[RISCV][FMV] Support target_clones (#85786)
[llvm-project.git] / clang / lib / CodeGen / CGExprScalar.cpp
blob82caf65ac68d6b100764a70a20293ddbab992850
1 //===--- CGExprScalar.cpp - Emit LLVM Code for Scalar Exprs ---------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This contains code to emit Expr nodes with scalar LLVM types as LLVM code.
11 //===----------------------------------------------------------------------===//
13 #include "CGCXXABI.h"
14 #include "CGCleanup.h"
15 #include "CGDebugInfo.h"
16 #include "CGObjCRuntime.h"
17 #include "CGOpenMPRuntime.h"
18 #include "CGRecordLayout.h"
19 #include "CodeGenFunction.h"
20 #include "CodeGenModule.h"
21 #include "ConstantEmitter.h"
22 #include "TargetInfo.h"
23 #include "clang/AST/ASTContext.h"
24 #include "clang/AST/Attr.h"
25 #include "clang/AST/DeclObjC.h"
26 #include "clang/AST/Expr.h"
27 #include "clang/AST/ParentMapContext.h"
28 #include "clang/AST/RecordLayout.h"
29 #include "clang/AST/StmtVisitor.h"
30 #include "clang/Basic/CodeGenOptions.h"
31 #include "clang/Basic/TargetInfo.h"
32 #include "llvm/ADT/APFixedPoint.h"
33 #include "llvm/IR/CFG.h"
34 #include "llvm/IR/Constants.h"
35 #include "llvm/IR/DataLayout.h"
36 #include "llvm/IR/DerivedTypes.h"
37 #include "llvm/IR/FixedPointBuilder.h"
38 #include "llvm/IR/Function.h"
39 #include "llvm/IR/GEPNoWrapFlags.h"
40 #include "llvm/IR/GetElementPtrTypeIterator.h"
41 #include "llvm/IR/GlobalVariable.h"
42 #include "llvm/IR/Intrinsics.h"
43 #include "llvm/IR/IntrinsicsPowerPC.h"
44 #include "llvm/IR/MatrixBuilder.h"
45 #include "llvm/IR/Module.h"
46 #include "llvm/Support/TypeSize.h"
47 #include <cstdarg>
48 #include <optional>
50 using namespace clang;
51 using namespace CodeGen;
52 using llvm::Value;
54 //===----------------------------------------------------------------------===//
55 // Scalar Expression Emitter
56 //===----------------------------------------------------------------------===//
58 namespace llvm {
59 extern cl::opt<bool> EnableSingleByteCoverage;
60 } // namespace llvm
62 namespace {
64 /// Determine whether the given binary operation may overflow.
65 /// Sets \p Result to the value of the operation for BO_Add, BO_Sub, BO_Mul,
66 /// and signed BO_{Div,Rem}. For these opcodes, and for unsigned BO_{Div,Rem},
67 /// the returned overflow check is precise. The returned value is 'true' for
68 /// all other opcodes, to be conservative.
69 bool mayHaveIntegerOverflow(llvm::ConstantInt *LHS, llvm::ConstantInt *RHS,
70 BinaryOperator::Opcode Opcode, bool Signed,
71 llvm::APInt &Result) {
72 // Assume overflow is possible, unless we can prove otherwise.
73 bool Overflow = true;
74 const auto &LHSAP = LHS->getValue();
75 const auto &RHSAP = RHS->getValue();
76 if (Opcode == BO_Add) {
77 Result = Signed ? LHSAP.sadd_ov(RHSAP, Overflow)
78 : LHSAP.uadd_ov(RHSAP, Overflow);
79 } else if (Opcode == BO_Sub) {
80 Result = Signed ? LHSAP.ssub_ov(RHSAP, Overflow)
81 : LHSAP.usub_ov(RHSAP, Overflow);
82 } else if (Opcode == BO_Mul) {
83 Result = Signed ? LHSAP.smul_ov(RHSAP, Overflow)
84 : LHSAP.umul_ov(RHSAP, Overflow);
85 } else if (Opcode == BO_Div || Opcode == BO_Rem) {
86 if (Signed && !RHS->isZero())
87 Result = LHSAP.sdiv_ov(RHSAP, Overflow);
88 else
89 return false;
91 return Overflow;
94 struct BinOpInfo {
95 Value *LHS;
96 Value *RHS;
97 QualType Ty; // Computation Type.
98 BinaryOperator::Opcode Opcode; // Opcode of BinOp to perform
99 FPOptions FPFeatures;
100 const Expr *E; // Entire expr, for error unsupported. May not be binop.
102 /// Check if the binop can result in integer overflow.
103 bool mayHaveIntegerOverflow() const {
104 // Without constant input, we can't rule out overflow.
105 auto *LHSCI = dyn_cast<llvm::ConstantInt>(LHS);
106 auto *RHSCI = dyn_cast<llvm::ConstantInt>(RHS);
107 if (!LHSCI || !RHSCI)
108 return true;
110 llvm::APInt Result;
111 return ::mayHaveIntegerOverflow(
112 LHSCI, RHSCI, Opcode, Ty->hasSignedIntegerRepresentation(), Result);
115 /// Check if the binop computes a division or a remainder.
116 bool isDivremOp() const {
117 return Opcode == BO_Div || Opcode == BO_Rem || Opcode == BO_DivAssign ||
118 Opcode == BO_RemAssign;
121 /// Check if the binop can result in an integer division by zero.
122 bool mayHaveIntegerDivisionByZero() const {
123 if (isDivremOp())
124 if (auto *CI = dyn_cast<llvm::ConstantInt>(RHS))
125 return CI->isZero();
126 return true;
129 /// Check if the binop can result in a float division by zero.
130 bool mayHaveFloatDivisionByZero() const {
131 if (isDivremOp())
132 if (auto *CFP = dyn_cast<llvm::ConstantFP>(RHS))
133 return CFP->isZero();
134 return true;
137 /// Check if at least one operand is a fixed point type. In such cases, this
138 /// operation did not follow usual arithmetic conversion and both operands
139 /// might not be of the same type.
140 bool isFixedPointOp() const {
141 // We cannot simply check the result type since comparison operations return
142 // an int.
143 if (const auto *BinOp = dyn_cast<BinaryOperator>(E)) {
144 QualType LHSType = BinOp->getLHS()->getType();
145 QualType RHSType = BinOp->getRHS()->getType();
146 return LHSType->isFixedPointType() || RHSType->isFixedPointType();
148 if (const auto *UnOp = dyn_cast<UnaryOperator>(E))
149 return UnOp->getSubExpr()->getType()->isFixedPointType();
150 return false;
153 /// Check if the RHS has a signed integer representation.
154 bool rhsHasSignedIntegerRepresentation() const {
155 if (const auto *BinOp = dyn_cast<BinaryOperator>(E)) {
156 QualType RHSType = BinOp->getRHS()->getType();
157 return RHSType->hasSignedIntegerRepresentation();
159 return false;
163 static bool MustVisitNullValue(const Expr *E) {
164 // If a null pointer expression's type is the C++0x nullptr_t, then
165 // it's not necessarily a simple constant and it must be evaluated
166 // for its potential side effects.
167 return E->getType()->isNullPtrType();
170 /// If \p E is a widened promoted integer, get its base (unpromoted) type.
171 static std::optional<QualType> getUnwidenedIntegerType(const ASTContext &Ctx,
172 const Expr *E) {
173 const Expr *Base = E->IgnoreImpCasts();
174 if (E == Base)
175 return std::nullopt;
177 QualType BaseTy = Base->getType();
178 if (!Ctx.isPromotableIntegerType(BaseTy) ||
179 Ctx.getTypeSize(BaseTy) >= Ctx.getTypeSize(E->getType()))
180 return std::nullopt;
182 return BaseTy;
185 /// Check if \p E is a widened promoted integer.
186 static bool IsWidenedIntegerOp(const ASTContext &Ctx, const Expr *E) {
187 return getUnwidenedIntegerType(Ctx, E).has_value();
190 /// Check if we can skip the overflow check for \p Op.
191 static bool CanElideOverflowCheck(const ASTContext &Ctx, const BinOpInfo &Op) {
192 assert((isa<UnaryOperator>(Op.E) || isa<BinaryOperator>(Op.E)) &&
193 "Expected a unary or binary operator");
195 // If the binop has constant inputs and we can prove there is no overflow,
196 // we can elide the overflow check.
197 if (!Op.mayHaveIntegerOverflow())
198 return true;
200 const UnaryOperator *UO = dyn_cast<UnaryOperator>(Op.E);
202 if (UO && UO->getOpcode() == UO_Minus &&
203 Ctx.getLangOpts().isOverflowPatternExcluded(
204 LangOptions::OverflowPatternExclusionKind::NegUnsignedConst) &&
205 UO->isIntegerConstantExpr(Ctx))
206 return true;
208 // If a unary op has a widened operand, the op cannot overflow.
209 if (UO)
210 return !UO->canOverflow();
212 // We usually don't need overflow checks for binops with widened operands.
213 // Multiplication with promoted unsigned operands is a special case.
214 const auto *BO = cast<BinaryOperator>(Op.E);
215 if (BO->hasExcludedOverflowPattern())
216 return true;
218 auto OptionalLHSTy = getUnwidenedIntegerType(Ctx, BO->getLHS());
219 if (!OptionalLHSTy)
220 return false;
222 auto OptionalRHSTy = getUnwidenedIntegerType(Ctx, BO->getRHS());
223 if (!OptionalRHSTy)
224 return false;
226 QualType LHSTy = *OptionalLHSTy;
227 QualType RHSTy = *OptionalRHSTy;
229 // This is the simple case: binops without unsigned multiplication, and with
230 // widened operands. No overflow check is needed here.
231 if ((Op.Opcode != BO_Mul && Op.Opcode != BO_MulAssign) ||
232 !LHSTy->isUnsignedIntegerType() || !RHSTy->isUnsignedIntegerType())
233 return true;
235 // For unsigned multiplication the overflow check can be elided if either one
236 // of the unpromoted types are less than half the size of the promoted type.
237 unsigned PromotedSize = Ctx.getTypeSize(Op.E->getType());
238 return (2 * Ctx.getTypeSize(LHSTy)) < PromotedSize ||
239 (2 * Ctx.getTypeSize(RHSTy)) < PromotedSize;
242 class ScalarExprEmitter
243 : public StmtVisitor<ScalarExprEmitter, Value*> {
244 CodeGenFunction &CGF;
245 CGBuilderTy &Builder;
246 bool IgnoreResultAssign;
247 llvm::LLVMContext &VMContext;
248 public:
250 ScalarExprEmitter(CodeGenFunction &cgf, bool ira=false)
251 : CGF(cgf), Builder(CGF.Builder), IgnoreResultAssign(ira),
252 VMContext(cgf.getLLVMContext()) {
255 //===--------------------------------------------------------------------===//
256 // Utilities
257 //===--------------------------------------------------------------------===//
259 bool TestAndClearIgnoreResultAssign() {
260 bool I = IgnoreResultAssign;
261 IgnoreResultAssign = false;
262 return I;
265 llvm::Type *ConvertType(QualType T) { return CGF.ConvertType(T); }
266 LValue EmitLValue(const Expr *E) { return CGF.EmitLValue(E); }
267 LValue EmitCheckedLValue(const Expr *E, CodeGenFunction::TypeCheckKind TCK) {
268 return CGF.EmitCheckedLValue(E, TCK);
271 void EmitBinOpCheck(ArrayRef<std::pair<Value *, SanitizerMask>> Checks,
272 const BinOpInfo &Info);
274 Value *EmitLoadOfLValue(LValue LV, SourceLocation Loc) {
275 return CGF.EmitLoadOfLValue(LV, Loc).getScalarVal();
278 void EmitLValueAlignmentAssumption(const Expr *E, Value *V) {
279 const AlignValueAttr *AVAttr = nullptr;
280 if (const auto *DRE = dyn_cast<DeclRefExpr>(E)) {
281 const ValueDecl *VD = DRE->getDecl();
283 if (VD->getType()->isReferenceType()) {
284 if (const auto *TTy =
285 VD->getType().getNonReferenceType()->getAs<TypedefType>())
286 AVAttr = TTy->getDecl()->getAttr<AlignValueAttr>();
287 } else {
288 // Assumptions for function parameters are emitted at the start of the
289 // function, so there is no need to repeat that here,
290 // unless the alignment-assumption sanitizer is enabled,
291 // then we prefer the assumption over alignment attribute
292 // on IR function param.
293 if (isa<ParmVarDecl>(VD) && !CGF.SanOpts.has(SanitizerKind::Alignment))
294 return;
296 AVAttr = VD->getAttr<AlignValueAttr>();
300 if (!AVAttr)
301 if (const auto *TTy = E->getType()->getAs<TypedefType>())
302 AVAttr = TTy->getDecl()->getAttr<AlignValueAttr>();
304 if (!AVAttr)
305 return;
307 Value *AlignmentValue = CGF.EmitScalarExpr(AVAttr->getAlignment());
308 llvm::ConstantInt *AlignmentCI = cast<llvm::ConstantInt>(AlignmentValue);
309 CGF.emitAlignmentAssumption(V, E, AVAttr->getLocation(), AlignmentCI);
312 /// EmitLoadOfLValue - Given an expression with complex type that represents a
313 /// value l-value, this method emits the address of the l-value, then loads
314 /// and returns the result.
315 Value *EmitLoadOfLValue(const Expr *E) {
316 Value *V = EmitLoadOfLValue(EmitCheckedLValue(E, CodeGenFunction::TCK_Load),
317 E->getExprLoc());
319 EmitLValueAlignmentAssumption(E, V);
320 return V;
323 /// EmitConversionToBool - Convert the specified expression value to a
324 /// boolean (i1) truth value. This is equivalent to "Val != 0".
325 Value *EmitConversionToBool(Value *Src, QualType DstTy);
327 /// Emit a check that a conversion from a floating-point type does not
328 /// overflow.
329 void EmitFloatConversionCheck(Value *OrigSrc, QualType OrigSrcType,
330 Value *Src, QualType SrcType, QualType DstType,
331 llvm::Type *DstTy, SourceLocation Loc);
333 /// Known implicit conversion check kinds.
334 /// This is used for bitfield conversion checks as well.
335 /// Keep in sync with the enum of the same name in ubsan_handlers.h
336 enum ImplicitConversionCheckKind : unsigned char {
337 ICCK_IntegerTruncation = 0, // Legacy, was only used by clang 7.
338 ICCK_UnsignedIntegerTruncation = 1,
339 ICCK_SignedIntegerTruncation = 2,
340 ICCK_IntegerSignChange = 3,
341 ICCK_SignedIntegerTruncationOrSignChange = 4,
344 /// Emit a check that an [implicit] truncation of an integer does not
345 /// discard any bits. It is not UB, so we use the value after truncation.
346 void EmitIntegerTruncationCheck(Value *Src, QualType SrcType, Value *Dst,
347 QualType DstType, SourceLocation Loc);
349 /// Emit a check that an [implicit] conversion of an integer does not change
350 /// the sign of the value. It is not UB, so we use the value after conversion.
351 /// NOTE: Src and Dst may be the exact same value! (point to the same thing)
352 void EmitIntegerSignChangeCheck(Value *Src, QualType SrcType, Value *Dst,
353 QualType DstType, SourceLocation Loc);
355 /// Emit a conversion from the specified type to the specified destination
356 /// type, both of which are LLVM scalar types.
357 struct ScalarConversionOpts {
358 bool TreatBooleanAsSigned;
359 bool EmitImplicitIntegerTruncationChecks;
360 bool EmitImplicitIntegerSignChangeChecks;
362 ScalarConversionOpts()
363 : TreatBooleanAsSigned(false),
364 EmitImplicitIntegerTruncationChecks(false),
365 EmitImplicitIntegerSignChangeChecks(false) {}
367 ScalarConversionOpts(clang::SanitizerSet SanOpts)
368 : TreatBooleanAsSigned(false),
369 EmitImplicitIntegerTruncationChecks(
370 SanOpts.hasOneOf(SanitizerKind::ImplicitIntegerTruncation)),
371 EmitImplicitIntegerSignChangeChecks(
372 SanOpts.has(SanitizerKind::ImplicitIntegerSignChange)) {}
374 Value *EmitScalarCast(Value *Src, QualType SrcType, QualType DstType,
375 llvm::Type *SrcTy, llvm::Type *DstTy,
376 ScalarConversionOpts Opts);
377 Value *
378 EmitScalarConversion(Value *Src, QualType SrcTy, QualType DstTy,
379 SourceLocation Loc,
380 ScalarConversionOpts Opts = ScalarConversionOpts());
382 /// Convert between either a fixed point and other fixed point or fixed point
383 /// and an integer.
384 Value *EmitFixedPointConversion(Value *Src, QualType SrcTy, QualType DstTy,
385 SourceLocation Loc);
387 /// Emit a conversion from the specified complex type to the specified
388 /// destination type, where the destination type is an LLVM scalar type.
389 Value *EmitComplexToScalarConversion(CodeGenFunction::ComplexPairTy Src,
390 QualType SrcTy, QualType DstTy,
391 SourceLocation Loc);
393 /// EmitNullValue - Emit a value that corresponds to null for the given type.
394 Value *EmitNullValue(QualType Ty);
396 /// EmitFloatToBoolConversion - Perform an FP to boolean conversion.
397 Value *EmitFloatToBoolConversion(Value *V) {
398 // Compare against 0.0 for fp scalars.
399 llvm::Value *Zero = llvm::Constant::getNullValue(V->getType());
400 return Builder.CreateFCmpUNE(V, Zero, "tobool");
403 /// EmitPointerToBoolConversion - Perform a pointer to boolean conversion.
404 Value *EmitPointerToBoolConversion(Value *V, QualType QT) {
405 Value *Zero = CGF.CGM.getNullPointer(cast<llvm::PointerType>(V->getType()), QT);
407 return Builder.CreateICmpNE(V, Zero, "tobool");
410 Value *EmitIntToBoolConversion(Value *V) {
411 // Because of the type rules of C, we often end up computing a
412 // logical value, then zero extending it to int, then wanting it
413 // as a logical value again. Optimize this common case.
414 if (llvm::ZExtInst *ZI = dyn_cast<llvm::ZExtInst>(V)) {
415 if (ZI->getOperand(0)->getType() == Builder.getInt1Ty()) {
416 Value *Result = ZI->getOperand(0);
417 // If there aren't any more uses, zap the instruction to save space.
418 // Note that there can be more uses, for example if this
419 // is the result of an assignment.
420 if (ZI->use_empty())
421 ZI->eraseFromParent();
422 return Result;
426 return Builder.CreateIsNotNull(V, "tobool");
429 //===--------------------------------------------------------------------===//
430 // Visitor Methods
431 //===--------------------------------------------------------------------===//
433 Value *Visit(Expr *E) {
434 ApplyDebugLocation DL(CGF, E);
435 return StmtVisitor<ScalarExprEmitter, Value*>::Visit(E);
438 Value *VisitStmt(Stmt *S) {
439 S->dump(llvm::errs(), CGF.getContext());
440 llvm_unreachable("Stmt can't have complex result type!");
442 Value *VisitExpr(Expr *S);
444 Value *VisitConstantExpr(ConstantExpr *E) {
445 // A constant expression of type 'void' generates no code and produces no
446 // value.
447 if (E->getType()->isVoidType())
448 return nullptr;
450 if (Value *Result = ConstantEmitter(CGF).tryEmitConstantExpr(E)) {
451 if (E->isGLValue())
452 return CGF.EmitLoadOfScalar(
453 Address(Result, CGF.convertTypeForLoadStore(E->getType()),
454 CGF.getContext().getTypeAlignInChars(E->getType())),
455 /*Volatile*/ false, E->getType(), E->getExprLoc());
456 return Result;
458 return Visit(E->getSubExpr());
460 Value *VisitParenExpr(ParenExpr *PE) {
461 return Visit(PE->getSubExpr());
463 Value *VisitSubstNonTypeTemplateParmExpr(SubstNonTypeTemplateParmExpr *E) {
464 return Visit(E->getReplacement());
466 Value *VisitGenericSelectionExpr(GenericSelectionExpr *GE) {
467 return Visit(GE->getResultExpr());
469 Value *VisitCoawaitExpr(CoawaitExpr *S) {
470 return CGF.EmitCoawaitExpr(*S).getScalarVal();
472 Value *VisitCoyieldExpr(CoyieldExpr *S) {
473 return CGF.EmitCoyieldExpr(*S).getScalarVal();
475 Value *VisitUnaryCoawait(const UnaryOperator *E) {
476 return Visit(E->getSubExpr());
479 // Leaves.
480 Value *VisitIntegerLiteral(const IntegerLiteral *E) {
481 return Builder.getInt(E->getValue());
483 Value *VisitFixedPointLiteral(const FixedPointLiteral *E) {
484 return Builder.getInt(E->getValue());
486 Value *VisitFloatingLiteral(const FloatingLiteral *E) {
487 return llvm::ConstantFP::get(VMContext, E->getValue());
489 Value *VisitCharacterLiteral(const CharacterLiteral *E) {
490 return llvm::ConstantInt::get(ConvertType(E->getType()), E->getValue());
492 Value *VisitObjCBoolLiteralExpr(const ObjCBoolLiteralExpr *E) {
493 return llvm::ConstantInt::get(ConvertType(E->getType()), E->getValue());
495 Value *VisitCXXBoolLiteralExpr(const CXXBoolLiteralExpr *E) {
496 return llvm::ConstantInt::get(ConvertType(E->getType()), E->getValue());
498 Value *VisitCXXScalarValueInitExpr(const CXXScalarValueInitExpr *E) {
499 if (E->getType()->isVoidType())
500 return nullptr;
502 return EmitNullValue(E->getType());
504 Value *VisitGNUNullExpr(const GNUNullExpr *E) {
505 return EmitNullValue(E->getType());
507 Value *VisitOffsetOfExpr(OffsetOfExpr *E);
508 Value *VisitUnaryExprOrTypeTraitExpr(const UnaryExprOrTypeTraitExpr *E);
509 Value *VisitAddrLabelExpr(const AddrLabelExpr *E) {
510 llvm::Value *V = CGF.GetAddrOfLabel(E->getLabel());
511 return Builder.CreateBitCast(V, ConvertType(E->getType()));
514 Value *VisitSizeOfPackExpr(SizeOfPackExpr *E) {
515 return llvm::ConstantInt::get(ConvertType(E->getType()),E->getPackLength());
518 Value *VisitPseudoObjectExpr(PseudoObjectExpr *E) {
519 return CGF.EmitPseudoObjectRValue(E).getScalarVal();
522 Value *VisitSYCLUniqueStableNameExpr(SYCLUniqueStableNameExpr *E);
523 Value *VisitEmbedExpr(EmbedExpr *E);
525 Value *VisitOpaqueValueExpr(OpaqueValueExpr *E) {
526 if (E->isGLValue())
527 return EmitLoadOfLValue(CGF.getOrCreateOpaqueLValueMapping(E),
528 E->getExprLoc());
530 // Otherwise, assume the mapping is the scalar directly.
531 return CGF.getOrCreateOpaqueRValueMapping(E).getScalarVal();
534 // l-values.
535 Value *VisitDeclRefExpr(DeclRefExpr *E) {
536 if (CodeGenFunction::ConstantEmission Constant = CGF.tryEmitAsConstant(E))
537 return CGF.emitScalarConstant(Constant, E);
538 return EmitLoadOfLValue(E);
541 Value *VisitObjCSelectorExpr(ObjCSelectorExpr *E) {
542 return CGF.EmitObjCSelectorExpr(E);
544 Value *VisitObjCProtocolExpr(ObjCProtocolExpr *E) {
545 return CGF.EmitObjCProtocolExpr(E);
547 Value *VisitObjCIvarRefExpr(ObjCIvarRefExpr *E) {
548 return EmitLoadOfLValue(E);
550 Value *VisitObjCMessageExpr(ObjCMessageExpr *E) {
551 if (E->getMethodDecl() &&
552 E->getMethodDecl()->getReturnType()->isReferenceType())
553 return EmitLoadOfLValue(E);
554 return CGF.EmitObjCMessageExpr(E).getScalarVal();
557 Value *VisitObjCIsaExpr(ObjCIsaExpr *E) {
558 LValue LV = CGF.EmitObjCIsaExpr(E);
559 Value *V = CGF.EmitLoadOfLValue(LV, E->getExprLoc()).getScalarVal();
560 return V;
563 Value *VisitObjCAvailabilityCheckExpr(ObjCAvailabilityCheckExpr *E) {
564 VersionTuple Version = E->getVersion();
566 // If we're checking for a platform older than our minimum deployment
567 // target, we can fold the check away.
568 if (Version <= CGF.CGM.getTarget().getPlatformMinVersion())
569 return llvm::ConstantInt::get(Builder.getInt1Ty(), 1);
571 return CGF.EmitBuiltinAvailable(Version);
574 Value *VisitArraySubscriptExpr(ArraySubscriptExpr *E);
575 Value *VisitMatrixSubscriptExpr(MatrixSubscriptExpr *E);
576 Value *VisitShuffleVectorExpr(ShuffleVectorExpr *E);
577 Value *VisitConvertVectorExpr(ConvertVectorExpr *E);
578 Value *VisitMemberExpr(MemberExpr *E);
579 Value *VisitExtVectorElementExpr(Expr *E) { return EmitLoadOfLValue(E); }
580 Value *VisitCompoundLiteralExpr(CompoundLiteralExpr *E) {
581 // Strictly speaking, we shouldn't be calling EmitLoadOfLValue, which
582 // transitively calls EmitCompoundLiteralLValue, here in C++ since compound
583 // literals aren't l-values in C++. We do so simply because that's the
584 // cleanest way to handle compound literals in C++.
585 // See the discussion here: https://reviews.llvm.org/D64464
586 return EmitLoadOfLValue(E);
589 Value *VisitInitListExpr(InitListExpr *E);
591 Value *VisitArrayInitIndexExpr(ArrayInitIndexExpr *E) {
592 assert(CGF.getArrayInitIndex() &&
593 "ArrayInitIndexExpr not inside an ArrayInitLoopExpr?");
594 return CGF.getArrayInitIndex();
597 Value *VisitImplicitValueInitExpr(const ImplicitValueInitExpr *E) {
598 return EmitNullValue(E->getType());
600 Value *VisitExplicitCastExpr(ExplicitCastExpr *E) {
601 CGF.CGM.EmitExplicitCastExprType(E, &CGF);
602 return VisitCastExpr(E);
604 Value *VisitCastExpr(CastExpr *E);
606 Value *VisitCallExpr(const CallExpr *E) {
607 if (E->getCallReturnType(CGF.getContext())->isReferenceType())
608 return EmitLoadOfLValue(E);
610 Value *V = CGF.EmitCallExpr(E).getScalarVal();
612 EmitLValueAlignmentAssumption(E, V);
613 return V;
616 Value *VisitStmtExpr(const StmtExpr *E);
618 // Unary Operators.
619 Value *VisitUnaryPostDec(const UnaryOperator *E) {
620 LValue LV = EmitLValue(E->getSubExpr());
621 return EmitScalarPrePostIncDec(E, LV, false, false);
623 Value *VisitUnaryPostInc(const UnaryOperator *E) {
624 LValue LV = EmitLValue(E->getSubExpr());
625 return EmitScalarPrePostIncDec(E, LV, true, false);
627 Value *VisitUnaryPreDec(const UnaryOperator *E) {
628 LValue LV = EmitLValue(E->getSubExpr());
629 return EmitScalarPrePostIncDec(E, LV, false, true);
631 Value *VisitUnaryPreInc(const UnaryOperator *E) {
632 LValue LV = EmitLValue(E->getSubExpr());
633 return EmitScalarPrePostIncDec(E, LV, true, true);
636 llvm::Value *EmitIncDecConsiderOverflowBehavior(const UnaryOperator *E,
637 llvm::Value *InVal,
638 bool IsInc);
640 llvm::Value *EmitScalarPrePostIncDec(const UnaryOperator *E, LValue LV,
641 bool isInc, bool isPre);
644 Value *VisitUnaryAddrOf(const UnaryOperator *E) {
645 if (isa<MemberPointerType>(E->getType())) // never sugared
646 return CGF.CGM.getMemberPointerConstant(E);
648 return EmitLValue(E->getSubExpr()).getPointer(CGF);
650 Value *VisitUnaryDeref(const UnaryOperator *E) {
651 if (E->getType()->isVoidType())
652 return Visit(E->getSubExpr()); // the actual value should be unused
653 return EmitLoadOfLValue(E);
656 Value *VisitUnaryPlus(const UnaryOperator *E,
657 QualType PromotionType = QualType());
658 Value *VisitPlus(const UnaryOperator *E, QualType PromotionType);
659 Value *VisitUnaryMinus(const UnaryOperator *E,
660 QualType PromotionType = QualType());
661 Value *VisitMinus(const UnaryOperator *E, QualType PromotionType);
663 Value *VisitUnaryNot (const UnaryOperator *E);
664 Value *VisitUnaryLNot (const UnaryOperator *E);
665 Value *VisitUnaryReal(const UnaryOperator *E,
666 QualType PromotionType = QualType());
667 Value *VisitReal(const UnaryOperator *E, QualType PromotionType);
668 Value *VisitUnaryImag(const UnaryOperator *E,
669 QualType PromotionType = QualType());
670 Value *VisitImag(const UnaryOperator *E, QualType PromotionType);
671 Value *VisitUnaryExtension(const UnaryOperator *E) {
672 return Visit(E->getSubExpr());
675 // C++
676 Value *VisitMaterializeTemporaryExpr(const MaterializeTemporaryExpr *E) {
677 return EmitLoadOfLValue(E);
679 Value *VisitSourceLocExpr(SourceLocExpr *SLE) {
680 auto &Ctx = CGF.getContext();
681 APValue Evaluated =
682 SLE->EvaluateInContext(Ctx, CGF.CurSourceLocExprScope.getDefaultExpr());
683 return ConstantEmitter(CGF).emitAbstract(SLE->getLocation(), Evaluated,
684 SLE->getType());
687 Value *VisitCXXDefaultArgExpr(CXXDefaultArgExpr *DAE) {
688 CodeGenFunction::CXXDefaultArgExprScope Scope(CGF, DAE);
689 return Visit(DAE->getExpr());
691 Value *VisitCXXDefaultInitExpr(CXXDefaultInitExpr *DIE) {
692 CodeGenFunction::CXXDefaultInitExprScope Scope(CGF, DIE);
693 return Visit(DIE->getExpr());
695 Value *VisitCXXThisExpr(CXXThisExpr *TE) {
696 return CGF.LoadCXXThis();
699 Value *VisitExprWithCleanups(ExprWithCleanups *E);
700 Value *VisitCXXNewExpr(const CXXNewExpr *E) {
701 return CGF.EmitCXXNewExpr(E);
703 Value *VisitCXXDeleteExpr(const CXXDeleteExpr *E) {
704 CGF.EmitCXXDeleteExpr(E);
705 return nullptr;
708 Value *VisitTypeTraitExpr(const TypeTraitExpr *E) {
709 return llvm::ConstantInt::get(ConvertType(E->getType()), E->getValue());
712 Value *VisitConceptSpecializationExpr(const ConceptSpecializationExpr *E) {
713 return Builder.getInt1(E->isSatisfied());
716 Value *VisitRequiresExpr(const RequiresExpr *E) {
717 return Builder.getInt1(E->isSatisfied());
720 Value *VisitArrayTypeTraitExpr(const ArrayTypeTraitExpr *E) {
721 return llvm::ConstantInt::get(Builder.getInt32Ty(), E->getValue());
724 Value *VisitExpressionTraitExpr(const ExpressionTraitExpr *E) {
725 return llvm::ConstantInt::get(Builder.getInt1Ty(), E->getValue());
728 Value *VisitCXXPseudoDestructorExpr(const CXXPseudoDestructorExpr *E) {
729 // C++ [expr.pseudo]p1:
730 // The result shall only be used as the operand for the function call
731 // operator (), and the result of such a call has type void. The only
732 // effect is the evaluation of the postfix-expression before the dot or
733 // arrow.
734 CGF.EmitScalarExpr(E->getBase());
735 return nullptr;
738 Value *VisitCXXNullPtrLiteralExpr(const CXXNullPtrLiteralExpr *E) {
739 return EmitNullValue(E->getType());
742 Value *VisitCXXThrowExpr(const CXXThrowExpr *E) {
743 CGF.EmitCXXThrowExpr(E);
744 return nullptr;
747 Value *VisitCXXNoexceptExpr(const CXXNoexceptExpr *E) {
748 return Builder.getInt1(E->getValue());
751 // Binary Operators.
752 Value *EmitMul(const BinOpInfo &Ops) {
753 if (Ops.Ty->isSignedIntegerOrEnumerationType()) {
754 switch (CGF.getLangOpts().getSignedOverflowBehavior()) {
755 case LangOptions::SOB_Defined:
756 if (!CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow))
757 return Builder.CreateMul(Ops.LHS, Ops.RHS, "mul");
758 [[fallthrough]];
759 case LangOptions::SOB_Undefined:
760 if (!CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow))
761 return Builder.CreateNSWMul(Ops.LHS, Ops.RHS, "mul");
762 [[fallthrough]];
763 case LangOptions::SOB_Trapping:
764 if (CanElideOverflowCheck(CGF.getContext(), Ops))
765 return Builder.CreateNSWMul(Ops.LHS, Ops.RHS, "mul");
766 return EmitOverflowCheckedBinOp(Ops);
770 if (Ops.Ty->isConstantMatrixType()) {
771 llvm::MatrixBuilder MB(Builder);
772 // We need to check the types of the operands of the operator to get the
773 // correct matrix dimensions.
774 auto *BO = cast<BinaryOperator>(Ops.E);
775 auto *LHSMatTy = dyn_cast<ConstantMatrixType>(
776 BO->getLHS()->getType().getCanonicalType());
777 auto *RHSMatTy = dyn_cast<ConstantMatrixType>(
778 BO->getRHS()->getType().getCanonicalType());
779 CodeGenFunction::CGFPOptionsRAII FPOptsRAII(CGF, Ops.FPFeatures);
780 if (LHSMatTy && RHSMatTy)
781 return MB.CreateMatrixMultiply(Ops.LHS, Ops.RHS, LHSMatTy->getNumRows(),
782 LHSMatTy->getNumColumns(),
783 RHSMatTy->getNumColumns());
784 return MB.CreateScalarMultiply(Ops.LHS, Ops.RHS);
787 if (Ops.Ty->isUnsignedIntegerType() &&
788 CGF.SanOpts.has(SanitizerKind::UnsignedIntegerOverflow) &&
789 !CanElideOverflowCheck(CGF.getContext(), Ops))
790 return EmitOverflowCheckedBinOp(Ops);
792 if (Ops.LHS->getType()->isFPOrFPVectorTy()) {
793 // Preserve the old values
794 CodeGenFunction::CGFPOptionsRAII FPOptsRAII(CGF, Ops.FPFeatures);
795 return Builder.CreateFMul(Ops.LHS, Ops.RHS, "mul");
797 if (Ops.isFixedPointOp())
798 return EmitFixedPointBinOp(Ops);
799 return Builder.CreateMul(Ops.LHS, Ops.RHS, "mul");
801 /// Create a binary op that checks for overflow.
802 /// Currently only supports +, - and *.
803 Value *EmitOverflowCheckedBinOp(const BinOpInfo &Ops);
805 // Check for undefined division and modulus behaviors.
806 void EmitUndefinedBehaviorIntegerDivAndRemCheck(const BinOpInfo &Ops,
807 llvm::Value *Zero,bool isDiv);
808 // Common helper for getting how wide LHS of shift is.
809 static Value *GetMaximumShiftAmount(Value *LHS, Value *RHS, bool RHSIsSigned);
811 // Used for shifting constraints for OpenCL, do mask for powers of 2, URem for
812 // non powers of two.
813 Value *ConstrainShiftValue(Value *LHS, Value *RHS, const Twine &Name);
815 Value *EmitDiv(const BinOpInfo &Ops);
816 Value *EmitRem(const BinOpInfo &Ops);
817 Value *EmitAdd(const BinOpInfo &Ops);
818 Value *EmitSub(const BinOpInfo &Ops);
819 Value *EmitShl(const BinOpInfo &Ops);
820 Value *EmitShr(const BinOpInfo &Ops);
821 Value *EmitAnd(const BinOpInfo &Ops) {
822 return Builder.CreateAnd(Ops.LHS, Ops.RHS, "and");
824 Value *EmitXor(const BinOpInfo &Ops) {
825 return Builder.CreateXor(Ops.LHS, Ops.RHS, "xor");
827 Value *EmitOr (const BinOpInfo &Ops) {
828 return Builder.CreateOr(Ops.LHS, Ops.RHS, "or");
831 // Helper functions for fixed point binary operations.
832 Value *EmitFixedPointBinOp(const BinOpInfo &Ops);
834 BinOpInfo EmitBinOps(const BinaryOperator *E,
835 QualType PromotionTy = QualType());
837 Value *EmitPromotedValue(Value *result, QualType PromotionType);
838 Value *EmitUnPromotedValue(Value *result, QualType ExprType);
839 Value *EmitPromoted(const Expr *E, QualType PromotionType);
841 LValue EmitCompoundAssignLValue(const CompoundAssignOperator *E,
842 Value *(ScalarExprEmitter::*F)(const BinOpInfo &),
843 Value *&Result);
845 Value *EmitCompoundAssign(const CompoundAssignOperator *E,
846 Value *(ScalarExprEmitter::*F)(const BinOpInfo &));
848 QualType getPromotionType(QualType Ty) {
849 const auto &Ctx = CGF.getContext();
850 if (auto *CT = Ty->getAs<ComplexType>()) {
851 QualType ElementType = CT->getElementType();
852 if (ElementType.UseExcessPrecision(Ctx))
853 return Ctx.getComplexType(Ctx.FloatTy);
856 if (Ty.UseExcessPrecision(Ctx)) {
857 if (auto *VT = Ty->getAs<VectorType>()) {
858 unsigned NumElements = VT->getNumElements();
859 return Ctx.getVectorType(Ctx.FloatTy, NumElements, VT->getVectorKind());
861 return Ctx.FloatTy;
864 return QualType();
867 // Binary operators and binary compound assignment operators.
868 #define HANDLEBINOP(OP) \
869 Value *VisitBin##OP(const BinaryOperator *E) { \
870 QualType promotionTy = getPromotionType(E->getType()); \
871 auto result = Emit##OP(EmitBinOps(E, promotionTy)); \
872 if (result && !promotionTy.isNull()) \
873 result = EmitUnPromotedValue(result, E->getType()); \
874 return result; \
876 Value *VisitBin##OP##Assign(const CompoundAssignOperator *E) { \
877 return EmitCompoundAssign(E, &ScalarExprEmitter::Emit##OP); \
879 HANDLEBINOP(Mul)
880 HANDLEBINOP(Div)
881 HANDLEBINOP(Rem)
882 HANDLEBINOP(Add)
883 HANDLEBINOP(Sub)
884 HANDLEBINOP(Shl)
885 HANDLEBINOP(Shr)
886 HANDLEBINOP(And)
887 HANDLEBINOP(Xor)
888 HANDLEBINOP(Or)
889 #undef HANDLEBINOP
891 // Comparisons.
892 Value *EmitCompare(const BinaryOperator *E, llvm::CmpInst::Predicate UICmpOpc,
893 llvm::CmpInst::Predicate SICmpOpc,
894 llvm::CmpInst::Predicate FCmpOpc, bool IsSignaling);
895 #define VISITCOMP(CODE, UI, SI, FP, SIG) \
896 Value *VisitBin##CODE(const BinaryOperator *E) { \
897 return EmitCompare(E, llvm::ICmpInst::UI, llvm::ICmpInst::SI, \
898 llvm::FCmpInst::FP, SIG); }
899 VISITCOMP(LT, ICMP_ULT, ICMP_SLT, FCMP_OLT, true)
900 VISITCOMP(GT, ICMP_UGT, ICMP_SGT, FCMP_OGT, true)
901 VISITCOMP(LE, ICMP_ULE, ICMP_SLE, FCMP_OLE, true)
902 VISITCOMP(GE, ICMP_UGE, ICMP_SGE, FCMP_OGE, true)
903 VISITCOMP(EQ, ICMP_EQ , ICMP_EQ , FCMP_OEQ, false)
904 VISITCOMP(NE, ICMP_NE , ICMP_NE , FCMP_UNE, false)
905 #undef VISITCOMP
907 Value *VisitBinAssign (const BinaryOperator *E);
909 Value *VisitBinLAnd (const BinaryOperator *E);
910 Value *VisitBinLOr (const BinaryOperator *E);
911 Value *VisitBinComma (const BinaryOperator *E);
913 Value *VisitBinPtrMemD(const Expr *E) { return EmitLoadOfLValue(E); }
914 Value *VisitBinPtrMemI(const Expr *E) { return EmitLoadOfLValue(E); }
916 Value *VisitCXXRewrittenBinaryOperator(CXXRewrittenBinaryOperator *E) {
917 return Visit(E->getSemanticForm());
920 // Other Operators.
921 Value *VisitBlockExpr(const BlockExpr *BE);
922 Value *VisitAbstractConditionalOperator(const AbstractConditionalOperator *);
923 Value *VisitChooseExpr(ChooseExpr *CE);
924 Value *VisitVAArgExpr(VAArgExpr *VE);
925 Value *VisitObjCStringLiteral(const ObjCStringLiteral *E) {
926 return CGF.EmitObjCStringLiteral(E);
928 Value *VisitObjCBoxedExpr(ObjCBoxedExpr *E) {
929 return CGF.EmitObjCBoxedExpr(E);
931 Value *VisitObjCArrayLiteral(ObjCArrayLiteral *E) {
932 return CGF.EmitObjCArrayLiteral(E);
934 Value *VisitObjCDictionaryLiteral(ObjCDictionaryLiteral *E) {
935 return CGF.EmitObjCDictionaryLiteral(E);
937 Value *VisitAsTypeExpr(AsTypeExpr *CE);
938 Value *VisitAtomicExpr(AtomicExpr *AE);
939 Value *VisitPackIndexingExpr(PackIndexingExpr *E) {
940 return Visit(E->getSelectedExpr());
943 } // end anonymous namespace.
945 //===----------------------------------------------------------------------===//
946 // Utilities
947 //===----------------------------------------------------------------------===//
949 /// EmitConversionToBool - Convert the specified expression value to a
950 /// boolean (i1) truth value. This is equivalent to "Val != 0".
951 Value *ScalarExprEmitter::EmitConversionToBool(Value *Src, QualType SrcType) {
952 assert(SrcType.isCanonical() && "EmitScalarConversion strips typedefs");
954 if (SrcType->isRealFloatingType())
955 return EmitFloatToBoolConversion(Src);
957 if (const MemberPointerType *MPT = dyn_cast<MemberPointerType>(SrcType))
958 return CGF.CGM.getCXXABI().EmitMemberPointerIsNotNull(CGF, Src, MPT);
960 assert((SrcType->isIntegerType() || isa<llvm::PointerType>(Src->getType())) &&
961 "Unknown scalar type to convert");
963 if (isa<llvm::IntegerType>(Src->getType()))
964 return EmitIntToBoolConversion(Src);
966 assert(isa<llvm::PointerType>(Src->getType()));
967 return EmitPointerToBoolConversion(Src, SrcType);
970 void ScalarExprEmitter::EmitFloatConversionCheck(
971 Value *OrigSrc, QualType OrigSrcType, Value *Src, QualType SrcType,
972 QualType DstType, llvm::Type *DstTy, SourceLocation Loc) {
973 assert(SrcType->isFloatingType() && "not a conversion from floating point");
974 if (!isa<llvm::IntegerType>(DstTy))
975 return;
977 CodeGenFunction::SanitizerScope SanScope(&CGF);
978 using llvm::APFloat;
979 using llvm::APSInt;
981 llvm::Value *Check = nullptr;
982 const llvm::fltSemantics &SrcSema =
983 CGF.getContext().getFloatTypeSemantics(OrigSrcType);
985 // Floating-point to integer. This has undefined behavior if the source is
986 // +-Inf, NaN, or doesn't fit into the destination type (after truncation
987 // to an integer).
988 unsigned Width = CGF.getContext().getIntWidth(DstType);
989 bool Unsigned = DstType->isUnsignedIntegerOrEnumerationType();
991 APSInt Min = APSInt::getMinValue(Width, Unsigned);
992 APFloat MinSrc(SrcSema, APFloat::uninitialized);
993 if (MinSrc.convertFromAPInt(Min, !Unsigned, APFloat::rmTowardZero) &
994 APFloat::opOverflow)
995 // Don't need an overflow check for lower bound. Just check for
996 // -Inf/NaN.
997 MinSrc = APFloat::getInf(SrcSema, true);
998 else
999 // Find the largest value which is too small to represent (before
1000 // truncation toward zero).
1001 MinSrc.subtract(APFloat(SrcSema, 1), APFloat::rmTowardNegative);
1003 APSInt Max = APSInt::getMaxValue(Width, Unsigned);
1004 APFloat MaxSrc(SrcSema, APFloat::uninitialized);
1005 if (MaxSrc.convertFromAPInt(Max, !Unsigned, APFloat::rmTowardZero) &
1006 APFloat::opOverflow)
1007 // Don't need an overflow check for upper bound. Just check for
1008 // +Inf/NaN.
1009 MaxSrc = APFloat::getInf(SrcSema, false);
1010 else
1011 // Find the smallest value which is too large to represent (before
1012 // truncation toward zero).
1013 MaxSrc.add(APFloat(SrcSema, 1), APFloat::rmTowardPositive);
1015 // If we're converting from __half, convert the range to float to match
1016 // the type of src.
1017 if (OrigSrcType->isHalfType()) {
1018 const llvm::fltSemantics &Sema =
1019 CGF.getContext().getFloatTypeSemantics(SrcType);
1020 bool IsInexact;
1021 MinSrc.convert(Sema, APFloat::rmTowardZero, &IsInexact);
1022 MaxSrc.convert(Sema, APFloat::rmTowardZero, &IsInexact);
1025 llvm::Value *GE =
1026 Builder.CreateFCmpOGT(Src, llvm::ConstantFP::get(VMContext, MinSrc));
1027 llvm::Value *LE =
1028 Builder.CreateFCmpOLT(Src, llvm::ConstantFP::get(VMContext, MaxSrc));
1029 Check = Builder.CreateAnd(GE, LE);
1031 llvm::Constant *StaticArgs[] = {CGF.EmitCheckSourceLocation(Loc),
1032 CGF.EmitCheckTypeDescriptor(OrigSrcType),
1033 CGF.EmitCheckTypeDescriptor(DstType)};
1034 CGF.EmitCheck(std::make_pair(Check, SanitizerKind::FloatCastOverflow),
1035 SanitizerHandler::FloatCastOverflow, StaticArgs, OrigSrc);
1038 // Should be called within CodeGenFunction::SanitizerScope RAII scope.
1039 // Returns 'i1 false' when the truncation Src -> Dst was lossy.
1040 static std::pair<ScalarExprEmitter::ImplicitConversionCheckKind,
1041 std::pair<llvm::Value *, SanitizerMask>>
1042 EmitIntegerTruncationCheckHelper(Value *Src, QualType SrcType, Value *Dst,
1043 QualType DstType, CGBuilderTy &Builder) {
1044 llvm::Type *SrcTy = Src->getType();
1045 llvm::Type *DstTy = Dst->getType();
1046 (void)DstTy; // Only used in assert()
1048 // This should be truncation of integral types.
1049 assert(Src != Dst);
1050 assert(SrcTy->getScalarSizeInBits() > Dst->getType()->getScalarSizeInBits());
1051 assert(isa<llvm::IntegerType>(SrcTy) && isa<llvm::IntegerType>(DstTy) &&
1052 "non-integer llvm type");
1054 bool SrcSigned = SrcType->isSignedIntegerOrEnumerationType();
1055 bool DstSigned = DstType->isSignedIntegerOrEnumerationType();
1057 // If both (src and dst) types are unsigned, then it's an unsigned truncation.
1058 // Else, it is a signed truncation.
1059 ScalarExprEmitter::ImplicitConversionCheckKind Kind;
1060 SanitizerMask Mask;
1061 if (!SrcSigned && !DstSigned) {
1062 Kind = ScalarExprEmitter::ICCK_UnsignedIntegerTruncation;
1063 Mask = SanitizerKind::ImplicitUnsignedIntegerTruncation;
1064 } else {
1065 Kind = ScalarExprEmitter::ICCK_SignedIntegerTruncation;
1066 Mask = SanitizerKind::ImplicitSignedIntegerTruncation;
1069 llvm::Value *Check = nullptr;
1070 // 1. Extend the truncated value back to the same width as the Src.
1071 Check = Builder.CreateIntCast(Dst, SrcTy, DstSigned, "anyext");
1072 // 2. Equality-compare with the original source value
1073 Check = Builder.CreateICmpEQ(Check, Src, "truncheck");
1074 // If the comparison result is 'i1 false', then the truncation was lossy.
1075 return std::make_pair(Kind, std::make_pair(Check, Mask));
1078 static bool PromotionIsPotentiallyEligibleForImplicitIntegerConversionCheck(
1079 QualType SrcType, QualType DstType) {
1080 return SrcType->isIntegerType() && DstType->isIntegerType();
1083 void ScalarExprEmitter::EmitIntegerTruncationCheck(Value *Src, QualType SrcType,
1084 Value *Dst, QualType DstType,
1085 SourceLocation Loc) {
1086 if (!CGF.SanOpts.hasOneOf(SanitizerKind::ImplicitIntegerTruncation))
1087 return;
1089 // We only care about int->int conversions here.
1090 // We ignore conversions to/from pointer and/or bool.
1091 if (!PromotionIsPotentiallyEligibleForImplicitIntegerConversionCheck(SrcType,
1092 DstType))
1093 return;
1095 unsigned SrcBits = Src->getType()->getScalarSizeInBits();
1096 unsigned DstBits = Dst->getType()->getScalarSizeInBits();
1097 // This must be truncation. Else we do not care.
1098 if (SrcBits <= DstBits)
1099 return;
1101 assert(!DstType->isBooleanType() && "we should not get here with booleans.");
1103 // If the integer sign change sanitizer is enabled,
1104 // and we are truncating from larger unsigned type to smaller signed type,
1105 // let that next sanitizer deal with it.
1106 bool SrcSigned = SrcType->isSignedIntegerOrEnumerationType();
1107 bool DstSigned = DstType->isSignedIntegerOrEnumerationType();
1108 if (CGF.SanOpts.has(SanitizerKind::ImplicitIntegerSignChange) &&
1109 (!SrcSigned && DstSigned))
1110 return;
1112 CodeGenFunction::SanitizerScope SanScope(&CGF);
1114 std::pair<ScalarExprEmitter::ImplicitConversionCheckKind,
1115 std::pair<llvm::Value *, SanitizerMask>>
1116 Check =
1117 EmitIntegerTruncationCheckHelper(Src, SrcType, Dst, DstType, Builder);
1118 // If the comparison result is 'i1 false', then the truncation was lossy.
1120 // Do we care about this type of truncation?
1121 if (!CGF.SanOpts.has(Check.second.second))
1122 return;
1124 llvm::Constant *StaticArgs[] = {
1125 CGF.EmitCheckSourceLocation(Loc), CGF.EmitCheckTypeDescriptor(SrcType),
1126 CGF.EmitCheckTypeDescriptor(DstType),
1127 llvm::ConstantInt::get(Builder.getInt8Ty(), Check.first),
1128 llvm::ConstantInt::get(Builder.getInt32Ty(), 0)};
1130 CGF.EmitCheck(Check.second, SanitizerHandler::ImplicitConversion, StaticArgs,
1131 {Src, Dst});
1134 static llvm::Value *EmitIsNegativeTestHelper(Value *V, QualType VType,
1135 const char *Name,
1136 CGBuilderTy &Builder) {
1137 bool VSigned = VType->isSignedIntegerOrEnumerationType();
1138 llvm::Type *VTy = V->getType();
1139 if (!VSigned) {
1140 // If the value is unsigned, then it is never negative.
1141 return llvm::ConstantInt::getFalse(VTy->getContext());
1143 llvm::Constant *Zero = llvm::ConstantInt::get(VTy, 0);
1144 return Builder.CreateICmp(llvm::ICmpInst::ICMP_SLT, V, Zero,
1145 llvm::Twine(Name) + "." + V->getName() +
1146 ".negativitycheck");
1149 // Should be called within CodeGenFunction::SanitizerScope RAII scope.
1150 // Returns 'i1 false' when the conversion Src -> Dst changed the sign.
1151 static std::pair<ScalarExprEmitter::ImplicitConversionCheckKind,
1152 std::pair<llvm::Value *, SanitizerMask>>
1153 EmitIntegerSignChangeCheckHelper(Value *Src, QualType SrcType, Value *Dst,
1154 QualType DstType, CGBuilderTy &Builder) {
1155 llvm::Type *SrcTy = Src->getType();
1156 llvm::Type *DstTy = Dst->getType();
1158 assert(isa<llvm::IntegerType>(SrcTy) && isa<llvm::IntegerType>(DstTy) &&
1159 "non-integer llvm type");
1161 bool SrcSigned = SrcType->isSignedIntegerOrEnumerationType();
1162 bool DstSigned = DstType->isSignedIntegerOrEnumerationType();
1163 (void)SrcSigned; // Only used in assert()
1164 (void)DstSigned; // Only used in assert()
1165 unsigned SrcBits = SrcTy->getScalarSizeInBits();
1166 unsigned DstBits = DstTy->getScalarSizeInBits();
1167 (void)SrcBits; // Only used in assert()
1168 (void)DstBits; // Only used in assert()
1170 assert(((SrcBits != DstBits) || (SrcSigned != DstSigned)) &&
1171 "either the widths should be different, or the signednesses.");
1173 // 1. Was the old Value negative?
1174 llvm::Value *SrcIsNegative =
1175 EmitIsNegativeTestHelper(Src, SrcType, "src", Builder);
1176 // 2. Is the new Value negative?
1177 llvm::Value *DstIsNegative =
1178 EmitIsNegativeTestHelper(Dst, DstType, "dst", Builder);
1179 // 3. Now, was the 'negativity status' preserved during the conversion?
1180 // NOTE: conversion from negative to zero is considered to change the sign.
1181 // (We want to get 'false' when the conversion changed the sign)
1182 // So we should just equality-compare the negativity statuses.
1183 llvm::Value *Check = nullptr;
1184 Check = Builder.CreateICmpEQ(SrcIsNegative, DstIsNegative, "signchangecheck");
1185 // If the comparison result is 'false', then the conversion changed the sign.
1186 return std::make_pair(
1187 ScalarExprEmitter::ICCK_IntegerSignChange,
1188 std::make_pair(Check, SanitizerKind::ImplicitIntegerSignChange));
1191 void ScalarExprEmitter::EmitIntegerSignChangeCheck(Value *Src, QualType SrcType,
1192 Value *Dst, QualType DstType,
1193 SourceLocation Loc) {
1194 if (!CGF.SanOpts.has(SanitizerKind::ImplicitIntegerSignChange))
1195 return;
1197 llvm::Type *SrcTy = Src->getType();
1198 llvm::Type *DstTy = Dst->getType();
1200 // We only care about int->int conversions here.
1201 // We ignore conversions to/from pointer and/or bool.
1202 if (!PromotionIsPotentiallyEligibleForImplicitIntegerConversionCheck(SrcType,
1203 DstType))
1204 return;
1206 bool SrcSigned = SrcType->isSignedIntegerOrEnumerationType();
1207 bool DstSigned = DstType->isSignedIntegerOrEnumerationType();
1208 unsigned SrcBits = SrcTy->getScalarSizeInBits();
1209 unsigned DstBits = DstTy->getScalarSizeInBits();
1211 // Now, we do not need to emit the check in *all* of the cases.
1212 // We can avoid emitting it in some obvious cases where it would have been
1213 // dropped by the opt passes (instcombine) always anyways.
1214 // If it's a cast between effectively the same type, no check.
1215 // NOTE: this is *not* equivalent to checking the canonical types.
1216 if (SrcSigned == DstSigned && SrcBits == DstBits)
1217 return;
1218 // At least one of the values needs to have signed type.
1219 // If both are unsigned, then obviously, neither of them can be negative.
1220 if (!SrcSigned && !DstSigned)
1221 return;
1222 // If the conversion is to *larger* *signed* type, then no check is needed.
1223 // Because either sign-extension happens (so the sign will remain),
1224 // or zero-extension will happen (the sign bit will be zero.)
1225 if ((DstBits > SrcBits) && DstSigned)
1226 return;
1227 if (CGF.SanOpts.has(SanitizerKind::ImplicitSignedIntegerTruncation) &&
1228 (SrcBits > DstBits) && SrcSigned) {
1229 // If the signed integer truncation sanitizer is enabled,
1230 // and this is a truncation from signed type, then no check is needed.
1231 // Because here sign change check is interchangeable with truncation check.
1232 return;
1234 // That's it. We can't rule out any more cases with the data we have.
1236 CodeGenFunction::SanitizerScope SanScope(&CGF);
1238 std::pair<ScalarExprEmitter::ImplicitConversionCheckKind,
1239 std::pair<llvm::Value *, SanitizerMask>>
1240 Check;
1242 // Each of these checks needs to return 'false' when an issue was detected.
1243 ImplicitConversionCheckKind CheckKind;
1244 llvm::SmallVector<std::pair<llvm::Value *, SanitizerMask>, 2> Checks;
1245 // So we can 'and' all the checks together, and still get 'false',
1246 // if at least one of the checks detected an issue.
1248 Check = EmitIntegerSignChangeCheckHelper(Src, SrcType, Dst, DstType, Builder);
1249 CheckKind = Check.first;
1250 Checks.emplace_back(Check.second);
1252 if (CGF.SanOpts.has(SanitizerKind::ImplicitSignedIntegerTruncation) &&
1253 (SrcBits > DstBits) && !SrcSigned && DstSigned) {
1254 // If the signed integer truncation sanitizer was enabled,
1255 // and we are truncating from larger unsigned type to smaller signed type,
1256 // let's handle the case we skipped in that check.
1257 Check =
1258 EmitIntegerTruncationCheckHelper(Src, SrcType, Dst, DstType, Builder);
1259 CheckKind = ICCK_SignedIntegerTruncationOrSignChange;
1260 Checks.emplace_back(Check.second);
1261 // If the comparison result is 'i1 false', then the truncation was lossy.
1264 llvm::Constant *StaticArgs[] = {
1265 CGF.EmitCheckSourceLocation(Loc), CGF.EmitCheckTypeDescriptor(SrcType),
1266 CGF.EmitCheckTypeDescriptor(DstType),
1267 llvm::ConstantInt::get(Builder.getInt8Ty(), CheckKind),
1268 llvm::ConstantInt::get(Builder.getInt32Ty(), 0)};
1269 // EmitCheck() will 'and' all the checks together.
1270 CGF.EmitCheck(Checks, SanitizerHandler::ImplicitConversion, StaticArgs,
1271 {Src, Dst});
1274 // Should be called within CodeGenFunction::SanitizerScope RAII scope.
1275 // Returns 'i1 false' when the truncation Src -> Dst was lossy.
1276 static std::pair<ScalarExprEmitter::ImplicitConversionCheckKind,
1277 std::pair<llvm::Value *, SanitizerMask>>
1278 EmitBitfieldTruncationCheckHelper(Value *Src, QualType SrcType, Value *Dst,
1279 QualType DstType, CGBuilderTy &Builder) {
1280 bool SrcSigned = SrcType->isSignedIntegerOrEnumerationType();
1281 bool DstSigned = DstType->isSignedIntegerOrEnumerationType();
1283 ScalarExprEmitter::ImplicitConversionCheckKind Kind;
1284 if (!SrcSigned && !DstSigned)
1285 Kind = ScalarExprEmitter::ICCK_UnsignedIntegerTruncation;
1286 else
1287 Kind = ScalarExprEmitter::ICCK_SignedIntegerTruncation;
1289 llvm::Value *Check = nullptr;
1290 // 1. Extend the truncated value back to the same width as the Src.
1291 Check = Builder.CreateIntCast(Dst, Src->getType(), DstSigned, "bf.anyext");
1292 // 2. Equality-compare with the original source value
1293 Check = Builder.CreateICmpEQ(Check, Src, "bf.truncheck");
1294 // If the comparison result is 'i1 false', then the truncation was lossy.
1296 return std::make_pair(
1297 Kind, std::make_pair(Check, SanitizerKind::ImplicitBitfieldConversion));
1300 // Should be called within CodeGenFunction::SanitizerScope RAII scope.
1301 // Returns 'i1 false' when the conversion Src -> Dst changed the sign.
1302 static std::pair<ScalarExprEmitter::ImplicitConversionCheckKind,
1303 std::pair<llvm::Value *, SanitizerMask>>
1304 EmitBitfieldSignChangeCheckHelper(Value *Src, QualType SrcType, Value *Dst,
1305 QualType DstType, CGBuilderTy &Builder) {
1306 // 1. Was the old Value negative?
1307 llvm::Value *SrcIsNegative =
1308 EmitIsNegativeTestHelper(Src, SrcType, "bf.src", Builder);
1309 // 2. Is the new Value negative?
1310 llvm::Value *DstIsNegative =
1311 EmitIsNegativeTestHelper(Dst, DstType, "bf.dst", Builder);
1312 // 3. Now, was the 'negativity status' preserved during the conversion?
1313 // NOTE: conversion from negative to zero is considered to change the sign.
1314 // (We want to get 'false' when the conversion changed the sign)
1315 // So we should just equality-compare the negativity statuses.
1316 llvm::Value *Check = nullptr;
1317 Check =
1318 Builder.CreateICmpEQ(SrcIsNegative, DstIsNegative, "bf.signchangecheck");
1319 // If the comparison result is 'false', then the conversion changed the sign.
1320 return std::make_pair(
1321 ScalarExprEmitter::ICCK_IntegerSignChange,
1322 std::make_pair(Check, SanitizerKind::ImplicitBitfieldConversion));
1325 void CodeGenFunction::EmitBitfieldConversionCheck(Value *Src, QualType SrcType,
1326 Value *Dst, QualType DstType,
1327 const CGBitFieldInfo &Info,
1328 SourceLocation Loc) {
1330 if (!SanOpts.has(SanitizerKind::ImplicitBitfieldConversion))
1331 return;
1333 // We only care about int->int conversions here.
1334 // We ignore conversions to/from pointer and/or bool.
1335 if (!PromotionIsPotentiallyEligibleForImplicitIntegerConversionCheck(SrcType,
1336 DstType))
1337 return;
1339 if (DstType->isBooleanType() || SrcType->isBooleanType())
1340 return;
1342 // This should be truncation of integral types.
1343 assert(isa<llvm::IntegerType>(Src->getType()) &&
1344 isa<llvm::IntegerType>(Dst->getType()) && "non-integer llvm type");
1346 // TODO: Calculate src width to avoid emitting code
1347 // for unecessary cases.
1348 unsigned SrcBits = ConvertType(SrcType)->getScalarSizeInBits();
1349 unsigned DstBits = Info.Size;
1351 bool SrcSigned = SrcType->isSignedIntegerOrEnumerationType();
1352 bool DstSigned = DstType->isSignedIntegerOrEnumerationType();
1354 CodeGenFunction::SanitizerScope SanScope(this);
1356 std::pair<ScalarExprEmitter::ImplicitConversionCheckKind,
1357 std::pair<llvm::Value *, SanitizerMask>>
1358 Check;
1360 // Truncation
1361 bool EmitTruncation = DstBits < SrcBits;
1362 // If Dst is signed and Src unsigned, we want to be more specific
1363 // about the CheckKind we emit, in this case we want to emit
1364 // ICCK_SignedIntegerTruncationOrSignChange.
1365 bool EmitTruncationFromUnsignedToSigned =
1366 EmitTruncation && DstSigned && !SrcSigned;
1367 // Sign change
1368 bool SameTypeSameSize = SrcSigned == DstSigned && SrcBits == DstBits;
1369 bool BothUnsigned = !SrcSigned && !DstSigned;
1370 bool LargerSigned = (DstBits > SrcBits) && DstSigned;
1371 // We can avoid emitting sign change checks in some obvious cases
1372 // 1. If Src and Dst have the same signedness and size
1373 // 2. If both are unsigned sign check is unecessary!
1374 // 3. If Dst is signed and bigger than Src, either
1375 // sign-extension or zero-extension will make sure
1376 // the sign remains.
1377 bool EmitSignChange = !SameTypeSameSize && !BothUnsigned && !LargerSigned;
1379 if (EmitTruncation)
1380 Check =
1381 EmitBitfieldTruncationCheckHelper(Src, SrcType, Dst, DstType, Builder);
1382 else if (EmitSignChange) {
1383 assert(((SrcBits != DstBits) || (SrcSigned != DstSigned)) &&
1384 "either the widths should be different, or the signednesses.");
1385 Check =
1386 EmitBitfieldSignChangeCheckHelper(Src, SrcType, Dst, DstType, Builder);
1387 } else
1388 return;
1390 ScalarExprEmitter::ImplicitConversionCheckKind CheckKind = Check.first;
1391 if (EmitTruncationFromUnsignedToSigned)
1392 CheckKind = ScalarExprEmitter::ICCK_SignedIntegerTruncationOrSignChange;
1394 llvm::Constant *StaticArgs[] = {
1395 EmitCheckSourceLocation(Loc), EmitCheckTypeDescriptor(SrcType),
1396 EmitCheckTypeDescriptor(DstType),
1397 llvm::ConstantInt::get(Builder.getInt8Ty(), CheckKind),
1398 llvm::ConstantInt::get(Builder.getInt32Ty(), Info.Size)};
1400 EmitCheck(Check.second, SanitizerHandler::ImplicitConversion, StaticArgs,
1401 {Src, Dst});
1404 Value *ScalarExprEmitter::EmitScalarCast(Value *Src, QualType SrcType,
1405 QualType DstType, llvm::Type *SrcTy,
1406 llvm::Type *DstTy,
1407 ScalarConversionOpts Opts) {
1408 // The Element types determine the type of cast to perform.
1409 llvm::Type *SrcElementTy;
1410 llvm::Type *DstElementTy;
1411 QualType SrcElementType;
1412 QualType DstElementType;
1413 if (SrcType->isMatrixType() && DstType->isMatrixType()) {
1414 SrcElementTy = cast<llvm::VectorType>(SrcTy)->getElementType();
1415 DstElementTy = cast<llvm::VectorType>(DstTy)->getElementType();
1416 SrcElementType = SrcType->castAs<MatrixType>()->getElementType();
1417 DstElementType = DstType->castAs<MatrixType>()->getElementType();
1418 } else {
1419 assert(!SrcType->isMatrixType() && !DstType->isMatrixType() &&
1420 "cannot cast between matrix and non-matrix types");
1421 SrcElementTy = SrcTy;
1422 DstElementTy = DstTy;
1423 SrcElementType = SrcType;
1424 DstElementType = DstType;
1427 if (isa<llvm::IntegerType>(SrcElementTy)) {
1428 bool InputSigned = SrcElementType->isSignedIntegerOrEnumerationType();
1429 if (SrcElementType->isBooleanType() && Opts.TreatBooleanAsSigned) {
1430 InputSigned = true;
1433 if (isa<llvm::IntegerType>(DstElementTy))
1434 return Builder.CreateIntCast(Src, DstTy, InputSigned, "conv");
1435 if (InputSigned)
1436 return Builder.CreateSIToFP(Src, DstTy, "conv");
1437 return Builder.CreateUIToFP(Src, DstTy, "conv");
1440 if (isa<llvm::IntegerType>(DstElementTy)) {
1441 assert(SrcElementTy->isFloatingPointTy() && "Unknown real conversion");
1442 bool IsSigned = DstElementType->isSignedIntegerOrEnumerationType();
1444 // If we can't recognize overflow as undefined behavior, assume that
1445 // overflow saturates. This protects against normal optimizations if we are
1446 // compiling with non-standard FP semantics.
1447 if (!CGF.CGM.getCodeGenOpts().StrictFloatCastOverflow) {
1448 llvm::Intrinsic::ID IID =
1449 IsSigned ? llvm::Intrinsic::fptosi_sat : llvm::Intrinsic::fptoui_sat;
1450 return Builder.CreateCall(CGF.CGM.getIntrinsic(IID, {DstTy, SrcTy}), Src);
1453 if (IsSigned)
1454 return Builder.CreateFPToSI(Src, DstTy, "conv");
1455 return Builder.CreateFPToUI(Src, DstTy, "conv");
1458 if ((DstElementTy->is16bitFPTy() && SrcElementTy->is16bitFPTy())) {
1459 Value *FloatVal = Builder.CreateFPExt(Src, Builder.getFloatTy(), "fpext");
1460 return Builder.CreateFPTrunc(FloatVal, DstTy, "fptrunc");
1462 if (DstElementTy->getTypeID() < SrcElementTy->getTypeID())
1463 return Builder.CreateFPTrunc(Src, DstTy, "conv");
1464 return Builder.CreateFPExt(Src, DstTy, "conv");
1467 /// Emit a conversion from the specified type to the specified destination type,
1468 /// both of which are LLVM scalar types.
1469 Value *ScalarExprEmitter::EmitScalarConversion(Value *Src, QualType SrcType,
1470 QualType DstType,
1471 SourceLocation Loc,
1472 ScalarConversionOpts Opts) {
1473 // All conversions involving fixed point types should be handled by the
1474 // EmitFixedPoint family functions. This is done to prevent bloating up this
1475 // function more, and although fixed point numbers are represented by
1476 // integers, we do not want to follow any logic that assumes they should be
1477 // treated as integers.
1478 // TODO(leonardchan): When necessary, add another if statement checking for
1479 // conversions to fixed point types from other types.
1480 if (SrcType->isFixedPointType()) {
1481 if (DstType->isBooleanType())
1482 // It is important that we check this before checking if the dest type is
1483 // an integer because booleans are technically integer types.
1484 // We do not need to check the padding bit on unsigned types if unsigned
1485 // padding is enabled because overflow into this bit is undefined
1486 // behavior.
1487 return Builder.CreateIsNotNull(Src, "tobool");
1488 if (DstType->isFixedPointType() || DstType->isIntegerType() ||
1489 DstType->isRealFloatingType())
1490 return EmitFixedPointConversion(Src, SrcType, DstType, Loc);
1492 llvm_unreachable(
1493 "Unhandled scalar conversion from a fixed point type to another type.");
1494 } else if (DstType->isFixedPointType()) {
1495 if (SrcType->isIntegerType() || SrcType->isRealFloatingType())
1496 // This also includes converting booleans and enums to fixed point types.
1497 return EmitFixedPointConversion(Src, SrcType, DstType, Loc);
1499 llvm_unreachable(
1500 "Unhandled scalar conversion to a fixed point type from another type.");
1503 QualType NoncanonicalSrcType = SrcType;
1504 QualType NoncanonicalDstType = DstType;
1506 SrcType = CGF.getContext().getCanonicalType(SrcType);
1507 DstType = CGF.getContext().getCanonicalType(DstType);
1508 if (SrcType == DstType) return Src;
1510 if (DstType->isVoidType()) return nullptr;
1512 llvm::Value *OrigSrc = Src;
1513 QualType OrigSrcType = SrcType;
1514 llvm::Type *SrcTy = Src->getType();
1516 // Handle conversions to bool first, they are special: comparisons against 0.
1517 if (DstType->isBooleanType())
1518 return EmitConversionToBool(Src, SrcType);
1520 llvm::Type *DstTy = ConvertType(DstType);
1522 // Cast from half through float if half isn't a native type.
1523 if (SrcType->isHalfType() && !CGF.getContext().getLangOpts().NativeHalfType) {
1524 // Cast to FP using the intrinsic if the half type itself isn't supported.
1525 if (DstTy->isFloatingPointTy()) {
1526 if (CGF.getContext().getTargetInfo().useFP16ConversionIntrinsics())
1527 return Builder.CreateCall(
1528 CGF.CGM.getIntrinsic(llvm::Intrinsic::convert_from_fp16, DstTy),
1529 Src);
1530 } else {
1531 // Cast to other types through float, using either the intrinsic or FPExt,
1532 // depending on whether the half type itself is supported
1533 // (as opposed to operations on half, available with NativeHalfType).
1534 if (CGF.getContext().getTargetInfo().useFP16ConversionIntrinsics()) {
1535 Src = Builder.CreateCall(
1536 CGF.CGM.getIntrinsic(llvm::Intrinsic::convert_from_fp16,
1537 CGF.CGM.FloatTy),
1538 Src);
1539 } else {
1540 Src = Builder.CreateFPExt(Src, CGF.CGM.FloatTy, "conv");
1542 SrcType = CGF.getContext().FloatTy;
1543 SrcTy = CGF.FloatTy;
1547 // Ignore conversions like int -> uint.
1548 if (SrcTy == DstTy) {
1549 if (Opts.EmitImplicitIntegerSignChangeChecks)
1550 EmitIntegerSignChangeCheck(Src, NoncanonicalSrcType, Src,
1551 NoncanonicalDstType, Loc);
1553 return Src;
1556 // Handle pointer conversions next: pointers can only be converted to/from
1557 // other pointers and integers. Check for pointer types in terms of LLVM, as
1558 // some native types (like Obj-C id) may map to a pointer type.
1559 if (auto DstPT = dyn_cast<llvm::PointerType>(DstTy)) {
1560 // The source value may be an integer, or a pointer.
1561 if (isa<llvm::PointerType>(SrcTy))
1562 return Src;
1564 assert(SrcType->isIntegerType() && "Not ptr->ptr or int->ptr conversion?");
1565 // First, convert to the correct width so that we control the kind of
1566 // extension.
1567 llvm::Type *MiddleTy = CGF.CGM.getDataLayout().getIntPtrType(DstPT);
1568 bool InputSigned = SrcType->isSignedIntegerOrEnumerationType();
1569 llvm::Value* IntResult =
1570 Builder.CreateIntCast(Src, MiddleTy, InputSigned, "conv");
1571 // Then, cast to pointer.
1572 return Builder.CreateIntToPtr(IntResult, DstTy, "conv");
1575 if (isa<llvm::PointerType>(SrcTy)) {
1576 // Must be an ptr to int cast.
1577 assert(isa<llvm::IntegerType>(DstTy) && "not ptr->int?");
1578 return Builder.CreatePtrToInt(Src, DstTy, "conv");
1581 // A scalar can be splatted to an extended vector of the same element type
1582 if (DstType->isExtVectorType() && !SrcType->isVectorType()) {
1583 // Sema should add casts to make sure that the source expression's type is
1584 // the same as the vector's element type (sans qualifiers)
1585 assert(DstType->castAs<ExtVectorType>()->getElementType().getTypePtr() ==
1586 SrcType.getTypePtr() &&
1587 "Splatted expr doesn't match with vector element type?");
1589 // Splat the element across to all elements
1590 unsigned NumElements = cast<llvm::FixedVectorType>(DstTy)->getNumElements();
1591 return Builder.CreateVectorSplat(NumElements, Src, "splat");
1594 if (SrcType->isMatrixType() && DstType->isMatrixType())
1595 return EmitScalarCast(Src, SrcType, DstType, SrcTy, DstTy, Opts);
1597 if (isa<llvm::VectorType>(SrcTy) || isa<llvm::VectorType>(DstTy)) {
1598 // Allow bitcast from vector to integer/fp of the same size.
1599 llvm::TypeSize SrcSize = SrcTy->getPrimitiveSizeInBits();
1600 llvm::TypeSize DstSize = DstTy->getPrimitiveSizeInBits();
1601 if (SrcSize == DstSize)
1602 return Builder.CreateBitCast(Src, DstTy, "conv");
1604 // Conversions between vectors of different sizes are not allowed except
1605 // when vectors of half are involved. Operations on storage-only half
1606 // vectors require promoting half vector operands to float vectors and
1607 // truncating the result, which is either an int or float vector, to a
1608 // short or half vector.
1610 // Source and destination are both expected to be vectors.
1611 llvm::Type *SrcElementTy = cast<llvm::VectorType>(SrcTy)->getElementType();
1612 llvm::Type *DstElementTy = cast<llvm::VectorType>(DstTy)->getElementType();
1613 (void)DstElementTy;
1615 assert(((SrcElementTy->isIntegerTy() &&
1616 DstElementTy->isIntegerTy()) ||
1617 (SrcElementTy->isFloatingPointTy() &&
1618 DstElementTy->isFloatingPointTy())) &&
1619 "unexpected conversion between a floating-point vector and an "
1620 "integer vector");
1622 // Truncate an i32 vector to an i16 vector.
1623 if (SrcElementTy->isIntegerTy())
1624 return Builder.CreateIntCast(Src, DstTy, false, "conv");
1626 // Truncate a float vector to a half vector.
1627 if (SrcSize > DstSize)
1628 return Builder.CreateFPTrunc(Src, DstTy, "conv");
1630 // Promote a half vector to a float vector.
1631 return Builder.CreateFPExt(Src, DstTy, "conv");
1634 // Finally, we have the arithmetic types: real int/float.
1635 Value *Res = nullptr;
1636 llvm::Type *ResTy = DstTy;
1638 // An overflowing conversion has undefined behavior if either the source type
1639 // or the destination type is a floating-point type. However, we consider the
1640 // range of representable values for all floating-point types to be
1641 // [-inf,+inf], so no overflow can ever happen when the destination type is a
1642 // floating-point type.
1643 if (CGF.SanOpts.has(SanitizerKind::FloatCastOverflow) &&
1644 OrigSrcType->isFloatingType())
1645 EmitFloatConversionCheck(OrigSrc, OrigSrcType, Src, SrcType, DstType, DstTy,
1646 Loc);
1648 // Cast to half through float if half isn't a native type.
1649 if (DstType->isHalfType() && !CGF.getContext().getLangOpts().NativeHalfType) {
1650 // Make sure we cast in a single step if from another FP type.
1651 if (SrcTy->isFloatingPointTy()) {
1652 // Use the intrinsic if the half type itself isn't supported
1653 // (as opposed to operations on half, available with NativeHalfType).
1654 if (CGF.getContext().getTargetInfo().useFP16ConversionIntrinsics())
1655 return Builder.CreateCall(
1656 CGF.CGM.getIntrinsic(llvm::Intrinsic::convert_to_fp16, SrcTy), Src);
1657 // If the half type is supported, just use an fptrunc.
1658 return Builder.CreateFPTrunc(Src, DstTy);
1660 DstTy = CGF.FloatTy;
1663 Res = EmitScalarCast(Src, SrcType, DstType, SrcTy, DstTy, Opts);
1665 if (DstTy != ResTy) {
1666 if (CGF.getContext().getTargetInfo().useFP16ConversionIntrinsics()) {
1667 assert(ResTy->isIntegerTy(16) && "Only half FP requires extra conversion");
1668 Res = Builder.CreateCall(
1669 CGF.CGM.getIntrinsic(llvm::Intrinsic::convert_to_fp16, CGF.CGM.FloatTy),
1670 Res);
1671 } else {
1672 Res = Builder.CreateFPTrunc(Res, ResTy, "conv");
1676 if (Opts.EmitImplicitIntegerTruncationChecks)
1677 EmitIntegerTruncationCheck(Src, NoncanonicalSrcType, Res,
1678 NoncanonicalDstType, Loc);
1680 if (Opts.EmitImplicitIntegerSignChangeChecks)
1681 EmitIntegerSignChangeCheck(Src, NoncanonicalSrcType, Res,
1682 NoncanonicalDstType, Loc);
1684 return Res;
1687 Value *ScalarExprEmitter::EmitFixedPointConversion(Value *Src, QualType SrcTy,
1688 QualType DstTy,
1689 SourceLocation Loc) {
1690 llvm::FixedPointBuilder<CGBuilderTy> FPBuilder(Builder);
1691 llvm::Value *Result;
1692 if (SrcTy->isRealFloatingType())
1693 Result = FPBuilder.CreateFloatingToFixed(Src,
1694 CGF.getContext().getFixedPointSemantics(DstTy));
1695 else if (DstTy->isRealFloatingType())
1696 Result = FPBuilder.CreateFixedToFloating(Src,
1697 CGF.getContext().getFixedPointSemantics(SrcTy),
1698 ConvertType(DstTy));
1699 else {
1700 auto SrcFPSema = CGF.getContext().getFixedPointSemantics(SrcTy);
1701 auto DstFPSema = CGF.getContext().getFixedPointSemantics(DstTy);
1703 if (DstTy->isIntegerType())
1704 Result = FPBuilder.CreateFixedToInteger(Src, SrcFPSema,
1705 DstFPSema.getWidth(),
1706 DstFPSema.isSigned());
1707 else if (SrcTy->isIntegerType())
1708 Result = FPBuilder.CreateIntegerToFixed(Src, SrcFPSema.isSigned(),
1709 DstFPSema);
1710 else
1711 Result = FPBuilder.CreateFixedToFixed(Src, SrcFPSema, DstFPSema);
1713 return Result;
1716 /// Emit a conversion from the specified complex type to the specified
1717 /// destination type, where the destination type is an LLVM scalar type.
1718 Value *ScalarExprEmitter::EmitComplexToScalarConversion(
1719 CodeGenFunction::ComplexPairTy Src, QualType SrcTy, QualType DstTy,
1720 SourceLocation Loc) {
1721 // Get the source element type.
1722 SrcTy = SrcTy->castAs<ComplexType>()->getElementType();
1724 // Handle conversions to bool first, they are special: comparisons against 0.
1725 if (DstTy->isBooleanType()) {
1726 // Complex != 0 -> (Real != 0) | (Imag != 0)
1727 Src.first = EmitScalarConversion(Src.first, SrcTy, DstTy, Loc);
1728 Src.second = EmitScalarConversion(Src.second, SrcTy, DstTy, Loc);
1729 return Builder.CreateOr(Src.first, Src.second, "tobool");
1732 // C99 6.3.1.7p2: "When a value of complex type is converted to a real type,
1733 // the imaginary part of the complex value is discarded and the value of the
1734 // real part is converted according to the conversion rules for the
1735 // corresponding real type.
1736 return EmitScalarConversion(Src.first, SrcTy, DstTy, Loc);
1739 Value *ScalarExprEmitter::EmitNullValue(QualType Ty) {
1740 return CGF.EmitFromMemory(CGF.CGM.EmitNullConstant(Ty), Ty);
1743 /// Emit a sanitization check for the given "binary" operation (which
1744 /// might actually be a unary increment which has been lowered to a binary
1745 /// operation). The check passes if all values in \p Checks (which are \c i1),
1746 /// are \c true.
1747 void ScalarExprEmitter::EmitBinOpCheck(
1748 ArrayRef<std::pair<Value *, SanitizerMask>> Checks, const BinOpInfo &Info) {
1749 assert(CGF.IsSanitizerScope);
1750 SanitizerHandler Check;
1751 SmallVector<llvm::Constant *, 4> StaticData;
1752 SmallVector<llvm::Value *, 2> DynamicData;
1754 BinaryOperatorKind Opcode = Info.Opcode;
1755 if (BinaryOperator::isCompoundAssignmentOp(Opcode))
1756 Opcode = BinaryOperator::getOpForCompoundAssignment(Opcode);
1758 StaticData.push_back(CGF.EmitCheckSourceLocation(Info.E->getExprLoc()));
1759 const UnaryOperator *UO = dyn_cast<UnaryOperator>(Info.E);
1760 if (UO && UO->getOpcode() == UO_Minus) {
1761 Check = SanitizerHandler::NegateOverflow;
1762 StaticData.push_back(CGF.EmitCheckTypeDescriptor(UO->getType()));
1763 DynamicData.push_back(Info.RHS);
1764 } else {
1765 if (BinaryOperator::isShiftOp(Opcode)) {
1766 // Shift LHS negative or too large, or RHS out of bounds.
1767 Check = SanitizerHandler::ShiftOutOfBounds;
1768 const BinaryOperator *BO = cast<BinaryOperator>(Info.E);
1769 StaticData.push_back(
1770 CGF.EmitCheckTypeDescriptor(BO->getLHS()->getType()));
1771 StaticData.push_back(
1772 CGF.EmitCheckTypeDescriptor(BO->getRHS()->getType()));
1773 } else if (Opcode == BO_Div || Opcode == BO_Rem) {
1774 // Divide or modulo by zero, or signed overflow (eg INT_MAX / -1).
1775 Check = SanitizerHandler::DivremOverflow;
1776 StaticData.push_back(CGF.EmitCheckTypeDescriptor(Info.Ty));
1777 } else {
1778 // Arithmetic overflow (+, -, *).
1779 switch (Opcode) {
1780 case BO_Add: Check = SanitizerHandler::AddOverflow; break;
1781 case BO_Sub: Check = SanitizerHandler::SubOverflow; break;
1782 case BO_Mul: Check = SanitizerHandler::MulOverflow; break;
1783 default: llvm_unreachable("unexpected opcode for bin op check");
1785 StaticData.push_back(CGF.EmitCheckTypeDescriptor(Info.Ty));
1787 DynamicData.push_back(Info.LHS);
1788 DynamicData.push_back(Info.RHS);
1791 CGF.EmitCheck(Checks, Check, StaticData, DynamicData);
1794 //===----------------------------------------------------------------------===//
1795 // Visitor Methods
1796 //===----------------------------------------------------------------------===//
1798 Value *ScalarExprEmitter::VisitExpr(Expr *E) {
1799 CGF.ErrorUnsupported(E, "scalar expression");
1800 if (E->getType()->isVoidType())
1801 return nullptr;
1802 return llvm::UndefValue::get(CGF.ConvertType(E->getType()));
1805 Value *
1806 ScalarExprEmitter::VisitSYCLUniqueStableNameExpr(SYCLUniqueStableNameExpr *E) {
1807 ASTContext &Context = CGF.getContext();
1808 unsigned AddrSpace =
1809 Context.getTargetAddressSpace(CGF.CGM.GetGlobalConstantAddressSpace());
1810 llvm::Constant *GlobalConstStr = Builder.CreateGlobalStringPtr(
1811 E->ComputeName(Context), "__usn_str", AddrSpace);
1813 llvm::Type *ExprTy = ConvertType(E->getType());
1814 return Builder.CreatePointerBitCastOrAddrSpaceCast(GlobalConstStr, ExprTy,
1815 "usn_addr_cast");
1818 Value *ScalarExprEmitter::VisitEmbedExpr(EmbedExpr *E) {
1819 assert(E->getDataElementCount() == 1);
1820 auto It = E->begin();
1821 return Builder.getInt((*It)->getValue());
1824 Value *ScalarExprEmitter::VisitShuffleVectorExpr(ShuffleVectorExpr *E) {
1825 // Vector Mask Case
1826 if (E->getNumSubExprs() == 2) {
1827 Value *LHS = CGF.EmitScalarExpr(E->getExpr(0));
1828 Value *RHS = CGF.EmitScalarExpr(E->getExpr(1));
1829 Value *Mask;
1831 auto *LTy = cast<llvm::FixedVectorType>(LHS->getType());
1832 unsigned LHSElts = LTy->getNumElements();
1834 Mask = RHS;
1836 auto *MTy = cast<llvm::FixedVectorType>(Mask->getType());
1838 // Mask off the high bits of each shuffle index.
1839 Value *MaskBits =
1840 llvm::ConstantInt::get(MTy, llvm::NextPowerOf2(LHSElts - 1) - 1);
1841 Mask = Builder.CreateAnd(Mask, MaskBits, "mask");
1843 // newv = undef
1844 // mask = mask & maskbits
1845 // for each elt
1846 // n = extract mask i
1847 // x = extract val n
1848 // newv = insert newv, x, i
1849 auto *RTy = llvm::FixedVectorType::get(LTy->getElementType(),
1850 MTy->getNumElements());
1851 Value* NewV = llvm::PoisonValue::get(RTy);
1852 for (unsigned i = 0, e = MTy->getNumElements(); i != e; ++i) {
1853 Value *IIndx = llvm::ConstantInt::get(CGF.SizeTy, i);
1854 Value *Indx = Builder.CreateExtractElement(Mask, IIndx, "shuf_idx");
1856 Value *VExt = Builder.CreateExtractElement(LHS, Indx, "shuf_elt");
1857 NewV = Builder.CreateInsertElement(NewV, VExt, IIndx, "shuf_ins");
1859 return NewV;
1862 Value* V1 = CGF.EmitScalarExpr(E->getExpr(0));
1863 Value* V2 = CGF.EmitScalarExpr(E->getExpr(1));
1865 SmallVector<int, 32> Indices;
1866 for (unsigned i = 2; i < E->getNumSubExprs(); ++i) {
1867 llvm::APSInt Idx = E->getShuffleMaskIdx(CGF.getContext(), i-2);
1868 // Check for -1 and output it as undef in the IR.
1869 if (Idx.isSigned() && Idx.isAllOnes())
1870 Indices.push_back(-1);
1871 else
1872 Indices.push_back(Idx.getZExtValue());
1875 return Builder.CreateShuffleVector(V1, V2, Indices, "shuffle");
1878 Value *ScalarExprEmitter::VisitConvertVectorExpr(ConvertVectorExpr *E) {
1879 QualType SrcType = E->getSrcExpr()->getType(),
1880 DstType = E->getType();
1882 Value *Src = CGF.EmitScalarExpr(E->getSrcExpr());
1884 SrcType = CGF.getContext().getCanonicalType(SrcType);
1885 DstType = CGF.getContext().getCanonicalType(DstType);
1886 if (SrcType == DstType) return Src;
1888 assert(SrcType->isVectorType() &&
1889 "ConvertVector source type must be a vector");
1890 assert(DstType->isVectorType() &&
1891 "ConvertVector destination type must be a vector");
1893 llvm::Type *SrcTy = Src->getType();
1894 llvm::Type *DstTy = ConvertType(DstType);
1896 // Ignore conversions like int -> uint.
1897 if (SrcTy == DstTy)
1898 return Src;
1900 QualType SrcEltType = SrcType->castAs<VectorType>()->getElementType(),
1901 DstEltType = DstType->castAs<VectorType>()->getElementType();
1903 assert(SrcTy->isVectorTy() &&
1904 "ConvertVector source IR type must be a vector");
1905 assert(DstTy->isVectorTy() &&
1906 "ConvertVector destination IR type must be a vector");
1908 llvm::Type *SrcEltTy = cast<llvm::VectorType>(SrcTy)->getElementType(),
1909 *DstEltTy = cast<llvm::VectorType>(DstTy)->getElementType();
1911 if (DstEltType->isBooleanType()) {
1912 assert((SrcEltTy->isFloatingPointTy() ||
1913 isa<llvm::IntegerType>(SrcEltTy)) && "Unknown boolean conversion");
1915 llvm::Value *Zero = llvm::Constant::getNullValue(SrcTy);
1916 if (SrcEltTy->isFloatingPointTy()) {
1917 return Builder.CreateFCmpUNE(Src, Zero, "tobool");
1918 } else {
1919 return Builder.CreateICmpNE(Src, Zero, "tobool");
1923 // We have the arithmetic types: real int/float.
1924 Value *Res = nullptr;
1926 if (isa<llvm::IntegerType>(SrcEltTy)) {
1927 bool InputSigned = SrcEltType->isSignedIntegerOrEnumerationType();
1928 if (isa<llvm::IntegerType>(DstEltTy))
1929 Res = Builder.CreateIntCast(Src, DstTy, InputSigned, "conv");
1930 else if (InputSigned)
1931 Res = Builder.CreateSIToFP(Src, DstTy, "conv");
1932 else
1933 Res = Builder.CreateUIToFP(Src, DstTy, "conv");
1934 } else if (isa<llvm::IntegerType>(DstEltTy)) {
1935 assert(SrcEltTy->isFloatingPointTy() && "Unknown real conversion");
1936 if (DstEltType->isSignedIntegerOrEnumerationType())
1937 Res = Builder.CreateFPToSI(Src, DstTy, "conv");
1938 else
1939 Res = Builder.CreateFPToUI(Src, DstTy, "conv");
1940 } else {
1941 assert(SrcEltTy->isFloatingPointTy() && DstEltTy->isFloatingPointTy() &&
1942 "Unknown real conversion");
1943 if (DstEltTy->getTypeID() < SrcEltTy->getTypeID())
1944 Res = Builder.CreateFPTrunc(Src, DstTy, "conv");
1945 else
1946 Res = Builder.CreateFPExt(Src, DstTy, "conv");
1949 return Res;
1952 Value *ScalarExprEmitter::VisitMemberExpr(MemberExpr *E) {
1953 if (CodeGenFunction::ConstantEmission Constant = CGF.tryEmitAsConstant(E)) {
1954 CGF.EmitIgnoredExpr(E->getBase());
1955 return CGF.emitScalarConstant(Constant, E);
1956 } else {
1957 Expr::EvalResult Result;
1958 if (E->EvaluateAsInt(Result, CGF.getContext(), Expr::SE_AllowSideEffects)) {
1959 llvm::APSInt Value = Result.Val.getInt();
1960 CGF.EmitIgnoredExpr(E->getBase());
1961 return Builder.getInt(Value);
1965 llvm::Value *Result = EmitLoadOfLValue(E);
1967 // If -fdebug-info-for-profiling is specified, emit a pseudo variable and its
1968 // debug info for the pointer, even if there is no variable associated with
1969 // the pointer's expression.
1970 if (CGF.CGM.getCodeGenOpts().DebugInfoForProfiling && CGF.getDebugInfo()) {
1971 if (llvm::LoadInst *Load = dyn_cast<llvm::LoadInst>(Result)) {
1972 if (llvm::GetElementPtrInst *GEP =
1973 dyn_cast<llvm::GetElementPtrInst>(Load->getPointerOperand())) {
1974 if (llvm::Instruction *Pointer =
1975 dyn_cast<llvm::Instruction>(GEP->getPointerOperand())) {
1976 QualType Ty = E->getBase()->getType();
1977 if (!E->isArrow())
1978 Ty = CGF.getContext().getPointerType(Ty);
1979 CGF.getDebugInfo()->EmitPseudoVariable(Builder, Pointer, Ty);
1984 return Result;
1987 Value *ScalarExprEmitter::VisitArraySubscriptExpr(ArraySubscriptExpr *E) {
1988 TestAndClearIgnoreResultAssign();
1990 // Emit subscript expressions in rvalue context's. For most cases, this just
1991 // loads the lvalue formed by the subscript expr. However, we have to be
1992 // careful, because the base of a vector subscript is occasionally an rvalue,
1993 // so we can't get it as an lvalue.
1994 if (!E->getBase()->getType()->isVectorType() &&
1995 !E->getBase()->getType()->isSveVLSBuiltinType())
1996 return EmitLoadOfLValue(E);
1998 // Handle the vector case. The base must be a vector, the index must be an
1999 // integer value.
2000 Value *Base = Visit(E->getBase());
2001 Value *Idx = Visit(E->getIdx());
2002 QualType IdxTy = E->getIdx()->getType();
2004 if (CGF.SanOpts.has(SanitizerKind::ArrayBounds))
2005 CGF.EmitBoundsCheck(E, E->getBase(), Idx, IdxTy, /*Accessed*/true);
2007 return Builder.CreateExtractElement(Base, Idx, "vecext");
2010 Value *ScalarExprEmitter::VisitMatrixSubscriptExpr(MatrixSubscriptExpr *E) {
2011 TestAndClearIgnoreResultAssign();
2013 // Handle the vector case. The base must be a vector, the index must be an
2014 // integer value.
2015 Value *RowIdx = CGF.EmitMatrixIndexExpr(E->getRowIdx());
2016 Value *ColumnIdx = CGF.EmitMatrixIndexExpr(E->getColumnIdx());
2018 const auto *MatrixTy = E->getBase()->getType()->castAs<ConstantMatrixType>();
2019 unsigned NumRows = MatrixTy->getNumRows();
2020 llvm::MatrixBuilder MB(Builder);
2021 Value *Idx = MB.CreateIndex(RowIdx, ColumnIdx, NumRows);
2022 if (CGF.CGM.getCodeGenOpts().OptimizationLevel > 0)
2023 MB.CreateIndexAssumption(Idx, MatrixTy->getNumElementsFlattened());
2025 Value *Matrix = Visit(E->getBase());
2027 // TODO: Should we emit bounds checks with SanitizerKind::ArrayBounds?
2028 return Builder.CreateExtractElement(Matrix, Idx, "matrixext");
2031 static int getMaskElt(llvm::ShuffleVectorInst *SVI, unsigned Idx,
2032 unsigned Off) {
2033 int MV = SVI->getMaskValue(Idx);
2034 if (MV == -1)
2035 return -1;
2036 return Off + MV;
2039 static int getAsInt32(llvm::ConstantInt *C, llvm::Type *I32Ty) {
2040 assert(llvm::ConstantInt::isValueValidForType(I32Ty, C->getZExtValue()) &&
2041 "Index operand too large for shufflevector mask!");
2042 return C->getZExtValue();
2045 Value *ScalarExprEmitter::VisitInitListExpr(InitListExpr *E) {
2046 bool Ignore = TestAndClearIgnoreResultAssign();
2047 (void)Ignore;
2048 assert (Ignore == false && "init list ignored");
2049 unsigned NumInitElements = E->getNumInits();
2051 if (E->hadArrayRangeDesignator())
2052 CGF.ErrorUnsupported(E, "GNU array range designator extension");
2054 llvm::VectorType *VType =
2055 dyn_cast<llvm::VectorType>(ConvertType(E->getType()));
2057 if (!VType) {
2058 if (NumInitElements == 0) {
2059 // C++11 value-initialization for the scalar.
2060 return EmitNullValue(E->getType());
2062 // We have a scalar in braces. Just use the first element.
2063 return Visit(E->getInit(0));
2066 if (isa<llvm::ScalableVectorType>(VType)) {
2067 if (NumInitElements == 0) {
2068 // C++11 value-initialization for the vector.
2069 return EmitNullValue(E->getType());
2072 if (NumInitElements == 1) {
2073 Expr *InitVector = E->getInit(0);
2075 // Initialize from another scalable vector of the same type.
2076 if (InitVector->getType() == E->getType())
2077 return Visit(InitVector);
2080 llvm_unreachable("Unexpected initialization of a scalable vector!");
2083 unsigned ResElts = cast<llvm::FixedVectorType>(VType)->getNumElements();
2085 // Loop over initializers collecting the Value for each, and remembering
2086 // whether the source was swizzle (ExtVectorElementExpr). This will allow
2087 // us to fold the shuffle for the swizzle into the shuffle for the vector
2088 // initializer, since LLVM optimizers generally do not want to touch
2089 // shuffles.
2090 unsigned CurIdx = 0;
2091 bool VIsPoisonShuffle = false;
2092 llvm::Value *V = llvm::PoisonValue::get(VType);
2093 for (unsigned i = 0; i != NumInitElements; ++i) {
2094 Expr *IE = E->getInit(i);
2095 Value *Init = Visit(IE);
2096 SmallVector<int, 16> Args;
2098 llvm::VectorType *VVT = dyn_cast<llvm::VectorType>(Init->getType());
2100 // Handle scalar elements. If the scalar initializer is actually one
2101 // element of a different vector of the same width, use shuffle instead of
2102 // extract+insert.
2103 if (!VVT) {
2104 if (isa<ExtVectorElementExpr>(IE)) {
2105 llvm::ExtractElementInst *EI = cast<llvm::ExtractElementInst>(Init);
2107 if (cast<llvm::FixedVectorType>(EI->getVectorOperandType())
2108 ->getNumElements() == ResElts) {
2109 llvm::ConstantInt *C = cast<llvm::ConstantInt>(EI->getIndexOperand());
2110 Value *LHS = nullptr, *RHS = nullptr;
2111 if (CurIdx == 0) {
2112 // insert into poison -> shuffle (src, poison)
2113 // shufflemask must use an i32
2114 Args.push_back(getAsInt32(C, CGF.Int32Ty));
2115 Args.resize(ResElts, -1);
2117 LHS = EI->getVectorOperand();
2118 RHS = V;
2119 VIsPoisonShuffle = true;
2120 } else if (VIsPoisonShuffle) {
2121 // insert into poison shuffle && size match -> shuffle (v, src)
2122 llvm::ShuffleVectorInst *SVV = cast<llvm::ShuffleVectorInst>(V);
2123 for (unsigned j = 0; j != CurIdx; ++j)
2124 Args.push_back(getMaskElt(SVV, j, 0));
2125 Args.push_back(ResElts + C->getZExtValue());
2126 Args.resize(ResElts, -1);
2128 LHS = cast<llvm::ShuffleVectorInst>(V)->getOperand(0);
2129 RHS = EI->getVectorOperand();
2130 VIsPoisonShuffle = false;
2132 if (!Args.empty()) {
2133 V = Builder.CreateShuffleVector(LHS, RHS, Args);
2134 ++CurIdx;
2135 continue;
2139 V = Builder.CreateInsertElement(V, Init, Builder.getInt32(CurIdx),
2140 "vecinit");
2141 VIsPoisonShuffle = false;
2142 ++CurIdx;
2143 continue;
2146 unsigned InitElts = cast<llvm::FixedVectorType>(VVT)->getNumElements();
2148 // If the initializer is an ExtVecEltExpr (a swizzle), and the swizzle's
2149 // input is the same width as the vector being constructed, generate an
2150 // optimized shuffle of the swizzle input into the result.
2151 unsigned Offset = (CurIdx == 0) ? 0 : ResElts;
2152 if (isa<ExtVectorElementExpr>(IE)) {
2153 llvm::ShuffleVectorInst *SVI = cast<llvm::ShuffleVectorInst>(Init);
2154 Value *SVOp = SVI->getOperand(0);
2155 auto *OpTy = cast<llvm::FixedVectorType>(SVOp->getType());
2157 if (OpTy->getNumElements() == ResElts) {
2158 for (unsigned j = 0; j != CurIdx; ++j) {
2159 // If the current vector initializer is a shuffle with poison, merge
2160 // this shuffle directly into it.
2161 if (VIsPoisonShuffle) {
2162 Args.push_back(getMaskElt(cast<llvm::ShuffleVectorInst>(V), j, 0));
2163 } else {
2164 Args.push_back(j);
2167 for (unsigned j = 0, je = InitElts; j != je; ++j)
2168 Args.push_back(getMaskElt(SVI, j, Offset));
2169 Args.resize(ResElts, -1);
2171 if (VIsPoisonShuffle)
2172 V = cast<llvm::ShuffleVectorInst>(V)->getOperand(0);
2174 Init = SVOp;
2178 // Extend init to result vector length, and then shuffle its contribution
2179 // to the vector initializer into V.
2180 if (Args.empty()) {
2181 for (unsigned j = 0; j != InitElts; ++j)
2182 Args.push_back(j);
2183 Args.resize(ResElts, -1);
2184 Init = Builder.CreateShuffleVector(Init, Args, "vext");
2186 Args.clear();
2187 for (unsigned j = 0; j != CurIdx; ++j)
2188 Args.push_back(j);
2189 for (unsigned j = 0; j != InitElts; ++j)
2190 Args.push_back(j + Offset);
2191 Args.resize(ResElts, -1);
2194 // If V is poison, make sure it ends up on the RHS of the shuffle to aid
2195 // merging subsequent shuffles into this one.
2196 if (CurIdx == 0)
2197 std::swap(V, Init);
2198 V = Builder.CreateShuffleVector(V, Init, Args, "vecinit");
2199 VIsPoisonShuffle = isa<llvm::PoisonValue>(Init);
2200 CurIdx += InitElts;
2203 // FIXME: evaluate codegen vs. shuffling against constant null vector.
2204 // Emit remaining default initializers.
2205 llvm::Type *EltTy = VType->getElementType();
2207 // Emit remaining default initializers
2208 for (/* Do not initialize i*/; CurIdx < ResElts; ++CurIdx) {
2209 Value *Idx = Builder.getInt32(CurIdx);
2210 llvm::Value *Init = llvm::Constant::getNullValue(EltTy);
2211 V = Builder.CreateInsertElement(V, Init, Idx, "vecinit");
2213 return V;
2216 bool CodeGenFunction::ShouldNullCheckClassCastValue(const CastExpr *CE) {
2217 const Expr *E = CE->getSubExpr();
2219 if (CE->getCastKind() == CK_UncheckedDerivedToBase)
2220 return false;
2222 if (isa<CXXThisExpr>(E->IgnoreParens())) {
2223 // We always assume that 'this' is never null.
2224 return false;
2227 if (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(CE)) {
2228 // And that glvalue casts are never null.
2229 if (ICE->isGLValue())
2230 return false;
2233 return true;
2236 // VisitCastExpr - Emit code for an explicit or implicit cast. Implicit casts
2237 // have to handle a more broad range of conversions than explicit casts, as they
2238 // handle things like function to ptr-to-function decay etc.
2239 Value *ScalarExprEmitter::VisitCastExpr(CastExpr *CE) {
2240 Expr *E = CE->getSubExpr();
2241 QualType DestTy = CE->getType();
2242 CastKind Kind = CE->getCastKind();
2243 CodeGenFunction::CGFPOptionsRAII FPOptions(CGF, CE);
2245 // These cases are generally not written to ignore the result of
2246 // evaluating their sub-expressions, so we clear this now.
2247 bool Ignored = TestAndClearIgnoreResultAssign();
2249 // Since almost all cast kinds apply to scalars, this switch doesn't have
2250 // a default case, so the compiler will warn on a missing case. The cases
2251 // are in the same order as in the CastKind enum.
2252 switch (Kind) {
2253 case CK_Dependent: llvm_unreachable("dependent cast kind in IR gen!");
2254 case CK_BuiltinFnToFnPtr:
2255 llvm_unreachable("builtin functions are handled elsewhere");
2257 case CK_LValueBitCast:
2258 case CK_ObjCObjectLValueCast: {
2259 Address Addr = EmitLValue(E).getAddress();
2260 Addr = Addr.withElementType(CGF.ConvertTypeForMem(DestTy));
2261 LValue LV = CGF.MakeAddrLValue(Addr, DestTy);
2262 return EmitLoadOfLValue(LV, CE->getExprLoc());
2265 case CK_LValueToRValueBitCast: {
2266 LValue SourceLVal = CGF.EmitLValue(E);
2267 Address Addr =
2268 SourceLVal.getAddress().withElementType(CGF.ConvertTypeForMem(DestTy));
2269 LValue DestLV = CGF.MakeAddrLValue(Addr, DestTy);
2270 DestLV.setTBAAInfo(TBAAAccessInfo::getMayAliasInfo());
2271 return EmitLoadOfLValue(DestLV, CE->getExprLoc());
2274 case CK_CPointerToObjCPointerCast:
2275 case CK_BlockPointerToObjCPointerCast:
2276 case CK_AnyPointerToBlockPointerCast:
2277 case CK_BitCast: {
2278 Value *Src = Visit(const_cast<Expr*>(E));
2279 llvm::Type *SrcTy = Src->getType();
2280 llvm::Type *DstTy = ConvertType(DestTy);
2281 assert(
2282 (!SrcTy->isPtrOrPtrVectorTy() || !DstTy->isPtrOrPtrVectorTy() ||
2283 SrcTy->getPointerAddressSpace() == DstTy->getPointerAddressSpace()) &&
2284 "Address-space cast must be used to convert address spaces");
2286 if (CGF.SanOpts.has(SanitizerKind::CFIUnrelatedCast)) {
2287 if (auto *PT = DestTy->getAs<PointerType>()) {
2288 CGF.EmitVTablePtrCheckForCast(
2289 PT->getPointeeType(),
2290 Address(Src,
2291 CGF.ConvertTypeForMem(
2292 E->getType()->castAs<PointerType>()->getPointeeType()),
2293 CGF.getPointerAlign()),
2294 /*MayBeNull=*/true, CodeGenFunction::CFITCK_UnrelatedCast,
2295 CE->getBeginLoc());
2299 if (CGF.CGM.getCodeGenOpts().StrictVTablePointers) {
2300 const QualType SrcType = E->getType();
2302 if (SrcType.mayBeNotDynamicClass() && DestTy.mayBeDynamicClass()) {
2303 // Casting to pointer that could carry dynamic information (provided by
2304 // invariant.group) requires launder.
2305 Src = Builder.CreateLaunderInvariantGroup(Src);
2306 } else if (SrcType.mayBeDynamicClass() && DestTy.mayBeNotDynamicClass()) {
2307 // Casting to pointer that does not carry dynamic information (provided
2308 // by invariant.group) requires stripping it. Note that we don't do it
2309 // if the source could not be dynamic type and destination could be
2310 // dynamic because dynamic information is already laundered. It is
2311 // because launder(strip(src)) == launder(src), so there is no need to
2312 // add extra strip before launder.
2313 Src = Builder.CreateStripInvariantGroup(Src);
2317 // Update heapallocsite metadata when there is an explicit pointer cast.
2318 if (auto *CI = dyn_cast<llvm::CallBase>(Src)) {
2319 if (CI->getMetadata("heapallocsite") && isa<ExplicitCastExpr>(CE) &&
2320 !isa<CastExpr>(E)) {
2321 QualType PointeeType = DestTy->getPointeeType();
2322 if (!PointeeType.isNull())
2323 CGF.getDebugInfo()->addHeapAllocSiteMetadata(CI, PointeeType,
2324 CE->getExprLoc());
2328 // If Src is a fixed vector and Dst is a scalable vector, and both have the
2329 // same element type, use the llvm.vector.insert intrinsic to perform the
2330 // bitcast.
2331 if (auto *FixedSrcTy = dyn_cast<llvm::FixedVectorType>(SrcTy)) {
2332 if (auto *ScalableDstTy = dyn_cast<llvm::ScalableVectorType>(DstTy)) {
2333 // If we are casting a fixed i8 vector to a scalable i1 predicate
2334 // vector, use a vector insert and bitcast the result.
2335 if (ScalableDstTy->getElementType()->isIntegerTy(1) &&
2336 ScalableDstTy->getElementCount().isKnownMultipleOf(8) &&
2337 FixedSrcTy->getElementType()->isIntegerTy(8)) {
2338 ScalableDstTy = llvm::ScalableVectorType::get(
2339 FixedSrcTy->getElementType(),
2340 ScalableDstTy->getElementCount().getKnownMinValue() / 8);
2342 if (FixedSrcTy->getElementType() == ScalableDstTy->getElementType()) {
2343 llvm::Value *UndefVec = llvm::UndefValue::get(ScalableDstTy);
2344 llvm::Value *Zero = llvm::Constant::getNullValue(CGF.CGM.Int64Ty);
2345 llvm::Value *Result = Builder.CreateInsertVector(
2346 ScalableDstTy, UndefVec, Src, Zero, "cast.scalable");
2347 if (Result->getType() != DstTy)
2348 Result = Builder.CreateBitCast(Result, DstTy);
2349 return Result;
2354 // If Src is a scalable vector and Dst is a fixed vector, and both have the
2355 // same element type, use the llvm.vector.extract intrinsic to perform the
2356 // bitcast.
2357 if (auto *ScalableSrcTy = dyn_cast<llvm::ScalableVectorType>(SrcTy)) {
2358 if (auto *FixedDstTy = dyn_cast<llvm::FixedVectorType>(DstTy)) {
2359 // If we are casting a scalable i1 predicate vector to a fixed i8
2360 // vector, bitcast the source and use a vector extract.
2361 if (ScalableSrcTy->getElementType()->isIntegerTy(1) &&
2362 ScalableSrcTy->getElementCount().isKnownMultipleOf(8) &&
2363 FixedDstTy->getElementType()->isIntegerTy(8)) {
2364 ScalableSrcTy = llvm::ScalableVectorType::get(
2365 FixedDstTy->getElementType(),
2366 ScalableSrcTy->getElementCount().getKnownMinValue() / 8);
2367 Src = Builder.CreateBitCast(Src, ScalableSrcTy);
2369 if (ScalableSrcTy->getElementType() == FixedDstTy->getElementType()) {
2370 llvm::Value *Zero = llvm::Constant::getNullValue(CGF.CGM.Int64Ty);
2371 return Builder.CreateExtractVector(DstTy, Src, Zero, "cast.fixed");
2376 // Perform VLAT <-> VLST bitcast through memory.
2377 // TODO: since the llvm.vector.{insert,extract} intrinsics
2378 // require the element types of the vectors to be the same, we
2379 // need to keep this around for bitcasts between VLAT <-> VLST where
2380 // the element types of the vectors are not the same, until we figure
2381 // out a better way of doing these casts.
2382 if ((isa<llvm::FixedVectorType>(SrcTy) &&
2383 isa<llvm::ScalableVectorType>(DstTy)) ||
2384 (isa<llvm::ScalableVectorType>(SrcTy) &&
2385 isa<llvm::FixedVectorType>(DstTy))) {
2386 Address Addr = CGF.CreateDefaultAlignTempAlloca(SrcTy, "saved-value");
2387 LValue LV = CGF.MakeAddrLValue(Addr, E->getType());
2388 CGF.EmitStoreOfScalar(Src, LV);
2389 Addr = Addr.withElementType(CGF.ConvertTypeForMem(DestTy));
2390 LValue DestLV = CGF.MakeAddrLValue(Addr, DestTy);
2391 DestLV.setTBAAInfo(TBAAAccessInfo::getMayAliasInfo());
2392 return EmitLoadOfLValue(DestLV, CE->getExprLoc());
2395 llvm::Value *Result = Builder.CreateBitCast(Src, DstTy);
2396 return CGF.authPointerToPointerCast(Result, E->getType(), DestTy);
2398 case CK_AddressSpaceConversion: {
2399 Expr::EvalResult Result;
2400 if (E->EvaluateAsRValue(Result, CGF.getContext()) &&
2401 Result.Val.isNullPointer()) {
2402 // If E has side effect, it is emitted even if its final result is a
2403 // null pointer. In that case, a DCE pass should be able to
2404 // eliminate the useless instructions emitted during translating E.
2405 if (Result.HasSideEffects)
2406 Visit(E);
2407 return CGF.CGM.getNullPointer(cast<llvm::PointerType>(
2408 ConvertType(DestTy)), DestTy);
2410 // Since target may map different address spaces in AST to the same address
2411 // space, an address space conversion may end up as a bitcast.
2412 return CGF.CGM.getTargetCodeGenInfo().performAddrSpaceCast(
2413 CGF, Visit(E), E->getType()->getPointeeType().getAddressSpace(),
2414 DestTy->getPointeeType().getAddressSpace(), ConvertType(DestTy));
2416 case CK_AtomicToNonAtomic:
2417 case CK_NonAtomicToAtomic:
2418 case CK_UserDefinedConversion:
2419 return Visit(const_cast<Expr*>(E));
2421 case CK_NoOp: {
2422 return CE->changesVolatileQualification() ? EmitLoadOfLValue(CE)
2423 : Visit(const_cast<Expr *>(E));
2426 case CK_BaseToDerived: {
2427 const CXXRecordDecl *DerivedClassDecl = DestTy->getPointeeCXXRecordDecl();
2428 assert(DerivedClassDecl && "BaseToDerived arg isn't a C++ object pointer!");
2430 Address Base = CGF.EmitPointerWithAlignment(E);
2431 Address Derived =
2432 CGF.GetAddressOfDerivedClass(Base, DerivedClassDecl,
2433 CE->path_begin(), CE->path_end(),
2434 CGF.ShouldNullCheckClassCastValue(CE));
2436 // C++11 [expr.static.cast]p11: Behavior is undefined if a downcast is
2437 // performed and the object is not of the derived type.
2438 if (CGF.sanitizePerformTypeCheck())
2439 CGF.EmitTypeCheck(CodeGenFunction::TCK_DowncastPointer, CE->getExprLoc(),
2440 Derived, DestTy->getPointeeType());
2442 if (CGF.SanOpts.has(SanitizerKind::CFIDerivedCast))
2443 CGF.EmitVTablePtrCheckForCast(DestTy->getPointeeType(), Derived,
2444 /*MayBeNull=*/true,
2445 CodeGenFunction::CFITCK_DerivedCast,
2446 CE->getBeginLoc());
2448 return CGF.getAsNaturalPointerTo(Derived, CE->getType()->getPointeeType());
2450 case CK_UncheckedDerivedToBase:
2451 case CK_DerivedToBase: {
2452 // The EmitPointerWithAlignment path does this fine; just discard
2453 // the alignment.
2454 return CGF.getAsNaturalPointerTo(CGF.EmitPointerWithAlignment(CE),
2455 CE->getType()->getPointeeType());
2458 case CK_Dynamic: {
2459 Address V = CGF.EmitPointerWithAlignment(E);
2460 const CXXDynamicCastExpr *DCE = cast<CXXDynamicCastExpr>(CE);
2461 return CGF.EmitDynamicCast(V, DCE);
2464 case CK_ArrayToPointerDecay:
2465 return CGF.getAsNaturalPointerTo(CGF.EmitArrayToPointerDecay(E),
2466 CE->getType()->getPointeeType());
2467 case CK_FunctionToPointerDecay:
2468 return EmitLValue(E).getPointer(CGF);
2470 case CK_NullToPointer:
2471 if (MustVisitNullValue(E))
2472 CGF.EmitIgnoredExpr(E);
2474 return CGF.CGM.getNullPointer(cast<llvm::PointerType>(ConvertType(DestTy)),
2475 DestTy);
2477 case CK_NullToMemberPointer: {
2478 if (MustVisitNullValue(E))
2479 CGF.EmitIgnoredExpr(E);
2481 const MemberPointerType *MPT = CE->getType()->getAs<MemberPointerType>();
2482 return CGF.CGM.getCXXABI().EmitNullMemberPointer(MPT);
2485 case CK_ReinterpretMemberPointer:
2486 case CK_BaseToDerivedMemberPointer:
2487 case CK_DerivedToBaseMemberPointer: {
2488 Value *Src = Visit(E);
2490 // Note that the AST doesn't distinguish between checked and
2491 // unchecked member pointer conversions, so we always have to
2492 // implement checked conversions here. This is inefficient when
2493 // actual control flow may be required in order to perform the
2494 // check, which it is for data member pointers (but not member
2495 // function pointers on Itanium and ARM).
2496 return CGF.CGM.getCXXABI().EmitMemberPointerConversion(CGF, CE, Src);
2499 case CK_ARCProduceObject:
2500 return CGF.EmitARCRetainScalarExpr(E);
2501 case CK_ARCConsumeObject:
2502 return CGF.EmitObjCConsumeObject(E->getType(), Visit(E));
2503 case CK_ARCReclaimReturnedObject:
2504 return CGF.EmitARCReclaimReturnedObject(E, /*allowUnsafe*/ Ignored);
2505 case CK_ARCExtendBlockObject:
2506 return CGF.EmitARCExtendBlockObject(E);
2508 case CK_CopyAndAutoreleaseBlockObject:
2509 return CGF.EmitBlockCopyAndAutorelease(Visit(E), E->getType());
2511 case CK_FloatingRealToComplex:
2512 case CK_FloatingComplexCast:
2513 case CK_IntegralRealToComplex:
2514 case CK_IntegralComplexCast:
2515 case CK_IntegralComplexToFloatingComplex:
2516 case CK_FloatingComplexToIntegralComplex:
2517 case CK_ConstructorConversion:
2518 case CK_ToUnion:
2519 case CK_HLSLArrayRValue:
2520 llvm_unreachable("scalar cast to non-scalar value");
2522 case CK_LValueToRValue:
2523 assert(CGF.getContext().hasSameUnqualifiedType(E->getType(), DestTy));
2524 assert(E->isGLValue() && "lvalue-to-rvalue applied to r-value!");
2525 return Visit(const_cast<Expr*>(E));
2527 case CK_IntegralToPointer: {
2528 Value *Src = Visit(const_cast<Expr*>(E));
2530 // First, convert to the correct width so that we control the kind of
2531 // extension.
2532 auto DestLLVMTy = ConvertType(DestTy);
2533 llvm::Type *MiddleTy = CGF.CGM.getDataLayout().getIntPtrType(DestLLVMTy);
2534 bool InputSigned = E->getType()->isSignedIntegerOrEnumerationType();
2535 llvm::Value* IntResult =
2536 Builder.CreateIntCast(Src, MiddleTy, InputSigned, "conv");
2538 auto *IntToPtr = Builder.CreateIntToPtr(IntResult, DestLLVMTy);
2540 if (CGF.CGM.getCodeGenOpts().StrictVTablePointers) {
2541 // Going from integer to pointer that could be dynamic requires reloading
2542 // dynamic information from invariant.group.
2543 if (DestTy.mayBeDynamicClass())
2544 IntToPtr = Builder.CreateLaunderInvariantGroup(IntToPtr);
2547 IntToPtr = CGF.authPointerToPointerCast(IntToPtr, E->getType(), DestTy);
2548 return IntToPtr;
2550 case CK_PointerToIntegral: {
2551 assert(!DestTy->isBooleanType() && "bool should use PointerToBool");
2552 auto *PtrExpr = Visit(E);
2554 if (CGF.CGM.getCodeGenOpts().StrictVTablePointers) {
2555 const QualType SrcType = E->getType();
2557 // Casting to integer requires stripping dynamic information as it does
2558 // not carries it.
2559 if (SrcType.mayBeDynamicClass())
2560 PtrExpr = Builder.CreateStripInvariantGroup(PtrExpr);
2563 PtrExpr = CGF.authPointerToPointerCast(PtrExpr, E->getType(), DestTy);
2564 return Builder.CreatePtrToInt(PtrExpr, ConvertType(DestTy));
2566 case CK_ToVoid: {
2567 CGF.EmitIgnoredExpr(E);
2568 return nullptr;
2570 case CK_MatrixCast: {
2571 return EmitScalarConversion(Visit(E), E->getType(), DestTy,
2572 CE->getExprLoc());
2574 case CK_VectorSplat: {
2575 llvm::Type *DstTy = ConvertType(DestTy);
2576 Value *Elt = Visit(const_cast<Expr *>(E));
2577 // Splat the element across to all elements
2578 llvm::ElementCount NumElements =
2579 cast<llvm::VectorType>(DstTy)->getElementCount();
2580 return Builder.CreateVectorSplat(NumElements, Elt, "splat");
2583 case CK_FixedPointCast:
2584 return EmitScalarConversion(Visit(E), E->getType(), DestTy,
2585 CE->getExprLoc());
2587 case CK_FixedPointToBoolean:
2588 assert(E->getType()->isFixedPointType() &&
2589 "Expected src type to be fixed point type");
2590 assert(DestTy->isBooleanType() && "Expected dest type to be boolean type");
2591 return EmitScalarConversion(Visit(E), E->getType(), DestTy,
2592 CE->getExprLoc());
2594 case CK_FixedPointToIntegral:
2595 assert(E->getType()->isFixedPointType() &&
2596 "Expected src type to be fixed point type");
2597 assert(DestTy->isIntegerType() && "Expected dest type to be an integer");
2598 return EmitScalarConversion(Visit(E), E->getType(), DestTy,
2599 CE->getExprLoc());
2601 case CK_IntegralToFixedPoint:
2602 assert(E->getType()->isIntegerType() &&
2603 "Expected src type to be an integer");
2604 assert(DestTy->isFixedPointType() &&
2605 "Expected dest type to be fixed point type");
2606 return EmitScalarConversion(Visit(E), E->getType(), DestTy,
2607 CE->getExprLoc());
2609 case CK_IntegralCast: {
2610 if (E->getType()->isExtVectorType() && DestTy->isExtVectorType()) {
2611 QualType SrcElTy = E->getType()->castAs<VectorType>()->getElementType();
2612 return Builder.CreateIntCast(Visit(E), ConvertType(DestTy),
2613 SrcElTy->isSignedIntegerOrEnumerationType(),
2614 "conv");
2616 ScalarConversionOpts Opts;
2617 if (auto *ICE = dyn_cast<ImplicitCastExpr>(CE)) {
2618 if (!ICE->isPartOfExplicitCast())
2619 Opts = ScalarConversionOpts(CGF.SanOpts);
2621 return EmitScalarConversion(Visit(E), E->getType(), DestTy,
2622 CE->getExprLoc(), Opts);
2624 case CK_IntegralToFloating: {
2625 if (E->getType()->isVectorType() && DestTy->isVectorType()) {
2626 // TODO: Support constrained FP intrinsics.
2627 QualType SrcElTy = E->getType()->castAs<VectorType>()->getElementType();
2628 if (SrcElTy->isSignedIntegerOrEnumerationType())
2629 return Builder.CreateSIToFP(Visit(E), ConvertType(DestTy), "conv");
2630 return Builder.CreateUIToFP(Visit(E), ConvertType(DestTy), "conv");
2632 CodeGenFunction::CGFPOptionsRAII FPOptsRAII(CGF, CE);
2633 return EmitScalarConversion(Visit(E), E->getType(), DestTy,
2634 CE->getExprLoc());
2636 case CK_FloatingToIntegral: {
2637 if (E->getType()->isVectorType() && DestTy->isVectorType()) {
2638 // TODO: Support constrained FP intrinsics.
2639 QualType DstElTy = DestTy->castAs<VectorType>()->getElementType();
2640 if (DstElTy->isSignedIntegerOrEnumerationType())
2641 return Builder.CreateFPToSI(Visit(E), ConvertType(DestTy), "conv");
2642 return Builder.CreateFPToUI(Visit(E), ConvertType(DestTy), "conv");
2644 CodeGenFunction::CGFPOptionsRAII FPOptsRAII(CGF, CE);
2645 return EmitScalarConversion(Visit(E), E->getType(), DestTy,
2646 CE->getExprLoc());
2648 case CK_FloatingCast: {
2649 if (E->getType()->isVectorType() && DestTy->isVectorType()) {
2650 // TODO: Support constrained FP intrinsics.
2651 QualType SrcElTy = E->getType()->castAs<VectorType>()->getElementType();
2652 QualType DstElTy = DestTy->castAs<VectorType>()->getElementType();
2653 if (DstElTy->castAs<BuiltinType>()->getKind() <
2654 SrcElTy->castAs<BuiltinType>()->getKind())
2655 return Builder.CreateFPTrunc(Visit(E), ConvertType(DestTy), "conv");
2656 return Builder.CreateFPExt(Visit(E), ConvertType(DestTy), "conv");
2658 CodeGenFunction::CGFPOptionsRAII FPOptsRAII(CGF, CE);
2659 return EmitScalarConversion(Visit(E), E->getType(), DestTy,
2660 CE->getExprLoc());
2662 case CK_FixedPointToFloating:
2663 case CK_FloatingToFixedPoint: {
2664 CodeGenFunction::CGFPOptionsRAII FPOptsRAII(CGF, CE);
2665 return EmitScalarConversion(Visit(E), E->getType(), DestTy,
2666 CE->getExprLoc());
2668 case CK_BooleanToSignedIntegral: {
2669 ScalarConversionOpts Opts;
2670 Opts.TreatBooleanAsSigned = true;
2671 return EmitScalarConversion(Visit(E), E->getType(), DestTy,
2672 CE->getExprLoc(), Opts);
2674 case CK_IntegralToBoolean:
2675 return EmitIntToBoolConversion(Visit(E));
2676 case CK_PointerToBoolean:
2677 return EmitPointerToBoolConversion(Visit(E), E->getType());
2678 case CK_FloatingToBoolean: {
2679 CodeGenFunction::CGFPOptionsRAII FPOptsRAII(CGF, CE);
2680 return EmitFloatToBoolConversion(Visit(E));
2682 case CK_MemberPointerToBoolean: {
2683 llvm::Value *MemPtr = Visit(E);
2684 const MemberPointerType *MPT = E->getType()->getAs<MemberPointerType>();
2685 return CGF.CGM.getCXXABI().EmitMemberPointerIsNotNull(CGF, MemPtr, MPT);
2688 case CK_FloatingComplexToReal:
2689 case CK_IntegralComplexToReal:
2690 return CGF.EmitComplexExpr(E, false, true).first;
2692 case CK_FloatingComplexToBoolean:
2693 case CK_IntegralComplexToBoolean: {
2694 CodeGenFunction::ComplexPairTy V = CGF.EmitComplexExpr(E);
2696 // TODO: kill this function off, inline appropriate case here
2697 return EmitComplexToScalarConversion(V, E->getType(), DestTy,
2698 CE->getExprLoc());
2701 case CK_ZeroToOCLOpaqueType: {
2702 assert((DestTy->isEventT() || DestTy->isQueueT() ||
2703 DestTy->isOCLIntelSubgroupAVCType()) &&
2704 "CK_ZeroToOCLEvent cast on non-event type");
2705 return llvm::Constant::getNullValue(ConvertType(DestTy));
2708 case CK_IntToOCLSampler:
2709 return CGF.CGM.createOpenCLIntToSamplerConversion(E, CGF);
2711 case CK_HLSLVectorTruncation: {
2712 assert((DestTy->isVectorType() || DestTy->isBuiltinType()) &&
2713 "Destination type must be a vector or builtin type.");
2714 Value *Vec = Visit(const_cast<Expr *>(E));
2715 if (auto *VecTy = DestTy->getAs<VectorType>()) {
2716 SmallVector<int> Mask;
2717 unsigned NumElts = VecTy->getNumElements();
2718 for (unsigned I = 0; I != NumElts; ++I)
2719 Mask.push_back(I);
2721 return Builder.CreateShuffleVector(Vec, Mask, "trunc");
2723 llvm::Value *Zero = llvm::Constant::getNullValue(CGF.SizeTy);
2724 return Builder.CreateExtractElement(Vec, Zero, "cast.vtrunc");
2727 } // end of switch
2729 llvm_unreachable("unknown scalar cast");
2732 Value *ScalarExprEmitter::VisitStmtExpr(const StmtExpr *E) {
2733 CodeGenFunction::StmtExprEvaluation eval(CGF);
2734 Address RetAlloca = CGF.EmitCompoundStmt(*E->getSubStmt(),
2735 !E->getType()->isVoidType());
2736 if (!RetAlloca.isValid())
2737 return nullptr;
2738 return CGF.EmitLoadOfScalar(CGF.MakeAddrLValue(RetAlloca, E->getType()),
2739 E->getExprLoc());
2742 Value *ScalarExprEmitter::VisitExprWithCleanups(ExprWithCleanups *E) {
2743 CodeGenFunction::RunCleanupsScope Scope(CGF);
2744 Value *V = Visit(E->getSubExpr());
2745 // Defend against dominance problems caused by jumps out of expression
2746 // evaluation through the shared cleanup block.
2747 Scope.ForceCleanup({&V});
2748 return V;
2751 //===----------------------------------------------------------------------===//
2752 // Unary Operators
2753 //===----------------------------------------------------------------------===//
2755 static BinOpInfo createBinOpInfoFromIncDec(const UnaryOperator *E,
2756 llvm::Value *InVal, bool IsInc,
2757 FPOptions FPFeatures) {
2758 BinOpInfo BinOp;
2759 BinOp.LHS = InVal;
2760 BinOp.RHS = llvm::ConstantInt::get(InVal->getType(), 1, false);
2761 BinOp.Ty = E->getType();
2762 BinOp.Opcode = IsInc ? BO_Add : BO_Sub;
2763 BinOp.FPFeatures = FPFeatures;
2764 BinOp.E = E;
2765 return BinOp;
2768 llvm::Value *ScalarExprEmitter::EmitIncDecConsiderOverflowBehavior(
2769 const UnaryOperator *E, llvm::Value *InVal, bool IsInc) {
2770 llvm::Value *Amount =
2771 llvm::ConstantInt::get(InVal->getType(), IsInc ? 1 : -1, true);
2772 StringRef Name = IsInc ? "inc" : "dec";
2773 switch (CGF.getLangOpts().getSignedOverflowBehavior()) {
2774 case LangOptions::SOB_Defined:
2775 if (!CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow))
2776 return Builder.CreateAdd(InVal, Amount, Name);
2777 [[fallthrough]];
2778 case LangOptions::SOB_Undefined:
2779 if (!CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow))
2780 return Builder.CreateNSWAdd(InVal, Amount, Name);
2781 [[fallthrough]];
2782 case LangOptions::SOB_Trapping:
2783 if (!E->canOverflow())
2784 return Builder.CreateNSWAdd(InVal, Amount, Name);
2785 return EmitOverflowCheckedBinOp(createBinOpInfoFromIncDec(
2786 E, InVal, IsInc, E->getFPFeaturesInEffect(CGF.getLangOpts())));
2788 llvm_unreachable("Unknown SignedOverflowBehaviorTy");
2791 /// For the purposes of overflow pattern exclusion, does this match the
2792 /// "while(i--)" pattern?
2793 static bool matchesPostDecrInWhile(const UnaryOperator *UO, bool isInc,
2794 bool isPre, ASTContext &Ctx) {
2795 if (isInc || isPre)
2796 return false;
2798 // -fsanitize-undefined-ignore-overflow-pattern=unsigned-post-decr-while
2799 if (!Ctx.getLangOpts().isOverflowPatternExcluded(
2800 LangOptions::OverflowPatternExclusionKind::PostDecrInWhile))
2801 return false;
2803 // all Parents (usually just one) must be a WhileStmt
2804 for (const auto &Parent : Ctx.getParentMapContext().getParents(*UO))
2805 if (!Parent.get<WhileStmt>())
2806 return false;
2808 return true;
2811 namespace {
2812 /// Handles check and update for lastprivate conditional variables.
2813 class OMPLastprivateConditionalUpdateRAII {
2814 private:
2815 CodeGenFunction &CGF;
2816 const UnaryOperator *E;
2818 public:
2819 OMPLastprivateConditionalUpdateRAII(CodeGenFunction &CGF,
2820 const UnaryOperator *E)
2821 : CGF(CGF), E(E) {}
2822 ~OMPLastprivateConditionalUpdateRAII() {
2823 if (CGF.getLangOpts().OpenMP)
2824 CGF.CGM.getOpenMPRuntime().checkAndEmitLastprivateConditional(
2825 CGF, E->getSubExpr());
2828 } // namespace
2830 llvm::Value *
2831 ScalarExprEmitter::EmitScalarPrePostIncDec(const UnaryOperator *E, LValue LV,
2832 bool isInc, bool isPre) {
2833 OMPLastprivateConditionalUpdateRAII OMPRegion(CGF, E);
2834 QualType type = E->getSubExpr()->getType();
2835 llvm::PHINode *atomicPHI = nullptr;
2836 llvm::Value *value;
2837 llvm::Value *input;
2838 llvm::Value *Previous = nullptr;
2839 QualType SrcType = E->getType();
2841 int amount = (isInc ? 1 : -1);
2842 bool isSubtraction = !isInc;
2844 if (const AtomicType *atomicTy = type->getAs<AtomicType>()) {
2845 type = atomicTy->getValueType();
2846 if (isInc && type->isBooleanType()) {
2847 llvm::Value *True = CGF.EmitToMemory(Builder.getTrue(), type);
2848 if (isPre) {
2849 Builder.CreateStore(True, LV.getAddress(), LV.isVolatileQualified())
2850 ->setAtomic(llvm::AtomicOrdering::SequentiallyConsistent);
2851 return Builder.getTrue();
2853 // For atomic bool increment, we just store true and return it for
2854 // preincrement, do an atomic swap with true for postincrement
2855 return Builder.CreateAtomicRMW(
2856 llvm::AtomicRMWInst::Xchg, LV.getAddress(), True,
2857 llvm::AtomicOrdering::SequentiallyConsistent);
2859 // Special case for atomic increment / decrement on integers, emit
2860 // atomicrmw instructions. We skip this if we want to be doing overflow
2861 // checking, and fall into the slow path with the atomic cmpxchg loop.
2862 if (!type->isBooleanType() && type->isIntegerType() &&
2863 !(type->isUnsignedIntegerType() &&
2864 CGF.SanOpts.has(SanitizerKind::UnsignedIntegerOverflow)) &&
2865 CGF.getLangOpts().getSignedOverflowBehavior() !=
2866 LangOptions::SOB_Trapping) {
2867 llvm::AtomicRMWInst::BinOp aop = isInc ? llvm::AtomicRMWInst::Add :
2868 llvm::AtomicRMWInst::Sub;
2869 llvm::Instruction::BinaryOps op = isInc ? llvm::Instruction::Add :
2870 llvm::Instruction::Sub;
2871 llvm::Value *amt = CGF.EmitToMemory(
2872 llvm::ConstantInt::get(ConvertType(type), 1, true), type);
2873 llvm::Value *old =
2874 Builder.CreateAtomicRMW(aop, LV.getAddress(), amt,
2875 llvm::AtomicOrdering::SequentiallyConsistent);
2876 return isPre ? Builder.CreateBinOp(op, old, amt) : old;
2878 // Special case for atomic increment/decrement on floats.
2879 // Bail out non-power-of-2-sized floating point types (e.g., x86_fp80).
2880 if (type->isFloatingType()) {
2881 llvm::Type *Ty = ConvertType(type);
2882 if (llvm::has_single_bit(Ty->getScalarSizeInBits())) {
2883 llvm::AtomicRMWInst::BinOp aop =
2884 isInc ? llvm::AtomicRMWInst::FAdd : llvm::AtomicRMWInst::FSub;
2885 llvm::Instruction::BinaryOps op =
2886 isInc ? llvm::Instruction::FAdd : llvm::Instruction::FSub;
2887 llvm::Value *amt = llvm::ConstantFP::get(Ty, 1.0);
2888 llvm::AtomicRMWInst *old =
2889 CGF.emitAtomicRMWInst(aop, LV.getAddress(), amt,
2890 llvm::AtomicOrdering::SequentiallyConsistent);
2892 return isPre ? Builder.CreateBinOp(op, old, amt) : old;
2895 value = EmitLoadOfLValue(LV, E->getExprLoc());
2896 input = value;
2897 // For every other atomic operation, we need to emit a load-op-cmpxchg loop
2898 llvm::BasicBlock *startBB = Builder.GetInsertBlock();
2899 llvm::BasicBlock *opBB = CGF.createBasicBlock("atomic_op", CGF.CurFn);
2900 value = CGF.EmitToMemory(value, type);
2901 Builder.CreateBr(opBB);
2902 Builder.SetInsertPoint(opBB);
2903 atomicPHI = Builder.CreatePHI(value->getType(), 2);
2904 atomicPHI->addIncoming(value, startBB);
2905 value = atomicPHI;
2906 } else {
2907 value = EmitLoadOfLValue(LV, E->getExprLoc());
2908 input = value;
2911 // Special case of integer increment that we have to check first: bool++.
2912 // Due to promotion rules, we get:
2913 // bool++ -> bool = bool + 1
2914 // -> bool = (int)bool + 1
2915 // -> bool = ((int)bool + 1 != 0)
2916 // An interesting aspect of this is that increment is always true.
2917 // Decrement does not have this property.
2918 if (isInc && type->isBooleanType()) {
2919 value = Builder.getTrue();
2921 // Most common case by far: integer increment.
2922 } else if (type->isIntegerType()) {
2923 QualType promotedType;
2924 bool canPerformLossyDemotionCheck = false;
2926 bool excludeOverflowPattern =
2927 matchesPostDecrInWhile(E, isInc, isPre, CGF.getContext());
2929 if (CGF.getContext().isPromotableIntegerType(type)) {
2930 promotedType = CGF.getContext().getPromotedIntegerType(type);
2931 assert(promotedType != type && "Shouldn't promote to the same type.");
2932 canPerformLossyDemotionCheck = true;
2933 canPerformLossyDemotionCheck &=
2934 CGF.getContext().getCanonicalType(type) !=
2935 CGF.getContext().getCanonicalType(promotedType);
2936 canPerformLossyDemotionCheck &=
2937 PromotionIsPotentiallyEligibleForImplicitIntegerConversionCheck(
2938 type, promotedType);
2939 assert((!canPerformLossyDemotionCheck ||
2940 type->isSignedIntegerOrEnumerationType() ||
2941 promotedType->isSignedIntegerOrEnumerationType() ||
2942 ConvertType(type)->getScalarSizeInBits() ==
2943 ConvertType(promotedType)->getScalarSizeInBits()) &&
2944 "The following check expects that if we do promotion to different "
2945 "underlying canonical type, at least one of the types (either "
2946 "base or promoted) will be signed, or the bitwidths will match.");
2948 if (CGF.SanOpts.hasOneOf(
2949 SanitizerKind::ImplicitIntegerArithmeticValueChange |
2950 SanitizerKind::ImplicitBitfieldConversion) &&
2951 canPerformLossyDemotionCheck) {
2952 // While `x += 1` (for `x` with width less than int) is modeled as
2953 // promotion+arithmetics+demotion, and we can catch lossy demotion with
2954 // ease; inc/dec with width less than int can't overflow because of
2955 // promotion rules, so we omit promotion+demotion, which means that we can
2956 // not catch lossy "demotion". Because we still want to catch these cases
2957 // when the sanitizer is enabled, we perform the promotion, then perform
2958 // the increment/decrement in the wider type, and finally
2959 // perform the demotion. This will catch lossy demotions.
2961 // We have a special case for bitfields defined using all the bits of the
2962 // type. In this case we need to do the same trick as for the integer
2963 // sanitizer checks, i.e., promotion -> increment/decrement -> demotion.
2965 value = EmitScalarConversion(value, type, promotedType, E->getExprLoc());
2966 Value *amt = llvm::ConstantInt::get(value->getType(), amount, true);
2967 value = Builder.CreateAdd(value, amt, isInc ? "inc" : "dec");
2968 // Do pass non-default ScalarConversionOpts so that sanitizer check is
2969 // emitted if LV is not a bitfield, otherwise the bitfield sanitizer
2970 // checks will take care of the conversion.
2971 ScalarConversionOpts Opts;
2972 if (!LV.isBitField())
2973 Opts = ScalarConversionOpts(CGF.SanOpts);
2974 else if (CGF.SanOpts.has(SanitizerKind::ImplicitBitfieldConversion)) {
2975 Previous = value;
2976 SrcType = promotedType;
2979 value = EmitScalarConversion(value, promotedType, type, E->getExprLoc(),
2980 Opts);
2982 // Note that signed integer inc/dec with width less than int can't
2983 // overflow because of promotion rules; we're just eliding a few steps
2984 // here.
2985 } else if (E->canOverflow() && type->isSignedIntegerOrEnumerationType()) {
2986 value = EmitIncDecConsiderOverflowBehavior(E, value, isInc);
2987 } else if (E->canOverflow() && type->isUnsignedIntegerType() &&
2988 CGF.SanOpts.has(SanitizerKind::UnsignedIntegerOverflow) &&
2989 !excludeOverflowPattern) {
2990 value = EmitOverflowCheckedBinOp(createBinOpInfoFromIncDec(
2991 E, value, isInc, E->getFPFeaturesInEffect(CGF.getLangOpts())));
2992 } else {
2993 llvm::Value *amt = llvm::ConstantInt::get(value->getType(), amount, true);
2994 value = Builder.CreateAdd(value, amt, isInc ? "inc" : "dec");
2997 // Next most common: pointer increment.
2998 } else if (const PointerType *ptr = type->getAs<PointerType>()) {
2999 QualType type = ptr->getPointeeType();
3001 // VLA types don't have constant size.
3002 if (const VariableArrayType *vla
3003 = CGF.getContext().getAsVariableArrayType(type)) {
3004 llvm::Value *numElts = CGF.getVLASize(vla).NumElts;
3005 if (!isInc) numElts = Builder.CreateNSWNeg(numElts, "vla.negsize");
3006 llvm::Type *elemTy = CGF.ConvertTypeForMem(vla->getElementType());
3007 if (CGF.getLangOpts().isSignedOverflowDefined())
3008 value = Builder.CreateGEP(elemTy, value, numElts, "vla.inc");
3009 else
3010 value = CGF.EmitCheckedInBoundsGEP(
3011 elemTy, value, numElts, /*SignedIndices=*/false, isSubtraction,
3012 E->getExprLoc(), "vla.inc");
3014 // Arithmetic on function pointers (!) is just +-1.
3015 } else if (type->isFunctionType()) {
3016 llvm::Value *amt = Builder.getInt32(amount);
3018 if (CGF.getLangOpts().isSignedOverflowDefined())
3019 value = Builder.CreateGEP(CGF.Int8Ty, value, amt, "incdec.funcptr");
3020 else
3021 value =
3022 CGF.EmitCheckedInBoundsGEP(CGF.Int8Ty, value, amt,
3023 /*SignedIndices=*/false, isSubtraction,
3024 E->getExprLoc(), "incdec.funcptr");
3026 // For everything else, we can just do a simple increment.
3027 } else {
3028 llvm::Value *amt = Builder.getInt32(amount);
3029 llvm::Type *elemTy = CGF.ConvertTypeForMem(type);
3030 if (CGF.getLangOpts().isSignedOverflowDefined())
3031 value = Builder.CreateGEP(elemTy, value, amt, "incdec.ptr");
3032 else
3033 value = CGF.EmitCheckedInBoundsGEP(
3034 elemTy, value, amt, /*SignedIndices=*/false, isSubtraction,
3035 E->getExprLoc(), "incdec.ptr");
3038 // Vector increment/decrement.
3039 } else if (type->isVectorType()) {
3040 if (type->hasIntegerRepresentation()) {
3041 llvm::Value *amt = llvm::ConstantInt::get(value->getType(), amount);
3043 value = Builder.CreateAdd(value, amt, isInc ? "inc" : "dec");
3044 } else {
3045 value = Builder.CreateFAdd(
3046 value,
3047 llvm::ConstantFP::get(value->getType(), amount),
3048 isInc ? "inc" : "dec");
3051 // Floating point.
3052 } else if (type->isRealFloatingType()) {
3053 // Add the inc/dec to the real part.
3054 llvm::Value *amt;
3055 CodeGenFunction::CGFPOptionsRAII FPOptsRAII(CGF, E);
3057 if (type->isHalfType() && !CGF.getContext().getLangOpts().NativeHalfType) {
3058 // Another special case: half FP increment should be done via float
3059 if (CGF.getContext().getTargetInfo().useFP16ConversionIntrinsics()) {
3060 value = Builder.CreateCall(
3061 CGF.CGM.getIntrinsic(llvm::Intrinsic::convert_from_fp16,
3062 CGF.CGM.FloatTy),
3063 input, "incdec.conv");
3064 } else {
3065 value = Builder.CreateFPExt(input, CGF.CGM.FloatTy, "incdec.conv");
3069 if (value->getType()->isFloatTy())
3070 amt = llvm::ConstantFP::get(VMContext,
3071 llvm::APFloat(static_cast<float>(amount)));
3072 else if (value->getType()->isDoubleTy())
3073 amt = llvm::ConstantFP::get(VMContext,
3074 llvm::APFloat(static_cast<double>(amount)));
3075 else {
3076 // Remaining types are Half, Bfloat16, LongDouble, __ibm128 or __float128.
3077 // Convert from float.
3078 llvm::APFloat F(static_cast<float>(amount));
3079 bool ignored;
3080 const llvm::fltSemantics *FS;
3081 // Don't use getFloatTypeSemantics because Half isn't
3082 // necessarily represented using the "half" LLVM type.
3083 if (value->getType()->isFP128Ty())
3084 FS = &CGF.getTarget().getFloat128Format();
3085 else if (value->getType()->isHalfTy())
3086 FS = &CGF.getTarget().getHalfFormat();
3087 else if (value->getType()->isBFloatTy())
3088 FS = &CGF.getTarget().getBFloat16Format();
3089 else if (value->getType()->isPPC_FP128Ty())
3090 FS = &CGF.getTarget().getIbm128Format();
3091 else
3092 FS = &CGF.getTarget().getLongDoubleFormat();
3093 F.convert(*FS, llvm::APFloat::rmTowardZero, &ignored);
3094 amt = llvm::ConstantFP::get(VMContext, F);
3096 value = Builder.CreateFAdd(value, amt, isInc ? "inc" : "dec");
3098 if (type->isHalfType() && !CGF.getContext().getLangOpts().NativeHalfType) {
3099 if (CGF.getContext().getTargetInfo().useFP16ConversionIntrinsics()) {
3100 value = Builder.CreateCall(
3101 CGF.CGM.getIntrinsic(llvm::Intrinsic::convert_to_fp16,
3102 CGF.CGM.FloatTy),
3103 value, "incdec.conv");
3104 } else {
3105 value = Builder.CreateFPTrunc(value, input->getType(), "incdec.conv");
3109 // Fixed-point types.
3110 } else if (type->isFixedPointType()) {
3111 // Fixed-point types are tricky. In some cases, it isn't possible to
3112 // represent a 1 or a -1 in the type at all. Piggyback off of
3113 // EmitFixedPointBinOp to avoid having to reimplement saturation.
3114 BinOpInfo Info;
3115 Info.E = E;
3116 Info.Ty = E->getType();
3117 Info.Opcode = isInc ? BO_Add : BO_Sub;
3118 Info.LHS = value;
3119 Info.RHS = llvm::ConstantInt::get(value->getType(), 1, false);
3120 // If the type is signed, it's better to represent this as +(-1) or -(-1),
3121 // since -1 is guaranteed to be representable.
3122 if (type->isSignedFixedPointType()) {
3123 Info.Opcode = isInc ? BO_Sub : BO_Add;
3124 Info.RHS = Builder.CreateNeg(Info.RHS);
3126 // Now, convert from our invented integer literal to the type of the unary
3127 // op. This will upscale and saturate if necessary. This value can become
3128 // undef in some cases.
3129 llvm::FixedPointBuilder<CGBuilderTy> FPBuilder(Builder);
3130 auto DstSema = CGF.getContext().getFixedPointSemantics(Info.Ty);
3131 Info.RHS = FPBuilder.CreateIntegerToFixed(Info.RHS, true, DstSema);
3132 value = EmitFixedPointBinOp(Info);
3134 // Objective-C pointer types.
3135 } else {
3136 const ObjCObjectPointerType *OPT = type->castAs<ObjCObjectPointerType>();
3138 CharUnits size = CGF.getContext().getTypeSizeInChars(OPT->getObjectType());
3139 if (!isInc) size = -size;
3140 llvm::Value *sizeValue =
3141 llvm::ConstantInt::get(CGF.SizeTy, size.getQuantity());
3143 if (CGF.getLangOpts().isSignedOverflowDefined())
3144 value = Builder.CreateGEP(CGF.Int8Ty, value, sizeValue, "incdec.objptr");
3145 else
3146 value = CGF.EmitCheckedInBoundsGEP(
3147 CGF.Int8Ty, value, sizeValue, /*SignedIndices=*/false, isSubtraction,
3148 E->getExprLoc(), "incdec.objptr");
3149 value = Builder.CreateBitCast(value, input->getType());
3152 if (atomicPHI) {
3153 llvm::BasicBlock *curBlock = Builder.GetInsertBlock();
3154 llvm::BasicBlock *contBB = CGF.createBasicBlock("atomic_cont", CGF.CurFn);
3155 auto Pair = CGF.EmitAtomicCompareExchange(
3156 LV, RValue::get(atomicPHI), RValue::get(value), E->getExprLoc());
3157 llvm::Value *old = CGF.EmitToMemory(Pair.first.getScalarVal(), type);
3158 llvm::Value *success = Pair.second;
3159 atomicPHI->addIncoming(old, curBlock);
3160 Builder.CreateCondBr(success, contBB, atomicPHI->getParent());
3161 Builder.SetInsertPoint(contBB);
3162 return isPre ? value : input;
3165 // Store the updated result through the lvalue.
3166 if (LV.isBitField()) {
3167 Value *Src = Previous ? Previous : value;
3168 CGF.EmitStoreThroughBitfieldLValue(RValue::get(value), LV, &value);
3169 CGF.EmitBitfieldConversionCheck(Src, SrcType, value, E->getType(),
3170 LV.getBitFieldInfo(), E->getExprLoc());
3171 } else
3172 CGF.EmitStoreThroughLValue(RValue::get(value), LV);
3174 // If this is a postinc, return the value read from memory, otherwise use the
3175 // updated value.
3176 return isPre ? value : input;
3180 Value *ScalarExprEmitter::VisitUnaryPlus(const UnaryOperator *E,
3181 QualType PromotionType) {
3182 QualType promotionTy = PromotionType.isNull()
3183 ? getPromotionType(E->getSubExpr()->getType())
3184 : PromotionType;
3185 Value *result = VisitPlus(E, promotionTy);
3186 if (result && !promotionTy.isNull())
3187 result = EmitUnPromotedValue(result, E->getType());
3188 return result;
3191 Value *ScalarExprEmitter::VisitPlus(const UnaryOperator *E,
3192 QualType PromotionType) {
3193 // This differs from gcc, though, most likely due to a bug in gcc.
3194 TestAndClearIgnoreResultAssign();
3195 if (!PromotionType.isNull())
3196 return CGF.EmitPromotedScalarExpr(E->getSubExpr(), PromotionType);
3197 return Visit(E->getSubExpr());
3200 Value *ScalarExprEmitter::VisitUnaryMinus(const UnaryOperator *E,
3201 QualType PromotionType) {
3202 QualType promotionTy = PromotionType.isNull()
3203 ? getPromotionType(E->getSubExpr()->getType())
3204 : PromotionType;
3205 Value *result = VisitMinus(E, promotionTy);
3206 if (result && !promotionTy.isNull())
3207 result = EmitUnPromotedValue(result, E->getType());
3208 return result;
3211 Value *ScalarExprEmitter::VisitMinus(const UnaryOperator *E,
3212 QualType PromotionType) {
3213 TestAndClearIgnoreResultAssign();
3214 Value *Op;
3215 if (!PromotionType.isNull())
3216 Op = CGF.EmitPromotedScalarExpr(E->getSubExpr(), PromotionType);
3217 else
3218 Op = Visit(E->getSubExpr());
3220 // Generate a unary FNeg for FP ops.
3221 if (Op->getType()->isFPOrFPVectorTy())
3222 return Builder.CreateFNeg(Op, "fneg");
3224 // Emit unary minus with EmitSub so we handle overflow cases etc.
3225 BinOpInfo BinOp;
3226 BinOp.RHS = Op;
3227 BinOp.LHS = llvm::Constant::getNullValue(BinOp.RHS->getType());
3228 BinOp.Ty = E->getType();
3229 BinOp.Opcode = BO_Sub;
3230 BinOp.FPFeatures = E->getFPFeaturesInEffect(CGF.getLangOpts());
3231 BinOp.E = E;
3232 return EmitSub(BinOp);
3235 Value *ScalarExprEmitter::VisitUnaryNot(const UnaryOperator *E) {
3236 TestAndClearIgnoreResultAssign();
3237 Value *Op = Visit(E->getSubExpr());
3238 return Builder.CreateNot(Op, "not");
3241 Value *ScalarExprEmitter::VisitUnaryLNot(const UnaryOperator *E) {
3242 // Perform vector logical not on comparison with zero vector.
3243 if (E->getType()->isVectorType() &&
3244 E->getType()->castAs<VectorType>()->getVectorKind() ==
3245 VectorKind::Generic) {
3246 Value *Oper = Visit(E->getSubExpr());
3247 Value *Zero = llvm::Constant::getNullValue(Oper->getType());
3248 Value *Result;
3249 if (Oper->getType()->isFPOrFPVectorTy()) {
3250 CodeGenFunction::CGFPOptionsRAII FPOptsRAII(
3251 CGF, E->getFPFeaturesInEffect(CGF.getLangOpts()));
3252 Result = Builder.CreateFCmp(llvm::CmpInst::FCMP_OEQ, Oper, Zero, "cmp");
3253 } else
3254 Result = Builder.CreateICmp(llvm::CmpInst::ICMP_EQ, Oper, Zero, "cmp");
3255 return Builder.CreateSExt(Result, ConvertType(E->getType()), "sext");
3258 // Compare operand to zero.
3259 Value *BoolVal = CGF.EvaluateExprAsBool(E->getSubExpr());
3261 // Invert value.
3262 // TODO: Could dynamically modify easy computations here. For example, if
3263 // the operand is an icmp ne, turn into icmp eq.
3264 BoolVal = Builder.CreateNot(BoolVal, "lnot");
3266 // ZExt result to the expr type.
3267 return Builder.CreateZExt(BoolVal, ConvertType(E->getType()), "lnot.ext");
3270 Value *ScalarExprEmitter::VisitOffsetOfExpr(OffsetOfExpr *E) {
3271 // Try folding the offsetof to a constant.
3272 Expr::EvalResult EVResult;
3273 if (E->EvaluateAsInt(EVResult, CGF.getContext())) {
3274 llvm::APSInt Value = EVResult.Val.getInt();
3275 return Builder.getInt(Value);
3278 // Loop over the components of the offsetof to compute the value.
3279 unsigned n = E->getNumComponents();
3280 llvm::Type* ResultType = ConvertType(E->getType());
3281 llvm::Value* Result = llvm::Constant::getNullValue(ResultType);
3282 QualType CurrentType = E->getTypeSourceInfo()->getType();
3283 for (unsigned i = 0; i != n; ++i) {
3284 OffsetOfNode ON = E->getComponent(i);
3285 llvm::Value *Offset = nullptr;
3286 switch (ON.getKind()) {
3287 case OffsetOfNode::Array: {
3288 // Compute the index
3289 Expr *IdxExpr = E->getIndexExpr(ON.getArrayExprIndex());
3290 llvm::Value* Idx = CGF.EmitScalarExpr(IdxExpr);
3291 bool IdxSigned = IdxExpr->getType()->isSignedIntegerOrEnumerationType();
3292 Idx = Builder.CreateIntCast(Idx, ResultType, IdxSigned, "conv");
3294 // Save the element type
3295 CurrentType =
3296 CGF.getContext().getAsArrayType(CurrentType)->getElementType();
3298 // Compute the element size
3299 llvm::Value* ElemSize = llvm::ConstantInt::get(ResultType,
3300 CGF.getContext().getTypeSizeInChars(CurrentType).getQuantity());
3302 // Multiply out to compute the result
3303 Offset = Builder.CreateMul(Idx, ElemSize);
3304 break;
3307 case OffsetOfNode::Field: {
3308 FieldDecl *MemberDecl = ON.getField();
3309 RecordDecl *RD = CurrentType->castAs<RecordType>()->getDecl();
3310 const ASTRecordLayout &RL = CGF.getContext().getASTRecordLayout(RD);
3312 // Compute the index of the field in its parent.
3313 unsigned i = 0;
3314 // FIXME: It would be nice if we didn't have to loop here!
3315 for (RecordDecl::field_iterator Field = RD->field_begin(),
3316 FieldEnd = RD->field_end();
3317 Field != FieldEnd; ++Field, ++i) {
3318 if (*Field == MemberDecl)
3319 break;
3321 assert(i < RL.getFieldCount() && "offsetof field in wrong type");
3323 // Compute the offset to the field
3324 int64_t OffsetInt = RL.getFieldOffset(i) /
3325 CGF.getContext().getCharWidth();
3326 Offset = llvm::ConstantInt::get(ResultType, OffsetInt);
3328 // Save the element type.
3329 CurrentType = MemberDecl->getType();
3330 break;
3333 case OffsetOfNode::Identifier:
3334 llvm_unreachable("dependent __builtin_offsetof");
3336 case OffsetOfNode::Base: {
3337 if (ON.getBase()->isVirtual()) {
3338 CGF.ErrorUnsupported(E, "virtual base in offsetof");
3339 continue;
3342 RecordDecl *RD = CurrentType->castAs<RecordType>()->getDecl();
3343 const ASTRecordLayout &RL = CGF.getContext().getASTRecordLayout(RD);
3345 // Save the element type.
3346 CurrentType = ON.getBase()->getType();
3348 // Compute the offset to the base.
3349 auto *BaseRT = CurrentType->castAs<RecordType>();
3350 auto *BaseRD = cast<CXXRecordDecl>(BaseRT->getDecl());
3351 CharUnits OffsetInt = RL.getBaseClassOffset(BaseRD);
3352 Offset = llvm::ConstantInt::get(ResultType, OffsetInt.getQuantity());
3353 break;
3356 Result = Builder.CreateAdd(Result, Offset);
3358 return Result;
3361 /// VisitUnaryExprOrTypeTraitExpr - Return the size or alignment of the type of
3362 /// argument of the sizeof expression as an integer.
3363 Value *
3364 ScalarExprEmitter::VisitUnaryExprOrTypeTraitExpr(
3365 const UnaryExprOrTypeTraitExpr *E) {
3366 QualType TypeToSize = E->getTypeOfArgument();
3367 if (auto Kind = E->getKind();
3368 Kind == UETT_SizeOf || Kind == UETT_DataSizeOf) {
3369 if (const VariableArrayType *VAT =
3370 CGF.getContext().getAsVariableArrayType(TypeToSize)) {
3371 if (E->isArgumentType()) {
3372 // sizeof(type) - make sure to emit the VLA size.
3373 CGF.EmitVariablyModifiedType(TypeToSize);
3374 } else {
3375 // C99 6.5.3.4p2: If the argument is an expression of type
3376 // VLA, it is evaluated.
3377 CGF.EmitIgnoredExpr(E->getArgumentExpr());
3380 auto VlaSize = CGF.getVLASize(VAT);
3381 llvm::Value *size = VlaSize.NumElts;
3383 // Scale the number of non-VLA elements by the non-VLA element size.
3384 CharUnits eltSize = CGF.getContext().getTypeSizeInChars(VlaSize.Type);
3385 if (!eltSize.isOne())
3386 size = CGF.Builder.CreateNUWMul(CGF.CGM.getSize(eltSize), size);
3388 return size;
3390 } else if (E->getKind() == UETT_OpenMPRequiredSimdAlign) {
3391 auto Alignment =
3392 CGF.getContext()
3393 .toCharUnitsFromBits(CGF.getContext().getOpenMPDefaultSimdAlign(
3394 E->getTypeOfArgument()->getPointeeType()))
3395 .getQuantity();
3396 return llvm::ConstantInt::get(CGF.SizeTy, Alignment);
3397 } else if (E->getKind() == UETT_VectorElements) {
3398 auto *VecTy = cast<llvm::VectorType>(ConvertType(E->getTypeOfArgument()));
3399 return Builder.CreateElementCount(CGF.SizeTy, VecTy->getElementCount());
3402 // If this isn't sizeof(vla), the result must be constant; use the constant
3403 // folding logic so we don't have to duplicate it here.
3404 return Builder.getInt(E->EvaluateKnownConstInt(CGF.getContext()));
3407 Value *ScalarExprEmitter::VisitUnaryReal(const UnaryOperator *E,
3408 QualType PromotionType) {
3409 QualType promotionTy = PromotionType.isNull()
3410 ? getPromotionType(E->getSubExpr()->getType())
3411 : PromotionType;
3412 Value *result = VisitReal(E, promotionTy);
3413 if (result && !promotionTy.isNull())
3414 result = EmitUnPromotedValue(result, E->getType());
3415 return result;
3418 Value *ScalarExprEmitter::VisitReal(const UnaryOperator *E,
3419 QualType PromotionType) {
3420 Expr *Op = E->getSubExpr();
3421 if (Op->getType()->isAnyComplexType()) {
3422 // If it's an l-value, load through the appropriate subobject l-value.
3423 // Note that we have to ask E because Op might be an l-value that
3424 // this won't work for, e.g. an Obj-C property.
3425 if (E->isGLValue()) {
3426 if (!PromotionType.isNull()) {
3427 CodeGenFunction::ComplexPairTy result = CGF.EmitComplexExpr(
3428 Op, /*IgnoreReal*/ IgnoreResultAssign, /*IgnoreImag*/ true);
3429 if (result.first)
3430 result.first = CGF.EmitPromotedValue(result, PromotionType).first;
3431 return result.first;
3432 } else {
3433 return CGF.EmitLoadOfLValue(CGF.EmitLValue(E), E->getExprLoc())
3434 .getScalarVal();
3437 // Otherwise, calculate and project.
3438 return CGF.EmitComplexExpr(Op, false, true).first;
3441 if (!PromotionType.isNull())
3442 return CGF.EmitPromotedScalarExpr(Op, PromotionType);
3443 return Visit(Op);
3446 Value *ScalarExprEmitter::VisitUnaryImag(const UnaryOperator *E,
3447 QualType PromotionType) {
3448 QualType promotionTy = PromotionType.isNull()
3449 ? getPromotionType(E->getSubExpr()->getType())
3450 : PromotionType;
3451 Value *result = VisitImag(E, promotionTy);
3452 if (result && !promotionTy.isNull())
3453 result = EmitUnPromotedValue(result, E->getType());
3454 return result;
3457 Value *ScalarExprEmitter::VisitImag(const UnaryOperator *E,
3458 QualType PromotionType) {
3459 Expr *Op = E->getSubExpr();
3460 if (Op->getType()->isAnyComplexType()) {
3461 // If it's an l-value, load through the appropriate subobject l-value.
3462 // Note that we have to ask E because Op might be an l-value that
3463 // this won't work for, e.g. an Obj-C property.
3464 if (Op->isGLValue()) {
3465 if (!PromotionType.isNull()) {
3466 CodeGenFunction::ComplexPairTy result = CGF.EmitComplexExpr(
3467 Op, /*IgnoreReal*/ true, /*IgnoreImag*/ IgnoreResultAssign);
3468 if (result.second)
3469 result.second = CGF.EmitPromotedValue(result, PromotionType).second;
3470 return result.second;
3471 } else {
3472 return CGF.EmitLoadOfLValue(CGF.EmitLValue(E), E->getExprLoc())
3473 .getScalarVal();
3476 // Otherwise, calculate and project.
3477 return CGF.EmitComplexExpr(Op, true, false).second;
3480 // __imag on a scalar returns zero. Emit the subexpr to ensure side
3481 // effects are evaluated, but not the actual value.
3482 if (Op->isGLValue())
3483 CGF.EmitLValue(Op);
3484 else if (!PromotionType.isNull())
3485 CGF.EmitPromotedScalarExpr(Op, PromotionType);
3486 else
3487 CGF.EmitScalarExpr(Op, true);
3488 if (!PromotionType.isNull())
3489 return llvm::Constant::getNullValue(ConvertType(PromotionType));
3490 return llvm::Constant::getNullValue(ConvertType(E->getType()));
3493 //===----------------------------------------------------------------------===//
3494 // Binary Operators
3495 //===----------------------------------------------------------------------===//
3497 Value *ScalarExprEmitter::EmitPromotedValue(Value *result,
3498 QualType PromotionType) {
3499 return CGF.Builder.CreateFPExt(result, ConvertType(PromotionType), "ext");
3502 Value *ScalarExprEmitter::EmitUnPromotedValue(Value *result,
3503 QualType ExprType) {
3504 return CGF.Builder.CreateFPTrunc(result, ConvertType(ExprType), "unpromotion");
3507 Value *ScalarExprEmitter::EmitPromoted(const Expr *E, QualType PromotionType) {
3508 E = E->IgnoreParens();
3509 if (auto BO = dyn_cast<BinaryOperator>(E)) {
3510 switch (BO->getOpcode()) {
3511 #define HANDLE_BINOP(OP) \
3512 case BO_##OP: \
3513 return Emit##OP(EmitBinOps(BO, PromotionType));
3514 HANDLE_BINOP(Add)
3515 HANDLE_BINOP(Sub)
3516 HANDLE_BINOP(Mul)
3517 HANDLE_BINOP(Div)
3518 #undef HANDLE_BINOP
3519 default:
3520 break;
3522 } else if (auto UO = dyn_cast<UnaryOperator>(E)) {
3523 switch (UO->getOpcode()) {
3524 case UO_Imag:
3525 return VisitImag(UO, PromotionType);
3526 case UO_Real:
3527 return VisitReal(UO, PromotionType);
3528 case UO_Minus:
3529 return VisitMinus(UO, PromotionType);
3530 case UO_Plus:
3531 return VisitPlus(UO, PromotionType);
3532 default:
3533 break;
3536 auto result = Visit(const_cast<Expr *>(E));
3537 if (result) {
3538 if (!PromotionType.isNull())
3539 return EmitPromotedValue(result, PromotionType);
3540 else
3541 return EmitUnPromotedValue(result, E->getType());
3543 return result;
3546 BinOpInfo ScalarExprEmitter::EmitBinOps(const BinaryOperator *E,
3547 QualType PromotionType) {
3548 TestAndClearIgnoreResultAssign();
3549 BinOpInfo Result;
3550 Result.LHS = CGF.EmitPromotedScalarExpr(E->getLHS(), PromotionType);
3551 Result.RHS = CGF.EmitPromotedScalarExpr(E->getRHS(), PromotionType);
3552 if (!PromotionType.isNull())
3553 Result.Ty = PromotionType;
3554 else
3555 Result.Ty = E->getType();
3556 Result.Opcode = E->getOpcode();
3557 Result.FPFeatures = E->getFPFeaturesInEffect(CGF.getLangOpts());
3558 Result.E = E;
3559 return Result;
3562 LValue ScalarExprEmitter::EmitCompoundAssignLValue(
3563 const CompoundAssignOperator *E,
3564 Value *(ScalarExprEmitter::*Func)(const BinOpInfo &),
3565 Value *&Result) {
3566 QualType LHSTy = E->getLHS()->getType();
3567 BinOpInfo OpInfo;
3569 if (E->getComputationResultType()->isAnyComplexType())
3570 return CGF.EmitScalarCompoundAssignWithComplex(E, Result);
3572 // Emit the RHS first. __block variables need to have the rhs evaluated
3573 // first, plus this should improve codegen a little.
3575 QualType PromotionTypeCR;
3576 PromotionTypeCR = getPromotionType(E->getComputationResultType());
3577 if (PromotionTypeCR.isNull())
3578 PromotionTypeCR = E->getComputationResultType();
3579 QualType PromotionTypeLHS = getPromotionType(E->getComputationLHSType());
3580 QualType PromotionTypeRHS = getPromotionType(E->getRHS()->getType());
3581 if (!PromotionTypeRHS.isNull())
3582 OpInfo.RHS = CGF.EmitPromotedScalarExpr(E->getRHS(), PromotionTypeRHS);
3583 else
3584 OpInfo.RHS = Visit(E->getRHS());
3585 OpInfo.Ty = PromotionTypeCR;
3586 OpInfo.Opcode = E->getOpcode();
3587 OpInfo.FPFeatures = E->getFPFeaturesInEffect(CGF.getLangOpts());
3588 OpInfo.E = E;
3589 // Load/convert the LHS.
3590 LValue LHSLV = EmitCheckedLValue(E->getLHS(), CodeGenFunction::TCK_Store);
3592 llvm::PHINode *atomicPHI = nullptr;
3593 if (const AtomicType *atomicTy = LHSTy->getAs<AtomicType>()) {
3594 QualType type = atomicTy->getValueType();
3595 if (!type->isBooleanType() && type->isIntegerType() &&
3596 !(type->isUnsignedIntegerType() &&
3597 CGF.SanOpts.has(SanitizerKind::UnsignedIntegerOverflow)) &&
3598 CGF.getLangOpts().getSignedOverflowBehavior() !=
3599 LangOptions::SOB_Trapping) {
3600 llvm::AtomicRMWInst::BinOp AtomicOp = llvm::AtomicRMWInst::BAD_BINOP;
3601 llvm::Instruction::BinaryOps Op;
3602 switch (OpInfo.Opcode) {
3603 // We don't have atomicrmw operands for *, %, /, <<, >>
3604 case BO_MulAssign: case BO_DivAssign:
3605 case BO_RemAssign:
3606 case BO_ShlAssign:
3607 case BO_ShrAssign:
3608 break;
3609 case BO_AddAssign:
3610 AtomicOp = llvm::AtomicRMWInst::Add;
3611 Op = llvm::Instruction::Add;
3612 break;
3613 case BO_SubAssign:
3614 AtomicOp = llvm::AtomicRMWInst::Sub;
3615 Op = llvm::Instruction::Sub;
3616 break;
3617 case BO_AndAssign:
3618 AtomicOp = llvm::AtomicRMWInst::And;
3619 Op = llvm::Instruction::And;
3620 break;
3621 case BO_XorAssign:
3622 AtomicOp = llvm::AtomicRMWInst::Xor;
3623 Op = llvm::Instruction::Xor;
3624 break;
3625 case BO_OrAssign:
3626 AtomicOp = llvm::AtomicRMWInst::Or;
3627 Op = llvm::Instruction::Or;
3628 break;
3629 default:
3630 llvm_unreachable("Invalid compound assignment type");
3632 if (AtomicOp != llvm::AtomicRMWInst::BAD_BINOP) {
3633 llvm::Value *Amt = CGF.EmitToMemory(
3634 EmitScalarConversion(OpInfo.RHS, E->getRHS()->getType(), LHSTy,
3635 E->getExprLoc()),
3636 LHSTy);
3638 llvm::AtomicRMWInst *OldVal =
3639 CGF.emitAtomicRMWInst(AtomicOp, LHSLV.getAddress(), Amt);
3641 // Since operation is atomic, the result type is guaranteed to be the
3642 // same as the input in LLVM terms.
3643 Result = Builder.CreateBinOp(Op, OldVal, Amt);
3644 return LHSLV;
3647 // FIXME: For floating point types, we should be saving and restoring the
3648 // floating point environment in the loop.
3649 llvm::BasicBlock *startBB = Builder.GetInsertBlock();
3650 llvm::BasicBlock *opBB = CGF.createBasicBlock("atomic_op", CGF.CurFn);
3651 OpInfo.LHS = EmitLoadOfLValue(LHSLV, E->getExprLoc());
3652 OpInfo.LHS = CGF.EmitToMemory(OpInfo.LHS, type);
3653 Builder.CreateBr(opBB);
3654 Builder.SetInsertPoint(opBB);
3655 atomicPHI = Builder.CreatePHI(OpInfo.LHS->getType(), 2);
3656 atomicPHI->addIncoming(OpInfo.LHS, startBB);
3657 OpInfo.LHS = atomicPHI;
3659 else
3660 OpInfo.LHS = EmitLoadOfLValue(LHSLV, E->getExprLoc());
3662 CodeGenFunction::CGFPOptionsRAII FPOptsRAII(CGF, OpInfo.FPFeatures);
3663 SourceLocation Loc = E->getExprLoc();
3664 if (!PromotionTypeLHS.isNull())
3665 OpInfo.LHS = EmitScalarConversion(OpInfo.LHS, LHSTy, PromotionTypeLHS,
3666 E->getExprLoc());
3667 else
3668 OpInfo.LHS = EmitScalarConversion(OpInfo.LHS, LHSTy,
3669 E->getComputationLHSType(), Loc);
3671 // Expand the binary operator.
3672 Result = (this->*Func)(OpInfo);
3674 // Convert the result back to the LHS type,
3675 // potentially with Implicit Conversion sanitizer check.
3676 // If LHSLV is a bitfield, use default ScalarConversionOpts
3677 // to avoid emit any implicit integer checks.
3678 Value *Previous = nullptr;
3679 if (LHSLV.isBitField()) {
3680 Previous = Result;
3681 Result = EmitScalarConversion(Result, PromotionTypeCR, LHSTy, Loc);
3682 } else
3683 Result = EmitScalarConversion(Result, PromotionTypeCR, LHSTy, Loc,
3684 ScalarConversionOpts(CGF.SanOpts));
3686 if (atomicPHI) {
3687 llvm::BasicBlock *curBlock = Builder.GetInsertBlock();
3688 llvm::BasicBlock *contBB = CGF.createBasicBlock("atomic_cont", CGF.CurFn);
3689 auto Pair = CGF.EmitAtomicCompareExchange(
3690 LHSLV, RValue::get(atomicPHI), RValue::get(Result), E->getExprLoc());
3691 llvm::Value *old = CGF.EmitToMemory(Pair.first.getScalarVal(), LHSTy);
3692 llvm::Value *success = Pair.second;
3693 atomicPHI->addIncoming(old, curBlock);
3694 Builder.CreateCondBr(success, contBB, atomicPHI->getParent());
3695 Builder.SetInsertPoint(contBB);
3696 return LHSLV;
3699 // Store the result value into the LHS lvalue. Bit-fields are handled
3700 // specially because the result is altered by the store, i.e., [C99 6.5.16p1]
3701 // 'An assignment expression has the value of the left operand after the
3702 // assignment...'.
3703 if (LHSLV.isBitField()) {
3704 Value *Src = Previous ? Previous : Result;
3705 QualType SrcType = E->getRHS()->getType();
3706 QualType DstType = E->getLHS()->getType();
3707 CGF.EmitStoreThroughBitfieldLValue(RValue::get(Result), LHSLV, &Result);
3708 CGF.EmitBitfieldConversionCheck(Src, SrcType, Result, DstType,
3709 LHSLV.getBitFieldInfo(), E->getExprLoc());
3710 } else
3711 CGF.EmitStoreThroughLValue(RValue::get(Result), LHSLV);
3713 if (CGF.getLangOpts().OpenMP)
3714 CGF.CGM.getOpenMPRuntime().checkAndEmitLastprivateConditional(CGF,
3715 E->getLHS());
3716 return LHSLV;
3719 Value *ScalarExprEmitter::EmitCompoundAssign(const CompoundAssignOperator *E,
3720 Value *(ScalarExprEmitter::*Func)(const BinOpInfo &)) {
3721 bool Ignore = TestAndClearIgnoreResultAssign();
3722 Value *RHS = nullptr;
3723 LValue LHS = EmitCompoundAssignLValue(E, Func, RHS);
3725 // If the result is clearly ignored, return now.
3726 if (Ignore)
3727 return nullptr;
3729 // The result of an assignment in C is the assigned r-value.
3730 if (!CGF.getLangOpts().CPlusPlus)
3731 return RHS;
3733 // If the lvalue is non-volatile, return the computed value of the assignment.
3734 if (!LHS.isVolatileQualified())
3735 return RHS;
3737 // Otherwise, reload the value.
3738 return EmitLoadOfLValue(LHS, E->getExprLoc());
3741 void ScalarExprEmitter::EmitUndefinedBehaviorIntegerDivAndRemCheck(
3742 const BinOpInfo &Ops, llvm::Value *Zero, bool isDiv) {
3743 SmallVector<std::pair<llvm::Value *, SanitizerMask>, 2> Checks;
3745 if (CGF.SanOpts.has(SanitizerKind::IntegerDivideByZero)) {
3746 Checks.push_back(std::make_pair(Builder.CreateICmpNE(Ops.RHS, Zero),
3747 SanitizerKind::IntegerDivideByZero));
3750 const auto *BO = cast<BinaryOperator>(Ops.E);
3751 if (CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow) &&
3752 Ops.Ty->hasSignedIntegerRepresentation() &&
3753 !IsWidenedIntegerOp(CGF.getContext(), BO->getLHS()) &&
3754 Ops.mayHaveIntegerOverflow()) {
3755 llvm::IntegerType *Ty = cast<llvm::IntegerType>(Zero->getType());
3757 llvm::Value *IntMin =
3758 Builder.getInt(llvm::APInt::getSignedMinValue(Ty->getBitWidth()));
3759 llvm::Value *NegOne = llvm::Constant::getAllOnesValue(Ty);
3761 llvm::Value *LHSCmp = Builder.CreateICmpNE(Ops.LHS, IntMin);
3762 llvm::Value *RHSCmp = Builder.CreateICmpNE(Ops.RHS, NegOne);
3763 llvm::Value *NotOverflow = Builder.CreateOr(LHSCmp, RHSCmp, "or");
3764 Checks.push_back(
3765 std::make_pair(NotOverflow, SanitizerKind::SignedIntegerOverflow));
3768 if (Checks.size() > 0)
3769 EmitBinOpCheck(Checks, Ops);
3772 Value *ScalarExprEmitter::EmitDiv(const BinOpInfo &Ops) {
3774 CodeGenFunction::SanitizerScope SanScope(&CGF);
3775 if ((CGF.SanOpts.has(SanitizerKind::IntegerDivideByZero) ||
3776 CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow)) &&
3777 Ops.Ty->isIntegerType() &&
3778 (Ops.mayHaveIntegerDivisionByZero() || Ops.mayHaveIntegerOverflow())) {
3779 llvm::Value *Zero = llvm::Constant::getNullValue(ConvertType(Ops.Ty));
3780 EmitUndefinedBehaviorIntegerDivAndRemCheck(Ops, Zero, true);
3781 } else if (CGF.SanOpts.has(SanitizerKind::FloatDivideByZero) &&
3782 Ops.Ty->isRealFloatingType() &&
3783 Ops.mayHaveFloatDivisionByZero()) {
3784 llvm::Value *Zero = llvm::Constant::getNullValue(ConvertType(Ops.Ty));
3785 llvm::Value *NonZero = Builder.CreateFCmpUNE(Ops.RHS, Zero);
3786 EmitBinOpCheck(std::make_pair(NonZero, SanitizerKind::FloatDivideByZero),
3787 Ops);
3791 if (Ops.Ty->isConstantMatrixType()) {
3792 llvm::MatrixBuilder MB(Builder);
3793 // We need to check the types of the operands of the operator to get the
3794 // correct matrix dimensions.
3795 auto *BO = cast<BinaryOperator>(Ops.E);
3796 (void)BO;
3797 assert(
3798 isa<ConstantMatrixType>(BO->getLHS()->getType().getCanonicalType()) &&
3799 "first operand must be a matrix");
3800 assert(BO->getRHS()->getType().getCanonicalType()->isArithmeticType() &&
3801 "second operand must be an arithmetic type");
3802 CodeGenFunction::CGFPOptionsRAII FPOptsRAII(CGF, Ops.FPFeatures);
3803 return MB.CreateScalarDiv(Ops.LHS, Ops.RHS,
3804 Ops.Ty->hasUnsignedIntegerRepresentation());
3807 if (Ops.LHS->getType()->isFPOrFPVectorTy()) {
3808 llvm::Value *Val;
3809 CodeGenFunction::CGFPOptionsRAII FPOptsRAII(CGF, Ops.FPFeatures);
3810 Val = Builder.CreateFDiv(Ops.LHS, Ops.RHS, "div");
3811 CGF.SetDivFPAccuracy(Val);
3812 return Val;
3814 else if (Ops.isFixedPointOp())
3815 return EmitFixedPointBinOp(Ops);
3816 else if (Ops.Ty->hasUnsignedIntegerRepresentation())
3817 return Builder.CreateUDiv(Ops.LHS, Ops.RHS, "div");
3818 else
3819 return Builder.CreateSDiv(Ops.LHS, Ops.RHS, "div");
3822 Value *ScalarExprEmitter::EmitRem(const BinOpInfo &Ops) {
3823 // Rem in C can't be a floating point type: C99 6.5.5p2.
3824 if ((CGF.SanOpts.has(SanitizerKind::IntegerDivideByZero) ||
3825 CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow)) &&
3826 Ops.Ty->isIntegerType() &&
3827 (Ops.mayHaveIntegerDivisionByZero() || Ops.mayHaveIntegerOverflow())) {
3828 CodeGenFunction::SanitizerScope SanScope(&CGF);
3829 llvm::Value *Zero = llvm::Constant::getNullValue(ConvertType(Ops.Ty));
3830 EmitUndefinedBehaviorIntegerDivAndRemCheck(Ops, Zero, false);
3833 if (Ops.Ty->hasUnsignedIntegerRepresentation())
3834 return Builder.CreateURem(Ops.LHS, Ops.RHS, "rem");
3835 else
3836 return Builder.CreateSRem(Ops.LHS, Ops.RHS, "rem");
3839 Value *ScalarExprEmitter::EmitOverflowCheckedBinOp(const BinOpInfo &Ops) {
3840 unsigned IID;
3841 unsigned OpID = 0;
3842 SanitizerHandler OverflowKind;
3844 bool isSigned = Ops.Ty->isSignedIntegerOrEnumerationType();
3845 switch (Ops.Opcode) {
3846 case BO_Add:
3847 case BO_AddAssign:
3848 OpID = 1;
3849 IID = isSigned ? llvm::Intrinsic::sadd_with_overflow :
3850 llvm::Intrinsic::uadd_with_overflow;
3851 OverflowKind = SanitizerHandler::AddOverflow;
3852 break;
3853 case BO_Sub:
3854 case BO_SubAssign:
3855 OpID = 2;
3856 IID = isSigned ? llvm::Intrinsic::ssub_with_overflow :
3857 llvm::Intrinsic::usub_with_overflow;
3858 OverflowKind = SanitizerHandler::SubOverflow;
3859 break;
3860 case BO_Mul:
3861 case BO_MulAssign:
3862 OpID = 3;
3863 IID = isSigned ? llvm::Intrinsic::smul_with_overflow :
3864 llvm::Intrinsic::umul_with_overflow;
3865 OverflowKind = SanitizerHandler::MulOverflow;
3866 break;
3867 default:
3868 llvm_unreachable("Unsupported operation for overflow detection");
3870 OpID <<= 1;
3871 if (isSigned)
3872 OpID |= 1;
3874 CodeGenFunction::SanitizerScope SanScope(&CGF);
3875 llvm::Type *opTy = CGF.CGM.getTypes().ConvertType(Ops.Ty);
3877 llvm::Function *intrinsic = CGF.CGM.getIntrinsic(IID, opTy);
3879 Value *resultAndOverflow = Builder.CreateCall(intrinsic, {Ops.LHS, Ops.RHS});
3880 Value *result = Builder.CreateExtractValue(resultAndOverflow, 0);
3881 Value *overflow = Builder.CreateExtractValue(resultAndOverflow, 1);
3883 // Handle overflow with llvm.trap if no custom handler has been specified.
3884 const std::string *handlerName =
3885 &CGF.getLangOpts().OverflowHandler;
3886 if (handlerName->empty()) {
3887 // If the signed-integer-overflow sanitizer is enabled, emit a call to its
3888 // runtime. Otherwise, this is a -ftrapv check, so just emit a trap.
3889 if (!isSigned || CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow)) {
3890 llvm::Value *NotOverflow = Builder.CreateNot(overflow);
3891 SanitizerMask Kind = isSigned ? SanitizerKind::SignedIntegerOverflow
3892 : SanitizerKind::UnsignedIntegerOverflow;
3893 EmitBinOpCheck(std::make_pair(NotOverflow, Kind), Ops);
3894 } else
3895 CGF.EmitTrapCheck(Builder.CreateNot(overflow), OverflowKind);
3896 return result;
3899 // Branch in case of overflow.
3900 llvm::BasicBlock *initialBB = Builder.GetInsertBlock();
3901 llvm::BasicBlock *continueBB =
3902 CGF.createBasicBlock("nooverflow", CGF.CurFn, initialBB->getNextNode());
3903 llvm::BasicBlock *overflowBB = CGF.createBasicBlock("overflow", CGF.CurFn);
3905 Builder.CreateCondBr(overflow, overflowBB, continueBB);
3907 // If an overflow handler is set, then we want to call it and then use its
3908 // result, if it returns.
3909 Builder.SetInsertPoint(overflowBB);
3911 // Get the overflow handler.
3912 llvm::Type *Int8Ty = CGF.Int8Ty;
3913 llvm::Type *argTypes[] = { CGF.Int64Ty, CGF.Int64Ty, Int8Ty, Int8Ty };
3914 llvm::FunctionType *handlerTy =
3915 llvm::FunctionType::get(CGF.Int64Ty, argTypes, true);
3916 llvm::FunctionCallee handler =
3917 CGF.CGM.CreateRuntimeFunction(handlerTy, *handlerName);
3919 // Sign extend the args to 64-bit, so that we can use the same handler for
3920 // all types of overflow.
3921 llvm::Value *lhs = Builder.CreateSExt(Ops.LHS, CGF.Int64Ty);
3922 llvm::Value *rhs = Builder.CreateSExt(Ops.RHS, CGF.Int64Ty);
3924 // Call the handler with the two arguments, the operation, and the size of
3925 // the result.
3926 llvm::Value *handlerArgs[] = {
3927 lhs,
3928 rhs,
3929 Builder.getInt8(OpID),
3930 Builder.getInt8(cast<llvm::IntegerType>(opTy)->getBitWidth())
3932 llvm::Value *handlerResult =
3933 CGF.EmitNounwindRuntimeCall(handler, handlerArgs);
3935 // Truncate the result back to the desired size.
3936 handlerResult = Builder.CreateTrunc(handlerResult, opTy);
3937 Builder.CreateBr(continueBB);
3939 Builder.SetInsertPoint(continueBB);
3940 llvm::PHINode *phi = Builder.CreatePHI(opTy, 2);
3941 phi->addIncoming(result, initialBB);
3942 phi->addIncoming(handlerResult, overflowBB);
3944 return phi;
3947 /// Emit pointer + index arithmetic.
3948 static Value *emitPointerArithmetic(CodeGenFunction &CGF,
3949 const BinOpInfo &op,
3950 bool isSubtraction) {
3951 // Must have binary (not unary) expr here. Unary pointer
3952 // increment/decrement doesn't use this path.
3953 const BinaryOperator *expr = cast<BinaryOperator>(op.E);
3955 Value *pointer = op.LHS;
3956 Expr *pointerOperand = expr->getLHS();
3957 Value *index = op.RHS;
3958 Expr *indexOperand = expr->getRHS();
3960 // In a subtraction, the LHS is always the pointer.
3961 if (!isSubtraction && !pointer->getType()->isPointerTy()) {
3962 std::swap(pointer, index);
3963 std::swap(pointerOperand, indexOperand);
3966 bool isSigned = indexOperand->getType()->isSignedIntegerOrEnumerationType();
3968 unsigned width = cast<llvm::IntegerType>(index->getType())->getBitWidth();
3969 auto &DL = CGF.CGM.getDataLayout();
3970 auto PtrTy = cast<llvm::PointerType>(pointer->getType());
3972 // Some versions of glibc and gcc use idioms (particularly in their malloc
3973 // routines) that add a pointer-sized integer (known to be a pointer value)
3974 // to a null pointer in order to cast the value back to an integer or as
3975 // part of a pointer alignment algorithm. This is undefined behavior, but
3976 // we'd like to be able to compile programs that use it.
3978 // Normally, we'd generate a GEP with a null-pointer base here in response
3979 // to that code, but it's also UB to dereference a pointer created that
3980 // way. Instead (as an acknowledged hack to tolerate the idiom) we will
3981 // generate a direct cast of the integer value to a pointer.
3983 // The idiom (p = nullptr + N) is not met if any of the following are true:
3985 // The operation is subtraction.
3986 // The index is not pointer-sized.
3987 // The pointer type is not byte-sized.
3989 if (BinaryOperator::isNullPointerArithmeticExtension(CGF.getContext(),
3990 op.Opcode,
3991 expr->getLHS(),
3992 expr->getRHS()))
3993 return CGF.Builder.CreateIntToPtr(index, pointer->getType());
3995 if (width != DL.getIndexTypeSizeInBits(PtrTy)) {
3996 // Zero-extend or sign-extend the pointer value according to
3997 // whether the index is signed or not.
3998 index = CGF.Builder.CreateIntCast(index, DL.getIndexType(PtrTy), isSigned,
3999 "idx.ext");
4002 // If this is subtraction, negate the index.
4003 if (isSubtraction)
4004 index = CGF.Builder.CreateNeg(index, "idx.neg");
4006 if (CGF.SanOpts.has(SanitizerKind::ArrayBounds))
4007 CGF.EmitBoundsCheck(op.E, pointerOperand, index, indexOperand->getType(),
4008 /*Accessed*/ false);
4010 const PointerType *pointerType
4011 = pointerOperand->getType()->getAs<PointerType>();
4012 if (!pointerType) {
4013 QualType objectType = pointerOperand->getType()
4014 ->castAs<ObjCObjectPointerType>()
4015 ->getPointeeType();
4016 llvm::Value *objectSize
4017 = CGF.CGM.getSize(CGF.getContext().getTypeSizeInChars(objectType));
4019 index = CGF.Builder.CreateMul(index, objectSize);
4021 Value *result =
4022 CGF.Builder.CreateGEP(CGF.Int8Ty, pointer, index, "add.ptr");
4023 return CGF.Builder.CreateBitCast(result, pointer->getType());
4026 QualType elementType = pointerType->getPointeeType();
4027 if (const VariableArrayType *vla
4028 = CGF.getContext().getAsVariableArrayType(elementType)) {
4029 // The element count here is the total number of non-VLA elements.
4030 llvm::Value *numElements = CGF.getVLASize(vla).NumElts;
4032 // Effectively, the multiply by the VLA size is part of the GEP.
4033 // GEP indexes are signed, and scaling an index isn't permitted to
4034 // signed-overflow, so we use the same semantics for our explicit
4035 // multiply. We suppress this if overflow is not undefined behavior.
4036 llvm::Type *elemTy = CGF.ConvertTypeForMem(vla->getElementType());
4037 if (CGF.getLangOpts().isSignedOverflowDefined()) {
4038 index = CGF.Builder.CreateMul(index, numElements, "vla.index");
4039 pointer = CGF.Builder.CreateGEP(elemTy, pointer, index, "add.ptr");
4040 } else {
4041 index = CGF.Builder.CreateNSWMul(index, numElements, "vla.index");
4042 pointer = CGF.EmitCheckedInBoundsGEP(
4043 elemTy, pointer, index, isSigned, isSubtraction, op.E->getExprLoc(),
4044 "add.ptr");
4046 return pointer;
4049 // Explicitly handle GNU void* and function pointer arithmetic extensions. The
4050 // GNU void* casts amount to no-ops since our void* type is i8*, but this is
4051 // future proof.
4052 llvm::Type *elemTy;
4053 if (elementType->isVoidType() || elementType->isFunctionType())
4054 elemTy = CGF.Int8Ty;
4055 else
4056 elemTy = CGF.ConvertTypeForMem(elementType);
4058 if (CGF.getLangOpts().isSignedOverflowDefined())
4059 return CGF.Builder.CreateGEP(elemTy, pointer, index, "add.ptr");
4061 return CGF.EmitCheckedInBoundsGEP(
4062 elemTy, pointer, index, isSigned, isSubtraction, op.E->getExprLoc(),
4063 "add.ptr");
4066 // Construct an fmuladd intrinsic to represent a fused mul-add of MulOp and
4067 // Addend. Use negMul and negAdd to negate the first operand of the Mul or
4068 // the add operand respectively. This allows fmuladd to represent a*b-c, or
4069 // c-a*b. Patterns in LLVM should catch the negated forms and translate them to
4070 // efficient operations.
4071 static Value* buildFMulAdd(llvm::Instruction *MulOp, Value *Addend,
4072 const CodeGenFunction &CGF, CGBuilderTy &Builder,
4073 bool negMul, bool negAdd) {
4074 Value *MulOp0 = MulOp->getOperand(0);
4075 Value *MulOp1 = MulOp->getOperand(1);
4076 if (negMul)
4077 MulOp0 = Builder.CreateFNeg(MulOp0, "neg");
4078 if (negAdd)
4079 Addend = Builder.CreateFNeg(Addend, "neg");
4081 Value *FMulAdd = nullptr;
4082 if (Builder.getIsFPConstrained()) {
4083 assert(isa<llvm::ConstrainedFPIntrinsic>(MulOp) &&
4084 "Only constrained operation should be created when Builder is in FP "
4085 "constrained mode");
4086 FMulAdd = Builder.CreateConstrainedFPCall(
4087 CGF.CGM.getIntrinsic(llvm::Intrinsic::experimental_constrained_fmuladd,
4088 Addend->getType()),
4089 {MulOp0, MulOp1, Addend});
4090 } else {
4091 FMulAdd = Builder.CreateCall(
4092 CGF.CGM.getIntrinsic(llvm::Intrinsic::fmuladd, Addend->getType()),
4093 {MulOp0, MulOp1, Addend});
4095 MulOp->eraseFromParent();
4097 return FMulAdd;
4100 // Check whether it would be legal to emit an fmuladd intrinsic call to
4101 // represent op and if so, build the fmuladd.
4103 // Checks that (a) the operation is fusable, and (b) -ffp-contract=on.
4104 // Does NOT check the type of the operation - it's assumed that this function
4105 // will be called from contexts where it's known that the type is contractable.
4106 static Value* tryEmitFMulAdd(const BinOpInfo &op,
4107 const CodeGenFunction &CGF, CGBuilderTy &Builder,
4108 bool isSub=false) {
4110 assert((op.Opcode == BO_Add || op.Opcode == BO_AddAssign ||
4111 op.Opcode == BO_Sub || op.Opcode == BO_SubAssign) &&
4112 "Only fadd/fsub can be the root of an fmuladd.");
4114 // Check whether this op is marked as fusable.
4115 if (!op.FPFeatures.allowFPContractWithinStatement())
4116 return nullptr;
4118 Value *LHS = op.LHS;
4119 Value *RHS = op.RHS;
4121 // Peek through fneg to look for fmul. Make sure fneg has no users, and that
4122 // it is the only use of its operand.
4123 bool NegLHS = false;
4124 if (auto *LHSUnOp = dyn_cast<llvm::UnaryOperator>(LHS)) {
4125 if (LHSUnOp->getOpcode() == llvm::Instruction::FNeg &&
4126 LHSUnOp->use_empty() && LHSUnOp->getOperand(0)->hasOneUse()) {
4127 LHS = LHSUnOp->getOperand(0);
4128 NegLHS = true;
4132 bool NegRHS = false;
4133 if (auto *RHSUnOp = dyn_cast<llvm::UnaryOperator>(RHS)) {
4134 if (RHSUnOp->getOpcode() == llvm::Instruction::FNeg &&
4135 RHSUnOp->use_empty() && RHSUnOp->getOperand(0)->hasOneUse()) {
4136 RHS = RHSUnOp->getOperand(0);
4137 NegRHS = true;
4141 // We have a potentially fusable op. Look for a mul on one of the operands.
4142 // Also, make sure that the mul result isn't used directly. In that case,
4143 // there's no point creating a muladd operation.
4144 if (auto *LHSBinOp = dyn_cast<llvm::BinaryOperator>(LHS)) {
4145 if (LHSBinOp->getOpcode() == llvm::Instruction::FMul &&
4146 (LHSBinOp->use_empty() || NegLHS)) {
4147 // If we looked through fneg, erase it.
4148 if (NegLHS)
4149 cast<llvm::Instruction>(op.LHS)->eraseFromParent();
4150 return buildFMulAdd(LHSBinOp, op.RHS, CGF, Builder, NegLHS, isSub);
4153 if (auto *RHSBinOp = dyn_cast<llvm::BinaryOperator>(RHS)) {
4154 if (RHSBinOp->getOpcode() == llvm::Instruction::FMul &&
4155 (RHSBinOp->use_empty() || NegRHS)) {
4156 // If we looked through fneg, erase it.
4157 if (NegRHS)
4158 cast<llvm::Instruction>(op.RHS)->eraseFromParent();
4159 return buildFMulAdd(RHSBinOp, op.LHS, CGF, Builder, isSub ^ NegRHS, false);
4163 if (auto *LHSBinOp = dyn_cast<llvm::CallBase>(LHS)) {
4164 if (LHSBinOp->getIntrinsicID() ==
4165 llvm::Intrinsic::experimental_constrained_fmul &&
4166 (LHSBinOp->use_empty() || NegLHS)) {
4167 // If we looked through fneg, erase it.
4168 if (NegLHS)
4169 cast<llvm::Instruction>(op.LHS)->eraseFromParent();
4170 return buildFMulAdd(LHSBinOp, op.RHS, CGF, Builder, NegLHS, isSub);
4173 if (auto *RHSBinOp = dyn_cast<llvm::CallBase>(RHS)) {
4174 if (RHSBinOp->getIntrinsicID() ==
4175 llvm::Intrinsic::experimental_constrained_fmul &&
4176 (RHSBinOp->use_empty() || NegRHS)) {
4177 // If we looked through fneg, erase it.
4178 if (NegRHS)
4179 cast<llvm::Instruction>(op.RHS)->eraseFromParent();
4180 return buildFMulAdd(RHSBinOp, op.LHS, CGF, Builder, isSub ^ NegRHS, false);
4184 return nullptr;
4187 Value *ScalarExprEmitter::EmitAdd(const BinOpInfo &op) {
4188 if (op.LHS->getType()->isPointerTy() ||
4189 op.RHS->getType()->isPointerTy())
4190 return emitPointerArithmetic(CGF, op, CodeGenFunction::NotSubtraction);
4192 if (op.Ty->isSignedIntegerOrEnumerationType()) {
4193 switch (CGF.getLangOpts().getSignedOverflowBehavior()) {
4194 case LangOptions::SOB_Defined:
4195 if (!CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow))
4196 return Builder.CreateAdd(op.LHS, op.RHS, "add");
4197 [[fallthrough]];
4198 case LangOptions::SOB_Undefined:
4199 if (!CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow))
4200 return Builder.CreateNSWAdd(op.LHS, op.RHS, "add");
4201 [[fallthrough]];
4202 case LangOptions::SOB_Trapping:
4203 if (CanElideOverflowCheck(CGF.getContext(), op))
4204 return Builder.CreateNSWAdd(op.LHS, op.RHS, "add");
4205 return EmitOverflowCheckedBinOp(op);
4209 // For vector and matrix adds, try to fold into a fmuladd.
4210 if (op.LHS->getType()->isFPOrFPVectorTy()) {
4211 CodeGenFunction::CGFPOptionsRAII FPOptsRAII(CGF, op.FPFeatures);
4212 // Try to form an fmuladd.
4213 if (Value *FMulAdd = tryEmitFMulAdd(op, CGF, Builder))
4214 return FMulAdd;
4217 if (op.Ty->isConstantMatrixType()) {
4218 llvm::MatrixBuilder MB(Builder);
4219 CodeGenFunction::CGFPOptionsRAII FPOptsRAII(CGF, op.FPFeatures);
4220 return MB.CreateAdd(op.LHS, op.RHS);
4223 if (op.Ty->isUnsignedIntegerType() &&
4224 CGF.SanOpts.has(SanitizerKind::UnsignedIntegerOverflow) &&
4225 !CanElideOverflowCheck(CGF.getContext(), op))
4226 return EmitOverflowCheckedBinOp(op);
4228 if (op.LHS->getType()->isFPOrFPVectorTy()) {
4229 CodeGenFunction::CGFPOptionsRAII FPOptsRAII(CGF, op.FPFeatures);
4230 return Builder.CreateFAdd(op.LHS, op.RHS, "add");
4233 if (op.isFixedPointOp())
4234 return EmitFixedPointBinOp(op);
4236 return Builder.CreateAdd(op.LHS, op.RHS, "add");
4239 /// The resulting value must be calculated with exact precision, so the operands
4240 /// may not be the same type.
4241 Value *ScalarExprEmitter::EmitFixedPointBinOp(const BinOpInfo &op) {
4242 using llvm::APSInt;
4243 using llvm::ConstantInt;
4245 // This is either a binary operation where at least one of the operands is
4246 // a fixed-point type, or a unary operation where the operand is a fixed-point
4247 // type. The result type of a binary operation is determined by
4248 // Sema::handleFixedPointConversions().
4249 QualType ResultTy = op.Ty;
4250 QualType LHSTy, RHSTy;
4251 if (const auto *BinOp = dyn_cast<BinaryOperator>(op.E)) {
4252 RHSTy = BinOp->getRHS()->getType();
4253 if (const auto *CAO = dyn_cast<CompoundAssignOperator>(BinOp)) {
4254 // For compound assignment, the effective type of the LHS at this point
4255 // is the computation LHS type, not the actual LHS type, and the final
4256 // result type is not the type of the expression but rather the
4257 // computation result type.
4258 LHSTy = CAO->getComputationLHSType();
4259 ResultTy = CAO->getComputationResultType();
4260 } else
4261 LHSTy = BinOp->getLHS()->getType();
4262 } else if (const auto *UnOp = dyn_cast<UnaryOperator>(op.E)) {
4263 LHSTy = UnOp->getSubExpr()->getType();
4264 RHSTy = UnOp->getSubExpr()->getType();
4266 ASTContext &Ctx = CGF.getContext();
4267 Value *LHS = op.LHS;
4268 Value *RHS = op.RHS;
4270 auto LHSFixedSema = Ctx.getFixedPointSemantics(LHSTy);
4271 auto RHSFixedSema = Ctx.getFixedPointSemantics(RHSTy);
4272 auto ResultFixedSema = Ctx.getFixedPointSemantics(ResultTy);
4273 auto CommonFixedSema = LHSFixedSema.getCommonSemantics(RHSFixedSema);
4275 // Perform the actual operation.
4276 Value *Result;
4277 llvm::FixedPointBuilder<CGBuilderTy> FPBuilder(Builder);
4278 switch (op.Opcode) {
4279 case BO_AddAssign:
4280 case BO_Add:
4281 Result = FPBuilder.CreateAdd(LHS, LHSFixedSema, RHS, RHSFixedSema);
4282 break;
4283 case BO_SubAssign:
4284 case BO_Sub:
4285 Result = FPBuilder.CreateSub(LHS, LHSFixedSema, RHS, RHSFixedSema);
4286 break;
4287 case BO_MulAssign:
4288 case BO_Mul:
4289 Result = FPBuilder.CreateMul(LHS, LHSFixedSema, RHS, RHSFixedSema);
4290 break;
4291 case BO_DivAssign:
4292 case BO_Div:
4293 Result = FPBuilder.CreateDiv(LHS, LHSFixedSema, RHS, RHSFixedSema);
4294 break;
4295 case BO_ShlAssign:
4296 case BO_Shl:
4297 Result = FPBuilder.CreateShl(LHS, LHSFixedSema, RHS);
4298 break;
4299 case BO_ShrAssign:
4300 case BO_Shr:
4301 Result = FPBuilder.CreateShr(LHS, LHSFixedSema, RHS);
4302 break;
4303 case BO_LT:
4304 return FPBuilder.CreateLT(LHS, LHSFixedSema, RHS, RHSFixedSema);
4305 case BO_GT:
4306 return FPBuilder.CreateGT(LHS, LHSFixedSema, RHS, RHSFixedSema);
4307 case BO_LE:
4308 return FPBuilder.CreateLE(LHS, LHSFixedSema, RHS, RHSFixedSema);
4309 case BO_GE:
4310 return FPBuilder.CreateGE(LHS, LHSFixedSema, RHS, RHSFixedSema);
4311 case BO_EQ:
4312 // For equality operations, we assume any padding bits on unsigned types are
4313 // zero'd out. They could be overwritten through non-saturating operations
4314 // that cause overflow, but this leads to undefined behavior.
4315 return FPBuilder.CreateEQ(LHS, LHSFixedSema, RHS, RHSFixedSema);
4316 case BO_NE:
4317 return FPBuilder.CreateNE(LHS, LHSFixedSema, RHS, RHSFixedSema);
4318 case BO_Cmp:
4319 case BO_LAnd:
4320 case BO_LOr:
4321 llvm_unreachable("Found unimplemented fixed point binary operation");
4322 case BO_PtrMemD:
4323 case BO_PtrMemI:
4324 case BO_Rem:
4325 case BO_Xor:
4326 case BO_And:
4327 case BO_Or:
4328 case BO_Assign:
4329 case BO_RemAssign:
4330 case BO_AndAssign:
4331 case BO_XorAssign:
4332 case BO_OrAssign:
4333 case BO_Comma:
4334 llvm_unreachable("Found unsupported binary operation for fixed point types.");
4337 bool IsShift = BinaryOperator::isShiftOp(op.Opcode) ||
4338 BinaryOperator::isShiftAssignOp(op.Opcode);
4339 // Convert to the result type.
4340 return FPBuilder.CreateFixedToFixed(Result, IsShift ? LHSFixedSema
4341 : CommonFixedSema,
4342 ResultFixedSema);
4345 Value *ScalarExprEmitter::EmitSub(const BinOpInfo &op) {
4346 // The LHS is always a pointer if either side is.
4347 if (!op.LHS->getType()->isPointerTy()) {
4348 if (op.Ty->isSignedIntegerOrEnumerationType()) {
4349 switch (CGF.getLangOpts().getSignedOverflowBehavior()) {
4350 case LangOptions::SOB_Defined:
4351 if (!CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow))
4352 return Builder.CreateSub(op.LHS, op.RHS, "sub");
4353 [[fallthrough]];
4354 case LangOptions::SOB_Undefined:
4355 if (!CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow))
4356 return Builder.CreateNSWSub(op.LHS, op.RHS, "sub");
4357 [[fallthrough]];
4358 case LangOptions::SOB_Trapping:
4359 if (CanElideOverflowCheck(CGF.getContext(), op))
4360 return Builder.CreateNSWSub(op.LHS, op.RHS, "sub");
4361 return EmitOverflowCheckedBinOp(op);
4365 // For vector and matrix subs, try to fold into a fmuladd.
4366 if (op.LHS->getType()->isFPOrFPVectorTy()) {
4367 CodeGenFunction::CGFPOptionsRAII FPOptsRAII(CGF, op.FPFeatures);
4368 // Try to form an fmuladd.
4369 if (Value *FMulAdd = tryEmitFMulAdd(op, CGF, Builder, true))
4370 return FMulAdd;
4373 if (op.Ty->isConstantMatrixType()) {
4374 llvm::MatrixBuilder MB(Builder);
4375 CodeGenFunction::CGFPOptionsRAII FPOptsRAII(CGF, op.FPFeatures);
4376 return MB.CreateSub(op.LHS, op.RHS);
4379 if (op.Ty->isUnsignedIntegerType() &&
4380 CGF.SanOpts.has(SanitizerKind::UnsignedIntegerOverflow) &&
4381 !CanElideOverflowCheck(CGF.getContext(), op))
4382 return EmitOverflowCheckedBinOp(op);
4384 if (op.LHS->getType()->isFPOrFPVectorTy()) {
4385 CodeGenFunction::CGFPOptionsRAII FPOptsRAII(CGF, op.FPFeatures);
4386 return Builder.CreateFSub(op.LHS, op.RHS, "sub");
4389 if (op.isFixedPointOp())
4390 return EmitFixedPointBinOp(op);
4392 return Builder.CreateSub(op.LHS, op.RHS, "sub");
4395 // If the RHS is not a pointer, then we have normal pointer
4396 // arithmetic.
4397 if (!op.RHS->getType()->isPointerTy())
4398 return emitPointerArithmetic(CGF, op, CodeGenFunction::IsSubtraction);
4400 // Otherwise, this is a pointer subtraction.
4402 // Do the raw subtraction part.
4403 llvm::Value *LHS
4404 = Builder.CreatePtrToInt(op.LHS, CGF.PtrDiffTy, "sub.ptr.lhs.cast");
4405 llvm::Value *RHS
4406 = Builder.CreatePtrToInt(op.RHS, CGF.PtrDiffTy, "sub.ptr.rhs.cast");
4407 Value *diffInChars = Builder.CreateSub(LHS, RHS, "sub.ptr.sub");
4409 // Okay, figure out the element size.
4410 const BinaryOperator *expr = cast<BinaryOperator>(op.E);
4411 QualType elementType = expr->getLHS()->getType()->getPointeeType();
4413 llvm::Value *divisor = nullptr;
4415 // For a variable-length array, this is going to be non-constant.
4416 if (const VariableArrayType *vla
4417 = CGF.getContext().getAsVariableArrayType(elementType)) {
4418 auto VlaSize = CGF.getVLASize(vla);
4419 elementType = VlaSize.Type;
4420 divisor = VlaSize.NumElts;
4422 // Scale the number of non-VLA elements by the non-VLA element size.
4423 CharUnits eltSize = CGF.getContext().getTypeSizeInChars(elementType);
4424 if (!eltSize.isOne())
4425 divisor = CGF.Builder.CreateNUWMul(CGF.CGM.getSize(eltSize), divisor);
4427 // For everything elese, we can just compute it, safe in the
4428 // assumption that Sema won't let anything through that we can't
4429 // safely compute the size of.
4430 } else {
4431 CharUnits elementSize;
4432 // Handle GCC extension for pointer arithmetic on void* and
4433 // function pointer types.
4434 if (elementType->isVoidType() || elementType->isFunctionType())
4435 elementSize = CharUnits::One();
4436 else
4437 elementSize = CGF.getContext().getTypeSizeInChars(elementType);
4439 // Don't even emit the divide for element size of 1.
4440 if (elementSize.isOne())
4441 return diffInChars;
4443 divisor = CGF.CGM.getSize(elementSize);
4446 // Otherwise, do a full sdiv. This uses the "exact" form of sdiv, since
4447 // pointer difference in C is only defined in the case where both operands
4448 // are pointing to elements of an array.
4449 return Builder.CreateExactSDiv(diffInChars, divisor, "sub.ptr.div");
4452 Value *ScalarExprEmitter::GetMaximumShiftAmount(Value *LHS, Value *RHS,
4453 bool RHSIsSigned) {
4454 llvm::IntegerType *Ty;
4455 if (llvm::VectorType *VT = dyn_cast<llvm::VectorType>(LHS->getType()))
4456 Ty = cast<llvm::IntegerType>(VT->getElementType());
4457 else
4458 Ty = cast<llvm::IntegerType>(LHS->getType());
4459 // For a given type of LHS the maximum shift amount is width(LHS)-1, however
4460 // it can occur that width(LHS)-1 > range(RHS). Since there is no check for
4461 // this in ConstantInt::get, this results in the value getting truncated.
4462 // Constrain the return value to be max(RHS) in this case.
4463 llvm::Type *RHSTy = RHS->getType();
4464 llvm::APInt RHSMax =
4465 RHSIsSigned ? llvm::APInt::getSignedMaxValue(RHSTy->getScalarSizeInBits())
4466 : llvm::APInt::getMaxValue(RHSTy->getScalarSizeInBits());
4467 if (RHSMax.ult(Ty->getBitWidth()))
4468 return llvm::ConstantInt::get(RHSTy, RHSMax);
4469 return llvm::ConstantInt::get(RHSTy, Ty->getBitWidth() - 1);
4472 Value *ScalarExprEmitter::ConstrainShiftValue(Value *LHS, Value *RHS,
4473 const Twine &Name) {
4474 llvm::IntegerType *Ty;
4475 if (auto *VT = dyn_cast<llvm::VectorType>(LHS->getType()))
4476 Ty = cast<llvm::IntegerType>(VT->getElementType());
4477 else
4478 Ty = cast<llvm::IntegerType>(LHS->getType());
4480 if (llvm::isPowerOf2_64(Ty->getBitWidth()))
4481 return Builder.CreateAnd(RHS, GetMaximumShiftAmount(LHS, RHS, false), Name);
4483 return Builder.CreateURem(
4484 RHS, llvm::ConstantInt::get(RHS->getType(), Ty->getBitWidth()), Name);
4487 Value *ScalarExprEmitter::EmitShl(const BinOpInfo &Ops) {
4488 // TODO: This misses out on the sanitizer check below.
4489 if (Ops.isFixedPointOp())
4490 return EmitFixedPointBinOp(Ops);
4492 // LLVM requires the LHS and RHS to be the same type: promote or truncate the
4493 // RHS to the same size as the LHS.
4494 Value *RHS = Ops.RHS;
4495 if (Ops.LHS->getType() != RHS->getType())
4496 RHS = Builder.CreateIntCast(RHS, Ops.LHS->getType(), false, "sh_prom");
4498 bool SanitizeSignedBase = CGF.SanOpts.has(SanitizerKind::ShiftBase) &&
4499 Ops.Ty->hasSignedIntegerRepresentation() &&
4500 !CGF.getLangOpts().isSignedOverflowDefined() &&
4501 !CGF.getLangOpts().CPlusPlus20;
4502 bool SanitizeUnsignedBase =
4503 CGF.SanOpts.has(SanitizerKind::UnsignedShiftBase) &&
4504 Ops.Ty->hasUnsignedIntegerRepresentation();
4505 bool SanitizeBase = SanitizeSignedBase || SanitizeUnsignedBase;
4506 bool SanitizeExponent = CGF.SanOpts.has(SanitizerKind::ShiftExponent);
4507 // OpenCL 6.3j: shift values are effectively % word size of LHS.
4508 if (CGF.getLangOpts().OpenCL || CGF.getLangOpts().HLSL)
4509 RHS = ConstrainShiftValue(Ops.LHS, RHS, "shl.mask");
4510 else if ((SanitizeBase || SanitizeExponent) &&
4511 isa<llvm::IntegerType>(Ops.LHS->getType())) {
4512 CodeGenFunction::SanitizerScope SanScope(&CGF);
4513 SmallVector<std::pair<Value *, SanitizerMask>, 2> Checks;
4514 bool RHSIsSigned = Ops.rhsHasSignedIntegerRepresentation();
4515 llvm::Value *WidthMinusOne =
4516 GetMaximumShiftAmount(Ops.LHS, Ops.RHS, RHSIsSigned);
4517 llvm::Value *ValidExponent = Builder.CreateICmpULE(Ops.RHS, WidthMinusOne);
4519 if (SanitizeExponent) {
4520 Checks.push_back(
4521 std::make_pair(ValidExponent, SanitizerKind::ShiftExponent));
4524 if (SanitizeBase) {
4525 // Check whether we are shifting any non-zero bits off the top of the
4526 // integer. We only emit this check if exponent is valid - otherwise
4527 // instructions below will have undefined behavior themselves.
4528 llvm::BasicBlock *Orig = Builder.GetInsertBlock();
4529 llvm::BasicBlock *Cont = CGF.createBasicBlock("cont");
4530 llvm::BasicBlock *CheckShiftBase = CGF.createBasicBlock("check");
4531 Builder.CreateCondBr(ValidExponent, CheckShiftBase, Cont);
4532 llvm::Value *PromotedWidthMinusOne =
4533 (RHS == Ops.RHS) ? WidthMinusOne
4534 : GetMaximumShiftAmount(Ops.LHS, RHS, RHSIsSigned);
4535 CGF.EmitBlock(CheckShiftBase);
4536 llvm::Value *BitsShiftedOff = Builder.CreateLShr(
4537 Ops.LHS, Builder.CreateSub(PromotedWidthMinusOne, RHS, "shl.zeros",
4538 /*NUW*/ true, /*NSW*/ true),
4539 "shl.check");
4540 if (SanitizeUnsignedBase || CGF.getLangOpts().CPlusPlus) {
4541 // In C99, we are not permitted to shift a 1 bit into the sign bit.
4542 // Under C++11's rules, shifting a 1 bit into the sign bit is
4543 // OK, but shifting a 1 bit out of it is not. (C89 and C++03 don't
4544 // define signed left shifts, so we use the C99 and C++11 rules there).
4545 // Unsigned shifts can always shift into the top bit.
4546 llvm::Value *One = llvm::ConstantInt::get(BitsShiftedOff->getType(), 1);
4547 BitsShiftedOff = Builder.CreateLShr(BitsShiftedOff, One);
4549 llvm::Value *Zero = llvm::ConstantInt::get(BitsShiftedOff->getType(), 0);
4550 llvm::Value *ValidBase = Builder.CreateICmpEQ(BitsShiftedOff, Zero);
4551 CGF.EmitBlock(Cont);
4552 llvm::PHINode *BaseCheck = Builder.CreatePHI(ValidBase->getType(), 2);
4553 BaseCheck->addIncoming(Builder.getTrue(), Orig);
4554 BaseCheck->addIncoming(ValidBase, CheckShiftBase);
4555 Checks.push_back(std::make_pair(
4556 BaseCheck, SanitizeSignedBase ? SanitizerKind::ShiftBase
4557 : SanitizerKind::UnsignedShiftBase));
4560 assert(!Checks.empty());
4561 EmitBinOpCheck(Checks, Ops);
4564 return Builder.CreateShl(Ops.LHS, RHS, "shl");
4567 Value *ScalarExprEmitter::EmitShr(const BinOpInfo &Ops) {
4568 // TODO: This misses out on the sanitizer check below.
4569 if (Ops.isFixedPointOp())
4570 return EmitFixedPointBinOp(Ops);
4572 // LLVM requires the LHS and RHS to be the same type: promote or truncate the
4573 // RHS to the same size as the LHS.
4574 Value *RHS = Ops.RHS;
4575 if (Ops.LHS->getType() != RHS->getType())
4576 RHS = Builder.CreateIntCast(RHS, Ops.LHS->getType(), false, "sh_prom");
4578 // OpenCL 6.3j: shift values are effectively % word size of LHS.
4579 if (CGF.getLangOpts().OpenCL || CGF.getLangOpts().HLSL)
4580 RHS = ConstrainShiftValue(Ops.LHS, RHS, "shr.mask");
4581 else if (CGF.SanOpts.has(SanitizerKind::ShiftExponent) &&
4582 isa<llvm::IntegerType>(Ops.LHS->getType())) {
4583 CodeGenFunction::SanitizerScope SanScope(&CGF);
4584 bool RHSIsSigned = Ops.rhsHasSignedIntegerRepresentation();
4585 llvm::Value *Valid = Builder.CreateICmpULE(
4586 Ops.RHS, GetMaximumShiftAmount(Ops.LHS, Ops.RHS, RHSIsSigned));
4587 EmitBinOpCheck(std::make_pair(Valid, SanitizerKind::ShiftExponent), Ops);
4590 if (Ops.Ty->hasUnsignedIntegerRepresentation())
4591 return Builder.CreateLShr(Ops.LHS, RHS, "shr");
4592 return Builder.CreateAShr(Ops.LHS, RHS, "shr");
4595 enum IntrinsicType { VCMPEQ, VCMPGT };
4596 // return corresponding comparison intrinsic for given vector type
4597 static llvm::Intrinsic::ID GetIntrinsic(IntrinsicType IT,
4598 BuiltinType::Kind ElemKind) {
4599 switch (ElemKind) {
4600 default: llvm_unreachable("unexpected element type");
4601 case BuiltinType::Char_U:
4602 case BuiltinType::UChar:
4603 return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequb_p :
4604 llvm::Intrinsic::ppc_altivec_vcmpgtub_p;
4605 case BuiltinType::Char_S:
4606 case BuiltinType::SChar:
4607 return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequb_p :
4608 llvm::Intrinsic::ppc_altivec_vcmpgtsb_p;
4609 case BuiltinType::UShort:
4610 return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequh_p :
4611 llvm::Intrinsic::ppc_altivec_vcmpgtuh_p;
4612 case BuiltinType::Short:
4613 return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequh_p :
4614 llvm::Intrinsic::ppc_altivec_vcmpgtsh_p;
4615 case BuiltinType::UInt:
4616 return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequw_p :
4617 llvm::Intrinsic::ppc_altivec_vcmpgtuw_p;
4618 case BuiltinType::Int:
4619 return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequw_p :
4620 llvm::Intrinsic::ppc_altivec_vcmpgtsw_p;
4621 case BuiltinType::ULong:
4622 case BuiltinType::ULongLong:
4623 return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequd_p :
4624 llvm::Intrinsic::ppc_altivec_vcmpgtud_p;
4625 case BuiltinType::Long:
4626 case BuiltinType::LongLong:
4627 return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequd_p :
4628 llvm::Intrinsic::ppc_altivec_vcmpgtsd_p;
4629 case BuiltinType::Float:
4630 return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpeqfp_p :
4631 llvm::Intrinsic::ppc_altivec_vcmpgtfp_p;
4632 case BuiltinType::Double:
4633 return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_vsx_xvcmpeqdp_p :
4634 llvm::Intrinsic::ppc_vsx_xvcmpgtdp_p;
4635 case BuiltinType::UInt128:
4636 return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequq_p
4637 : llvm::Intrinsic::ppc_altivec_vcmpgtuq_p;
4638 case BuiltinType::Int128:
4639 return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequq_p
4640 : llvm::Intrinsic::ppc_altivec_vcmpgtsq_p;
4644 Value *ScalarExprEmitter::EmitCompare(const BinaryOperator *E,
4645 llvm::CmpInst::Predicate UICmpOpc,
4646 llvm::CmpInst::Predicate SICmpOpc,
4647 llvm::CmpInst::Predicate FCmpOpc,
4648 bool IsSignaling) {
4649 TestAndClearIgnoreResultAssign();
4650 Value *Result;
4651 QualType LHSTy = E->getLHS()->getType();
4652 QualType RHSTy = E->getRHS()->getType();
4653 if (const MemberPointerType *MPT = LHSTy->getAs<MemberPointerType>()) {
4654 assert(E->getOpcode() == BO_EQ ||
4655 E->getOpcode() == BO_NE);
4656 Value *LHS = CGF.EmitScalarExpr(E->getLHS());
4657 Value *RHS = CGF.EmitScalarExpr(E->getRHS());
4658 Result = CGF.CGM.getCXXABI().EmitMemberPointerComparison(
4659 CGF, LHS, RHS, MPT, E->getOpcode() == BO_NE);
4660 } else if (!LHSTy->isAnyComplexType() && !RHSTy->isAnyComplexType()) {
4661 BinOpInfo BOInfo = EmitBinOps(E);
4662 Value *LHS = BOInfo.LHS;
4663 Value *RHS = BOInfo.RHS;
4665 // If AltiVec, the comparison results in a numeric type, so we use
4666 // intrinsics comparing vectors and giving 0 or 1 as a result
4667 if (LHSTy->isVectorType() && !E->getType()->isVectorType()) {
4668 // constants for mapping CR6 register bits to predicate result
4669 enum { CR6_EQ=0, CR6_EQ_REV, CR6_LT, CR6_LT_REV } CR6;
4671 llvm::Intrinsic::ID ID = llvm::Intrinsic::not_intrinsic;
4673 // in several cases vector arguments order will be reversed
4674 Value *FirstVecArg = LHS,
4675 *SecondVecArg = RHS;
4677 QualType ElTy = LHSTy->castAs<VectorType>()->getElementType();
4678 BuiltinType::Kind ElementKind = ElTy->castAs<BuiltinType>()->getKind();
4680 switch(E->getOpcode()) {
4681 default: llvm_unreachable("is not a comparison operation");
4682 case BO_EQ:
4683 CR6 = CR6_LT;
4684 ID = GetIntrinsic(VCMPEQ, ElementKind);
4685 break;
4686 case BO_NE:
4687 CR6 = CR6_EQ;
4688 ID = GetIntrinsic(VCMPEQ, ElementKind);
4689 break;
4690 case BO_LT:
4691 CR6 = CR6_LT;
4692 ID = GetIntrinsic(VCMPGT, ElementKind);
4693 std::swap(FirstVecArg, SecondVecArg);
4694 break;
4695 case BO_GT:
4696 CR6 = CR6_LT;
4697 ID = GetIntrinsic(VCMPGT, ElementKind);
4698 break;
4699 case BO_LE:
4700 if (ElementKind == BuiltinType::Float) {
4701 CR6 = CR6_LT;
4702 ID = llvm::Intrinsic::ppc_altivec_vcmpgefp_p;
4703 std::swap(FirstVecArg, SecondVecArg);
4705 else {
4706 CR6 = CR6_EQ;
4707 ID = GetIntrinsic(VCMPGT, ElementKind);
4709 break;
4710 case BO_GE:
4711 if (ElementKind == BuiltinType::Float) {
4712 CR6 = CR6_LT;
4713 ID = llvm::Intrinsic::ppc_altivec_vcmpgefp_p;
4715 else {
4716 CR6 = CR6_EQ;
4717 ID = GetIntrinsic(VCMPGT, ElementKind);
4718 std::swap(FirstVecArg, SecondVecArg);
4720 break;
4723 Value *CR6Param = Builder.getInt32(CR6);
4724 llvm::Function *F = CGF.CGM.getIntrinsic(ID);
4725 Result = Builder.CreateCall(F, {CR6Param, FirstVecArg, SecondVecArg});
4727 // The result type of intrinsic may not be same as E->getType().
4728 // If E->getType() is not BoolTy, EmitScalarConversion will do the
4729 // conversion work. If E->getType() is BoolTy, EmitScalarConversion will
4730 // do nothing, if ResultTy is not i1 at the same time, it will cause
4731 // crash later.
4732 llvm::IntegerType *ResultTy = cast<llvm::IntegerType>(Result->getType());
4733 if (ResultTy->getBitWidth() > 1 &&
4734 E->getType() == CGF.getContext().BoolTy)
4735 Result = Builder.CreateTrunc(Result, Builder.getInt1Ty());
4736 return EmitScalarConversion(Result, CGF.getContext().BoolTy, E->getType(),
4737 E->getExprLoc());
4740 if (BOInfo.isFixedPointOp()) {
4741 Result = EmitFixedPointBinOp(BOInfo);
4742 } else if (LHS->getType()->isFPOrFPVectorTy()) {
4743 CodeGenFunction::CGFPOptionsRAII FPOptsRAII(CGF, BOInfo.FPFeatures);
4744 if (!IsSignaling)
4745 Result = Builder.CreateFCmp(FCmpOpc, LHS, RHS, "cmp");
4746 else
4747 Result = Builder.CreateFCmpS(FCmpOpc, LHS, RHS, "cmp");
4748 } else if (LHSTy->hasSignedIntegerRepresentation()) {
4749 Result = Builder.CreateICmp(SICmpOpc, LHS, RHS, "cmp");
4750 } else {
4751 // Unsigned integers and pointers.
4753 if (CGF.CGM.getCodeGenOpts().StrictVTablePointers &&
4754 !isa<llvm::ConstantPointerNull>(LHS) &&
4755 !isa<llvm::ConstantPointerNull>(RHS)) {
4757 // Dynamic information is required to be stripped for comparisons,
4758 // because it could leak the dynamic information. Based on comparisons
4759 // of pointers to dynamic objects, the optimizer can replace one pointer
4760 // with another, which might be incorrect in presence of invariant
4761 // groups. Comparison with null is safe because null does not carry any
4762 // dynamic information.
4763 if (LHSTy.mayBeDynamicClass())
4764 LHS = Builder.CreateStripInvariantGroup(LHS);
4765 if (RHSTy.mayBeDynamicClass())
4766 RHS = Builder.CreateStripInvariantGroup(RHS);
4769 Result = Builder.CreateICmp(UICmpOpc, LHS, RHS, "cmp");
4772 // If this is a vector comparison, sign extend the result to the appropriate
4773 // vector integer type and return it (don't convert to bool).
4774 if (LHSTy->isVectorType())
4775 return Builder.CreateSExt(Result, ConvertType(E->getType()), "sext");
4777 } else {
4778 // Complex Comparison: can only be an equality comparison.
4779 CodeGenFunction::ComplexPairTy LHS, RHS;
4780 QualType CETy;
4781 if (auto *CTy = LHSTy->getAs<ComplexType>()) {
4782 LHS = CGF.EmitComplexExpr(E->getLHS());
4783 CETy = CTy->getElementType();
4784 } else {
4785 LHS.first = Visit(E->getLHS());
4786 LHS.second = llvm::Constant::getNullValue(LHS.first->getType());
4787 CETy = LHSTy;
4789 if (auto *CTy = RHSTy->getAs<ComplexType>()) {
4790 RHS = CGF.EmitComplexExpr(E->getRHS());
4791 assert(CGF.getContext().hasSameUnqualifiedType(CETy,
4792 CTy->getElementType()) &&
4793 "The element types must always match.");
4794 (void)CTy;
4795 } else {
4796 RHS.first = Visit(E->getRHS());
4797 RHS.second = llvm::Constant::getNullValue(RHS.first->getType());
4798 assert(CGF.getContext().hasSameUnqualifiedType(CETy, RHSTy) &&
4799 "The element types must always match.");
4802 Value *ResultR, *ResultI;
4803 if (CETy->isRealFloatingType()) {
4804 // As complex comparisons can only be equality comparisons, they
4805 // are never signaling comparisons.
4806 ResultR = Builder.CreateFCmp(FCmpOpc, LHS.first, RHS.first, "cmp.r");
4807 ResultI = Builder.CreateFCmp(FCmpOpc, LHS.second, RHS.second, "cmp.i");
4808 } else {
4809 // Complex comparisons can only be equality comparisons. As such, signed
4810 // and unsigned opcodes are the same.
4811 ResultR = Builder.CreateICmp(UICmpOpc, LHS.first, RHS.first, "cmp.r");
4812 ResultI = Builder.CreateICmp(UICmpOpc, LHS.second, RHS.second, "cmp.i");
4815 if (E->getOpcode() == BO_EQ) {
4816 Result = Builder.CreateAnd(ResultR, ResultI, "and.ri");
4817 } else {
4818 assert(E->getOpcode() == BO_NE &&
4819 "Complex comparison other than == or != ?");
4820 Result = Builder.CreateOr(ResultR, ResultI, "or.ri");
4824 return EmitScalarConversion(Result, CGF.getContext().BoolTy, E->getType(),
4825 E->getExprLoc());
4828 llvm::Value *CodeGenFunction::EmitWithOriginalRHSBitfieldAssignment(
4829 const BinaryOperator *E, Value **Previous, QualType *SrcType) {
4830 // In case we have the integer or bitfield sanitizer checks enabled
4831 // we want to get the expression before scalar conversion.
4832 if (auto *ICE = dyn_cast<ImplicitCastExpr>(E->getRHS())) {
4833 CastKind Kind = ICE->getCastKind();
4834 if (Kind == CK_IntegralCast || Kind == CK_LValueToRValue) {
4835 *SrcType = ICE->getSubExpr()->getType();
4836 *Previous = EmitScalarExpr(ICE->getSubExpr());
4837 // Pass default ScalarConversionOpts to avoid emitting
4838 // integer sanitizer checks as E refers to bitfield.
4839 return EmitScalarConversion(*Previous, *SrcType, ICE->getType(),
4840 ICE->getExprLoc());
4843 return EmitScalarExpr(E->getRHS());
4846 Value *ScalarExprEmitter::VisitBinAssign(const BinaryOperator *E) {
4847 bool Ignore = TestAndClearIgnoreResultAssign();
4849 Value *RHS;
4850 LValue LHS;
4852 switch (E->getLHS()->getType().getObjCLifetime()) {
4853 case Qualifiers::OCL_Strong:
4854 std::tie(LHS, RHS) = CGF.EmitARCStoreStrong(E, Ignore);
4855 break;
4857 case Qualifiers::OCL_Autoreleasing:
4858 std::tie(LHS, RHS) = CGF.EmitARCStoreAutoreleasing(E);
4859 break;
4861 case Qualifiers::OCL_ExplicitNone:
4862 std::tie(LHS, RHS) = CGF.EmitARCStoreUnsafeUnretained(E, Ignore);
4863 break;
4865 case Qualifiers::OCL_Weak:
4866 RHS = Visit(E->getRHS());
4867 LHS = EmitCheckedLValue(E->getLHS(), CodeGenFunction::TCK_Store);
4868 RHS = CGF.EmitARCStoreWeak(LHS.getAddress(), RHS, Ignore);
4869 break;
4871 case Qualifiers::OCL_None:
4872 // __block variables need to have the rhs evaluated first, plus
4873 // this should improve codegen just a little.
4874 Value *Previous = nullptr;
4875 QualType SrcType = E->getRHS()->getType();
4876 // Check if LHS is a bitfield, if RHS contains an implicit cast expression
4877 // we want to extract that value and potentially (if the bitfield sanitizer
4878 // is enabled) use it to check for an implicit conversion.
4879 if (E->getLHS()->refersToBitField())
4880 RHS = CGF.EmitWithOriginalRHSBitfieldAssignment(E, &Previous, &SrcType);
4881 else
4882 RHS = Visit(E->getRHS());
4884 LHS = EmitCheckedLValue(E->getLHS(), CodeGenFunction::TCK_Store);
4886 // Store the value into the LHS. Bit-fields are handled specially
4887 // because the result is altered by the store, i.e., [C99 6.5.16p1]
4888 // 'An assignment expression has the value of the left operand after
4889 // the assignment...'.
4890 if (LHS.isBitField()) {
4891 CGF.EmitStoreThroughBitfieldLValue(RValue::get(RHS), LHS, &RHS);
4892 // If the expression contained an implicit conversion, make sure
4893 // to use the value before the scalar conversion.
4894 Value *Src = Previous ? Previous : RHS;
4895 QualType DstType = E->getLHS()->getType();
4896 CGF.EmitBitfieldConversionCheck(Src, SrcType, RHS, DstType,
4897 LHS.getBitFieldInfo(), E->getExprLoc());
4898 } else {
4899 CGF.EmitNullabilityCheck(LHS, RHS, E->getExprLoc());
4900 CGF.EmitStoreThroughLValue(RValue::get(RHS), LHS);
4904 // If the result is clearly ignored, return now.
4905 if (Ignore)
4906 return nullptr;
4908 // The result of an assignment in C is the assigned r-value.
4909 if (!CGF.getLangOpts().CPlusPlus)
4910 return RHS;
4912 // If the lvalue is non-volatile, return the computed value of the assignment.
4913 if (!LHS.isVolatileQualified())
4914 return RHS;
4916 // Otherwise, reload the value.
4917 return EmitLoadOfLValue(LHS, E->getExprLoc());
4920 Value *ScalarExprEmitter::VisitBinLAnd(const BinaryOperator *E) {
4921 // Perform vector logical and on comparisons with zero vectors.
4922 if (E->getType()->isVectorType()) {
4923 CGF.incrementProfileCounter(E);
4925 Value *LHS = Visit(E->getLHS());
4926 Value *RHS = Visit(E->getRHS());
4927 Value *Zero = llvm::ConstantAggregateZero::get(LHS->getType());
4928 if (LHS->getType()->isFPOrFPVectorTy()) {
4929 CodeGenFunction::CGFPOptionsRAII FPOptsRAII(
4930 CGF, E->getFPFeaturesInEffect(CGF.getLangOpts()));
4931 LHS = Builder.CreateFCmp(llvm::CmpInst::FCMP_UNE, LHS, Zero, "cmp");
4932 RHS = Builder.CreateFCmp(llvm::CmpInst::FCMP_UNE, RHS, Zero, "cmp");
4933 } else {
4934 LHS = Builder.CreateICmp(llvm::CmpInst::ICMP_NE, LHS, Zero, "cmp");
4935 RHS = Builder.CreateICmp(llvm::CmpInst::ICMP_NE, RHS, Zero, "cmp");
4937 Value *And = Builder.CreateAnd(LHS, RHS);
4938 return Builder.CreateSExt(And, ConvertType(E->getType()), "sext");
4941 bool InstrumentRegions = CGF.CGM.getCodeGenOpts().hasProfileClangInstr();
4942 llvm::Type *ResTy = ConvertType(E->getType());
4944 // If we have 0 && RHS, see if we can elide RHS, if so, just return 0.
4945 // If we have 1 && X, just emit X without inserting the control flow.
4946 bool LHSCondVal;
4947 if (CGF.ConstantFoldsToSimpleInteger(E->getLHS(), LHSCondVal)) {
4948 if (LHSCondVal) { // If we have 1 && X, just emit X.
4949 CGF.incrementProfileCounter(E);
4951 // If the top of the logical operator nest, reset the MCDC temp to 0.
4952 if (CGF.MCDCLogOpStack.empty())
4953 CGF.maybeResetMCDCCondBitmap(E);
4955 CGF.MCDCLogOpStack.push_back(E);
4957 Value *RHSCond = CGF.EvaluateExprAsBool(E->getRHS());
4959 // If we're generating for profiling or coverage, generate a branch to a
4960 // block that increments the RHS counter needed to track branch condition
4961 // coverage. In this case, use "FBlock" as both the final "TrueBlock" and
4962 // "FalseBlock" after the increment is done.
4963 if (InstrumentRegions &&
4964 CodeGenFunction::isInstrumentedCondition(E->getRHS())) {
4965 CGF.maybeUpdateMCDCCondBitmap(E->getRHS(), RHSCond);
4966 llvm::BasicBlock *FBlock = CGF.createBasicBlock("land.end");
4967 llvm::BasicBlock *RHSBlockCnt = CGF.createBasicBlock("land.rhscnt");
4968 Builder.CreateCondBr(RHSCond, RHSBlockCnt, FBlock);
4969 CGF.EmitBlock(RHSBlockCnt);
4970 CGF.incrementProfileCounter(E->getRHS());
4971 CGF.EmitBranch(FBlock);
4972 CGF.EmitBlock(FBlock);
4975 CGF.MCDCLogOpStack.pop_back();
4976 // If the top of the logical operator nest, update the MCDC bitmap.
4977 if (CGF.MCDCLogOpStack.empty())
4978 CGF.maybeUpdateMCDCTestVectorBitmap(E);
4980 // ZExt result to int or bool.
4981 return Builder.CreateZExtOrBitCast(RHSCond, ResTy, "land.ext");
4984 // 0 && RHS: If it is safe, just elide the RHS, and return 0/false.
4985 if (!CGF.ContainsLabel(E->getRHS()))
4986 return llvm::Constant::getNullValue(ResTy);
4989 // If the top of the logical operator nest, reset the MCDC temp to 0.
4990 if (CGF.MCDCLogOpStack.empty())
4991 CGF.maybeResetMCDCCondBitmap(E);
4993 CGF.MCDCLogOpStack.push_back(E);
4995 llvm::BasicBlock *ContBlock = CGF.createBasicBlock("land.end");
4996 llvm::BasicBlock *RHSBlock = CGF.createBasicBlock("land.rhs");
4998 CodeGenFunction::ConditionalEvaluation eval(CGF);
5000 // Branch on the LHS first. If it is false, go to the failure (cont) block.
5001 CGF.EmitBranchOnBoolExpr(E->getLHS(), RHSBlock, ContBlock,
5002 CGF.getProfileCount(E->getRHS()));
5004 // Any edges into the ContBlock are now from an (indeterminate number of)
5005 // edges from this first condition. All of these values will be false. Start
5006 // setting up the PHI node in the Cont Block for this.
5007 llvm::PHINode *PN = llvm::PHINode::Create(llvm::Type::getInt1Ty(VMContext), 2,
5008 "", ContBlock);
5009 for (llvm::pred_iterator PI = pred_begin(ContBlock), PE = pred_end(ContBlock);
5010 PI != PE; ++PI)
5011 PN->addIncoming(llvm::ConstantInt::getFalse(VMContext), *PI);
5013 eval.begin(CGF);
5014 CGF.EmitBlock(RHSBlock);
5015 CGF.incrementProfileCounter(E);
5016 Value *RHSCond = CGF.EvaluateExprAsBool(E->getRHS());
5017 eval.end(CGF);
5019 // Reaquire the RHS block, as there may be subblocks inserted.
5020 RHSBlock = Builder.GetInsertBlock();
5022 // If we're generating for profiling or coverage, generate a branch on the
5023 // RHS to a block that increments the RHS true counter needed to track branch
5024 // condition coverage.
5025 if (InstrumentRegions &&
5026 CodeGenFunction::isInstrumentedCondition(E->getRHS())) {
5027 CGF.maybeUpdateMCDCCondBitmap(E->getRHS(), RHSCond);
5028 llvm::BasicBlock *RHSBlockCnt = CGF.createBasicBlock("land.rhscnt");
5029 Builder.CreateCondBr(RHSCond, RHSBlockCnt, ContBlock);
5030 CGF.EmitBlock(RHSBlockCnt);
5031 CGF.incrementProfileCounter(E->getRHS());
5032 CGF.EmitBranch(ContBlock);
5033 PN->addIncoming(RHSCond, RHSBlockCnt);
5036 // Emit an unconditional branch from this block to ContBlock.
5038 // There is no need to emit line number for unconditional branch.
5039 auto NL = ApplyDebugLocation::CreateEmpty(CGF);
5040 CGF.EmitBlock(ContBlock);
5042 // Insert an entry into the phi node for the edge with the value of RHSCond.
5043 PN->addIncoming(RHSCond, RHSBlock);
5045 CGF.MCDCLogOpStack.pop_back();
5046 // If the top of the logical operator nest, update the MCDC bitmap.
5047 if (CGF.MCDCLogOpStack.empty())
5048 CGF.maybeUpdateMCDCTestVectorBitmap(E);
5050 // Artificial location to preserve the scope information
5052 auto NL = ApplyDebugLocation::CreateArtificial(CGF);
5053 PN->setDebugLoc(Builder.getCurrentDebugLocation());
5056 // ZExt result to int.
5057 return Builder.CreateZExtOrBitCast(PN, ResTy, "land.ext");
5060 Value *ScalarExprEmitter::VisitBinLOr(const BinaryOperator *E) {
5061 // Perform vector logical or on comparisons with zero vectors.
5062 if (E->getType()->isVectorType()) {
5063 CGF.incrementProfileCounter(E);
5065 Value *LHS = Visit(E->getLHS());
5066 Value *RHS = Visit(E->getRHS());
5067 Value *Zero = llvm::ConstantAggregateZero::get(LHS->getType());
5068 if (LHS->getType()->isFPOrFPVectorTy()) {
5069 CodeGenFunction::CGFPOptionsRAII FPOptsRAII(
5070 CGF, E->getFPFeaturesInEffect(CGF.getLangOpts()));
5071 LHS = Builder.CreateFCmp(llvm::CmpInst::FCMP_UNE, LHS, Zero, "cmp");
5072 RHS = Builder.CreateFCmp(llvm::CmpInst::FCMP_UNE, RHS, Zero, "cmp");
5073 } else {
5074 LHS = Builder.CreateICmp(llvm::CmpInst::ICMP_NE, LHS, Zero, "cmp");
5075 RHS = Builder.CreateICmp(llvm::CmpInst::ICMP_NE, RHS, Zero, "cmp");
5077 Value *Or = Builder.CreateOr(LHS, RHS);
5078 return Builder.CreateSExt(Or, ConvertType(E->getType()), "sext");
5081 bool InstrumentRegions = CGF.CGM.getCodeGenOpts().hasProfileClangInstr();
5082 llvm::Type *ResTy = ConvertType(E->getType());
5084 // If we have 1 || RHS, see if we can elide RHS, if so, just return 1.
5085 // If we have 0 || X, just emit X without inserting the control flow.
5086 bool LHSCondVal;
5087 if (CGF.ConstantFoldsToSimpleInteger(E->getLHS(), LHSCondVal)) {
5088 if (!LHSCondVal) { // If we have 0 || X, just emit X.
5089 CGF.incrementProfileCounter(E);
5091 // If the top of the logical operator nest, reset the MCDC temp to 0.
5092 if (CGF.MCDCLogOpStack.empty())
5093 CGF.maybeResetMCDCCondBitmap(E);
5095 CGF.MCDCLogOpStack.push_back(E);
5097 Value *RHSCond = CGF.EvaluateExprAsBool(E->getRHS());
5099 // If we're generating for profiling or coverage, generate a branch to a
5100 // block that increments the RHS counter need to track branch condition
5101 // coverage. In this case, use "FBlock" as both the final "TrueBlock" and
5102 // "FalseBlock" after the increment is done.
5103 if (InstrumentRegions &&
5104 CodeGenFunction::isInstrumentedCondition(E->getRHS())) {
5105 CGF.maybeUpdateMCDCCondBitmap(E->getRHS(), RHSCond);
5106 llvm::BasicBlock *FBlock = CGF.createBasicBlock("lor.end");
5107 llvm::BasicBlock *RHSBlockCnt = CGF.createBasicBlock("lor.rhscnt");
5108 Builder.CreateCondBr(RHSCond, FBlock, RHSBlockCnt);
5109 CGF.EmitBlock(RHSBlockCnt);
5110 CGF.incrementProfileCounter(E->getRHS());
5111 CGF.EmitBranch(FBlock);
5112 CGF.EmitBlock(FBlock);
5115 CGF.MCDCLogOpStack.pop_back();
5116 // If the top of the logical operator nest, update the MCDC bitmap.
5117 if (CGF.MCDCLogOpStack.empty())
5118 CGF.maybeUpdateMCDCTestVectorBitmap(E);
5120 // ZExt result to int or bool.
5121 return Builder.CreateZExtOrBitCast(RHSCond, ResTy, "lor.ext");
5124 // 1 || RHS: If it is safe, just elide the RHS, and return 1/true.
5125 if (!CGF.ContainsLabel(E->getRHS()))
5126 return llvm::ConstantInt::get(ResTy, 1);
5129 // If the top of the logical operator nest, reset the MCDC temp to 0.
5130 if (CGF.MCDCLogOpStack.empty())
5131 CGF.maybeResetMCDCCondBitmap(E);
5133 CGF.MCDCLogOpStack.push_back(E);
5135 llvm::BasicBlock *ContBlock = CGF.createBasicBlock("lor.end");
5136 llvm::BasicBlock *RHSBlock = CGF.createBasicBlock("lor.rhs");
5138 CodeGenFunction::ConditionalEvaluation eval(CGF);
5140 // Branch on the LHS first. If it is true, go to the success (cont) block.
5141 CGF.EmitBranchOnBoolExpr(E->getLHS(), ContBlock, RHSBlock,
5142 CGF.getCurrentProfileCount() -
5143 CGF.getProfileCount(E->getRHS()));
5145 // Any edges into the ContBlock are now from an (indeterminate number of)
5146 // edges from this first condition. All of these values will be true. Start
5147 // setting up the PHI node in the Cont Block for this.
5148 llvm::PHINode *PN = llvm::PHINode::Create(llvm::Type::getInt1Ty(VMContext), 2,
5149 "", ContBlock);
5150 for (llvm::pred_iterator PI = pred_begin(ContBlock), PE = pred_end(ContBlock);
5151 PI != PE; ++PI)
5152 PN->addIncoming(llvm::ConstantInt::getTrue(VMContext), *PI);
5154 eval.begin(CGF);
5156 // Emit the RHS condition as a bool value.
5157 CGF.EmitBlock(RHSBlock);
5158 CGF.incrementProfileCounter(E);
5159 Value *RHSCond = CGF.EvaluateExprAsBool(E->getRHS());
5161 eval.end(CGF);
5163 // Reaquire the RHS block, as there may be subblocks inserted.
5164 RHSBlock = Builder.GetInsertBlock();
5166 // If we're generating for profiling or coverage, generate a branch on the
5167 // RHS to a block that increments the RHS true counter needed to track branch
5168 // condition coverage.
5169 if (InstrumentRegions &&
5170 CodeGenFunction::isInstrumentedCondition(E->getRHS())) {
5171 CGF.maybeUpdateMCDCCondBitmap(E->getRHS(), RHSCond);
5172 llvm::BasicBlock *RHSBlockCnt = CGF.createBasicBlock("lor.rhscnt");
5173 Builder.CreateCondBr(RHSCond, ContBlock, RHSBlockCnt);
5174 CGF.EmitBlock(RHSBlockCnt);
5175 CGF.incrementProfileCounter(E->getRHS());
5176 CGF.EmitBranch(ContBlock);
5177 PN->addIncoming(RHSCond, RHSBlockCnt);
5180 // Emit an unconditional branch from this block to ContBlock. Insert an entry
5181 // into the phi node for the edge with the value of RHSCond.
5182 CGF.EmitBlock(ContBlock);
5183 PN->addIncoming(RHSCond, RHSBlock);
5185 CGF.MCDCLogOpStack.pop_back();
5186 // If the top of the logical operator nest, update the MCDC bitmap.
5187 if (CGF.MCDCLogOpStack.empty())
5188 CGF.maybeUpdateMCDCTestVectorBitmap(E);
5190 // ZExt result to int.
5191 return Builder.CreateZExtOrBitCast(PN, ResTy, "lor.ext");
5194 Value *ScalarExprEmitter::VisitBinComma(const BinaryOperator *E) {
5195 CGF.EmitIgnoredExpr(E->getLHS());
5196 CGF.EnsureInsertPoint();
5197 return Visit(E->getRHS());
5200 //===----------------------------------------------------------------------===//
5201 // Other Operators
5202 //===----------------------------------------------------------------------===//
5204 /// isCheapEnoughToEvaluateUnconditionally - Return true if the specified
5205 /// expression is cheap enough and side-effect-free enough to evaluate
5206 /// unconditionally instead of conditionally. This is used to convert control
5207 /// flow into selects in some cases.
5208 static bool isCheapEnoughToEvaluateUnconditionally(const Expr *E,
5209 CodeGenFunction &CGF) {
5210 // Anything that is an integer or floating point constant is fine.
5211 return E->IgnoreParens()->isEvaluatable(CGF.getContext());
5213 // Even non-volatile automatic variables can't be evaluated unconditionally.
5214 // Referencing a thread_local may cause non-trivial initialization work to
5215 // occur. If we're inside a lambda and one of the variables is from the scope
5216 // outside the lambda, that function may have returned already. Reading its
5217 // locals is a bad idea. Also, these reads may introduce races there didn't
5218 // exist in the source-level program.
5222 Value *ScalarExprEmitter::
5223 VisitAbstractConditionalOperator(const AbstractConditionalOperator *E) {
5224 TestAndClearIgnoreResultAssign();
5226 // Bind the common expression if necessary.
5227 CodeGenFunction::OpaqueValueMapping binding(CGF, E);
5229 Expr *condExpr = E->getCond();
5230 Expr *lhsExpr = E->getTrueExpr();
5231 Expr *rhsExpr = E->getFalseExpr();
5233 // If the condition constant folds and can be elided, try to avoid emitting
5234 // the condition and the dead arm.
5235 bool CondExprBool;
5236 if (CGF.ConstantFoldsToSimpleInteger(condExpr, CondExprBool)) {
5237 Expr *live = lhsExpr, *dead = rhsExpr;
5238 if (!CondExprBool) std::swap(live, dead);
5240 // If the dead side doesn't have labels we need, just emit the Live part.
5241 if (!CGF.ContainsLabel(dead)) {
5242 if (CondExprBool) {
5243 if (llvm::EnableSingleByteCoverage) {
5244 CGF.incrementProfileCounter(lhsExpr);
5245 CGF.incrementProfileCounter(rhsExpr);
5247 CGF.incrementProfileCounter(E);
5249 Value *Result = Visit(live);
5251 // If the live part is a throw expression, it acts like it has a void
5252 // type, so evaluating it returns a null Value*. However, a conditional
5253 // with non-void type must return a non-null Value*.
5254 if (!Result && !E->getType()->isVoidType())
5255 Result = llvm::UndefValue::get(CGF.ConvertType(E->getType()));
5257 return Result;
5261 // OpenCL: If the condition is a vector, we can treat this condition like
5262 // the select function.
5263 if ((CGF.getLangOpts().OpenCL && condExpr->getType()->isVectorType()) ||
5264 condExpr->getType()->isExtVectorType()) {
5265 CGF.incrementProfileCounter(E);
5267 llvm::Value *CondV = CGF.EmitScalarExpr(condExpr);
5268 llvm::Value *LHS = Visit(lhsExpr);
5269 llvm::Value *RHS = Visit(rhsExpr);
5271 llvm::Type *condType = ConvertType(condExpr->getType());
5272 auto *vecTy = cast<llvm::FixedVectorType>(condType);
5274 unsigned numElem = vecTy->getNumElements();
5275 llvm::Type *elemType = vecTy->getElementType();
5277 llvm::Value *zeroVec = llvm::Constant::getNullValue(vecTy);
5278 llvm::Value *TestMSB = Builder.CreateICmpSLT(CondV, zeroVec);
5279 llvm::Value *tmp = Builder.CreateSExt(
5280 TestMSB, llvm::FixedVectorType::get(elemType, numElem), "sext");
5281 llvm::Value *tmp2 = Builder.CreateNot(tmp);
5283 // Cast float to int to perform ANDs if necessary.
5284 llvm::Value *RHSTmp = RHS;
5285 llvm::Value *LHSTmp = LHS;
5286 bool wasCast = false;
5287 llvm::VectorType *rhsVTy = cast<llvm::VectorType>(RHS->getType());
5288 if (rhsVTy->getElementType()->isFloatingPointTy()) {
5289 RHSTmp = Builder.CreateBitCast(RHS, tmp2->getType());
5290 LHSTmp = Builder.CreateBitCast(LHS, tmp->getType());
5291 wasCast = true;
5294 llvm::Value *tmp3 = Builder.CreateAnd(RHSTmp, tmp2);
5295 llvm::Value *tmp4 = Builder.CreateAnd(LHSTmp, tmp);
5296 llvm::Value *tmp5 = Builder.CreateOr(tmp3, tmp4, "cond");
5297 if (wasCast)
5298 tmp5 = Builder.CreateBitCast(tmp5, RHS->getType());
5300 return tmp5;
5303 if (condExpr->getType()->isVectorType() ||
5304 condExpr->getType()->isSveVLSBuiltinType()) {
5305 CGF.incrementProfileCounter(E);
5307 llvm::Value *CondV = CGF.EmitScalarExpr(condExpr);
5308 llvm::Value *LHS = Visit(lhsExpr);
5309 llvm::Value *RHS = Visit(rhsExpr);
5311 llvm::Type *CondType = ConvertType(condExpr->getType());
5312 auto *VecTy = cast<llvm::VectorType>(CondType);
5313 llvm::Value *ZeroVec = llvm::Constant::getNullValue(VecTy);
5315 CondV = Builder.CreateICmpNE(CondV, ZeroVec, "vector_cond");
5316 return Builder.CreateSelect(CondV, LHS, RHS, "vector_select");
5319 // If this is a really simple expression (like x ? 4 : 5), emit this as a
5320 // select instead of as control flow. We can only do this if it is cheap and
5321 // safe to evaluate the LHS and RHS unconditionally.
5322 if (isCheapEnoughToEvaluateUnconditionally(lhsExpr, CGF) &&
5323 isCheapEnoughToEvaluateUnconditionally(rhsExpr, CGF)) {
5324 llvm::Value *CondV = CGF.EvaluateExprAsBool(condExpr);
5325 llvm::Value *StepV = Builder.CreateZExtOrBitCast(CondV, CGF.Int64Ty);
5327 if (llvm::EnableSingleByteCoverage) {
5328 CGF.incrementProfileCounter(lhsExpr);
5329 CGF.incrementProfileCounter(rhsExpr);
5330 CGF.incrementProfileCounter(E);
5331 } else
5332 CGF.incrementProfileCounter(E, StepV);
5334 llvm::Value *LHS = Visit(lhsExpr);
5335 llvm::Value *RHS = Visit(rhsExpr);
5336 if (!LHS) {
5337 // If the conditional has void type, make sure we return a null Value*.
5338 assert(!RHS && "LHS and RHS types must match");
5339 return nullptr;
5341 return Builder.CreateSelect(CondV, LHS, RHS, "cond");
5344 // If the top of the logical operator nest, reset the MCDC temp to 0.
5345 if (CGF.MCDCLogOpStack.empty())
5346 CGF.maybeResetMCDCCondBitmap(condExpr);
5348 llvm::BasicBlock *LHSBlock = CGF.createBasicBlock("cond.true");
5349 llvm::BasicBlock *RHSBlock = CGF.createBasicBlock("cond.false");
5350 llvm::BasicBlock *ContBlock = CGF.createBasicBlock("cond.end");
5352 CodeGenFunction::ConditionalEvaluation eval(CGF);
5353 CGF.EmitBranchOnBoolExpr(condExpr, LHSBlock, RHSBlock,
5354 CGF.getProfileCount(lhsExpr));
5356 CGF.EmitBlock(LHSBlock);
5358 // If the top of the logical operator nest, update the MCDC bitmap for the
5359 // ConditionalOperator prior to visiting its LHS and RHS blocks, since they
5360 // may also contain a boolean expression.
5361 if (CGF.MCDCLogOpStack.empty())
5362 CGF.maybeUpdateMCDCTestVectorBitmap(condExpr);
5364 if (llvm::EnableSingleByteCoverage)
5365 CGF.incrementProfileCounter(lhsExpr);
5366 else
5367 CGF.incrementProfileCounter(E);
5369 eval.begin(CGF);
5370 Value *LHS = Visit(lhsExpr);
5371 eval.end(CGF);
5373 LHSBlock = Builder.GetInsertBlock();
5374 Builder.CreateBr(ContBlock);
5376 CGF.EmitBlock(RHSBlock);
5378 // If the top of the logical operator nest, update the MCDC bitmap for the
5379 // ConditionalOperator prior to visiting its LHS and RHS blocks, since they
5380 // may also contain a boolean expression.
5381 if (CGF.MCDCLogOpStack.empty())
5382 CGF.maybeUpdateMCDCTestVectorBitmap(condExpr);
5384 if (llvm::EnableSingleByteCoverage)
5385 CGF.incrementProfileCounter(rhsExpr);
5387 eval.begin(CGF);
5388 Value *RHS = Visit(rhsExpr);
5389 eval.end(CGF);
5391 RHSBlock = Builder.GetInsertBlock();
5392 CGF.EmitBlock(ContBlock);
5394 // If the LHS or RHS is a throw expression, it will be legitimately null.
5395 if (!LHS)
5396 return RHS;
5397 if (!RHS)
5398 return LHS;
5400 // Create a PHI node for the real part.
5401 llvm::PHINode *PN = Builder.CreatePHI(LHS->getType(), 2, "cond");
5402 PN->addIncoming(LHS, LHSBlock);
5403 PN->addIncoming(RHS, RHSBlock);
5405 // When single byte coverage mode is enabled, add a counter to continuation
5406 // block.
5407 if (llvm::EnableSingleByteCoverage)
5408 CGF.incrementProfileCounter(E);
5410 return PN;
5413 Value *ScalarExprEmitter::VisitChooseExpr(ChooseExpr *E) {
5414 return Visit(E->getChosenSubExpr());
5417 Value *ScalarExprEmitter::VisitVAArgExpr(VAArgExpr *VE) {
5418 QualType Ty = VE->getType();
5420 if (Ty->isVariablyModifiedType())
5421 CGF.EmitVariablyModifiedType(Ty);
5423 Address ArgValue = Address::invalid();
5424 RValue ArgPtr = CGF.EmitVAArg(VE, ArgValue);
5426 return ArgPtr.getScalarVal();
5429 Value *ScalarExprEmitter::VisitBlockExpr(const BlockExpr *block) {
5430 return CGF.EmitBlockLiteral(block);
5433 // Convert a vec3 to vec4, or vice versa.
5434 static Value *ConvertVec3AndVec4(CGBuilderTy &Builder, CodeGenFunction &CGF,
5435 Value *Src, unsigned NumElementsDst) {
5436 static constexpr int Mask[] = {0, 1, 2, -1};
5437 return Builder.CreateShuffleVector(Src, llvm::ArrayRef(Mask, NumElementsDst));
5440 // Create cast instructions for converting LLVM value \p Src to LLVM type \p
5441 // DstTy. \p Src has the same size as \p DstTy. Both are single value types
5442 // but could be scalar or vectors of different lengths, and either can be
5443 // pointer.
5444 // There are 4 cases:
5445 // 1. non-pointer -> non-pointer : needs 1 bitcast
5446 // 2. pointer -> pointer : needs 1 bitcast or addrspacecast
5447 // 3. pointer -> non-pointer
5448 // a) pointer -> intptr_t : needs 1 ptrtoint
5449 // b) pointer -> non-intptr_t : needs 1 ptrtoint then 1 bitcast
5450 // 4. non-pointer -> pointer
5451 // a) intptr_t -> pointer : needs 1 inttoptr
5452 // b) non-intptr_t -> pointer : needs 1 bitcast then 1 inttoptr
5453 // Note: for cases 3b and 4b two casts are required since LLVM casts do not
5454 // allow casting directly between pointer types and non-integer non-pointer
5455 // types.
5456 static Value *createCastsForTypeOfSameSize(CGBuilderTy &Builder,
5457 const llvm::DataLayout &DL,
5458 Value *Src, llvm::Type *DstTy,
5459 StringRef Name = "") {
5460 auto SrcTy = Src->getType();
5462 // Case 1.
5463 if (!SrcTy->isPointerTy() && !DstTy->isPointerTy())
5464 return Builder.CreateBitCast(Src, DstTy, Name);
5466 // Case 2.
5467 if (SrcTy->isPointerTy() && DstTy->isPointerTy())
5468 return Builder.CreatePointerBitCastOrAddrSpaceCast(Src, DstTy, Name);
5470 // Case 3.
5471 if (SrcTy->isPointerTy() && !DstTy->isPointerTy()) {
5472 // Case 3b.
5473 if (!DstTy->isIntegerTy())
5474 Src = Builder.CreatePtrToInt(Src, DL.getIntPtrType(SrcTy));
5475 // Cases 3a and 3b.
5476 return Builder.CreateBitOrPointerCast(Src, DstTy, Name);
5479 // Case 4b.
5480 if (!SrcTy->isIntegerTy())
5481 Src = Builder.CreateBitCast(Src, DL.getIntPtrType(DstTy));
5482 // Cases 4a and 4b.
5483 return Builder.CreateIntToPtr(Src, DstTy, Name);
5486 Value *ScalarExprEmitter::VisitAsTypeExpr(AsTypeExpr *E) {
5487 Value *Src = CGF.EmitScalarExpr(E->getSrcExpr());
5488 llvm::Type *DstTy = ConvertType(E->getType());
5490 llvm::Type *SrcTy = Src->getType();
5491 unsigned NumElementsSrc =
5492 isa<llvm::VectorType>(SrcTy)
5493 ? cast<llvm::FixedVectorType>(SrcTy)->getNumElements()
5494 : 0;
5495 unsigned NumElementsDst =
5496 isa<llvm::VectorType>(DstTy)
5497 ? cast<llvm::FixedVectorType>(DstTy)->getNumElements()
5498 : 0;
5500 // Use bit vector expansion for ext_vector_type boolean vectors.
5501 if (E->getType()->isExtVectorBoolType())
5502 return CGF.emitBoolVecConversion(Src, NumElementsDst, "astype");
5504 // Going from vec3 to non-vec3 is a special case and requires a shuffle
5505 // vector to get a vec4, then a bitcast if the target type is different.
5506 if (NumElementsSrc == 3 && NumElementsDst != 3) {
5507 Src = ConvertVec3AndVec4(Builder, CGF, Src, 4);
5508 Src = createCastsForTypeOfSameSize(Builder, CGF.CGM.getDataLayout(), Src,
5509 DstTy);
5511 Src->setName("astype");
5512 return Src;
5515 // Going from non-vec3 to vec3 is a special case and requires a bitcast
5516 // to vec4 if the original type is not vec4, then a shuffle vector to
5517 // get a vec3.
5518 if (NumElementsSrc != 3 && NumElementsDst == 3) {
5519 auto *Vec4Ty = llvm::FixedVectorType::get(
5520 cast<llvm::VectorType>(DstTy)->getElementType(), 4);
5521 Src = createCastsForTypeOfSameSize(Builder, CGF.CGM.getDataLayout(), Src,
5522 Vec4Ty);
5524 Src = ConvertVec3AndVec4(Builder, CGF, Src, 3);
5525 Src->setName("astype");
5526 return Src;
5529 return createCastsForTypeOfSameSize(Builder, CGF.CGM.getDataLayout(),
5530 Src, DstTy, "astype");
5533 Value *ScalarExprEmitter::VisitAtomicExpr(AtomicExpr *E) {
5534 return CGF.EmitAtomicExpr(E).getScalarVal();
5537 //===----------------------------------------------------------------------===//
5538 // Entry Point into this File
5539 //===----------------------------------------------------------------------===//
5541 /// Emit the computation of the specified expression of scalar type, ignoring
5542 /// the result.
5543 Value *CodeGenFunction::EmitScalarExpr(const Expr *E, bool IgnoreResultAssign) {
5544 assert(E && hasScalarEvaluationKind(E->getType()) &&
5545 "Invalid scalar expression to emit");
5547 return ScalarExprEmitter(*this, IgnoreResultAssign)
5548 .Visit(const_cast<Expr *>(E));
5551 /// Emit a conversion from the specified type to the specified destination type,
5552 /// both of which are LLVM scalar types.
5553 Value *CodeGenFunction::EmitScalarConversion(Value *Src, QualType SrcTy,
5554 QualType DstTy,
5555 SourceLocation Loc) {
5556 assert(hasScalarEvaluationKind(SrcTy) && hasScalarEvaluationKind(DstTy) &&
5557 "Invalid scalar expression to emit");
5558 return ScalarExprEmitter(*this).EmitScalarConversion(Src, SrcTy, DstTy, Loc);
5561 /// Emit a conversion from the specified complex type to the specified
5562 /// destination type, where the destination type is an LLVM scalar type.
5563 Value *CodeGenFunction::EmitComplexToScalarConversion(ComplexPairTy Src,
5564 QualType SrcTy,
5565 QualType DstTy,
5566 SourceLocation Loc) {
5567 assert(SrcTy->isAnyComplexType() && hasScalarEvaluationKind(DstTy) &&
5568 "Invalid complex -> scalar conversion");
5569 return ScalarExprEmitter(*this)
5570 .EmitComplexToScalarConversion(Src, SrcTy, DstTy, Loc);
5574 Value *
5575 CodeGenFunction::EmitPromotedScalarExpr(const Expr *E,
5576 QualType PromotionType) {
5577 if (!PromotionType.isNull())
5578 return ScalarExprEmitter(*this).EmitPromoted(E, PromotionType);
5579 else
5580 return ScalarExprEmitter(*this).Visit(const_cast<Expr *>(E));
5584 llvm::Value *CodeGenFunction::
5585 EmitScalarPrePostIncDec(const UnaryOperator *E, LValue LV,
5586 bool isInc, bool isPre) {
5587 return ScalarExprEmitter(*this).EmitScalarPrePostIncDec(E, LV, isInc, isPre);
5590 LValue CodeGenFunction::EmitObjCIsaExpr(const ObjCIsaExpr *E) {
5591 // object->isa or (*object).isa
5592 // Generate code as for: *(Class*)object
5594 Expr *BaseExpr = E->getBase();
5595 Address Addr = Address::invalid();
5596 if (BaseExpr->isPRValue()) {
5597 llvm::Type *BaseTy =
5598 ConvertTypeForMem(BaseExpr->getType()->getPointeeType());
5599 Addr = Address(EmitScalarExpr(BaseExpr), BaseTy, getPointerAlign());
5600 } else {
5601 Addr = EmitLValue(BaseExpr).getAddress();
5604 // Cast the address to Class*.
5605 Addr = Addr.withElementType(ConvertType(E->getType()));
5606 return MakeAddrLValue(Addr, E->getType());
5610 LValue CodeGenFunction::EmitCompoundAssignmentLValue(
5611 const CompoundAssignOperator *E) {
5612 ScalarExprEmitter Scalar(*this);
5613 Value *Result = nullptr;
5614 switch (E->getOpcode()) {
5615 #define COMPOUND_OP(Op) \
5616 case BO_##Op##Assign: \
5617 return Scalar.EmitCompoundAssignLValue(E, &ScalarExprEmitter::Emit##Op, \
5618 Result)
5619 COMPOUND_OP(Mul);
5620 COMPOUND_OP(Div);
5621 COMPOUND_OP(Rem);
5622 COMPOUND_OP(Add);
5623 COMPOUND_OP(Sub);
5624 COMPOUND_OP(Shl);
5625 COMPOUND_OP(Shr);
5626 COMPOUND_OP(And);
5627 COMPOUND_OP(Xor);
5628 COMPOUND_OP(Or);
5629 #undef COMPOUND_OP
5631 case BO_PtrMemD:
5632 case BO_PtrMemI:
5633 case BO_Mul:
5634 case BO_Div:
5635 case BO_Rem:
5636 case BO_Add:
5637 case BO_Sub:
5638 case BO_Shl:
5639 case BO_Shr:
5640 case BO_LT:
5641 case BO_GT:
5642 case BO_LE:
5643 case BO_GE:
5644 case BO_EQ:
5645 case BO_NE:
5646 case BO_Cmp:
5647 case BO_And:
5648 case BO_Xor:
5649 case BO_Or:
5650 case BO_LAnd:
5651 case BO_LOr:
5652 case BO_Assign:
5653 case BO_Comma:
5654 llvm_unreachable("Not valid compound assignment operators");
5657 llvm_unreachable("Unhandled compound assignment operator");
5660 struct GEPOffsetAndOverflow {
5661 // The total (signed) byte offset for the GEP.
5662 llvm::Value *TotalOffset;
5663 // The offset overflow flag - true if the total offset overflows.
5664 llvm::Value *OffsetOverflows;
5667 /// Evaluate given GEPVal, which is either an inbounds GEP, or a constant,
5668 /// and compute the total offset it applies from it's base pointer BasePtr.
5669 /// Returns offset in bytes and a boolean flag whether an overflow happened
5670 /// during evaluation.
5671 static GEPOffsetAndOverflow EmitGEPOffsetInBytes(Value *BasePtr, Value *GEPVal,
5672 llvm::LLVMContext &VMContext,
5673 CodeGenModule &CGM,
5674 CGBuilderTy &Builder) {
5675 const auto &DL = CGM.getDataLayout();
5677 // The total (signed) byte offset for the GEP.
5678 llvm::Value *TotalOffset = nullptr;
5680 // Was the GEP already reduced to a constant?
5681 if (isa<llvm::Constant>(GEPVal)) {
5682 // Compute the offset by casting both pointers to integers and subtracting:
5683 // GEPVal = BasePtr + ptr(Offset) <--> Offset = int(GEPVal) - int(BasePtr)
5684 Value *BasePtr_int =
5685 Builder.CreatePtrToInt(BasePtr, DL.getIntPtrType(BasePtr->getType()));
5686 Value *GEPVal_int =
5687 Builder.CreatePtrToInt(GEPVal, DL.getIntPtrType(GEPVal->getType()));
5688 TotalOffset = Builder.CreateSub(GEPVal_int, BasePtr_int);
5689 return {TotalOffset, /*OffsetOverflows=*/Builder.getFalse()};
5692 auto *GEP = cast<llvm::GEPOperator>(GEPVal);
5693 assert(GEP->getPointerOperand() == BasePtr &&
5694 "BasePtr must be the base of the GEP.");
5695 assert(GEP->isInBounds() && "Expected inbounds GEP");
5697 auto *IntPtrTy = DL.getIntPtrType(GEP->getPointerOperandType());
5699 // Grab references to the signed add/mul overflow intrinsics for intptr_t.
5700 auto *Zero = llvm::ConstantInt::getNullValue(IntPtrTy);
5701 auto *SAddIntrinsic =
5702 CGM.getIntrinsic(llvm::Intrinsic::sadd_with_overflow, IntPtrTy);
5703 auto *SMulIntrinsic =
5704 CGM.getIntrinsic(llvm::Intrinsic::smul_with_overflow, IntPtrTy);
5706 // The offset overflow flag - true if the total offset overflows.
5707 llvm::Value *OffsetOverflows = Builder.getFalse();
5709 /// Return the result of the given binary operation.
5710 auto eval = [&](BinaryOperator::Opcode Opcode, llvm::Value *LHS,
5711 llvm::Value *RHS) -> llvm::Value * {
5712 assert((Opcode == BO_Add || Opcode == BO_Mul) && "Can't eval binop");
5714 // If the operands are constants, return a constant result.
5715 if (auto *LHSCI = dyn_cast<llvm::ConstantInt>(LHS)) {
5716 if (auto *RHSCI = dyn_cast<llvm::ConstantInt>(RHS)) {
5717 llvm::APInt N;
5718 bool HasOverflow = mayHaveIntegerOverflow(LHSCI, RHSCI, Opcode,
5719 /*Signed=*/true, N);
5720 if (HasOverflow)
5721 OffsetOverflows = Builder.getTrue();
5722 return llvm::ConstantInt::get(VMContext, N);
5726 // Otherwise, compute the result with checked arithmetic.
5727 auto *ResultAndOverflow = Builder.CreateCall(
5728 (Opcode == BO_Add) ? SAddIntrinsic : SMulIntrinsic, {LHS, RHS});
5729 OffsetOverflows = Builder.CreateOr(
5730 Builder.CreateExtractValue(ResultAndOverflow, 1), OffsetOverflows);
5731 return Builder.CreateExtractValue(ResultAndOverflow, 0);
5734 // Determine the total byte offset by looking at each GEP operand.
5735 for (auto GTI = llvm::gep_type_begin(GEP), GTE = llvm::gep_type_end(GEP);
5736 GTI != GTE; ++GTI) {
5737 llvm::Value *LocalOffset;
5738 auto *Index = GTI.getOperand();
5739 // Compute the local offset contributed by this indexing step:
5740 if (auto *STy = GTI.getStructTypeOrNull()) {
5741 // For struct indexing, the local offset is the byte position of the
5742 // specified field.
5743 unsigned FieldNo = cast<llvm::ConstantInt>(Index)->getZExtValue();
5744 LocalOffset = llvm::ConstantInt::get(
5745 IntPtrTy, DL.getStructLayout(STy)->getElementOffset(FieldNo));
5746 } else {
5747 // Otherwise this is array-like indexing. The local offset is the index
5748 // multiplied by the element size.
5749 auto *ElementSize =
5750 llvm::ConstantInt::get(IntPtrTy, GTI.getSequentialElementStride(DL));
5751 auto *IndexS = Builder.CreateIntCast(Index, IntPtrTy, /*isSigned=*/true);
5752 LocalOffset = eval(BO_Mul, ElementSize, IndexS);
5755 // If this is the first offset, set it as the total offset. Otherwise, add
5756 // the local offset into the running total.
5757 if (!TotalOffset || TotalOffset == Zero)
5758 TotalOffset = LocalOffset;
5759 else
5760 TotalOffset = eval(BO_Add, TotalOffset, LocalOffset);
5763 return {TotalOffset, OffsetOverflows};
5766 Value *
5767 CodeGenFunction::EmitCheckedInBoundsGEP(llvm::Type *ElemTy, Value *Ptr,
5768 ArrayRef<Value *> IdxList,
5769 bool SignedIndices, bool IsSubtraction,
5770 SourceLocation Loc, const Twine &Name) {
5771 llvm::Type *PtrTy = Ptr->getType();
5773 llvm::GEPNoWrapFlags NWFlags = llvm::GEPNoWrapFlags::inBounds();
5774 if (!SignedIndices && !IsSubtraction)
5775 NWFlags |= llvm::GEPNoWrapFlags::noUnsignedWrap();
5777 Value *GEPVal = Builder.CreateGEP(ElemTy, Ptr, IdxList, Name, NWFlags);
5779 // If the pointer overflow sanitizer isn't enabled, do nothing.
5780 if (!SanOpts.has(SanitizerKind::PointerOverflow))
5781 return GEPVal;
5783 // Perform nullptr-and-offset check unless the nullptr is defined.
5784 bool PerformNullCheck = !NullPointerIsDefined(
5785 Builder.GetInsertBlock()->getParent(), PtrTy->getPointerAddressSpace());
5786 // Check for overflows unless the GEP got constant-folded,
5787 // and only in the default address space
5788 bool PerformOverflowCheck =
5789 !isa<llvm::Constant>(GEPVal) && PtrTy->getPointerAddressSpace() == 0;
5791 if (!(PerformNullCheck || PerformOverflowCheck))
5792 return GEPVal;
5794 const auto &DL = CGM.getDataLayout();
5796 SanitizerScope SanScope(this);
5797 llvm::Type *IntPtrTy = DL.getIntPtrType(PtrTy);
5799 GEPOffsetAndOverflow EvaluatedGEP =
5800 EmitGEPOffsetInBytes(Ptr, GEPVal, getLLVMContext(), CGM, Builder);
5802 assert((!isa<llvm::Constant>(EvaluatedGEP.TotalOffset) ||
5803 EvaluatedGEP.OffsetOverflows == Builder.getFalse()) &&
5804 "If the offset got constant-folded, we don't expect that there was an "
5805 "overflow.");
5807 auto *Zero = llvm::ConstantInt::getNullValue(IntPtrTy);
5809 // Common case: if the total offset is zero, and we are using C++ semantics,
5810 // where nullptr+0 is defined, don't emit a check.
5811 if (EvaluatedGEP.TotalOffset == Zero && CGM.getLangOpts().CPlusPlus)
5812 return GEPVal;
5814 // Now that we've computed the total offset, add it to the base pointer (with
5815 // wrapping semantics).
5816 auto *IntPtr = Builder.CreatePtrToInt(Ptr, IntPtrTy);
5817 auto *ComputedGEP = Builder.CreateAdd(IntPtr, EvaluatedGEP.TotalOffset);
5819 llvm::SmallVector<std::pair<llvm::Value *, SanitizerMask>, 2> Checks;
5821 if (PerformNullCheck) {
5822 // In C++, if the base pointer evaluates to a null pointer value,
5823 // the only valid pointer this inbounds GEP can produce is also
5824 // a null pointer, so the offset must also evaluate to zero.
5825 // Likewise, if we have non-zero base pointer, we can not get null pointer
5826 // as a result, so the offset can not be -intptr_t(BasePtr).
5827 // In other words, both pointers are either null, or both are non-null,
5828 // or the behaviour is undefined.
5830 // C, however, is more strict in this regard, and gives more
5831 // optimization opportunities: in C, additionally, nullptr+0 is undefined.
5832 // So both the input to the 'gep inbounds' AND the output must not be null.
5833 auto *BaseIsNotNullptr = Builder.CreateIsNotNull(Ptr);
5834 auto *ResultIsNotNullptr = Builder.CreateIsNotNull(ComputedGEP);
5835 auto *Valid =
5836 CGM.getLangOpts().CPlusPlus
5837 ? Builder.CreateICmpEQ(BaseIsNotNullptr, ResultIsNotNullptr)
5838 : Builder.CreateAnd(BaseIsNotNullptr, ResultIsNotNullptr);
5839 Checks.emplace_back(Valid, SanitizerKind::PointerOverflow);
5842 if (PerformOverflowCheck) {
5843 // The GEP is valid if:
5844 // 1) The total offset doesn't overflow, and
5845 // 2) The sign of the difference between the computed address and the base
5846 // pointer matches the sign of the total offset.
5847 llvm::Value *ValidGEP;
5848 auto *NoOffsetOverflow = Builder.CreateNot(EvaluatedGEP.OffsetOverflows);
5849 if (SignedIndices) {
5850 // GEP is computed as `unsigned base + signed offset`, therefore:
5851 // * If offset was positive, then the computed pointer can not be
5852 // [unsigned] less than the base pointer, unless it overflowed.
5853 // * If offset was negative, then the computed pointer can not be
5854 // [unsigned] greater than the bas pointere, unless it overflowed.
5855 auto *PosOrZeroValid = Builder.CreateICmpUGE(ComputedGEP, IntPtr);
5856 auto *PosOrZeroOffset =
5857 Builder.CreateICmpSGE(EvaluatedGEP.TotalOffset, Zero);
5858 llvm::Value *NegValid = Builder.CreateICmpULT(ComputedGEP, IntPtr);
5859 ValidGEP =
5860 Builder.CreateSelect(PosOrZeroOffset, PosOrZeroValid, NegValid);
5861 } else if (!IsSubtraction) {
5862 // GEP is computed as `unsigned base + unsigned offset`, therefore the
5863 // computed pointer can not be [unsigned] less than base pointer,
5864 // unless there was an overflow.
5865 // Equivalent to `@llvm.uadd.with.overflow(%base, %offset)`.
5866 ValidGEP = Builder.CreateICmpUGE(ComputedGEP, IntPtr);
5867 } else {
5868 // GEP is computed as `unsigned base - unsigned offset`, therefore the
5869 // computed pointer can not be [unsigned] greater than base pointer,
5870 // unless there was an overflow.
5871 // Equivalent to `@llvm.usub.with.overflow(%base, sub(0, %offset))`.
5872 ValidGEP = Builder.CreateICmpULE(ComputedGEP, IntPtr);
5874 ValidGEP = Builder.CreateAnd(ValidGEP, NoOffsetOverflow);
5875 Checks.emplace_back(ValidGEP, SanitizerKind::PointerOverflow);
5878 assert(!Checks.empty() && "Should have produced some checks.");
5880 llvm::Constant *StaticArgs[] = {EmitCheckSourceLocation(Loc)};
5881 // Pass the computed GEP to the runtime to avoid emitting poisoned arguments.
5882 llvm::Value *DynamicArgs[] = {IntPtr, ComputedGEP};
5883 EmitCheck(Checks, SanitizerHandler::PointerOverflow, StaticArgs, DynamicArgs);
5885 return GEPVal;
5888 Address CodeGenFunction::EmitCheckedInBoundsGEP(
5889 Address Addr, ArrayRef<Value *> IdxList, llvm::Type *elementType,
5890 bool SignedIndices, bool IsSubtraction, SourceLocation Loc, CharUnits Align,
5891 const Twine &Name) {
5892 if (!SanOpts.has(SanitizerKind::PointerOverflow)) {
5893 llvm::GEPNoWrapFlags NWFlags = llvm::GEPNoWrapFlags::inBounds();
5894 if (!SignedIndices && !IsSubtraction)
5895 NWFlags |= llvm::GEPNoWrapFlags::noUnsignedWrap();
5897 return Builder.CreateGEP(Addr, IdxList, elementType, Align, Name, NWFlags);
5900 return RawAddress(
5901 EmitCheckedInBoundsGEP(Addr.getElementType(), Addr.emitRawPointer(*this),
5902 IdxList, SignedIndices, IsSubtraction, Loc, Name),
5903 elementType, Align);