[WebAssembly] Fix asan issue from https://reviews.llvm.org/D121349
[llvm-project.git] / flang / test / Semantics / modfile33.f90
blob5eae92a8a7f9984432007f3a05a0b3f2b7f9823c
1 ! RUN: %python %S/test_modfile.py %s %flang_fc1 -flogical-abbreviations -fxor-operator
3 ! Resolution of user-defined operators in expressions.
4 ! Test by using generic function in a specification expression that needs
5 ! to be written to a .mod file.
7 ! Numeric operators
8 module m1
9 type :: t
10 sequence
11 logical :: x
12 end type
13 interface operator(+)
14 pure integer(8) function add_ll(x, y)
15 logical, intent(in) :: x, y
16 end
17 pure integer(8) function add_li(x, y)
18 logical, intent(in) :: x
19 integer, intent(in) :: y
20 end
21 pure integer(8) function add_tt(x, y)
22 import :: t
23 type(t), intent(in) :: x, y
24 end
25 end interface
26 interface operator(/)
27 pure integer(8) function div_tz(x, y)
28 import :: t
29 type(t), intent(in) :: x
30 complex, intent(in) :: y
31 end
32 pure integer(8) function div_ct(x, y)
33 import :: t
34 character(10), intent(in) :: x
35 type(t), intent(in) :: y
36 end
37 end interface
38 contains
39 subroutine s1(x, y, z)
40 logical :: x, y
41 real :: z(x + y) ! resolves to add_ll
42 end
43 subroutine s2(x, y, z)
44 logical :: x
45 integer :: y
46 real :: z(x + y) ! resolves to add_li
47 end
48 subroutine s3(x, y, z)
49 type(t) :: x
50 complex :: y
51 real :: z(x / y) ! resolves to div_tz
52 end
53 subroutine s4(x, y, z)
54 character(10) :: x
55 type(t) :: y
56 real :: z(x / y) ! resolves to div_ct
57 end
58 end
60 !Expect: m1.mod
61 !module m1
62 ! type :: t
63 ! sequence
64 ! logical(4) :: x
65 ! end type
66 ! interface operator(+)
67 ! procedure :: add_ll
68 ! procedure :: add_li
69 ! procedure :: add_tt
70 ! end interface
71 ! interface
72 ! pure function add_ll(x, y)
73 ! logical(4), intent(in) :: x
74 ! logical(4), intent(in) :: y
75 ! integer(8) :: add_ll
76 ! end
77 ! end interface
78 ! interface
79 ! pure function add_li(x, y)
80 ! logical(4), intent(in) :: x
81 ! integer(4), intent(in) :: y
82 ! integer(8) :: add_li
83 ! end
84 ! end interface
85 ! interface
86 ! pure function add_tt(x, y)
87 ! import :: t
88 ! type(t), intent(in) :: x
89 ! type(t), intent(in) :: y
90 ! integer(8) :: add_tt
91 ! end
92 ! end interface
93 ! interface operator(/)
94 ! procedure :: div_tz
95 ! procedure :: div_ct
96 ! end interface
97 ! interface
98 ! pure function div_tz(x, y)
99 ! import :: t
100 ! type(t), intent(in) :: x
101 ! complex(4), intent(in) :: y
102 ! integer(8) :: div_tz
103 ! end
104 ! end interface
105 ! interface
106 ! pure function div_ct(x, y)
107 ! import :: t
108 ! character(10_4, 1), intent(in) :: x
109 ! type(t), intent(in) :: y
110 ! integer(8) :: div_ct
111 ! end
112 ! end interface
113 !contains
114 ! subroutine s1(x, y, z)
115 ! logical(4) :: x
116 ! logical(4) :: y
117 ! real(4) :: z(1_8:add_ll(x, y))
118 ! end
119 ! subroutine s2(x, y, z)
120 ! logical(4) :: x
121 ! integer(4) :: y
122 ! real(4) :: z(1_8:add_li(x, y))
123 ! end
124 ! subroutine s3(x, y, z)
125 ! type(t) :: x
126 ! complex(4) :: y
127 ! real(4) :: z(1_8:div_tz(x, y))
128 ! end
129 ! subroutine s4(x, y, z)
130 ! character(10_4, 1) :: x
131 ! type(t) :: y
132 ! real(4) :: z(1_8:div_ct(x, y))
133 ! end
134 !end
136 ! Logical operators
137 module m2
138 type :: t
139 sequence
140 logical :: x
141 end type
142 interface operator(.And.)
143 pure integer(8) function and_ti(x, y)
144 import :: t
145 type(t), intent(in) :: x
146 integer, intent(in) :: y
148 pure integer(8) function and_li(x, y)
149 logical, intent(in) :: x
150 integer, intent(in) :: y
152 end interface
153 ! Alternative spelling of .AND.
154 interface operator(.a.)
155 pure integer(8) function and_tt(x, y)
156 import :: t
157 type(t), intent(in) :: x, y
159 end interface
160 interface operator(.x.)
161 pure integer(8) function neqv_tt(x, y)
162 import :: t
163 type(t), intent(in) :: x, y
165 end interface
166 interface operator(.neqv.)
167 pure integer(8) function neqv_rr(x, y)
168 real, intent(in) :: x, y
170 end interface
171 contains
172 subroutine s1(x, y, z)
173 type(t) :: x
174 integer :: y
175 real :: z(x .and. y) ! resolves to and_ti
177 subroutine s2(x, y, z)
178 logical :: x
179 integer :: y
180 real :: z(x .a. y) ! resolves to and_li
182 subroutine s3(x, y, z)
183 type(t) :: x, y
184 real :: z(x .and. y) ! resolves to and_tt
186 subroutine s4(x, y, z)
187 type(t) :: x, y
188 real :: z(x .neqv. y) ! resolves to neqv_tt
190 subroutine s5(x, y, z)
191 real :: x, y
192 real :: z(x .xor. y) ! resolves to neqv_rr
196 !Expect: m2.mod
197 !module m2
198 ! type :: t
199 ! sequence
200 ! logical(4) :: x
201 ! end type
202 ! interface operator( .and.)
203 ! procedure :: and_ti
204 ! procedure :: and_li
205 ! procedure :: and_tt
206 ! end interface
207 ! interface
208 ! pure function and_ti(x, y)
209 ! import :: t
210 ! type(t), intent(in) :: x
211 ! integer(4), intent(in) :: y
212 ! integer(8) :: and_ti
213 ! end
214 ! end interface
215 ! interface
216 ! pure function and_li(x, y)
217 ! logical(4), intent(in) :: x
218 ! integer(4), intent(in) :: y
219 ! integer(8) :: and_li
220 ! end
221 ! end interface
222 ! interface
223 ! pure function and_tt(x, y)
224 ! import :: t
225 ! type(t), intent(in) :: x
226 ! type(t), intent(in) :: y
227 ! integer(8) :: and_tt
228 ! end
229 ! end interface
230 ! interface operator(.x.)
231 ! procedure :: neqv_tt
232 ! procedure :: neqv_rr
233 ! end interface
234 ! interface
235 ! pure function neqv_tt(x, y)
236 ! import :: t
237 ! type(t), intent(in) :: x
238 ! type(t), intent(in) :: y
239 ! integer(8) :: neqv_tt
240 ! end
241 ! end interface
242 ! interface
243 ! pure function neqv_rr(x, y)
244 ! real(4), intent(in) :: x
245 ! real(4), intent(in) :: y
246 ! integer(8) :: neqv_rr
247 ! end
248 ! end interface
249 !contains
250 ! subroutine s1(x, y, z)
251 ! type(t) :: x
252 ! integer(4) :: y
253 ! real(4) :: z(1_8:and_ti(x, y))
254 ! end
255 ! subroutine s2(x, y, z)
256 ! logical(4) :: x
257 ! integer(4) :: y
258 ! real(4) :: z(1_8:and_li(x, y))
259 ! end
260 ! subroutine s3(x, y, z)
261 ! type(t) :: x
262 ! type(t) :: y
263 ! real(4) :: z(1_8:and_tt(x, y))
264 ! end
265 ! subroutine s4(x, y, z)
266 ! type(t) :: x
267 ! type(t) :: y
268 ! real(4) :: z(1_8:neqv_tt(x, y))
269 ! end
270 ! subroutine s5(x, y, z)
271 ! real(4) :: x
272 ! real(4) :: y
273 ! real(4) :: z(1_8:neqv_rr(x, y))
274 ! end
275 !end
277 ! Relational operators
278 module m3
279 type :: t
280 sequence
281 logical :: x
282 end type
283 interface operator(<>)
284 pure integer(8) function ne_it(x, y)
285 import :: t
286 integer, intent(in) :: x
287 type(t), intent(in) :: y
289 end interface
290 interface operator(/=)
291 pure integer(8) function ne_tt(x, y)
292 import :: t
293 type(t), intent(in) :: x, y
295 end interface
296 interface operator(.ne.)
297 pure integer(8) function ne_ci(x, y)
298 character(len=*), intent(in) :: x
299 integer, intent(in) :: y
301 end interface
302 contains
303 subroutine s1(x, y, z)
304 integer :: x
305 type(t) :: y
306 real :: z(x /= y) ! resolves to ne_it
308 subroutine s2(x, y, z)
309 type(t) :: x
310 type(t) :: y
311 real :: z(x .ne. y) ! resolves to ne_tt
313 subroutine s3(x, y, z)
314 character(len=*) :: x
315 integer :: y
316 real :: z(x <> y) ! resolves to ne_ci
320 !Expect: m3.mod
321 !module m3
322 ! type :: t
323 ! sequence
324 ! logical(4) :: x
325 ! end type
326 ! interface operator(<>)
327 ! procedure :: ne_it
328 ! procedure :: ne_tt
329 ! procedure :: ne_ci
330 ! end interface
331 ! interface
332 ! pure function ne_it(x, y)
333 ! import :: t
334 ! integer(4), intent(in) :: x
335 ! type(t), intent(in) :: y
336 ! integer(8) :: ne_it
337 ! end
338 ! end interface
339 ! interface
340 ! pure function ne_tt(x, y)
341 ! import :: t
342 ! type(t), intent(in) :: x
343 ! type(t), intent(in) :: y
344 ! integer(8) :: ne_tt
345 ! end
346 ! end interface
347 ! interface
348 ! pure function ne_ci(x, y)
349 ! character(*, 1), intent(in) :: x
350 ! integer(4), intent(in) :: y
351 ! integer(8) :: ne_ci
352 ! end
353 ! end interface
354 !contains
355 ! subroutine s1(x, y, z)
356 ! integer(4) :: x
357 ! type(t) :: y
358 ! real(4) :: z(1_8:ne_it(x, y))
359 ! end
360 ! subroutine s2(x, y, z)
361 ! type(t) :: x
362 ! type(t) :: y
363 ! real(4) :: z(1_8:ne_tt(x, y))
364 ! end
365 ! subroutine s3(x, y, z)
366 ! character(*, 1) :: x
367 ! integer(4) :: y
368 ! real(4) :: z(1_8:ne_ci(x, y))
369 ! end
370 !end
372 ! Concatenation
373 module m4
374 type :: t
375 sequence
376 logical :: x
377 end type
378 interface operator(//)
379 pure integer(8) function concat_12(x, y)
380 character(len=*,kind=1), intent(in) :: x
381 character(len=*,kind=2), intent(in) :: y
383 pure integer(8) function concat_int_real(x, y)
384 integer, intent(in) :: x
385 real, intent(in) :: y
387 end interface
388 contains
389 subroutine s1(x, y, z)
390 character(len=*,kind=1) :: x
391 character(len=*,kind=2) :: y
392 real :: z(x // y) ! resolves to concat_12
394 subroutine s2(x, y, z)
395 integer :: x
396 real :: y
397 real :: z(x // y) ! resolves to concat_int_real
400 !Expect: m4.mod
401 !module m4
402 ! type :: t
403 ! sequence
404 ! logical(4) :: x
405 ! end type
406 ! interface operator(//)
407 ! procedure :: concat_12
408 ! procedure :: concat_int_real
409 ! end interface
410 ! interface
411 ! pure function concat_12(x, y)
412 ! character(*, 1), intent(in) :: x
413 ! character(*, 2), intent(in) :: y
414 ! integer(8) :: concat_12
415 ! end
416 ! end interface
417 ! interface
418 ! pure function concat_int_real(x, y)
419 ! integer(4), intent(in) :: x
420 ! real(4), intent(in) :: y
421 ! integer(8) :: concat_int_real
422 ! end
423 ! end interface
424 !contains
425 ! subroutine s1(x, y, z)
426 ! character(*, 1) :: x
427 ! character(*, 2) :: y
428 ! real(4) :: z(1_8:concat_12(x, y))
429 ! end
430 ! subroutine s2(x, y, z)
431 ! integer(4) :: x
432 ! real(4) :: y
433 ! real(4) :: z(1_8:concat_int_real(x, y))
434 ! end
435 !end
437 ! Unary operators
438 module m5
439 type :: t
440 end type
441 interface operator(+)
442 pure integer(8) function plus_l(x)
443 logical, intent(in) :: x
445 end interface
446 interface operator(-)
447 pure integer(8) function minus_t(x)
448 import :: t
449 type(t), intent(in) :: x
451 end interface
452 interface operator(.not.)
453 pure integer(8) function not_t(x)
454 import :: t
455 type(t), intent(in) :: x
457 pure integer(8) function not_real(x)
458 real, intent(in) :: x
460 end interface
461 contains
462 subroutine s1(x, y)
463 logical :: x
464 real :: y(+x) ! resolves_to plus_l
466 subroutine s2(x, y)
467 type(t) :: x
468 real :: y(-x) ! resolves_to minus_t
470 subroutine s3(x, y)
471 type(t) :: x
472 real :: y(.not. x) ! resolves to not_t
474 subroutine s4(x, y)
475 real :: y(.not. x) ! resolves to not_real
479 !Expect: m5.mod
480 !module m5
481 ! type :: t
482 ! end type
483 ! interface operator(+)
484 ! procedure :: plus_l
485 ! end interface
486 ! interface
487 ! pure function plus_l(x)
488 ! logical(4), intent(in) :: x
489 ! integer(8) :: plus_l
490 ! end
491 ! end interface
492 ! interface operator(-)
493 ! procedure :: minus_t
494 ! end interface
495 ! interface
496 ! pure function minus_t(x)
497 ! import :: t
498 ! type(t), intent(in) :: x
499 ! integer(8) :: minus_t
500 ! end
501 ! end interface
502 ! interface operator( .not.)
503 ! procedure :: not_t
504 ! procedure :: not_real
505 ! end interface
506 ! interface
507 ! pure function not_t(x)
508 ! import :: t
509 ! type(t), intent(in) :: x
510 ! integer(8) :: not_t
511 ! end
512 ! end interface
513 ! interface
514 ! pure function not_real(x)
515 ! real(4), intent(in) :: x
516 ! integer(8) :: not_real
517 ! end
518 ! end interface
519 !contains
520 ! subroutine s1(x, y)
521 ! logical(4) :: x
522 ! real(4) :: y(1_8:plus_l(x))
523 ! end
524 ! subroutine s2(x, y)
525 ! type(t) :: x
526 ! real(4) :: y(1_8:minus_t(x))
527 ! end
528 ! subroutine s3(x, y)
529 ! type(t) :: x
530 ! real(4) :: y(1_8:not_t(x))
531 ! end
532 ! subroutine s4(x, y)
533 ! real(4) :: x
534 ! real(4) :: y(1_8:not_real(x))
535 ! end
536 !end
538 ! Resolved based on shape
539 module m6
540 interface operator(+)
541 pure integer(8) function add(x, y)
542 real, intent(in) :: x(:, :)
543 real, intent(in) :: y(:, :, :)
545 end interface
546 contains
547 subroutine s1(n, x, y, z, a, b)
548 integer(8) :: n
549 real :: x
550 real :: y(4, n)
551 real :: z(2, 2, 2)
552 real :: a(size(x+y)) ! intrinsic +
553 real :: b(y+z) ! resolves to add
557 !Expect: m6.mod
558 !module m6
559 ! interface operator(+)
560 ! procedure :: add
561 ! end interface
562 ! interface
563 ! pure function add(x, y)
564 ! real(4), intent(in) :: x(:, :)
565 ! real(4), intent(in) :: y(:, :, :)
566 ! integer(8) :: add
567 ! end
568 ! end interface
569 !contains
570 ! subroutine s1(n, x, y, z, a, b)
571 ! integer(8) :: n
572 ! real(4) :: x
573 ! real(4) :: y(1_8:4_8, 1_8:n)
574 ! real(4) :: z(1_8:2_8, 1_8:2_8, 1_8:2_8)
575 ! real(4) :: a(1_8:int(int(4_8*size(y,dim=2),kind=4),kind=8))
576 ! real(4) :: b(1_8:add(y, z))
577 ! end
578 !end
580 ! Parameterized derived type
581 module m7
582 type :: t(k)
583 integer, kind :: k
584 real(k) :: a
585 end type
586 interface operator(+)
587 pure integer(8) function f1(x, y)
588 import :: t
589 type(t(4)), intent(in) :: x, y
591 pure integer(8) function f2(x, y)
592 import :: t
593 type(t(8)), intent(in) :: x, y
595 end interface
596 contains
597 subroutine s1(x, y, z)
598 type(t(4)) :: x, y
599 real :: z(x + y) ! resolves to f1
601 subroutine s2(x, y, z)
602 type(t(8)) :: x, y
603 real :: z(x + y) ! resolves to f2
607 !Expect: m7.mod
608 !module m7
609 ! type :: t(k)
610 ! integer(4), kind :: k
611 ! real(int(int(k,kind=4),kind=8))::a
612 ! end type
613 ! interface operator(+)
614 ! procedure :: f1
615 ! procedure :: f2
616 ! end interface
617 ! interface
618 ! pure function f1(x, y)
619 ! import :: t
620 ! type(t(k=4_4)), intent(in) :: x
621 ! type(t(k=4_4)), intent(in) :: y
622 ! integer(8) :: f1
623 ! end
624 ! end interface
625 ! interface
626 ! pure function f2(x, y)
627 ! import :: t
628 ! type(t(k=8_4)), intent(in) :: x
629 ! type(t(k=8_4)), intent(in) :: y
630 ! integer(8) :: f2
631 ! end
632 ! end interface
633 !contains
634 ! subroutine s1(x, y, z)
635 ! type(t(k=4_4)) :: x
636 ! type(t(k=4_4)) :: y
637 ! real(4) :: z(1_8:f1(x, y))
638 ! end
639 ! subroutine s2(x, y, z)
640 ! type(t(k=8_4)) :: x
641 ! type(t(k=8_4)) :: y
642 ! real(4) :: z(1_8:f2(x, y))
643 ! end
644 !end