Revert "[libc] Use best-fit binary trie to make malloc logarithmic" (#117065)
[llvm-project.git] / mlir / docs / Bufferization.md
blobe16fe91212a1a508f1db37840e3f81de4e7d6250
1 # Bufferization
3 [TOC]
5 ## Overview
7 Bufferization in MLIR is the process of converting ops with `tensor` semantics
8 to ops with `memref` semantics. There are multiple MLIR passes that are related
9 to bufferization. These passes typically run as one of the last steps in a
10 pass pipeline, right before lowering to `memref` ops to LLVM. That is because
11 many transformations are easier or only supported in tensor land; e.g.,
12 [tile/fuse/… on tensors first](https://llvm.discourse.group/t/rfc-linalg-on-tensors-update-and-comprehensive-bufferization-rfc/3373),
13 then bufferize the remaining IR.
15 ![bufferization passes](/includes/img/bufferization_passes.svg)
17 The most important bufferization pass is *One-Shot Bufferize*: This pass
18 rewrites `tensor` IR to `memref` IR. There are additional helper passes that
19 preprocess IR (e.g., so that IR can be bufferized more efficiently), perform
20 buffer-level optimizations such as allocation hoisting, and
21 [insert buffer deallocation ops](OwnershipBasedBufferDeallocation.md) so that
22 the resulting `memref` IR has no memory leaks.
24 ## Deprecated Passes
26 The buffer deallocation pass has been deprecated in favor of the ownership-based
27 buffer deallocation pipeline. The deprecated pass has some limitations that may
28 cause memory leaks in the resulting IR.
30 ## What is One-Shot Bufferize?
32 One-Shot Bufferize is a tensor bufferization pass designed for IR in
33 [destination-passing style](https://www.microsoft.com/en-us/research/wp-content/uploads/2016/11/dps-fhpc17.pdf),
34 and with aggressive in-place bufferization.
36 One-Shot Bufferize is:
38 *   **Monolithic**: A single MLIR pass does the entire work.
40 *   **Extensible** via an op interface: All ops that implement
41     `BufferizableOpInterface` can be bufferized.
43 *   A **whole-function at a time analysis**. In-place bufferization decisions
44     are made by analyzing SSA use-def chains on tensors. Op interface
45     implementations not only provide the rewrite logic from tensor ops to memref
46     ops, but also helper methods for One-Shot Bufferize's analysis to query
47     information about an op's bufferization/memory semantics.
49 *   **2-Phase**: Bufferization is internally broken down into 2 steps: First,
50     analyze the entire IR and make bufferization decisions. Then, bufferize
51     (rewrite) the IR. The analysis has access to exact SSA use-def information.
52     It incrementally builds alias and equivalence sets and does not rely on a
53     posteriori-alias analysis from preallocated memory.
55 *   **Greedy**: Operations are analyzed one-by-one and it is decided on the spot
56     whether a tensor OpOperand must be copied or not. Heuristics determine the
57     order of analysis.
59 *   **Modular**: The current One-Shot Analysis can be replaced with a different
60     analysis. The result of the analysis are queried by the bufferization via
61     `AnalysisState`, in particular `AnalysisState::isInPlace`. Any derived class
62     of `AnalysisState` that implements a small number virtual functions can
63     serve as a custom analysis. It is even possible to run One-Shot Bufferize
64     without any analysis (`AlwaysCopyAnalysisState`), in which case One-Shot
65     Bufferize copies every buffer before writing to it.
67 Note that One-Shot Bufferize does not deallocate buffers. That is done by the
68 [Ownership-based Buffer Deallocation passes](OwnershipBasedBufferDeallocation.md).
70 ## Goals of Bufferization
72 The high-level goal of every bufferization technique is to:
74 1. Use as little memory as possible.
75 2. Copy as little memory as possible.
77 This implies reusing already allocated buffers when possible, turning
78 bufferization into an algorithmically complex problem with similarities to
79 register allocation.
81 Depending on the concrete use case, there may be additional bufferization
82 requirements. If the contents of a buffer are expensive to compute, there could
83 be a tradeoff between *recomputation* and *compute once and copy*. On the
84 contrary, it may not even be possible to allocate new buffers at runtime on some
85 architectures.
87 ## Destination-Passing Style
89 Bufferization is an algorithmically complex problem. Given an op with a tensor
90 result, bufferization has to choose a memref buffer in which the result can be
91 stored. It is always safe to allocate a brand new buffer, but such a
92 bufferization strategy would be unacceptable for high-performance codegen. When
93 choosing an already existing buffer, we must be careful not to accidentally
94 overwrite data that is still needed later in the program.
96 To simplify this problem, One-Shot Bufferize was designed to take advantage of
97 *destination-passing style* (DPS). In MLIR, DPS op should implement the
98 [`DestinationStyleOpInterface`](https://github.com/llvm/llvm-project/blob/792d437b56adfb3416daf8105942d4899fb82763/mlir/include/mlir/Interfaces/DestinationStyleOpInterface.td).
99 DPS exists in itself independently of bufferization and is tied to SSA
100 semantics: many ops are "updating" a part of their input SSA variables. For
101 example the LLVM instruction
102 [`insertelement`](https://llvm.org/docs/LangRef.html#insertelement-instruction)
103 is inserting an element inside a vector. Since SSA values are immutable, the
104 operation returns a copy of the input vector with the element inserted.
105 Another example in MLIR is `linalg.generic` on tensors, which always has an
106 extra `outs` operand for each result, which provides the initial values to
107 update (for example when the operation is doing a reduction).
109 `outs` operands are referred to as "destinations" in the following (quotes are
110 important as this operand isn't modified in place but copied) and comes into
111 place in the context of bufferization as a possible "anchor" for the
112 bufferization algorithm. This allows the user to shape the input in a form that
113 guarantees close to optimal bufferization result when carefully choosing the
114 SSA value used as "destination".
116 For every tensor result, a DPS op has a corresponding tensor operand. If there
117 aren't any other conflicting uses of this tensor, the bufferization can alias
118 it with the op result and perform the operation "in-place" by reusing the buffer
119 allocated for this "destination" input.
121 As an example, consider the following op: `%r = tensor.insert %f into
122 %t[%idx] : tensor<5xf32>`
124 ![tensor.insert example](/includes/img/bufferization_tensor_insert_dst.svg)
126 `%t` is the "destination" in this example. When choosing a buffer for the result
127 `%r`, denoted as `buffer(%r)`, One-Shot Bufferize considers only two options:
129 1.  `buffer(%r) = buffer(%t)`: store the result in the existing `buffer(%t)`.
130     Note that this is not always possible. E.g., if the old contents of
131     `buffer(%t)` are still needed. One-Shot Bufferize's main task is to detect
132     such cases and fall back to the second option when necessary.
133 2.  `buffer(%r)` is a newly allocated buffer.
135 There may be other buffers in the same function that could potentially be used
136 for `buffer(%r)`, but those are not considered by One-Shot Bufferize to keep the
137 bufferization simple. One-Shot Bufferize could be extended to consider such
138 buffers in the future to achieve a better quality of bufferization.
140 Tensor ops that are not in destination-passing style always bufferized to a
141 memory allocation. E.g.:
143 ```mlir
144 %0 = tensor.generate %sz {
145 ^bb0(%i : index):
146   %cst = arith.constant 0.0 : f32
147   tensor.yield %cst : f32
148 } : tensor<?xf32>
151 The result of `tensor.generate` does not have a "destination" operand, so
152 bufferization allocates a new buffer. This could be avoided by instead using an
153 op such as `linalg.generic`, which can express the same computation with a
154 "destination" operand, as specified behind outputs (`outs`):
156 ```mlir
157 #map = affine_map<(i) -> (i)>
158 %0 = linalg.generic {indexing_maps = [#map], iterator_types = ["parallel"]}
159                     outs(%t : tensor<?xf32>) {
160   ^bb0(%arg0 : f32):
161     %cst = arith.constant 0.0 : f32
162     linalg.yield %cst : f32
163 } -> tensor<?xf32>
166 At first glance, the above `linalg.generic` op may not seem very useful because
167 the output tensor `%t` is entirely overwritten. Why pass the tensor `%t` as an
168 operand in the first place? As an example, this can be useful for overwriting a
169 slice of a tensor:
171 ```mlir
172 %t = tensor.extract_slice %s [%idx] [%sz] [1] : tensor<?xf32> to tensor<?xf32>
173 %0 = linalg.generic ... outs(%t) { ... } -> tensor<?xf32>
174 %1 = tensor.insert_slice %0 into %s [%idx] [%sz] [1]
175     : tensor<?xf32> into tensor<?xf32>
178 The above example bufferizes to a `memref.subview`, followed by a
179 "`linalg.generic` on memrefs" that overwrites the memory of the subview, assuming
180 that the slice `%t` has no other user. The `tensor.insert_slice` then bufferizes
181 to a no-op (in the absence of RaW conflicts such as a subsequent read of `%s`).
183 RaW conflicts are detected with an analysis of SSA use-def chains (details
184 later). One-Shot Bufferize works best if there is a single SSA use-def chain,
185 where the result of a tensor op is the operand of the next tensor ops, e.g.:
187 ```mlir
188 %0 = "my_dialect.some_op"(%t) : (tensor<?xf32>) -> (tensor<?xf32>)
189 %1 = "my_dialect.another_op"(%0) : (tensor<?xf32>) -> (tensor<?xf32>)
190 %2 = "my_dialect.yet_another_op"(%1) : (tensor<?xf32>) -> (tensor<?xf32>)
193 Buffer copies are likely inserted if the SSA use-def chain splits at some point,
194 e.g.:
196 ```mlir
197 %0 = "my_dialect.some_op"(%t) : (tensor<?xf32>) -> (tensor<?xf32>)
198 %1 = "my_dialect.another_op"(%0) : (tensor<?xf32>) -> (tensor<?xf32>)
200 // "yet_another_op" likely needs to read the data of %0, so "another_op" cannot
201 // in-place write to buffer(%0).
202 %2 = "my_dialect.yet_another_op"(%0) : (tensor<?xf32>) -> (tensor<?xf32>)
205 ## Tensor / MemRef Boundary
207 The bufferization dialect provides a few helper ops to connect tensor IR (that
208 should be bufferized) with existing buffers (that may be allocated/provided by
209 a different runtime/library/etc.).
211 `bufferization.to_memref %t` returns the future buffer of a tensor SSA value.
212 `bufferization.to_tensor %m` returns a tensor SSA value for a given MemRef
213 buffer. `bufferization.materialize_in_destination` indicates that a tensor value
214 should materialize in a certain buffer.
216 Consider the following example, where a TOSA matmul result should materialize in
217 an existing buffer `%C`:
219 ```mlir
220 // Batched TOSA matrix multiplication. %A and %B are the
221 // inputs, %C is the output.
222 func.func @test_matmul(%A: memref<1x17x19xf32>,
223                        %B: memref<1x19x29xf32>,
224                        %C: memref<1x17x29xf32>) {
226   %A_tensor = bufferization.to_tensor %A restrict : memref<1x17x19xf32>
227   %B_tensor = bufferization.to_tensor %B restrict : memref<1x19x29xf32>
229   %0 = tosa.matmul %A_tensor, %B_tensor
230       : (tensor<1x17x19xf32>, tensor<1x19x29xf32>) ->
231          tensor<1x17x29xf32>
233   bufferization.materialize_in_destination
234     %0 in restrict writable %C
235       : (tensor<1x17x29xf32>, memref<1x17x29xf32>) -> ()
237   return
241 Note that all bufferization ops in this example have the `restrict` unit
242 attribute set. This attribute is similar to the C restrict keyword and indicates
243 that there is no other `to_tensor` or `materialize_in_destination` op with
244 the same or an aliasing MemRef operand. Only such
245 `to_tensor`/`materialize_in_destination` ops are supported. The `restrict`
246 attribute gives strong aliasing guarantees to the bufferization analysis and
247 allows us to look only at the tensor IR in a program. (Ops that do not operate
248 on tensors are ignored by the One-Shot Bufferize.)
250 Also note that `tosa.matmul` cannot be bufferized as is: there is no
251 `BufferizableOpInterface` implementation for that op. However, the op can be
252 lowered to a combination of `tensor.empty` and `linalg.matmul`, which can be
253 bufferized.
255 ## Using One-Shot Bufferize
257 MLIR provides a pass
258 [`-one-shot-bufferize`](https://mlir.llvm.org/docs/Passes/#-one-shot-bufferize-one-shot-bufferize)
259 that performs an analysis and bufferizes all ops with tensor semantics that
260 implement `BufferizableOpInterface`. For modularity reasons, these op interface
261 implementations are typically external models that live in a dialect's
262 "Transforms" build unit. (External models are a mechanism for implementing an op
263 interface in a different build unit.) It is the user's responsibility to ensure
264 that all needed external models are registered before running One-Shot
265 Bufferize.
267 By default, One-Shot Bufferize fails when it encounters an op with tensor
268 semantics (i.e., tensor result or tensor operand) that is not bufferizable
269 (i.e., does not implement `BufferizableOpInterface`). This can be avoided with
270 `allow-unknown-ops`. In that case, One-Shot Bufferize inserts
271 `to_memref`/`to_tensor` ops around the bufferization boundary.
273 One-Shot Bufferize can be configured to bufferize only ops from a set of
274 dialects with `dialect-filter`.
276 One-Shot Bufferize can also be called programmatically with
277 [`bufferization::runOneShotBufferize`](https://github.com/llvm/llvm-project/blob/ae2764e835a26bad9774803eca0a6530df2a3e2d/mlir/include/mlir/Dialect/Bufferization/Transforms/OneShotAnalysis.h#L167).
278 Alternatively,
279 [`bufferization::bufferizeOp`](https://github.com/llvm/llvm-project/blob/ae2764e835a26bad9774803eca0a6530df2a3e2d/mlir/include/mlir/Dialect/Bufferization/Transforms/Bufferize.h#L78)
280 skips the analysis and inserts a copy on every buffer write.
282 By default, function boundaries are not bufferized. This is because there are
283 currently limitations around function graph bufferization: recursive
284 calls are not supported. As long as there are no recursive calls, function
285 boundary bufferization can be enabled with `bufferize-function-boundaries`. Each
286 tensor function argument and tensor function result is then turned into a
287 memref. The layout map of the memref type can be controlled with
288 `function-boundary-type-conversion`.
290 ## Memory Layouts
292 One-Shot Bufferize bufferizes ops from top to bottom. This works well when all
293 ops are bufferizable. However, when encountering a non-bufferizable tensor with
294 `allow-unknown-ops`, One-Shot Bufferize must insert `to_memref` ops at the
295 bufferization boundary and decide on a memref type. By default, One-Shot
296 Bufferize choose the most dynamic memref type wrt. layout maps. E.g.:
298 ```mlir
299 %0 = "my_dialect.unbufferizable_op(%t) : (tensor<?x?xf32>) -> (tensor<?x?xf32>)
300 %1 = tensor.extract %0[%idx1, %idx2] : tensor<?xf32>
303 When bufferizing the above IR, One-Shot Bufferize inserts a `to_memref` ops with
304 dynamic offset and strides:
306 ```mlir
307 %0 = "my_dialect.unbufferizable_op(%t) : (tensor<?x?xf32>) -> (tensor<?x?xf32>)
308 %0_m = bufferization.to_memref %0 : memref<?x?xf32, strided<[?, ?], offset: ?>>
309 %1 = memref.load %0_m[%idx1, %idx2] : memref<?x?xf32, strided<[?, ?], offset: ?>>
312 All users of `%0` have fully dynamic layout maps. This ensures that the
313 bufferized IR composes well with future bufferizations of `unbufferizable_op`
314 (maybe bufferized by another pass), regardless of the exact memref type of the
315 future bufferization. If the op turns out to be bufferized to an op with a
316 simpler memref type (e.g., identity layout map), we expect that canonicalization
317 patterns would clean up unnecessarily dynamic layout maps. (Some of these
318 canonicalization patterns may not be implemented yet.)
320 One-Shot Bufferize tries to infer the most precise memref type when bufferizing
321 an op. If the entire IR is bufferizable, we do not have to resort to
322 conservatively use fully dynamic layout maps. In that case, we also do not have
323 to rely on canonicalization patterns to clean up the bufferized IR.
325 Note: There are some bufferizable ops for which a percise layout map cannot be
326 inferred. E.g., a `tensor.cast` from a `tensor<*xf32>` to a `tensor<?x?xf32>`
327 must be bufferized to a `memref.cast` with a memref type that has a fully
328 dynamic layout map.
330 One-Shot Bufferize has an option `unknown-type-conversion` to control the
331 generation of layout maps when no precise layout can be inferred:
333 *   `fully-dynamic-layout-map` uses fully dynamic layout maps and is the default
334     behavior. This composes well when IR is partially bufferized.
335 *   `identity-layout-map` uses static identity layout maps. This option can be
336     useful for legacy code that cannot handle memref types with layout maps.
337     Note that this setting can lead to additional buffer copies when folding a
338     `to_tensor`/`to_memref` pair with memref types that are not cast-compatible.
340 Note: The `unknown-type-conversion` option does not affect layout maps of
341 function signatures. There is a separate `function-signature-type-conversion`
342 option that controls layout maps of function parameters and function results.
344 ## Extending One-Shot Bufferize
346 Custom ops can be bufferized if they implement `BufferizableOpInterface`. Users
347 must at least implement the following interface methods.
349 *   `bufferizesToMemoryRead`: Return `true` if the buffer of the given tensor
350     OpOperand is read.
351 *   `bufferizesToMemoryWrite`: Return `true` if the buffer of the given tensor
352     OpOperand is written (if bufferizing in-place).
353 *   `getAliasingOpResult`: Return the OpResults that may share the same buffer
354     as the given OpOperand. This interface method describes to
355     OpOperand-to-OpResult mapping wrt. destination-passing style.
356 *   `bufferRelation`: Return `BufferRelation::Equivalent` if the given OpResult
357     is the exact same memref as the aliasing OpOperand after bufferization (in
358     case of in-place bufferization). Otherwise, (e.g., they overlap but are not
359     necessarily the exact same memrefs), `BufferRelation::Unknown` should be
360     returned. Additional buffer relations will be added in the future, but
361     `BufferRelation::Unknown` is always safe.
362 *   `bufferize`: Rewrite the op with the given rewriter. Ops should be replaced
363     with `bufferization::replaceOpWithBufferizedValues`.
365 To get a better intuition of the interface methods, we invite users to take a
366 look at existing implementations in MLIR, e.g., the implementation of
367 `tensor.insert` or `tensor.extract`.
369 Interface implementations of DPS ops (that implement
370 `DestinationStyleOpInterface`) can derive from
371 `DstBufferizableOpInterfaceExternalModel`, which provides all necessary
372 method implementations except for `bufferize`.
374 ## Debugging Buffer Copies
376 To get a better understanding of why One-Shot Bufferize introduced a buffer
377 copy, users can run the pass with `test-analysis-only print-conflicts`. Every
378 tensor op is then annotated with an attribute that has a boolean value for each
379 tensor OpOperand. `true` means that the OpOperand bufferizes in-place. `false`
380 means that the OpOperand bufferizes out-of-place and a buffer copy will be
381 inserted.
383 There are two reasons why a buffer copy may be inserted.
385 1.  Due to a RaW conflict, it is not safe to bufferize in-place. I.e., the
386     overwritten data is still needed.
387 2.  The buffer is not writable. E.g., `memref.global` buffers that are the
388     result of `arith.constant` ops are never modified.
390 In the first case, `print-conflicts` illustrates the conflict in the form of a
391 ("read", "conflicting write", "last write") tuple.
393 A RaW conflict consists of three parts, in the following order according to
394 op dominance:
396 1. **Definition:** A tensor `%t` is defined.
397 2. **Conflicting Write:** An operation writes to `buffer(%t)`.
398 3. **Read:** An operation reads `%t`.
400 When such a RaW conflict is detected during the analysis phase, One-Shot
401 Bufferize will insert a buffer copy for the conflicting write.
403 **Example**
405 ```mlir
406 // RUN: mlir-opt %s -one-shot-bufferize="bufferize-function-boundaries test-analysis-only print-conflicts"
407 func.func @test(%arg0: f32, %arg1: f32, %arg2: index, %arg3: index) -> (f32, tensor<3xf32>) {
408   // Create a new tensor with [%arg0, %arg0, %arg0].
409   %0 = tensor.from_elements %arg0, %arg0, %arg0 : tensor<3xf32>
411   // Insert something into the new tensor.
412   %1 = tensor.insert %arg1 into %0[%arg2] : tensor<3xf32>
414   // Read from the old tensor.
415   %r = tensor.extract %0[%arg3] : tensor<3xf32>
417   // Return the extracted value and the result of the insertion.
418   func.return %r, %1 : f32, tensor<3xf32>
422 The output IR is as follows:
424 ```mlir
425 func.func @test(%arg0: f32, %arg1: f32, %arg2: index, %arg3: index) -> (f32, tensor<3xf32>) {
426   %from_elements = tensor.from_elements %arg0, %arg0, %arg0 {"C_0[DEF: result 0]"} : tensor<3xf32>
427   %inserted = tensor.insert %arg1 into %from_elements[%arg2] {"C_0[CONFL-WRITE: 1]", __inplace_operands_attr__ = ["none", "false", "none"]} : tensor<3xf32>
428   %extracted = tensor.extract %from_elements[%arg3] {"C_0[READ: 0]", __inplace_operands_attr__ = ["true", "none"]} : tensor<3xf32>
429   return {__inplace_operands_attr__ = ["none", "true"]} %extracted, %inserted : f32, tensor<3xf32>
433 Note that the IR was not bufferized. It was merely annotated with the results
434 of the bufferization analysis. Every operation with tensor semantics has a
435 `__inplace_operands_attr__` attribute with one value per operand. If an operand
436 is not a tensor, the respective value is `none`. Otherwise, if the operand was
437 decided to be bufferized in-place, the value is `true`. A value of `false`
438 indicates a buffer copy. In the above example, a buffer copy would be inserted
439 for `tensor.insert`, so that it does not overwrite `buffer(%from_elements)`,
440 which is still needed for `tensor.extract`.
442 For each RaW (there is only one in the example), three `C_i` attributes were
443 added:
445 * `C_0[DEF: result 0]`: A tensor is defined: 0-th result of
446   `tensor.from_elements`.
447 * `C_0[CONFL-WRITE: 1]`: An operation (if bufferized in-place) would write into
448   the future buffer of the defined tensor: 1-st operand of `tensor.insert`.
449 * `C_0[READ: 0]`: An operation reads the tensor definition: 0-th operand of
450   `tensor.extract`.
452 The fully bufferized IR (with the inserted buffer copy) is as follows:
454 ```mlir
455 func.func @test(%arg0: f32, %arg1: f32, %arg2: index, %arg3: index) -> (f32, memref<3xf32>) {
456   %c2 = arith.constant 2 : index
457   %c1 = arith.constant 1 : index
458   %c0 = arith.constant 0 : index
459   %alloc = memref.alloc() {alignment = 64 : i64} : memref<3xf32>
460   memref.store %arg0, %alloc[%c0] : memref<3xf32>
461   memref.store %arg0, %alloc[%c1] : memref<3xf32>
462   memref.store %arg0, %alloc[%c2] : memref<3xf32>
463   %alloc_0 = memref.alloc() {alignment = 64 : i64} : memref<3xf32>
464   memref.copy %alloc, %alloc_0 : memref<3xf32> to memref<3xf32>
465   memref.store %arg1, %alloc_0[%arg2] : memref<3xf32>
466   %0 = memref.load %alloc[%arg3] : memref<3xf32>
467   return %0, %alloc_0 : f32, memref<3xf32>
471 To get a better understanding of the SSA Use-Def Chain Analysis and the RaW
472 conflict detection algorithm, interested users may want to refer to:
474 * [Original design document](https://discourse.llvm.org/uploads/short-url/5kckJ3DftYwQokG252teFgw3sYa.pdf)
475 * [ODM talk](https://youtu.be/TXEo59CYS9A), ([slides](https://mlir.llvm.org/OpenMeetings/2022-01-13-One-Shot-Bufferization.pdf)).
476 * [LLVM Dev Meeting 2023 tutorial slides](https://m-sp.org/downloads/llvm_dev_2023.pdf)