1 //===- InputFiles.cpp -----------------------------------------------------===//
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
7 //===----------------------------------------------------------------------===//
9 #include "InputFiles.h"
10 #include "COFFLinkerContext.h"
13 #include "DebugTypes.h"
15 #include "SymbolTable.h"
17 #include "lld/Common/DWARF.h"
18 #include "llvm-c/lto.h"
19 #include "llvm/ADT/SmallVector.h"
20 #include "llvm/ADT/Twine.h"
21 #include "llvm/BinaryFormat/COFF.h"
22 #include "llvm/DebugInfo/CodeView/DebugSubsectionRecord.h"
23 #include "llvm/DebugInfo/CodeView/SymbolDeserializer.h"
24 #include "llvm/DebugInfo/CodeView/SymbolRecord.h"
25 #include "llvm/DebugInfo/CodeView/TypeDeserializer.h"
26 #include "llvm/DebugInfo/PDB/Native/NativeSession.h"
27 #include "llvm/DebugInfo/PDB/Native/PDBFile.h"
28 #include "llvm/IR/Mangler.h"
29 #include "llvm/LTO/LTO.h"
30 #include "llvm/Object/Binary.h"
31 #include "llvm/Object/COFF.h"
32 #include "llvm/Support/Casting.h"
33 #include "llvm/Support/Endian.h"
34 #include "llvm/Support/Error.h"
35 #include "llvm/Support/ErrorOr.h"
36 #include "llvm/Support/FileSystem.h"
37 #include "llvm/Support/Path.h"
38 #include "llvm/Target/TargetOptions.h"
39 #include "llvm/TargetParser/Triple.h"
42 #include <system_error>
46 using namespace llvm::COFF
;
47 using namespace llvm::codeview
;
48 using namespace llvm::object
;
49 using namespace llvm::support::endian
;
51 using namespace lld::coff
;
54 using llvm::support::ulittle32_t
;
56 // Returns the last element of a path, which is supposed to be a filename.
57 static StringRef
getBasename(StringRef path
) {
58 return sys::path::filename(path
, sys::path::Style::windows
);
61 // Returns a string in the format of "foo.obj" or "foo.obj(bar.lib)".
62 std::string
lld::toString(const coff::InputFile
*file
) {
65 if (file
->parentName
.empty())
66 return std::string(file
->getName());
68 return (getBasename(file
->parentName
) + "(" + getBasename(file
->getName()) +
73 /// Checks that Source is compatible with being a weak alias to Target.
74 /// If Source is Undefined and has no weak alias set, makes it a weak
76 static void checkAndSetWeakAlias(COFFLinkerContext
&ctx
, InputFile
*f
,
77 Symbol
*source
, Symbol
*target
,
79 if (auto *u
= dyn_cast
<Undefined
>(source
)) {
80 if (u
->weakAlias
&& u
->weakAlias
!= target
) {
81 // Ignore duplicated anti-dependency symbols.
85 // Weak aliases as produced by GCC are named in the form
86 // .weak.<weaksymbol>.<othersymbol>, where <othersymbol> is the name
87 // of another symbol emitted near the weak symbol.
88 // Just use the definition from the first object file that defined
90 if (ctx
.config
.allowDuplicateWeak
)
92 ctx
.symtab
.reportDuplicate(source
, f
);
95 u
->setWeakAlias(target
, isAntiDep
);
99 static bool ignoredSymbolName(StringRef name
) {
100 return name
== "@feat.00" || name
== "@comp.id";
103 ArchiveFile::ArchiveFile(COFFLinkerContext
&ctx
, MemoryBufferRef m
)
104 : InputFile(ctx
, ArchiveKind
, m
) {}
106 void ArchiveFile::parse() {
107 // Parse a MemoryBufferRef as an archive file.
108 file
= CHECK(Archive::create(mb
), this);
110 // Try to read symbols from ECSYMBOLS section on ARM64EC.
111 if (isArm64EC(ctx
.config
.machine
)) {
112 iterator_range
<Archive::symbol_iterator
> symbols
=
113 CHECK(file
->ec_symbols(), this);
114 if (!symbols
.empty()) {
115 for (const Archive::Symbol
&sym
: symbols
)
116 ctx
.symtab
.addLazyArchive(this, sym
);
118 // Read both EC and native symbols on ARM64X.
119 if (ctx
.config
.machine
!= ARM64X
)
124 // Read the symbol table to construct Lazy objects.
125 for (const Archive::Symbol
&sym
: file
->symbols())
126 ctx
.symtab
.addLazyArchive(this, sym
);
129 // Returns a buffer pointing to a member file containing a given symbol.
130 void ArchiveFile::addMember(const Archive::Symbol
&sym
) {
131 const Archive::Child
&c
=
132 CHECK(sym
.getMember(),
133 "could not get the member for symbol " + toCOFFString(ctx
, sym
));
135 // Return an empty buffer if we have already returned the same buffer.
136 if (!seen
.insert(c
.getChildOffset()).second
)
139 ctx
.driver
.enqueueArchiveMember(c
, sym
, getName());
142 std::vector
<MemoryBufferRef
> lld::coff::getArchiveMembers(Archive
*file
) {
143 std::vector
<MemoryBufferRef
> v
;
144 Error err
= Error::success();
145 for (const Archive::Child
&c
: file
->children(err
)) {
146 MemoryBufferRef mbref
=
147 CHECK(c
.getMemoryBufferRef(),
148 file
->getFileName() +
149 ": could not get the buffer for a child of the archive");
153 fatal(file
->getFileName() +
154 ": Archive::children failed: " + toString(std::move(err
)));
158 void ObjFile::parseLazy() {
159 // Native object file.
160 std::unique_ptr
<Binary
> coffObjPtr
= CHECK(createBinary(mb
), this);
161 COFFObjectFile
*coffObj
= cast
<COFFObjectFile
>(coffObjPtr
.get());
162 uint32_t numSymbols
= coffObj
->getNumberOfSymbols();
163 for (uint32_t i
= 0; i
< numSymbols
; ++i
) {
164 COFFSymbolRef coffSym
= check(coffObj
->getSymbol(i
));
165 if (coffSym
.isUndefined() || !coffSym
.isExternal() ||
166 coffSym
.isWeakExternal())
168 StringRef name
= check(coffObj
->getSymbolName(coffSym
));
169 if (coffSym
.isAbsolute() && ignoredSymbolName(name
))
171 ctx
.symtab
.addLazyObject(this, name
);
172 i
+= coffSym
.getNumberOfAuxSymbols();
182 void ObjFile::initializeECThunks() {
183 for (SectionChunk
*chunk
: hybmpChunks
) {
184 if (chunk
->getContents().size() % sizeof(ECMapEntry
)) {
185 error("Invalid .hybmp chunk size " + Twine(chunk
->getContents().size()));
190 chunk
->getContents().data() + chunk
->getContents().size();
191 for (const uint8_t *iter
= chunk
->getContents().data(); iter
!= end
;
192 iter
+= sizeof(ECMapEntry
)) {
193 auto entry
= reinterpret_cast<const ECMapEntry
*>(iter
);
194 switch (entry
->type
) {
195 case Arm64ECThunkType::Entry
:
196 ctx
.symtab
.addEntryThunk(getSymbol(entry
->src
), getSymbol(entry
->dst
));
198 case Arm64ECThunkType::Exit
:
199 ctx
.symtab
.addExitThunk(getSymbol(entry
->src
), getSymbol(entry
->dst
));
201 case Arm64ECThunkType::GuestExit
:
204 warn("Ignoring unknown EC thunk type " + Twine(entry
->type
));
210 void ObjFile::parse() {
211 // Parse a memory buffer as a COFF file.
212 std::unique_ptr
<Binary
> bin
= CHECK(createBinary(mb
), this);
214 if (auto *obj
= dyn_cast
<COFFObjectFile
>(bin
.get())) {
218 fatal(toString(this) + " is not a COFF file");
221 // Read section and symbol tables.
225 initializeDependencies();
226 initializeECThunks();
229 const coff_section
*ObjFile::getSection(uint32_t i
) {
230 auto sec
= coffObj
->getSection(i
);
232 fatal("getSection failed: #" + Twine(i
) + ": " + toString(sec
.takeError()));
236 // We set SectionChunk pointers in the SparseChunks vector to this value
237 // temporarily to mark comdat sections as having an unknown resolution. As we
238 // walk the object file's symbol table, once we visit either a leader symbol or
239 // an associative section definition together with the parent comdat's leader,
240 // we set the pointer to either nullptr (to mark the section as discarded) or a
241 // valid SectionChunk for that section.
242 static SectionChunk
*const pendingComdat
= reinterpret_cast<SectionChunk
*>(1);
244 void ObjFile::initializeChunks() {
245 uint32_t numSections
= coffObj
->getNumberOfSections();
246 sparseChunks
.resize(numSections
+ 1);
247 for (uint32_t i
= 1; i
< numSections
+ 1; ++i
) {
248 const coff_section
*sec
= getSection(i
);
249 if (sec
->Characteristics
& IMAGE_SCN_LNK_COMDAT
)
250 sparseChunks
[i
] = pendingComdat
;
252 sparseChunks
[i
] = readSection(i
, nullptr, "");
256 SectionChunk
*ObjFile::readSection(uint32_t sectionNumber
,
257 const coff_aux_section_definition
*def
,
258 StringRef leaderName
) {
259 const coff_section
*sec
= getSection(sectionNumber
);
262 if (Expected
<StringRef
> e
= coffObj
->getSectionName(sec
))
265 fatal("getSectionName failed: #" + Twine(sectionNumber
) + ": " +
266 toString(e
.takeError()));
268 if (name
== ".drectve") {
269 ArrayRef
<uint8_t> data
;
270 cantFail(coffObj
->getSectionContents(sec
, data
));
271 directives
= StringRef((const char *)data
.data(), data
.size());
275 if (name
== ".llvm_addrsig") {
280 if (name
== ".llvm.call-graph-profile") {
285 // Object files may have DWARF debug info or MS CodeView debug info
288 // DWARF sections don't need any special handling from the perspective
289 // of the linker; they are just a data section containing relocations.
290 // We can just link them to complete debug info.
292 // CodeView needs linker support. We need to interpret debug info,
293 // and then write it to a separate .pdb file.
295 // Ignore DWARF debug info unless requested to be included.
296 if (!ctx
.config
.includeDwarfChunks
&& name
.starts_with(".debug_"))
299 if (sec
->Characteristics
& llvm::COFF::IMAGE_SCN_LNK_REMOVE
)
302 if (isArm64EC(getMachineType()))
303 c
= make
<SectionChunkEC
>(this, sec
);
305 c
= make
<SectionChunk
>(this, sec
);
307 c
->checksum
= def
->CheckSum
;
309 // CodeView sections are stored to a different vector because they are not
310 // linked in the regular manner.
312 debugChunks
.push_back(c
);
313 else if (name
== ".gfids$y")
314 guardFidChunks
.push_back(c
);
315 else if (name
== ".giats$y")
316 guardIATChunks
.push_back(c
);
317 else if (name
== ".gljmp$y")
318 guardLJmpChunks
.push_back(c
);
319 else if (name
== ".gehcont$y")
320 guardEHContChunks
.push_back(c
);
321 else if (name
== ".sxdata")
322 sxDataChunks
.push_back(c
);
323 else if (isArm64EC(getMachineType()) && name
== ".hybmp$x")
324 hybmpChunks
.push_back(c
);
325 else if (ctx
.config
.tailMerge
&& sec
->NumberOfRelocations
== 0 &&
326 name
== ".rdata" && leaderName
.starts_with("??_C@"))
327 // COFF sections that look like string literal sections (i.e. no
328 // relocations, in .rdata, leader symbol name matches the MSVC name mangling
329 // for string literals) are subject to string tail merging.
330 MergeChunk::addSection(ctx
, c
);
331 else if (name
== ".rsrc" || name
.starts_with(".rsrc$"))
332 resourceChunks
.push_back(c
);
339 void ObjFile::includeResourceChunks() {
340 chunks
.insert(chunks
.end(), resourceChunks
.begin(), resourceChunks
.end());
343 void ObjFile::readAssociativeDefinition(
344 COFFSymbolRef sym
, const coff_aux_section_definition
*def
) {
345 readAssociativeDefinition(sym
, def
, def
->getNumber(sym
.isBigObj()));
348 void ObjFile::readAssociativeDefinition(COFFSymbolRef sym
,
349 const coff_aux_section_definition
*def
,
350 uint32_t parentIndex
) {
351 SectionChunk
*parent
= sparseChunks
[parentIndex
];
352 int32_t sectionNumber
= sym
.getSectionNumber();
355 StringRef name
= check(coffObj
->getSymbolName(sym
));
357 StringRef parentName
;
358 const coff_section
*parentSec
= getSection(parentIndex
);
359 if (Expected
<StringRef
> e
= coffObj
->getSectionName(parentSec
))
361 error(toString(this) + ": associative comdat " + name
+ " (sec " +
362 Twine(sectionNumber
) + ") has invalid reference to section " +
363 parentName
+ " (sec " + Twine(parentIndex
) + ")");
366 if (parent
== pendingComdat
) {
367 // This can happen if an associative comdat refers to another associative
368 // comdat that appears after it (invalid per COFF spec) or to a section
369 // without any symbols.
374 // Check whether the parent is prevailing. If it is, so are we, and we read
375 // the section; otherwise mark it as discarded.
377 SectionChunk
*c
= readSection(sectionNumber
, def
, "");
378 sparseChunks
[sectionNumber
] = c
;
380 c
->selection
= IMAGE_COMDAT_SELECT_ASSOCIATIVE
;
381 parent
->addAssociative(c
);
384 sparseChunks
[sectionNumber
] = nullptr;
388 void ObjFile::recordPrevailingSymbolForMingw(
389 COFFSymbolRef sym
, DenseMap
<StringRef
, uint32_t> &prevailingSectionMap
) {
390 // For comdat symbols in executable sections, where this is the copy
391 // of the section chunk we actually include instead of discarding it,
392 // add the symbol to a map to allow using it for implicitly
393 // associating .[px]data$<func> sections to it.
394 // Use the suffix from the .text$<func> instead of the leader symbol
395 // name, for cases where the names differ (i386 mangling/decorations,
396 // cases where the leader is a weak symbol named .weak.func.default*).
397 int32_t sectionNumber
= sym
.getSectionNumber();
398 SectionChunk
*sc
= sparseChunks
[sectionNumber
];
399 if (sc
&& sc
->getOutputCharacteristics() & IMAGE_SCN_MEM_EXECUTE
) {
400 StringRef name
= sc
->getSectionName().split('$').second
;
401 prevailingSectionMap
[name
] = sectionNumber
;
405 void ObjFile::maybeAssociateSEHForMingw(
406 COFFSymbolRef sym
, const coff_aux_section_definition
*def
,
407 const DenseMap
<StringRef
, uint32_t> &prevailingSectionMap
) {
408 StringRef name
= check(coffObj
->getSymbolName(sym
));
409 if (name
.consume_front(".pdata$") || name
.consume_front(".xdata$") ||
410 name
.consume_front(".eh_frame$")) {
411 // For MinGW, treat .[px]data$<func> and .eh_frame$<func> as implicitly
412 // associative to the symbol <func>.
413 auto parentSym
= prevailingSectionMap
.find(name
);
414 if (parentSym
!= prevailingSectionMap
.end())
415 readAssociativeDefinition(sym
, def
, parentSym
->second
);
419 Symbol
*ObjFile::createRegular(COFFSymbolRef sym
) {
420 SectionChunk
*sc
= sparseChunks
[sym
.getSectionNumber()];
421 if (sym
.isExternal()) {
422 StringRef name
= check(coffObj
->getSymbolName(sym
));
424 return ctx
.symtab
.addRegular(this, name
, sym
.getGeneric(), sc
,
426 // For MinGW symbols named .weak.* that point to a discarded section,
427 // don't create an Undefined symbol. If nothing ever refers to the symbol,
428 // everything should be fine. If something actually refers to the symbol
429 // (e.g. the undefined weak alias), linking will fail due to undefined
430 // references at the end.
431 if (ctx
.config
.mingw
&& name
.starts_with(".weak."))
433 return ctx
.symtab
.addUndefined(name
, this, false);
436 return make
<DefinedRegular
>(this, /*Name*/ "", /*IsCOMDAT*/ false,
437 /*IsExternal*/ false, sym
.getGeneric(), sc
);
441 void ObjFile::initializeSymbols() {
442 uint32_t numSymbols
= coffObj
->getNumberOfSymbols();
443 symbols
.resize(numSymbols
);
445 SmallVector
<std::pair
<Symbol
*, const coff_aux_weak_external
*>, 8>
447 std::vector
<uint32_t> pendingIndexes
;
448 pendingIndexes
.reserve(numSymbols
);
450 DenseMap
<StringRef
, uint32_t> prevailingSectionMap
;
451 std::vector
<const coff_aux_section_definition
*> comdatDefs(
452 coffObj
->getNumberOfSections() + 1);
454 for (uint32_t i
= 0; i
< numSymbols
; ++i
) {
455 COFFSymbolRef coffSym
= check(coffObj
->getSymbol(i
));
456 bool prevailingComdat
;
457 if (coffSym
.isUndefined()) {
458 symbols
[i
] = createUndefined(coffSym
, false);
459 } else if (coffSym
.isWeakExternal()) {
460 auto aux
= coffSym
.getAux
<coff_aux_weak_external
>();
461 bool overrideLazy
= true;
463 // On ARM64EC, external function calls emit a pair of weak-dependency
464 // aliases: func to #func and #func to the func guess exit thunk
465 // (instead of a single undefined func symbol, which would be emitted on
466 // other targets). Allow such aliases to be overridden by lazy archive
467 // symbols, just as we would for undefined symbols.
468 if (isArm64EC(getMachineType()) &&
469 aux
->Characteristics
== IMAGE_WEAK_EXTERN_ANTI_DEPENDENCY
) {
470 COFFSymbolRef targetSym
= check(coffObj
->getSymbol(aux
->TagIndex
));
471 if (!targetSym
.isAnyUndefined()) {
472 // If the target is defined, it may be either a guess exit thunk or
473 // the actual implementation. If it's the latter, consider the alias
474 // to be part of the implementation and override potential lazy
476 StringRef targetName
= check(coffObj
->getSymbolName(targetSym
));
477 StringRef name
= check(coffObj
->getSymbolName(coffSym
));
478 std::optional
<std::string
> mangledName
=
479 getArm64ECMangledFunctionName(name
);
480 overrideLazy
= mangledName
== targetName
;
482 overrideLazy
= false;
485 symbols
[i
] = createUndefined(coffSym
, overrideLazy
);
486 weakAliases
.emplace_back(symbols
[i
], aux
);
487 } else if (std::optional
<Symbol
*> optSym
=
488 createDefined(coffSym
, comdatDefs
, prevailingComdat
)) {
489 symbols
[i
] = *optSym
;
490 if (ctx
.config
.mingw
&& prevailingComdat
)
491 recordPrevailingSymbolForMingw(coffSym
, prevailingSectionMap
);
493 // createDefined() returns std::nullopt if a symbol belongs to a section
494 // that was pending at the point when the symbol was read. This can happen
496 // 1) section definition symbol for a comdat leader;
497 // 2) symbol belongs to a comdat section associated with another section.
498 // In both of these cases, we can expect the section to be resolved by
499 // the time we finish visiting the remaining symbols in the symbol
500 // table. So we postpone the handling of this symbol until that time.
501 pendingIndexes
.push_back(i
);
503 i
+= coffSym
.getNumberOfAuxSymbols();
506 for (uint32_t i
: pendingIndexes
) {
507 COFFSymbolRef sym
= check(coffObj
->getSymbol(i
));
508 if (const coff_aux_section_definition
*def
= sym
.getSectionDefinition()) {
509 if (def
->Selection
== IMAGE_COMDAT_SELECT_ASSOCIATIVE
)
510 readAssociativeDefinition(sym
, def
);
511 else if (ctx
.config
.mingw
)
512 maybeAssociateSEHForMingw(sym
, def
, prevailingSectionMap
);
514 if (sparseChunks
[sym
.getSectionNumber()] == pendingComdat
) {
515 StringRef name
= check(coffObj
->getSymbolName(sym
));
516 log("comdat section " + name
+
517 " without leader and unassociated, discarding");
520 symbols
[i
] = createRegular(sym
);
523 for (auto &kv
: weakAliases
) {
524 Symbol
*sym
= kv
.first
;
525 const coff_aux_weak_external
*aux
= kv
.second
;
526 checkAndSetWeakAlias(ctx
, this, sym
, symbols
[aux
->TagIndex
],
527 aux
->Characteristics
==
528 IMAGE_WEAK_EXTERN_ANTI_DEPENDENCY
);
531 // Free the memory used by sparseChunks now that symbol loading is finished.
532 decltype(sparseChunks
)().swap(sparseChunks
);
535 Symbol
*ObjFile::createUndefined(COFFSymbolRef sym
, bool overrideLazy
) {
536 StringRef name
= check(coffObj
->getSymbolName(sym
));
537 Symbol
*s
= ctx
.symtab
.addUndefined(name
, this, overrideLazy
);
539 // Add an anti-dependency alias for undefined AMD64 symbols on the ARM64EC
541 if (isArm64EC(ctx
.config
.machine
) && getMachineType() == AMD64
) {
542 auto u
= dyn_cast
<Undefined
>(s
);
543 if (u
&& !u
->weakAlias
) {
544 if (std::optional
<std::string
> mangledName
=
545 getArm64ECMangledFunctionName(name
)) {
546 Symbol
*m
= ctx
.symtab
.addUndefined(saver().save(*mangledName
), this,
547 /*overrideLazy=*/false);
548 u
->setWeakAlias(m
, /*antiDep=*/true);
555 static const coff_aux_section_definition
*findSectionDef(COFFObjectFile
*obj
,
557 uint32_t numSymbols
= obj
->getNumberOfSymbols();
558 for (uint32_t i
= 0; i
< numSymbols
; ++i
) {
559 COFFSymbolRef sym
= check(obj
->getSymbol(i
));
560 if (sym
.getSectionNumber() != section
)
562 if (const coff_aux_section_definition
*def
= sym
.getSectionDefinition())
568 void ObjFile::handleComdatSelection(
569 COFFSymbolRef sym
, COMDATType
&selection
, bool &prevailing
,
570 DefinedRegular
*leader
,
571 const llvm::object::coff_aux_section_definition
*def
) {
574 // There's already an existing comdat for this symbol: `Leader`.
575 // Use the comdats's selection field to determine if the new
576 // symbol in `Sym` should be discarded, produce a duplicate symbol
579 SectionChunk
*leaderChunk
= leader
->getChunk();
580 COMDATType leaderSelection
= leaderChunk
->selection
;
582 assert(leader
->data
&& "Comdat leader without SectionChunk?");
583 if (isa
<BitcodeFile
>(leader
->file
)) {
584 // If the leader is only a LTO symbol, we don't know e.g. its final size
585 // yet, so we can't do the full strict comdat selection checking yet.
586 selection
= leaderSelection
= IMAGE_COMDAT_SELECT_ANY
;
589 if ((selection
== IMAGE_COMDAT_SELECT_ANY
&&
590 leaderSelection
== IMAGE_COMDAT_SELECT_LARGEST
) ||
591 (selection
== IMAGE_COMDAT_SELECT_LARGEST
&&
592 leaderSelection
== IMAGE_COMDAT_SELECT_ANY
)) {
593 // cl.exe picks "any" for vftables when building with /GR- and
594 // "largest" when building with /GR. To be able to link object files
595 // compiled with each flag, "any" and "largest" are merged as "largest".
596 leaderSelection
= selection
= IMAGE_COMDAT_SELECT_LARGEST
;
599 // GCCs __declspec(selectany) doesn't actually pick "any" but "same size as".
600 // Clang on the other hand picks "any". To be able to link two object files
601 // with a __declspec(selectany) declaration, one compiled with gcc and the
602 // other with clang, we merge them as proper "same size as"
603 if (ctx
.config
.mingw
&& ((selection
== IMAGE_COMDAT_SELECT_ANY
&&
604 leaderSelection
== IMAGE_COMDAT_SELECT_SAME_SIZE
) ||
605 (selection
== IMAGE_COMDAT_SELECT_SAME_SIZE
&&
606 leaderSelection
== IMAGE_COMDAT_SELECT_ANY
))) {
607 leaderSelection
= selection
= IMAGE_COMDAT_SELECT_SAME_SIZE
;
610 // Other than that, comdat selections must match. This is a bit more
611 // strict than link.exe which allows merging "any" and "largest" if "any"
612 // is the first symbol the linker sees, and it allows merging "largest"
613 // with everything (!) if "largest" is the first symbol the linker sees.
614 // Making this symmetric independent of which selection is seen first
615 // seems better though.
616 // (This behavior matches ModuleLinker::getComdatResult().)
617 if (selection
!= leaderSelection
) {
618 log(("conflicting comdat type for " + toString(ctx
, *leader
) + ": " +
619 Twine((int)leaderSelection
) + " in " + toString(leader
->getFile()) +
620 " and " + Twine((int)selection
) + " in " + toString(this))
622 ctx
.symtab
.reportDuplicate(leader
, this);
627 case IMAGE_COMDAT_SELECT_NODUPLICATES
:
628 ctx
.symtab
.reportDuplicate(leader
, this);
631 case IMAGE_COMDAT_SELECT_ANY
:
635 case IMAGE_COMDAT_SELECT_SAME_SIZE
:
636 if (leaderChunk
->getSize() != getSection(sym
)->SizeOfRawData
) {
637 if (!ctx
.config
.mingw
) {
638 ctx
.symtab
.reportDuplicate(leader
, this);
640 const coff_aux_section_definition
*leaderDef
= nullptr;
641 if (leaderChunk
->file
)
642 leaderDef
= findSectionDef(leaderChunk
->file
->getCOFFObj(),
643 leaderChunk
->getSectionNumber());
644 if (!leaderDef
|| leaderDef
->Length
!= def
->Length
)
645 ctx
.symtab
.reportDuplicate(leader
, this);
650 case IMAGE_COMDAT_SELECT_EXACT_MATCH
: {
651 SectionChunk
newChunk(this, getSection(sym
));
652 // link.exe only compares section contents here and doesn't complain
653 // if the two comdat sections have e.g. different alignment.
655 if (leaderChunk
->getContents() != newChunk
.getContents())
656 ctx
.symtab
.reportDuplicate(leader
, this, &newChunk
, sym
.getValue());
660 case IMAGE_COMDAT_SELECT_ASSOCIATIVE
:
661 // createDefined() is never called for IMAGE_COMDAT_SELECT_ASSOCIATIVE.
662 // (This means lld-link doesn't produce duplicate symbol errors for
663 // associative comdats while link.exe does, but associate comdats
664 // are never extern in practice.)
665 llvm_unreachable("createDefined not called for associative comdats");
667 case IMAGE_COMDAT_SELECT_LARGEST
:
668 if (leaderChunk
->getSize() < getSection(sym
)->SizeOfRawData
) {
669 // Replace the existing comdat symbol with the new one.
670 StringRef name
= check(coffObj
->getSymbolName(sym
));
671 // FIXME: This is incorrect: With /opt:noref, the previous sections
672 // make it into the final executable as well. Correct handling would
673 // be to undo reading of the whole old section that's being replaced,
674 // or doing one pass that determines what the final largest comdat
675 // is for all IMAGE_COMDAT_SELECT_LARGEST comdats and then reading
676 // only the largest one.
677 replaceSymbol
<DefinedRegular
>(leader
, this, name
, /*IsCOMDAT*/ true,
678 /*IsExternal*/ true, sym
.getGeneric(),
684 case IMAGE_COMDAT_SELECT_NEWEST
:
685 llvm_unreachable("should have been rejected earlier");
689 std::optional
<Symbol
*> ObjFile::createDefined(
691 std::vector
<const coff_aux_section_definition
*> &comdatDefs
,
694 auto getName
= [&]() { return check(coffObj
->getSymbolName(sym
)); };
696 if (sym
.isCommon()) {
697 auto *c
= make
<CommonChunk
>(sym
);
699 return ctx
.symtab
.addCommon(this, getName(), sym
.getValue(),
700 sym
.getGeneric(), c
);
703 if (sym
.isAbsolute()) {
704 StringRef name
= getName();
706 if (name
== "@feat.00")
707 feat00Flags
= sym
.getValue();
708 // Skip special symbols.
709 if (ignoredSymbolName(name
))
712 if (sym
.isExternal())
713 return ctx
.symtab
.addAbsolute(name
, sym
);
714 return make
<DefinedAbsolute
>(ctx
, name
, sym
);
717 int32_t sectionNumber
= sym
.getSectionNumber();
718 if (sectionNumber
== llvm::COFF::IMAGE_SYM_DEBUG
)
721 if (llvm::COFF::isReservedSectionNumber(sectionNumber
))
722 fatal(toString(this) + ": " + getName() +
723 " should not refer to special section " + Twine(sectionNumber
));
725 if ((uint32_t)sectionNumber
>= sparseChunks
.size())
726 fatal(toString(this) + ": " + getName() +
727 " should not refer to non-existent section " + Twine(sectionNumber
));
730 // A comdat symbol consists of two symbol table entries.
731 // The first symbol entry has the name of the section (e.g. .text), fixed
732 // values for the other fields, and one auxiliary record.
733 // The second symbol entry has the name of the comdat symbol, called the
735 // When this function is called for the first symbol entry of a comdat,
736 // it sets comdatDefs and returns std::nullopt, and when it's called for the
737 // second symbol entry it reads comdatDefs and then sets it back to nullptr.
739 // Handle comdat leader.
740 if (const coff_aux_section_definition
*def
= comdatDefs
[sectionNumber
]) {
741 comdatDefs
[sectionNumber
] = nullptr;
742 DefinedRegular
*leader
;
744 if (sym
.isExternal()) {
745 std::tie(leader
, prevailing
) =
746 ctx
.symtab
.addComdat(this, getName(), sym
.getGeneric());
748 leader
= make
<DefinedRegular
>(this, /*Name*/ "", /*IsCOMDAT*/ false,
749 /*IsExternal*/ false, sym
.getGeneric());
753 if (def
->Selection
< (int)IMAGE_COMDAT_SELECT_NODUPLICATES
||
754 // Intentionally ends at IMAGE_COMDAT_SELECT_LARGEST: link.exe
755 // doesn't understand IMAGE_COMDAT_SELECT_NEWEST either.
756 def
->Selection
> (int)IMAGE_COMDAT_SELECT_LARGEST
) {
757 fatal("unknown comdat type " + std::to_string((int)def
->Selection
) +
758 " for " + getName() + " in " + toString(this));
760 COMDATType selection
= (COMDATType
)def
->Selection
;
762 if (leader
->isCOMDAT
)
763 handleComdatSelection(sym
, selection
, prevailing
, leader
, def
);
766 SectionChunk
*c
= readSection(sectionNumber
, def
, getName());
767 sparseChunks
[sectionNumber
] = c
;
770 c
->sym
= cast
<DefinedRegular
>(leader
);
771 c
->selection
= selection
;
772 cast
<DefinedRegular
>(leader
)->data
= &c
->repl
;
774 sparseChunks
[sectionNumber
] = nullptr;
779 // Prepare to handle the comdat leader symbol by setting the section's
780 // ComdatDefs pointer if we encounter a non-associative comdat.
781 if (sparseChunks
[sectionNumber
] == pendingComdat
) {
782 if (const coff_aux_section_definition
*def
= sym
.getSectionDefinition()) {
783 if (def
->Selection
!= IMAGE_COMDAT_SELECT_ASSOCIATIVE
)
784 comdatDefs
[sectionNumber
] = def
;
789 return createRegular(sym
);
792 MachineTypes
ObjFile::getMachineType() const {
794 return static_cast<MachineTypes
>(coffObj
->getMachine());
795 return IMAGE_FILE_MACHINE_UNKNOWN
;
798 ArrayRef
<uint8_t> ObjFile::getDebugSection(StringRef secName
) {
799 if (SectionChunk
*sec
= SectionChunk::findByName(debugChunks
, secName
))
800 return sec
->consumeDebugMagic();
804 // OBJ files systematically store critical information in a .debug$S stream,
805 // even if the TU was compiled with no debug info. At least two records are
806 // always there. S_OBJNAME stores a 32-bit signature, which is loaded into the
807 // PCHSignature member. S_COMPILE3 stores compile-time cmd-line flags. This is
808 // currently used to initialize the hotPatchable member.
809 void ObjFile::initializeFlags() {
810 ArrayRef
<uint8_t> data
= getDebugSection(".debug$S");
814 DebugSubsectionArray subsections
;
816 BinaryStreamReader
reader(data
, llvm::endianness::little
);
817 ExitOnError exitOnErr
;
818 exitOnErr(reader
.readArray(subsections
, data
.size()));
820 for (const DebugSubsectionRecord
&ss
: subsections
) {
821 if (ss
.kind() != DebugSubsectionKind::Symbols
)
826 // Only parse the first two records. We are only looking for S_OBJNAME
827 // and S_COMPILE3, and they usually appear at the beginning of the
829 for (unsigned i
= 0; i
< 2; ++i
) {
830 Expected
<CVSymbol
> sym
= readSymbolFromStream(ss
.getRecordData(), offset
);
832 consumeError(sym
.takeError());
835 if (sym
->kind() == SymbolKind::S_COMPILE3
) {
837 cantFail(SymbolDeserializer::deserializeAs
<Compile3Sym
>(sym
.get()));
839 (cs
.Flags
& CompileSym3Flags::HotPatch
) != CompileSym3Flags::None
;
841 if (sym
->kind() == SymbolKind::S_OBJNAME
) {
842 auto objName
= cantFail(SymbolDeserializer::deserializeAs
<ObjNameSym
>(
844 if (objName
.Signature
)
845 pchSignature
= objName
.Signature
;
847 offset
+= sym
->length();
852 // Depending on the compilation flags, OBJs can refer to external files,
853 // necessary to merge this OBJ into the final PDB. We currently support two
854 // types of external files: Precomp/PCH OBJs, when compiling with /Yc and /Yu.
855 // And PDB type servers, when compiling with /Zi. This function extracts these
856 // dependencies and makes them available as a TpiSource interface (see
857 // DebugTypes.h). Both cases only happen with cl.exe: clang-cl produces regular
858 // output even with /Yc and /Yu and with /Zi.
859 void ObjFile::initializeDependencies() {
860 if (!ctx
.config
.debug
)
865 ArrayRef
<uint8_t> data
= getDebugSection(".debug$P");
869 data
= getDebugSection(".debug$T");
871 // symbols but no types, make a plain, empty TpiSource anyway, because it
872 // simplifies adding the symbols later.
874 if (!debugChunks
.empty())
875 debugTypesObj
= makeTpiSource(ctx
, this);
879 // Get the first type record. It will indicate if this object uses a type
880 // server (/Zi) or a PCH file (/Yu).
882 BinaryStreamReader
reader(data
, llvm::endianness::little
);
883 cantFail(reader
.readArray(types
, reader
.getLength()));
884 CVTypeArray::Iterator firstType
= types
.begin();
885 if (firstType
== types
.end())
888 // Remember the .debug$T or .debug$P section.
891 // This object file is a PCH file that others will depend on.
893 debugTypesObj
= makePrecompSource(ctx
, this);
897 // This object file was compiled with /Zi. Enqueue the PDB dependency.
898 if (firstType
->kind() == LF_TYPESERVER2
) {
899 TypeServer2Record ts
= cantFail(
900 TypeDeserializer::deserializeAs
<TypeServer2Record
>(firstType
->data()));
901 debugTypesObj
= makeUseTypeServerSource(ctx
, this, ts
);
902 enqueuePdbFile(ts
.getName(), this);
906 // This object was compiled with /Yu. It uses types from another object file
907 // with a matching signature.
908 if (firstType
->kind() == LF_PRECOMP
) {
909 PrecompRecord precomp
= cantFail(
910 TypeDeserializer::deserializeAs
<PrecompRecord
>(firstType
->data()));
911 // We're better off trusting the LF_PRECOMP signature. In some cases the
912 // S_OBJNAME record doesn't contain a valid PCH signature.
913 if (precomp
.Signature
)
914 pchSignature
= precomp
.Signature
;
915 debugTypesObj
= makeUsePrecompSource(ctx
, this, precomp
);
916 // Drop the LF_PRECOMP record from the input stream.
917 debugTypes
= debugTypes
.drop_front(firstType
->RecordData
.size());
921 // This is a plain old object file.
922 debugTypesObj
= makeTpiSource(ctx
, this);
925 // The casing of the PDB path stamped in the OBJ can differ from the actual path
926 // on disk. With this, we ensure to always use lowercase as a key for the
927 // pdbInputFileInstances map, at least on Windows.
928 static std::string
normalizePdbPath(StringRef path
) {
932 return std::string(path
);
936 // If existing, return the actual PDB path on disk.
937 static std::optional
<std::string
>
938 findPdbPath(StringRef pdbPath
, ObjFile
*dependentFile
, StringRef outputPath
) {
939 // Ensure the file exists before anything else. In some cases, if the path
940 // points to a removable device, Driver::enqueuePath() would fail with an
941 // error (EAGAIN, "resource unavailable try again") which we want to skip
943 if (llvm::sys::fs::exists(pdbPath
))
944 return normalizePdbPath(pdbPath
);
946 StringRef objPath
= !dependentFile
->parentName
.empty()
947 ? dependentFile
->parentName
948 : dependentFile
->getName();
950 // Currently, type server PDBs are only created by MSVC cl, which only runs
951 // on Windows, so we can assume type server paths are Windows style.
952 StringRef pdbName
= sys::path::filename(pdbPath
, sys::path::Style::windows
);
954 // Check if the PDB is in the same folder as the OBJ.
955 SmallString
<128> path
;
956 sys::path::append(path
, sys::path::parent_path(objPath
), pdbName
);
957 if (llvm::sys::fs::exists(path
))
958 return normalizePdbPath(path
);
960 // Check if the PDB is in the output folder.
962 sys::path::append(path
, sys::path::parent_path(outputPath
), pdbName
);
963 if (llvm::sys::fs::exists(path
))
964 return normalizePdbPath(path
);
969 PDBInputFile::PDBInputFile(COFFLinkerContext
&ctx
, MemoryBufferRef m
)
970 : InputFile(ctx
, PDBKind
, m
) {}
972 PDBInputFile::~PDBInputFile() = default;
974 PDBInputFile
*PDBInputFile::findFromRecordPath(const COFFLinkerContext
&ctx
,
977 auto p
= findPdbPath(path
.str(), fromFile
, ctx
.config
.outputFile
);
980 auto it
= ctx
.pdbInputFileInstances
.find(*p
);
981 if (it
!= ctx
.pdbInputFileInstances
.end())
986 void PDBInputFile::parse() {
987 ctx
.pdbInputFileInstances
[mb
.getBufferIdentifier().str()] = this;
989 std::unique_ptr
<pdb::IPDBSession
> thisSession
;
990 Error E
= pdb::NativeSession::createFromPdb(
991 MemoryBuffer::getMemBuffer(mb
, false), thisSession
);
993 loadErrorStr
.emplace(toString(std::move(E
)));
994 return; // fail silently at this point - the error will be handled later,
995 // when merging the debug type stream
998 session
.reset(static_cast<pdb::NativeSession
*>(thisSession
.release()));
1000 pdb::PDBFile
&pdbFile
= session
->getPDBFile();
1001 auto expectedInfo
= pdbFile
.getPDBInfoStream();
1002 // All PDB Files should have an Info stream.
1003 if (!expectedInfo
) {
1004 loadErrorStr
.emplace(toString(expectedInfo
.takeError()));
1007 debugTypesObj
= makeTypeServerSource(ctx
, this);
1010 // Used only for DWARF debug info, which is not common (except in MinGW
1011 // environments). This returns an optional pair of file name and line
1012 // number for where the variable was defined.
1013 std::optional
<std::pair
<StringRef
, uint32_t>>
1014 ObjFile::getVariableLocation(StringRef var
) {
1016 dwarf
= make
<DWARFCache
>(DWARFContext::create(*getCOFFObj()));
1018 return std::nullopt
;
1020 if (ctx
.config
.machine
== I386
)
1021 var
.consume_front("_");
1022 std::optional
<std::pair
<std::string
, unsigned>> ret
=
1023 dwarf
->getVariableLoc(var
);
1025 return std::nullopt
;
1026 return std::make_pair(saver().save(ret
->first
), ret
->second
);
1029 // Used only for DWARF debug info, which is not common (except in MinGW
1031 std::optional
<DILineInfo
> ObjFile::getDILineInfo(uint32_t offset
,
1032 uint32_t sectionIndex
) {
1034 dwarf
= make
<DWARFCache
>(DWARFContext::create(*getCOFFObj()));
1036 return std::nullopt
;
1039 return dwarf
->getDILineInfo(offset
, sectionIndex
);
1042 void ObjFile::enqueuePdbFile(StringRef path
, ObjFile
*fromFile
) {
1043 auto p
= findPdbPath(path
.str(), fromFile
, ctx
.config
.outputFile
);
1046 auto it
= ctx
.pdbInputFileInstances
.emplace(*p
, nullptr);
1048 return; // already scheduled for load
1049 ctx
.driver
.enqueuePDB(*p
);
1052 ImportFile::ImportFile(COFFLinkerContext
&ctx
, MemoryBufferRef m
)
1053 : InputFile(ctx
, ImportKind
, m
), live(!ctx
.config
.doGC
) {}
1055 MachineTypes
ImportFile::getMachineType() const {
1057 reinterpret_cast<const coff_import_header
*>(mb
.getBufferStart())
1059 return MachineTypes(machine
);
1062 ImportThunkChunk
*ImportFile::makeImportThunk() {
1063 switch (hdr
->Machine
) {
1065 return make
<ImportThunkChunkX64
>(ctx
, impSym
);
1067 return make
<ImportThunkChunkX86
>(ctx
, impSym
);
1069 return make
<ImportThunkChunkARM64
>(ctx
, impSym
, ARM64
);
1071 return make
<ImportThunkChunkARM
>(ctx
, impSym
);
1073 llvm_unreachable("unknown machine type");
1076 void ImportFile::parse() {
1078 reinterpret_cast<const coff_import_header
*>(mb
.getBufferStart());
1080 // Check if the total size is valid.
1081 if (mb
.getBufferSize() < sizeof(*hdr
) ||
1082 mb
.getBufferSize() != sizeof(*hdr
) + hdr
->SizeOfData
)
1083 fatal("broken import library");
1085 // Read names and create an __imp_ symbol.
1086 StringRef buf
= mb
.getBuffer().substr(sizeof(*hdr
));
1087 auto split
= buf
.split('\0');
1090 if (isArm64EC(hdr
->Machine
)) {
1091 if (std::optional
<std::string
> demangledName
=
1092 getArm64ECDemangledFunctionName(split
.first
))
1093 name
= saver().save(*demangledName
);
1096 name
= saver().save(split
.first
);
1097 StringRef impName
= saver().save("__imp_" + name
);
1098 dllName
= buf
.split('\0').first
;
1100 switch (hdr
->getNameType()) {
1101 case IMPORT_ORDINAL
:
1107 case IMPORT_NAME_NOPREFIX
:
1108 extName
= ltrim1(name
, "?@_");
1110 case IMPORT_NAME_UNDECORATE
:
1111 extName
= ltrim1(name
, "?@_");
1112 extName
= extName
.substr(0, extName
.find('@'));
1114 case IMPORT_NAME_EXPORTAS
:
1115 extName
= buf
.substr(dllName
.size() + 1).split('\0').first
;
1120 externalName
= extName
;
1122 bool isCode
= hdr
->getType() == llvm::COFF::IMPORT_CODE
;
1124 if (ctx
.config
.machine
!= ARM64EC
) {
1125 impSym
= ctx
.symtab
.addImportData(impName
, this, location
);
1127 // In addition to the regular IAT, ARM64EC also contains an auxiliary IAT,
1128 // which holds addresses that are guaranteed to be callable directly from
1129 // ARM64 code. Function symbol naming is swapped: __imp_ symbols refer to
1130 // the auxiliary IAT, while __imp_aux_ symbols refer to the regular IAT. For
1131 // data imports, the naming is reversed.
1132 StringRef auxImpName
= saver().save("__imp_aux_" + name
);
1134 impSym
= ctx
.symtab
.addImportData(auxImpName
, this, location
);
1135 impECSym
= ctx
.symtab
.addImportData(impName
, this, auxLocation
);
1137 impSym
= ctx
.symtab
.addImportData(impName
, this, location
);
1138 impECSym
= ctx
.symtab
.addImportData(auxImpName
, this, auxLocation
);
1143 StringRef auxImpCopyName
= saver().save("__auximpcopy_" + name
);
1145 ctx
.symtab
.addImportData(auxImpCopyName
, this, auxCopyLocation
);
1149 // If this was a duplicate, we logged an error but may continue;
1150 // in this case, impSym is nullptr.
1154 if (hdr
->getType() == llvm::COFF::IMPORT_CONST
)
1155 static_cast<void>(ctx
.symtab
.addImportData(name
, this, location
));
1157 // If type is function, we need to create a thunk which jump to an
1158 // address pointed by the __imp_ symbol. (This allows you to call
1159 // DLL functions just like regular non-DLL functions.)
1161 if (ctx
.config
.machine
!= ARM64EC
) {
1162 thunkSym
= ctx
.symtab
.addImportThunk(name
, impSym
, makeImportThunk());
1164 thunkSym
= ctx
.symtab
.addImportThunk(
1165 name
, impSym
, make
<ImportThunkChunkX64
>(ctx
, impSym
));
1167 if (std::optional
<std::string
> mangledName
=
1168 getArm64ECMangledFunctionName(name
)) {
1169 StringRef auxThunkName
= saver().save(*mangledName
);
1170 auxThunkSym
= ctx
.symtab
.addImportThunk(
1171 auxThunkName
, impECSym
,
1172 make
<ImportThunkChunkARM64
>(ctx
, impECSym
, ARM64EC
));
1175 StringRef impChkName
= saver().save("__impchk_" + name
);
1176 impchkThunk
= make
<ImportThunkChunkARM64EC
>(this);
1178 ctx
.symtab
.addImportThunk(impChkName
, impSym
, impchkThunk
);
1179 ctx
.driver
.pullArm64ECIcallHelper();
1184 BitcodeFile::BitcodeFile(COFFLinkerContext
&ctx
, MemoryBufferRef mb
,
1185 StringRef archiveName
, uint64_t offsetInArchive
,
1187 : InputFile(ctx
, BitcodeKind
, mb
, lazy
) {
1188 std::string path
= mb
.getBufferIdentifier().str();
1189 if (ctx
.config
.thinLTOIndexOnly
)
1190 path
= replaceThinLTOSuffix(mb
.getBufferIdentifier(),
1191 ctx
.config
.thinLTOObjectSuffixReplace
.first
,
1192 ctx
.config
.thinLTOObjectSuffixReplace
.second
);
1194 // ThinLTO assumes that all MemoryBufferRefs given to it have a unique
1195 // name. If two archives define two members with the same name, this
1196 // causes a collision which result in only one of the objects being taken
1197 // into consideration at LTO time (which very likely causes undefined
1198 // symbols later in the link stage). So we append file offset to make
1200 MemoryBufferRef
mbref(mb
.getBuffer(),
1201 saver().save(archiveName
.empty()
1204 sys::path::filename(path
) +
1205 utostr(offsetInArchive
)));
1207 obj
= check(lto::InputFile::create(mbref
));
1210 BitcodeFile::~BitcodeFile() = default;
1212 void BitcodeFile::parse() {
1213 llvm::StringSaver
&saver
= lld::saver();
1215 std::vector
<std::pair
<Symbol
*, bool>> comdat(obj
->getComdatTable().size());
1216 for (size_t i
= 0; i
!= obj
->getComdatTable().size(); ++i
)
1217 // FIXME: Check nodeduplicate
1219 ctx
.symtab
.addComdat(this, saver
.save(obj
->getComdatTable()[i
].first
));
1220 for (const lto::InputFile::Symbol
&objSym
: obj
->symbols()) {
1221 StringRef symName
= saver
.save(objSym
.getName());
1222 int comdatIndex
= objSym
.getComdatIndex();
1224 SectionChunk
*fakeSC
= nullptr;
1225 if (objSym
.isExecutable())
1226 fakeSC
= &ctx
.ltoTextSectionChunk
.chunk
;
1228 fakeSC
= &ctx
.ltoDataSectionChunk
.chunk
;
1229 if (objSym
.isUndefined()) {
1230 sym
= ctx
.symtab
.addUndefined(symName
, this, false);
1231 if (objSym
.isWeak())
1232 sym
->deferUndefined
= true;
1233 // If one LTO object file references (i.e. has an undefined reference to)
1234 // a symbol with an __imp_ prefix, the LTO compilation itself sees it
1235 // as unprefixed but with a dllimport attribute instead, and doesn't
1236 // understand the relation to a concrete IR symbol with the __imp_ prefix.
1238 // For such cases, mark the symbol as used in a regular object (i.e. the
1239 // symbol must be retained) so that the linker can associate the
1240 // references in the end. If the symbol is defined in an import library
1241 // or in a regular object file, this has no effect, but if it is defined
1242 // in another LTO object file, this makes sure it is kept, to fulfill
1243 // the reference when linking the output of the LTO compilation.
1244 if (symName
.starts_with("__imp_"))
1245 sym
->isUsedInRegularObj
= true;
1246 } else if (objSym
.isCommon()) {
1247 sym
= ctx
.symtab
.addCommon(this, symName
, objSym
.getCommonSize());
1248 } else if (objSym
.isWeak() && objSym
.isIndirect()) {
1250 sym
= ctx
.symtab
.addUndefined(symName
, this, true);
1251 std::string fallback
= std::string(objSym
.getCOFFWeakExternalFallback());
1252 Symbol
*alias
= ctx
.symtab
.addUndefined(saver
.save(fallback
));
1253 checkAndSetWeakAlias(ctx
, this, sym
, alias
, false);
1254 } else if (comdatIndex
!= -1) {
1255 if (symName
== obj
->getComdatTable()[comdatIndex
].first
) {
1256 sym
= comdat
[comdatIndex
].first
;
1257 if (cast
<DefinedRegular
>(sym
)->data
== nullptr)
1258 cast
<DefinedRegular
>(sym
)->data
= &fakeSC
->repl
;
1259 } else if (comdat
[comdatIndex
].second
) {
1260 sym
= ctx
.symtab
.addRegular(this, symName
, nullptr, fakeSC
);
1262 sym
= ctx
.symtab
.addUndefined(symName
, this, false);
1265 sym
= ctx
.symtab
.addRegular(this, symName
, nullptr, fakeSC
, 0,
1268 symbols
.push_back(sym
);
1269 if (objSym
.isUsed())
1270 ctx
.config
.gcroot
.push_back(sym
);
1272 directives
= saver
.save(obj
->getCOFFLinkerOpts());
1275 void BitcodeFile::parseLazy() {
1276 for (const lto::InputFile::Symbol
&sym
: obj
->symbols())
1277 if (!sym
.isUndefined())
1278 ctx
.symtab
.addLazyObject(this, sym
.getName());
1281 MachineTypes
BitcodeFile::getMachineType() const {
1282 Triple
t(obj
->getTargetTriple());
1283 switch (t
.getArch()) {
1284 case Triple::x86_64
:
1291 case Triple::aarch64
:
1292 return t
.isWindowsArm64EC() ? ARM64EC
: ARM64
;
1294 return IMAGE_FILE_MACHINE_UNKNOWN
;
1298 std::string
lld::coff::replaceThinLTOSuffix(StringRef path
, StringRef suffix
,
1300 if (path
.consume_back(suffix
))
1301 return (path
+ repl
).str();
1302 return std::string(path
);
1305 static bool isRVACode(COFFObjectFile
*coffObj
, uint64_t rva
, InputFile
*file
) {
1306 for (size_t i
= 1, e
= coffObj
->getNumberOfSections(); i
<= e
; i
++) {
1307 const coff_section
*sec
= CHECK(coffObj
->getSection(i
), file
);
1308 if (rva
>= sec
->VirtualAddress
&&
1309 rva
<= sec
->VirtualAddress
+ sec
->VirtualSize
) {
1310 return (sec
->Characteristics
& COFF::IMAGE_SCN_CNT_CODE
) != 0;
1316 void DLLFile::parse() {
1317 // Parse a memory buffer as a PE-COFF executable.
1318 std::unique_ptr
<Binary
> bin
= CHECK(createBinary(mb
), this);
1320 if (auto *obj
= dyn_cast
<COFFObjectFile
>(bin
.get())) {
1324 error(toString(this) + " is not a COFF file");
1328 if (!coffObj
->getPE32Header() && !coffObj
->getPE32PlusHeader()) {
1329 error(toString(this) + " is not a PE-COFF executable");
1333 for (const auto &exp
: coffObj
->export_directories()) {
1334 StringRef dllName
, symbolName
;
1336 checkError(exp
.getDllName(dllName
));
1337 checkError(exp
.getSymbolName(symbolName
));
1338 checkError(exp
.getExportRVA(exportRVA
));
1340 if (symbolName
.empty())
1343 bool code
= isRVACode(coffObj
.get(), exportRVA
, this);
1345 Symbol
*s
= make
<Symbol
>();
1346 s
->dllName
= dllName
;
1347 s
->symbolName
= symbolName
;
1348 s
->importType
= code
? ImportType::IMPORT_CODE
: ImportType::IMPORT_DATA
;
1349 s
->nameType
= ImportNameType::IMPORT_NAME
;
1351 if (coffObj
->getMachine() == I386
) {
1352 s
->symbolName
= symbolName
= saver().save("_" + symbolName
);
1353 s
->nameType
= ImportNameType::IMPORT_NAME_NOPREFIX
;
1356 StringRef impName
= saver().save("__imp_" + symbolName
);
1357 ctx
.symtab
.addLazyDLLSymbol(this, s
, impName
);
1359 ctx
.symtab
.addLazyDLLSymbol(this, s
, symbolName
);
1363 MachineTypes
DLLFile::getMachineType() const {
1365 return static_cast<MachineTypes
>(coffObj
->getMachine());
1366 return IMAGE_FILE_MACHINE_UNKNOWN
;
1369 void DLLFile::makeImport(DLLFile::Symbol
*s
) {
1370 if (!seen
.insert(s
->symbolName
).second
)
1373 size_t impSize
= s
->dllName
.size() + s
->symbolName
.size() + 2; // +2 for NULs
1374 size_t size
= sizeof(coff_import_header
) + impSize
;
1375 char *buf
= bAlloc().Allocate
<char>(size
);
1376 memset(buf
, 0, size
);
1378 auto *imp
= reinterpret_cast<coff_import_header
*>(p
);
1381 imp
->Machine
= coffObj
->getMachine();
1382 imp
->SizeOfData
= impSize
;
1383 imp
->OrdinalHint
= 0; // Only linking by name
1384 imp
->TypeInfo
= (s
->nameType
<< 2) | s
->importType
;
1386 // Write symbol name and DLL name.
1387 memcpy(p
, s
->symbolName
.data(), s
->symbolName
.size());
1388 p
+= s
->symbolName
.size() + 1;
1389 memcpy(p
, s
->dllName
.data(), s
->dllName
.size());
1390 MemoryBufferRef mbref
= MemoryBufferRef(StringRef(buf
, size
), s
->dllName
);
1391 ImportFile
*impFile
= make
<ImportFile
>(ctx
, mbref
);
1392 ctx
.symtab
.addFile(impFile
);