1 //===----- CGCUDANV.cpp - Interface to NVIDIA CUDA Runtime ----------------===//
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
7 //===----------------------------------------------------------------------===//
9 // This provides a class for CUDA code generation targeting the NVIDIA CUDA
12 //===----------------------------------------------------------------------===//
14 #include "CGCUDARuntime.h"
16 #include "CodeGenFunction.h"
17 #include "CodeGenModule.h"
18 #include "clang/AST/CharUnits.h"
19 #include "clang/AST/Decl.h"
20 #include "clang/Basic/Cuda.h"
21 #include "clang/CodeGen/CodeGenABITypes.h"
22 #include "clang/CodeGen/ConstantInitBuilder.h"
23 #include "llvm/ADT/StringRef.h"
24 #include "llvm/Frontend/Offloading/Utility.h"
25 #include "llvm/IR/BasicBlock.h"
26 #include "llvm/IR/Constants.h"
27 #include "llvm/IR/DerivedTypes.h"
28 #include "llvm/IR/ReplaceConstant.h"
29 #include "llvm/Support/Format.h"
30 #include "llvm/Support/VirtualFileSystem.h"
32 using namespace clang
;
33 using namespace CodeGen
;
36 constexpr unsigned CudaFatMagic
= 0x466243b1;
37 constexpr unsigned HIPFatMagic
= 0x48495046; // "HIPF"
39 class CGNVCUDARuntime
: public CGCUDARuntime
{
41 /// The prefix used for function calls and section names (CUDA, HIP, LLVM)
43 /// TODO: We should transition the OpenMP section to LLVM/Offload
44 StringRef SectionPrefix
;
47 llvm::IntegerType
*IntTy
, *SizeTy
;
49 llvm::PointerType
*PtrTy
;
51 /// Convenience reference to LLVM Context
52 llvm::LLVMContext
&Context
;
53 /// Convenience reference to the current module
54 llvm::Module
&TheModule
;
55 /// Keeps track of kernel launch stubs and handles emitted in this module
57 llvm::Function
*Kernel
; // stub function to help launch kernel
60 llvm::SmallVector
<KernelInfo
, 16> EmittedKernels
;
61 // Map a kernel mangled name to a symbol for identifying kernel in host code
62 // For CUDA, the symbol for identifying the kernel is the same as the device
63 // stub function. For HIP, they are different.
64 llvm::DenseMap
<StringRef
, llvm::GlobalValue
*> KernelHandles
;
65 // Map a kernel handle to the kernel stub.
66 llvm::DenseMap
<llvm::GlobalValue
*, llvm::Function
*> KernelStubs
;
68 llvm::GlobalVariable
*Var
;
72 llvm::SmallVector
<VarInfo
, 16> DeviceVars
;
73 /// Keeps track of variable containing handle of GPU binary. Populated by
74 /// ModuleCtorFunction() and used to create corresponding cleanup calls in
75 /// ModuleDtorFunction()
76 llvm::GlobalVariable
*GpuBinaryHandle
= nullptr;
77 /// Whether we generate relocatable device code.
78 bool RelocatableDeviceCode
;
79 /// Mangle context for device.
80 std::unique_ptr
<MangleContext
> DeviceMC
;
82 llvm::FunctionCallee
getSetupArgumentFn() const;
83 llvm::FunctionCallee
getLaunchFn() const;
85 llvm::FunctionType
*getRegisterGlobalsFnTy() const;
86 llvm::FunctionType
*getCallbackFnTy() const;
87 llvm::FunctionType
*getRegisterLinkedBinaryFnTy() const;
88 std::string
addPrefixToName(StringRef FuncName
) const;
89 std::string
addUnderscoredPrefixToName(StringRef FuncName
) const;
91 /// Creates a function to register all kernel stubs generated in this module.
92 llvm::Function
*makeRegisterGlobalsFn();
94 /// Helper function that generates a constant string and returns a pointer to
95 /// the start of the string. The result of this function can be used anywhere
96 /// where the C code specifies const char*.
97 llvm::Constant
*makeConstantString(const std::string
&Str
,
98 const std::string
&Name
= "") {
99 return CGM
.GetAddrOfConstantCString(Str
, Name
.c_str()).getPointer();
102 /// Helper function which generates an initialized constant array from Str,
103 /// and optionally sets section name and alignment. AddNull specifies whether
104 /// the array should nave NUL termination.
105 llvm::Constant
*makeConstantArray(StringRef Str
,
107 StringRef SectionName
= "",
108 unsigned Alignment
= 0,
109 bool AddNull
= false) {
110 llvm::Constant
*Value
=
111 llvm::ConstantDataArray::getString(Context
, Str
, AddNull
);
112 auto *GV
= new llvm::GlobalVariable(
113 TheModule
, Value
->getType(), /*isConstant=*/true,
114 llvm::GlobalValue::PrivateLinkage
, Value
, Name
);
115 if (!SectionName
.empty()) {
116 GV
->setSection(SectionName
);
117 // Mark the address as used which make sure that this section isn't
118 // merged and we will really have it in the object file.
119 GV
->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::None
);
122 GV
->setAlignment(llvm::Align(Alignment
));
126 /// Helper function that generates an empty dummy function returning void.
127 llvm::Function
*makeDummyFunction(llvm::FunctionType
*FnTy
) {
128 assert(FnTy
->getReturnType()->isVoidTy() &&
129 "Can only generate dummy functions returning void!");
130 llvm::Function
*DummyFunc
= llvm::Function::Create(
131 FnTy
, llvm::GlobalValue::InternalLinkage
, "dummy", &TheModule
);
133 llvm::BasicBlock
*DummyBlock
=
134 llvm::BasicBlock::Create(Context
, "", DummyFunc
);
135 CGBuilderTy
FuncBuilder(CGM
, Context
);
136 FuncBuilder
.SetInsertPoint(DummyBlock
);
137 FuncBuilder
.CreateRetVoid();
142 Address
prepareKernelArgs(CodeGenFunction
&CGF
, FunctionArgList
&Args
);
143 Address
prepareKernelArgsLLVMOffload(CodeGenFunction
&CGF
,
144 FunctionArgList
&Args
);
145 void emitDeviceStubBodyLegacy(CodeGenFunction
&CGF
, FunctionArgList
&Args
);
146 void emitDeviceStubBodyNew(CodeGenFunction
&CGF
, FunctionArgList
&Args
);
147 std::string
getDeviceSideName(const NamedDecl
*ND
) override
;
149 void registerDeviceVar(const VarDecl
*VD
, llvm::GlobalVariable
&Var
,
150 bool Extern
, bool Constant
) {
151 DeviceVars
.push_back({&Var
,
153 {DeviceVarFlags::Variable
, Extern
, Constant
,
154 VD
->hasAttr
<HIPManagedAttr
>(),
155 /*Normalized*/ false, 0}});
157 void registerDeviceSurf(const VarDecl
*VD
, llvm::GlobalVariable
&Var
,
158 bool Extern
, int Type
) {
159 DeviceVars
.push_back({&Var
,
161 {DeviceVarFlags::Surface
, Extern
, /*Constant*/ false,
163 /*Normalized*/ false, Type
}});
165 void registerDeviceTex(const VarDecl
*VD
, llvm::GlobalVariable
&Var
,
166 bool Extern
, int Type
, bool Normalized
) {
167 DeviceVars
.push_back({&Var
,
169 {DeviceVarFlags::Texture
, Extern
, /*Constant*/ false,
170 /*Managed*/ false, Normalized
, Type
}});
173 /// Creates module constructor function
174 llvm::Function
*makeModuleCtorFunction();
175 /// Creates module destructor function
176 llvm::Function
*makeModuleDtorFunction();
177 /// Transform managed variables for device compilation.
178 void transformManagedVars();
179 /// Create offloading entries to register globals in RDC mode.
180 void createOffloadingEntries();
183 CGNVCUDARuntime(CodeGenModule
&CGM
);
185 llvm::GlobalValue
*getKernelHandle(llvm::Function
*F
, GlobalDecl GD
) override
;
186 llvm::Function
*getKernelStub(llvm::GlobalValue
*Handle
) override
{
187 auto Loc
= KernelStubs
.find(Handle
);
188 assert(Loc
!= KernelStubs
.end());
191 void emitDeviceStub(CodeGenFunction
&CGF
, FunctionArgList
&Args
) override
;
192 void handleVarRegistration(const VarDecl
*VD
,
193 llvm::GlobalVariable
&Var
) override
;
195 internalizeDeviceSideVar(const VarDecl
*D
,
196 llvm::GlobalValue::LinkageTypes
&Linkage
) override
;
198 llvm::Function
*finalizeModule() override
;
201 } // end anonymous namespace
203 std::string
CGNVCUDARuntime::addPrefixToName(StringRef FuncName
) const {
204 return (Prefix
+ FuncName
).str();
207 CGNVCUDARuntime::addUnderscoredPrefixToName(StringRef FuncName
) const {
208 return ("__" + Prefix
+ FuncName
).str();
211 static std::unique_ptr
<MangleContext
> InitDeviceMC(CodeGenModule
&CGM
) {
212 // If the host and device have different C++ ABIs, mark it as the device
213 // mangle context so that the mangling needs to retrieve the additional
214 // device lambda mangling number instead of the regular host one.
215 if (CGM
.getContext().getAuxTargetInfo() &&
216 CGM
.getContext().getTargetInfo().getCXXABI().isMicrosoft() &&
217 CGM
.getContext().getAuxTargetInfo()->getCXXABI().isItaniumFamily()) {
218 return std::unique_ptr
<MangleContext
>(
219 CGM
.getContext().createDeviceMangleContext(
220 *CGM
.getContext().getAuxTargetInfo()));
223 return std::unique_ptr
<MangleContext
>(CGM
.getContext().createMangleContext(
224 CGM
.getContext().getAuxTargetInfo()));
227 CGNVCUDARuntime::CGNVCUDARuntime(CodeGenModule
&CGM
)
228 : CGCUDARuntime(CGM
), Context(CGM
.getLLVMContext()),
229 TheModule(CGM
.getModule()),
230 RelocatableDeviceCode(CGM
.getLangOpts().GPURelocatableDeviceCode
),
231 DeviceMC(InitDeviceMC(CGM
)) {
235 PtrTy
= CGM
.UnqualPtrTy
;
237 if (CGM
.getLangOpts().OffloadViaLLVM
) {
239 SectionPrefix
= "omp";
240 } else if (CGM
.getLangOpts().HIP
)
241 SectionPrefix
= Prefix
= "hip";
243 SectionPrefix
= Prefix
= "cuda";
246 llvm::FunctionCallee
CGNVCUDARuntime::getSetupArgumentFn() const {
247 // cudaError_t cudaSetupArgument(void *, size_t, size_t)
248 llvm::Type
*Params
[] = {PtrTy
, SizeTy
, SizeTy
};
249 return CGM
.CreateRuntimeFunction(
250 llvm::FunctionType::get(IntTy
, Params
, false),
251 addPrefixToName("SetupArgument"));
254 llvm::FunctionCallee
CGNVCUDARuntime::getLaunchFn() const {
255 if (CGM
.getLangOpts().HIP
) {
256 // hipError_t hipLaunchByPtr(char *);
257 return CGM
.CreateRuntimeFunction(
258 llvm::FunctionType::get(IntTy
, PtrTy
, false), "hipLaunchByPtr");
260 // cudaError_t cudaLaunch(char *);
261 return CGM
.CreateRuntimeFunction(llvm::FunctionType::get(IntTy
, PtrTy
, false),
265 llvm::FunctionType
*CGNVCUDARuntime::getRegisterGlobalsFnTy() const {
266 return llvm::FunctionType::get(VoidTy
, PtrTy
, false);
269 llvm::FunctionType
*CGNVCUDARuntime::getCallbackFnTy() const {
270 return llvm::FunctionType::get(VoidTy
, PtrTy
, false);
273 llvm::FunctionType
*CGNVCUDARuntime::getRegisterLinkedBinaryFnTy() const {
274 llvm::Type
*Params
[] = {llvm::PointerType::getUnqual(Context
), PtrTy
, PtrTy
,
275 llvm::PointerType::getUnqual(Context
)};
276 return llvm::FunctionType::get(VoidTy
, Params
, false);
279 std::string
CGNVCUDARuntime::getDeviceSideName(const NamedDecl
*ND
) {
281 // D could be either a kernel or a variable.
282 if (auto *FD
= dyn_cast
<FunctionDecl
>(ND
))
283 GD
= GlobalDecl(FD
, KernelReferenceKind::Kernel
);
286 std::string DeviceSideName
;
288 if (CGM
.getLangOpts().CUDAIsDevice
)
289 MC
= &CGM
.getCXXABI().getMangleContext();
292 if (MC
->shouldMangleDeclName(ND
)) {
293 SmallString
<256> Buffer
;
294 llvm::raw_svector_ostream
Out(Buffer
);
295 MC
->mangleName(GD
, Out
);
296 DeviceSideName
= std::string(Out
.str());
298 DeviceSideName
= std::string(ND
->getIdentifier()->getName());
300 // Make unique name for device side static file-scope variable for HIP.
301 if (CGM
.getContext().shouldExternalize(ND
) &&
302 CGM
.getLangOpts().GPURelocatableDeviceCode
) {
303 SmallString
<256> Buffer
;
304 llvm::raw_svector_ostream
Out(Buffer
);
305 Out
<< DeviceSideName
;
306 CGM
.printPostfixForExternalizedDecl(Out
, ND
);
307 DeviceSideName
= std::string(Out
.str());
309 return DeviceSideName
;
312 void CGNVCUDARuntime::emitDeviceStub(CodeGenFunction
&CGF
,
313 FunctionArgList
&Args
) {
314 EmittedKernels
.push_back({CGF
.CurFn
, CGF
.CurFuncDecl
});
316 dyn_cast
<llvm::GlobalVariable
>(KernelHandles
[CGF
.CurFn
->getName()])) {
317 GV
->setLinkage(CGF
.CurFn
->getLinkage());
318 GV
->setInitializer(CGF
.CurFn
);
320 if (CudaFeatureEnabled(CGM
.getTarget().getSDKVersion(),
321 CudaFeature::CUDA_USES_NEW_LAUNCH
) ||
322 (CGF
.getLangOpts().HIP
&& CGF
.getLangOpts().HIPUseNewLaunchAPI
) ||
323 (CGF
.getLangOpts().OffloadViaLLVM
))
324 emitDeviceStubBodyNew(CGF
, Args
);
326 emitDeviceStubBodyLegacy(CGF
, Args
);
329 /// CUDA passes the arguments with a level of indirection. For example, a
330 /// (void*, short, void*) is passed as {void **, short *, void **} to the launch
331 /// function. For the LLVM/offload launch we flatten the arguments into the
332 /// struct directly. In addition, we include the size of the arguments, thus
333 /// pass {sizeof({void *, short, void *}), ptr to {void *, short, void *},
334 /// nullptr}. The last nullptr needs to be initialized to an array of pointers
335 /// pointing to the arguments if we want to offload to the host.
336 Address
CGNVCUDARuntime::prepareKernelArgsLLVMOffload(CodeGenFunction
&CGF
,
337 FunctionArgList
&Args
) {
338 SmallVector
<llvm::Type
*> ArgTypes
, KernelLaunchParamsTypes
;
339 for (auto &Arg
: Args
)
340 ArgTypes
.push_back(CGF
.ConvertTypeForMem(Arg
->getType()));
341 llvm::StructType
*KernelArgsTy
= llvm::StructType::create(ArgTypes
);
343 auto *Int64Ty
= CGF
.Builder
.getInt64Ty();
344 KernelLaunchParamsTypes
.push_back(Int64Ty
);
345 KernelLaunchParamsTypes
.push_back(PtrTy
);
346 KernelLaunchParamsTypes
.push_back(PtrTy
);
348 llvm::StructType
*KernelLaunchParamsTy
=
349 llvm::StructType::create(KernelLaunchParamsTypes
);
350 Address KernelArgs
= CGF
.CreateTempAllocaWithoutCast(
351 KernelArgsTy
, CharUnits::fromQuantity(16), "kernel_args");
352 Address KernelLaunchParams
= CGF
.CreateTempAllocaWithoutCast(
353 KernelLaunchParamsTy
, CharUnits::fromQuantity(16),
354 "kernel_launch_params");
356 auto KernelArgsSize
= CGM
.getDataLayout().getTypeAllocSize(KernelArgsTy
);
357 CGF
.Builder
.CreateStore(llvm::ConstantInt::get(Int64Ty
, KernelArgsSize
),
358 CGF
.Builder
.CreateStructGEP(KernelLaunchParams
, 0));
359 CGF
.Builder
.CreateStore(KernelArgs
.emitRawPointer(CGF
),
360 CGF
.Builder
.CreateStructGEP(KernelLaunchParams
, 1));
361 CGF
.Builder
.CreateStore(llvm::Constant::getNullValue(PtrTy
),
362 CGF
.Builder
.CreateStructGEP(KernelLaunchParams
, 2));
364 for (unsigned i
= 0; i
< Args
.size(); ++i
) {
365 auto *ArgVal
= CGF
.Builder
.CreateLoad(CGF
.GetAddrOfLocalVar(Args
[i
]));
366 CGF
.Builder
.CreateStore(ArgVal
, CGF
.Builder
.CreateStructGEP(KernelArgs
, i
));
369 return KernelLaunchParams
;
372 Address
CGNVCUDARuntime::prepareKernelArgs(CodeGenFunction
&CGF
,
373 FunctionArgList
&Args
) {
374 // Calculate amount of space we will need for all arguments. If we have no
375 // args, allocate a single pointer so we still have a valid pointer to the
376 // argument array that we can pass to runtime, even if it will be unused.
377 Address KernelArgs
= CGF
.CreateTempAlloca(
378 PtrTy
, CharUnits::fromQuantity(16), "kernel_args",
379 llvm::ConstantInt::get(SizeTy
, std::max
<size_t>(1, Args
.size())));
380 // Store pointers to the arguments in a locally allocated launch_args.
381 for (unsigned i
= 0; i
< Args
.size(); ++i
) {
382 llvm::Value
*VarPtr
= CGF
.GetAddrOfLocalVar(Args
[i
]).emitRawPointer(CGF
);
383 llvm::Value
*VoidVarPtr
= CGF
.Builder
.CreatePointerCast(VarPtr
, PtrTy
);
384 CGF
.Builder
.CreateDefaultAlignedStore(
385 VoidVarPtr
, CGF
.Builder
.CreateConstGEP1_32(
386 PtrTy
, KernelArgs
.emitRawPointer(CGF
), i
));
391 // CUDA 9.0+ uses new way to launch kernels. Parameters are packed in a local
392 // array and kernels are launched using cudaLaunchKernel().
393 void CGNVCUDARuntime::emitDeviceStubBodyNew(CodeGenFunction
&CGF
,
394 FunctionArgList
&Args
) {
395 // Build the shadow stack entry at the very start of the function.
396 Address KernelArgs
= CGF
.getLangOpts().OffloadViaLLVM
397 ? prepareKernelArgsLLVMOffload(CGF
, Args
)
398 : prepareKernelArgs(CGF
, Args
);
400 llvm::BasicBlock
*EndBlock
= CGF
.createBasicBlock("setup.end");
402 // Lookup cudaLaunchKernel/hipLaunchKernel function.
403 // HIP kernel launching API name depends on -fgpu-default-stream option. For
404 // the default value 'legacy', it is hipLaunchKernel. For 'per-thread',
405 // it is hipLaunchKernel_spt.
406 // cudaError_t cudaLaunchKernel(const void *func, dim3 gridDim, dim3 blockDim,
407 // void **args, size_t sharedMem,
408 // cudaStream_t stream);
409 // hipError_t hipLaunchKernel[_spt](const void *func, dim3 gridDim,
410 // dim3 blockDim, void **args,
411 // size_t sharedMem, hipStream_t stream);
412 TranslationUnitDecl
*TUDecl
= CGM
.getContext().getTranslationUnitDecl();
413 DeclContext
*DC
= TranslationUnitDecl::castToDeclContext(TUDecl
);
414 std::string KernelLaunchAPI
= "LaunchKernel";
415 if (CGF
.getLangOpts().GPUDefaultStream
==
416 LangOptions::GPUDefaultStreamKind::PerThread
) {
417 if (CGF
.getLangOpts().HIP
)
418 KernelLaunchAPI
= KernelLaunchAPI
+ "_spt";
419 else if (CGF
.getLangOpts().CUDA
)
420 KernelLaunchAPI
= KernelLaunchAPI
+ "_ptsz";
422 auto LaunchKernelName
= addPrefixToName(KernelLaunchAPI
);
423 const IdentifierInfo
&cudaLaunchKernelII
=
424 CGM
.getContext().Idents
.get(LaunchKernelName
);
425 FunctionDecl
*cudaLaunchKernelFD
= nullptr;
426 for (auto *Result
: DC
->lookup(&cudaLaunchKernelII
)) {
427 if (FunctionDecl
*FD
= dyn_cast
<FunctionDecl
>(Result
))
428 cudaLaunchKernelFD
= FD
;
431 if (cudaLaunchKernelFD
== nullptr) {
432 CGM
.Error(CGF
.CurFuncDecl
->getLocation(),
433 "Can't find declaration for " + LaunchKernelName
);
436 // Create temporary dim3 grid_dim, block_dim.
437 ParmVarDecl
*GridDimParam
= cudaLaunchKernelFD
->getParamDecl(1);
438 QualType Dim3Ty
= GridDimParam
->getType();
440 CGF
.CreateMemTemp(Dim3Ty
, CharUnits::fromQuantity(8), "grid_dim");
442 CGF
.CreateMemTemp(Dim3Ty
, CharUnits::fromQuantity(8), "block_dim");
444 CGF
.CreateTempAlloca(SizeTy
, CGM
.getSizeAlign(), "shmem_size");
445 Address Stream
= CGF
.CreateTempAlloca(PtrTy
, CGM
.getPointerAlign(), "stream");
446 llvm::FunctionCallee cudaPopConfigFn
= CGM
.CreateRuntimeFunction(
447 llvm::FunctionType::get(IntTy
,
448 {/*gridDim=*/GridDim
.getType(),
449 /*blockDim=*/BlockDim
.getType(),
450 /*ShmemSize=*/ShmemSize
.getType(),
451 /*Stream=*/Stream
.getType()},
453 addUnderscoredPrefixToName("PopCallConfiguration"));
455 CGF
.EmitRuntimeCallOrInvoke(cudaPopConfigFn
, {GridDim
.emitRawPointer(CGF
),
456 BlockDim
.emitRawPointer(CGF
),
457 ShmemSize
.emitRawPointer(CGF
),
458 Stream
.emitRawPointer(CGF
)});
460 // Emit the call to cudaLaunch
461 llvm::Value
*Kernel
=
462 CGF
.Builder
.CreatePointerCast(KernelHandles
[CGF
.CurFn
->getName()], PtrTy
);
463 CallArgList LaunchKernelArgs
;
464 LaunchKernelArgs
.add(RValue::get(Kernel
),
465 cudaLaunchKernelFD
->getParamDecl(0)->getType());
466 LaunchKernelArgs
.add(RValue::getAggregate(GridDim
), Dim3Ty
);
467 LaunchKernelArgs
.add(RValue::getAggregate(BlockDim
), Dim3Ty
);
468 LaunchKernelArgs
.add(RValue::get(KernelArgs
, CGF
),
469 cudaLaunchKernelFD
->getParamDecl(3)->getType());
470 LaunchKernelArgs
.add(RValue::get(CGF
.Builder
.CreateLoad(ShmemSize
)),
471 cudaLaunchKernelFD
->getParamDecl(4)->getType());
472 LaunchKernelArgs
.add(RValue::get(CGF
.Builder
.CreateLoad(Stream
)),
473 cudaLaunchKernelFD
->getParamDecl(5)->getType());
475 QualType QT
= cudaLaunchKernelFD
->getType();
476 QualType CQT
= QT
.getCanonicalType();
477 llvm::Type
*Ty
= CGM
.getTypes().ConvertType(CQT
);
478 llvm::FunctionType
*FTy
= cast
<llvm::FunctionType
>(Ty
);
480 const CGFunctionInfo
&FI
=
481 CGM
.getTypes().arrangeFunctionDeclaration(cudaLaunchKernelFD
);
482 llvm::FunctionCallee cudaLaunchKernelFn
=
483 CGM
.CreateRuntimeFunction(FTy
, LaunchKernelName
);
484 CGF
.EmitCall(FI
, CGCallee::forDirect(cudaLaunchKernelFn
), ReturnValueSlot(),
487 // To prevent CUDA device stub functions from being merged by ICF in MSVC
488 // environment, create an unique global variable for each kernel and write to
489 // the variable in the device stub.
490 if (CGM
.getContext().getTargetInfo().getCXXABI().isMicrosoft() &&
491 !CGF
.getLangOpts().HIP
) {
492 llvm::Function
*KernelFunction
= llvm::cast
<llvm::Function
>(Kernel
);
493 std::string GlobalVarName
= (KernelFunction
->getName() + ".id").str();
495 llvm::GlobalVariable
*HandleVar
=
496 CGM
.getModule().getNamedGlobal(GlobalVarName
);
498 HandleVar
= new llvm::GlobalVariable(
499 CGM
.getModule(), CGM
.Int8Ty
,
500 /*Constant=*/false, KernelFunction
->getLinkage(),
501 llvm::ConstantInt::get(CGM
.Int8Ty
, 0), GlobalVarName
);
502 HandleVar
->setDSOLocal(KernelFunction
->isDSOLocal());
503 HandleVar
->setVisibility(KernelFunction
->getVisibility());
504 if (KernelFunction
->hasComdat())
505 HandleVar
->setComdat(CGM
.getModule().getOrInsertComdat(GlobalVarName
));
508 CGF
.Builder
.CreateAlignedStore(llvm::ConstantInt::get(CGM
.Int8Ty
, 1),
509 HandleVar
, CharUnits::One(),
510 /*IsVolatile=*/true);
513 CGF
.EmitBranch(EndBlock
);
515 CGF
.EmitBlock(EndBlock
);
518 void CGNVCUDARuntime::emitDeviceStubBodyLegacy(CodeGenFunction
&CGF
,
519 FunctionArgList
&Args
) {
520 // Emit a call to cudaSetupArgument for each arg in Args.
521 llvm::FunctionCallee cudaSetupArgFn
= getSetupArgumentFn();
522 llvm::BasicBlock
*EndBlock
= CGF
.createBasicBlock("setup.end");
523 CharUnits Offset
= CharUnits::Zero();
524 for (const VarDecl
*A
: Args
) {
525 auto TInfo
= CGM
.getContext().getTypeInfoInChars(A
->getType());
526 Offset
= Offset
.alignTo(TInfo
.Align
);
527 llvm::Value
*Args
[] = {
528 CGF
.Builder
.CreatePointerCast(
529 CGF
.GetAddrOfLocalVar(A
).emitRawPointer(CGF
), PtrTy
),
530 llvm::ConstantInt::get(SizeTy
, TInfo
.Width
.getQuantity()),
531 llvm::ConstantInt::get(SizeTy
, Offset
.getQuantity()),
533 llvm::CallBase
*CB
= CGF
.EmitRuntimeCallOrInvoke(cudaSetupArgFn
, Args
);
534 llvm::Constant
*Zero
= llvm::ConstantInt::get(IntTy
, 0);
535 llvm::Value
*CBZero
= CGF
.Builder
.CreateICmpEQ(CB
, Zero
);
536 llvm::BasicBlock
*NextBlock
= CGF
.createBasicBlock("setup.next");
537 CGF
.Builder
.CreateCondBr(CBZero
, NextBlock
, EndBlock
);
538 CGF
.EmitBlock(NextBlock
);
539 Offset
+= TInfo
.Width
;
542 // Emit the call to cudaLaunch
543 llvm::FunctionCallee cudaLaunchFn
= getLaunchFn();
545 CGF
.Builder
.CreatePointerCast(KernelHandles
[CGF
.CurFn
->getName()], PtrTy
);
546 CGF
.EmitRuntimeCallOrInvoke(cudaLaunchFn
, Arg
);
547 CGF
.EmitBranch(EndBlock
);
549 CGF
.EmitBlock(EndBlock
);
552 // Replace the original variable Var with the address loaded from variable
553 // ManagedVar populated by HIP runtime.
554 static void replaceManagedVar(llvm::GlobalVariable
*Var
,
555 llvm::GlobalVariable
*ManagedVar
) {
556 SmallVector
<SmallVector
<llvm::User
*, 8>, 8> WorkList
;
557 for (auto &&VarUse
: Var
->uses()) {
558 WorkList
.push_back({VarUse
.getUser()});
560 while (!WorkList
.empty()) {
561 auto &&WorkItem
= WorkList
.pop_back_val();
562 auto *U
= WorkItem
.back();
563 if (isa
<llvm::ConstantExpr
>(U
)) {
564 for (auto &&UU
: U
->uses()) {
565 WorkItem
.push_back(UU
.getUser());
566 WorkList
.push_back(WorkItem
);
571 if (auto *I
= dyn_cast
<llvm::Instruction
>(U
)) {
572 llvm::Value
*OldV
= Var
;
573 llvm::Instruction
*NewV
= new llvm::LoadInst(
574 Var
->getType(), ManagedVar
, "ld.managed", false,
575 llvm::Align(Var
->getAlignment()), I
->getIterator());
577 // Replace constant expressions directly or indirectly using the managed
578 // variable with instructions.
579 for (auto &&Op
: WorkItem
) {
580 auto *CE
= cast
<llvm::ConstantExpr
>(Op
);
581 auto *NewInst
= CE
->getAsInstruction();
582 NewInst
->insertBefore(*I
->getParent(), I
->getIterator());
583 NewInst
->replaceUsesOfWith(OldV
, NewV
);
587 I
->replaceUsesOfWith(OldV
, NewV
);
589 llvm_unreachable("Invalid use of managed variable");
594 /// Creates a function that sets up state on the host side for CUDA objects that
595 /// have a presence on both the host and device sides. Specifically, registers
596 /// the host side of kernel functions and device global variables with the CUDA
599 /// void __cuda_register_globals(void** GpuBinaryHandle) {
600 /// __cudaRegisterFunction(GpuBinaryHandle,Kernel0,...);
602 /// __cudaRegisterFunction(GpuBinaryHandle,KernelM,...);
603 /// __cudaRegisterVar(GpuBinaryHandle, GlobalVar0, ...);
605 /// __cudaRegisterVar(GpuBinaryHandle, GlobalVarN, ...);
608 llvm::Function
*CGNVCUDARuntime::makeRegisterGlobalsFn() {
609 // No need to register anything
610 if (EmittedKernels
.empty() && DeviceVars
.empty())
613 llvm::Function
*RegisterKernelsFunc
= llvm::Function::Create(
614 getRegisterGlobalsFnTy(), llvm::GlobalValue::InternalLinkage
,
615 addUnderscoredPrefixToName("_register_globals"), &TheModule
);
616 llvm::BasicBlock
*EntryBB
=
617 llvm::BasicBlock::Create(Context
, "entry", RegisterKernelsFunc
);
618 CGBuilderTy
Builder(CGM
, Context
);
619 Builder
.SetInsertPoint(EntryBB
);
621 // void __cudaRegisterFunction(void **, const char *, char *, const char *,
622 // int, uint3*, uint3*, dim3*, dim3*, int*)
623 llvm::Type
*RegisterFuncParams
[] = {
624 PtrTy
, PtrTy
, PtrTy
, PtrTy
, IntTy
,
625 PtrTy
, PtrTy
, PtrTy
, PtrTy
, llvm::PointerType::getUnqual(Context
)};
626 llvm::FunctionCallee RegisterFunc
= CGM
.CreateRuntimeFunction(
627 llvm::FunctionType::get(IntTy
, RegisterFuncParams
, false),
628 addUnderscoredPrefixToName("RegisterFunction"));
630 // Extract GpuBinaryHandle passed as the first argument passed to
631 // __cuda_register_globals() and generate __cudaRegisterFunction() call for
632 // each emitted kernel.
633 llvm::Argument
&GpuBinaryHandlePtr
= *RegisterKernelsFunc
->arg_begin();
634 for (auto &&I
: EmittedKernels
) {
635 llvm::Constant
*KernelName
=
636 makeConstantString(getDeviceSideName(cast
<NamedDecl
>(I
.D
)));
637 llvm::Constant
*NullPtr
= llvm::ConstantPointerNull::get(PtrTy
);
638 llvm::Value
*Args
[] = {
640 KernelHandles
[I
.Kernel
->getName()],
643 llvm::ConstantInt::get(IntTy
, -1),
648 llvm::ConstantPointerNull::get(llvm::PointerType::getUnqual(Context
))};
649 Builder
.CreateCall(RegisterFunc
, Args
);
652 llvm::Type
*VarSizeTy
= IntTy
;
653 // For HIP or CUDA 9.0+, device variable size is type of `size_t`.
654 if (CGM
.getLangOpts().HIP
||
655 ToCudaVersion(CGM
.getTarget().getSDKVersion()) >= CudaVersion::CUDA_90
)
658 // void __cudaRegisterVar(void **, char *, char *, const char *,
659 // int, int, int, int)
660 llvm::Type
*RegisterVarParams
[] = {PtrTy
, PtrTy
, PtrTy
, PtrTy
,
661 IntTy
, VarSizeTy
, IntTy
, IntTy
};
662 llvm::FunctionCallee RegisterVar
= CGM
.CreateRuntimeFunction(
663 llvm::FunctionType::get(VoidTy
, RegisterVarParams
, false),
664 addUnderscoredPrefixToName("RegisterVar"));
665 // void __hipRegisterManagedVar(void **, char *, char *, const char *,
667 llvm::Type
*RegisterManagedVarParams
[] = {PtrTy
, PtrTy
, PtrTy
,
668 PtrTy
, VarSizeTy
, IntTy
};
669 llvm::FunctionCallee RegisterManagedVar
= CGM
.CreateRuntimeFunction(
670 llvm::FunctionType::get(VoidTy
, RegisterManagedVarParams
, false),
671 addUnderscoredPrefixToName("RegisterManagedVar"));
672 // void __cudaRegisterSurface(void **, const struct surfaceReference *,
673 // const void **, const char *, int, int);
674 llvm::FunctionCallee RegisterSurf
= CGM
.CreateRuntimeFunction(
675 llvm::FunctionType::get(
676 VoidTy
, {PtrTy
, PtrTy
, PtrTy
, PtrTy
, IntTy
, IntTy
}, false),
677 addUnderscoredPrefixToName("RegisterSurface"));
678 // void __cudaRegisterTexture(void **, const struct textureReference *,
679 // const void **, const char *, int, int, int)
680 llvm::FunctionCallee RegisterTex
= CGM
.CreateRuntimeFunction(
681 llvm::FunctionType::get(
682 VoidTy
, {PtrTy
, PtrTy
, PtrTy
, PtrTy
, IntTy
, IntTy
, IntTy
}, false),
683 addUnderscoredPrefixToName("RegisterTexture"));
684 for (auto &&Info
: DeviceVars
) {
685 llvm::GlobalVariable
*Var
= Info
.Var
;
686 assert((!Var
->isDeclaration() || Info
.Flags
.isManaged()) &&
687 "External variables should not show up here, except HIP managed "
689 llvm::Constant
*VarName
= makeConstantString(getDeviceSideName(Info
.D
));
690 switch (Info
.Flags
.getKind()) {
691 case DeviceVarFlags::Variable
: {
693 CGM
.getDataLayout().getTypeAllocSize(Var
->getValueType());
694 if (Info
.Flags
.isManaged()) {
695 assert(Var
->getName().ends_with(".managed") &&
696 "HIP managed variables not transformed");
697 auto *ManagedVar
= CGM
.getModule().getNamedGlobal(
698 Var
->getName().drop_back(StringRef(".managed").size()));
699 llvm::Value
*Args
[] = {
704 llvm::ConstantInt::get(VarSizeTy
, VarSize
),
705 llvm::ConstantInt::get(IntTy
, Var
->getAlignment())};
706 if (!Var
->isDeclaration())
707 Builder
.CreateCall(RegisterManagedVar
, Args
);
709 llvm::Value
*Args
[] = {
714 llvm::ConstantInt::get(IntTy
, Info
.Flags
.isExtern()),
715 llvm::ConstantInt::get(VarSizeTy
, VarSize
),
716 llvm::ConstantInt::get(IntTy
, Info
.Flags
.isConstant()),
717 llvm::ConstantInt::get(IntTy
, 0)};
718 Builder
.CreateCall(RegisterVar
, Args
);
722 case DeviceVarFlags::Surface
:
725 {&GpuBinaryHandlePtr
, Var
, VarName
, VarName
,
726 llvm::ConstantInt::get(IntTy
, Info
.Flags
.getSurfTexType()),
727 llvm::ConstantInt::get(IntTy
, Info
.Flags
.isExtern())});
729 case DeviceVarFlags::Texture
:
732 {&GpuBinaryHandlePtr
, Var
, VarName
, VarName
,
733 llvm::ConstantInt::get(IntTy
, Info
.Flags
.getSurfTexType()),
734 llvm::ConstantInt::get(IntTy
, Info
.Flags
.isNormalized()),
735 llvm::ConstantInt::get(IntTy
, Info
.Flags
.isExtern())});
740 Builder
.CreateRetVoid();
741 return RegisterKernelsFunc
;
744 /// Creates a global constructor function for the module:
748 /// void __cuda_module_ctor() {
749 /// Handle = __cudaRegisterFatBinary(GpuBinaryBlob);
750 /// __cuda_register_globals(Handle);
756 /// void __hip_module_ctor() {
757 /// if (__hip_gpubin_handle == 0) {
758 /// __hip_gpubin_handle = __hipRegisterFatBinary(GpuBinaryBlob);
759 /// __hip_register_globals(__hip_gpubin_handle);
763 llvm::Function
*CGNVCUDARuntime::makeModuleCtorFunction() {
764 bool IsHIP
= CGM
.getLangOpts().HIP
;
765 bool IsCUDA
= CGM
.getLangOpts().CUDA
;
766 // No need to generate ctors/dtors if there is no GPU binary.
767 StringRef CudaGpuBinaryFileName
= CGM
.getCodeGenOpts().CudaGpuBinaryFileName
;
768 if (CudaGpuBinaryFileName
.empty() && !IsHIP
)
770 if ((IsHIP
|| (IsCUDA
&& !RelocatableDeviceCode
)) && EmittedKernels
.empty() &&
774 // void __{cuda|hip}_register_globals(void* handle);
775 llvm::Function
*RegisterGlobalsFunc
= makeRegisterGlobalsFn();
776 // We always need a function to pass in as callback. Create a dummy
777 // implementation if we don't need to register anything.
778 if (RelocatableDeviceCode
&& !RegisterGlobalsFunc
)
779 RegisterGlobalsFunc
= makeDummyFunction(getRegisterGlobalsFnTy());
781 // void ** __{cuda|hip}RegisterFatBinary(void *);
782 llvm::FunctionCallee RegisterFatbinFunc
= CGM
.CreateRuntimeFunction(
783 llvm::FunctionType::get(PtrTy
, PtrTy
, false),
784 addUnderscoredPrefixToName("RegisterFatBinary"));
785 // struct { int magic, int version, void * gpu_binary, void * dont_care };
786 llvm::StructType
*FatbinWrapperTy
=
787 llvm::StructType::get(IntTy
, IntTy
, PtrTy
, PtrTy
);
789 // Register GPU binary with the CUDA runtime, store returned handle in a
790 // global variable and save a reference in GpuBinaryHandle to be cleaned up
791 // in destructor on exit. Then associate all known kernels with the GPU binary
792 // handle so CUDA runtime can figure out what to call on the GPU side.
793 std::unique_ptr
<llvm::MemoryBuffer
> CudaGpuBinary
= nullptr;
794 if (!CudaGpuBinaryFileName
.empty()) {
795 auto VFS
= CGM
.getFileSystem();
796 auto CudaGpuBinaryOrErr
=
797 VFS
->getBufferForFile(CudaGpuBinaryFileName
, -1, false);
798 if (std::error_code EC
= CudaGpuBinaryOrErr
.getError()) {
799 CGM
.getDiags().Report(diag::err_cannot_open_file
)
800 << CudaGpuBinaryFileName
<< EC
.message();
803 CudaGpuBinary
= std::move(CudaGpuBinaryOrErr
.get());
806 llvm::Function
*ModuleCtorFunc
= llvm::Function::Create(
807 llvm::FunctionType::get(VoidTy
, false),
808 llvm::GlobalValue::InternalLinkage
,
809 addUnderscoredPrefixToName("_module_ctor"), &TheModule
);
810 llvm::BasicBlock
*CtorEntryBB
=
811 llvm::BasicBlock::Create(Context
, "entry", ModuleCtorFunc
);
812 CGBuilderTy
CtorBuilder(CGM
, Context
);
814 CtorBuilder
.SetInsertPoint(CtorEntryBB
);
816 const char *FatbinConstantName
;
817 const char *FatbinSectionName
;
818 const char *ModuleIDSectionName
;
819 StringRef ModuleIDPrefix
;
820 llvm::Constant
*FatBinStr
;
823 FatbinConstantName
= ".hip_fatbin";
824 FatbinSectionName
= ".hipFatBinSegment";
826 ModuleIDSectionName
= "__hip_module_id";
827 ModuleIDPrefix
= "__hip_";
830 // If fatbin is available from early finalization, create a string
831 // literal containing the fat binary loaded from the given file.
832 const unsigned HIPCodeObjectAlign
= 4096;
833 FatBinStr
= makeConstantArray(std::string(CudaGpuBinary
->getBuffer()), "",
834 FatbinConstantName
, HIPCodeObjectAlign
);
836 // If fatbin is not available, create an external symbol
837 // __hip_fatbin in section .hip_fatbin. The external symbol is supposed
838 // to contain the fat binary but will be populated somewhere else,
839 // e.g. by lld through link script.
840 FatBinStr
= new llvm::GlobalVariable(
841 CGM
.getModule(), CGM
.Int8Ty
,
842 /*isConstant=*/true, llvm::GlobalValue::ExternalLinkage
, nullptr,
843 "__hip_fatbin" + (CGM
.getLangOpts().CUID
.empty()
845 : "_" + CGM
.getContext().getCUIDHash()),
846 nullptr, llvm::GlobalVariable::NotThreadLocal
);
847 cast
<llvm::GlobalVariable
>(FatBinStr
)->setSection(FatbinConstantName
);
850 FatMagic
= HIPFatMagic
;
852 if (RelocatableDeviceCode
)
853 FatbinConstantName
= CGM
.getTriple().isMacOSX()
854 ? "__NV_CUDA,__nv_relfatbin"
858 CGM
.getTriple().isMacOSX() ? "__NV_CUDA,__nv_fatbin" : ".nv_fatbin";
859 // NVIDIA's cuobjdump looks for fatbins in this section.
861 CGM
.getTriple().isMacOSX() ? "__NV_CUDA,__fatbin" : ".nvFatBinSegment";
863 ModuleIDSectionName
= CGM
.getTriple().isMacOSX()
864 ? "__NV_CUDA,__nv_module_id"
866 ModuleIDPrefix
= "__nv_";
868 // For CUDA, create a string literal containing the fat binary loaded from
870 FatBinStr
= makeConstantArray(std::string(CudaGpuBinary
->getBuffer()), "",
871 FatbinConstantName
, 8);
872 FatMagic
= CudaFatMagic
;
875 // Create initialized wrapper structure that points to the loaded GPU binary
876 ConstantInitBuilder
Builder(CGM
);
877 auto Values
= Builder
.beginStruct(FatbinWrapperTy
);
878 // Fatbin wrapper magic.
879 Values
.addInt(IntTy
, FatMagic
);
881 Values
.addInt(IntTy
, 1);
883 Values
.add(FatBinStr
);
884 // Unused in fatbin v1.
885 Values
.add(llvm::ConstantPointerNull::get(PtrTy
));
886 llvm::GlobalVariable
*FatbinWrapper
= Values
.finishAndCreateGlobal(
887 addUnderscoredPrefixToName("_fatbin_wrapper"), CGM
.getPointerAlign(),
889 FatbinWrapper
->setSection(FatbinSectionName
);
891 // There is only one HIP fat binary per linked module, however there are
892 // multiple constructor functions. Make sure the fat binary is registered
893 // only once. The constructor functions are executed by the dynamic loader
894 // before the program gains control. The dynamic loader cannot execute the
895 // constructor functions concurrently since doing that would not guarantee
896 // thread safety of the loaded program. Therefore we can assume sequential
897 // execution of constructor functions here.
899 auto Linkage
= RelocatableDeviceCode
? llvm::GlobalValue::ExternalLinkage
900 : llvm::GlobalValue::InternalLinkage
;
901 llvm::BasicBlock
*IfBlock
=
902 llvm::BasicBlock::Create(Context
, "if", ModuleCtorFunc
);
903 llvm::BasicBlock
*ExitBlock
=
904 llvm::BasicBlock::Create(Context
, "exit", ModuleCtorFunc
);
905 // The name, size, and initialization pattern of this variable is part
907 GpuBinaryHandle
= new llvm::GlobalVariable(
908 TheModule
, PtrTy
, /*isConstant=*/false, Linkage
,
910 !RelocatableDeviceCode
? llvm::ConstantPointerNull::get(PtrTy
)
912 "__hip_gpubin_handle" + (CGM
.getLangOpts().CUID
.empty()
914 : "_" + CGM
.getContext().getCUIDHash()));
915 GpuBinaryHandle
->setAlignment(CGM
.getPointerAlign().getAsAlign());
916 // Prevent the weak symbol in different shared libraries being merged.
917 if (Linkage
!= llvm::GlobalValue::InternalLinkage
)
918 GpuBinaryHandle
->setVisibility(llvm::GlobalValue::HiddenVisibility
);
919 Address
GpuBinaryAddr(
920 GpuBinaryHandle
, PtrTy
,
921 CharUnits::fromQuantity(GpuBinaryHandle
->getAlignment()));
923 auto *HandleValue
= CtorBuilder
.CreateLoad(GpuBinaryAddr
);
924 llvm::Constant
*Zero
=
925 llvm::Constant::getNullValue(HandleValue
->getType());
926 llvm::Value
*EQZero
= CtorBuilder
.CreateICmpEQ(HandleValue
, Zero
);
927 CtorBuilder
.CreateCondBr(EQZero
, IfBlock
, ExitBlock
);
930 CtorBuilder
.SetInsertPoint(IfBlock
);
931 // GpuBinaryHandle = __hipRegisterFatBinary(&FatbinWrapper);
932 llvm::CallInst
*RegisterFatbinCall
=
933 CtorBuilder
.CreateCall(RegisterFatbinFunc
, FatbinWrapper
);
934 CtorBuilder
.CreateStore(RegisterFatbinCall
, GpuBinaryAddr
);
935 CtorBuilder
.CreateBr(ExitBlock
);
938 CtorBuilder
.SetInsertPoint(ExitBlock
);
939 // Call __hip_register_globals(GpuBinaryHandle);
940 if (RegisterGlobalsFunc
) {
941 auto *HandleValue
= CtorBuilder
.CreateLoad(GpuBinaryAddr
);
942 CtorBuilder
.CreateCall(RegisterGlobalsFunc
, HandleValue
);
945 } else if (!RelocatableDeviceCode
) {
946 // Register binary with CUDA runtime. This is substantially different in
947 // default mode vs. separate compilation!
948 // GpuBinaryHandle = __cudaRegisterFatBinary(&FatbinWrapper);
949 llvm::CallInst
*RegisterFatbinCall
=
950 CtorBuilder
.CreateCall(RegisterFatbinFunc
, FatbinWrapper
);
951 GpuBinaryHandle
= new llvm::GlobalVariable(
952 TheModule
, PtrTy
, false, llvm::GlobalValue::InternalLinkage
,
953 llvm::ConstantPointerNull::get(PtrTy
), "__cuda_gpubin_handle");
954 GpuBinaryHandle
->setAlignment(CGM
.getPointerAlign().getAsAlign());
955 CtorBuilder
.CreateAlignedStore(RegisterFatbinCall
, GpuBinaryHandle
,
956 CGM
.getPointerAlign());
958 // Call __cuda_register_globals(GpuBinaryHandle);
959 if (RegisterGlobalsFunc
)
960 CtorBuilder
.CreateCall(RegisterGlobalsFunc
, RegisterFatbinCall
);
962 // Call __cudaRegisterFatBinaryEnd(Handle) if this CUDA version needs it.
963 if (CudaFeatureEnabled(CGM
.getTarget().getSDKVersion(),
964 CudaFeature::CUDA_USES_FATBIN_REGISTER_END
)) {
965 // void __cudaRegisterFatBinaryEnd(void **);
966 llvm::FunctionCallee RegisterFatbinEndFunc
= CGM
.CreateRuntimeFunction(
967 llvm::FunctionType::get(VoidTy
, PtrTy
, false),
968 "__cudaRegisterFatBinaryEnd");
969 CtorBuilder
.CreateCall(RegisterFatbinEndFunc
, RegisterFatbinCall
);
972 // Generate a unique module ID.
973 SmallString
<64> ModuleID
;
974 llvm::raw_svector_ostream
OS(ModuleID
);
975 OS
<< ModuleIDPrefix
<< llvm::format("%" PRIx64
, FatbinWrapper
->getGUID());
976 llvm::Constant
*ModuleIDConstant
= makeConstantArray(
977 std::string(ModuleID
), "", ModuleIDSectionName
, 32, /*AddNull=*/true);
979 // Create an alias for the FatbinWrapper that nvcc will look for.
980 llvm::GlobalAlias::create(llvm::GlobalValue::ExternalLinkage
,
981 Twine("__fatbinwrap") + ModuleID
, FatbinWrapper
);
983 // void __cudaRegisterLinkedBinary%ModuleID%(void (*)(void *), void *,
984 // void *, void (*)(void **))
985 SmallString
<128> RegisterLinkedBinaryName("__cudaRegisterLinkedBinary");
986 RegisterLinkedBinaryName
+= ModuleID
;
987 llvm::FunctionCallee RegisterLinkedBinaryFunc
= CGM
.CreateRuntimeFunction(
988 getRegisterLinkedBinaryFnTy(), RegisterLinkedBinaryName
);
990 assert(RegisterGlobalsFunc
&& "Expecting at least dummy function!");
991 llvm::Value
*Args
[] = {RegisterGlobalsFunc
, FatbinWrapper
, ModuleIDConstant
,
992 makeDummyFunction(getCallbackFnTy())};
993 CtorBuilder
.CreateCall(RegisterLinkedBinaryFunc
, Args
);
996 // Create destructor and register it with atexit() the way NVCC does it. Doing
997 // it during regular destructor phase worked in CUDA before 9.2 but results in
998 // double-free in 9.2.
999 if (llvm::Function
*CleanupFn
= makeModuleDtorFunction()) {
1000 // extern "C" int atexit(void (*f)(void));
1001 llvm::FunctionType
*AtExitTy
=
1002 llvm::FunctionType::get(IntTy
, CleanupFn
->getType(), false);
1003 llvm::FunctionCallee AtExitFunc
=
1004 CGM
.CreateRuntimeFunction(AtExitTy
, "atexit", llvm::AttributeList(),
1006 CtorBuilder
.CreateCall(AtExitFunc
, CleanupFn
);
1009 CtorBuilder
.CreateRetVoid();
1010 return ModuleCtorFunc
;
1013 /// Creates a global destructor function that unregisters the GPU code blob
1014 /// registered by constructor.
1018 /// void __cuda_module_dtor() {
1019 /// __cudaUnregisterFatBinary(Handle);
1025 /// void __hip_module_dtor() {
1026 /// if (__hip_gpubin_handle) {
1027 /// __hipUnregisterFatBinary(__hip_gpubin_handle);
1028 /// __hip_gpubin_handle = 0;
1032 llvm::Function
*CGNVCUDARuntime::makeModuleDtorFunction() {
1033 // No need for destructor if we don't have a handle to unregister.
1034 if (!GpuBinaryHandle
)
1037 // void __cudaUnregisterFatBinary(void ** handle);
1038 llvm::FunctionCallee UnregisterFatbinFunc
= CGM
.CreateRuntimeFunction(
1039 llvm::FunctionType::get(VoidTy
, PtrTy
, false),
1040 addUnderscoredPrefixToName("UnregisterFatBinary"));
1042 llvm::Function
*ModuleDtorFunc
= llvm::Function::Create(
1043 llvm::FunctionType::get(VoidTy
, false),
1044 llvm::GlobalValue::InternalLinkage
,
1045 addUnderscoredPrefixToName("_module_dtor"), &TheModule
);
1047 llvm::BasicBlock
*DtorEntryBB
=
1048 llvm::BasicBlock::Create(Context
, "entry", ModuleDtorFunc
);
1049 CGBuilderTy
DtorBuilder(CGM
, Context
);
1050 DtorBuilder
.SetInsertPoint(DtorEntryBB
);
1052 Address
GpuBinaryAddr(
1053 GpuBinaryHandle
, GpuBinaryHandle
->getValueType(),
1054 CharUnits::fromQuantity(GpuBinaryHandle
->getAlignment()));
1055 auto *HandleValue
= DtorBuilder
.CreateLoad(GpuBinaryAddr
);
1056 // There is only one HIP fat binary per linked module, however there are
1057 // multiple destructor functions. Make sure the fat binary is unregistered
1059 if (CGM
.getLangOpts().HIP
) {
1060 llvm::BasicBlock
*IfBlock
=
1061 llvm::BasicBlock::Create(Context
, "if", ModuleDtorFunc
);
1062 llvm::BasicBlock
*ExitBlock
=
1063 llvm::BasicBlock::Create(Context
, "exit", ModuleDtorFunc
);
1064 llvm::Constant
*Zero
= llvm::Constant::getNullValue(HandleValue
->getType());
1065 llvm::Value
*NEZero
= DtorBuilder
.CreateICmpNE(HandleValue
, Zero
);
1066 DtorBuilder
.CreateCondBr(NEZero
, IfBlock
, ExitBlock
);
1068 DtorBuilder
.SetInsertPoint(IfBlock
);
1069 DtorBuilder
.CreateCall(UnregisterFatbinFunc
, HandleValue
);
1070 DtorBuilder
.CreateStore(Zero
, GpuBinaryAddr
);
1071 DtorBuilder
.CreateBr(ExitBlock
);
1073 DtorBuilder
.SetInsertPoint(ExitBlock
);
1075 DtorBuilder
.CreateCall(UnregisterFatbinFunc
, HandleValue
);
1077 DtorBuilder
.CreateRetVoid();
1078 return ModuleDtorFunc
;
1081 CGCUDARuntime
*CodeGen::CreateNVCUDARuntime(CodeGenModule
&CGM
) {
1082 return new CGNVCUDARuntime(CGM
);
1085 void CGNVCUDARuntime::internalizeDeviceSideVar(
1086 const VarDecl
*D
, llvm::GlobalValue::LinkageTypes
&Linkage
) {
1087 // For -fno-gpu-rdc, host-side shadows of external declarations of device-side
1088 // global variables become internal definitions. These have to be internal in
1089 // order to prevent name conflicts with global host variables with the same
1090 // name in a different TUs.
1092 // For -fgpu-rdc, the shadow variables should not be internalized because
1093 // they may be accessed by different TU.
1094 if (CGM
.getLangOpts().GPURelocatableDeviceCode
)
1097 // __shared__ variables are odd. Shadows do get created, but
1098 // they are not registered with the CUDA runtime, so they
1099 // can't really be used to access their device-side
1100 // counterparts. It's not clear yet whether it's nvcc's bug or
1101 // a feature, but we've got to do the same for compatibility.
1102 if (D
->hasAttr
<CUDADeviceAttr
>() || D
->hasAttr
<CUDAConstantAttr
>() ||
1103 D
->hasAttr
<CUDASharedAttr
>() ||
1104 D
->getType()->isCUDADeviceBuiltinSurfaceType() ||
1105 D
->getType()->isCUDADeviceBuiltinTextureType()) {
1106 Linkage
= llvm::GlobalValue::InternalLinkage
;
1110 void CGNVCUDARuntime::handleVarRegistration(const VarDecl
*D
,
1111 llvm::GlobalVariable
&GV
) {
1112 if (D
->hasAttr
<CUDADeviceAttr
>() || D
->hasAttr
<CUDAConstantAttr
>()) {
1113 // Shadow variables and their properties must be registered with CUDA
1114 // runtime. Skip Extern global variables, which will be registered in
1115 // the TU where they are defined.
1117 // Don't register a C++17 inline variable. The local symbol can be
1118 // discarded and referencing a discarded local symbol from outside the
1119 // comdat (__cuda_register_globals) is disallowed by the ELF spec.
1121 // HIP managed variables need to be always recorded in device and host
1122 // compilations for transformation.
1124 // HIP managed variables and variables in CUDADeviceVarODRUsedByHost are
1125 // added to llvm.compiler-used, therefore they are safe to be registered.
1126 if ((!D
->hasExternalStorage() && !D
->isInline()) ||
1127 CGM
.getContext().CUDADeviceVarODRUsedByHost
.contains(D
) ||
1128 D
->hasAttr
<HIPManagedAttr
>()) {
1129 registerDeviceVar(D
, GV
, !D
->hasDefinition(),
1130 D
->hasAttr
<CUDAConstantAttr
>());
1132 } else if (D
->getType()->isCUDADeviceBuiltinSurfaceType() ||
1133 D
->getType()->isCUDADeviceBuiltinTextureType()) {
1134 // Builtin surfaces and textures and their template arguments are
1135 // also registered with CUDA runtime.
1136 const auto *TD
= cast
<ClassTemplateSpecializationDecl
>(
1137 D
->getType()->castAs
<RecordType
>()->getDecl());
1138 const TemplateArgumentList
&Args
= TD
->getTemplateArgs();
1139 if (TD
->hasAttr
<CUDADeviceBuiltinSurfaceTypeAttr
>()) {
1140 assert(Args
.size() == 2 &&
1141 "Unexpected number of template arguments of CUDA device "
1142 "builtin surface type.");
1143 auto SurfType
= Args
[1].getAsIntegral();
1144 if (!D
->hasExternalStorage())
1145 registerDeviceSurf(D
, GV
, !D
->hasDefinition(), SurfType
.getSExtValue());
1147 assert(Args
.size() == 3 &&
1148 "Unexpected number of template arguments of CUDA device "
1149 "builtin texture type.");
1150 auto TexType
= Args
[1].getAsIntegral();
1151 auto Normalized
= Args
[2].getAsIntegral();
1152 if (!D
->hasExternalStorage())
1153 registerDeviceTex(D
, GV
, !D
->hasDefinition(), TexType
.getSExtValue(),
1154 Normalized
.getZExtValue());
1159 // Transform managed variables to pointers to managed variables in device code.
1160 // Each use of the original managed variable is replaced by a load from the
1161 // transformed managed variable. The transformed managed variable contains
1162 // the address of managed memory which will be allocated by the runtime.
1163 void CGNVCUDARuntime::transformManagedVars() {
1164 for (auto &&Info
: DeviceVars
) {
1165 llvm::GlobalVariable
*Var
= Info
.Var
;
1166 if (Info
.Flags
.getKind() == DeviceVarFlags::Variable
&&
1167 Info
.Flags
.isManaged()) {
1168 auto *ManagedVar
= new llvm::GlobalVariable(
1169 CGM
.getModule(), Var
->getType(),
1170 /*isConstant=*/false, Var
->getLinkage(),
1171 /*Init=*/Var
->isDeclaration()
1173 : llvm::ConstantPointerNull::get(Var
->getType()),
1174 /*Name=*/"", /*InsertBefore=*/nullptr,
1175 llvm::GlobalVariable::NotThreadLocal
,
1176 CGM
.getContext().getTargetAddressSpace(CGM
.getLangOpts().CUDAIsDevice
1177 ? LangAS::cuda_device
1178 : LangAS::Default
));
1179 ManagedVar
->setDSOLocal(Var
->isDSOLocal());
1180 ManagedVar
->setVisibility(Var
->getVisibility());
1181 ManagedVar
->setExternallyInitialized(true);
1182 replaceManagedVar(Var
, ManagedVar
);
1183 ManagedVar
->takeName(Var
);
1184 Var
->setName(Twine(ManagedVar
->getName()) + ".managed");
1185 // Keep managed variables even if they are not used in device code since
1186 // they need to be allocated by the runtime.
1187 if (CGM
.getLangOpts().CUDAIsDevice
&& !Var
->isDeclaration()) {
1188 assert(!ManagedVar
->isDeclaration());
1189 CGM
.addCompilerUsedGlobal(Var
);
1190 CGM
.addCompilerUsedGlobal(ManagedVar
);
1196 // Creates offloading entries for all the kernels and globals that must be
1197 // registered. The linker will provide a pointer to this section so we can
1198 // register the symbols with the linked device image.
1199 void CGNVCUDARuntime::createOffloadingEntries() {
1200 SmallVector
<char, 32> Out
;
1201 StringRef Section
= (SectionPrefix
+ "_offloading_entries").toStringRef(Out
);
1203 llvm::Module
&M
= CGM
.getModule();
1204 for (KernelInfo
&I
: EmittedKernels
)
1205 llvm::offloading::emitOffloadingEntry(
1206 M
, KernelHandles
[I
.Kernel
->getName()],
1207 getDeviceSideName(cast
<NamedDecl
>(I
.D
)), /*Flags=*/0, /*Data=*/0,
1208 llvm::offloading::OffloadGlobalEntry
, Section
);
1210 for (VarInfo
&I
: DeviceVars
) {
1212 CGM
.getDataLayout().getTypeAllocSize(I
.Var
->getValueType());
1215 ? static_cast<int32_t>(llvm::offloading::OffloadGlobalExtern
)
1217 (I
.Flags
.isConstant()
1218 ? static_cast<int32_t>(llvm::offloading::OffloadGlobalConstant
)
1220 (I
.Flags
.isNormalized()
1221 ? static_cast<int32_t>(llvm::offloading::OffloadGlobalNormalized
)
1223 if (I
.Flags
.getKind() == DeviceVarFlags::Variable
) {
1224 llvm::offloading::emitOffloadingEntry(
1225 M
, I
.Var
, getDeviceSideName(I
.D
), VarSize
,
1226 (I
.Flags
.isManaged() ? llvm::offloading::OffloadGlobalManagedEntry
1227 : llvm::offloading::OffloadGlobalEntry
) |
1229 /*Data=*/0, Section
);
1230 } else if (I
.Flags
.getKind() == DeviceVarFlags::Surface
) {
1231 llvm::offloading::emitOffloadingEntry(
1232 M
, I
.Var
, getDeviceSideName(I
.D
), VarSize
,
1233 llvm::offloading::OffloadGlobalSurfaceEntry
| Flags
,
1234 I
.Flags
.getSurfTexType(), Section
);
1235 } else if (I
.Flags
.getKind() == DeviceVarFlags::Texture
) {
1236 llvm::offloading::emitOffloadingEntry(
1237 M
, I
.Var
, getDeviceSideName(I
.D
), VarSize
,
1238 llvm::offloading::OffloadGlobalTextureEntry
| Flags
,
1239 I
.Flags
.getSurfTexType(), Section
);
1244 // Returns module constructor to be added.
1245 llvm::Function
*CGNVCUDARuntime::finalizeModule() {
1246 transformManagedVars();
1247 if (CGM
.getLangOpts().CUDAIsDevice
) {
1248 // Mark ODR-used device variables as compiler used to prevent it from being
1249 // eliminated by optimization. This is necessary for device variables
1250 // ODR-used by host functions. Sema correctly marks them as ODR-used no
1251 // matter whether they are ODR-used by device or host functions.
1253 // We do not need to do this if the variable has used attribute since it
1254 // has already been added.
1256 // Static device variables have been externalized at this point, therefore
1257 // variables with LLVM private or internal linkage need not be added.
1258 for (auto &&Info
: DeviceVars
) {
1259 auto Kind
= Info
.Flags
.getKind();
1260 if (!Info
.Var
->isDeclaration() &&
1261 !llvm::GlobalValue::isLocalLinkage(Info
.Var
->getLinkage()) &&
1262 (Kind
== DeviceVarFlags::Variable
||
1263 Kind
== DeviceVarFlags::Surface
||
1264 Kind
== DeviceVarFlags::Texture
) &&
1265 Info
.D
->isUsed() && !Info
.D
->hasAttr
<UsedAttr
>()) {
1266 CGM
.addCompilerUsedGlobal(Info
.Var
);
1271 if (CGM
.getLangOpts().OffloadViaLLVM
||
1272 (CGM
.getLangOpts().OffloadingNewDriver
&& RelocatableDeviceCode
))
1273 createOffloadingEntries();
1275 return makeModuleCtorFunction();
1280 llvm::GlobalValue
*CGNVCUDARuntime::getKernelHandle(llvm::Function
*F
,
1282 auto Loc
= KernelHandles
.find(F
->getName());
1283 if (Loc
!= KernelHandles
.end()) {
1284 auto OldHandle
= Loc
->second
;
1285 if (KernelStubs
[OldHandle
] == F
)
1288 // We've found the function name, but F itself has changed, so we need to
1289 // update the references.
1290 if (CGM
.getLangOpts().HIP
) {
1291 // For HIP compilation the handle itself does not change, so we only need
1292 // to update the Stub value.
1293 KernelStubs
[OldHandle
] = F
;
1296 // For non-HIP compilation, erase the old Stub and fall-through to creating
1298 KernelStubs
.erase(OldHandle
);
1301 if (!CGM
.getLangOpts().HIP
) {
1302 KernelHandles
[F
->getName()] = F
;
1307 auto *Var
= new llvm::GlobalVariable(
1308 TheModule
, F
->getType(), /*isConstant=*/true, F
->getLinkage(),
1309 /*Initializer=*/nullptr,
1311 GD
.getWithKernelReferenceKind(KernelReferenceKind::Kernel
)));
1312 Var
->setAlignment(CGM
.getPointerAlign().getAsAlign());
1313 Var
->setDSOLocal(F
->isDSOLocal());
1314 Var
->setVisibility(F
->getVisibility());
1315 auto *FD
= cast
<FunctionDecl
>(GD
.getDecl());
1316 auto *FT
= FD
->getPrimaryTemplate();
1317 if (!FT
|| FT
->isThisDeclarationADefinition())
1318 CGM
.maybeSetTrivialComdat(*FD
, *Var
);
1319 KernelHandles
[F
->getName()] = Var
;
1320 KernelStubs
[Var
] = F
;