1 //===-- SystemZOperands.td - SystemZ instruction operands ----*- tblgen-*--===//
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
7 //===----------------------------------------------------------------------===//
9 //===----------------------------------------------------------------------===//
11 //===----------------------------------------------------------------------===//
13 class ImmediateAsmOperand<string name>
16 let RenderMethod = "addImmOperands";
18 class ImmediateTLSAsmOperand<string name>
21 let RenderMethod = "addImmTLSOperands";
24 class ImmediateOp<ValueType vt, string asmop> : Operand<vt> {
25 let PrintMethod = "print"##asmop##"Operand";
26 let DecoderMethod = "decode"##asmop##"Operand";
27 let ParserMatchClass = !cast<AsmOperandClass>(asmop);
28 let OperandType = "OPERAND_IMMEDIATE";
31 class ImmOpWithPattern<ValueType vt, string asmop, code pred, SDNodeXForm xform,
32 SDNode ImmNode = imm> :
33 ImmediateOp<vt, asmop>, PatLeaf<(vt ImmNode), pred, xform>;
35 // class ImmediatePatLeaf<ValueType vt, code pred,
36 // SDNodeXForm xform, SDNode ImmNode>
37 // : PatLeaf<(vt ImmNode), pred, xform>;
40 // Constructs both a DAG pattern and instruction operand for an immediate
41 // of type VT. PRED returns true if a node is acceptable and XFORM returns
42 // the operand value associated with the node. ASMOP is the name of the
43 // associated asm operand, and also forms the basis of the asm print method.
44 multiclass Immediate<ValueType vt, code pred, SDNodeXForm xform, string asmop> {
45 // def "" : ImmediateOp<vt, asmop>,
46 // PatLeaf<(vt imm), pred, xform>;
47 def "" : ImmOpWithPattern<vt, asmop, pred, xform>;
49 // def _timm : PatLeaf<(vt timm), pred, xform>;
50 def _timm : ImmOpWithPattern<vt, asmop, pred, xform, timm>;
53 // Constructs an asm operand for a PC-relative address. SIZE says how
54 // many bits there are.
55 class PCRelAsmOperand<string size> : ImmediateAsmOperand<"PCRel"##size> {
56 let PredicateMethod = "isImm";
57 let ParserMethod = "parsePCRel"##size;
59 class PCRelTLSAsmOperand<string size>
60 : ImmediateTLSAsmOperand<"PCRelTLS"##size> {
61 let PredicateMethod = "isImmTLS";
62 let ParserMethod = "parsePCRelTLS"##size;
65 // Constructs an operand for a PC-relative address with address type VT.
66 // ASMOP is the associated asm operand.
67 let OperandType = "OPERAND_PCREL" in {
68 class PCRelOperand<ValueType vt, AsmOperandClass asmop> : Operand<vt> {
69 let PrintMethod = "printPCRelOperand";
70 let ParserMatchClass = asmop;
72 class PCRelTLSOperand<ValueType vt, AsmOperandClass asmop> : Operand<vt> {
73 let PrintMethod = "printPCRelTLSOperand";
74 let ParserMatchClass = asmop;
78 // Constructs both a DAG pattern and instruction operand for a PC-relative
79 // address with address size VT. SELF is the name of the operand and
80 // ASMOP is the associated asm operand.
81 class PCRelAddress<ValueType vt, string self, AsmOperandClass asmop>
82 : ComplexPattern<vt, 1, "selectPCRelAddress",
83 [z_pcrel_wrapper, z_pcrel_offset]>,
84 PCRelOperand<vt, asmop> {
85 let MIOperandInfo = (ops !cast<Operand>(self));
88 // Constructs an AsmOperandClass for addressing mode FORMAT, treating the
89 // registers as having BITSIZE bits and displacements as having DISPSIZE bits.
90 // LENGTH is "LenN" for addresses with an N-bit length field, otherwise it
92 class AddressAsmOperand<string format, string bitsize, string dispsize,
95 let Name = format##bitsize##"Disp"##dispsize##length;
96 let ParserMethod = "parse"##format##bitsize;
97 let RenderMethod = "add"##format##"Operands";
100 // Constructs an instruction operand for an addressing mode. FORMAT,
101 // BITSIZE, DISPSIZE and LENGTH are the parameters to an associated
102 // AddressAsmOperand. OPERANDS is a list of individual operands
103 // (base register, displacement, etc.).
104 class AddressOperand<string bitsize, string dispsize, string length,
105 string format, dag operands>
106 : Operand<!cast<ValueType>("i"##bitsize)> {
107 let PrintMethod = "print"##format##"Operand";
108 let EncoderMethod = "get"##format##dispsize##length##"Encoding";
110 "decode"##format##bitsize##"Disp"##dispsize##length##"Operand";
111 let OperandType = "OPERAND_MEMORY";
112 let MIOperandInfo = operands;
113 let ParserMatchClass =
114 !cast<AddressAsmOperand>(format##bitsize##"Disp"##dispsize##length);
117 // Constructs both a DAG pattern and instruction operand for an addressing mode.
118 // FORMAT, BITSIZE, DISPSIZE and LENGTH are the parameters to an associated
119 // AddressAsmOperand. OPERANDS is a list of NUMOPS individual operands
120 // (base register, displacement, etc.). SELTYPE is the type of the memory
121 // operand for selection purposes; sometimes we want different selection
122 // choices for the same underlying addressing mode. SUFFIX is similarly
123 // a suffix appended to the displacement for selection purposes;
124 // e.g. we want to reject small 20-bit displacements if a 12-bit form
125 // also exists, but we want to accept them otherwise.
126 class AddressingMode<string seltype, string bitsize, string dispsize,
127 string suffix, string length, int numops, string format,
129 : ComplexPattern<!cast<ValueType>("i"##bitsize), numops,
130 "select"##seltype##dispsize##suffix##length,
131 [add, sub, or, frameindex, z_adjdynalloc]>,
132 AddressOperand<bitsize, dispsize, length, format, operands>;
134 // An addressing mode with a base and displacement but no index.
135 class BDMode<string type, string bitsize, string dispsize, string suffix>
136 : AddressingMode<type, bitsize, dispsize, suffix, "", 2, "BDAddr",
137 (ops !cast<RegisterOperand>("ADDR"##bitsize),
138 !cast<Operand>("disp"##dispsize##"imm"##bitsize))>;
140 // An addressing mode with a base, displacement and index.
141 class BDXMode<string type, string bitsize, string dispsize, string suffix>
142 : AddressingMode<type, bitsize, dispsize, suffix, "", 3, "BDXAddr",
143 (ops !cast<RegisterOperand>("ADDR"##bitsize),
144 !cast<Operand>("disp"##dispsize##"imm"##bitsize),
145 !cast<RegisterOperand>("ADDR"##bitsize))>;
147 // A BDMode paired with an immediate length operand of LENSIZE bits.
148 class BDLMode<string type, string bitsize, string dispsize, string suffix,
150 : AddressingMode<type, bitsize, dispsize, suffix, "Len"##lensize, 3,
152 (ops !cast<RegisterOperand>("ADDR"##bitsize),
153 !cast<Operand>("disp"##dispsize##"imm"##bitsize),
154 !cast<Operand>("imm"##bitsize))>;
156 // A BDMode paired with a register length operand.
157 class BDRMode<string type, string bitsize, string dispsize, string suffix>
158 : AddressingMode<type, bitsize, dispsize, suffix, "", 3, "BDRAddr",
159 (ops !cast<RegisterOperand>("ADDR"##bitsize),
160 !cast<Operand>("disp"##dispsize##"imm"##bitsize),
161 !cast<RegisterOperand>("GR"##bitsize))>;
163 // An addressing mode with a base, displacement and a vector index.
164 class BDVMode<string bitsize, string dispsize>
165 : AddressOperand<bitsize, dispsize, "", "BDVAddr",
166 (ops !cast<RegisterOperand>("ADDR"##bitsize),
167 !cast<Operand>("disp"##dispsize##"imm"##bitsize),
168 !cast<RegisterOperand>("VR128"))>;
170 //===----------------------------------------------------------------------===//
171 // Extracting immediate operands from nodes
172 // These all create MVT::i64 nodes to ensure the value is not sign-extended
173 // when converted from an SDNode to a MachineOperand later on.
174 //===----------------------------------------------------------------------===//
176 // Bits 0-15 (counting from the lsb).
177 def LL16 : SDNodeXForm<imm, [{
178 uint64_t Value = N->getZExtValue() & 0x000000000000FFFFULL;
179 return CurDAG->getTargetConstant(Value, SDLoc(N), MVT::i64);
182 // Bits 16-31 (counting from the lsb).
183 def LH16 : SDNodeXForm<imm, [{
184 uint64_t Value = (N->getZExtValue() & 0x00000000FFFF0000ULL) >> 16;
185 return CurDAG->getTargetConstant(Value, SDLoc(N), MVT::i64);
188 // Bits 32-47 (counting from the lsb).
189 def HL16 : SDNodeXForm<imm, [{
190 uint64_t Value = (N->getZExtValue() & 0x0000FFFF00000000ULL) >> 32;
191 return CurDAG->getTargetConstant(Value, SDLoc(N), MVT::i64);
194 // Bits 48-63 (counting from the lsb).
195 def HH16 : SDNodeXForm<imm, [{
196 uint64_t Value = (N->getZExtValue() & 0xFFFF000000000000ULL) >> 48;
197 return CurDAG->getTargetConstant(Value, SDLoc(N), MVT::i64);
201 def LF32 : SDNodeXForm<imm, [{
202 uint64_t Value = N->getZExtValue() & 0x00000000FFFFFFFFULL;
203 return CurDAG->getTargetConstant(Value, SDLoc(N), MVT::i64);
207 def HF32 : SDNodeXForm<imm, [{
208 uint64_t Value = N->getZExtValue() >> 32;
209 return CurDAG->getTargetConstant(Value, SDLoc(N), MVT::i64);
213 def NEGLH16 : SDNodeXForm<imm, [{
214 uint64_t Value = (-N->getZExtValue() & 0x00000000FFFF0000ULL) >> 16;
215 return CurDAG->getTargetConstant(Value, SDLoc(N), MVT::i64);
218 def NEGLF32 : SDNodeXForm<imm, [{
219 uint64_t Value = -N->getZExtValue() & 0x00000000FFFFFFFFULL;
220 return CurDAG->getTargetConstant(Value, SDLoc(N), MVT::i64);
223 // Truncate an immediate to a 8-bit signed quantity.
224 def SIMM8 : SDNodeXForm<imm, [{
225 return CurDAG->getTargetConstant(int8_t(N->getZExtValue()), SDLoc(N),
229 // Truncate an immediate to a 8-bit unsigned quantity.
230 def UIMM8 : SDNodeXForm<imm, [{
231 return CurDAG->getTargetConstant(uint8_t(N->getZExtValue()), SDLoc(N),
235 // Truncate an immediate to a 8-bit unsigned quantity and mask off low bit.
236 def UIMM8EVEN : SDNodeXForm<imm, [{
237 return CurDAG->getTargetConstant(N->getZExtValue() & 0xfe, SDLoc(N),
241 // Truncate an immediate to a 12-bit unsigned quantity.
242 def UIMM12 : SDNodeXForm<imm, [{
243 return CurDAG->getTargetConstant(N->getZExtValue() & 0xfff, SDLoc(N),
247 // Truncate an immediate to a 16-bit signed quantity.
248 def SIMM16 : SDNodeXForm<imm, [{
249 return CurDAG->getTargetConstant(int16_t(N->getZExtValue()), SDLoc(N),
253 // Negate and then truncate an immediate to a 16-bit signed quantity.
254 def NEGSIMM16 : SDNodeXForm<imm, [{
255 return CurDAG->getTargetConstant(int16_t(-N->getZExtValue()), SDLoc(N),
259 // Truncate an immediate to a 16-bit unsigned quantity.
260 def UIMM16 : SDNodeXForm<imm, [{
261 return CurDAG->getTargetConstant(uint16_t(N->getZExtValue()), SDLoc(N),
265 // Truncate an immediate to a 32-bit signed quantity.
266 def SIMM32 : SDNodeXForm<imm, [{
267 return CurDAG->getTargetConstant(int32_t(N->getZExtValue()), SDLoc(N),
271 // Negate and then truncate an immediate to a 32-bit unsigned quantity.
272 def NEGSIMM32 : SDNodeXForm<imm, [{
273 return CurDAG->getTargetConstant(int32_t(-N->getZExtValue()), SDLoc(N),
277 // Truncate an immediate to a 32-bit unsigned quantity.
278 def UIMM32 : SDNodeXForm<imm, [{
279 return CurDAG->getTargetConstant(uint32_t(N->getZExtValue()), SDLoc(N),
283 // Negate and then truncate an immediate to a 32-bit unsigned quantity.
284 def NEGUIMM32 : SDNodeXForm<imm, [{
285 return CurDAG->getTargetConstant(uint32_t(-N->getZExtValue()), SDLoc(N),
289 // Truncate an immediate to a 48-bit unsigned quantity.
290 def UIMM48 : SDNodeXForm<imm, [{
291 return CurDAG->getTargetConstant(uint64_t(N->getZExtValue()) & 0xffffffffffff,
295 //===----------------------------------------------------------------------===//
296 // Immediate asm operands.
297 //===----------------------------------------------------------------------===//
299 def U1Imm : ImmediateAsmOperand<"U1Imm">;
300 def U2Imm : ImmediateAsmOperand<"U2Imm">;
301 def U3Imm : ImmediateAsmOperand<"U3Imm">;
302 def U4Imm : ImmediateAsmOperand<"U4Imm">;
303 def U6Imm : ImmediateAsmOperand<"U6Imm">;
304 def S8Imm : ImmediateAsmOperand<"S8Imm">;
305 def U8Imm : ImmediateAsmOperand<"U8Imm">;
306 def U12Imm : ImmediateAsmOperand<"U12Imm">;
307 def S16Imm : ImmediateAsmOperand<"S16Imm">;
308 def U16Imm : ImmediateAsmOperand<"U16Imm">;
309 def S32Imm : ImmediateAsmOperand<"S32Imm">;
310 def U32Imm : ImmediateAsmOperand<"U32Imm">;
311 def U48Imm : ImmediateAsmOperand<"U48Imm">;
313 //===----------------------------------------------------------------------===//
315 //===----------------------------------------------------------------------===//
317 // Immediates for the lower and upper 16 bits of an i32, with the other
318 // bits of the i32 being zero.
319 defm imm32ll16 : Immediate<i32, [{
320 return SystemZ::isImmLL(N->getZExtValue());
323 defm imm32lh16 : Immediate<i32, [{
324 return SystemZ::isImmLH(N->getZExtValue());
327 // Immediates for the lower and upper 16 bits of an i32, with the other
328 // bits of the i32 being one.
329 defm imm32ll16c : Immediate<i32, [{
330 return SystemZ::isImmLL(uint32_t(~N->getZExtValue()));
333 defm imm32lh16c : Immediate<i32, [{
334 return SystemZ::isImmLH(uint32_t(~N->getZExtValue()));
338 defm imm32zx1 : Immediate<i32, [{
339 return isUInt<1>(N->getZExtValue());
340 }], NOOP_SDNodeXForm, "U1Imm">;
342 defm imm32zx2 : Immediate<i32, [{
343 return isUInt<2>(N->getZExtValue());
344 }], NOOP_SDNodeXForm, "U2Imm">;
346 defm imm32zx3 : Immediate<i32, [{
347 return isUInt<3>(N->getZExtValue());
348 }], NOOP_SDNodeXForm, "U3Imm">;
350 defm imm32zx4 : Immediate<i32, [{
351 return isUInt<4>(N->getZExtValue());
352 }], NOOP_SDNodeXForm, "U4Imm">;
354 // Note: this enforces an even value during code generation only.
355 // When used from the assembler, any 4-bit value is allowed.
356 defm imm32zx4even : Immediate<i32, [{
357 return isUInt<4>(N->getZExtValue());
358 }], UIMM8EVEN, "U4Imm">;
360 defm imm32zx6 : Immediate<i32, [{
361 return isUInt<6>(N->getZExtValue());
362 }], NOOP_SDNodeXForm, "U6Imm">;
364 defm imm32sx8 : Immediate<i32, [{
365 return isInt<8>(N->getSExtValue());
368 defm imm32zx8 : Immediate<i32, [{
369 return isUInt<8>(N->getZExtValue());
372 defm imm32zx8trunc : Immediate<i32, [{}], UIMM8, "U8Imm">;
374 defm imm32zx12 : Immediate<i32, [{
375 return isUInt<12>(N->getZExtValue());
376 }], UIMM12, "U12Imm">;
378 defm imm32sx16 : Immediate<i32, [{
379 return isInt<16>(N->getSExtValue());
380 }], SIMM16, "S16Imm">;
382 defm imm32sx16n : Immediate<i32, [{
383 return isInt<16>(-N->getSExtValue());
384 }], NEGSIMM16, "S16Imm">;
386 defm imm32zx16 : Immediate<i32, [{
387 return isUInt<16>(N->getZExtValue());
388 }], UIMM16, "U16Imm">;
390 defm imm32sx16trunc : Immediate<i32, [{}], SIMM16, "S16Imm">;
391 defm imm32zx16trunc : Immediate<i32, [{}], UIMM16, "U16Imm">;
393 // Full 32-bit immediates. we need both signed and unsigned versions
394 // because the assembler is picky. E.g. AFI requires signed operands
395 // while NILF requires unsigned ones.
396 defm simm32 : Immediate<i32, [{}], SIMM32, "S32Imm">;
397 defm uimm32 : Immediate<i32, [{}], UIMM32, "U32Imm">;
399 defm simm32n : Immediate<i32, [{
400 return isInt<32>(-N->getSExtValue());
401 }], NEGSIMM32, "S32Imm">;
403 def imm32 : ImmLeaf<i32, [{}]>;
405 //===----------------------------------------------------------------------===//
407 //===----------------------------------------------------------------------===//
409 // Immediates for 16-bit chunks of an i64, with the other bits of the
411 defm imm64ll16 : Immediate<i64, [{
412 return SystemZ::isImmLL(N->getZExtValue());
415 defm imm64lh16 : Immediate<i64, [{
416 return SystemZ::isImmLH(N->getZExtValue());
419 defm imm64hl16 : Immediate<i64, [{
420 return SystemZ::isImmHL(N->getZExtValue());
423 defm imm64hh16 : Immediate<i64, [{
424 return SystemZ::isImmHH(N->getZExtValue());
427 // Immediates for 16-bit chunks of an i64, with the other bits of the
429 defm imm64ll16c : Immediate<i64, [{
430 return SystemZ::isImmLL(uint64_t(~N->getZExtValue()));
433 defm imm64lh16c : Immediate<i64, [{
434 return SystemZ::isImmLH(uint64_t(~N->getZExtValue()));
437 defm imm64hl16c : Immediate<i64, [{
438 return SystemZ::isImmHL(uint64_t(~N->getZExtValue()));
441 defm imm64hh16c : Immediate<i64, [{
442 return SystemZ::isImmHH(uint64_t(~N->getZExtValue()));
445 // Immediates for the lower and upper 32 bits of an i64, with the other
446 // bits of the i32 being zero.
447 defm imm64lf32 : Immediate<i64, [{
448 return SystemZ::isImmLF(N->getZExtValue());
451 defm imm64hf32 : Immediate<i64, [{
452 return SystemZ::isImmHF(N->getZExtValue());
455 // Immediates for the lower and upper 32 bits of an i64, with the other
456 // bits of the i32 being one.
457 defm imm64lf32c : Immediate<i64, [{
458 return SystemZ::isImmLF(uint64_t(~N->getZExtValue()));
461 defm imm64hf32c : Immediate<i64, [{
462 return SystemZ::isImmHF(uint64_t(~N->getZExtValue()));
465 // Negated immediates that fit LF32 or LH16.
466 defm imm64lh16n : Immediate<i64, [{
467 return SystemZ::isImmLH(uint64_t(-N->getZExtValue()));
468 }], NEGLH16, "U16Imm">;
470 defm imm64lf32n : Immediate<i64, [{
471 return SystemZ::isImmLF(uint64_t(-N->getZExtValue()));
472 }], NEGLF32, "U32Imm">;
475 defm imm64sx8 : Immediate<i64, [{
476 return isInt<8>(N->getSExtValue());
479 defm imm64zx8 : Immediate<i64, [{
480 return isUInt<8>(N->getSExtValue());
483 defm imm64sx16 : Immediate<i64, [{
484 return isInt<16>(N->getSExtValue());
485 }], SIMM16, "S16Imm">;
487 defm imm64sx16n : Immediate<i64, [{
488 return isInt<16>(-N->getSExtValue());
489 }], NEGSIMM16, "S16Imm">;
491 defm imm64zx16 : Immediate<i64, [{
492 return isUInt<16>(N->getZExtValue());
493 }], UIMM16, "U16Imm">;
495 defm imm64sx32 : Immediate<i64, [{
496 return isInt<32>(N->getSExtValue());
497 }], SIMM32, "S32Imm">;
499 defm imm64sx32n : Immediate<i64, [{
500 return isInt<32>(-N->getSExtValue());
501 }], NEGSIMM32, "S32Imm">;
503 defm imm64zx32 : Immediate<i64, [{
504 return isUInt<32>(N->getZExtValue());
505 }], UIMM32, "U32Imm">;
507 defm imm64zx32n : Immediate<i64, [{
508 return isUInt<32>(-N->getSExtValue());
509 }], NEGUIMM32, "U32Imm">;
511 defm imm64zx48 : Immediate<i64, [{
512 return isUInt<64>(N->getZExtValue());
513 }], UIMM48, "U48Imm">;
515 let OperandType = "OPERAND_IMMEDIATE" in
516 def imm64 : ImmLeaf<i64, [{}]>, Operand<i64>;
518 //===----------------------------------------------------------------------===//
519 // Floating-point immediates
520 //===----------------------------------------------------------------------===//
522 // Floating-point zero.
523 def fpimm0 : PatLeaf<(fpimm), [{ return N->isExactlyValue(+0.0); }]>;
525 // Floating point negative zero.
526 def fpimmneg0 : PatLeaf<(fpimm), [{ return N->isExactlyValue(-0.0); }]>;
528 //===----------------------------------------------------------------------===//
529 // Symbolic address operands
530 //===----------------------------------------------------------------------===//
532 // PC-relative asm operands.
533 def PCRel12 : PCRelAsmOperand<"12">;
534 def PCRel16 : PCRelAsmOperand<"16">;
535 def PCRel24 : PCRelAsmOperand<"24">;
536 def PCRel32 : PCRelAsmOperand<"32">;
537 def PCRelTLS16 : PCRelTLSAsmOperand<"16">;
538 def PCRelTLS32 : PCRelTLSAsmOperand<"32">;
540 // PC-relative offsets of a basic block. The offset is sign-extended
541 // and multiplied by 2.
542 def brtarget16 : PCRelOperand<OtherVT, PCRel16> {
543 let EncoderMethod = "getPC16DBLEncoding";
544 let DecoderMethod = "decodePC16DBLBranchOperand";
546 def brtarget32 : PCRelOperand<OtherVT, PCRel32> {
547 let EncoderMethod = "getPC32DBLEncoding";
548 let DecoderMethod = "decodePC32DBLBranchOperand";
551 // Variants of brtarget for use with branch prediction preload.
552 def brtarget12bpp : PCRelOperand<OtherVT, PCRel12> {
553 let EncoderMethod = "getPC12DBLBPPEncoding";
554 let DecoderMethod = "decodePC12DBLBranchOperand";
556 def brtarget16bpp : PCRelOperand<OtherVT, PCRel16> {
557 let EncoderMethod = "getPC16DBLBPPEncoding";
558 let DecoderMethod = "decodePC16DBLBranchOperand";
560 def brtarget24bpp : PCRelOperand<OtherVT, PCRel24> {
561 let EncoderMethod = "getPC24DBLBPPEncoding";
562 let DecoderMethod = "decodePC24DBLBranchOperand";
565 // Variants of brtarget16/32 with an optional additional TLS symbol.
566 // These are used to annotate calls to __tls_get_offset.
567 def tlssym : Operand<i64> { }
568 def brtarget16tls : PCRelTLSOperand<OtherVT, PCRelTLS16> {
569 let MIOperandInfo = (ops brtarget16:$func, tlssym:$sym);
570 let EncoderMethod = "getPC16DBLTLSEncoding";
571 let DecoderMethod = "decodePC16DBLBranchOperand";
573 def brtarget32tls : PCRelTLSOperand<OtherVT, PCRelTLS32> {
574 let MIOperandInfo = (ops brtarget32:$func, tlssym:$sym);
575 let EncoderMethod = "getPC32DBLTLSEncoding";
576 let DecoderMethod = "decodePC32DBLBranchOperand";
579 // A PC-relative offset of a global value. The offset is sign-extended
580 // and multiplied by 2.
581 def pcrel32 : PCRelAddress<i64, "pcrel32", PCRel32> {
582 let EncoderMethod = "getPC32DBLEncoding";
583 let DecoderMethod = "decodePC32DBLOperand";
586 //===----------------------------------------------------------------------===//
588 //===----------------------------------------------------------------------===//
590 // 12-bit displacement operands.
591 def disp12imm32 : Operand<i32>;
592 def disp12imm64 : Operand<i64>;
594 // 20-bit displacement operands.
595 def disp20imm32 : Operand<i32>;
596 def disp20imm64 : Operand<i64>;
598 def BDAddr32Disp12 : AddressAsmOperand<"BDAddr", "32", "12">;
599 def BDAddr32Disp20 : AddressAsmOperand<"BDAddr", "32", "20">;
600 def BDAddr64Disp12 : AddressAsmOperand<"BDAddr", "64", "12">;
601 def BDAddr64Disp20 : AddressAsmOperand<"BDAddr", "64", "20">;
602 def BDXAddr64Disp12 : AddressAsmOperand<"BDXAddr", "64", "12">;
603 def BDXAddr64Disp20 : AddressAsmOperand<"BDXAddr", "64", "20">;
604 def BDLAddr64Disp12Len4 : AddressAsmOperand<"BDLAddr", "64", "12", "Len4">;
605 def BDLAddr64Disp12Len8 : AddressAsmOperand<"BDLAddr", "64", "12", "Len8">;
606 def BDRAddr64Disp12 : AddressAsmOperand<"BDRAddr", "64", "12">;
607 def BDVAddr64Disp12 : AddressAsmOperand<"BDVAddr", "64", "12">;
609 // DAG patterns and operands for addressing modes. Each mode has
610 // the form <type><range><group>[<len>] where:
613 // shift : base + displacement (32-bit)
614 // bdaddr : base + displacement
615 // mviaddr : like bdaddr, but reject cases with a natural index
616 // bdxaddr : base + displacement + index
617 // laaddr : like bdxaddr, but used for Load Address operations
618 // dynalloc : base + displacement + index + ADJDYNALLOC
619 // bdladdr : base + displacement with a length field
620 // bdvaddr : base + displacement with a vector index
622 // <range> is one of:
623 // 12 : the displacement is an unsigned 12-bit value
624 // 20 : the displacement is a signed 20-bit value
626 // <group> is one of:
627 // pair : used when there is an equivalent instruction with the opposite
628 // range value (12 or 20)
629 // only : used when there is no equivalent instruction with the opposite
634 // <empty> : there is no length field
635 // len8 : the length field is 8 bits, with a range of [1, 0x100].
636 def shift12only : BDMode <"BDAddr", "32", "12", "Only">;
637 def shift20only : BDMode <"BDAddr", "32", "20", "Only">;
638 def bdaddr12only : BDMode <"BDAddr", "64", "12", "Only">;
639 def bdaddr12pair : BDMode <"BDAddr", "64", "12", "Pair">;
640 def bdaddr20only : BDMode <"BDAddr", "64", "20", "Only">;
641 def bdaddr20pair : BDMode <"BDAddr", "64", "20", "Pair">;
642 def mviaddr12pair : BDMode <"MVIAddr", "64", "12", "Pair">;
643 def mviaddr20pair : BDMode <"MVIAddr", "64", "20", "Pair">;
644 def bdxaddr12only : BDXMode<"BDXAddr", "64", "12", "Only">;
645 def bdxaddr12pair : BDXMode<"BDXAddr", "64", "12", "Pair">;
646 def bdxaddr20only : BDXMode<"BDXAddr", "64", "20", "Only">;
647 def bdxaddr20only128 : BDXMode<"BDXAddr", "64", "20", "Only128">;
648 def bdxaddr20pair : BDXMode<"BDXAddr", "64", "20", "Pair">;
649 def dynalloc12only : BDXMode<"DynAlloc", "64", "12", "Only">;
650 def laaddr12pair : BDXMode<"LAAddr", "64", "12", "Pair">;
651 def laaddr20pair : BDXMode<"LAAddr", "64", "20", "Pair">;
652 def bdladdr12onlylen4 : BDLMode<"BDLAddr", "64", "12", "Only", "4">;
653 def bdladdr12onlylen8 : BDLMode<"BDLAddr", "64", "12", "Only", "8">;
654 def bdraddr12only : BDRMode<"BDRAddr", "64", "12", "Only">;
655 def bdvaddr12only : BDVMode< "64", "12">;
657 //===----------------------------------------------------------------------===//
659 //===----------------------------------------------------------------------===//
661 // A 4-bit condition-code mask.
662 def cond4 : PatLeaf<(i32 timm), [{ return (N->getZExtValue() < 16); }]>,
664 let PrintMethod = "printCond4Operand";
665 let OperandType = "OPERAND_IMMEDIATE";