;
1479 } else if (RC == &SystemZ::GR64BitRegClass ||
1480 RC == &SystemZ::ADDR64BitRegClass) {
1481 LoadOpcode = SystemZ::LG;
1482 StoreOpcode = SystemZ::STG;
1483 } else if (RC == &SystemZ::GR128BitRegClass ||
1484 RC == &SystemZ::ADDR128BitRegClass) {
1485 LoadOpcode = SystemZ::L128;
1486 StoreOpcode = SystemZ::ST128;
1487 } else if (RC == &SystemZ::FP32BitRegClass) {
1488 LoadOpcode = SystemZ::LE;
1489 StoreOpcode = SystemZ::STE;
1490 } else if (RC == &SystemZ::FP64BitRegClass) {
1491 LoadOpcode = SystemZ::LD;
1492 StoreOpcode = SystemZ::STD;
1493 } else if (RC == &SystemZ::FP128BitRegClass) {
1494 LoadOpcode = SystemZ::LX;
1495 StoreOpcode = SystemZ::STX;
1496 } else if (RC == &SystemZ::VR32BitRegClass) {
1497 LoadOpcode = SystemZ::VL32;
1498 StoreOpcode = SystemZ::VST32;
1499 } else if (RC == &SystemZ::VR64BitRegClass) {
1500 LoadOpcode = SystemZ::VL64;
1501 StoreOpcode = SystemZ::VST64;
1502 } else if (RC == &SystemZ::VF128BitRegClass ||
1503 RC == &SystemZ::VR128BitRegClass) {
1504 LoadOpcode = SystemZ::VL;
1505 StoreOpcode = SystemZ::VST;
1506 } else
1507 llvm_unreachable("Unsupported regclass to load or store");
1510 unsigned SystemZInstrInfo::getOpcodeForOffset(unsigned Opcode,
1511 int64_t Offset) const {
1512 const MCInstrDesc &MCID = get(Opcode);
1513 int64_t Offset2 = (MCID.TSFlags & SystemZII::Is128Bit ? Offset + 8 : Offset);
1514 if (isUInt<12>(Offset) && isUInt<12>(Offset2)) {
1515 // Get the instruction to use for unsigned 12-bit displacements.
1516 int Disp12Opcode = SystemZ::getDisp12Opcode(Opcode);
1517 if (Disp12Opcode >= 0)
1518 return Disp12Opcode;
1520 // All address-related instructions can use unsigned 12-bit
1521 // displacements.
1522 return Opcode;
1524 if (isInt<20>(Offset) && isInt<20>(Offset2)) {
1525 // Get the instruction to use for signed 20-bit displacements.
1526 int Disp20Opcode = SystemZ::getDisp20Opcode(Opcode);
1527 if (Disp20Opcode >= 0)
1528 return Disp20Opcode;
1530 // Check whether Opcode allows signed 20-bit displacements.
1531 if (MCID.TSFlags & SystemZII::Has20BitOffset)
1532 return Opcode;
1534 return 0;
1537 unsigned SystemZInstrInfo::getLoadAndTest(unsigned Opcode) const {
1538 switch (Opcode) {
1539 case SystemZ::L: return SystemZ::LT;
1540 case SystemZ::LY: return SystemZ::LT;
1541 case SystemZ::LG: return SystemZ::LTG;
1542 case SystemZ::LGF: return SystemZ::LTGF;
1543 case SystemZ::LR: return SystemZ::LTR;
1544 case SystemZ::LGFR: return SystemZ::LTGFR;
1545 case SystemZ::LGR: return SystemZ::LTGR;
1546 case SystemZ::LER: return SystemZ::LTEBR;
1547 case SystemZ::LDR: return SystemZ::LTDBR;
1548 case SystemZ::LXR: return SystemZ::LTXBR;
1549 case SystemZ::LCDFR: return SystemZ::LCDBR;
1550 case SystemZ::LPDFR: return SystemZ::LPDBR;
1551 case SystemZ::LNDFR: return SystemZ::LNDBR;
1552 case SystemZ::LCDFR_32: return SystemZ::LCEBR;
1553 case SystemZ::LPDFR_32: return SystemZ::LPEBR;
1554 case SystemZ::LNDFR_32: return SystemZ::LNEBR;
1555 // On zEC12 we prefer to use RISBGN. But if there is a chance to
1556 // actually use the condition code, we may turn it back into RISGB.
1557 // Note that RISBG is not really a "load-and-test" instruction,
1558 // but sets the same condition code values, so is OK to use here.
1559 case SystemZ::RISBGN: return SystemZ::RISBG;
1560 default: return 0;
1564 // Return true if Mask matches the regexp 0*1+0*, given that zero masks
1565 // have already been filtered out. Store the first set bit in LSB and
1566 // the number of set bits in Length if so.
1567 static bool isStringOfOnes(uint64_t Mask, unsigned &LSB, unsigned &Length) {
1568 unsigned First = findFirstSet(Mask);
1569 uint64_t Top = (Mask >> First) + 1;
1570 if ((Top & -Top) == Top) {
1571 LSB = First;
1572 Length = findFirstSet(Top);
1573 return true;
1575 return false;
1578 bool SystemZInstrInfo::isRxSBGMask(uint64_t Mask, unsigned BitSize,
1579 unsigned &Start, unsigned &End) const {
1580 // Reject trivial all-zero masks.
1581 Mask &= allOnes(BitSize);
1582 if (Mask == 0)
1583 return false;
1585 // Handle the 1+0+ or 0+1+0* cases. Start then specifies the index of
1586 // the msb and End specifies the index of the lsb.
1587 unsigned LSB, Length;
1588 if (isStringOfOnes(Mask, LSB, Length)) {
1589 Start = 63 - (LSB + Length - 1);
1590 End = 63 - LSB;
1591 return true;
1594 // Handle the wrap-around 1+0+1+ cases. Start then specifies the msb
1595 // of the low 1s and End specifies the lsb of the high 1s.
1596 if (isStringOfOnes(Mask ^ allOnes(BitSize), LSB, Length)) {
1597 assert(LSB > 0 && "Bottom bit must be set");
1598 assert(LSB + Length < BitSize && "Top bit must be set");
1599 Start = 63 - (LSB - 1);
1600 End = 63 - (LSB + Length);
1601 return true;
1604 return false;
1607 unsigned SystemZInstrInfo::getFusedCompare(unsigned Opcode,
1608 SystemZII::FusedCompareType Type,
1609 const MachineInstr *MI) const {
1610 switch (Opcode) {
1611 case SystemZ::CHI:
1612 case SystemZ::CGHI:
1613 if (!(MI && isInt<8>(MI->getOperand(1).getImm())))
1614 return 0;
1615 break;
1616 case SystemZ::CLFI:
1617 case SystemZ::CLGFI:
1618 if (!(MI && isUInt<8>(MI->getOperand(1).getImm())))
1619 return 0;
1620 break;
1621 case SystemZ::CL:
1622 case SystemZ::CLG:
1623 if (!STI.hasMiscellaneousExtensions())
1624 return 0;
1625 if (!(MI && MI->getOperand(3).getReg() == 0))
1626 return 0;
1627 break;
1629 switch (Type) {
1630 case SystemZII::CompareAndBranch:
1631 switch (Opcode) {
1632 case SystemZ::CR:
1633 return SystemZ::CRJ;
1634 case SystemZ::CGR:
1635 return SystemZ::CGRJ;
1636 case SystemZ::CHI:
1637 return SystemZ::CIJ;
1638 case SystemZ::CGHI:
1639 return SystemZ::CGIJ;
1640 case SystemZ::CLR:
1641 return SystemZ::CLRJ;
1642 case SystemZ::CLGR:
1643 return SystemZ::CLGRJ;
1644 case SystemZ::CLFI:
1645 return SystemZ::CLIJ;
1646 case SystemZ::CLGFI:
1647 return SystemZ::CLGIJ;
1648 default:
1649 return 0;
1651 case SystemZII::CompareAndReturn:
1652 switch (Opcode) {
1653 case SystemZ::CR:
1654 return SystemZ::CRBReturn;
1655 case SystemZ::CGR:
1656 return SystemZ::CGRBReturn;
1657 case SystemZ::CHI:
1658 return SystemZ::CIBReturn;
1659 case SystemZ::CGHI:
1660 return SystemZ::CGIBReturn;
1661 case SystemZ::CLR:
1662 return SystemZ::CLRBReturn;
1663 case SystemZ::CLGR:
1664 return SystemZ::CLGRBReturn;
1665 case SystemZ::CLFI:
1666 return SystemZ::CLIBReturn;
1667 case SystemZ::CLGFI:
1668 return SystemZ::CLGIBReturn;
1669 default:
1670 return 0;
1672 case SystemZII::CompareAndSibcall:
1673 switch (Opcode) {
1674 case SystemZ::CR:
1675 return SystemZ::CRBCall;
1676 case SystemZ::CGR:
1677 return SystemZ::CGRBCall;
1678 case SystemZ::CHI:
1679 return SystemZ::CIBCall;
1680 case SystemZ::CGHI:
1681 return SystemZ::CGIBCall;
1682 case SystemZ::CLR:
1683 return SystemZ::CLRBCall;
1684 case SystemZ::CLGR:
1685 return SystemZ::CLGRBCall;
1686 case SystemZ::CLFI:
1687 return SystemZ::CLIBCall;
1688 case SystemZ::CLGFI:
1689 return SystemZ::CLGIBCall;
1690 default:
1691 return 0;
1693 case SystemZII::CompareAndTrap:
1694 switch (Opcode) {
1695 case SystemZ::CR:
1696 return SystemZ::CRT;
1697 case SystemZ::CGR:
1698 return SystemZ::CGRT;
1699 case SystemZ::CHI:
1700 return SystemZ::CIT;
1701 case SystemZ::CGHI:
1702 return SystemZ::CGIT;
1703 case SystemZ::CLR:
1704 return SystemZ::CLRT;
1705 case SystemZ::CLGR:
1706 return SystemZ::CLGRT;
1707 case SystemZ::CLFI:
1708 return SystemZ::CLFIT;
1709 case SystemZ::CLGFI:
1710 return SystemZ::CLGIT;
1711 case SystemZ::CL:
1712 return SystemZ::CLT;
1713 case SystemZ::CLG:
1714 return SystemZ::CLGT;
1715 default:
1716 return 0;
1719 return 0;
1722 unsigned SystemZInstrInfo::getLoadAndTrap(unsigned Opcode) const {
1723 if (!STI.hasLoadAndTrap())
1724 return 0;
1725 switch (Opcode) {
1726 case SystemZ::L:
1727 case SystemZ::LY:
1728 return SystemZ::LAT;
1729 case SystemZ::LG:
1730 return SystemZ::LGAT;
1731 case SystemZ::LFH:
1732 return SystemZ::LFHAT;
1733 case SystemZ::LLGF:
1734 return SystemZ::LLGFAT;
1735 case SystemZ::LLGT:
1736 return SystemZ::LLGTAT;
1738 return 0;
1741 void SystemZInstrInfo::loadImmediate(MachineBasicBlock &MBB,
1742 MachineBasicBlock::iterator MBBI,
1743 unsigned Reg, uint64_t Value) const {
1744 DebugLoc DL = MBBI != MBB.end() ? MBBI->getDebugLoc() : DebugLoc();
1745 unsigned Opcode;
1746 if (isInt<16>(Value))
1747 Opcode = SystemZ::LGHI;
1748 else if (SystemZ::isImmLL(Value))
1749 Opcode = SystemZ::LLILL;
1750 else if (SystemZ::isImmLH(Value)) {
1751 Opcode = SystemZ::LLILH;
1752 Value >>= 16;
1753 } else {
1754 assert(isInt<32>(Value) && "Huge values not handled yet");
1755 Opcode = SystemZ::LGFI;
1757 BuildMI(MBB, MBBI, DL, get(Opcode), Reg).addImm(Value);
1760 bool SystemZInstrInfo::verifyInstruction(const MachineInstr &MI,
1761 StringRef &ErrInfo) const {
1762 const MCInstrDesc &MCID = MI.getDesc();
1763 for (unsigned I = 0, E = MI.getNumOperands(); I != E; ++I) {
1764 if (I >= MCID.getNumOperands())
1765 break;
1766 const MachineOperand &Op = MI.getOperand(I);
1767 const MCOperandInfo &MCOI = MCID.OpInfo[I];
1768 // Addressing modes have register and immediate operands. Op should be a
1769 // register (or frame index) operand if MCOI.RegClass contains a valid
1770 // register class, or an immediate otherwise.
1771 if (MCOI.OperandType == MCOI::OPERAND_MEMORY &&
1772 ((MCOI.RegClass != -1 && !Op.isReg() && !Op.isFI()) ||
1773 (MCOI.RegClass == -1 && !Op.isImm()))) {
1774 ErrInfo = "Addressing mode operands corrupt!";
1775 return false;
1779 return true;
1782 bool SystemZInstrInfo::
1783 areMemAccessesTriviallyDisjoint(const MachineInstr &MIa,
1784 const MachineInstr &MIb) const {
1786 if (!MIa.hasOneMemOperand() || !MIb.hasOneMemOperand())
1787 return false;
1789 // If mem-operands show that the same address Value is used by both
1790 // instructions, check for non-overlapping offsets and widths. Not
1791 // sure if a register based analysis would be an improvement...
1793 MachineMemOperand *MMOa = *MIa.memoperands_begin();
1794 MachineMemOperand *MMOb = *MIb.memoperands_begin();
1795 const Value *VALa = MMOa->getValue();
1796 const Value *VALb = MMOb->getValue();
1797 bool SameVal = (VALa && VALb && (VALa == VALb));
1798 if (!SameVal) {
1799 const PseudoSourceValue *PSVa = MMOa->getPseudoValue();
1800 const PseudoSourceValue *PSVb = MMOb->getPseudoValue();
1801 if (PSVa && PSVb && (PSVa == PSVb))
1802 SameVal = true;
1804 if (SameVal) {
1805 int OffsetA = MMOa->getOffset(), OffsetB = MMOb->getOffset();
1806 int WidthA = MMOa->getSize(), WidthB = MMOb->getSize();
1807 int LowOffset = OffsetA < OffsetB ? OffsetA : OffsetB;
1808 int HighOffset = OffsetA < OffsetB ? OffsetB : OffsetA;
1809 int LowWidth = (LowOffset == OffsetA) ? WidthA : WidthB;
1810 if (LowOffset + LowWidth <= HighOffset)
1811 return true;
1814 return false;