1 //===- SyntheticSections.h -------------------------------------*- C++ -*-===//
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
7 //===----------------------------------------------------------------------===//
9 #ifndef LLD_MACHO_SYNTHETIC_SECTIONS_H
10 #define LLD_MACHO_SYNTHETIC_SECTIONS_H
13 #include "ExportTrie.h"
14 #include "InputSection.h"
15 #include "OutputSection.h"
16 #include "OutputSegment.h"
20 #include "llvm/ADT/DenseMap.h"
21 #include "llvm/ADT/Hashing.h"
22 #include "llvm/ADT/MapVector.h"
23 #include "llvm/ADT/SetVector.h"
24 #include "llvm/BinaryFormat/MachO.h"
25 #include "llvm/Support/MathExtras.h"
26 #include "llvm/Support/raw_ostream.h"
28 #include <unordered_map>
34 namespace lld::macho
{
40 class UnwindInfoSection
;
42 class SyntheticSection
: public OutputSection
{
44 SyntheticSection(const char *segname
, const char *name
);
45 virtual ~SyntheticSection() = default;
47 static bool classof(const OutputSection
*sec
) {
48 return sec
->kind() == SyntheticKind
;
52 // This fake InputSection makes it easier for us to write code that applies
53 // generically to both user inputs and synthetics.
57 // All sections in __LINKEDIT should inherit from this.
58 class LinkEditSection
: public SyntheticSection
{
60 LinkEditSection(const char *segname
, const char *name
)
61 : SyntheticSection(segname
, name
) {
62 align
= target
->wordSize
;
65 // Implementations of this method can assume that the regular (non-__LINKEDIT)
66 // sections already have their addresses assigned.
67 virtual void finalizeContents() {}
69 // Sections in __LINKEDIT are special: their offsets are recorded in the
70 // load commands like LC_DYLD_INFO_ONLY and LC_SYMTAB, instead of in section
72 bool isHidden() const final
{ return true; }
74 virtual uint64_t getRawSize() const = 0;
76 // codesign (or more specifically libstuff) checks that each section in
77 // __LINKEDIT ends where the next one starts -- no gaps are permitted. We
78 // therefore align every section's start and end points to WordSize.
80 // NOTE: This assumes that the extra bytes required for alignment can be
82 uint64_t getSize() const final
{ return llvm::alignTo(getRawSize(), align
); }
85 // The header of the Mach-O file, which must have a file offset of zero.
86 class MachHeaderSection final
: public SyntheticSection
{
89 bool isHidden() const override
{ return true; }
90 uint64_t getSize() const override
;
91 void writeTo(uint8_t *buf
) const override
;
93 void addLoadCommand(LoadCommand
*);
96 std::vector
<LoadCommand
*> loadCommands
;
97 uint32_t sizeOfCmds
= 0;
100 // A hidden section that exists solely for the purpose of creating the
101 // __PAGEZERO segment, which is used to catch null pointer dereferences.
102 class PageZeroSection final
: public SyntheticSection
{
105 bool isHidden() const override
{ return true; }
106 bool isNeeded() const override
{ return target
->pageZeroSize
!= 0; }
107 uint64_t getSize() const override
{ return target
->pageZeroSize
; }
108 uint64_t getFileSize() const override
{ return 0; }
109 void writeTo(uint8_t *buf
) const override
{}
112 // This is the base class for the GOT and TLVPointer sections, which are nearly
113 // functionally identical -- they will both be populated by dyld with addresses
114 // to non-lazily-loaded dylib symbols. The main difference is that the
115 // TLVPointerSection stores references to thread-local variables.
116 class NonLazyPointerSectionBase
: public SyntheticSection
{
118 NonLazyPointerSectionBase(const char *segname
, const char *name
);
119 const llvm::SetVector
<const Symbol
*> &getEntries() const { return entries
; }
120 bool isNeeded() const override
{ return !entries
.empty(); }
121 uint64_t getSize() const override
{
122 return entries
.size() * target
->wordSize
;
124 void writeTo(uint8_t *buf
) const override
;
125 void addEntry(Symbol
*sym
);
126 uint64_t getVA(uint32_t gotIndex
) const {
127 return addr
+ gotIndex
* target
->wordSize
;
131 llvm::SetVector
<const Symbol
*> entries
;
134 class GotSection final
: public NonLazyPointerSectionBase
{
139 class TlvPointerSection final
: public NonLazyPointerSectionBase
{
145 const InputSection
*isec
;
148 Location(const InputSection
*isec
, uint64_t offset
)
149 : isec(isec
), offset(offset
) {}
150 uint64_t getVA() const { return isec
->getVA(offset
); }
153 // Stores rebase opcodes, which tell dyld where absolute addresses have been
154 // encoded in the binary. If the binary is not loaded at its preferred address,
155 // dyld has to rebase these addresses by adding an offset to them.
156 class RebaseSection final
: public LinkEditSection
{
159 void finalizeContents() override
;
160 uint64_t getRawSize() const override
{ return contents
.size(); }
161 bool isNeeded() const override
{ return !locations
.empty(); }
162 void writeTo(uint8_t *buf
) const override
;
164 void addEntry(const InputSection
*isec
, uint64_t offset
) {
166 locations
.emplace_back(isec
, offset
);
170 std::vector
<Location
> locations
;
171 SmallVector
<char, 128> contents
;
174 struct BindingEntry
{
177 BindingEntry(int64_t addend
, Location target
)
178 : addend(addend
), target(target
) {}
182 using BindingsMap
= llvm::DenseMap
<Sym
, std::vector
<BindingEntry
>>;
184 // Stores bind opcodes for telling dyld which symbols to load non-lazily.
185 class BindingSection final
: public LinkEditSection
{
188 void finalizeContents() override
;
189 uint64_t getRawSize() const override
{ return contents
.size(); }
190 bool isNeeded() const override
{ return !bindingsMap
.empty(); }
191 void writeTo(uint8_t *buf
) const override
;
193 void addEntry(const Symbol
*dysym
, const InputSection
*isec
, uint64_t offset
,
194 int64_t addend
= 0) {
195 bindingsMap
[dysym
].emplace_back(addend
, Location(isec
, offset
));
199 BindingsMap
<const Symbol
*> bindingsMap
;
200 SmallVector
<char, 128> contents
;
203 // Stores bind opcodes for telling dyld which weak symbols need coalescing.
204 // There are two types of entries in this section:
206 // 1) Non-weak definitions: This is a symbol definition that weak symbols in
207 // other dylibs should coalesce to.
209 // 2) Weak bindings: These tell dyld that a given symbol reference should
210 // coalesce to a non-weak definition if one is found. Note that unlike the
211 // entries in the BindingSection, the bindings here only refer to these
212 // symbols by name, but do not specify which dylib to load them from.
213 class WeakBindingSection final
: public LinkEditSection
{
215 WeakBindingSection();
216 void finalizeContents() override
;
217 uint64_t getRawSize() const override
{ return contents
.size(); }
218 bool isNeeded() const override
{
219 return !bindingsMap
.empty() || !definitions
.empty();
222 void writeTo(uint8_t *buf
) const override
;
224 void addEntry(const Symbol
*symbol
, const InputSection
*isec
, uint64_t offset
,
225 int64_t addend
= 0) {
226 bindingsMap
[symbol
].emplace_back(addend
, Location(isec
, offset
));
229 bool hasEntry() const { return !bindingsMap
.empty(); }
231 void addNonWeakDefinition(const Defined
*defined
) {
232 definitions
.emplace_back(defined
);
235 bool hasNonWeakDefinition() const { return !definitions
.empty(); }
238 BindingsMap
<const Symbol
*> bindingsMap
;
239 std::vector
<const Defined
*> definitions
;
240 SmallVector
<char, 128> contents
;
243 // The following sections implement lazy symbol binding -- very similar to the
244 // PLT mechanism in ELF.
246 // ELF's .plt section is broken up into two sections in Mach-O: StubsSection
247 // and StubHelperSection. Calls to functions in dylibs will end up calling into
248 // StubsSection, which contains indirect jumps to addresses stored in the
249 // LazyPointerSection (the counterpart to ELF's .plt.got).
251 // We will first describe how non-weak symbols are handled.
253 // At program start, the LazyPointerSection contains addresses that point into
254 // one of the entry points in the middle of the StubHelperSection. The code in
255 // StubHelperSection will push on the stack an offset into the
256 // LazyBindingSection. The push is followed by a jump to the beginning of the
257 // StubHelperSection (similar to PLT0), which then calls into dyld_stub_binder.
258 // dyld_stub_binder is a non-lazily-bound symbol, so this call looks it up in
261 // The stub binder will look up the bind opcodes in the LazyBindingSection at
262 // the given offset. The bind opcodes will tell the binder to update the
263 // address in the LazyPointerSection to point to the symbol, so that subsequent
264 // calls don't have to redo the symbol resolution. The binder will then jump to
265 // the resolved symbol.
267 // With weak symbols, the situation is slightly different. Since there is no
268 // "weak lazy" lookup, function calls to weak symbols are always non-lazily
269 // bound. We emit both regular non-lazy bindings as well as weak bindings, in
270 // order that the weak bindings may overwrite the non-lazy bindings if an
271 // appropriate symbol is found at runtime. However, the bound addresses will
272 // still be written (non-lazily) into the LazyPointerSection.
274 // Symbols are always bound eagerly when chained fixups are used. In that case,
275 // StubsSection contains indirect jumps to addresses stored in the GotSection.
276 // The GOT directly contains the fixup entries, which will be replaced by the
277 // address of the target symbols on load. LazyPointerSection and
278 // StubHelperSection are not used.
280 class StubsSection final
: public SyntheticSection
{
283 uint64_t getSize() const override
;
284 bool isNeeded() const override
{ return !entries
.empty(); }
285 void finalize() override
;
286 void writeTo(uint8_t *buf
) const override
;
287 const llvm::SetVector
<Symbol
*> &getEntries() const { return entries
; }
288 // Creates a stub for the symbol and the corresponding entry in the
289 // LazyPointerSection.
290 void addEntry(Symbol
*);
291 uint64_t getVA(uint32_t stubsIndex
) const {
292 assert(isFinal
|| target
->usesThunks());
293 // ConcatOutputSection::finalize() can seek the address of a
294 // stub before its address is assigned. Before __stubs is
295 // finalized, return a contrived out-of-range address.
296 return isFinal
? addr
+ stubsIndex
* target
->stubSize
297 : TargetInfo::outOfRangeVA
;
300 bool isFinal
= false; // is address assigned?
303 llvm::SetVector
<Symbol
*> entries
;
306 class StubHelperSection final
: public SyntheticSection
{
309 uint64_t getSize() const override
;
310 bool isNeeded() const override
;
311 void writeTo(uint8_t *buf
) const override
;
315 DylibSymbol
*stubBinder
= nullptr;
316 Defined
*dyldPrivate
= nullptr;
319 class ObjCSelRefsHelper
{
321 static void initialize();
322 static void cleanup();
324 static ConcatInputSection
*getSelRef(StringRef methname
);
325 static ConcatInputSection
*makeSelRef(StringRef methname
);
328 static llvm::DenseMap
<llvm::CachedHashStringRef
, ConcatInputSection
*>
332 // Objective-C stubs are hoisted objc_msgSend calls per selector called in the
333 // program. Apple Clang produces undefined symbols to each stub, such as
334 // '_objc_msgSend$foo', which are then synthesized by the linker. The stubs
335 // load the particular selector 'foo' from __objc_selrefs, setting it to the
336 // first argument of the objc_msgSend call, and then jumps to objc_msgSend. The
337 // actual stub contents are mirrored from ld64.
338 class ObjCStubsSection final
: public SyntheticSection
{
341 void addEntry(Symbol
*sym
);
342 uint64_t getSize() const override
;
343 bool isNeeded() const override
{ return !symbols
.empty(); }
344 void finalize() override
{ isec
->isFinal
= true; }
345 void writeTo(uint8_t *buf
) const override
;
348 static constexpr llvm::StringLiteral symbolPrefix
= "_objc_msgSend$";
349 static bool isObjCStubSymbol(Symbol
*sym
);
350 static StringRef
getMethname(Symbol
*sym
);
353 std::vector
<Defined
*> symbols
;
354 Symbol
*objcMsgSend
= nullptr;
357 // Note that this section may also be targeted by non-lazy bindings. In
358 // particular, this happens when branch relocations target weak symbols.
359 class LazyPointerSection final
: public SyntheticSection
{
361 LazyPointerSection();
362 uint64_t getSize() const override
;
363 bool isNeeded() const override
;
364 void writeTo(uint8_t *buf
) const override
;
365 uint64_t getVA(uint32_t index
) const {
366 return addr
+ (index
<< target
->p2WordSize
);
370 class LazyBindingSection final
: public LinkEditSection
{
372 LazyBindingSection();
373 void finalizeContents() override
;
374 uint64_t getRawSize() const override
{ return contents
.size(); }
375 bool isNeeded() const override
{ return !entries
.empty(); }
376 void writeTo(uint8_t *buf
) const override
;
377 // Note that every entry here will by referenced by a corresponding entry in
378 // the StubHelperSection.
379 void addEntry(Symbol
*dysym
);
380 const llvm::SetVector
<Symbol
*> &getEntries() const { return entries
; }
383 uint32_t encode(const Symbol
&);
385 llvm::SetVector
<Symbol
*> entries
;
386 SmallVector
<char, 128> contents
;
387 llvm::raw_svector_ostream os
{contents
};
390 // Stores a trie that describes the set of exported symbols.
391 class ExportSection final
: public LinkEditSection
{
394 void finalizeContents() override
;
395 uint64_t getRawSize() const override
{ return size
; }
396 bool isNeeded() const override
{ return size
; }
397 void writeTo(uint8_t *buf
) const override
;
399 bool hasWeakSymbol
= false;
402 TrieBuilder trieBuilder
;
406 // Stores 'data in code' entries that describe the locations of data regions
407 // inside code sections. This is used by llvm-objdump to distinguish jump tables
408 // and stop them from being disassembled as instructions.
409 class DataInCodeSection final
: public LinkEditSection
{
412 void finalizeContents() override
;
413 uint64_t getRawSize() const override
{
414 return sizeof(llvm::MachO::data_in_code_entry
) * entries
.size();
416 void writeTo(uint8_t *buf
) const override
;
419 std::vector
<llvm::MachO::data_in_code_entry
> entries
;
422 // Stores ULEB128 delta encoded addresses of functions.
423 class FunctionStartsSection final
: public LinkEditSection
{
425 FunctionStartsSection();
426 void finalizeContents() override
;
427 uint64_t getRawSize() const override
{ return contents
.size(); }
428 void writeTo(uint8_t *buf
) const override
;
431 SmallVector
<char, 128> contents
;
434 // Stores the strings referenced by the symbol table.
435 class StringTableSection final
: public LinkEditSection
{
437 StringTableSection();
438 // Returns the start offset of the added string.
439 uint32_t addString(StringRef
);
440 uint64_t getRawSize() const override
{ return size
; }
441 void writeTo(uint8_t *buf
) const override
;
443 static constexpr size_t emptyStringIndex
= 1;
446 // ld64 emits string tables which start with a space and a zero byte. We
447 // match its behavior here since some tools depend on it.
448 // Consequently, the empty string will be at index 1, not zero.
449 std::vector
<StringRef
> strings
{" "};
460 uint32_t strx
= StringTableSection::emptyStringIndex
;
465 StabsEntry() = default;
466 explicit StabsEntry(uint8_t type
) : type(type
) {}
469 // Symbols of the same type must be laid out contiguously: we choose to emit
470 // all local symbols first, then external symbols, and finally undefined
471 // symbols. For each symbol type, the LC_DYSYMTAB load command will record the
472 // range (start index and total number) of those symbols in the symbol table.
473 class SymtabSection
: public LinkEditSection
{
475 void finalizeContents() override
;
476 uint32_t getNumSymbols() const;
477 uint32_t getNumLocalSymbols() const {
478 return stabs
.size() + localSymbols
.size();
480 uint32_t getNumExternalSymbols() const { return externalSymbols
.size(); }
481 uint32_t getNumUndefinedSymbols() const { return undefinedSymbols
.size(); }
484 void emitBeginSourceStab(StringRef
);
485 void emitEndSourceStab();
486 void emitObjectFileStab(ObjFile
*);
487 void emitEndFunStab(Defined
*);
488 Defined
*getFuncBodySym(Defined
*);
492 SymtabSection(StringTableSection
&);
494 StringTableSection
&stringTableSection
;
495 // STABS symbols are always local symbols, but we represent them with special
496 // entries because they may use fields like n_sect and n_desc differently.
497 std::vector
<StabsEntry
> stabs
;
498 std::vector
<SymtabEntry
> localSymbols
;
499 std::vector
<SymtabEntry
> externalSymbols
;
500 std::vector
<SymtabEntry
> undefinedSymbols
;
503 template <class LP
> SymtabSection
*makeSymtabSection(StringTableSection
&);
505 // The indirect symbol table is a list of 32-bit integers that serve as indices
506 // into the (actual) symbol table. The indirect symbol table is a
507 // concatenation of several sub-arrays of indices, each sub-array belonging to
508 // a separate section. The starting offset of each sub-array is stored in the
509 // reserved1 header field of the respective section.
511 // These sub-arrays provide symbol information for sections that store
512 // contiguous sequences of symbol references. These references can be pointers
513 // (e.g. those in the GOT and TLVP sections) or assembly sequences (e.g.
515 class IndirectSymtabSection final
: public LinkEditSection
{
517 IndirectSymtabSection();
518 void finalizeContents() override
;
519 uint32_t getNumSymbols() const;
520 uint64_t getRawSize() const override
{
521 return getNumSymbols() * sizeof(uint32_t);
523 bool isNeeded() const override
;
524 void writeTo(uint8_t *buf
) const override
;
527 // The code signature comes at the very end of the linked output file.
528 class CodeSignatureSection final
: public LinkEditSection
{
530 // NOTE: These values are duplicated in llvm-objcopy's MachO/Object.h file
531 // and any changes here, should be repeated there.
532 static constexpr uint8_t blockSizeShift
= 12;
533 static constexpr size_t blockSize
= (1 << blockSizeShift
); // 4 KiB
534 static constexpr size_t hashSize
= 256 / 8;
535 static constexpr size_t blobHeadersSize
= llvm::alignTo
<8>(
536 sizeof(llvm::MachO::CS_SuperBlob
) + sizeof(llvm::MachO::CS_BlobIndex
));
537 static constexpr uint32_t fixedHeadersSize
=
538 blobHeadersSize
+ sizeof(llvm::MachO::CS_CodeDirectory
);
540 uint32_t fileNamePad
= 0;
541 uint32_t allHeadersSize
= 0;
544 CodeSignatureSection();
545 uint64_t getRawSize() const override
;
546 bool isNeeded() const override
{ return true; }
547 void writeTo(uint8_t *buf
) const override
;
548 uint32_t getBlockCount() const;
549 void writeHashes(uint8_t *buf
) const;
552 class CStringSection
: public SyntheticSection
{
554 CStringSection(const char *name
);
555 void addInput(CStringInputSection
*);
556 uint64_t getSize() const override
{ return size
; }
557 virtual void finalizeContents();
558 bool isNeeded() const override
{ return !inputs
.empty(); }
559 void writeTo(uint8_t *buf
) const override
;
561 std::vector
<CStringInputSection
*> inputs
;
567 class DeduplicatedCStringSection final
: public CStringSection
{
569 DeduplicatedCStringSection(const char *name
) : CStringSection(name
){};
570 uint64_t getSize() const override
{ return size
; }
571 void finalizeContents() override
;
572 void writeTo(uint8_t *buf
) const override
;
574 struct StringOffset
{
575 uint8_t trailingZeros
;
576 uint64_t outSecOff
= UINT64_MAX
;
578 explicit StringOffset(uint8_t zeros
) : trailingZeros(zeros
) {}
581 StringOffset
getStringOffset(StringRef str
) const;
584 llvm::DenseMap
<llvm::CachedHashStringRef
, StringOffset
> stringOffsetMap
;
589 * This section contains deduplicated literal values. The 16-byte values are
590 * laid out first, followed by the 8- and then the 4-byte ones.
592 class WordLiteralSection final
: public SyntheticSection
{
594 using UInt128
= std::pair
<uint64_t, uint64_t>;
595 // I don't think the standard guarantees the size of a pair, so let's make
596 // sure it's exact -- that way we can construct it via `mmap`.
597 static_assert(sizeof(UInt128
) == 16);
599 WordLiteralSection();
600 void addInput(WordLiteralInputSection
*);
601 void finalizeContents();
602 void writeTo(uint8_t *buf
) const override
;
604 uint64_t getSize() const override
{
605 return literal16Map
.size() * 16 + literal8Map
.size() * 8 +
606 literal4Map
.size() * 4;
609 bool isNeeded() const override
{
610 return !literal16Map
.empty() || !literal4Map
.empty() ||
611 !literal8Map
.empty();
614 uint64_t getLiteral16Offset(uintptr_t buf
) const {
615 return literal16Map
.at(*reinterpret_cast<const UInt128
*>(buf
)) * 16;
618 uint64_t getLiteral8Offset(uintptr_t buf
) const {
619 return literal16Map
.size() * 16 +
620 literal8Map
.at(*reinterpret_cast<const uint64_t *>(buf
)) * 8;
623 uint64_t getLiteral4Offset(uintptr_t buf
) const {
624 return literal16Map
.size() * 16 + literal8Map
.size() * 8 +
625 literal4Map
.at(*reinterpret_cast<const uint32_t *>(buf
)) * 4;
629 std::vector
<WordLiteralInputSection
*> inputs
;
631 template <class T
> struct Hasher
{
632 llvm::hash_code
operator()(T v
) const { return llvm::hash_value(v
); }
634 // We're using unordered_map instead of DenseMap here because we need to
635 // support all possible integer values -- there are no suitable tombstone
636 // values for DenseMap.
637 std::unordered_map
<UInt128
, uint64_t, Hasher
<UInt128
>> literal16Map
;
638 std::unordered_map
<uint64_t, uint64_t> literal8Map
;
639 std::unordered_map
<uint32_t, uint64_t> literal4Map
;
642 class ObjCImageInfoSection final
: public SyntheticSection
{
644 ObjCImageInfoSection();
645 bool isNeeded() const override
{ return !files
.empty(); }
646 uint64_t getSize() const override
{ return 8; }
647 void addFile(const InputFile
*file
) {
648 assert(!file
->objCImageInfo
.empty());
649 files
.push_back(file
);
651 void finalizeContents();
652 void writeTo(uint8_t *buf
) const override
;
656 uint8_t swiftVersion
= 0;
657 bool hasCategoryClassProperties
= false;
659 static ImageInfo
parseImageInfo(const InputFile
*);
660 std::vector
<const InputFile
*> files
; // files with image info
663 // This section stores 32-bit __TEXT segment offsets of initializer functions.
665 // The compiler stores pointers to initializers in __mod_init_func. These need
666 // to be fixed up at load time, which takes time and dirties memory. By
667 // synthesizing InitOffsetsSection from them, this data can live in the
668 // read-only __TEXT segment instead. This section is used by default when
669 // chained fixups are enabled.
671 // There is no similar counterpart to __mod_term_func, as that section is
672 // deprecated, and static destructors are instead handled by registering them
673 // via __cxa_atexit from an autogenerated initializer function (see D121736).
674 class InitOffsetsSection final
: public SyntheticSection
{
676 InitOffsetsSection();
677 bool isNeeded() const override
{ return !sections
.empty(); }
678 uint64_t getSize() const override
;
679 void writeTo(uint8_t *buf
) const override
;
682 void addInput(ConcatInputSection
*isec
) { sections
.push_back(isec
); }
683 const std::vector
<ConcatInputSection
*> &inputs() const { return sections
; }
686 std::vector
<ConcatInputSection
*> sections
;
689 // This SyntheticSection is for the __objc_methlist section, which contains
690 // relative method lists if the -objc_relative_method_lists option is enabled.
691 class ObjCMethListSection final
: public SyntheticSection
{
693 ObjCMethListSection();
695 static bool isMethodList(const ConcatInputSection
*isec
);
696 void addInput(ConcatInputSection
*isec
) { inputs
.push_back(isec
); }
697 std::vector
<ConcatInputSection
*> getInputs() { return inputs
; }
700 void finalize() override
;
701 bool isNeeded() const override
{ return !inputs
.empty(); }
702 uint64_t getSize() const override
{ return sectionSize
; }
703 void writeTo(uint8_t *bufStart
) const override
;
706 void readMethodListHeader(const uint8_t *buf
, uint32_t &structSizeAndFlags
,
707 uint32_t &structCount
) const;
708 void writeMethodListHeader(uint8_t *buf
, uint32_t structSizeAndFlags
,
709 uint32_t structCount
) const;
710 uint32_t computeRelativeMethodListSize(uint32_t absoluteMethodListSize
) const;
711 void writeRelativeOffsetForIsec(const ConcatInputSection
*isec
, uint8_t *buf
,
712 uint32_t &inSecOff
, uint32_t &outSecOff
,
713 bool useSelRef
) const;
714 uint32_t writeRelativeMethodList(const ConcatInputSection
*isec
,
717 static constexpr uint32_t methodListHeaderSize
=
718 /*structSizeAndFlags*/ sizeof(uint32_t) +
719 /*structCount*/ sizeof(uint32_t);
720 // Relative method lists are supported only for 3-pointer method lists
721 static constexpr uint32_t pointersPerStruct
= 3;
722 // The runtime identifies relative method lists via this magic value
723 static constexpr uint32_t relMethodHeaderFlag
= 0x80000000;
724 // In the method list header, the first 2 bytes are the size of struct
725 static constexpr uint32_t structSizeMask
= 0x0000FFFF;
726 // In the method list header, the last 2 bytes are the flags for the struct
727 static constexpr uint32_t structFlagsMask
= 0xFFFF0000;
728 // Relative method lists have 4 byte alignment as all data in the InputSection
730 static constexpr uint32_t relativeOffsetSize
= sizeof(uint32_t);
732 // The output size of the __objc_methlist section, computed during finalize()
733 uint32_t sectionSize
= 0;
734 std::vector
<ConcatInputSection
*> inputs
;
737 // Chained fixups are a replacement for classic dyld opcodes. In this format,
738 // most of the metadata necessary for binding symbols and rebasing addresses is
739 // stored directly in the memory location that will have the fixup applied.
741 // The fixups form singly linked lists; each one covering a single page in
742 // memory. The __LINKEDIT,__chainfixups section stores the page offset of the
743 // first fixup of each page; the rest can be found by walking the chain using
744 // the offset that is embedded in each entry.
746 // This setup allows pages to be relocated lazily at page-in time and without
747 // being dirtied. The kernel can discard and load them again as needed. This
748 // technique, called page-in linking, was introduced in macOS 13.
750 // The benefits of this format are:
751 // - smaller __LINKEDIT segment, as most of the fixup information is stored in
753 // - faster startup, since not all relocations need to be done upfront
754 // - slightly lower memory usage, as fewer pages are dirtied
756 // Userspace x86_64 and arm64 binaries have two types of fixup entries:
757 // - Rebase entries contain an absolute address, to which the object's load
758 // address will be added to get the final value. This is used for loading
759 // the address of a symbol defined in the same binary.
760 // - Binding entries are mostly used for symbols imported from other dylibs,
761 // but for weakly bound and interposable symbols as well. They are looked up
762 // by a (symbol name, library) pair stored in __chainfixups. This import
763 // entry also encodes whether the import is weak (i.e. if the symbol is
764 // missing, it should be set to null instead of producing a load error).
765 // The fixup encodes an ordinal associated with the import, and an optional
768 // The entries are tightly packed 64-bit bitfields. One of the bits specifies
769 // which kind of fixup to interpret them as.
771 // LLD generates the fixup data in 5 stages:
772 // 1. While scanning relocations, we make a note of each location that needs
773 // a fixup by calling addRebase() or addBinding(). During this, we assign
774 // a unique ordinal for each (symbol name, library, addend) import tuple.
775 // 2. After addresses have been assigned to all sections, and thus the memory
776 // layout of the linked image is final; finalizeContents() is called. Here,
777 // the page offsets of the chain start entries are calculated.
778 // 3. ChainedFixupsSection::writeTo() writes the page start offsets and the
779 // imports table to the output file.
780 // 4. Each section's fixup entries are encoded and written to disk in
781 // ConcatInputSection::writeTo(), but without writing the offsets that form
783 // 5. Finally, each page's (which might correspond to multiple sections)
784 // fixups are linked together in Writer::buildFixupChains().
785 class ChainedFixupsSection final
: public LinkEditSection
{
787 ChainedFixupsSection();
788 void finalizeContents() override
;
789 uint64_t getRawSize() const override
{ return size
; }
790 bool isNeeded() const override
;
791 void writeTo(uint8_t *buf
) const override
;
793 void addRebase(const InputSection
*isec
, uint64_t offset
) {
794 locations
.emplace_back(isec
, offset
);
796 void addBinding(const Symbol
*dysym
, const InputSection
*isec
,
797 uint64_t offset
, int64_t addend
= 0);
799 void setHasNonWeakDefinition() { hasNonWeakDef
= true; }
801 // Returns an (ordinal, inline addend) tuple used by dyld_chained_ptr_64_bind.
802 std::pair
<uint32_t, uint8_t> getBinding(const Symbol
*sym
,
803 int64_t addend
) const;
805 const std::vector
<Location
> &getLocations() const { return locations
; }
807 bool hasWeakBinding() const { return hasWeakBind
; }
808 bool hasNonWeakDefinition() const { return hasNonWeakDef
; }
811 // Location::offset initially stores the offset within an InputSection, but
812 // contains output segment offsets after finalizeContents().
813 std::vector
<Location
> locations
;
814 // (target symbol, addend) => import ordinal
815 llvm::MapVector
<std::pair
<const Symbol
*, int64_t>, uint32_t> bindings
;
818 SegmentInfo(const OutputSegment
*oseg
) : oseg(oseg
) {}
820 const OutputSegment
*oseg
;
821 // (page index, fixup starts offset)
822 llvm::SmallVector
<std::pair
<uint16_t, uint16_t>> pageStarts
;
824 size_t getSize() const;
825 size_t writeTo(uint8_t *buf
) const;
827 llvm::SmallVector
<SegmentInfo
, 4> fixupSegments
;
829 size_t symtabSize
= 0;
832 bool needsAddend
= false;
833 bool needsLargeAddend
= false;
834 bool hasWeakBind
= false;
835 bool hasNonWeakDef
= false;
836 llvm::MachO::ChainedImportFormat importFormat
;
839 void writeChainedRebase(uint8_t *buf
, uint64_t targetVA
);
840 void writeChainedFixup(uint8_t *buf
, const Symbol
*sym
, int64_t addend
);
843 const uint8_t *bufferStart
= nullptr;
844 MachHeaderSection
*header
= nullptr;
845 CStringSection
*cStringSection
= nullptr;
846 DeduplicatedCStringSection
*objcMethnameSection
= nullptr;
847 WordLiteralSection
*wordLiteralSection
= nullptr;
848 RebaseSection
*rebase
= nullptr;
849 BindingSection
*binding
= nullptr;
850 WeakBindingSection
*weakBinding
= nullptr;
851 LazyBindingSection
*lazyBinding
= nullptr;
852 ExportSection
*exports
= nullptr;
853 GotSection
*got
= nullptr;
854 TlvPointerSection
*tlvPointers
= nullptr;
855 LazyPointerSection
*lazyPointers
= nullptr;
856 StubsSection
*stubs
= nullptr;
857 StubHelperSection
*stubHelper
= nullptr;
858 ObjCStubsSection
*objcStubs
= nullptr;
859 UnwindInfoSection
*unwindInfo
= nullptr;
860 ObjCImageInfoSection
*objCImageInfo
= nullptr;
861 ConcatInputSection
*imageLoaderCache
= nullptr;
862 InitOffsetsSection
*initOffsets
= nullptr;
863 ObjCMethListSection
*objcMethList
= nullptr;
864 ChainedFixupsSection
*chainedFixups
= nullptr;
868 extern std::vector
<SyntheticSection
*> syntheticSections
;
870 void createSyntheticSymbols();
872 } // namespace lld::macho