[WebAssembly] Fix asan issue from https://reviews.llvm.org/D121349
[llvm-project.git] / lld / COFF / Writer.cpp
blob1b9a870d4630c073f42a5bf237ec70105b74a4d7
1 //===- Writer.cpp ---------------------------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
9 #include "Writer.h"
10 #include "COFFLinkerContext.h"
11 #include "CallGraphSort.h"
12 #include "Config.h"
13 #include "DLL.h"
14 #include "InputFiles.h"
15 #include "LLDMapFile.h"
16 #include "MapFile.h"
17 #include "PDB.h"
18 #include "SymbolTable.h"
19 #include "Symbols.h"
20 #include "lld/Common/ErrorHandler.h"
21 #include "lld/Common/Memory.h"
22 #include "lld/Common/Timer.h"
23 #include "llvm/ADT/DenseMap.h"
24 #include "llvm/ADT/STLExtras.h"
25 #include "llvm/ADT/StringSet.h"
26 #include "llvm/ADT/StringSwitch.h"
27 #include "llvm/MC/StringTableBuilder.h"
28 #include "llvm/Support/BinaryStreamReader.h"
29 #include "llvm/Support/Debug.h"
30 #include "llvm/Support/Endian.h"
31 #include "llvm/Support/FileOutputBuffer.h"
32 #include "llvm/Support/Parallel.h"
33 #include "llvm/Support/Path.h"
34 #include "llvm/Support/RandomNumberGenerator.h"
35 #include "llvm/Support/xxhash.h"
36 #include <algorithm>
37 #include <cstdio>
38 #include <map>
39 #include <memory>
40 #include <utility>
42 using namespace llvm;
43 using namespace llvm::COFF;
44 using namespace llvm::object;
45 using namespace llvm::support;
46 using namespace llvm::support::endian;
47 using namespace lld;
48 using namespace lld::coff;
50 /* To re-generate DOSProgram:
51 $ cat > /tmp/DOSProgram.asm
52 org 0
53 ; Copy cs to ds.
54 push cs
55 pop ds
56 ; Point ds:dx at the $-terminated string.
57 mov dx, str
58 ; Int 21/AH=09h: Write string to standard output.
59 mov ah, 0x9
60 int 0x21
61 ; Int 21/AH=4Ch: Exit with return code (in AL).
62 mov ax, 0x4C01
63 int 0x21
64 str:
65 db 'This program cannot be run in DOS mode.$'
66 align 8, db 0
67 $ nasm -fbin /tmp/DOSProgram.asm -o /tmp/DOSProgram.bin
68 $ xxd -i /tmp/DOSProgram.bin
70 static unsigned char dosProgram[] = {
71 0x0e, 0x1f, 0xba, 0x0e, 0x00, 0xb4, 0x09, 0xcd, 0x21, 0xb8, 0x01, 0x4c,
72 0xcd, 0x21, 0x54, 0x68, 0x69, 0x73, 0x20, 0x70, 0x72, 0x6f, 0x67, 0x72,
73 0x61, 0x6d, 0x20, 0x63, 0x61, 0x6e, 0x6e, 0x6f, 0x74, 0x20, 0x62, 0x65,
74 0x20, 0x72, 0x75, 0x6e, 0x20, 0x69, 0x6e, 0x20, 0x44, 0x4f, 0x53, 0x20,
75 0x6d, 0x6f, 0x64, 0x65, 0x2e, 0x24, 0x00, 0x00
77 static_assert(sizeof(dosProgram) % 8 == 0,
78 "DOSProgram size must be multiple of 8");
80 static const int dosStubSize = sizeof(dos_header) + sizeof(dosProgram);
81 static_assert(dosStubSize % 8 == 0, "DOSStub size must be multiple of 8");
83 static const int numberOfDataDirectory = 16;
85 namespace {
87 class DebugDirectoryChunk : public NonSectionChunk {
88 public:
89 DebugDirectoryChunk(COFFLinkerContext &c,
90 const std::vector<std::pair<COFF::DebugType, Chunk *>> &r,
91 bool writeRepro)
92 : records(r), writeRepro(writeRepro), ctx(c) {}
94 size_t getSize() const override {
95 return (records.size() + int(writeRepro)) * sizeof(debug_directory);
98 void writeTo(uint8_t *b) const override {
99 auto *d = reinterpret_cast<debug_directory *>(b);
101 for (const std::pair<COFF::DebugType, Chunk *>& record : records) {
102 Chunk *c = record.second;
103 OutputSection *os = ctx.getOutputSection(c);
104 uint64_t offs = os->getFileOff() + (c->getRVA() - os->getRVA());
105 fillEntry(d, record.first, c->getSize(), c->getRVA(), offs);
106 ++d;
109 if (writeRepro) {
110 // FIXME: The COFF spec allows either a 0-sized entry to just say
111 // "the timestamp field is really a hash", or a 4-byte size field
112 // followed by that many bytes containing a longer hash (with the
113 // lowest 4 bytes usually being the timestamp in little-endian order).
114 // Consider storing the full 8 bytes computed by xxHash64 here.
115 fillEntry(d, COFF::IMAGE_DEBUG_TYPE_REPRO, 0, 0, 0);
119 void setTimeDateStamp(uint32_t timeDateStamp) {
120 for (support::ulittle32_t *tds : timeDateStamps)
121 *tds = timeDateStamp;
124 private:
125 void fillEntry(debug_directory *d, COFF::DebugType debugType, size_t size,
126 uint64_t rva, uint64_t offs) const {
127 d->Characteristics = 0;
128 d->TimeDateStamp = 0;
129 d->MajorVersion = 0;
130 d->MinorVersion = 0;
131 d->Type = debugType;
132 d->SizeOfData = size;
133 d->AddressOfRawData = rva;
134 d->PointerToRawData = offs;
136 timeDateStamps.push_back(&d->TimeDateStamp);
139 mutable std::vector<support::ulittle32_t *> timeDateStamps;
140 const std::vector<std::pair<COFF::DebugType, Chunk *>> &records;
141 bool writeRepro;
143 COFFLinkerContext &ctx;
146 class CVDebugRecordChunk : public NonSectionChunk {
147 public:
148 size_t getSize() const override {
149 return sizeof(codeview::DebugInfo) + config->pdbAltPath.size() + 1;
152 void writeTo(uint8_t *b) const override {
153 // Save off the DebugInfo entry to backfill the file signature (build id)
154 // in Writer::writeBuildId
155 buildId = reinterpret_cast<codeview::DebugInfo *>(b);
157 // variable sized field (PDB Path)
158 char *p = reinterpret_cast<char *>(b + sizeof(*buildId));
159 if (!config->pdbAltPath.empty())
160 memcpy(p, config->pdbAltPath.data(), config->pdbAltPath.size());
161 p[config->pdbAltPath.size()] = '\0';
164 mutable codeview::DebugInfo *buildId = nullptr;
167 class ExtendedDllCharacteristicsChunk : public NonSectionChunk {
168 public:
169 ExtendedDllCharacteristicsChunk(uint32_t c) : characteristics(c) {}
171 size_t getSize() const override { return 4; }
173 void writeTo(uint8_t *buf) const override { write32le(buf, characteristics); }
175 uint32_t characteristics = 0;
178 // PartialSection represents a group of chunks that contribute to an
179 // OutputSection. Collating a collection of PartialSections of same name and
180 // characteristics constitutes the OutputSection.
181 class PartialSectionKey {
182 public:
183 StringRef name;
184 unsigned characteristics;
186 bool operator<(const PartialSectionKey &other) const {
187 int c = name.compare(other.name);
188 if (c == 1)
189 return false;
190 if (c == 0)
191 return characteristics < other.characteristics;
192 return true;
196 // The writer writes a SymbolTable result to a file.
197 class Writer {
198 public:
199 Writer(COFFLinkerContext &c)
200 : buffer(errorHandler().outputBuffer),
201 strtab(StringTableBuilder::WinCOFF), ctx(c) {}
202 void run();
204 private:
205 void createSections();
206 void createMiscChunks();
207 void createImportTables();
208 void appendImportThunks();
209 void locateImportTables();
210 void createExportTable();
211 void mergeSections();
212 void removeUnusedSections();
213 void assignAddresses();
214 void finalizeAddresses();
215 void removeEmptySections();
216 void assignOutputSectionIndices();
217 void createSymbolAndStringTable();
218 void openFile(StringRef outputPath);
219 template <typename PEHeaderTy> void writeHeader();
220 void createSEHTable();
221 void createRuntimePseudoRelocs();
222 void insertCtorDtorSymbols();
223 void createGuardCFTables();
224 void markSymbolsForRVATable(ObjFile *file,
225 ArrayRef<SectionChunk *> symIdxChunks,
226 SymbolRVASet &tableSymbols);
227 void getSymbolsFromSections(ObjFile *file,
228 ArrayRef<SectionChunk *> symIdxChunks,
229 std::vector<Symbol *> &symbols);
230 void maybeAddRVATable(SymbolRVASet tableSymbols, StringRef tableSym,
231 StringRef countSym, bool hasFlag=false);
232 void setSectionPermissions();
233 void writeSections();
234 void writeBuildId();
235 void sortSections();
236 void sortExceptionTable();
237 void sortCRTSectionChunks(std::vector<Chunk *> &chunks);
238 void addSyntheticIdata();
239 void fixPartialSectionChars(StringRef name, uint32_t chars);
240 bool fixGnuImportChunks();
241 void fixTlsAlignment();
242 PartialSection *createPartialSection(StringRef name, uint32_t outChars);
243 PartialSection *findPartialSection(StringRef name, uint32_t outChars);
245 llvm::Optional<coff_symbol16> createSymbol(Defined *d);
247 OutputSection *findSection(StringRef name);
248 void addBaserels();
249 void addBaserelBlocks(std::vector<Baserel> &v);
251 uint32_t getSizeOfInitializedData();
253 std::unique_ptr<FileOutputBuffer> &buffer;
254 std::map<PartialSectionKey, PartialSection *> partialSections;
255 StringTableBuilder strtab;
256 std::vector<llvm::object::coff_symbol16> outputSymtab;
257 IdataContents idata;
258 Chunk *importTableStart = nullptr;
259 uint64_t importTableSize = 0;
260 Chunk *edataStart = nullptr;
261 Chunk *edataEnd = nullptr;
262 Chunk *iatStart = nullptr;
263 uint64_t iatSize = 0;
264 DelayLoadContents delayIdata;
265 EdataContents edata;
266 bool setNoSEHCharacteristic = false;
267 uint32_t tlsAlignment = 0;
269 DebugDirectoryChunk *debugDirectory = nullptr;
270 std::vector<std::pair<COFF::DebugType, Chunk *>> debugRecords;
271 CVDebugRecordChunk *buildId = nullptr;
272 ArrayRef<uint8_t> sectionTable;
274 uint64_t fileSize;
275 uint32_t pointerToSymbolTable = 0;
276 uint64_t sizeOfImage;
277 uint64_t sizeOfHeaders;
279 OutputSection *textSec;
280 OutputSection *rdataSec;
281 OutputSection *buildidSec;
282 OutputSection *dataSec;
283 OutputSection *pdataSec;
284 OutputSection *idataSec;
285 OutputSection *edataSec;
286 OutputSection *didatSec;
287 OutputSection *rsrcSec;
288 OutputSection *relocSec;
289 OutputSection *ctorsSec;
290 OutputSection *dtorsSec;
292 // The first and last .pdata sections in the output file.
294 // We need to keep track of the location of .pdata in whichever section it
295 // gets merged into so that we can sort its contents and emit a correct data
296 // directory entry for the exception table. This is also the case for some
297 // other sections (such as .edata) but because the contents of those sections
298 // are entirely linker-generated we can keep track of their locations using
299 // the chunks that the linker creates. All .pdata chunks come from input
300 // files, so we need to keep track of them separately.
301 Chunk *firstPdata = nullptr;
302 Chunk *lastPdata;
304 COFFLinkerContext &ctx;
306 } // anonymous namespace
308 void lld::coff::writeResult(COFFLinkerContext &ctx) { Writer(ctx).run(); }
310 void OutputSection::addChunk(Chunk *c) {
311 chunks.push_back(c);
314 void OutputSection::insertChunkAtStart(Chunk *c) {
315 chunks.insert(chunks.begin(), c);
318 void OutputSection::setPermissions(uint32_t c) {
319 header.Characteristics &= ~permMask;
320 header.Characteristics |= c;
323 void OutputSection::merge(OutputSection *other) {
324 chunks.insert(chunks.end(), other->chunks.begin(), other->chunks.end());
325 other->chunks.clear();
326 contribSections.insert(contribSections.end(), other->contribSections.begin(),
327 other->contribSections.end());
328 other->contribSections.clear();
331 // Write the section header to a given buffer.
332 void OutputSection::writeHeaderTo(uint8_t *buf) {
333 auto *hdr = reinterpret_cast<coff_section *>(buf);
334 *hdr = header;
335 if (stringTableOff) {
336 // If name is too long, write offset into the string table as a name.
337 encodeSectionName(hdr->Name, stringTableOff);
338 } else {
339 assert(!config->debug || name.size() <= COFF::NameSize ||
340 (hdr->Characteristics & IMAGE_SCN_MEM_DISCARDABLE) == 0);
341 strncpy(hdr->Name, name.data(),
342 std::min(name.size(), (size_t)COFF::NameSize));
346 void OutputSection::addContributingPartialSection(PartialSection *sec) {
347 contribSections.push_back(sec);
350 // Check whether the target address S is in range from a relocation
351 // of type relType at address P.
352 static bool isInRange(uint16_t relType, uint64_t s, uint64_t p, int margin) {
353 if (config->machine == ARMNT) {
354 int64_t diff = AbsoluteDifference(s, p + 4) + margin;
355 switch (relType) {
356 case IMAGE_REL_ARM_BRANCH20T:
357 return isInt<21>(diff);
358 case IMAGE_REL_ARM_BRANCH24T:
359 case IMAGE_REL_ARM_BLX23T:
360 return isInt<25>(diff);
361 default:
362 return true;
364 } else if (config->machine == ARM64) {
365 int64_t diff = AbsoluteDifference(s, p) + margin;
366 switch (relType) {
367 case IMAGE_REL_ARM64_BRANCH26:
368 return isInt<28>(diff);
369 case IMAGE_REL_ARM64_BRANCH19:
370 return isInt<21>(diff);
371 case IMAGE_REL_ARM64_BRANCH14:
372 return isInt<16>(diff);
373 default:
374 return true;
376 } else {
377 llvm_unreachable("Unexpected architecture");
381 // Return the last thunk for the given target if it is in range,
382 // or create a new one.
383 static std::pair<Defined *, bool>
384 getThunk(DenseMap<uint64_t, Defined *> &lastThunks, Defined *target, uint64_t p,
385 uint16_t type, int margin) {
386 Defined *&lastThunk = lastThunks[target->getRVA()];
387 if (lastThunk && isInRange(type, lastThunk->getRVA(), p, margin))
388 return {lastThunk, false};
389 Chunk *c;
390 switch (config->machine) {
391 case ARMNT:
392 c = make<RangeExtensionThunkARM>(target);
393 break;
394 case ARM64:
395 c = make<RangeExtensionThunkARM64>(target);
396 break;
397 default:
398 llvm_unreachable("Unexpected architecture");
400 Defined *d = make<DefinedSynthetic>("", c);
401 lastThunk = d;
402 return {d, true};
405 // This checks all relocations, and for any relocation which isn't in range
406 // it adds a thunk after the section chunk that contains the relocation.
407 // If the latest thunk for the specific target is in range, that is used
408 // instead of creating a new thunk. All range checks are done with the
409 // specified margin, to make sure that relocations that originally are in
410 // range, but only barely, also get thunks - in case other added thunks makes
411 // the target go out of range.
413 // After adding thunks, we verify that all relocations are in range (with
414 // no extra margin requirements). If this failed, we restart (throwing away
415 // the previously created thunks) and retry with a wider margin.
416 static bool createThunks(OutputSection *os, int margin) {
417 bool addressesChanged = false;
418 DenseMap<uint64_t, Defined *> lastThunks;
419 DenseMap<std::pair<ObjFile *, Defined *>, uint32_t> thunkSymtabIndices;
420 size_t thunksSize = 0;
421 // Recheck Chunks.size() each iteration, since we can insert more
422 // elements into it.
423 for (size_t i = 0; i != os->chunks.size(); ++i) {
424 SectionChunk *sc = dyn_cast_or_null<SectionChunk>(os->chunks[i]);
425 if (!sc)
426 continue;
427 size_t thunkInsertionSpot = i + 1;
429 // Try to get a good enough estimate of where new thunks will be placed.
430 // Offset this by the size of the new thunks added so far, to make the
431 // estimate slightly better.
432 size_t thunkInsertionRVA = sc->getRVA() + sc->getSize() + thunksSize;
433 ObjFile *file = sc->file;
434 std::vector<std::pair<uint32_t, uint32_t>> relocReplacements;
435 ArrayRef<coff_relocation> originalRelocs =
436 file->getCOFFObj()->getRelocations(sc->header);
437 for (size_t j = 0, e = originalRelocs.size(); j < e; ++j) {
438 const coff_relocation &rel = originalRelocs[j];
439 Symbol *relocTarget = file->getSymbol(rel.SymbolTableIndex);
441 // The estimate of the source address P should be pretty accurate,
442 // but we don't know whether the target Symbol address should be
443 // offset by thunksSize or not (or by some of thunksSize but not all of
444 // it), giving us some uncertainty once we have added one thunk.
445 uint64_t p = sc->getRVA() + rel.VirtualAddress + thunksSize;
447 Defined *sym = dyn_cast_or_null<Defined>(relocTarget);
448 if (!sym)
449 continue;
451 uint64_t s = sym->getRVA();
453 if (isInRange(rel.Type, s, p, margin))
454 continue;
456 // If the target isn't in range, hook it up to an existing or new
457 // thunk.
458 Defined *thunk;
459 bool wasNew;
460 std::tie(thunk, wasNew) = getThunk(lastThunks, sym, p, rel.Type, margin);
461 if (wasNew) {
462 Chunk *thunkChunk = thunk->getChunk();
463 thunkChunk->setRVA(
464 thunkInsertionRVA); // Estimate of where it will be located.
465 os->chunks.insert(os->chunks.begin() + thunkInsertionSpot, thunkChunk);
466 thunkInsertionSpot++;
467 thunksSize += thunkChunk->getSize();
468 thunkInsertionRVA += thunkChunk->getSize();
469 addressesChanged = true;
472 // To redirect the relocation, add a symbol to the parent object file's
473 // symbol table, and replace the relocation symbol table index with the
474 // new index.
475 auto insertion = thunkSymtabIndices.insert({{file, thunk}, ~0U});
476 uint32_t &thunkSymbolIndex = insertion.first->second;
477 if (insertion.second)
478 thunkSymbolIndex = file->addRangeThunkSymbol(thunk);
479 relocReplacements.push_back({j, thunkSymbolIndex});
482 // Get a writable copy of this section's relocations so they can be
483 // modified. If the relocations point into the object file, allocate new
484 // memory. Otherwise, this must be previously allocated memory that can be
485 // modified in place.
486 ArrayRef<coff_relocation> curRelocs = sc->getRelocs();
487 MutableArrayRef<coff_relocation> newRelocs;
488 if (originalRelocs.data() == curRelocs.data()) {
489 newRelocs = makeMutableArrayRef(
490 bAlloc().Allocate<coff_relocation>(originalRelocs.size()),
491 originalRelocs.size());
492 } else {
493 newRelocs = makeMutableArrayRef(
494 const_cast<coff_relocation *>(curRelocs.data()), curRelocs.size());
497 // Copy each relocation, but replace the symbol table indices which need
498 // thunks.
499 auto nextReplacement = relocReplacements.begin();
500 auto endReplacement = relocReplacements.end();
501 for (size_t i = 0, e = originalRelocs.size(); i != e; ++i) {
502 newRelocs[i] = originalRelocs[i];
503 if (nextReplacement != endReplacement && nextReplacement->first == i) {
504 newRelocs[i].SymbolTableIndex = nextReplacement->second;
505 ++nextReplacement;
509 sc->setRelocs(newRelocs);
511 return addressesChanged;
514 // Verify that all relocations are in range, with no extra margin requirements.
515 static bool verifyRanges(const std::vector<Chunk *> chunks) {
516 for (Chunk *c : chunks) {
517 SectionChunk *sc = dyn_cast_or_null<SectionChunk>(c);
518 if (!sc)
519 continue;
521 ArrayRef<coff_relocation> relocs = sc->getRelocs();
522 for (size_t j = 0, e = relocs.size(); j < e; ++j) {
523 const coff_relocation &rel = relocs[j];
524 Symbol *relocTarget = sc->file->getSymbol(rel.SymbolTableIndex);
526 Defined *sym = dyn_cast_or_null<Defined>(relocTarget);
527 if (!sym)
528 continue;
530 uint64_t p = sc->getRVA() + rel.VirtualAddress;
531 uint64_t s = sym->getRVA();
533 if (!isInRange(rel.Type, s, p, 0))
534 return false;
537 return true;
540 // Assign addresses and add thunks if necessary.
541 void Writer::finalizeAddresses() {
542 assignAddresses();
543 if (config->machine != ARMNT && config->machine != ARM64)
544 return;
546 size_t origNumChunks = 0;
547 for (OutputSection *sec : ctx.outputSections) {
548 sec->origChunks = sec->chunks;
549 origNumChunks += sec->chunks.size();
552 int pass = 0;
553 int margin = 1024 * 100;
554 while (true) {
555 // First check whether we need thunks at all, or if the previous pass of
556 // adding them turned out ok.
557 bool rangesOk = true;
558 size_t numChunks = 0;
559 for (OutputSection *sec : ctx.outputSections) {
560 if (!verifyRanges(sec->chunks)) {
561 rangesOk = false;
562 break;
564 numChunks += sec->chunks.size();
566 if (rangesOk) {
567 if (pass > 0)
568 log("Added " + Twine(numChunks - origNumChunks) + " thunks with " +
569 "margin " + Twine(margin) + " in " + Twine(pass) + " passes");
570 return;
573 if (pass >= 10)
574 fatal("adding thunks hasn't converged after " + Twine(pass) + " passes");
576 if (pass > 0) {
577 // If the previous pass didn't work out, reset everything back to the
578 // original conditions before retrying with a wider margin. This should
579 // ideally never happen under real circumstances.
580 for (OutputSection *sec : ctx.outputSections)
581 sec->chunks = sec->origChunks;
582 margin *= 2;
585 // Try adding thunks everywhere where it is needed, with a margin
586 // to avoid things going out of range due to the added thunks.
587 bool addressesChanged = false;
588 for (OutputSection *sec : ctx.outputSections)
589 addressesChanged |= createThunks(sec, margin);
590 // If the verification above thought we needed thunks, we should have
591 // added some.
592 assert(addressesChanged);
593 (void)addressesChanged;
595 // Recalculate the layout for the whole image (and verify the ranges at
596 // the start of the next round).
597 assignAddresses();
599 pass++;
603 // The main function of the writer.
604 void Writer::run() {
605 ScopedTimer t1(ctx.codeLayoutTimer);
607 createImportTables();
608 createSections();
609 appendImportThunks();
610 // Import thunks must be added before the Control Flow Guard tables are added.
611 createMiscChunks();
612 createExportTable();
613 mergeSections();
614 removeUnusedSections();
615 finalizeAddresses();
616 removeEmptySections();
617 assignOutputSectionIndices();
618 setSectionPermissions();
619 createSymbolAndStringTable();
621 if (fileSize > UINT32_MAX)
622 fatal("image size (" + Twine(fileSize) + ") " +
623 "exceeds maximum allowable size (" + Twine(UINT32_MAX) + ")");
625 openFile(config->outputFile);
626 if (config->is64()) {
627 writeHeader<pe32plus_header>();
628 } else {
629 writeHeader<pe32_header>();
631 writeSections();
632 sortExceptionTable();
634 // Fix up the alignment in the TLS Directory's characteristic field,
635 // if a specific alignment value is needed
636 if (tlsAlignment)
637 fixTlsAlignment();
639 t1.stop();
641 if (!config->pdbPath.empty() && config->debug) {
642 assert(buildId);
643 createPDB(ctx, sectionTable, buildId->buildId);
645 writeBuildId();
647 writeLLDMapFile(ctx);
648 writeMapFile(ctx);
650 if (errorCount())
651 return;
653 ScopedTimer t2(ctx.outputCommitTimer);
654 if (auto e = buffer->commit())
655 fatal("failed to write the output file: " + toString(std::move(e)));
658 static StringRef getOutputSectionName(StringRef name) {
659 StringRef s = name.split('$').first;
661 // Treat a later period as a separator for MinGW, for sections like
662 // ".ctors.01234".
663 return s.substr(0, s.find('.', 1));
666 // For /order.
667 static void sortBySectionOrder(std::vector<Chunk *> &chunks) {
668 auto getPriority = [](const Chunk *c) {
669 if (auto *sec = dyn_cast<SectionChunk>(c))
670 if (sec->sym)
671 return config->order.lookup(sec->sym->getName());
672 return 0;
675 llvm::stable_sort(chunks, [=](const Chunk *a, const Chunk *b) {
676 return getPriority(a) < getPriority(b);
680 // Change the characteristics of existing PartialSections that belong to the
681 // section Name to Chars.
682 void Writer::fixPartialSectionChars(StringRef name, uint32_t chars) {
683 for (auto it : partialSections) {
684 PartialSection *pSec = it.second;
685 StringRef curName = pSec->name;
686 if (!curName.consume_front(name) ||
687 (!curName.empty() && !curName.startswith("$")))
688 continue;
689 if (pSec->characteristics == chars)
690 continue;
691 PartialSection *destSec = createPartialSection(pSec->name, chars);
692 destSec->chunks.insert(destSec->chunks.end(), pSec->chunks.begin(),
693 pSec->chunks.end());
694 pSec->chunks.clear();
698 // Sort concrete section chunks from GNU import libraries.
700 // GNU binutils doesn't use short import files, but instead produces import
701 // libraries that consist of object files, with section chunks for the .idata$*
702 // sections. These are linked just as regular static libraries. Each import
703 // library consists of one header object, one object file for every imported
704 // symbol, and one trailer object. In order for the .idata tables/lists to
705 // be formed correctly, the section chunks within each .idata$* section need
706 // to be grouped by library, and sorted alphabetically within each library
707 // (which makes sure the header comes first and the trailer last).
708 bool Writer::fixGnuImportChunks() {
709 uint32_t rdata = IMAGE_SCN_CNT_INITIALIZED_DATA | IMAGE_SCN_MEM_READ;
711 // Make sure all .idata$* section chunks are mapped as RDATA in order to
712 // be sorted into the same sections as our own synthesized .idata chunks.
713 fixPartialSectionChars(".idata", rdata);
715 bool hasIdata = false;
716 // Sort all .idata$* chunks, grouping chunks from the same library,
717 // with alphabetical ordering of the object files within a library.
718 for (auto it : partialSections) {
719 PartialSection *pSec = it.second;
720 if (!pSec->name.startswith(".idata"))
721 continue;
723 if (!pSec->chunks.empty())
724 hasIdata = true;
725 llvm::stable_sort(pSec->chunks, [&](Chunk *s, Chunk *t) {
726 SectionChunk *sc1 = dyn_cast_or_null<SectionChunk>(s);
727 SectionChunk *sc2 = dyn_cast_or_null<SectionChunk>(t);
728 if (!sc1 || !sc2) {
729 // if SC1, order them ascending. If SC2 or both null,
730 // S is not less than T.
731 return sc1 != nullptr;
733 // Make a string with "libraryname/objectfile" for sorting, achieving
734 // both grouping by library and sorting of objects within a library,
735 // at once.
736 std::string key1 =
737 (sc1->file->parentName + "/" + sc1->file->getName()).str();
738 std::string key2 =
739 (sc2->file->parentName + "/" + sc2->file->getName()).str();
740 return key1 < key2;
743 return hasIdata;
746 // Add generated idata chunks, for imported symbols and DLLs, and a
747 // terminator in .idata$2.
748 void Writer::addSyntheticIdata() {
749 uint32_t rdata = IMAGE_SCN_CNT_INITIALIZED_DATA | IMAGE_SCN_MEM_READ;
750 idata.create();
752 // Add the .idata content in the right section groups, to allow
753 // chunks from other linked in object files to be grouped together.
754 // See Microsoft PE/COFF spec 5.4 for details.
755 auto add = [&](StringRef n, std::vector<Chunk *> &v) {
756 PartialSection *pSec = createPartialSection(n, rdata);
757 pSec->chunks.insert(pSec->chunks.end(), v.begin(), v.end());
760 // The loader assumes a specific order of data.
761 // Add each type in the correct order.
762 add(".idata$2", idata.dirs);
763 add(".idata$4", idata.lookups);
764 add(".idata$5", idata.addresses);
765 if (!idata.hints.empty())
766 add(".idata$6", idata.hints);
767 add(".idata$7", idata.dllNames);
770 // Locate the first Chunk and size of the import directory list and the
771 // IAT.
772 void Writer::locateImportTables() {
773 uint32_t rdata = IMAGE_SCN_CNT_INITIALIZED_DATA | IMAGE_SCN_MEM_READ;
775 if (PartialSection *importDirs = findPartialSection(".idata$2", rdata)) {
776 if (!importDirs->chunks.empty())
777 importTableStart = importDirs->chunks.front();
778 for (Chunk *c : importDirs->chunks)
779 importTableSize += c->getSize();
782 if (PartialSection *importAddresses = findPartialSection(".idata$5", rdata)) {
783 if (!importAddresses->chunks.empty())
784 iatStart = importAddresses->chunks.front();
785 for (Chunk *c : importAddresses->chunks)
786 iatSize += c->getSize();
790 // Return whether a SectionChunk's suffix (the dollar and any trailing
791 // suffix) should be removed and sorted into the main suffixless
792 // PartialSection.
793 static bool shouldStripSectionSuffix(SectionChunk *sc, StringRef name) {
794 // On MinGW, comdat groups are formed by putting the comdat group name
795 // after the '$' in the section name. For .eh_frame$<symbol>, that must
796 // still be sorted before the .eh_frame trailer from crtend.o, thus just
797 // strip the section name trailer. For other sections, such as
798 // .tls$$<symbol> (where non-comdat .tls symbols are otherwise stored in
799 // ".tls$"), they must be strictly sorted after .tls. And for the
800 // hypothetical case of comdat .CRT$XCU, we definitely need to keep the
801 // suffix for sorting. Thus, to play it safe, only strip the suffix for
802 // the standard sections.
803 if (!config->mingw)
804 return false;
805 if (!sc || !sc->isCOMDAT())
806 return false;
807 return name.startswith(".text$") || name.startswith(".data$") ||
808 name.startswith(".rdata$") || name.startswith(".pdata$") ||
809 name.startswith(".xdata$") || name.startswith(".eh_frame$");
812 void Writer::sortSections() {
813 if (!config->callGraphProfile.empty()) {
814 DenseMap<const SectionChunk *, int> order =
815 computeCallGraphProfileOrder(ctx);
816 for (auto it : order) {
817 if (DefinedRegular *sym = it.first->sym)
818 config->order[sym->getName()] = it.second;
821 if (!config->order.empty())
822 for (auto it : partialSections)
823 sortBySectionOrder(it.second->chunks);
826 // Create output section objects and add them to OutputSections.
827 void Writer::createSections() {
828 // First, create the builtin sections.
829 const uint32_t data = IMAGE_SCN_CNT_INITIALIZED_DATA;
830 const uint32_t bss = IMAGE_SCN_CNT_UNINITIALIZED_DATA;
831 const uint32_t code = IMAGE_SCN_CNT_CODE;
832 const uint32_t discardable = IMAGE_SCN_MEM_DISCARDABLE;
833 const uint32_t r = IMAGE_SCN_MEM_READ;
834 const uint32_t w = IMAGE_SCN_MEM_WRITE;
835 const uint32_t x = IMAGE_SCN_MEM_EXECUTE;
837 SmallDenseMap<std::pair<StringRef, uint32_t>, OutputSection *> sections;
838 auto createSection = [&](StringRef name, uint32_t outChars) {
839 OutputSection *&sec = sections[{name, outChars}];
840 if (!sec) {
841 sec = make<OutputSection>(name, outChars);
842 ctx.outputSections.push_back(sec);
844 return sec;
847 // Try to match the section order used by link.exe.
848 textSec = createSection(".text", code | r | x);
849 createSection(".bss", bss | r | w);
850 rdataSec = createSection(".rdata", data | r);
851 buildidSec = createSection(".buildid", data | r);
852 dataSec = createSection(".data", data | r | w);
853 pdataSec = createSection(".pdata", data | r);
854 idataSec = createSection(".idata", data | r);
855 edataSec = createSection(".edata", data | r);
856 didatSec = createSection(".didat", data | r);
857 rsrcSec = createSection(".rsrc", data | r);
858 relocSec = createSection(".reloc", data | discardable | r);
859 ctorsSec = createSection(".ctors", data | r | w);
860 dtorsSec = createSection(".dtors", data | r | w);
862 // Then bin chunks by name and output characteristics.
863 for (Chunk *c : ctx.symtab.getChunks()) {
864 auto *sc = dyn_cast<SectionChunk>(c);
865 if (sc && !sc->live) {
866 if (config->verbose)
867 sc->printDiscardedMessage();
868 continue;
870 StringRef name = c->getSectionName();
871 if (shouldStripSectionSuffix(sc, name))
872 name = name.split('$').first;
874 if (name.startswith(".tls"))
875 tlsAlignment = std::max(tlsAlignment, c->getAlignment());
877 PartialSection *pSec = createPartialSection(name,
878 c->getOutputCharacteristics());
879 pSec->chunks.push_back(c);
882 fixPartialSectionChars(".rsrc", data | r);
883 fixPartialSectionChars(".edata", data | r);
884 // Even in non MinGW cases, we might need to link against GNU import
885 // libraries.
886 bool hasIdata = fixGnuImportChunks();
887 if (!idata.empty())
888 hasIdata = true;
890 if (hasIdata)
891 addSyntheticIdata();
893 sortSections();
895 if (hasIdata)
896 locateImportTables();
898 // Then create an OutputSection for each section.
899 // '$' and all following characters in input section names are
900 // discarded when determining output section. So, .text$foo
901 // contributes to .text, for example. See PE/COFF spec 3.2.
902 for (auto it : partialSections) {
903 PartialSection *pSec = it.second;
904 StringRef name = getOutputSectionName(pSec->name);
905 uint32_t outChars = pSec->characteristics;
907 if (name == ".CRT") {
908 // In link.exe, there is a special case for the I386 target where .CRT
909 // sections are treated as if they have output characteristics DATA | R if
910 // their characteristics are DATA | R | W. This implements the same
911 // special case for all architectures.
912 outChars = data | r;
914 log("Processing section " + pSec->name + " -> " + name);
916 sortCRTSectionChunks(pSec->chunks);
919 OutputSection *sec = createSection(name, outChars);
920 for (Chunk *c : pSec->chunks)
921 sec->addChunk(c);
923 sec->addContributingPartialSection(pSec);
926 // Finally, move some output sections to the end.
927 auto sectionOrder = [&](const OutputSection *s) {
928 // Move DISCARDABLE (or non-memory-mapped) sections to the end of file
929 // because the loader cannot handle holes. Stripping can remove other
930 // discardable ones than .reloc, which is first of them (created early).
931 if (s->header.Characteristics & IMAGE_SCN_MEM_DISCARDABLE) {
932 // Move discardable sections named .debug_ to the end, after other
933 // discardable sections. Stripping only removes the sections named
934 // .debug_* - thus try to avoid leaving holes after stripping.
935 if (s->name.startswith(".debug_"))
936 return 3;
937 return 2;
939 // .rsrc should come at the end of the non-discardable sections because its
940 // size may change by the Win32 UpdateResources() function, causing
941 // subsequent sections to move (see https://crbug.com/827082).
942 if (s == rsrcSec)
943 return 1;
944 return 0;
946 llvm::stable_sort(ctx.outputSections,
947 [&](const OutputSection *s, const OutputSection *t) {
948 return sectionOrder(s) < sectionOrder(t);
952 void Writer::createMiscChunks() {
953 for (MergeChunk *p : ctx.mergeChunkInstances) {
954 if (p) {
955 p->finalizeContents();
956 rdataSec->addChunk(p);
960 // Create thunks for locally-dllimported symbols.
961 if (!ctx.symtab.localImportChunks.empty()) {
962 for (Chunk *c : ctx.symtab.localImportChunks)
963 rdataSec->addChunk(c);
966 // Create Debug Information Chunks
967 OutputSection *debugInfoSec = config->mingw ? buildidSec : rdataSec;
968 if (config->debug || config->repro || config->cetCompat) {
969 debugDirectory =
970 make<DebugDirectoryChunk>(ctx, debugRecords, config->repro);
971 debugDirectory->setAlignment(4);
972 debugInfoSec->addChunk(debugDirectory);
975 if (config->debug) {
976 // Make a CVDebugRecordChunk even when /DEBUG:CV is not specified. We
977 // output a PDB no matter what, and this chunk provides the only means of
978 // allowing a debugger to match a PDB and an executable. So we need it even
979 // if we're ultimately not going to write CodeView data to the PDB.
980 buildId = make<CVDebugRecordChunk>();
981 debugRecords.push_back({COFF::IMAGE_DEBUG_TYPE_CODEVIEW, buildId});
984 if (config->cetCompat) {
985 debugRecords.push_back({COFF::IMAGE_DEBUG_TYPE_EX_DLLCHARACTERISTICS,
986 make<ExtendedDllCharacteristicsChunk>(
987 IMAGE_DLL_CHARACTERISTICS_EX_CET_COMPAT)});
990 // Align and add each chunk referenced by the debug data directory.
991 for (std::pair<COFF::DebugType, Chunk *> r : debugRecords) {
992 r.second->setAlignment(4);
993 debugInfoSec->addChunk(r.second);
996 // Create SEH table. x86-only.
997 if (config->safeSEH)
998 createSEHTable();
1000 // Create /guard:cf tables if requested.
1001 if (config->guardCF != GuardCFLevel::Off)
1002 createGuardCFTables();
1004 if (config->autoImport)
1005 createRuntimePseudoRelocs();
1007 if (config->mingw)
1008 insertCtorDtorSymbols();
1011 // Create .idata section for the DLL-imported symbol table.
1012 // The format of this section is inherently Windows-specific.
1013 // IdataContents class abstracted away the details for us,
1014 // so we just let it create chunks and add them to the section.
1015 void Writer::createImportTables() {
1016 // Initialize DLLOrder so that import entries are ordered in
1017 // the same order as in the command line. (That affects DLL
1018 // initialization order, and this ordering is MSVC-compatible.)
1019 for (ImportFile *file : ctx.importFileInstances) {
1020 if (!file->live)
1021 continue;
1023 std::string dll = StringRef(file->dllName).lower();
1024 if (config->dllOrder.count(dll) == 0)
1025 config->dllOrder[dll] = config->dllOrder.size();
1027 if (file->impSym && !isa<DefinedImportData>(file->impSym))
1028 fatal(toString(*file->impSym) + " was replaced");
1029 DefinedImportData *impSym = cast_or_null<DefinedImportData>(file->impSym);
1030 if (config->delayLoads.count(StringRef(file->dllName).lower())) {
1031 if (!file->thunkSym)
1032 fatal("cannot delay-load " + toString(file) +
1033 " due to import of data: " + toString(*impSym));
1034 delayIdata.add(impSym);
1035 } else {
1036 idata.add(impSym);
1041 void Writer::appendImportThunks() {
1042 if (ctx.importFileInstances.empty())
1043 return;
1045 for (ImportFile *file : ctx.importFileInstances) {
1046 if (!file->live)
1047 continue;
1049 if (!file->thunkSym)
1050 continue;
1052 if (!isa<DefinedImportThunk>(file->thunkSym))
1053 fatal(toString(*file->thunkSym) + " was replaced");
1054 DefinedImportThunk *thunk = cast<DefinedImportThunk>(file->thunkSym);
1055 if (file->thunkLive)
1056 textSec->addChunk(thunk->getChunk());
1059 if (!delayIdata.empty()) {
1060 Defined *helper = cast<Defined>(config->delayLoadHelper);
1061 delayIdata.create(ctx, helper);
1062 for (Chunk *c : delayIdata.getChunks())
1063 didatSec->addChunk(c);
1064 for (Chunk *c : delayIdata.getDataChunks())
1065 dataSec->addChunk(c);
1066 for (Chunk *c : delayIdata.getCodeChunks())
1067 textSec->addChunk(c);
1071 void Writer::createExportTable() {
1072 if (!edataSec->chunks.empty()) {
1073 // Allow using a custom built export table from input object files, instead
1074 // of having the linker synthesize the tables.
1075 if (config->hadExplicitExports)
1076 warn("literal .edata sections override exports");
1077 } else if (!config->exports.empty()) {
1078 for (Chunk *c : edata.chunks)
1079 edataSec->addChunk(c);
1081 if (!edataSec->chunks.empty()) {
1082 edataStart = edataSec->chunks.front();
1083 edataEnd = edataSec->chunks.back();
1085 // Warn on exported deleting destructor.
1086 for (auto e : config->exports)
1087 if (e.sym && e.sym->getName().startswith("??_G"))
1088 warn("export of deleting dtor: " + toString(*e.sym));
1091 void Writer::removeUnusedSections() {
1092 // Remove sections that we can be sure won't get content, to avoid
1093 // allocating space for their section headers.
1094 auto isUnused = [this](OutputSection *s) {
1095 if (s == relocSec)
1096 return false; // This section is populated later.
1097 // MergeChunks have zero size at this point, as their size is finalized
1098 // later. Only remove sections that have no Chunks at all.
1099 return s->chunks.empty();
1101 llvm::erase_if(ctx.outputSections, isUnused);
1104 // The Windows loader doesn't seem to like empty sections,
1105 // so we remove them if any.
1106 void Writer::removeEmptySections() {
1107 auto isEmpty = [](OutputSection *s) { return s->getVirtualSize() == 0; };
1108 llvm::erase_if(ctx.outputSections, isEmpty);
1111 void Writer::assignOutputSectionIndices() {
1112 // Assign final output section indices, and assign each chunk to its output
1113 // section.
1114 uint32_t idx = 1;
1115 for (OutputSection *os : ctx.outputSections) {
1116 os->sectionIndex = idx;
1117 for (Chunk *c : os->chunks)
1118 c->setOutputSectionIdx(idx);
1119 ++idx;
1122 // Merge chunks are containers of chunks, so assign those an output section
1123 // too.
1124 for (MergeChunk *mc : ctx.mergeChunkInstances)
1125 if (mc)
1126 for (SectionChunk *sc : mc->sections)
1127 if (sc && sc->live)
1128 sc->setOutputSectionIdx(mc->getOutputSectionIdx());
1131 Optional<coff_symbol16> Writer::createSymbol(Defined *def) {
1132 coff_symbol16 sym;
1133 switch (def->kind()) {
1134 case Symbol::DefinedAbsoluteKind:
1135 sym.Value = def->getRVA();
1136 sym.SectionNumber = IMAGE_SYM_ABSOLUTE;
1137 break;
1138 case Symbol::DefinedSyntheticKind:
1139 // Relative symbols are unrepresentable in a COFF symbol table.
1140 return None;
1141 default: {
1142 // Don't write symbols that won't be written to the output to the symbol
1143 // table.
1144 Chunk *c = def->getChunk();
1145 if (!c)
1146 return None;
1147 OutputSection *os = ctx.getOutputSection(c);
1148 if (!os)
1149 return None;
1151 sym.Value = def->getRVA() - os->getRVA();
1152 sym.SectionNumber = os->sectionIndex;
1153 break;
1157 // Symbols that are runtime pseudo relocations don't point to the actual
1158 // symbol data itself (as they are imported), but points to the IAT entry
1159 // instead. Avoid emitting them to the symbol table, as they can confuse
1160 // debuggers.
1161 if (def->isRuntimePseudoReloc)
1162 return None;
1164 StringRef name = def->getName();
1165 if (name.size() > COFF::NameSize) {
1166 sym.Name.Offset.Zeroes = 0;
1167 sym.Name.Offset.Offset = 0; // Filled in later
1168 strtab.add(name);
1169 } else {
1170 memset(sym.Name.ShortName, 0, COFF::NameSize);
1171 memcpy(sym.Name.ShortName, name.data(), name.size());
1174 if (auto *d = dyn_cast<DefinedCOFF>(def)) {
1175 COFFSymbolRef ref = d->getCOFFSymbol();
1176 sym.Type = ref.getType();
1177 sym.StorageClass = ref.getStorageClass();
1178 } else {
1179 sym.Type = IMAGE_SYM_TYPE_NULL;
1180 sym.StorageClass = IMAGE_SYM_CLASS_EXTERNAL;
1182 sym.NumberOfAuxSymbols = 0;
1183 return sym;
1186 void Writer::createSymbolAndStringTable() {
1187 // PE/COFF images are limited to 8 byte section names. Longer names can be
1188 // supported by writing a non-standard string table, but this string table is
1189 // not mapped at runtime and the long names will therefore be inaccessible.
1190 // link.exe always truncates section names to 8 bytes, whereas binutils always
1191 // preserves long section names via the string table. LLD adopts a hybrid
1192 // solution where discardable sections have long names preserved and
1193 // non-discardable sections have their names truncated, to ensure that any
1194 // section which is mapped at runtime also has its name mapped at runtime.
1195 std::vector<OutputSection *> longNameSections;
1196 for (OutputSection *sec : ctx.outputSections) {
1197 if (sec->name.size() <= COFF::NameSize)
1198 continue;
1199 if ((sec->header.Characteristics & IMAGE_SCN_MEM_DISCARDABLE) == 0)
1200 continue;
1201 if (config->warnLongSectionNames) {
1202 warn("section name " + sec->name +
1203 " is longer than 8 characters and will use a non-standard string "
1204 "table");
1207 strtab.add(sec->name);
1208 longNameSections.push_back(sec);
1211 std::vector<std::pair<size_t, StringRef>> longNameSymbols;
1212 if (config->debugDwarf || config->debugSymtab) {
1213 for (ObjFile *file : ctx.objFileInstances) {
1214 for (Symbol *b : file->getSymbols()) {
1215 auto *d = dyn_cast_or_null<Defined>(b);
1216 if (!d || d->writtenToSymtab)
1217 continue;
1218 d->writtenToSymtab = true;
1219 if (auto *dc = dyn_cast_or_null<DefinedCOFF>(d)) {
1220 COFFSymbolRef symRef = dc->getCOFFSymbol();
1221 if (symRef.isSectionDefinition() ||
1222 symRef.getStorageClass() == COFF::IMAGE_SYM_CLASS_LABEL)
1223 continue;
1226 if (Optional<coff_symbol16> sym = createSymbol(d)) {
1227 outputSymtab.push_back(*sym);
1228 if (d->getName().size() > COFF::NameSize)
1229 longNameSymbols.push_back({outputSymtab.size() - 1, d->getName()});
1235 strtab.finalize();
1237 for (OutputSection *sec : longNameSections)
1238 sec->setStringTableOff(strtab.getOffset(sec->name));
1240 for (auto P : longNameSymbols) {
1241 coff_symbol16 &sym = outputSymtab[P.first];
1242 sym.Name.Offset.Offset = strtab.getOffset(P.second);
1245 if (outputSymtab.empty() && strtab.getSize() <= 4)
1246 return;
1248 // We position the symbol table to be adjacent to the end of the last section.
1249 uint64_t fileOff = fileSize;
1250 pointerToSymbolTable = fileOff;
1251 fileOff += outputSymtab.size() * sizeof(coff_symbol16);
1252 fileOff += strtab.getSize();
1253 fileSize = alignTo(fileOff, config->fileAlign);
1256 void Writer::mergeSections() {
1257 if (!pdataSec->chunks.empty()) {
1258 firstPdata = pdataSec->chunks.front();
1259 lastPdata = pdataSec->chunks.back();
1262 for (auto &p : config->merge) {
1263 StringRef toName = p.second;
1264 if (p.first == toName)
1265 continue;
1266 StringSet<> names;
1267 while (true) {
1268 if (!names.insert(toName).second)
1269 fatal("/merge: cycle found for section '" + p.first + "'");
1270 auto i = config->merge.find(toName);
1271 if (i == config->merge.end())
1272 break;
1273 toName = i->second;
1275 OutputSection *from = findSection(p.first);
1276 OutputSection *to = findSection(toName);
1277 if (!from)
1278 continue;
1279 if (!to) {
1280 from->name = toName;
1281 continue;
1283 to->merge(from);
1287 // Visits all sections to assign incremental, non-overlapping RVAs and
1288 // file offsets.
1289 void Writer::assignAddresses() {
1290 sizeOfHeaders = dosStubSize + sizeof(PEMagic) + sizeof(coff_file_header) +
1291 sizeof(data_directory) * numberOfDataDirectory +
1292 sizeof(coff_section) * ctx.outputSections.size();
1293 sizeOfHeaders +=
1294 config->is64() ? sizeof(pe32plus_header) : sizeof(pe32_header);
1295 sizeOfHeaders = alignTo(sizeOfHeaders, config->fileAlign);
1296 fileSize = sizeOfHeaders;
1298 // The first page is kept unmapped.
1299 uint64_t rva = alignTo(sizeOfHeaders, config->align);
1301 for (OutputSection *sec : ctx.outputSections) {
1302 if (sec == relocSec)
1303 addBaserels();
1304 uint64_t rawSize = 0, virtualSize = 0;
1305 sec->header.VirtualAddress = rva;
1307 // If /FUNCTIONPADMIN is used, functions are padded in order to create a
1308 // hotpatchable image.
1309 const bool isCodeSection =
1310 (sec->header.Characteristics & IMAGE_SCN_CNT_CODE) &&
1311 (sec->header.Characteristics & IMAGE_SCN_MEM_READ) &&
1312 (sec->header.Characteristics & IMAGE_SCN_MEM_EXECUTE);
1313 uint32_t padding = isCodeSection ? config->functionPadMin : 0;
1315 for (Chunk *c : sec->chunks) {
1316 if (padding && c->isHotPatchable())
1317 virtualSize += padding;
1318 virtualSize = alignTo(virtualSize, c->getAlignment());
1319 c->setRVA(rva + virtualSize);
1320 virtualSize += c->getSize();
1321 if (c->hasData)
1322 rawSize = alignTo(virtualSize, config->fileAlign);
1324 if (virtualSize > UINT32_MAX)
1325 error("section larger than 4 GiB: " + sec->name);
1326 sec->header.VirtualSize = virtualSize;
1327 sec->header.SizeOfRawData = rawSize;
1328 if (rawSize != 0)
1329 sec->header.PointerToRawData = fileSize;
1330 rva += alignTo(virtualSize, config->align);
1331 fileSize += alignTo(rawSize, config->fileAlign);
1333 sizeOfImage = alignTo(rva, config->align);
1335 // Assign addresses to sections in MergeChunks.
1336 for (MergeChunk *mc : ctx.mergeChunkInstances)
1337 if (mc)
1338 mc->assignSubsectionRVAs();
1341 template <typename PEHeaderTy> void Writer::writeHeader() {
1342 // Write DOS header. For backwards compatibility, the first part of a PE/COFF
1343 // executable consists of an MS-DOS MZ executable. If the executable is run
1344 // under DOS, that program gets run (usually to just print an error message).
1345 // When run under Windows, the loader looks at AddressOfNewExeHeader and uses
1346 // the PE header instead.
1347 uint8_t *buf = buffer->getBufferStart();
1348 auto *dos = reinterpret_cast<dos_header *>(buf);
1349 buf += sizeof(dos_header);
1350 dos->Magic[0] = 'M';
1351 dos->Magic[1] = 'Z';
1352 dos->UsedBytesInTheLastPage = dosStubSize % 512;
1353 dos->FileSizeInPages = divideCeil(dosStubSize, 512);
1354 dos->HeaderSizeInParagraphs = sizeof(dos_header) / 16;
1356 dos->AddressOfRelocationTable = sizeof(dos_header);
1357 dos->AddressOfNewExeHeader = dosStubSize;
1359 // Write DOS program.
1360 memcpy(buf, dosProgram, sizeof(dosProgram));
1361 buf += sizeof(dosProgram);
1363 // Write PE magic
1364 memcpy(buf, PEMagic, sizeof(PEMagic));
1365 buf += sizeof(PEMagic);
1367 // Write COFF header
1368 auto *coff = reinterpret_cast<coff_file_header *>(buf);
1369 buf += sizeof(*coff);
1370 coff->Machine = config->machine;
1371 coff->NumberOfSections = ctx.outputSections.size();
1372 coff->Characteristics = IMAGE_FILE_EXECUTABLE_IMAGE;
1373 if (config->largeAddressAware)
1374 coff->Characteristics |= IMAGE_FILE_LARGE_ADDRESS_AWARE;
1375 if (!config->is64())
1376 coff->Characteristics |= IMAGE_FILE_32BIT_MACHINE;
1377 if (config->dll)
1378 coff->Characteristics |= IMAGE_FILE_DLL;
1379 if (config->driverUponly)
1380 coff->Characteristics |= IMAGE_FILE_UP_SYSTEM_ONLY;
1381 if (!config->relocatable)
1382 coff->Characteristics |= IMAGE_FILE_RELOCS_STRIPPED;
1383 if (config->swaprunCD)
1384 coff->Characteristics |= IMAGE_FILE_REMOVABLE_RUN_FROM_SWAP;
1385 if (config->swaprunNet)
1386 coff->Characteristics |= IMAGE_FILE_NET_RUN_FROM_SWAP;
1387 coff->SizeOfOptionalHeader =
1388 sizeof(PEHeaderTy) + sizeof(data_directory) * numberOfDataDirectory;
1390 // Write PE header
1391 auto *pe = reinterpret_cast<PEHeaderTy *>(buf);
1392 buf += sizeof(*pe);
1393 pe->Magic = config->is64() ? PE32Header::PE32_PLUS : PE32Header::PE32;
1395 // If {Major,Minor}LinkerVersion is left at 0.0, then for some
1396 // reason signing the resulting PE file with Authenticode produces a
1397 // signature that fails to validate on Windows 7 (but is OK on 10).
1398 // Set it to 14.0, which is what VS2015 outputs, and which avoids
1399 // that problem.
1400 pe->MajorLinkerVersion = 14;
1401 pe->MinorLinkerVersion = 0;
1403 pe->ImageBase = config->imageBase;
1404 pe->SectionAlignment = config->align;
1405 pe->FileAlignment = config->fileAlign;
1406 pe->MajorImageVersion = config->majorImageVersion;
1407 pe->MinorImageVersion = config->minorImageVersion;
1408 pe->MajorOperatingSystemVersion = config->majorOSVersion;
1409 pe->MinorOperatingSystemVersion = config->minorOSVersion;
1410 pe->MajorSubsystemVersion = config->majorSubsystemVersion;
1411 pe->MinorSubsystemVersion = config->minorSubsystemVersion;
1412 pe->Subsystem = config->subsystem;
1413 pe->SizeOfImage = sizeOfImage;
1414 pe->SizeOfHeaders = sizeOfHeaders;
1415 if (!config->noEntry) {
1416 Defined *entry = cast<Defined>(config->entry);
1417 pe->AddressOfEntryPoint = entry->getRVA();
1418 // Pointer to thumb code must have the LSB set, so adjust it.
1419 if (config->machine == ARMNT)
1420 pe->AddressOfEntryPoint |= 1;
1422 pe->SizeOfStackReserve = config->stackReserve;
1423 pe->SizeOfStackCommit = config->stackCommit;
1424 pe->SizeOfHeapReserve = config->heapReserve;
1425 pe->SizeOfHeapCommit = config->heapCommit;
1426 if (config->appContainer)
1427 pe->DLLCharacteristics |= IMAGE_DLL_CHARACTERISTICS_APPCONTAINER;
1428 if (config->driverWdm)
1429 pe->DLLCharacteristics |= IMAGE_DLL_CHARACTERISTICS_WDM_DRIVER;
1430 if (config->dynamicBase)
1431 pe->DLLCharacteristics |= IMAGE_DLL_CHARACTERISTICS_DYNAMIC_BASE;
1432 if (config->highEntropyVA)
1433 pe->DLLCharacteristics |= IMAGE_DLL_CHARACTERISTICS_HIGH_ENTROPY_VA;
1434 if (!config->allowBind)
1435 pe->DLLCharacteristics |= IMAGE_DLL_CHARACTERISTICS_NO_BIND;
1436 if (config->nxCompat)
1437 pe->DLLCharacteristics |= IMAGE_DLL_CHARACTERISTICS_NX_COMPAT;
1438 if (!config->allowIsolation)
1439 pe->DLLCharacteristics |= IMAGE_DLL_CHARACTERISTICS_NO_ISOLATION;
1440 if (config->guardCF != GuardCFLevel::Off)
1441 pe->DLLCharacteristics |= IMAGE_DLL_CHARACTERISTICS_GUARD_CF;
1442 if (config->integrityCheck)
1443 pe->DLLCharacteristics |= IMAGE_DLL_CHARACTERISTICS_FORCE_INTEGRITY;
1444 if (setNoSEHCharacteristic || config->noSEH)
1445 pe->DLLCharacteristics |= IMAGE_DLL_CHARACTERISTICS_NO_SEH;
1446 if (config->terminalServerAware)
1447 pe->DLLCharacteristics |= IMAGE_DLL_CHARACTERISTICS_TERMINAL_SERVER_AWARE;
1448 pe->NumberOfRvaAndSize = numberOfDataDirectory;
1449 if (textSec->getVirtualSize()) {
1450 pe->BaseOfCode = textSec->getRVA();
1451 pe->SizeOfCode = textSec->getRawSize();
1453 pe->SizeOfInitializedData = getSizeOfInitializedData();
1455 // Write data directory
1456 auto *dir = reinterpret_cast<data_directory *>(buf);
1457 buf += sizeof(*dir) * numberOfDataDirectory;
1458 if (edataStart) {
1459 dir[EXPORT_TABLE].RelativeVirtualAddress = edataStart->getRVA();
1460 dir[EXPORT_TABLE].Size =
1461 edataEnd->getRVA() + edataEnd->getSize() - edataStart->getRVA();
1463 if (importTableStart) {
1464 dir[IMPORT_TABLE].RelativeVirtualAddress = importTableStart->getRVA();
1465 dir[IMPORT_TABLE].Size = importTableSize;
1467 if (iatStart) {
1468 dir[IAT].RelativeVirtualAddress = iatStart->getRVA();
1469 dir[IAT].Size = iatSize;
1471 if (rsrcSec->getVirtualSize()) {
1472 dir[RESOURCE_TABLE].RelativeVirtualAddress = rsrcSec->getRVA();
1473 dir[RESOURCE_TABLE].Size = rsrcSec->getVirtualSize();
1475 if (firstPdata) {
1476 dir[EXCEPTION_TABLE].RelativeVirtualAddress = firstPdata->getRVA();
1477 dir[EXCEPTION_TABLE].Size =
1478 lastPdata->getRVA() + lastPdata->getSize() - firstPdata->getRVA();
1480 if (relocSec->getVirtualSize()) {
1481 dir[BASE_RELOCATION_TABLE].RelativeVirtualAddress = relocSec->getRVA();
1482 dir[BASE_RELOCATION_TABLE].Size = relocSec->getVirtualSize();
1484 if (Symbol *sym = ctx.symtab.findUnderscore("_tls_used")) {
1485 if (Defined *b = dyn_cast<Defined>(sym)) {
1486 dir[TLS_TABLE].RelativeVirtualAddress = b->getRVA();
1487 dir[TLS_TABLE].Size = config->is64()
1488 ? sizeof(object::coff_tls_directory64)
1489 : sizeof(object::coff_tls_directory32);
1492 if (debugDirectory) {
1493 dir[DEBUG_DIRECTORY].RelativeVirtualAddress = debugDirectory->getRVA();
1494 dir[DEBUG_DIRECTORY].Size = debugDirectory->getSize();
1496 if (Symbol *sym = ctx.symtab.findUnderscore("_load_config_used")) {
1497 if (auto *b = dyn_cast<DefinedRegular>(sym)) {
1498 SectionChunk *sc = b->getChunk();
1499 assert(b->getRVA() >= sc->getRVA());
1500 uint64_t offsetInChunk = b->getRVA() - sc->getRVA();
1501 if (!sc->hasData || offsetInChunk + 4 > sc->getSize())
1502 fatal("_load_config_used is malformed");
1504 ArrayRef<uint8_t> secContents = sc->getContents();
1505 uint32_t loadConfigSize =
1506 *reinterpret_cast<const ulittle32_t *>(&secContents[offsetInChunk]);
1507 if (offsetInChunk + loadConfigSize > sc->getSize())
1508 fatal("_load_config_used is too large");
1509 dir[LOAD_CONFIG_TABLE].RelativeVirtualAddress = b->getRVA();
1510 dir[LOAD_CONFIG_TABLE].Size = loadConfigSize;
1513 if (!delayIdata.empty()) {
1514 dir[DELAY_IMPORT_DESCRIPTOR].RelativeVirtualAddress =
1515 delayIdata.getDirRVA();
1516 dir[DELAY_IMPORT_DESCRIPTOR].Size = delayIdata.getDirSize();
1519 // Write section table
1520 for (OutputSection *sec : ctx.outputSections) {
1521 sec->writeHeaderTo(buf);
1522 buf += sizeof(coff_section);
1524 sectionTable = ArrayRef<uint8_t>(
1525 buf - ctx.outputSections.size() * sizeof(coff_section), buf);
1527 if (outputSymtab.empty() && strtab.getSize() <= 4)
1528 return;
1530 coff->PointerToSymbolTable = pointerToSymbolTable;
1531 uint32_t numberOfSymbols = outputSymtab.size();
1532 coff->NumberOfSymbols = numberOfSymbols;
1533 auto *symbolTable = reinterpret_cast<coff_symbol16 *>(
1534 buffer->getBufferStart() + coff->PointerToSymbolTable);
1535 for (size_t i = 0; i != numberOfSymbols; ++i)
1536 symbolTable[i] = outputSymtab[i];
1537 // Create the string table, it follows immediately after the symbol table.
1538 // The first 4 bytes is length including itself.
1539 buf = reinterpret_cast<uint8_t *>(&symbolTable[numberOfSymbols]);
1540 strtab.write(buf);
1543 void Writer::openFile(StringRef path) {
1544 buffer = CHECK(
1545 FileOutputBuffer::create(path, fileSize, FileOutputBuffer::F_executable),
1546 "failed to open " + path);
1549 void Writer::createSEHTable() {
1550 SymbolRVASet handlers;
1551 for (ObjFile *file : ctx.objFileInstances) {
1552 if (!file->hasSafeSEH())
1553 error("/safeseh: " + file->getName() + " is not compatible with SEH");
1554 markSymbolsForRVATable(file, file->getSXDataChunks(), handlers);
1557 // Set the "no SEH" characteristic if there really were no handlers, or if
1558 // there is no load config object to point to the table of handlers.
1559 setNoSEHCharacteristic =
1560 handlers.empty() || !ctx.symtab.findUnderscore("_load_config_used");
1562 maybeAddRVATable(std::move(handlers), "__safe_se_handler_table",
1563 "__safe_se_handler_count");
1566 // Add a symbol to an RVA set. Two symbols may have the same RVA, but an RVA set
1567 // cannot contain duplicates. Therefore, the set is uniqued by Chunk and the
1568 // symbol's offset into that Chunk.
1569 static void addSymbolToRVASet(SymbolRVASet &rvaSet, Defined *s) {
1570 Chunk *c = s->getChunk();
1571 if (auto *sc = dyn_cast<SectionChunk>(c))
1572 c = sc->repl; // Look through ICF replacement.
1573 uint32_t off = s->getRVA() - (c ? c->getRVA() : 0);
1574 rvaSet.insert({c, off});
1577 // Given a symbol, add it to the GFIDs table if it is a live, defined, function
1578 // symbol in an executable section.
1579 static void maybeAddAddressTakenFunction(SymbolRVASet &addressTakenSyms,
1580 Symbol *s) {
1581 if (!s)
1582 return;
1584 switch (s->kind()) {
1585 case Symbol::DefinedLocalImportKind:
1586 case Symbol::DefinedImportDataKind:
1587 // Defines an __imp_ pointer, so it is data, so it is ignored.
1588 break;
1589 case Symbol::DefinedCommonKind:
1590 // Common is always data, so it is ignored.
1591 break;
1592 case Symbol::DefinedAbsoluteKind:
1593 case Symbol::DefinedSyntheticKind:
1594 // Absolute is never code, synthetic generally isn't and usually isn't
1595 // determinable.
1596 break;
1597 case Symbol::LazyArchiveKind:
1598 case Symbol::LazyObjectKind:
1599 case Symbol::LazyDLLSymbolKind:
1600 case Symbol::UndefinedKind:
1601 // Undefined symbols resolve to zero, so they don't have an RVA. Lazy
1602 // symbols shouldn't have relocations.
1603 break;
1605 case Symbol::DefinedImportThunkKind:
1606 // Thunks are always code, include them.
1607 addSymbolToRVASet(addressTakenSyms, cast<Defined>(s));
1608 break;
1610 case Symbol::DefinedRegularKind: {
1611 // This is a regular, defined, symbol from a COFF file. Mark the symbol as
1612 // address taken if the symbol type is function and it's in an executable
1613 // section.
1614 auto *d = cast<DefinedRegular>(s);
1615 if (d->getCOFFSymbol().getComplexType() == COFF::IMAGE_SYM_DTYPE_FUNCTION) {
1616 SectionChunk *sc = dyn_cast<SectionChunk>(d->getChunk());
1617 if (sc && sc->live &&
1618 sc->getOutputCharacteristics() & IMAGE_SCN_MEM_EXECUTE)
1619 addSymbolToRVASet(addressTakenSyms, d);
1621 break;
1626 // Visit all relocations from all section contributions of this object file and
1627 // mark the relocation target as address-taken.
1628 static void markSymbolsWithRelocations(ObjFile *file,
1629 SymbolRVASet &usedSymbols) {
1630 for (Chunk *c : file->getChunks()) {
1631 // We only care about live section chunks. Common chunks and other chunks
1632 // don't generally contain relocations.
1633 SectionChunk *sc = dyn_cast<SectionChunk>(c);
1634 if (!sc || !sc->live)
1635 continue;
1637 for (const coff_relocation &reloc : sc->getRelocs()) {
1638 if (config->machine == I386 && reloc.Type == COFF::IMAGE_REL_I386_REL32)
1639 // Ignore relative relocations on x86. On x86_64 they can't be ignored
1640 // since they're also used to compute absolute addresses.
1641 continue;
1643 Symbol *ref = sc->file->getSymbol(reloc.SymbolTableIndex);
1644 maybeAddAddressTakenFunction(usedSymbols, ref);
1649 // Create the guard function id table. This is a table of RVAs of all
1650 // address-taken functions. It is sorted and uniqued, just like the safe SEH
1651 // table.
1652 void Writer::createGuardCFTables() {
1653 SymbolRVASet addressTakenSyms;
1654 SymbolRVASet giatsRVASet;
1655 std::vector<Symbol *> giatsSymbols;
1656 SymbolRVASet longJmpTargets;
1657 SymbolRVASet ehContTargets;
1658 for (ObjFile *file : ctx.objFileInstances) {
1659 // If the object was compiled with /guard:cf, the address taken symbols
1660 // are in .gfids$y sections, the longjmp targets are in .gljmp$y sections,
1661 // and ehcont targets are in .gehcont$y sections. If the object was not
1662 // compiled with /guard:cf, we assume there were no setjmp and ehcont
1663 // targets, and that all code symbols with relocations are possibly
1664 // address-taken.
1665 if (file->hasGuardCF()) {
1666 markSymbolsForRVATable(file, file->getGuardFidChunks(), addressTakenSyms);
1667 markSymbolsForRVATable(file, file->getGuardIATChunks(), giatsRVASet);
1668 getSymbolsFromSections(file, file->getGuardIATChunks(), giatsSymbols);
1669 markSymbolsForRVATable(file, file->getGuardLJmpChunks(), longJmpTargets);
1670 markSymbolsForRVATable(file, file->getGuardEHContChunks(), ehContTargets);
1671 } else {
1672 markSymbolsWithRelocations(file, addressTakenSyms);
1676 // Mark the image entry as address-taken.
1677 if (config->entry)
1678 maybeAddAddressTakenFunction(addressTakenSyms, config->entry);
1680 // Mark exported symbols in executable sections as address-taken.
1681 for (Export &e : config->exports)
1682 maybeAddAddressTakenFunction(addressTakenSyms, e.sym);
1684 // For each entry in the .giats table, check if it has a corresponding load
1685 // thunk (e.g. because the DLL that defines it will be delay-loaded) and, if
1686 // so, add the load thunk to the address taken (.gfids) table.
1687 for (Symbol *s : giatsSymbols) {
1688 if (auto *di = dyn_cast<DefinedImportData>(s)) {
1689 if (di->loadThunkSym)
1690 addSymbolToRVASet(addressTakenSyms, di->loadThunkSym);
1694 // Ensure sections referenced in the gfid table are 16-byte aligned.
1695 for (const ChunkAndOffset &c : addressTakenSyms)
1696 if (c.inputChunk->getAlignment() < 16)
1697 c.inputChunk->setAlignment(16);
1699 maybeAddRVATable(std::move(addressTakenSyms), "__guard_fids_table",
1700 "__guard_fids_count");
1702 // Add the Guard Address Taken IAT Entry Table (.giats).
1703 maybeAddRVATable(std::move(giatsRVASet), "__guard_iat_table",
1704 "__guard_iat_count");
1706 // Add the longjmp target table unless the user told us not to.
1707 if (config->guardCF & GuardCFLevel::LongJmp)
1708 maybeAddRVATable(std::move(longJmpTargets), "__guard_longjmp_table",
1709 "__guard_longjmp_count");
1711 // Add the ehcont target table unless the user told us not to.
1712 if (config->guardCF & GuardCFLevel::EHCont)
1713 maybeAddRVATable(std::move(ehContTargets), "__guard_eh_cont_table",
1714 "__guard_eh_cont_count", true);
1716 // Set __guard_flags, which will be used in the load config to indicate that
1717 // /guard:cf was enabled.
1718 uint32_t guardFlags = uint32_t(coff_guard_flags::CFInstrumented) |
1719 uint32_t(coff_guard_flags::HasFidTable);
1720 if (config->guardCF & GuardCFLevel::LongJmp)
1721 guardFlags |= uint32_t(coff_guard_flags::HasLongJmpTable);
1722 if (config->guardCF & GuardCFLevel::EHCont)
1723 guardFlags |= uint32_t(coff_guard_flags::HasEHContTable);
1724 Symbol *flagSym = ctx.symtab.findUnderscore("__guard_flags");
1725 cast<DefinedAbsolute>(flagSym)->setVA(guardFlags);
1728 // Take a list of input sections containing symbol table indices and add those
1729 // symbols to a vector. The challenge is that symbol RVAs are not known and
1730 // depend on the table size, so we can't directly build a set of integers.
1731 void Writer::getSymbolsFromSections(ObjFile *file,
1732 ArrayRef<SectionChunk *> symIdxChunks,
1733 std::vector<Symbol *> &symbols) {
1734 for (SectionChunk *c : symIdxChunks) {
1735 // Skip sections discarded by linker GC. This comes up when a .gfids section
1736 // is associated with something like a vtable and the vtable is discarded.
1737 // In this case, the associated gfids section is discarded, and we don't
1738 // mark the virtual member functions as address-taken by the vtable.
1739 if (!c->live)
1740 continue;
1742 // Validate that the contents look like symbol table indices.
1743 ArrayRef<uint8_t> data = c->getContents();
1744 if (data.size() % 4 != 0) {
1745 warn("ignoring " + c->getSectionName() +
1746 " symbol table index section in object " + toString(file));
1747 continue;
1750 // Read each symbol table index and check if that symbol was included in the
1751 // final link. If so, add it to the vector of symbols.
1752 ArrayRef<ulittle32_t> symIndices(
1753 reinterpret_cast<const ulittle32_t *>(data.data()), data.size() / 4);
1754 ArrayRef<Symbol *> objSymbols = file->getSymbols();
1755 for (uint32_t symIndex : symIndices) {
1756 if (symIndex >= objSymbols.size()) {
1757 warn("ignoring invalid symbol table index in section " +
1758 c->getSectionName() + " in object " + toString(file));
1759 continue;
1761 if (Symbol *s = objSymbols[symIndex]) {
1762 if (s->isLive())
1763 symbols.push_back(cast<Symbol>(s));
1769 // Take a list of input sections containing symbol table indices and add those
1770 // symbols to an RVA table.
1771 void Writer::markSymbolsForRVATable(ObjFile *file,
1772 ArrayRef<SectionChunk *> symIdxChunks,
1773 SymbolRVASet &tableSymbols) {
1774 std::vector<Symbol *> syms;
1775 getSymbolsFromSections(file, symIdxChunks, syms);
1777 for (Symbol *s : syms)
1778 addSymbolToRVASet(tableSymbols, cast<Defined>(s));
1781 // Replace the absolute table symbol with a synthetic symbol pointing to
1782 // tableChunk so that we can emit base relocations for it and resolve section
1783 // relative relocations.
1784 void Writer::maybeAddRVATable(SymbolRVASet tableSymbols, StringRef tableSym,
1785 StringRef countSym, bool hasFlag) {
1786 if (tableSymbols.empty())
1787 return;
1789 NonSectionChunk *tableChunk;
1790 if (hasFlag)
1791 tableChunk = make<RVAFlagTableChunk>(std::move(tableSymbols));
1792 else
1793 tableChunk = make<RVATableChunk>(std::move(tableSymbols));
1794 rdataSec->addChunk(tableChunk);
1796 Symbol *t = ctx.symtab.findUnderscore(tableSym);
1797 Symbol *c = ctx.symtab.findUnderscore(countSym);
1798 replaceSymbol<DefinedSynthetic>(t, t->getName(), tableChunk);
1799 cast<DefinedAbsolute>(c)->setVA(tableChunk->getSize() / (hasFlag ? 5 : 4));
1802 // MinGW specific. Gather all relocations that are imported from a DLL even
1803 // though the code didn't expect it to, produce the table that the runtime
1804 // uses for fixing them up, and provide the synthetic symbols that the
1805 // runtime uses for finding the table.
1806 void Writer::createRuntimePseudoRelocs() {
1807 std::vector<RuntimePseudoReloc> rels;
1809 for (Chunk *c : ctx.symtab.getChunks()) {
1810 auto *sc = dyn_cast<SectionChunk>(c);
1811 if (!sc || !sc->live)
1812 continue;
1813 sc->getRuntimePseudoRelocs(rels);
1816 if (!config->pseudoRelocs) {
1817 // Not writing any pseudo relocs; if some were needed, error out and
1818 // indicate what required them.
1819 for (const RuntimePseudoReloc &rpr : rels)
1820 error("automatic dllimport of " + rpr.sym->getName() + " in " +
1821 toString(rpr.target->file) + " requires pseudo relocations");
1822 return;
1825 if (!rels.empty())
1826 log("Writing " + Twine(rels.size()) + " runtime pseudo relocations");
1827 PseudoRelocTableChunk *table = make<PseudoRelocTableChunk>(rels);
1828 rdataSec->addChunk(table);
1829 EmptyChunk *endOfList = make<EmptyChunk>();
1830 rdataSec->addChunk(endOfList);
1832 Symbol *headSym = ctx.symtab.findUnderscore("__RUNTIME_PSEUDO_RELOC_LIST__");
1833 Symbol *endSym =
1834 ctx.symtab.findUnderscore("__RUNTIME_PSEUDO_RELOC_LIST_END__");
1835 replaceSymbol<DefinedSynthetic>(headSym, headSym->getName(), table);
1836 replaceSymbol<DefinedSynthetic>(endSym, endSym->getName(), endOfList);
1839 // MinGW specific.
1840 // The MinGW .ctors and .dtors lists have sentinels at each end;
1841 // a (uintptr_t)-1 at the start and a (uintptr_t)0 at the end.
1842 // There's a symbol pointing to the start sentinel pointer, __CTOR_LIST__
1843 // and __DTOR_LIST__ respectively.
1844 void Writer::insertCtorDtorSymbols() {
1845 AbsolutePointerChunk *ctorListHead = make<AbsolutePointerChunk>(-1);
1846 AbsolutePointerChunk *ctorListEnd = make<AbsolutePointerChunk>(0);
1847 AbsolutePointerChunk *dtorListHead = make<AbsolutePointerChunk>(-1);
1848 AbsolutePointerChunk *dtorListEnd = make<AbsolutePointerChunk>(0);
1849 ctorsSec->insertChunkAtStart(ctorListHead);
1850 ctorsSec->addChunk(ctorListEnd);
1851 dtorsSec->insertChunkAtStart(dtorListHead);
1852 dtorsSec->addChunk(dtorListEnd);
1854 Symbol *ctorListSym = ctx.symtab.findUnderscore("__CTOR_LIST__");
1855 Symbol *dtorListSym = ctx.symtab.findUnderscore("__DTOR_LIST__");
1856 replaceSymbol<DefinedSynthetic>(ctorListSym, ctorListSym->getName(),
1857 ctorListHead);
1858 replaceSymbol<DefinedSynthetic>(dtorListSym, dtorListSym->getName(),
1859 dtorListHead);
1862 // Handles /section options to allow users to overwrite
1863 // section attributes.
1864 void Writer::setSectionPermissions() {
1865 for (auto &p : config->section) {
1866 StringRef name = p.first;
1867 uint32_t perm = p.second;
1868 for (OutputSection *sec : ctx.outputSections)
1869 if (sec->name == name)
1870 sec->setPermissions(perm);
1874 // Write section contents to a mmap'ed file.
1875 void Writer::writeSections() {
1876 // Record the number of sections to apply section index relocations
1877 // against absolute symbols. See applySecIdx in Chunks.cpp..
1878 DefinedAbsolute::numOutputSections = ctx.outputSections.size();
1880 uint8_t *buf = buffer->getBufferStart();
1881 for (OutputSection *sec : ctx.outputSections) {
1882 uint8_t *secBuf = buf + sec->getFileOff();
1883 // Fill gaps between functions in .text with INT3 instructions
1884 // instead of leaving as NUL bytes (which can be interpreted as
1885 // ADD instructions).
1886 if (sec->header.Characteristics & IMAGE_SCN_CNT_CODE)
1887 memset(secBuf, 0xCC, sec->getRawSize());
1888 parallelForEach(sec->chunks, [&](Chunk *c) {
1889 c->writeTo(secBuf + c->getRVA() - sec->getRVA());
1894 void Writer::writeBuildId() {
1895 // There are two important parts to the build ID.
1896 // 1) If building with debug info, the COFF debug directory contains a
1897 // timestamp as well as a Guid and Age of the PDB.
1898 // 2) In all cases, the PE COFF file header also contains a timestamp.
1899 // For reproducibility, instead of a timestamp we want to use a hash of the
1900 // PE contents.
1901 if (config->debug) {
1902 assert(buildId && "BuildId is not set!");
1903 // BuildId->BuildId was filled in when the PDB was written.
1906 // At this point the only fields in the COFF file which remain unset are the
1907 // "timestamp" in the COFF file header, and the ones in the coff debug
1908 // directory. Now we can hash the file and write that hash to the various
1909 // timestamp fields in the file.
1910 StringRef outputFileData(
1911 reinterpret_cast<const char *>(buffer->getBufferStart()),
1912 buffer->getBufferSize());
1914 uint32_t timestamp = config->timestamp;
1915 uint64_t hash = 0;
1916 bool generateSyntheticBuildId =
1917 config->mingw && config->debug && config->pdbPath.empty();
1919 if (config->repro || generateSyntheticBuildId)
1920 hash = xxHash64(outputFileData);
1922 if (config->repro)
1923 timestamp = static_cast<uint32_t>(hash);
1925 if (generateSyntheticBuildId) {
1926 // For MinGW builds without a PDB file, we still generate a build id
1927 // to allow associating a crash dump to the executable.
1928 buildId->buildId->PDB70.CVSignature = OMF::Signature::PDB70;
1929 buildId->buildId->PDB70.Age = 1;
1930 memcpy(buildId->buildId->PDB70.Signature, &hash, 8);
1931 // xxhash only gives us 8 bytes, so put some fixed data in the other half.
1932 memcpy(&buildId->buildId->PDB70.Signature[8], "LLD PDB.", 8);
1935 if (debugDirectory)
1936 debugDirectory->setTimeDateStamp(timestamp);
1938 uint8_t *buf = buffer->getBufferStart();
1939 buf += dosStubSize + sizeof(PEMagic);
1940 object::coff_file_header *coffHeader =
1941 reinterpret_cast<coff_file_header *>(buf);
1942 coffHeader->TimeDateStamp = timestamp;
1945 // Sort .pdata section contents according to PE/COFF spec 5.5.
1946 void Writer::sortExceptionTable() {
1947 if (!firstPdata)
1948 return;
1949 // We assume .pdata contains function table entries only.
1950 auto bufAddr = [&](Chunk *c) {
1951 OutputSection *os = ctx.getOutputSection(c);
1952 return buffer->getBufferStart() + os->getFileOff() + c->getRVA() -
1953 os->getRVA();
1955 uint8_t *begin = bufAddr(firstPdata);
1956 uint8_t *end = bufAddr(lastPdata) + lastPdata->getSize();
1957 if (config->machine == AMD64) {
1958 struct Entry { ulittle32_t begin, end, unwind; };
1959 if ((end - begin) % sizeof(Entry) != 0) {
1960 fatal("unexpected .pdata size: " + Twine(end - begin) +
1961 " is not a multiple of " + Twine(sizeof(Entry)));
1963 parallelSort(
1964 MutableArrayRef<Entry>((Entry *)begin, (Entry *)end),
1965 [](const Entry &a, const Entry &b) { return a.begin < b.begin; });
1966 return;
1968 if (config->machine == ARMNT || config->machine == ARM64) {
1969 struct Entry { ulittle32_t begin, unwind; };
1970 if ((end - begin) % sizeof(Entry) != 0) {
1971 fatal("unexpected .pdata size: " + Twine(end - begin) +
1972 " is not a multiple of " + Twine(sizeof(Entry)));
1974 parallelSort(
1975 MutableArrayRef<Entry>((Entry *)begin, (Entry *)end),
1976 [](const Entry &a, const Entry &b) { return a.begin < b.begin; });
1977 return;
1979 lld::errs() << "warning: don't know how to handle .pdata.\n";
1982 // The CRT section contains, among other things, the array of function
1983 // pointers that initialize every global variable that is not trivially
1984 // constructed. The CRT calls them one after the other prior to invoking
1985 // main().
1987 // As per C++ spec, 3.6.2/2.3,
1988 // "Variables with ordered initialization defined within a single
1989 // translation unit shall be initialized in the order of their definitions
1990 // in the translation unit"
1992 // It is therefore critical to sort the chunks containing the function
1993 // pointers in the order that they are listed in the object file (top to
1994 // bottom), otherwise global objects might not be initialized in the
1995 // correct order.
1996 void Writer::sortCRTSectionChunks(std::vector<Chunk *> &chunks) {
1997 auto sectionChunkOrder = [](const Chunk *a, const Chunk *b) {
1998 auto sa = dyn_cast<SectionChunk>(a);
1999 auto sb = dyn_cast<SectionChunk>(b);
2000 assert(sa && sb && "Non-section chunks in CRT section!");
2002 StringRef sAObj = sa->file->mb.getBufferIdentifier();
2003 StringRef sBObj = sb->file->mb.getBufferIdentifier();
2005 return sAObj == sBObj && sa->getSectionNumber() < sb->getSectionNumber();
2007 llvm::stable_sort(chunks, sectionChunkOrder);
2009 if (config->verbose) {
2010 for (auto &c : chunks) {
2011 auto sc = dyn_cast<SectionChunk>(c);
2012 log(" " + sc->file->mb.getBufferIdentifier().str() +
2013 ", SectionID: " + Twine(sc->getSectionNumber()));
2018 OutputSection *Writer::findSection(StringRef name) {
2019 for (OutputSection *sec : ctx.outputSections)
2020 if (sec->name == name)
2021 return sec;
2022 return nullptr;
2025 uint32_t Writer::getSizeOfInitializedData() {
2026 uint32_t res = 0;
2027 for (OutputSection *s : ctx.outputSections)
2028 if (s->header.Characteristics & IMAGE_SCN_CNT_INITIALIZED_DATA)
2029 res += s->getRawSize();
2030 return res;
2033 // Add base relocations to .reloc section.
2034 void Writer::addBaserels() {
2035 if (!config->relocatable)
2036 return;
2037 relocSec->chunks.clear();
2038 std::vector<Baserel> v;
2039 for (OutputSection *sec : ctx.outputSections) {
2040 if (sec->header.Characteristics & IMAGE_SCN_MEM_DISCARDABLE)
2041 continue;
2042 // Collect all locations for base relocations.
2043 for (Chunk *c : sec->chunks)
2044 c->getBaserels(&v);
2045 // Add the addresses to .reloc section.
2046 if (!v.empty())
2047 addBaserelBlocks(v);
2048 v.clear();
2052 // Add addresses to .reloc section. Note that addresses are grouped by page.
2053 void Writer::addBaserelBlocks(std::vector<Baserel> &v) {
2054 const uint32_t mask = ~uint32_t(pageSize - 1);
2055 uint32_t page = v[0].rva & mask;
2056 size_t i = 0, j = 1;
2057 for (size_t e = v.size(); j < e; ++j) {
2058 uint32_t p = v[j].rva & mask;
2059 if (p == page)
2060 continue;
2061 relocSec->addChunk(make<BaserelChunk>(page, &v[i], &v[0] + j));
2062 i = j;
2063 page = p;
2065 if (i == j)
2066 return;
2067 relocSec->addChunk(make<BaserelChunk>(page, &v[i], &v[0] + j));
2070 PartialSection *Writer::createPartialSection(StringRef name,
2071 uint32_t outChars) {
2072 PartialSection *&pSec = partialSections[{name, outChars}];
2073 if (pSec)
2074 return pSec;
2075 pSec = make<PartialSection>(name, outChars);
2076 return pSec;
2079 PartialSection *Writer::findPartialSection(StringRef name, uint32_t outChars) {
2080 auto it = partialSections.find({name, outChars});
2081 if (it != partialSections.end())
2082 return it->second;
2083 return nullptr;
2086 void Writer::fixTlsAlignment() {
2087 Defined *tlsSym =
2088 dyn_cast_or_null<Defined>(ctx.symtab.findUnderscore("_tls_used"));
2089 if (!tlsSym)
2090 return;
2092 OutputSection *sec = ctx.getOutputSection(tlsSym->getChunk());
2093 assert(sec && tlsSym->getRVA() >= sec->getRVA() &&
2094 "no output section for _tls_used");
2096 uint8_t *secBuf = buffer->getBufferStart() + sec->getFileOff();
2097 uint64_t tlsOffset = tlsSym->getRVA() - sec->getRVA();
2098 uint64_t directorySize = config->is64()
2099 ? sizeof(object::coff_tls_directory64)
2100 : sizeof(object::coff_tls_directory32);
2102 if (tlsOffset + directorySize > sec->getRawSize())
2103 fatal("_tls_used sym is malformed");
2105 if (config->is64()) {
2106 object::coff_tls_directory64 *tlsDir =
2107 reinterpret_cast<object::coff_tls_directory64 *>(&secBuf[tlsOffset]);
2108 tlsDir->setAlignment(tlsAlignment);
2109 } else {
2110 object::coff_tls_directory32 *tlsDir =
2111 reinterpret_cast<object::coff_tls_directory32 *>(&secBuf[tlsOffset]);
2112 tlsDir->setAlignment(tlsAlignment);