1 //===- Writer.cpp ---------------------------------------------------------===//
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
7 //===----------------------------------------------------------------------===//
10 #include "COFFLinkerContext.h"
11 #include "CallGraphSort.h"
14 #include "InputFiles.h"
15 #include "LLDMapFile.h"
18 #include "SymbolTable.h"
20 #include "lld/Common/ErrorHandler.h"
21 #include "lld/Common/Memory.h"
22 #include "lld/Common/Timer.h"
23 #include "llvm/ADT/DenseMap.h"
24 #include "llvm/ADT/STLExtras.h"
25 #include "llvm/ADT/StringSet.h"
26 #include "llvm/ADT/StringSwitch.h"
27 #include "llvm/MC/StringTableBuilder.h"
28 #include "llvm/Support/BinaryStreamReader.h"
29 #include "llvm/Support/Debug.h"
30 #include "llvm/Support/Endian.h"
31 #include "llvm/Support/FileOutputBuffer.h"
32 #include "llvm/Support/Parallel.h"
33 #include "llvm/Support/Path.h"
34 #include "llvm/Support/RandomNumberGenerator.h"
35 #include "llvm/Support/xxhash.h"
43 using namespace llvm::COFF
;
44 using namespace llvm::object
;
45 using namespace llvm::support
;
46 using namespace llvm::support::endian
;
48 using namespace lld::coff
;
50 /* To re-generate DOSProgram:
51 $ cat > /tmp/DOSProgram.asm
56 ; Point ds:dx at the $-terminated string.
58 ; Int 21/AH=09h: Write string to standard output.
61 ; Int 21/AH=4Ch: Exit with return code (in AL).
65 db 'This program cannot be run in DOS mode.$'
67 $ nasm -fbin /tmp/DOSProgram.asm -o /tmp/DOSProgram.bin
68 $ xxd -i /tmp/DOSProgram.bin
70 static unsigned char dosProgram
[] = {
71 0x0e, 0x1f, 0xba, 0x0e, 0x00, 0xb4, 0x09, 0xcd, 0x21, 0xb8, 0x01, 0x4c,
72 0xcd, 0x21, 0x54, 0x68, 0x69, 0x73, 0x20, 0x70, 0x72, 0x6f, 0x67, 0x72,
73 0x61, 0x6d, 0x20, 0x63, 0x61, 0x6e, 0x6e, 0x6f, 0x74, 0x20, 0x62, 0x65,
74 0x20, 0x72, 0x75, 0x6e, 0x20, 0x69, 0x6e, 0x20, 0x44, 0x4f, 0x53, 0x20,
75 0x6d, 0x6f, 0x64, 0x65, 0x2e, 0x24, 0x00, 0x00
77 static_assert(sizeof(dosProgram
) % 8 == 0,
78 "DOSProgram size must be multiple of 8");
80 static const int dosStubSize
= sizeof(dos_header
) + sizeof(dosProgram
);
81 static_assert(dosStubSize
% 8 == 0, "DOSStub size must be multiple of 8");
83 static const int numberOfDataDirectory
= 16;
87 class DebugDirectoryChunk
: public NonSectionChunk
{
89 DebugDirectoryChunk(COFFLinkerContext
&c
,
90 const std::vector
<std::pair
<COFF::DebugType
, Chunk
*>> &r
,
92 : records(r
), writeRepro(writeRepro
), ctx(c
) {}
94 size_t getSize() const override
{
95 return (records
.size() + int(writeRepro
)) * sizeof(debug_directory
);
98 void writeTo(uint8_t *b
) const override
{
99 auto *d
= reinterpret_cast<debug_directory
*>(b
);
101 for (const std::pair
<COFF::DebugType
, Chunk
*>& record
: records
) {
102 Chunk
*c
= record
.second
;
103 OutputSection
*os
= ctx
.getOutputSection(c
);
104 uint64_t offs
= os
->getFileOff() + (c
->getRVA() - os
->getRVA());
105 fillEntry(d
, record
.first
, c
->getSize(), c
->getRVA(), offs
);
110 // FIXME: The COFF spec allows either a 0-sized entry to just say
111 // "the timestamp field is really a hash", or a 4-byte size field
112 // followed by that many bytes containing a longer hash (with the
113 // lowest 4 bytes usually being the timestamp in little-endian order).
114 // Consider storing the full 8 bytes computed by xxHash64 here.
115 fillEntry(d
, COFF::IMAGE_DEBUG_TYPE_REPRO
, 0, 0, 0);
119 void setTimeDateStamp(uint32_t timeDateStamp
) {
120 for (support::ulittle32_t
*tds
: timeDateStamps
)
121 *tds
= timeDateStamp
;
125 void fillEntry(debug_directory
*d
, COFF::DebugType debugType
, size_t size
,
126 uint64_t rva
, uint64_t offs
) const {
127 d
->Characteristics
= 0;
128 d
->TimeDateStamp
= 0;
132 d
->SizeOfData
= size
;
133 d
->AddressOfRawData
= rva
;
134 d
->PointerToRawData
= offs
;
136 timeDateStamps
.push_back(&d
->TimeDateStamp
);
139 mutable std::vector
<support::ulittle32_t
*> timeDateStamps
;
140 const std::vector
<std::pair
<COFF::DebugType
, Chunk
*>> &records
;
143 COFFLinkerContext
&ctx
;
146 class CVDebugRecordChunk
: public NonSectionChunk
{
148 size_t getSize() const override
{
149 return sizeof(codeview::DebugInfo
) + config
->pdbAltPath
.size() + 1;
152 void writeTo(uint8_t *b
) const override
{
153 // Save off the DebugInfo entry to backfill the file signature (build id)
154 // in Writer::writeBuildId
155 buildId
= reinterpret_cast<codeview::DebugInfo
*>(b
);
157 // variable sized field (PDB Path)
158 char *p
= reinterpret_cast<char *>(b
+ sizeof(*buildId
));
159 if (!config
->pdbAltPath
.empty())
160 memcpy(p
, config
->pdbAltPath
.data(), config
->pdbAltPath
.size());
161 p
[config
->pdbAltPath
.size()] = '\0';
164 mutable codeview::DebugInfo
*buildId
= nullptr;
167 class ExtendedDllCharacteristicsChunk
: public NonSectionChunk
{
169 ExtendedDllCharacteristicsChunk(uint32_t c
) : characteristics(c
) {}
171 size_t getSize() const override
{ return 4; }
173 void writeTo(uint8_t *buf
) const override
{ write32le(buf
, characteristics
); }
175 uint32_t characteristics
= 0;
178 // PartialSection represents a group of chunks that contribute to an
179 // OutputSection. Collating a collection of PartialSections of same name and
180 // characteristics constitutes the OutputSection.
181 class PartialSectionKey
{
184 unsigned characteristics
;
186 bool operator<(const PartialSectionKey
&other
) const {
187 int c
= name
.compare(other
.name
);
191 return characteristics
< other
.characteristics
;
196 // The writer writes a SymbolTable result to a file.
199 Writer(COFFLinkerContext
&c
)
200 : buffer(errorHandler().outputBuffer
),
201 strtab(StringTableBuilder::WinCOFF
), ctx(c
) {}
205 void createSections();
206 void createMiscChunks();
207 void createImportTables();
208 void appendImportThunks();
209 void locateImportTables();
210 void createExportTable();
211 void mergeSections();
212 void removeUnusedSections();
213 void assignAddresses();
214 void finalizeAddresses();
215 void removeEmptySections();
216 void assignOutputSectionIndices();
217 void createSymbolAndStringTable();
218 void openFile(StringRef outputPath
);
219 template <typename PEHeaderTy
> void writeHeader();
220 void createSEHTable();
221 void createRuntimePseudoRelocs();
222 void insertCtorDtorSymbols();
223 void createGuardCFTables();
224 void markSymbolsForRVATable(ObjFile
*file
,
225 ArrayRef
<SectionChunk
*> symIdxChunks
,
226 SymbolRVASet
&tableSymbols
);
227 void getSymbolsFromSections(ObjFile
*file
,
228 ArrayRef
<SectionChunk
*> symIdxChunks
,
229 std::vector
<Symbol
*> &symbols
);
230 void maybeAddRVATable(SymbolRVASet tableSymbols
, StringRef tableSym
,
231 StringRef countSym
, bool hasFlag
=false);
232 void setSectionPermissions();
233 void writeSections();
236 void sortExceptionTable();
237 void sortCRTSectionChunks(std::vector
<Chunk
*> &chunks
);
238 void addSyntheticIdata();
239 void fixPartialSectionChars(StringRef name
, uint32_t chars
);
240 bool fixGnuImportChunks();
241 void fixTlsAlignment();
242 PartialSection
*createPartialSection(StringRef name
, uint32_t outChars
);
243 PartialSection
*findPartialSection(StringRef name
, uint32_t outChars
);
245 llvm::Optional
<coff_symbol16
> createSymbol(Defined
*d
);
247 OutputSection
*findSection(StringRef name
);
249 void addBaserelBlocks(std::vector
<Baserel
> &v
);
251 uint32_t getSizeOfInitializedData();
253 std::unique_ptr
<FileOutputBuffer
> &buffer
;
254 std::map
<PartialSectionKey
, PartialSection
*> partialSections
;
255 StringTableBuilder strtab
;
256 std::vector
<llvm::object::coff_symbol16
> outputSymtab
;
258 Chunk
*importTableStart
= nullptr;
259 uint64_t importTableSize
= 0;
260 Chunk
*edataStart
= nullptr;
261 Chunk
*edataEnd
= nullptr;
262 Chunk
*iatStart
= nullptr;
263 uint64_t iatSize
= 0;
264 DelayLoadContents delayIdata
;
266 bool setNoSEHCharacteristic
= false;
267 uint32_t tlsAlignment
= 0;
269 DebugDirectoryChunk
*debugDirectory
= nullptr;
270 std::vector
<std::pair
<COFF::DebugType
, Chunk
*>> debugRecords
;
271 CVDebugRecordChunk
*buildId
= nullptr;
272 ArrayRef
<uint8_t> sectionTable
;
275 uint32_t pointerToSymbolTable
= 0;
276 uint64_t sizeOfImage
;
277 uint64_t sizeOfHeaders
;
279 OutputSection
*textSec
;
280 OutputSection
*rdataSec
;
281 OutputSection
*buildidSec
;
282 OutputSection
*dataSec
;
283 OutputSection
*pdataSec
;
284 OutputSection
*idataSec
;
285 OutputSection
*edataSec
;
286 OutputSection
*didatSec
;
287 OutputSection
*rsrcSec
;
288 OutputSection
*relocSec
;
289 OutputSection
*ctorsSec
;
290 OutputSection
*dtorsSec
;
292 // The first and last .pdata sections in the output file.
294 // We need to keep track of the location of .pdata in whichever section it
295 // gets merged into so that we can sort its contents and emit a correct data
296 // directory entry for the exception table. This is also the case for some
297 // other sections (such as .edata) but because the contents of those sections
298 // are entirely linker-generated we can keep track of their locations using
299 // the chunks that the linker creates. All .pdata chunks come from input
300 // files, so we need to keep track of them separately.
301 Chunk
*firstPdata
= nullptr;
304 COFFLinkerContext
&ctx
;
306 } // anonymous namespace
308 void lld::coff::writeResult(COFFLinkerContext
&ctx
) { Writer(ctx
).run(); }
310 void OutputSection::addChunk(Chunk
*c
) {
314 void OutputSection::insertChunkAtStart(Chunk
*c
) {
315 chunks
.insert(chunks
.begin(), c
);
318 void OutputSection::setPermissions(uint32_t c
) {
319 header
.Characteristics
&= ~permMask
;
320 header
.Characteristics
|= c
;
323 void OutputSection::merge(OutputSection
*other
) {
324 chunks
.insert(chunks
.end(), other
->chunks
.begin(), other
->chunks
.end());
325 other
->chunks
.clear();
326 contribSections
.insert(contribSections
.end(), other
->contribSections
.begin(),
327 other
->contribSections
.end());
328 other
->contribSections
.clear();
331 // Write the section header to a given buffer.
332 void OutputSection::writeHeaderTo(uint8_t *buf
) {
333 auto *hdr
= reinterpret_cast<coff_section
*>(buf
);
335 if (stringTableOff
) {
336 // If name is too long, write offset into the string table as a name.
337 encodeSectionName(hdr
->Name
, stringTableOff
);
339 assert(!config
->debug
|| name
.size() <= COFF::NameSize
||
340 (hdr
->Characteristics
& IMAGE_SCN_MEM_DISCARDABLE
) == 0);
341 strncpy(hdr
->Name
, name
.data(),
342 std::min(name
.size(), (size_t)COFF::NameSize
));
346 void OutputSection::addContributingPartialSection(PartialSection
*sec
) {
347 contribSections
.push_back(sec
);
350 // Check whether the target address S is in range from a relocation
351 // of type relType at address P.
352 static bool isInRange(uint16_t relType
, uint64_t s
, uint64_t p
, int margin
) {
353 if (config
->machine
== ARMNT
) {
354 int64_t diff
= AbsoluteDifference(s
, p
+ 4) + margin
;
356 case IMAGE_REL_ARM_BRANCH20T
:
357 return isInt
<21>(diff
);
358 case IMAGE_REL_ARM_BRANCH24T
:
359 case IMAGE_REL_ARM_BLX23T
:
360 return isInt
<25>(diff
);
364 } else if (config
->machine
== ARM64
) {
365 int64_t diff
= AbsoluteDifference(s
, p
) + margin
;
367 case IMAGE_REL_ARM64_BRANCH26
:
368 return isInt
<28>(diff
);
369 case IMAGE_REL_ARM64_BRANCH19
:
370 return isInt
<21>(diff
);
371 case IMAGE_REL_ARM64_BRANCH14
:
372 return isInt
<16>(diff
);
377 llvm_unreachable("Unexpected architecture");
381 // Return the last thunk for the given target if it is in range,
382 // or create a new one.
383 static std::pair
<Defined
*, bool>
384 getThunk(DenseMap
<uint64_t, Defined
*> &lastThunks
, Defined
*target
, uint64_t p
,
385 uint16_t type
, int margin
) {
386 Defined
*&lastThunk
= lastThunks
[target
->getRVA()];
387 if (lastThunk
&& isInRange(type
, lastThunk
->getRVA(), p
, margin
))
388 return {lastThunk
, false};
390 switch (config
->machine
) {
392 c
= make
<RangeExtensionThunkARM
>(target
);
395 c
= make
<RangeExtensionThunkARM64
>(target
);
398 llvm_unreachable("Unexpected architecture");
400 Defined
*d
= make
<DefinedSynthetic
>("", c
);
405 // This checks all relocations, and for any relocation which isn't in range
406 // it adds a thunk after the section chunk that contains the relocation.
407 // If the latest thunk for the specific target is in range, that is used
408 // instead of creating a new thunk. All range checks are done with the
409 // specified margin, to make sure that relocations that originally are in
410 // range, but only barely, also get thunks - in case other added thunks makes
411 // the target go out of range.
413 // After adding thunks, we verify that all relocations are in range (with
414 // no extra margin requirements). If this failed, we restart (throwing away
415 // the previously created thunks) and retry with a wider margin.
416 static bool createThunks(OutputSection
*os
, int margin
) {
417 bool addressesChanged
= false;
418 DenseMap
<uint64_t, Defined
*> lastThunks
;
419 DenseMap
<std::pair
<ObjFile
*, Defined
*>, uint32_t> thunkSymtabIndices
;
420 size_t thunksSize
= 0;
421 // Recheck Chunks.size() each iteration, since we can insert more
423 for (size_t i
= 0; i
!= os
->chunks
.size(); ++i
) {
424 SectionChunk
*sc
= dyn_cast_or_null
<SectionChunk
>(os
->chunks
[i
]);
427 size_t thunkInsertionSpot
= i
+ 1;
429 // Try to get a good enough estimate of where new thunks will be placed.
430 // Offset this by the size of the new thunks added so far, to make the
431 // estimate slightly better.
432 size_t thunkInsertionRVA
= sc
->getRVA() + sc
->getSize() + thunksSize
;
433 ObjFile
*file
= sc
->file
;
434 std::vector
<std::pair
<uint32_t, uint32_t>> relocReplacements
;
435 ArrayRef
<coff_relocation
> originalRelocs
=
436 file
->getCOFFObj()->getRelocations(sc
->header
);
437 for (size_t j
= 0, e
= originalRelocs
.size(); j
< e
; ++j
) {
438 const coff_relocation
&rel
= originalRelocs
[j
];
439 Symbol
*relocTarget
= file
->getSymbol(rel
.SymbolTableIndex
);
441 // The estimate of the source address P should be pretty accurate,
442 // but we don't know whether the target Symbol address should be
443 // offset by thunksSize or not (or by some of thunksSize but not all of
444 // it), giving us some uncertainty once we have added one thunk.
445 uint64_t p
= sc
->getRVA() + rel
.VirtualAddress
+ thunksSize
;
447 Defined
*sym
= dyn_cast_or_null
<Defined
>(relocTarget
);
451 uint64_t s
= sym
->getRVA();
453 if (isInRange(rel
.Type
, s
, p
, margin
))
456 // If the target isn't in range, hook it up to an existing or new
460 std::tie(thunk
, wasNew
) = getThunk(lastThunks
, sym
, p
, rel
.Type
, margin
);
462 Chunk
*thunkChunk
= thunk
->getChunk();
464 thunkInsertionRVA
); // Estimate of where it will be located.
465 os
->chunks
.insert(os
->chunks
.begin() + thunkInsertionSpot
, thunkChunk
);
466 thunkInsertionSpot
++;
467 thunksSize
+= thunkChunk
->getSize();
468 thunkInsertionRVA
+= thunkChunk
->getSize();
469 addressesChanged
= true;
472 // To redirect the relocation, add a symbol to the parent object file's
473 // symbol table, and replace the relocation symbol table index with the
475 auto insertion
= thunkSymtabIndices
.insert({{file
, thunk
}, ~0U});
476 uint32_t &thunkSymbolIndex
= insertion
.first
->second
;
477 if (insertion
.second
)
478 thunkSymbolIndex
= file
->addRangeThunkSymbol(thunk
);
479 relocReplacements
.push_back({j
, thunkSymbolIndex
});
482 // Get a writable copy of this section's relocations so they can be
483 // modified. If the relocations point into the object file, allocate new
484 // memory. Otherwise, this must be previously allocated memory that can be
485 // modified in place.
486 ArrayRef
<coff_relocation
> curRelocs
= sc
->getRelocs();
487 MutableArrayRef
<coff_relocation
> newRelocs
;
488 if (originalRelocs
.data() == curRelocs
.data()) {
489 newRelocs
= makeMutableArrayRef(
490 bAlloc().Allocate
<coff_relocation
>(originalRelocs
.size()),
491 originalRelocs
.size());
493 newRelocs
= makeMutableArrayRef(
494 const_cast<coff_relocation
*>(curRelocs
.data()), curRelocs
.size());
497 // Copy each relocation, but replace the symbol table indices which need
499 auto nextReplacement
= relocReplacements
.begin();
500 auto endReplacement
= relocReplacements
.end();
501 for (size_t i
= 0, e
= originalRelocs
.size(); i
!= e
; ++i
) {
502 newRelocs
[i
] = originalRelocs
[i
];
503 if (nextReplacement
!= endReplacement
&& nextReplacement
->first
== i
) {
504 newRelocs
[i
].SymbolTableIndex
= nextReplacement
->second
;
509 sc
->setRelocs(newRelocs
);
511 return addressesChanged
;
514 // Verify that all relocations are in range, with no extra margin requirements.
515 static bool verifyRanges(const std::vector
<Chunk
*> chunks
) {
516 for (Chunk
*c
: chunks
) {
517 SectionChunk
*sc
= dyn_cast_or_null
<SectionChunk
>(c
);
521 ArrayRef
<coff_relocation
> relocs
= sc
->getRelocs();
522 for (size_t j
= 0, e
= relocs
.size(); j
< e
; ++j
) {
523 const coff_relocation
&rel
= relocs
[j
];
524 Symbol
*relocTarget
= sc
->file
->getSymbol(rel
.SymbolTableIndex
);
526 Defined
*sym
= dyn_cast_or_null
<Defined
>(relocTarget
);
530 uint64_t p
= sc
->getRVA() + rel
.VirtualAddress
;
531 uint64_t s
= sym
->getRVA();
533 if (!isInRange(rel
.Type
, s
, p
, 0))
540 // Assign addresses and add thunks if necessary.
541 void Writer::finalizeAddresses() {
543 if (config
->machine
!= ARMNT
&& config
->machine
!= ARM64
)
546 size_t origNumChunks
= 0;
547 for (OutputSection
*sec
: ctx
.outputSections
) {
548 sec
->origChunks
= sec
->chunks
;
549 origNumChunks
+= sec
->chunks
.size();
553 int margin
= 1024 * 100;
555 // First check whether we need thunks at all, or if the previous pass of
556 // adding them turned out ok.
557 bool rangesOk
= true;
558 size_t numChunks
= 0;
559 for (OutputSection
*sec
: ctx
.outputSections
) {
560 if (!verifyRanges(sec
->chunks
)) {
564 numChunks
+= sec
->chunks
.size();
568 log("Added " + Twine(numChunks
- origNumChunks
) + " thunks with " +
569 "margin " + Twine(margin
) + " in " + Twine(pass
) + " passes");
574 fatal("adding thunks hasn't converged after " + Twine(pass
) + " passes");
577 // If the previous pass didn't work out, reset everything back to the
578 // original conditions before retrying with a wider margin. This should
579 // ideally never happen under real circumstances.
580 for (OutputSection
*sec
: ctx
.outputSections
)
581 sec
->chunks
= sec
->origChunks
;
585 // Try adding thunks everywhere where it is needed, with a margin
586 // to avoid things going out of range due to the added thunks.
587 bool addressesChanged
= false;
588 for (OutputSection
*sec
: ctx
.outputSections
)
589 addressesChanged
|= createThunks(sec
, margin
);
590 // If the verification above thought we needed thunks, we should have
592 assert(addressesChanged
);
593 (void)addressesChanged
;
595 // Recalculate the layout for the whole image (and verify the ranges at
596 // the start of the next round).
603 // The main function of the writer.
605 ScopedTimer
t1(ctx
.codeLayoutTimer
);
607 createImportTables();
609 appendImportThunks();
610 // Import thunks must be added before the Control Flow Guard tables are added.
614 removeUnusedSections();
616 removeEmptySections();
617 assignOutputSectionIndices();
618 setSectionPermissions();
619 createSymbolAndStringTable();
621 if (fileSize
> UINT32_MAX
)
622 fatal("image size (" + Twine(fileSize
) + ") " +
623 "exceeds maximum allowable size (" + Twine(UINT32_MAX
) + ")");
625 openFile(config
->outputFile
);
626 if (config
->is64()) {
627 writeHeader
<pe32plus_header
>();
629 writeHeader
<pe32_header
>();
632 sortExceptionTable();
634 // Fix up the alignment in the TLS Directory's characteristic field,
635 // if a specific alignment value is needed
641 if (!config
->pdbPath
.empty() && config
->debug
) {
643 createPDB(ctx
, sectionTable
, buildId
->buildId
);
647 writeLLDMapFile(ctx
);
653 ScopedTimer
t2(ctx
.outputCommitTimer
);
654 if (auto e
= buffer
->commit())
655 fatal("failed to write the output file: " + toString(std::move(e
)));
658 static StringRef
getOutputSectionName(StringRef name
) {
659 StringRef s
= name
.split('$').first
;
661 // Treat a later period as a separator for MinGW, for sections like
663 return s
.substr(0, s
.find('.', 1));
667 static void sortBySectionOrder(std::vector
<Chunk
*> &chunks
) {
668 auto getPriority
= [](const Chunk
*c
) {
669 if (auto *sec
= dyn_cast
<SectionChunk
>(c
))
671 return config
->order
.lookup(sec
->sym
->getName());
675 llvm::stable_sort(chunks
, [=](const Chunk
*a
, const Chunk
*b
) {
676 return getPriority(a
) < getPriority(b
);
680 // Change the characteristics of existing PartialSections that belong to the
681 // section Name to Chars.
682 void Writer::fixPartialSectionChars(StringRef name
, uint32_t chars
) {
683 for (auto it
: partialSections
) {
684 PartialSection
*pSec
= it
.second
;
685 StringRef curName
= pSec
->name
;
686 if (!curName
.consume_front(name
) ||
687 (!curName
.empty() && !curName
.startswith("$")))
689 if (pSec
->characteristics
== chars
)
691 PartialSection
*destSec
= createPartialSection(pSec
->name
, chars
);
692 destSec
->chunks
.insert(destSec
->chunks
.end(), pSec
->chunks
.begin(),
694 pSec
->chunks
.clear();
698 // Sort concrete section chunks from GNU import libraries.
700 // GNU binutils doesn't use short import files, but instead produces import
701 // libraries that consist of object files, with section chunks for the .idata$*
702 // sections. These are linked just as regular static libraries. Each import
703 // library consists of one header object, one object file for every imported
704 // symbol, and one trailer object. In order for the .idata tables/lists to
705 // be formed correctly, the section chunks within each .idata$* section need
706 // to be grouped by library, and sorted alphabetically within each library
707 // (which makes sure the header comes first and the trailer last).
708 bool Writer::fixGnuImportChunks() {
709 uint32_t rdata
= IMAGE_SCN_CNT_INITIALIZED_DATA
| IMAGE_SCN_MEM_READ
;
711 // Make sure all .idata$* section chunks are mapped as RDATA in order to
712 // be sorted into the same sections as our own synthesized .idata chunks.
713 fixPartialSectionChars(".idata", rdata
);
715 bool hasIdata
= false;
716 // Sort all .idata$* chunks, grouping chunks from the same library,
717 // with alphabetical ordering of the object files within a library.
718 for (auto it
: partialSections
) {
719 PartialSection
*pSec
= it
.second
;
720 if (!pSec
->name
.startswith(".idata"))
723 if (!pSec
->chunks
.empty())
725 llvm::stable_sort(pSec
->chunks
, [&](Chunk
*s
, Chunk
*t
) {
726 SectionChunk
*sc1
= dyn_cast_or_null
<SectionChunk
>(s
);
727 SectionChunk
*sc2
= dyn_cast_or_null
<SectionChunk
>(t
);
729 // if SC1, order them ascending. If SC2 or both null,
730 // S is not less than T.
731 return sc1
!= nullptr;
733 // Make a string with "libraryname/objectfile" for sorting, achieving
734 // both grouping by library and sorting of objects within a library,
737 (sc1
->file
->parentName
+ "/" + sc1
->file
->getName()).str();
739 (sc2
->file
->parentName
+ "/" + sc2
->file
->getName()).str();
746 // Add generated idata chunks, for imported symbols and DLLs, and a
747 // terminator in .idata$2.
748 void Writer::addSyntheticIdata() {
749 uint32_t rdata
= IMAGE_SCN_CNT_INITIALIZED_DATA
| IMAGE_SCN_MEM_READ
;
752 // Add the .idata content in the right section groups, to allow
753 // chunks from other linked in object files to be grouped together.
754 // See Microsoft PE/COFF spec 5.4 for details.
755 auto add
= [&](StringRef n
, std::vector
<Chunk
*> &v
) {
756 PartialSection
*pSec
= createPartialSection(n
, rdata
);
757 pSec
->chunks
.insert(pSec
->chunks
.end(), v
.begin(), v
.end());
760 // The loader assumes a specific order of data.
761 // Add each type in the correct order.
762 add(".idata$2", idata
.dirs
);
763 add(".idata$4", idata
.lookups
);
764 add(".idata$5", idata
.addresses
);
765 if (!idata
.hints
.empty())
766 add(".idata$6", idata
.hints
);
767 add(".idata$7", idata
.dllNames
);
770 // Locate the first Chunk and size of the import directory list and the
772 void Writer::locateImportTables() {
773 uint32_t rdata
= IMAGE_SCN_CNT_INITIALIZED_DATA
| IMAGE_SCN_MEM_READ
;
775 if (PartialSection
*importDirs
= findPartialSection(".idata$2", rdata
)) {
776 if (!importDirs
->chunks
.empty())
777 importTableStart
= importDirs
->chunks
.front();
778 for (Chunk
*c
: importDirs
->chunks
)
779 importTableSize
+= c
->getSize();
782 if (PartialSection
*importAddresses
= findPartialSection(".idata$5", rdata
)) {
783 if (!importAddresses
->chunks
.empty())
784 iatStart
= importAddresses
->chunks
.front();
785 for (Chunk
*c
: importAddresses
->chunks
)
786 iatSize
+= c
->getSize();
790 // Return whether a SectionChunk's suffix (the dollar and any trailing
791 // suffix) should be removed and sorted into the main suffixless
793 static bool shouldStripSectionSuffix(SectionChunk
*sc
, StringRef name
) {
794 // On MinGW, comdat groups are formed by putting the comdat group name
795 // after the '$' in the section name. For .eh_frame$<symbol>, that must
796 // still be sorted before the .eh_frame trailer from crtend.o, thus just
797 // strip the section name trailer. For other sections, such as
798 // .tls$$<symbol> (where non-comdat .tls symbols are otherwise stored in
799 // ".tls$"), they must be strictly sorted after .tls. And for the
800 // hypothetical case of comdat .CRT$XCU, we definitely need to keep the
801 // suffix for sorting. Thus, to play it safe, only strip the suffix for
802 // the standard sections.
805 if (!sc
|| !sc
->isCOMDAT())
807 return name
.startswith(".text$") || name
.startswith(".data$") ||
808 name
.startswith(".rdata$") || name
.startswith(".pdata$") ||
809 name
.startswith(".xdata$") || name
.startswith(".eh_frame$");
812 void Writer::sortSections() {
813 if (!config
->callGraphProfile
.empty()) {
814 DenseMap
<const SectionChunk
*, int> order
=
815 computeCallGraphProfileOrder(ctx
);
816 for (auto it
: order
) {
817 if (DefinedRegular
*sym
= it
.first
->sym
)
818 config
->order
[sym
->getName()] = it
.second
;
821 if (!config
->order
.empty())
822 for (auto it
: partialSections
)
823 sortBySectionOrder(it
.second
->chunks
);
826 // Create output section objects and add them to OutputSections.
827 void Writer::createSections() {
828 // First, create the builtin sections.
829 const uint32_t data
= IMAGE_SCN_CNT_INITIALIZED_DATA
;
830 const uint32_t bss
= IMAGE_SCN_CNT_UNINITIALIZED_DATA
;
831 const uint32_t code
= IMAGE_SCN_CNT_CODE
;
832 const uint32_t discardable
= IMAGE_SCN_MEM_DISCARDABLE
;
833 const uint32_t r
= IMAGE_SCN_MEM_READ
;
834 const uint32_t w
= IMAGE_SCN_MEM_WRITE
;
835 const uint32_t x
= IMAGE_SCN_MEM_EXECUTE
;
837 SmallDenseMap
<std::pair
<StringRef
, uint32_t>, OutputSection
*> sections
;
838 auto createSection
= [&](StringRef name
, uint32_t outChars
) {
839 OutputSection
*&sec
= sections
[{name
, outChars
}];
841 sec
= make
<OutputSection
>(name
, outChars
);
842 ctx
.outputSections
.push_back(sec
);
847 // Try to match the section order used by link.exe.
848 textSec
= createSection(".text", code
| r
| x
);
849 createSection(".bss", bss
| r
| w
);
850 rdataSec
= createSection(".rdata", data
| r
);
851 buildidSec
= createSection(".buildid", data
| r
);
852 dataSec
= createSection(".data", data
| r
| w
);
853 pdataSec
= createSection(".pdata", data
| r
);
854 idataSec
= createSection(".idata", data
| r
);
855 edataSec
= createSection(".edata", data
| r
);
856 didatSec
= createSection(".didat", data
| r
);
857 rsrcSec
= createSection(".rsrc", data
| r
);
858 relocSec
= createSection(".reloc", data
| discardable
| r
);
859 ctorsSec
= createSection(".ctors", data
| r
| w
);
860 dtorsSec
= createSection(".dtors", data
| r
| w
);
862 // Then bin chunks by name and output characteristics.
863 for (Chunk
*c
: ctx
.symtab
.getChunks()) {
864 auto *sc
= dyn_cast
<SectionChunk
>(c
);
865 if (sc
&& !sc
->live
) {
867 sc
->printDiscardedMessage();
870 StringRef name
= c
->getSectionName();
871 if (shouldStripSectionSuffix(sc
, name
))
872 name
= name
.split('$').first
;
874 if (name
.startswith(".tls"))
875 tlsAlignment
= std::max(tlsAlignment
, c
->getAlignment());
877 PartialSection
*pSec
= createPartialSection(name
,
878 c
->getOutputCharacteristics());
879 pSec
->chunks
.push_back(c
);
882 fixPartialSectionChars(".rsrc", data
| r
);
883 fixPartialSectionChars(".edata", data
| r
);
884 // Even in non MinGW cases, we might need to link against GNU import
886 bool hasIdata
= fixGnuImportChunks();
896 locateImportTables();
898 // Then create an OutputSection for each section.
899 // '$' and all following characters in input section names are
900 // discarded when determining output section. So, .text$foo
901 // contributes to .text, for example. See PE/COFF spec 3.2.
902 for (auto it
: partialSections
) {
903 PartialSection
*pSec
= it
.second
;
904 StringRef name
= getOutputSectionName(pSec
->name
);
905 uint32_t outChars
= pSec
->characteristics
;
907 if (name
== ".CRT") {
908 // In link.exe, there is a special case for the I386 target where .CRT
909 // sections are treated as if they have output characteristics DATA | R if
910 // their characteristics are DATA | R | W. This implements the same
911 // special case for all architectures.
914 log("Processing section " + pSec
->name
+ " -> " + name
);
916 sortCRTSectionChunks(pSec
->chunks
);
919 OutputSection
*sec
= createSection(name
, outChars
);
920 for (Chunk
*c
: pSec
->chunks
)
923 sec
->addContributingPartialSection(pSec
);
926 // Finally, move some output sections to the end.
927 auto sectionOrder
= [&](const OutputSection
*s
) {
928 // Move DISCARDABLE (or non-memory-mapped) sections to the end of file
929 // because the loader cannot handle holes. Stripping can remove other
930 // discardable ones than .reloc, which is first of them (created early).
931 if (s
->header
.Characteristics
& IMAGE_SCN_MEM_DISCARDABLE
) {
932 // Move discardable sections named .debug_ to the end, after other
933 // discardable sections. Stripping only removes the sections named
934 // .debug_* - thus try to avoid leaving holes after stripping.
935 if (s
->name
.startswith(".debug_"))
939 // .rsrc should come at the end of the non-discardable sections because its
940 // size may change by the Win32 UpdateResources() function, causing
941 // subsequent sections to move (see https://crbug.com/827082).
946 llvm::stable_sort(ctx
.outputSections
,
947 [&](const OutputSection
*s
, const OutputSection
*t
) {
948 return sectionOrder(s
) < sectionOrder(t
);
952 void Writer::createMiscChunks() {
953 for (MergeChunk
*p
: ctx
.mergeChunkInstances
) {
955 p
->finalizeContents();
956 rdataSec
->addChunk(p
);
960 // Create thunks for locally-dllimported symbols.
961 if (!ctx
.symtab
.localImportChunks
.empty()) {
962 for (Chunk
*c
: ctx
.symtab
.localImportChunks
)
963 rdataSec
->addChunk(c
);
966 // Create Debug Information Chunks
967 OutputSection
*debugInfoSec
= config
->mingw
? buildidSec
: rdataSec
;
968 if (config
->debug
|| config
->repro
|| config
->cetCompat
) {
970 make
<DebugDirectoryChunk
>(ctx
, debugRecords
, config
->repro
);
971 debugDirectory
->setAlignment(4);
972 debugInfoSec
->addChunk(debugDirectory
);
976 // Make a CVDebugRecordChunk even when /DEBUG:CV is not specified. We
977 // output a PDB no matter what, and this chunk provides the only means of
978 // allowing a debugger to match a PDB and an executable. So we need it even
979 // if we're ultimately not going to write CodeView data to the PDB.
980 buildId
= make
<CVDebugRecordChunk
>();
981 debugRecords
.push_back({COFF::IMAGE_DEBUG_TYPE_CODEVIEW
, buildId
});
984 if (config
->cetCompat
) {
985 debugRecords
.push_back({COFF::IMAGE_DEBUG_TYPE_EX_DLLCHARACTERISTICS
,
986 make
<ExtendedDllCharacteristicsChunk
>(
987 IMAGE_DLL_CHARACTERISTICS_EX_CET_COMPAT
)});
990 // Align and add each chunk referenced by the debug data directory.
991 for (std::pair
<COFF::DebugType
, Chunk
*> r
: debugRecords
) {
992 r
.second
->setAlignment(4);
993 debugInfoSec
->addChunk(r
.second
);
996 // Create SEH table. x86-only.
1000 // Create /guard:cf tables if requested.
1001 if (config
->guardCF
!= GuardCFLevel::Off
)
1002 createGuardCFTables();
1004 if (config
->autoImport
)
1005 createRuntimePseudoRelocs();
1008 insertCtorDtorSymbols();
1011 // Create .idata section for the DLL-imported symbol table.
1012 // The format of this section is inherently Windows-specific.
1013 // IdataContents class abstracted away the details for us,
1014 // so we just let it create chunks and add them to the section.
1015 void Writer::createImportTables() {
1016 // Initialize DLLOrder so that import entries are ordered in
1017 // the same order as in the command line. (That affects DLL
1018 // initialization order, and this ordering is MSVC-compatible.)
1019 for (ImportFile
*file
: ctx
.importFileInstances
) {
1023 std::string dll
= StringRef(file
->dllName
).lower();
1024 if (config
->dllOrder
.count(dll
) == 0)
1025 config
->dllOrder
[dll
] = config
->dllOrder
.size();
1027 if (file
->impSym
&& !isa
<DefinedImportData
>(file
->impSym
))
1028 fatal(toString(*file
->impSym
) + " was replaced");
1029 DefinedImportData
*impSym
= cast_or_null
<DefinedImportData
>(file
->impSym
);
1030 if (config
->delayLoads
.count(StringRef(file
->dllName
).lower())) {
1031 if (!file
->thunkSym
)
1032 fatal("cannot delay-load " + toString(file
) +
1033 " due to import of data: " + toString(*impSym
));
1034 delayIdata
.add(impSym
);
1041 void Writer::appendImportThunks() {
1042 if (ctx
.importFileInstances
.empty())
1045 for (ImportFile
*file
: ctx
.importFileInstances
) {
1049 if (!file
->thunkSym
)
1052 if (!isa
<DefinedImportThunk
>(file
->thunkSym
))
1053 fatal(toString(*file
->thunkSym
) + " was replaced");
1054 DefinedImportThunk
*thunk
= cast
<DefinedImportThunk
>(file
->thunkSym
);
1055 if (file
->thunkLive
)
1056 textSec
->addChunk(thunk
->getChunk());
1059 if (!delayIdata
.empty()) {
1060 Defined
*helper
= cast
<Defined
>(config
->delayLoadHelper
);
1061 delayIdata
.create(ctx
, helper
);
1062 for (Chunk
*c
: delayIdata
.getChunks())
1063 didatSec
->addChunk(c
);
1064 for (Chunk
*c
: delayIdata
.getDataChunks())
1065 dataSec
->addChunk(c
);
1066 for (Chunk
*c
: delayIdata
.getCodeChunks())
1067 textSec
->addChunk(c
);
1071 void Writer::createExportTable() {
1072 if (!edataSec
->chunks
.empty()) {
1073 // Allow using a custom built export table from input object files, instead
1074 // of having the linker synthesize the tables.
1075 if (config
->hadExplicitExports
)
1076 warn("literal .edata sections override exports");
1077 } else if (!config
->exports
.empty()) {
1078 for (Chunk
*c
: edata
.chunks
)
1079 edataSec
->addChunk(c
);
1081 if (!edataSec
->chunks
.empty()) {
1082 edataStart
= edataSec
->chunks
.front();
1083 edataEnd
= edataSec
->chunks
.back();
1085 // Warn on exported deleting destructor.
1086 for (auto e
: config
->exports
)
1087 if (e
.sym
&& e
.sym
->getName().startswith("??_G"))
1088 warn("export of deleting dtor: " + toString(*e
.sym
));
1091 void Writer::removeUnusedSections() {
1092 // Remove sections that we can be sure won't get content, to avoid
1093 // allocating space for their section headers.
1094 auto isUnused
= [this](OutputSection
*s
) {
1096 return false; // This section is populated later.
1097 // MergeChunks have zero size at this point, as their size is finalized
1098 // later. Only remove sections that have no Chunks at all.
1099 return s
->chunks
.empty();
1101 llvm::erase_if(ctx
.outputSections
, isUnused
);
1104 // The Windows loader doesn't seem to like empty sections,
1105 // so we remove them if any.
1106 void Writer::removeEmptySections() {
1107 auto isEmpty
= [](OutputSection
*s
) { return s
->getVirtualSize() == 0; };
1108 llvm::erase_if(ctx
.outputSections
, isEmpty
);
1111 void Writer::assignOutputSectionIndices() {
1112 // Assign final output section indices, and assign each chunk to its output
1115 for (OutputSection
*os
: ctx
.outputSections
) {
1116 os
->sectionIndex
= idx
;
1117 for (Chunk
*c
: os
->chunks
)
1118 c
->setOutputSectionIdx(idx
);
1122 // Merge chunks are containers of chunks, so assign those an output section
1124 for (MergeChunk
*mc
: ctx
.mergeChunkInstances
)
1126 for (SectionChunk
*sc
: mc
->sections
)
1128 sc
->setOutputSectionIdx(mc
->getOutputSectionIdx());
1131 Optional
<coff_symbol16
> Writer::createSymbol(Defined
*def
) {
1133 switch (def
->kind()) {
1134 case Symbol::DefinedAbsoluteKind
:
1135 sym
.Value
= def
->getRVA();
1136 sym
.SectionNumber
= IMAGE_SYM_ABSOLUTE
;
1138 case Symbol::DefinedSyntheticKind
:
1139 // Relative symbols are unrepresentable in a COFF symbol table.
1142 // Don't write symbols that won't be written to the output to the symbol
1144 Chunk
*c
= def
->getChunk();
1147 OutputSection
*os
= ctx
.getOutputSection(c
);
1151 sym
.Value
= def
->getRVA() - os
->getRVA();
1152 sym
.SectionNumber
= os
->sectionIndex
;
1157 // Symbols that are runtime pseudo relocations don't point to the actual
1158 // symbol data itself (as they are imported), but points to the IAT entry
1159 // instead. Avoid emitting them to the symbol table, as they can confuse
1161 if (def
->isRuntimePseudoReloc
)
1164 StringRef name
= def
->getName();
1165 if (name
.size() > COFF::NameSize
) {
1166 sym
.Name
.Offset
.Zeroes
= 0;
1167 sym
.Name
.Offset
.Offset
= 0; // Filled in later
1170 memset(sym
.Name
.ShortName
, 0, COFF::NameSize
);
1171 memcpy(sym
.Name
.ShortName
, name
.data(), name
.size());
1174 if (auto *d
= dyn_cast
<DefinedCOFF
>(def
)) {
1175 COFFSymbolRef ref
= d
->getCOFFSymbol();
1176 sym
.Type
= ref
.getType();
1177 sym
.StorageClass
= ref
.getStorageClass();
1179 sym
.Type
= IMAGE_SYM_TYPE_NULL
;
1180 sym
.StorageClass
= IMAGE_SYM_CLASS_EXTERNAL
;
1182 sym
.NumberOfAuxSymbols
= 0;
1186 void Writer::createSymbolAndStringTable() {
1187 // PE/COFF images are limited to 8 byte section names. Longer names can be
1188 // supported by writing a non-standard string table, but this string table is
1189 // not mapped at runtime and the long names will therefore be inaccessible.
1190 // link.exe always truncates section names to 8 bytes, whereas binutils always
1191 // preserves long section names via the string table. LLD adopts a hybrid
1192 // solution where discardable sections have long names preserved and
1193 // non-discardable sections have their names truncated, to ensure that any
1194 // section which is mapped at runtime also has its name mapped at runtime.
1195 std::vector
<OutputSection
*> longNameSections
;
1196 for (OutputSection
*sec
: ctx
.outputSections
) {
1197 if (sec
->name
.size() <= COFF::NameSize
)
1199 if ((sec
->header
.Characteristics
& IMAGE_SCN_MEM_DISCARDABLE
) == 0)
1201 if (config
->warnLongSectionNames
) {
1202 warn("section name " + sec
->name
+
1203 " is longer than 8 characters and will use a non-standard string "
1207 strtab
.add(sec
->name
);
1208 longNameSections
.push_back(sec
);
1211 std::vector
<std::pair
<size_t, StringRef
>> longNameSymbols
;
1212 if (config
->debugDwarf
|| config
->debugSymtab
) {
1213 for (ObjFile
*file
: ctx
.objFileInstances
) {
1214 for (Symbol
*b
: file
->getSymbols()) {
1215 auto *d
= dyn_cast_or_null
<Defined
>(b
);
1216 if (!d
|| d
->writtenToSymtab
)
1218 d
->writtenToSymtab
= true;
1219 if (auto *dc
= dyn_cast_or_null
<DefinedCOFF
>(d
)) {
1220 COFFSymbolRef symRef
= dc
->getCOFFSymbol();
1221 if (symRef
.isSectionDefinition() ||
1222 symRef
.getStorageClass() == COFF::IMAGE_SYM_CLASS_LABEL
)
1226 if (Optional
<coff_symbol16
> sym
= createSymbol(d
)) {
1227 outputSymtab
.push_back(*sym
);
1228 if (d
->getName().size() > COFF::NameSize
)
1229 longNameSymbols
.push_back({outputSymtab
.size() - 1, d
->getName()});
1237 for (OutputSection
*sec
: longNameSections
)
1238 sec
->setStringTableOff(strtab
.getOffset(sec
->name
));
1240 for (auto P
: longNameSymbols
) {
1241 coff_symbol16
&sym
= outputSymtab
[P
.first
];
1242 sym
.Name
.Offset
.Offset
= strtab
.getOffset(P
.second
);
1245 if (outputSymtab
.empty() && strtab
.getSize() <= 4)
1248 // We position the symbol table to be adjacent to the end of the last section.
1249 uint64_t fileOff
= fileSize
;
1250 pointerToSymbolTable
= fileOff
;
1251 fileOff
+= outputSymtab
.size() * sizeof(coff_symbol16
);
1252 fileOff
+= strtab
.getSize();
1253 fileSize
= alignTo(fileOff
, config
->fileAlign
);
1256 void Writer::mergeSections() {
1257 if (!pdataSec
->chunks
.empty()) {
1258 firstPdata
= pdataSec
->chunks
.front();
1259 lastPdata
= pdataSec
->chunks
.back();
1262 for (auto &p
: config
->merge
) {
1263 StringRef toName
= p
.second
;
1264 if (p
.first
== toName
)
1268 if (!names
.insert(toName
).second
)
1269 fatal("/merge: cycle found for section '" + p
.first
+ "'");
1270 auto i
= config
->merge
.find(toName
);
1271 if (i
== config
->merge
.end())
1275 OutputSection
*from
= findSection(p
.first
);
1276 OutputSection
*to
= findSection(toName
);
1280 from
->name
= toName
;
1287 // Visits all sections to assign incremental, non-overlapping RVAs and
1289 void Writer::assignAddresses() {
1290 sizeOfHeaders
= dosStubSize
+ sizeof(PEMagic
) + sizeof(coff_file_header
) +
1291 sizeof(data_directory
) * numberOfDataDirectory
+
1292 sizeof(coff_section
) * ctx
.outputSections
.size();
1294 config
->is64() ? sizeof(pe32plus_header
) : sizeof(pe32_header
);
1295 sizeOfHeaders
= alignTo(sizeOfHeaders
, config
->fileAlign
);
1296 fileSize
= sizeOfHeaders
;
1298 // The first page is kept unmapped.
1299 uint64_t rva
= alignTo(sizeOfHeaders
, config
->align
);
1301 for (OutputSection
*sec
: ctx
.outputSections
) {
1302 if (sec
== relocSec
)
1304 uint64_t rawSize
= 0, virtualSize
= 0;
1305 sec
->header
.VirtualAddress
= rva
;
1307 // If /FUNCTIONPADMIN is used, functions are padded in order to create a
1308 // hotpatchable image.
1309 const bool isCodeSection
=
1310 (sec
->header
.Characteristics
& IMAGE_SCN_CNT_CODE
) &&
1311 (sec
->header
.Characteristics
& IMAGE_SCN_MEM_READ
) &&
1312 (sec
->header
.Characteristics
& IMAGE_SCN_MEM_EXECUTE
);
1313 uint32_t padding
= isCodeSection
? config
->functionPadMin
: 0;
1315 for (Chunk
*c
: sec
->chunks
) {
1316 if (padding
&& c
->isHotPatchable())
1317 virtualSize
+= padding
;
1318 virtualSize
= alignTo(virtualSize
, c
->getAlignment());
1319 c
->setRVA(rva
+ virtualSize
);
1320 virtualSize
+= c
->getSize();
1322 rawSize
= alignTo(virtualSize
, config
->fileAlign
);
1324 if (virtualSize
> UINT32_MAX
)
1325 error("section larger than 4 GiB: " + sec
->name
);
1326 sec
->header
.VirtualSize
= virtualSize
;
1327 sec
->header
.SizeOfRawData
= rawSize
;
1329 sec
->header
.PointerToRawData
= fileSize
;
1330 rva
+= alignTo(virtualSize
, config
->align
);
1331 fileSize
+= alignTo(rawSize
, config
->fileAlign
);
1333 sizeOfImage
= alignTo(rva
, config
->align
);
1335 // Assign addresses to sections in MergeChunks.
1336 for (MergeChunk
*mc
: ctx
.mergeChunkInstances
)
1338 mc
->assignSubsectionRVAs();
1341 template <typename PEHeaderTy
> void Writer::writeHeader() {
1342 // Write DOS header. For backwards compatibility, the first part of a PE/COFF
1343 // executable consists of an MS-DOS MZ executable. If the executable is run
1344 // under DOS, that program gets run (usually to just print an error message).
1345 // When run under Windows, the loader looks at AddressOfNewExeHeader and uses
1346 // the PE header instead.
1347 uint8_t *buf
= buffer
->getBufferStart();
1348 auto *dos
= reinterpret_cast<dos_header
*>(buf
);
1349 buf
+= sizeof(dos_header
);
1350 dos
->Magic
[0] = 'M';
1351 dos
->Magic
[1] = 'Z';
1352 dos
->UsedBytesInTheLastPage
= dosStubSize
% 512;
1353 dos
->FileSizeInPages
= divideCeil(dosStubSize
, 512);
1354 dos
->HeaderSizeInParagraphs
= sizeof(dos_header
) / 16;
1356 dos
->AddressOfRelocationTable
= sizeof(dos_header
);
1357 dos
->AddressOfNewExeHeader
= dosStubSize
;
1359 // Write DOS program.
1360 memcpy(buf
, dosProgram
, sizeof(dosProgram
));
1361 buf
+= sizeof(dosProgram
);
1364 memcpy(buf
, PEMagic
, sizeof(PEMagic
));
1365 buf
+= sizeof(PEMagic
);
1367 // Write COFF header
1368 auto *coff
= reinterpret_cast<coff_file_header
*>(buf
);
1369 buf
+= sizeof(*coff
);
1370 coff
->Machine
= config
->machine
;
1371 coff
->NumberOfSections
= ctx
.outputSections
.size();
1372 coff
->Characteristics
= IMAGE_FILE_EXECUTABLE_IMAGE
;
1373 if (config
->largeAddressAware
)
1374 coff
->Characteristics
|= IMAGE_FILE_LARGE_ADDRESS_AWARE
;
1375 if (!config
->is64())
1376 coff
->Characteristics
|= IMAGE_FILE_32BIT_MACHINE
;
1378 coff
->Characteristics
|= IMAGE_FILE_DLL
;
1379 if (config
->driverUponly
)
1380 coff
->Characteristics
|= IMAGE_FILE_UP_SYSTEM_ONLY
;
1381 if (!config
->relocatable
)
1382 coff
->Characteristics
|= IMAGE_FILE_RELOCS_STRIPPED
;
1383 if (config
->swaprunCD
)
1384 coff
->Characteristics
|= IMAGE_FILE_REMOVABLE_RUN_FROM_SWAP
;
1385 if (config
->swaprunNet
)
1386 coff
->Characteristics
|= IMAGE_FILE_NET_RUN_FROM_SWAP
;
1387 coff
->SizeOfOptionalHeader
=
1388 sizeof(PEHeaderTy
) + sizeof(data_directory
) * numberOfDataDirectory
;
1391 auto *pe
= reinterpret_cast<PEHeaderTy
*>(buf
);
1393 pe
->Magic
= config
->is64() ? PE32Header::PE32_PLUS
: PE32Header::PE32
;
1395 // If {Major,Minor}LinkerVersion is left at 0.0, then for some
1396 // reason signing the resulting PE file with Authenticode produces a
1397 // signature that fails to validate on Windows 7 (but is OK on 10).
1398 // Set it to 14.0, which is what VS2015 outputs, and which avoids
1400 pe
->MajorLinkerVersion
= 14;
1401 pe
->MinorLinkerVersion
= 0;
1403 pe
->ImageBase
= config
->imageBase
;
1404 pe
->SectionAlignment
= config
->align
;
1405 pe
->FileAlignment
= config
->fileAlign
;
1406 pe
->MajorImageVersion
= config
->majorImageVersion
;
1407 pe
->MinorImageVersion
= config
->minorImageVersion
;
1408 pe
->MajorOperatingSystemVersion
= config
->majorOSVersion
;
1409 pe
->MinorOperatingSystemVersion
= config
->minorOSVersion
;
1410 pe
->MajorSubsystemVersion
= config
->majorSubsystemVersion
;
1411 pe
->MinorSubsystemVersion
= config
->minorSubsystemVersion
;
1412 pe
->Subsystem
= config
->subsystem
;
1413 pe
->SizeOfImage
= sizeOfImage
;
1414 pe
->SizeOfHeaders
= sizeOfHeaders
;
1415 if (!config
->noEntry
) {
1416 Defined
*entry
= cast
<Defined
>(config
->entry
);
1417 pe
->AddressOfEntryPoint
= entry
->getRVA();
1418 // Pointer to thumb code must have the LSB set, so adjust it.
1419 if (config
->machine
== ARMNT
)
1420 pe
->AddressOfEntryPoint
|= 1;
1422 pe
->SizeOfStackReserve
= config
->stackReserve
;
1423 pe
->SizeOfStackCommit
= config
->stackCommit
;
1424 pe
->SizeOfHeapReserve
= config
->heapReserve
;
1425 pe
->SizeOfHeapCommit
= config
->heapCommit
;
1426 if (config
->appContainer
)
1427 pe
->DLLCharacteristics
|= IMAGE_DLL_CHARACTERISTICS_APPCONTAINER
;
1428 if (config
->driverWdm
)
1429 pe
->DLLCharacteristics
|= IMAGE_DLL_CHARACTERISTICS_WDM_DRIVER
;
1430 if (config
->dynamicBase
)
1431 pe
->DLLCharacteristics
|= IMAGE_DLL_CHARACTERISTICS_DYNAMIC_BASE
;
1432 if (config
->highEntropyVA
)
1433 pe
->DLLCharacteristics
|= IMAGE_DLL_CHARACTERISTICS_HIGH_ENTROPY_VA
;
1434 if (!config
->allowBind
)
1435 pe
->DLLCharacteristics
|= IMAGE_DLL_CHARACTERISTICS_NO_BIND
;
1436 if (config
->nxCompat
)
1437 pe
->DLLCharacteristics
|= IMAGE_DLL_CHARACTERISTICS_NX_COMPAT
;
1438 if (!config
->allowIsolation
)
1439 pe
->DLLCharacteristics
|= IMAGE_DLL_CHARACTERISTICS_NO_ISOLATION
;
1440 if (config
->guardCF
!= GuardCFLevel::Off
)
1441 pe
->DLLCharacteristics
|= IMAGE_DLL_CHARACTERISTICS_GUARD_CF
;
1442 if (config
->integrityCheck
)
1443 pe
->DLLCharacteristics
|= IMAGE_DLL_CHARACTERISTICS_FORCE_INTEGRITY
;
1444 if (setNoSEHCharacteristic
|| config
->noSEH
)
1445 pe
->DLLCharacteristics
|= IMAGE_DLL_CHARACTERISTICS_NO_SEH
;
1446 if (config
->terminalServerAware
)
1447 pe
->DLLCharacteristics
|= IMAGE_DLL_CHARACTERISTICS_TERMINAL_SERVER_AWARE
;
1448 pe
->NumberOfRvaAndSize
= numberOfDataDirectory
;
1449 if (textSec
->getVirtualSize()) {
1450 pe
->BaseOfCode
= textSec
->getRVA();
1451 pe
->SizeOfCode
= textSec
->getRawSize();
1453 pe
->SizeOfInitializedData
= getSizeOfInitializedData();
1455 // Write data directory
1456 auto *dir
= reinterpret_cast<data_directory
*>(buf
);
1457 buf
+= sizeof(*dir
) * numberOfDataDirectory
;
1459 dir
[EXPORT_TABLE
].RelativeVirtualAddress
= edataStart
->getRVA();
1460 dir
[EXPORT_TABLE
].Size
=
1461 edataEnd
->getRVA() + edataEnd
->getSize() - edataStart
->getRVA();
1463 if (importTableStart
) {
1464 dir
[IMPORT_TABLE
].RelativeVirtualAddress
= importTableStart
->getRVA();
1465 dir
[IMPORT_TABLE
].Size
= importTableSize
;
1468 dir
[IAT
].RelativeVirtualAddress
= iatStart
->getRVA();
1469 dir
[IAT
].Size
= iatSize
;
1471 if (rsrcSec
->getVirtualSize()) {
1472 dir
[RESOURCE_TABLE
].RelativeVirtualAddress
= rsrcSec
->getRVA();
1473 dir
[RESOURCE_TABLE
].Size
= rsrcSec
->getVirtualSize();
1476 dir
[EXCEPTION_TABLE
].RelativeVirtualAddress
= firstPdata
->getRVA();
1477 dir
[EXCEPTION_TABLE
].Size
=
1478 lastPdata
->getRVA() + lastPdata
->getSize() - firstPdata
->getRVA();
1480 if (relocSec
->getVirtualSize()) {
1481 dir
[BASE_RELOCATION_TABLE
].RelativeVirtualAddress
= relocSec
->getRVA();
1482 dir
[BASE_RELOCATION_TABLE
].Size
= relocSec
->getVirtualSize();
1484 if (Symbol
*sym
= ctx
.symtab
.findUnderscore("_tls_used")) {
1485 if (Defined
*b
= dyn_cast
<Defined
>(sym
)) {
1486 dir
[TLS_TABLE
].RelativeVirtualAddress
= b
->getRVA();
1487 dir
[TLS_TABLE
].Size
= config
->is64()
1488 ? sizeof(object::coff_tls_directory64
)
1489 : sizeof(object::coff_tls_directory32
);
1492 if (debugDirectory
) {
1493 dir
[DEBUG_DIRECTORY
].RelativeVirtualAddress
= debugDirectory
->getRVA();
1494 dir
[DEBUG_DIRECTORY
].Size
= debugDirectory
->getSize();
1496 if (Symbol
*sym
= ctx
.symtab
.findUnderscore("_load_config_used")) {
1497 if (auto *b
= dyn_cast
<DefinedRegular
>(sym
)) {
1498 SectionChunk
*sc
= b
->getChunk();
1499 assert(b
->getRVA() >= sc
->getRVA());
1500 uint64_t offsetInChunk
= b
->getRVA() - sc
->getRVA();
1501 if (!sc
->hasData
|| offsetInChunk
+ 4 > sc
->getSize())
1502 fatal("_load_config_used is malformed");
1504 ArrayRef
<uint8_t> secContents
= sc
->getContents();
1505 uint32_t loadConfigSize
=
1506 *reinterpret_cast<const ulittle32_t
*>(&secContents
[offsetInChunk
]);
1507 if (offsetInChunk
+ loadConfigSize
> sc
->getSize())
1508 fatal("_load_config_used is too large");
1509 dir
[LOAD_CONFIG_TABLE
].RelativeVirtualAddress
= b
->getRVA();
1510 dir
[LOAD_CONFIG_TABLE
].Size
= loadConfigSize
;
1513 if (!delayIdata
.empty()) {
1514 dir
[DELAY_IMPORT_DESCRIPTOR
].RelativeVirtualAddress
=
1515 delayIdata
.getDirRVA();
1516 dir
[DELAY_IMPORT_DESCRIPTOR
].Size
= delayIdata
.getDirSize();
1519 // Write section table
1520 for (OutputSection
*sec
: ctx
.outputSections
) {
1521 sec
->writeHeaderTo(buf
);
1522 buf
+= sizeof(coff_section
);
1524 sectionTable
= ArrayRef
<uint8_t>(
1525 buf
- ctx
.outputSections
.size() * sizeof(coff_section
), buf
);
1527 if (outputSymtab
.empty() && strtab
.getSize() <= 4)
1530 coff
->PointerToSymbolTable
= pointerToSymbolTable
;
1531 uint32_t numberOfSymbols
= outputSymtab
.size();
1532 coff
->NumberOfSymbols
= numberOfSymbols
;
1533 auto *symbolTable
= reinterpret_cast<coff_symbol16
*>(
1534 buffer
->getBufferStart() + coff
->PointerToSymbolTable
);
1535 for (size_t i
= 0; i
!= numberOfSymbols
; ++i
)
1536 symbolTable
[i
] = outputSymtab
[i
];
1537 // Create the string table, it follows immediately after the symbol table.
1538 // The first 4 bytes is length including itself.
1539 buf
= reinterpret_cast<uint8_t *>(&symbolTable
[numberOfSymbols
]);
1543 void Writer::openFile(StringRef path
) {
1545 FileOutputBuffer::create(path
, fileSize
, FileOutputBuffer::F_executable
),
1546 "failed to open " + path
);
1549 void Writer::createSEHTable() {
1550 SymbolRVASet handlers
;
1551 for (ObjFile
*file
: ctx
.objFileInstances
) {
1552 if (!file
->hasSafeSEH())
1553 error("/safeseh: " + file
->getName() + " is not compatible with SEH");
1554 markSymbolsForRVATable(file
, file
->getSXDataChunks(), handlers
);
1557 // Set the "no SEH" characteristic if there really were no handlers, or if
1558 // there is no load config object to point to the table of handlers.
1559 setNoSEHCharacteristic
=
1560 handlers
.empty() || !ctx
.symtab
.findUnderscore("_load_config_used");
1562 maybeAddRVATable(std::move(handlers
), "__safe_se_handler_table",
1563 "__safe_se_handler_count");
1566 // Add a symbol to an RVA set. Two symbols may have the same RVA, but an RVA set
1567 // cannot contain duplicates. Therefore, the set is uniqued by Chunk and the
1568 // symbol's offset into that Chunk.
1569 static void addSymbolToRVASet(SymbolRVASet
&rvaSet
, Defined
*s
) {
1570 Chunk
*c
= s
->getChunk();
1571 if (auto *sc
= dyn_cast
<SectionChunk
>(c
))
1572 c
= sc
->repl
; // Look through ICF replacement.
1573 uint32_t off
= s
->getRVA() - (c
? c
->getRVA() : 0);
1574 rvaSet
.insert({c
, off
});
1577 // Given a symbol, add it to the GFIDs table if it is a live, defined, function
1578 // symbol in an executable section.
1579 static void maybeAddAddressTakenFunction(SymbolRVASet
&addressTakenSyms
,
1584 switch (s
->kind()) {
1585 case Symbol::DefinedLocalImportKind
:
1586 case Symbol::DefinedImportDataKind
:
1587 // Defines an __imp_ pointer, so it is data, so it is ignored.
1589 case Symbol::DefinedCommonKind
:
1590 // Common is always data, so it is ignored.
1592 case Symbol::DefinedAbsoluteKind
:
1593 case Symbol::DefinedSyntheticKind
:
1594 // Absolute is never code, synthetic generally isn't and usually isn't
1597 case Symbol::LazyArchiveKind
:
1598 case Symbol::LazyObjectKind
:
1599 case Symbol::LazyDLLSymbolKind
:
1600 case Symbol::UndefinedKind
:
1601 // Undefined symbols resolve to zero, so they don't have an RVA. Lazy
1602 // symbols shouldn't have relocations.
1605 case Symbol::DefinedImportThunkKind
:
1606 // Thunks are always code, include them.
1607 addSymbolToRVASet(addressTakenSyms
, cast
<Defined
>(s
));
1610 case Symbol::DefinedRegularKind
: {
1611 // This is a regular, defined, symbol from a COFF file. Mark the symbol as
1612 // address taken if the symbol type is function and it's in an executable
1614 auto *d
= cast
<DefinedRegular
>(s
);
1615 if (d
->getCOFFSymbol().getComplexType() == COFF::IMAGE_SYM_DTYPE_FUNCTION
) {
1616 SectionChunk
*sc
= dyn_cast
<SectionChunk
>(d
->getChunk());
1617 if (sc
&& sc
->live
&&
1618 sc
->getOutputCharacteristics() & IMAGE_SCN_MEM_EXECUTE
)
1619 addSymbolToRVASet(addressTakenSyms
, d
);
1626 // Visit all relocations from all section contributions of this object file and
1627 // mark the relocation target as address-taken.
1628 static void markSymbolsWithRelocations(ObjFile
*file
,
1629 SymbolRVASet
&usedSymbols
) {
1630 for (Chunk
*c
: file
->getChunks()) {
1631 // We only care about live section chunks. Common chunks and other chunks
1632 // don't generally contain relocations.
1633 SectionChunk
*sc
= dyn_cast
<SectionChunk
>(c
);
1634 if (!sc
|| !sc
->live
)
1637 for (const coff_relocation
&reloc
: sc
->getRelocs()) {
1638 if (config
->machine
== I386
&& reloc
.Type
== COFF::IMAGE_REL_I386_REL32
)
1639 // Ignore relative relocations on x86. On x86_64 they can't be ignored
1640 // since they're also used to compute absolute addresses.
1643 Symbol
*ref
= sc
->file
->getSymbol(reloc
.SymbolTableIndex
);
1644 maybeAddAddressTakenFunction(usedSymbols
, ref
);
1649 // Create the guard function id table. This is a table of RVAs of all
1650 // address-taken functions. It is sorted and uniqued, just like the safe SEH
1652 void Writer::createGuardCFTables() {
1653 SymbolRVASet addressTakenSyms
;
1654 SymbolRVASet giatsRVASet
;
1655 std::vector
<Symbol
*> giatsSymbols
;
1656 SymbolRVASet longJmpTargets
;
1657 SymbolRVASet ehContTargets
;
1658 for (ObjFile
*file
: ctx
.objFileInstances
) {
1659 // If the object was compiled with /guard:cf, the address taken symbols
1660 // are in .gfids$y sections, the longjmp targets are in .gljmp$y sections,
1661 // and ehcont targets are in .gehcont$y sections. If the object was not
1662 // compiled with /guard:cf, we assume there were no setjmp and ehcont
1663 // targets, and that all code symbols with relocations are possibly
1665 if (file
->hasGuardCF()) {
1666 markSymbolsForRVATable(file
, file
->getGuardFidChunks(), addressTakenSyms
);
1667 markSymbolsForRVATable(file
, file
->getGuardIATChunks(), giatsRVASet
);
1668 getSymbolsFromSections(file
, file
->getGuardIATChunks(), giatsSymbols
);
1669 markSymbolsForRVATable(file
, file
->getGuardLJmpChunks(), longJmpTargets
);
1670 markSymbolsForRVATable(file
, file
->getGuardEHContChunks(), ehContTargets
);
1672 markSymbolsWithRelocations(file
, addressTakenSyms
);
1676 // Mark the image entry as address-taken.
1678 maybeAddAddressTakenFunction(addressTakenSyms
, config
->entry
);
1680 // Mark exported symbols in executable sections as address-taken.
1681 for (Export
&e
: config
->exports
)
1682 maybeAddAddressTakenFunction(addressTakenSyms
, e
.sym
);
1684 // For each entry in the .giats table, check if it has a corresponding load
1685 // thunk (e.g. because the DLL that defines it will be delay-loaded) and, if
1686 // so, add the load thunk to the address taken (.gfids) table.
1687 for (Symbol
*s
: giatsSymbols
) {
1688 if (auto *di
= dyn_cast
<DefinedImportData
>(s
)) {
1689 if (di
->loadThunkSym
)
1690 addSymbolToRVASet(addressTakenSyms
, di
->loadThunkSym
);
1694 // Ensure sections referenced in the gfid table are 16-byte aligned.
1695 for (const ChunkAndOffset
&c
: addressTakenSyms
)
1696 if (c
.inputChunk
->getAlignment() < 16)
1697 c
.inputChunk
->setAlignment(16);
1699 maybeAddRVATable(std::move(addressTakenSyms
), "__guard_fids_table",
1700 "__guard_fids_count");
1702 // Add the Guard Address Taken IAT Entry Table (.giats).
1703 maybeAddRVATable(std::move(giatsRVASet
), "__guard_iat_table",
1704 "__guard_iat_count");
1706 // Add the longjmp target table unless the user told us not to.
1707 if (config
->guardCF
& GuardCFLevel::LongJmp
)
1708 maybeAddRVATable(std::move(longJmpTargets
), "__guard_longjmp_table",
1709 "__guard_longjmp_count");
1711 // Add the ehcont target table unless the user told us not to.
1712 if (config
->guardCF
& GuardCFLevel::EHCont
)
1713 maybeAddRVATable(std::move(ehContTargets
), "__guard_eh_cont_table",
1714 "__guard_eh_cont_count", true);
1716 // Set __guard_flags, which will be used in the load config to indicate that
1717 // /guard:cf was enabled.
1718 uint32_t guardFlags
= uint32_t(coff_guard_flags::CFInstrumented
) |
1719 uint32_t(coff_guard_flags::HasFidTable
);
1720 if (config
->guardCF
& GuardCFLevel::LongJmp
)
1721 guardFlags
|= uint32_t(coff_guard_flags::HasLongJmpTable
);
1722 if (config
->guardCF
& GuardCFLevel::EHCont
)
1723 guardFlags
|= uint32_t(coff_guard_flags::HasEHContTable
);
1724 Symbol
*flagSym
= ctx
.symtab
.findUnderscore("__guard_flags");
1725 cast
<DefinedAbsolute
>(flagSym
)->setVA(guardFlags
);
1728 // Take a list of input sections containing symbol table indices and add those
1729 // symbols to a vector. The challenge is that symbol RVAs are not known and
1730 // depend on the table size, so we can't directly build a set of integers.
1731 void Writer::getSymbolsFromSections(ObjFile
*file
,
1732 ArrayRef
<SectionChunk
*> symIdxChunks
,
1733 std::vector
<Symbol
*> &symbols
) {
1734 for (SectionChunk
*c
: symIdxChunks
) {
1735 // Skip sections discarded by linker GC. This comes up when a .gfids section
1736 // is associated with something like a vtable and the vtable is discarded.
1737 // In this case, the associated gfids section is discarded, and we don't
1738 // mark the virtual member functions as address-taken by the vtable.
1742 // Validate that the contents look like symbol table indices.
1743 ArrayRef
<uint8_t> data
= c
->getContents();
1744 if (data
.size() % 4 != 0) {
1745 warn("ignoring " + c
->getSectionName() +
1746 " symbol table index section in object " + toString(file
));
1750 // Read each symbol table index and check if that symbol was included in the
1751 // final link. If so, add it to the vector of symbols.
1752 ArrayRef
<ulittle32_t
> symIndices(
1753 reinterpret_cast<const ulittle32_t
*>(data
.data()), data
.size() / 4);
1754 ArrayRef
<Symbol
*> objSymbols
= file
->getSymbols();
1755 for (uint32_t symIndex
: symIndices
) {
1756 if (symIndex
>= objSymbols
.size()) {
1757 warn("ignoring invalid symbol table index in section " +
1758 c
->getSectionName() + " in object " + toString(file
));
1761 if (Symbol
*s
= objSymbols
[symIndex
]) {
1763 symbols
.push_back(cast
<Symbol
>(s
));
1769 // Take a list of input sections containing symbol table indices and add those
1770 // symbols to an RVA table.
1771 void Writer::markSymbolsForRVATable(ObjFile
*file
,
1772 ArrayRef
<SectionChunk
*> symIdxChunks
,
1773 SymbolRVASet
&tableSymbols
) {
1774 std::vector
<Symbol
*> syms
;
1775 getSymbolsFromSections(file
, symIdxChunks
, syms
);
1777 for (Symbol
*s
: syms
)
1778 addSymbolToRVASet(tableSymbols
, cast
<Defined
>(s
));
1781 // Replace the absolute table symbol with a synthetic symbol pointing to
1782 // tableChunk so that we can emit base relocations for it and resolve section
1783 // relative relocations.
1784 void Writer::maybeAddRVATable(SymbolRVASet tableSymbols
, StringRef tableSym
,
1785 StringRef countSym
, bool hasFlag
) {
1786 if (tableSymbols
.empty())
1789 NonSectionChunk
*tableChunk
;
1791 tableChunk
= make
<RVAFlagTableChunk
>(std::move(tableSymbols
));
1793 tableChunk
= make
<RVATableChunk
>(std::move(tableSymbols
));
1794 rdataSec
->addChunk(tableChunk
);
1796 Symbol
*t
= ctx
.symtab
.findUnderscore(tableSym
);
1797 Symbol
*c
= ctx
.symtab
.findUnderscore(countSym
);
1798 replaceSymbol
<DefinedSynthetic
>(t
, t
->getName(), tableChunk
);
1799 cast
<DefinedAbsolute
>(c
)->setVA(tableChunk
->getSize() / (hasFlag
? 5 : 4));
1802 // MinGW specific. Gather all relocations that are imported from a DLL even
1803 // though the code didn't expect it to, produce the table that the runtime
1804 // uses for fixing them up, and provide the synthetic symbols that the
1805 // runtime uses for finding the table.
1806 void Writer::createRuntimePseudoRelocs() {
1807 std::vector
<RuntimePseudoReloc
> rels
;
1809 for (Chunk
*c
: ctx
.symtab
.getChunks()) {
1810 auto *sc
= dyn_cast
<SectionChunk
>(c
);
1811 if (!sc
|| !sc
->live
)
1813 sc
->getRuntimePseudoRelocs(rels
);
1816 if (!config
->pseudoRelocs
) {
1817 // Not writing any pseudo relocs; if some were needed, error out and
1818 // indicate what required them.
1819 for (const RuntimePseudoReloc
&rpr
: rels
)
1820 error("automatic dllimport of " + rpr
.sym
->getName() + " in " +
1821 toString(rpr
.target
->file
) + " requires pseudo relocations");
1826 log("Writing " + Twine(rels
.size()) + " runtime pseudo relocations");
1827 PseudoRelocTableChunk
*table
= make
<PseudoRelocTableChunk
>(rels
);
1828 rdataSec
->addChunk(table
);
1829 EmptyChunk
*endOfList
= make
<EmptyChunk
>();
1830 rdataSec
->addChunk(endOfList
);
1832 Symbol
*headSym
= ctx
.symtab
.findUnderscore("__RUNTIME_PSEUDO_RELOC_LIST__");
1834 ctx
.symtab
.findUnderscore("__RUNTIME_PSEUDO_RELOC_LIST_END__");
1835 replaceSymbol
<DefinedSynthetic
>(headSym
, headSym
->getName(), table
);
1836 replaceSymbol
<DefinedSynthetic
>(endSym
, endSym
->getName(), endOfList
);
1840 // The MinGW .ctors and .dtors lists have sentinels at each end;
1841 // a (uintptr_t)-1 at the start and a (uintptr_t)0 at the end.
1842 // There's a symbol pointing to the start sentinel pointer, __CTOR_LIST__
1843 // and __DTOR_LIST__ respectively.
1844 void Writer::insertCtorDtorSymbols() {
1845 AbsolutePointerChunk
*ctorListHead
= make
<AbsolutePointerChunk
>(-1);
1846 AbsolutePointerChunk
*ctorListEnd
= make
<AbsolutePointerChunk
>(0);
1847 AbsolutePointerChunk
*dtorListHead
= make
<AbsolutePointerChunk
>(-1);
1848 AbsolutePointerChunk
*dtorListEnd
= make
<AbsolutePointerChunk
>(0);
1849 ctorsSec
->insertChunkAtStart(ctorListHead
);
1850 ctorsSec
->addChunk(ctorListEnd
);
1851 dtorsSec
->insertChunkAtStart(dtorListHead
);
1852 dtorsSec
->addChunk(dtorListEnd
);
1854 Symbol
*ctorListSym
= ctx
.symtab
.findUnderscore("__CTOR_LIST__");
1855 Symbol
*dtorListSym
= ctx
.symtab
.findUnderscore("__DTOR_LIST__");
1856 replaceSymbol
<DefinedSynthetic
>(ctorListSym
, ctorListSym
->getName(),
1858 replaceSymbol
<DefinedSynthetic
>(dtorListSym
, dtorListSym
->getName(),
1862 // Handles /section options to allow users to overwrite
1863 // section attributes.
1864 void Writer::setSectionPermissions() {
1865 for (auto &p
: config
->section
) {
1866 StringRef name
= p
.first
;
1867 uint32_t perm
= p
.second
;
1868 for (OutputSection
*sec
: ctx
.outputSections
)
1869 if (sec
->name
== name
)
1870 sec
->setPermissions(perm
);
1874 // Write section contents to a mmap'ed file.
1875 void Writer::writeSections() {
1876 // Record the number of sections to apply section index relocations
1877 // against absolute symbols. See applySecIdx in Chunks.cpp..
1878 DefinedAbsolute::numOutputSections
= ctx
.outputSections
.size();
1880 uint8_t *buf
= buffer
->getBufferStart();
1881 for (OutputSection
*sec
: ctx
.outputSections
) {
1882 uint8_t *secBuf
= buf
+ sec
->getFileOff();
1883 // Fill gaps between functions in .text with INT3 instructions
1884 // instead of leaving as NUL bytes (which can be interpreted as
1885 // ADD instructions).
1886 if (sec
->header
.Characteristics
& IMAGE_SCN_CNT_CODE
)
1887 memset(secBuf
, 0xCC, sec
->getRawSize());
1888 parallelForEach(sec
->chunks
, [&](Chunk
*c
) {
1889 c
->writeTo(secBuf
+ c
->getRVA() - sec
->getRVA());
1894 void Writer::writeBuildId() {
1895 // There are two important parts to the build ID.
1896 // 1) If building with debug info, the COFF debug directory contains a
1897 // timestamp as well as a Guid and Age of the PDB.
1898 // 2) In all cases, the PE COFF file header also contains a timestamp.
1899 // For reproducibility, instead of a timestamp we want to use a hash of the
1901 if (config
->debug
) {
1902 assert(buildId
&& "BuildId is not set!");
1903 // BuildId->BuildId was filled in when the PDB was written.
1906 // At this point the only fields in the COFF file which remain unset are the
1907 // "timestamp" in the COFF file header, and the ones in the coff debug
1908 // directory. Now we can hash the file and write that hash to the various
1909 // timestamp fields in the file.
1910 StringRef
outputFileData(
1911 reinterpret_cast<const char *>(buffer
->getBufferStart()),
1912 buffer
->getBufferSize());
1914 uint32_t timestamp
= config
->timestamp
;
1916 bool generateSyntheticBuildId
=
1917 config
->mingw
&& config
->debug
&& config
->pdbPath
.empty();
1919 if (config
->repro
|| generateSyntheticBuildId
)
1920 hash
= xxHash64(outputFileData
);
1923 timestamp
= static_cast<uint32_t>(hash
);
1925 if (generateSyntheticBuildId
) {
1926 // For MinGW builds without a PDB file, we still generate a build id
1927 // to allow associating a crash dump to the executable.
1928 buildId
->buildId
->PDB70
.CVSignature
= OMF::Signature::PDB70
;
1929 buildId
->buildId
->PDB70
.Age
= 1;
1930 memcpy(buildId
->buildId
->PDB70
.Signature
, &hash
, 8);
1931 // xxhash only gives us 8 bytes, so put some fixed data in the other half.
1932 memcpy(&buildId
->buildId
->PDB70
.Signature
[8], "LLD PDB.", 8);
1936 debugDirectory
->setTimeDateStamp(timestamp
);
1938 uint8_t *buf
= buffer
->getBufferStart();
1939 buf
+= dosStubSize
+ sizeof(PEMagic
);
1940 object::coff_file_header
*coffHeader
=
1941 reinterpret_cast<coff_file_header
*>(buf
);
1942 coffHeader
->TimeDateStamp
= timestamp
;
1945 // Sort .pdata section contents according to PE/COFF spec 5.5.
1946 void Writer::sortExceptionTable() {
1949 // We assume .pdata contains function table entries only.
1950 auto bufAddr
= [&](Chunk
*c
) {
1951 OutputSection
*os
= ctx
.getOutputSection(c
);
1952 return buffer
->getBufferStart() + os
->getFileOff() + c
->getRVA() -
1955 uint8_t *begin
= bufAddr(firstPdata
);
1956 uint8_t *end
= bufAddr(lastPdata
) + lastPdata
->getSize();
1957 if (config
->machine
== AMD64
) {
1958 struct Entry
{ ulittle32_t begin
, end
, unwind
; };
1959 if ((end
- begin
) % sizeof(Entry
) != 0) {
1960 fatal("unexpected .pdata size: " + Twine(end
- begin
) +
1961 " is not a multiple of " + Twine(sizeof(Entry
)));
1964 MutableArrayRef
<Entry
>((Entry
*)begin
, (Entry
*)end
),
1965 [](const Entry
&a
, const Entry
&b
) { return a
.begin
< b
.begin
; });
1968 if (config
->machine
== ARMNT
|| config
->machine
== ARM64
) {
1969 struct Entry
{ ulittle32_t begin
, unwind
; };
1970 if ((end
- begin
) % sizeof(Entry
) != 0) {
1971 fatal("unexpected .pdata size: " + Twine(end
- begin
) +
1972 " is not a multiple of " + Twine(sizeof(Entry
)));
1975 MutableArrayRef
<Entry
>((Entry
*)begin
, (Entry
*)end
),
1976 [](const Entry
&a
, const Entry
&b
) { return a
.begin
< b
.begin
; });
1979 lld::errs() << "warning: don't know how to handle .pdata.\n";
1982 // The CRT section contains, among other things, the array of function
1983 // pointers that initialize every global variable that is not trivially
1984 // constructed. The CRT calls them one after the other prior to invoking
1987 // As per C++ spec, 3.6.2/2.3,
1988 // "Variables with ordered initialization defined within a single
1989 // translation unit shall be initialized in the order of their definitions
1990 // in the translation unit"
1992 // It is therefore critical to sort the chunks containing the function
1993 // pointers in the order that they are listed in the object file (top to
1994 // bottom), otherwise global objects might not be initialized in the
1996 void Writer::sortCRTSectionChunks(std::vector
<Chunk
*> &chunks
) {
1997 auto sectionChunkOrder
= [](const Chunk
*a
, const Chunk
*b
) {
1998 auto sa
= dyn_cast
<SectionChunk
>(a
);
1999 auto sb
= dyn_cast
<SectionChunk
>(b
);
2000 assert(sa
&& sb
&& "Non-section chunks in CRT section!");
2002 StringRef sAObj
= sa
->file
->mb
.getBufferIdentifier();
2003 StringRef sBObj
= sb
->file
->mb
.getBufferIdentifier();
2005 return sAObj
== sBObj
&& sa
->getSectionNumber() < sb
->getSectionNumber();
2007 llvm::stable_sort(chunks
, sectionChunkOrder
);
2009 if (config
->verbose
) {
2010 for (auto &c
: chunks
) {
2011 auto sc
= dyn_cast
<SectionChunk
>(c
);
2012 log(" " + sc
->file
->mb
.getBufferIdentifier().str() +
2013 ", SectionID: " + Twine(sc
->getSectionNumber()));
2018 OutputSection
*Writer::findSection(StringRef name
) {
2019 for (OutputSection
*sec
: ctx
.outputSections
)
2020 if (sec
->name
== name
)
2025 uint32_t Writer::getSizeOfInitializedData() {
2027 for (OutputSection
*s
: ctx
.outputSections
)
2028 if (s
->header
.Characteristics
& IMAGE_SCN_CNT_INITIALIZED_DATA
)
2029 res
+= s
->getRawSize();
2033 // Add base relocations to .reloc section.
2034 void Writer::addBaserels() {
2035 if (!config
->relocatable
)
2037 relocSec
->chunks
.clear();
2038 std::vector
<Baserel
> v
;
2039 for (OutputSection
*sec
: ctx
.outputSections
) {
2040 if (sec
->header
.Characteristics
& IMAGE_SCN_MEM_DISCARDABLE
)
2042 // Collect all locations for base relocations.
2043 for (Chunk
*c
: sec
->chunks
)
2045 // Add the addresses to .reloc section.
2047 addBaserelBlocks(v
);
2052 // Add addresses to .reloc section. Note that addresses are grouped by page.
2053 void Writer::addBaserelBlocks(std::vector
<Baserel
> &v
) {
2054 const uint32_t mask
= ~uint32_t(pageSize
- 1);
2055 uint32_t page
= v
[0].rva
& mask
;
2056 size_t i
= 0, j
= 1;
2057 for (size_t e
= v
.size(); j
< e
; ++j
) {
2058 uint32_t p
= v
[j
].rva
& mask
;
2061 relocSec
->addChunk(make
<BaserelChunk
>(page
, &v
[i
], &v
[0] + j
));
2067 relocSec
->addChunk(make
<BaserelChunk
>(page
, &v
[i
], &v
[0] + j
));
2070 PartialSection
*Writer::createPartialSection(StringRef name
,
2071 uint32_t outChars
) {
2072 PartialSection
*&pSec
= partialSections
[{name
, outChars
}];
2075 pSec
= make
<PartialSection
>(name
, outChars
);
2079 PartialSection
*Writer::findPartialSection(StringRef name
, uint32_t outChars
) {
2080 auto it
= partialSections
.find({name
, outChars
});
2081 if (it
!= partialSections
.end())
2086 void Writer::fixTlsAlignment() {
2088 dyn_cast_or_null
<Defined
>(ctx
.symtab
.findUnderscore("_tls_used"));
2092 OutputSection
*sec
= ctx
.getOutputSection(tlsSym
->getChunk());
2093 assert(sec
&& tlsSym
->getRVA() >= sec
->getRVA() &&
2094 "no output section for _tls_used");
2096 uint8_t *secBuf
= buffer
->getBufferStart() + sec
->getFileOff();
2097 uint64_t tlsOffset
= tlsSym
->getRVA() - sec
->getRVA();
2098 uint64_t directorySize
= config
->is64()
2099 ? sizeof(object::coff_tls_directory64
)
2100 : sizeof(object::coff_tls_directory32
);
2102 if (tlsOffset
+ directorySize
> sec
->getRawSize())
2103 fatal("_tls_used sym is malformed");
2105 if (config
->is64()) {
2106 object::coff_tls_directory64
*tlsDir
=
2107 reinterpret_cast<object::coff_tls_directory64
*>(&secBuf
[tlsOffset
]);
2108 tlsDir
->setAlignment(tlsAlignment
);
2110 object::coff_tls_directory32
*tlsDir
=
2111 reinterpret_cast<object::coff_tls_directory32
*>(&secBuf
[tlsOffset
]);
2112 tlsDir
->setAlignment(tlsAlignment
);