[RISCV][FMV] Support target_clones (#85786)
[llvm-project.git] / clang / lib / CodeGen / CodeGenFunction.cpp
blobeda96f3e352ce3f6cda48a648521876cc3377e7a
1 //===--- CodeGenFunction.cpp - Emit LLVM Code from ASTs for a Function ----===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This coordinates the per-function state used while generating code.
11 //===----------------------------------------------------------------------===//
13 #include "CodeGenFunction.h"
14 #include "CGBlocks.h"
15 #include "CGCUDARuntime.h"
16 #include "CGCXXABI.h"
17 #include "CGCleanup.h"
18 #include "CGDebugInfo.h"
19 #include "CGHLSLRuntime.h"
20 #include "CGOpenMPRuntime.h"
21 #include "CodeGenModule.h"
22 #include "CodeGenPGO.h"
23 #include "TargetInfo.h"
24 #include "clang/AST/ASTContext.h"
25 #include "clang/AST/ASTLambda.h"
26 #include "clang/AST/Attr.h"
27 #include "clang/AST/Decl.h"
28 #include "clang/AST/DeclCXX.h"
29 #include "clang/AST/Expr.h"
30 #include "clang/AST/StmtCXX.h"
31 #include "clang/AST/StmtObjC.h"
32 #include "clang/Basic/Builtins.h"
33 #include "clang/Basic/CodeGenOptions.h"
34 #include "clang/Basic/TargetBuiltins.h"
35 #include "clang/Basic/TargetInfo.h"
36 #include "clang/CodeGen/CGFunctionInfo.h"
37 #include "clang/Frontend/FrontendDiagnostic.h"
38 #include "llvm/ADT/ArrayRef.h"
39 #include "llvm/Frontend/OpenMP/OMPIRBuilder.h"
40 #include "llvm/IR/DataLayout.h"
41 #include "llvm/IR/Dominators.h"
42 #include "llvm/IR/FPEnv.h"
43 #include "llvm/IR/IntrinsicInst.h"
44 #include "llvm/IR/Intrinsics.h"
45 #include "llvm/IR/MDBuilder.h"
46 #include "llvm/IR/Operator.h"
47 #include "llvm/Support/CRC.h"
48 #include "llvm/Support/xxhash.h"
49 #include "llvm/Transforms/Scalar/LowerExpectIntrinsic.h"
50 #include "llvm/Transforms/Utils/PromoteMemToReg.h"
51 #include <optional>
53 using namespace clang;
54 using namespace CodeGen;
56 namespace llvm {
57 extern cl::opt<bool> EnableSingleByteCoverage;
58 } // namespace llvm
60 /// shouldEmitLifetimeMarkers - Decide whether we need emit the life-time
61 /// markers.
62 static bool shouldEmitLifetimeMarkers(const CodeGenOptions &CGOpts,
63 const LangOptions &LangOpts) {
64 if (CGOpts.DisableLifetimeMarkers)
65 return false;
67 // Sanitizers may use markers.
68 if (CGOpts.SanitizeAddressUseAfterScope ||
69 LangOpts.Sanitize.has(SanitizerKind::HWAddress) ||
70 LangOpts.Sanitize.has(SanitizerKind::Memory))
71 return true;
73 // For now, only in optimized builds.
74 return CGOpts.OptimizationLevel != 0;
77 CodeGenFunction::CodeGenFunction(CodeGenModule &cgm, bool suppressNewContext)
78 : CodeGenTypeCache(cgm), CGM(cgm), Target(cgm.getTarget()),
79 Builder(cgm, cgm.getModule().getContext(), llvm::ConstantFolder(),
80 CGBuilderInserterTy(this)),
81 SanOpts(CGM.getLangOpts().Sanitize), CurFPFeatures(CGM.getLangOpts()),
82 DebugInfo(CGM.getModuleDebugInfo()), PGO(cgm),
83 ShouldEmitLifetimeMarkers(
84 shouldEmitLifetimeMarkers(CGM.getCodeGenOpts(), CGM.getLangOpts())) {
85 if (!suppressNewContext)
86 CGM.getCXXABI().getMangleContext().startNewFunction();
87 EHStack.setCGF(this);
89 SetFastMathFlags(CurFPFeatures);
92 CodeGenFunction::~CodeGenFunction() {
93 assert(LifetimeExtendedCleanupStack.empty() && "failed to emit a cleanup");
94 assert(DeferredDeactivationCleanupStack.empty() &&
95 "missed to deactivate a cleanup");
97 if (getLangOpts().OpenMP && CurFn)
98 CGM.getOpenMPRuntime().functionFinished(*this);
100 // If we have an OpenMPIRBuilder we want to finalize functions (incl.
101 // outlining etc) at some point. Doing it once the function codegen is done
102 // seems to be a reasonable spot. We do it here, as opposed to the deletion
103 // time of the CodeGenModule, because we have to ensure the IR has not yet
104 // been "emitted" to the outside, thus, modifications are still sensible.
105 if (CGM.getLangOpts().OpenMPIRBuilder && CurFn)
106 CGM.getOpenMPRuntime().getOMPBuilder().finalize(CurFn);
109 // Map the LangOption for exception behavior into
110 // the corresponding enum in the IR.
111 llvm::fp::ExceptionBehavior
112 clang::ToConstrainedExceptMD(LangOptions::FPExceptionModeKind Kind) {
114 switch (Kind) {
115 case LangOptions::FPE_Ignore: return llvm::fp::ebIgnore;
116 case LangOptions::FPE_MayTrap: return llvm::fp::ebMayTrap;
117 case LangOptions::FPE_Strict: return llvm::fp::ebStrict;
118 default:
119 llvm_unreachable("Unsupported FP Exception Behavior");
123 void CodeGenFunction::SetFastMathFlags(FPOptions FPFeatures) {
124 llvm::FastMathFlags FMF;
125 FMF.setAllowReassoc(FPFeatures.getAllowFPReassociate());
126 FMF.setNoNaNs(FPFeatures.getNoHonorNaNs());
127 FMF.setNoInfs(FPFeatures.getNoHonorInfs());
128 FMF.setNoSignedZeros(FPFeatures.getNoSignedZero());
129 FMF.setAllowReciprocal(FPFeatures.getAllowReciprocal());
130 FMF.setApproxFunc(FPFeatures.getAllowApproxFunc());
131 FMF.setAllowContract(FPFeatures.allowFPContractAcrossStatement());
132 Builder.setFastMathFlags(FMF);
135 CodeGenFunction::CGFPOptionsRAII::CGFPOptionsRAII(CodeGenFunction &CGF,
136 const Expr *E)
137 : CGF(CGF) {
138 ConstructorHelper(E->getFPFeaturesInEffect(CGF.getLangOpts()));
141 CodeGenFunction::CGFPOptionsRAII::CGFPOptionsRAII(CodeGenFunction &CGF,
142 FPOptions FPFeatures)
143 : CGF(CGF) {
144 ConstructorHelper(FPFeatures);
147 void CodeGenFunction::CGFPOptionsRAII::ConstructorHelper(FPOptions FPFeatures) {
148 OldFPFeatures = CGF.CurFPFeatures;
149 CGF.CurFPFeatures = FPFeatures;
151 OldExcept = CGF.Builder.getDefaultConstrainedExcept();
152 OldRounding = CGF.Builder.getDefaultConstrainedRounding();
154 if (OldFPFeatures == FPFeatures)
155 return;
157 FMFGuard.emplace(CGF.Builder);
159 llvm::RoundingMode NewRoundingBehavior = FPFeatures.getRoundingMode();
160 CGF.Builder.setDefaultConstrainedRounding(NewRoundingBehavior);
161 auto NewExceptionBehavior =
162 ToConstrainedExceptMD(static_cast<LangOptions::FPExceptionModeKind>(
163 FPFeatures.getExceptionMode()));
164 CGF.Builder.setDefaultConstrainedExcept(NewExceptionBehavior);
166 CGF.SetFastMathFlags(FPFeatures);
168 assert((CGF.CurFuncDecl == nullptr || CGF.Builder.getIsFPConstrained() ||
169 isa<CXXConstructorDecl>(CGF.CurFuncDecl) ||
170 isa<CXXDestructorDecl>(CGF.CurFuncDecl) ||
171 (NewExceptionBehavior == llvm::fp::ebIgnore &&
172 NewRoundingBehavior == llvm::RoundingMode::NearestTiesToEven)) &&
173 "FPConstrained should be enabled on entire function");
175 auto mergeFnAttrValue = [&](StringRef Name, bool Value) {
176 auto OldValue =
177 CGF.CurFn->getFnAttribute(Name).getValueAsBool();
178 auto NewValue = OldValue & Value;
179 if (OldValue != NewValue)
180 CGF.CurFn->addFnAttr(Name, llvm::toStringRef(NewValue));
182 mergeFnAttrValue("no-infs-fp-math", FPFeatures.getNoHonorInfs());
183 mergeFnAttrValue("no-nans-fp-math", FPFeatures.getNoHonorNaNs());
184 mergeFnAttrValue("no-signed-zeros-fp-math", FPFeatures.getNoSignedZero());
185 mergeFnAttrValue(
186 "unsafe-fp-math",
187 FPFeatures.getAllowFPReassociate() && FPFeatures.getAllowReciprocal() &&
188 FPFeatures.getAllowApproxFunc() && FPFeatures.getNoSignedZero() &&
189 FPFeatures.allowFPContractAcrossStatement());
192 CodeGenFunction::CGFPOptionsRAII::~CGFPOptionsRAII() {
193 CGF.CurFPFeatures = OldFPFeatures;
194 CGF.Builder.setDefaultConstrainedExcept(OldExcept);
195 CGF.Builder.setDefaultConstrainedRounding(OldRounding);
198 static LValue
199 makeNaturalAlignAddrLValue(llvm::Value *V, QualType T, bool ForPointeeType,
200 bool MightBeSigned, CodeGenFunction &CGF,
201 KnownNonNull_t IsKnownNonNull = NotKnownNonNull) {
202 LValueBaseInfo BaseInfo;
203 TBAAAccessInfo TBAAInfo;
204 CharUnits Alignment =
205 CGF.CGM.getNaturalTypeAlignment(T, &BaseInfo, &TBAAInfo, ForPointeeType);
206 Address Addr =
207 MightBeSigned
208 ? CGF.makeNaturalAddressForPointer(V, T, Alignment, false, nullptr,
209 nullptr, IsKnownNonNull)
210 : Address(V, CGF.ConvertTypeForMem(T), Alignment, IsKnownNonNull);
211 return CGF.MakeAddrLValue(Addr, T, BaseInfo, TBAAInfo);
214 LValue
215 CodeGenFunction::MakeNaturalAlignAddrLValue(llvm::Value *V, QualType T,
216 KnownNonNull_t IsKnownNonNull) {
217 return ::makeNaturalAlignAddrLValue(V, T, /*ForPointeeType*/ false,
218 /*MightBeSigned*/ true, *this,
219 IsKnownNonNull);
222 LValue
223 CodeGenFunction::MakeNaturalAlignPointeeAddrLValue(llvm::Value *V, QualType T) {
224 return ::makeNaturalAlignAddrLValue(V, T, /*ForPointeeType*/ true,
225 /*MightBeSigned*/ true, *this);
228 LValue CodeGenFunction::MakeNaturalAlignRawAddrLValue(llvm::Value *V,
229 QualType T) {
230 return ::makeNaturalAlignAddrLValue(V, T, /*ForPointeeType*/ false,
231 /*MightBeSigned*/ false, *this);
234 LValue CodeGenFunction::MakeNaturalAlignPointeeRawAddrLValue(llvm::Value *V,
235 QualType T) {
236 return ::makeNaturalAlignAddrLValue(V, T, /*ForPointeeType*/ true,
237 /*MightBeSigned*/ false, *this);
240 llvm::Type *CodeGenFunction::ConvertTypeForMem(QualType T) {
241 return CGM.getTypes().ConvertTypeForMem(T);
244 llvm::Type *CodeGenFunction::ConvertType(QualType T) {
245 return CGM.getTypes().ConvertType(T);
248 llvm::Type *CodeGenFunction::convertTypeForLoadStore(QualType ASTTy,
249 llvm::Type *LLVMTy) {
250 return CGM.getTypes().convertTypeForLoadStore(ASTTy, LLVMTy);
253 TypeEvaluationKind CodeGenFunction::getEvaluationKind(QualType type) {
254 type = type.getCanonicalType();
255 while (true) {
256 switch (type->getTypeClass()) {
257 #define TYPE(name, parent)
258 #define ABSTRACT_TYPE(name, parent)
259 #define NON_CANONICAL_TYPE(name, parent) case Type::name:
260 #define DEPENDENT_TYPE(name, parent) case Type::name:
261 #define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(name, parent) case Type::name:
262 #include "clang/AST/TypeNodes.inc"
263 llvm_unreachable("non-canonical or dependent type in IR-generation");
265 case Type::Auto:
266 case Type::DeducedTemplateSpecialization:
267 llvm_unreachable("undeduced type in IR-generation");
269 // Various scalar types.
270 case Type::Builtin:
271 case Type::Pointer:
272 case Type::BlockPointer:
273 case Type::LValueReference:
274 case Type::RValueReference:
275 case Type::MemberPointer:
276 case Type::Vector:
277 case Type::ExtVector:
278 case Type::ConstantMatrix:
279 case Type::FunctionProto:
280 case Type::FunctionNoProto:
281 case Type::Enum:
282 case Type::ObjCObjectPointer:
283 case Type::Pipe:
284 case Type::BitInt:
285 return TEK_Scalar;
287 // Complexes.
288 case Type::Complex:
289 return TEK_Complex;
291 // Arrays, records, and Objective-C objects.
292 case Type::ConstantArray:
293 case Type::IncompleteArray:
294 case Type::VariableArray:
295 case Type::Record:
296 case Type::ObjCObject:
297 case Type::ObjCInterface:
298 case Type::ArrayParameter:
299 return TEK_Aggregate;
301 // We operate on atomic values according to their underlying type.
302 case Type::Atomic:
303 type = cast<AtomicType>(type)->getValueType();
304 continue;
306 llvm_unreachable("unknown type kind!");
310 llvm::DebugLoc CodeGenFunction::EmitReturnBlock() {
311 // For cleanliness, we try to avoid emitting the return block for
312 // simple cases.
313 llvm::BasicBlock *CurBB = Builder.GetInsertBlock();
315 if (CurBB) {
316 assert(!CurBB->getTerminator() && "Unexpected terminated block.");
318 // We have a valid insert point, reuse it if it is empty or there are no
319 // explicit jumps to the return block.
320 if (CurBB->empty() || ReturnBlock.getBlock()->use_empty()) {
321 ReturnBlock.getBlock()->replaceAllUsesWith(CurBB);
322 delete ReturnBlock.getBlock();
323 ReturnBlock = JumpDest();
324 } else
325 EmitBlock(ReturnBlock.getBlock());
326 return llvm::DebugLoc();
329 // Otherwise, if the return block is the target of a single direct
330 // branch then we can just put the code in that block instead. This
331 // cleans up functions which started with a unified return block.
332 if (ReturnBlock.getBlock()->hasOneUse()) {
333 llvm::BranchInst *BI =
334 dyn_cast<llvm::BranchInst>(*ReturnBlock.getBlock()->user_begin());
335 if (BI && BI->isUnconditional() &&
336 BI->getSuccessor(0) == ReturnBlock.getBlock()) {
337 // Record/return the DebugLoc of the simple 'return' expression to be used
338 // later by the actual 'ret' instruction.
339 llvm::DebugLoc Loc = BI->getDebugLoc();
340 Builder.SetInsertPoint(BI->getParent());
341 BI->eraseFromParent();
342 delete ReturnBlock.getBlock();
343 ReturnBlock = JumpDest();
344 return Loc;
348 // FIXME: We are at an unreachable point, there is no reason to emit the block
349 // unless it has uses. However, we still need a place to put the debug
350 // region.end for now.
352 EmitBlock(ReturnBlock.getBlock());
353 return llvm::DebugLoc();
356 static void EmitIfUsed(CodeGenFunction &CGF, llvm::BasicBlock *BB) {
357 if (!BB) return;
358 if (!BB->use_empty()) {
359 CGF.CurFn->insert(CGF.CurFn->end(), BB);
360 return;
362 delete BB;
365 void CodeGenFunction::FinishFunction(SourceLocation EndLoc) {
366 assert(BreakContinueStack.empty() &&
367 "mismatched push/pop in break/continue stack!");
368 assert(LifetimeExtendedCleanupStack.empty() &&
369 "mismatched push/pop of cleanups in EHStack!");
370 assert(DeferredDeactivationCleanupStack.empty() &&
371 "mismatched activate/deactivate of cleanups!");
373 if (CGM.shouldEmitConvergenceTokens()) {
374 ConvergenceTokenStack.pop_back();
375 assert(ConvergenceTokenStack.empty() &&
376 "mismatched push/pop in convergence stack!");
379 bool OnlySimpleReturnStmts = NumSimpleReturnExprs > 0
380 && NumSimpleReturnExprs == NumReturnExprs
381 && ReturnBlock.getBlock()->use_empty();
382 // Usually the return expression is evaluated before the cleanup
383 // code. If the function contains only a simple return statement,
384 // such as a constant, the location before the cleanup code becomes
385 // the last useful breakpoint in the function, because the simple
386 // return expression will be evaluated after the cleanup code. To be
387 // safe, set the debug location for cleanup code to the location of
388 // the return statement. Otherwise the cleanup code should be at the
389 // end of the function's lexical scope.
391 // If there are multiple branches to the return block, the branch
392 // instructions will get the location of the return statements and
393 // all will be fine.
394 if (CGDebugInfo *DI = getDebugInfo()) {
395 if (OnlySimpleReturnStmts)
396 DI->EmitLocation(Builder, LastStopPoint);
397 else
398 DI->EmitLocation(Builder, EndLoc);
401 // Pop any cleanups that might have been associated with the
402 // parameters. Do this in whatever block we're currently in; it's
403 // important to do this before we enter the return block or return
404 // edges will be *really* confused.
405 bool HasCleanups = EHStack.stable_begin() != PrologueCleanupDepth;
406 bool HasOnlyLifetimeMarkers =
407 HasCleanups && EHStack.containsOnlyLifetimeMarkers(PrologueCleanupDepth);
408 bool EmitRetDbgLoc = !HasCleanups || HasOnlyLifetimeMarkers;
410 std::optional<ApplyDebugLocation> OAL;
411 if (HasCleanups) {
412 // Make sure the line table doesn't jump back into the body for
413 // the ret after it's been at EndLoc.
414 if (CGDebugInfo *DI = getDebugInfo()) {
415 if (OnlySimpleReturnStmts)
416 DI->EmitLocation(Builder, EndLoc);
417 else
418 // We may not have a valid end location. Try to apply it anyway, and
419 // fall back to an artificial location if needed.
420 OAL = ApplyDebugLocation::CreateDefaultArtificial(*this, EndLoc);
423 PopCleanupBlocks(PrologueCleanupDepth);
426 // Emit function epilog (to return).
427 llvm::DebugLoc Loc = EmitReturnBlock();
429 if (ShouldInstrumentFunction()) {
430 if (CGM.getCodeGenOpts().InstrumentFunctions)
431 CurFn->addFnAttr("instrument-function-exit", "__cyg_profile_func_exit");
432 if (CGM.getCodeGenOpts().InstrumentFunctionsAfterInlining)
433 CurFn->addFnAttr("instrument-function-exit-inlined",
434 "__cyg_profile_func_exit");
437 // Emit debug descriptor for function end.
438 if (CGDebugInfo *DI = getDebugInfo())
439 DI->EmitFunctionEnd(Builder, CurFn);
441 // Reset the debug location to that of the simple 'return' expression, if any
442 // rather than that of the end of the function's scope '}'.
443 ApplyDebugLocation AL(*this, Loc);
444 EmitFunctionEpilog(*CurFnInfo, EmitRetDbgLoc, EndLoc);
445 EmitEndEHSpec(CurCodeDecl);
447 assert(EHStack.empty() &&
448 "did not remove all scopes from cleanup stack!");
450 // If someone did an indirect goto, emit the indirect goto block at the end of
451 // the function.
452 if (IndirectBranch) {
453 EmitBlock(IndirectBranch->getParent());
454 Builder.ClearInsertionPoint();
457 // If some of our locals escaped, insert a call to llvm.localescape in the
458 // entry block.
459 if (!EscapedLocals.empty()) {
460 // Invert the map from local to index into a simple vector. There should be
461 // no holes.
462 SmallVector<llvm::Value *, 4> EscapeArgs;
463 EscapeArgs.resize(EscapedLocals.size());
464 for (auto &Pair : EscapedLocals)
465 EscapeArgs[Pair.second] = Pair.first;
466 llvm::Function *FrameEscapeFn = llvm::Intrinsic::getDeclaration(
467 &CGM.getModule(), llvm::Intrinsic::localescape);
468 CGBuilderTy(*this, AllocaInsertPt).CreateCall(FrameEscapeFn, EscapeArgs);
471 // Remove the AllocaInsertPt instruction, which is just a convenience for us.
472 llvm::Instruction *Ptr = AllocaInsertPt;
473 AllocaInsertPt = nullptr;
474 Ptr->eraseFromParent();
476 // PostAllocaInsertPt, if created, was lazily created when it was required,
477 // remove it now since it was just created for our own convenience.
478 if (PostAllocaInsertPt) {
479 llvm::Instruction *PostPtr = PostAllocaInsertPt;
480 PostAllocaInsertPt = nullptr;
481 PostPtr->eraseFromParent();
484 // If someone took the address of a label but never did an indirect goto, we
485 // made a zero entry PHI node, which is illegal, zap it now.
486 if (IndirectBranch) {
487 llvm::PHINode *PN = cast<llvm::PHINode>(IndirectBranch->getAddress());
488 if (PN->getNumIncomingValues() == 0) {
489 PN->replaceAllUsesWith(llvm::UndefValue::get(PN->getType()));
490 PN->eraseFromParent();
494 EmitIfUsed(*this, EHResumeBlock);
495 EmitIfUsed(*this, TerminateLandingPad);
496 EmitIfUsed(*this, TerminateHandler);
497 EmitIfUsed(*this, UnreachableBlock);
499 for (const auto &FuncletAndParent : TerminateFunclets)
500 EmitIfUsed(*this, FuncletAndParent.second);
502 if (CGM.getCodeGenOpts().EmitDeclMetadata)
503 EmitDeclMetadata();
505 for (const auto &R : DeferredReplacements) {
506 if (llvm::Value *Old = R.first) {
507 Old->replaceAllUsesWith(R.second);
508 cast<llvm::Instruction>(Old)->eraseFromParent();
511 DeferredReplacements.clear();
513 // Eliminate CleanupDestSlot alloca by replacing it with SSA values and
514 // PHIs if the current function is a coroutine. We don't do it for all
515 // functions as it may result in slight increase in numbers of instructions
516 // if compiled with no optimizations. We do it for coroutine as the lifetime
517 // of CleanupDestSlot alloca make correct coroutine frame building very
518 // difficult.
519 if (NormalCleanupDest.isValid() && isCoroutine()) {
520 llvm::DominatorTree DT(*CurFn);
521 llvm::PromoteMemToReg(
522 cast<llvm::AllocaInst>(NormalCleanupDest.getPointer()), DT);
523 NormalCleanupDest = Address::invalid();
526 // Scan function arguments for vector width.
527 for (llvm::Argument &A : CurFn->args())
528 if (auto *VT = dyn_cast<llvm::VectorType>(A.getType()))
529 LargestVectorWidth =
530 std::max((uint64_t)LargestVectorWidth,
531 VT->getPrimitiveSizeInBits().getKnownMinValue());
533 // Update vector width based on return type.
534 if (auto *VT = dyn_cast<llvm::VectorType>(CurFn->getReturnType()))
535 LargestVectorWidth =
536 std::max((uint64_t)LargestVectorWidth,
537 VT->getPrimitiveSizeInBits().getKnownMinValue());
539 if (CurFnInfo->getMaxVectorWidth() > LargestVectorWidth)
540 LargestVectorWidth = CurFnInfo->getMaxVectorWidth();
542 // Add the min-legal-vector-width attribute. This contains the max width from:
543 // 1. min-vector-width attribute used in the source program.
544 // 2. Any builtins used that have a vector width specified.
545 // 3. Values passed in and out of inline assembly.
546 // 4. Width of vector arguments and return types for this function.
547 // 5. Width of vector arguments and return types for functions called by this
548 // function.
549 if (getContext().getTargetInfo().getTriple().isX86())
550 CurFn->addFnAttr("min-legal-vector-width",
551 llvm::utostr(LargestVectorWidth));
553 // Add vscale_range attribute if appropriate.
554 std::optional<std::pair<unsigned, unsigned>> VScaleRange =
555 getContext().getTargetInfo().getVScaleRange(getLangOpts());
556 if (VScaleRange) {
557 CurFn->addFnAttr(llvm::Attribute::getWithVScaleRangeArgs(
558 getLLVMContext(), VScaleRange->first, VScaleRange->second));
561 // If we generated an unreachable return block, delete it now.
562 if (ReturnBlock.isValid() && ReturnBlock.getBlock()->use_empty()) {
563 Builder.ClearInsertionPoint();
564 ReturnBlock.getBlock()->eraseFromParent();
566 if (ReturnValue.isValid()) {
567 auto *RetAlloca =
568 dyn_cast<llvm::AllocaInst>(ReturnValue.emitRawPointer(*this));
569 if (RetAlloca && RetAlloca->use_empty()) {
570 RetAlloca->eraseFromParent();
571 ReturnValue = Address::invalid();
576 /// ShouldInstrumentFunction - Return true if the current function should be
577 /// instrumented with __cyg_profile_func_* calls
578 bool CodeGenFunction::ShouldInstrumentFunction() {
579 if (!CGM.getCodeGenOpts().InstrumentFunctions &&
580 !CGM.getCodeGenOpts().InstrumentFunctionsAfterInlining &&
581 !CGM.getCodeGenOpts().InstrumentFunctionEntryBare)
582 return false;
583 if (!CurFuncDecl || CurFuncDecl->hasAttr<NoInstrumentFunctionAttr>())
584 return false;
585 return true;
588 bool CodeGenFunction::ShouldSkipSanitizerInstrumentation() {
589 if (!CurFuncDecl)
590 return false;
591 return CurFuncDecl->hasAttr<DisableSanitizerInstrumentationAttr>();
594 /// ShouldXRayInstrument - Return true if the current function should be
595 /// instrumented with XRay nop sleds.
596 bool CodeGenFunction::ShouldXRayInstrumentFunction() const {
597 return CGM.getCodeGenOpts().XRayInstrumentFunctions;
600 /// AlwaysEmitXRayCustomEvents - Return true if we should emit IR for calls to
601 /// the __xray_customevent(...) builtin calls, when doing XRay instrumentation.
602 bool CodeGenFunction::AlwaysEmitXRayCustomEvents() const {
603 return CGM.getCodeGenOpts().XRayInstrumentFunctions &&
604 (CGM.getCodeGenOpts().XRayAlwaysEmitCustomEvents ||
605 CGM.getCodeGenOpts().XRayInstrumentationBundle.Mask ==
606 XRayInstrKind::Custom);
609 bool CodeGenFunction::AlwaysEmitXRayTypedEvents() const {
610 return CGM.getCodeGenOpts().XRayInstrumentFunctions &&
611 (CGM.getCodeGenOpts().XRayAlwaysEmitTypedEvents ||
612 CGM.getCodeGenOpts().XRayInstrumentationBundle.Mask ==
613 XRayInstrKind::Typed);
616 llvm::ConstantInt *
617 CodeGenFunction::getUBSanFunctionTypeHash(QualType Ty) const {
618 // Remove any (C++17) exception specifications, to allow calling e.g. a
619 // noexcept function through a non-noexcept pointer.
620 if (!Ty->isFunctionNoProtoType())
621 Ty = getContext().getFunctionTypeWithExceptionSpec(Ty, EST_None);
622 std::string Mangled;
623 llvm::raw_string_ostream Out(Mangled);
624 CGM.getCXXABI().getMangleContext().mangleCanonicalTypeName(Ty, Out, false);
625 return llvm::ConstantInt::get(
626 CGM.Int32Ty, static_cast<uint32_t>(llvm::xxh3_64bits(Mangled)));
629 void CodeGenFunction::EmitKernelMetadata(const FunctionDecl *FD,
630 llvm::Function *Fn) {
631 if (!FD->hasAttr<OpenCLKernelAttr>() && !FD->hasAttr<CUDAGlobalAttr>())
632 return;
634 llvm::LLVMContext &Context = getLLVMContext();
636 CGM.GenKernelArgMetadata(Fn, FD, this);
638 if (!getLangOpts().OpenCL)
639 return;
641 if (const VecTypeHintAttr *A = FD->getAttr<VecTypeHintAttr>()) {
642 QualType HintQTy = A->getTypeHint();
643 const ExtVectorType *HintEltQTy = HintQTy->getAs<ExtVectorType>();
644 bool IsSignedInteger =
645 HintQTy->isSignedIntegerType() ||
646 (HintEltQTy && HintEltQTy->getElementType()->isSignedIntegerType());
647 llvm::Metadata *AttrMDArgs[] = {
648 llvm::ConstantAsMetadata::get(llvm::UndefValue::get(
649 CGM.getTypes().ConvertType(A->getTypeHint()))),
650 llvm::ConstantAsMetadata::get(llvm::ConstantInt::get(
651 llvm::IntegerType::get(Context, 32),
652 llvm::APInt(32, (uint64_t)(IsSignedInteger ? 1 : 0))))};
653 Fn->setMetadata("vec_type_hint", llvm::MDNode::get(Context, AttrMDArgs));
656 if (const WorkGroupSizeHintAttr *A = FD->getAttr<WorkGroupSizeHintAttr>()) {
657 llvm::Metadata *AttrMDArgs[] = {
658 llvm::ConstantAsMetadata::get(Builder.getInt32(A->getXDim())),
659 llvm::ConstantAsMetadata::get(Builder.getInt32(A->getYDim())),
660 llvm::ConstantAsMetadata::get(Builder.getInt32(A->getZDim()))};
661 Fn->setMetadata("work_group_size_hint", llvm::MDNode::get(Context, AttrMDArgs));
664 if (const ReqdWorkGroupSizeAttr *A = FD->getAttr<ReqdWorkGroupSizeAttr>()) {
665 llvm::Metadata *AttrMDArgs[] = {
666 llvm::ConstantAsMetadata::get(Builder.getInt32(A->getXDim())),
667 llvm::ConstantAsMetadata::get(Builder.getInt32(A->getYDim())),
668 llvm::ConstantAsMetadata::get(Builder.getInt32(A->getZDim()))};
669 Fn->setMetadata("reqd_work_group_size", llvm::MDNode::get(Context, AttrMDArgs));
672 if (const OpenCLIntelReqdSubGroupSizeAttr *A =
673 FD->getAttr<OpenCLIntelReqdSubGroupSizeAttr>()) {
674 llvm::Metadata *AttrMDArgs[] = {
675 llvm::ConstantAsMetadata::get(Builder.getInt32(A->getSubGroupSize()))};
676 Fn->setMetadata("intel_reqd_sub_group_size",
677 llvm::MDNode::get(Context, AttrMDArgs));
681 /// Determine whether the function F ends with a return stmt.
682 static bool endsWithReturn(const Decl* F) {
683 const Stmt *Body = nullptr;
684 if (auto *FD = dyn_cast_or_null<FunctionDecl>(F))
685 Body = FD->getBody();
686 else if (auto *OMD = dyn_cast_or_null<ObjCMethodDecl>(F))
687 Body = OMD->getBody();
689 if (auto *CS = dyn_cast_or_null<CompoundStmt>(Body)) {
690 auto LastStmt = CS->body_rbegin();
691 if (LastStmt != CS->body_rend())
692 return isa<ReturnStmt>(*LastStmt);
694 return false;
697 void CodeGenFunction::markAsIgnoreThreadCheckingAtRuntime(llvm::Function *Fn) {
698 if (SanOpts.has(SanitizerKind::Thread)) {
699 Fn->addFnAttr("sanitize_thread_no_checking_at_run_time");
700 Fn->removeFnAttr(llvm::Attribute::SanitizeThread);
704 /// Check if the return value of this function requires sanitization.
705 bool CodeGenFunction::requiresReturnValueCheck() const {
706 return requiresReturnValueNullabilityCheck() ||
707 (SanOpts.has(SanitizerKind::ReturnsNonnullAttribute) && CurCodeDecl &&
708 CurCodeDecl->getAttr<ReturnsNonNullAttr>());
711 static bool matchesStlAllocatorFn(const Decl *D, const ASTContext &Ctx) {
712 auto *MD = dyn_cast_or_null<CXXMethodDecl>(D);
713 if (!MD || !MD->getDeclName().getAsIdentifierInfo() ||
714 !MD->getDeclName().getAsIdentifierInfo()->isStr("allocate") ||
715 (MD->getNumParams() != 1 && MD->getNumParams() != 2))
716 return false;
718 if (MD->parameters()[0]->getType().getCanonicalType() != Ctx.getSizeType())
719 return false;
721 if (MD->getNumParams() == 2) {
722 auto *PT = MD->parameters()[1]->getType()->getAs<PointerType>();
723 if (!PT || !PT->isVoidPointerType() ||
724 !PT->getPointeeType().isConstQualified())
725 return false;
728 return true;
731 bool CodeGenFunction::isInAllocaArgument(CGCXXABI &ABI, QualType Ty) {
732 const CXXRecordDecl *RD = Ty->getAsCXXRecordDecl();
733 return RD && ABI.getRecordArgABI(RD) == CGCXXABI::RAA_DirectInMemory;
736 bool CodeGenFunction::hasInAllocaArg(const CXXMethodDecl *MD) {
737 return getTarget().getTriple().getArch() == llvm::Triple::x86 &&
738 getTarget().getCXXABI().isMicrosoft() &&
739 llvm::any_of(MD->parameters(), [&](ParmVarDecl *P) {
740 return isInAllocaArgument(CGM.getCXXABI(), P->getType());
744 /// Return the UBSan prologue signature for \p FD if one is available.
745 static llvm::Constant *getPrologueSignature(CodeGenModule &CGM,
746 const FunctionDecl *FD) {
747 if (const auto *MD = dyn_cast<CXXMethodDecl>(FD))
748 if (!MD->isStatic())
749 return nullptr;
750 return CGM.getTargetCodeGenInfo().getUBSanFunctionSignature(CGM);
753 void CodeGenFunction::StartFunction(GlobalDecl GD, QualType RetTy,
754 llvm::Function *Fn,
755 const CGFunctionInfo &FnInfo,
756 const FunctionArgList &Args,
757 SourceLocation Loc,
758 SourceLocation StartLoc) {
759 assert(!CurFn &&
760 "Do not use a CodeGenFunction object for more than one function");
762 const Decl *D = GD.getDecl();
764 DidCallStackSave = false;
765 CurCodeDecl = D;
766 const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D);
767 if (FD && FD->usesSEHTry())
768 CurSEHParent = GD;
769 CurFuncDecl = (D ? D->getNonClosureContext() : nullptr);
770 FnRetTy = RetTy;
771 CurFn = Fn;
772 CurFnInfo = &FnInfo;
773 assert(CurFn->isDeclaration() && "Function already has body?");
775 // If this function is ignored for any of the enabled sanitizers,
776 // disable the sanitizer for the function.
777 do {
778 #define SANITIZER(NAME, ID) \
779 if (SanOpts.empty()) \
780 break; \
781 if (SanOpts.has(SanitizerKind::ID)) \
782 if (CGM.isInNoSanitizeList(SanitizerKind::ID, Fn, Loc)) \
783 SanOpts.set(SanitizerKind::ID, false);
785 #include "clang/Basic/Sanitizers.def"
786 #undef SANITIZER
787 } while (false);
789 if (D) {
790 const bool SanitizeBounds = SanOpts.hasOneOf(SanitizerKind::Bounds);
791 SanitizerMask no_sanitize_mask;
792 bool NoSanitizeCoverage = false;
794 for (auto *Attr : D->specific_attrs<NoSanitizeAttr>()) {
795 no_sanitize_mask |= Attr->getMask();
796 // SanitizeCoverage is not handled by SanOpts.
797 if (Attr->hasCoverage())
798 NoSanitizeCoverage = true;
801 // Apply the no_sanitize* attributes to SanOpts.
802 SanOpts.Mask &= ~no_sanitize_mask;
803 if (no_sanitize_mask & SanitizerKind::Address)
804 SanOpts.set(SanitizerKind::KernelAddress, false);
805 if (no_sanitize_mask & SanitizerKind::KernelAddress)
806 SanOpts.set(SanitizerKind::Address, false);
807 if (no_sanitize_mask & SanitizerKind::HWAddress)
808 SanOpts.set(SanitizerKind::KernelHWAddress, false);
809 if (no_sanitize_mask & SanitizerKind::KernelHWAddress)
810 SanOpts.set(SanitizerKind::HWAddress, false);
812 if (SanitizeBounds && !SanOpts.hasOneOf(SanitizerKind::Bounds))
813 Fn->addFnAttr(llvm::Attribute::NoSanitizeBounds);
815 if (NoSanitizeCoverage && CGM.getCodeGenOpts().hasSanitizeCoverage())
816 Fn->addFnAttr(llvm::Attribute::NoSanitizeCoverage);
818 // Some passes need the non-negated no_sanitize attribute. Pass them on.
819 if (CGM.getCodeGenOpts().hasSanitizeBinaryMetadata()) {
820 if (no_sanitize_mask & SanitizerKind::Thread)
821 Fn->addFnAttr("no_sanitize_thread");
825 if (ShouldSkipSanitizerInstrumentation()) {
826 CurFn->addFnAttr(llvm::Attribute::DisableSanitizerInstrumentation);
827 } else {
828 // Apply sanitizer attributes to the function.
829 if (SanOpts.hasOneOf(SanitizerKind::Address | SanitizerKind::KernelAddress))
830 Fn->addFnAttr(llvm::Attribute::SanitizeAddress);
831 if (SanOpts.hasOneOf(SanitizerKind::HWAddress |
832 SanitizerKind::KernelHWAddress))
833 Fn->addFnAttr(llvm::Attribute::SanitizeHWAddress);
834 if (SanOpts.has(SanitizerKind::MemtagStack))
835 Fn->addFnAttr(llvm::Attribute::SanitizeMemTag);
836 if (SanOpts.has(SanitizerKind::Thread))
837 Fn->addFnAttr(llvm::Attribute::SanitizeThread);
838 if (SanOpts.has(SanitizerKind::NumericalStability))
839 Fn->addFnAttr(llvm::Attribute::SanitizeNumericalStability);
840 if (SanOpts.hasOneOf(SanitizerKind::Memory | SanitizerKind::KernelMemory))
841 Fn->addFnAttr(llvm::Attribute::SanitizeMemory);
843 if (SanOpts.has(SanitizerKind::SafeStack))
844 Fn->addFnAttr(llvm::Attribute::SafeStack);
845 if (SanOpts.has(SanitizerKind::ShadowCallStack))
846 Fn->addFnAttr(llvm::Attribute::ShadowCallStack);
848 if (SanOpts.has(SanitizerKind::Realtime))
849 if (FD && FD->getASTContext().hasAnyFunctionEffects())
850 for (const FunctionEffectWithCondition &Fe : FD->getFunctionEffects()) {
851 if (Fe.Effect.kind() == FunctionEffect::Kind::NonBlocking)
852 Fn->addFnAttr(llvm::Attribute::SanitizeRealtime);
855 // Apply fuzzing attribute to the function.
856 if (SanOpts.hasOneOf(SanitizerKind::Fuzzer | SanitizerKind::FuzzerNoLink))
857 Fn->addFnAttr(llvm::Attribute::OptForFuzzing);
859 // Ignore TSan memory acesses from within ObjC/ObjC++ dealloc, initialize,
860 // .cxx_destruct, __destroy_helper_block_ and all of their calees at run time.
861 if (SanOpts.has(SanitizerKind::Thread)) {
862 if (const auto *OMD = dyn_cast_or_null<ObjCMethodDecl>(D)) {
863 const IdentifierInfo *II = OMD->getSelector().getIdentifierInfoForSlot(0);
864 if (OMD->getMethodFamily() == OMF_dealloc ||
865 OMD->getMethodFamily() == OMF_initialize ||
866 (OMD->getSelector().isUnarySelector() && II->isStr(".cxx_destruct"))) {
867 markAsIgnoreThreadCheckingAtRuntime(Fn);
872 // Ignore unrelated casts in STL allocate() since the allocator must cast
873 // from void* to T* before object initialization completes. Don't match on the
874 // namespace because not all allocators are in std::
875 if (D && SanOpts.has(SanitizerKind::CFIUnrelatedCast)) {
876 if (matchesStlAllocatorFn(D, getContext()))
877 SanOpts.Mask &= ~SanitizerKind::CFIUnrelatedCast;
880 // Ignore null checks in coroutine functions since the coroutines passes
881 // are not aware of how to move the extra UBSan instructions across the split
882 // coroutine boundaries.
883 if (D && SanOpts.has(SanitizerKind::Null))
884 if (FD && FD->getBody() &&
885 FD->getBody()->getStmtClass() == Stmt::CoroutineBodyStmtClass)
886 SanOpts.Mask &= ~SanitizerKind::Null;
888 // Add pointer authentication attributes.
889 const CodeGenOptions &CodeGenOpts = CGM.getCodeGenOpts();
890 if (CodeGenOpts.PointerAuth.ReturnAddresses)
891 Fn->addFnAttr("ptrauth-returns");
892 if (CodeGenOpts.PointerAuth.FunctionPointers)
893 Fn->addFnAttr("ptrauth-calls");
894 if (CodeGenOpts.PointerAuth.AuthTraps)
895 Fn->addFnAttr("ptrauth-auth-traps");
896 if (CodeGenOpts.PointerAuth.IndirectGotos)
897 Fn->addFnAttr("ptrauth-indirect-gotos");
899 // Apply xray attributes to the function (as a string, for now)
900 bool AlwaysXRayAttr = false;
901 if (const auto *XRayAttr = D ? D->getAttr<XRayInstrumentAttr>() : nullptr) {
902 if (CGM.getCodeGenOpts().XRayInstrumentationBundle.has(
903 XRayInstrKind::FunctionEntry) ||
904 CGM.getCodeGenOpts().XRayInstrumentationBundle.has(
905 XRayInstrKind::FunctionExit)) {
906 if (XRayAttr->alwaysXRayInstrument() && ShouldXRayInstrumentFunction()) {
907 Fn->addFnAttr("function-instrument", "xray-always");
908 AlwaysXRayAttr = true;
910 if (XRayAttr->neverXRayInstrument())
911 Fn->addFnAttr("function-instrument", "xray-never");
912 if (const auto *LogArgs = D->getAttr<XRayLogArgsAttr>())
913 if (ShouldXRayInstrumentFunction())
914 Fn->addFnAttr("xray-log-args",
915 llvm::utostr(LogArgs->getArgumentCount()));
917 } else {
918 if (ShouldXRayInstrumentFunction() && !CGM.imbueXRayAttrs(Fn, Loc))
919 Fn->addFnAttr(
920 "xray-instruction-threshold",
921 llvm::itostr(CGM.getCodeGenOpts().XRayInstructionThreshold));
924 if (ShouldXRayInstrumentFunction()) {
925 if (CGM.getCodeGenOpts().XRayIgnoreLoops)
926 Fn->addFnAttr("xray-ignore-loops");
928 if (!CGM.getCodeGenOpts().XRayInstrumentationBundle.has(
929 XRayInstrKind::FunctionExit))
930 Fn->addFnAttr("xray-skip-exit");
932 if (!CGM.getCodeGenOpts().XRayInstrumentationBundle.has(
933 XRayInstrKind::FunctionEntry))
934 Fn->addFnAttr("xray-skip-entry");
936 auto FuncGroups = CGM.getCodeGenOpts().XRayTotalFunctionGroups;
937 if (FuncGroups > 1) {
938 auto FuncName = llvm::ArrayRef<uint8_t>(CurFn->getName().bytes_begin(),
939 CurFn->getName().bytes_end());
940 auto Group = crc32(FuncName) % FuncGroups;
941 if (Group != CGM.getCodeGenOpts().XRaySelectedFunctionGroup &&
942 !AlwaysXRayAttr)
943 Fn->addFnAttr("function-instrument", "xray-never");
947 if (CGM.getCodeGenOpts().getProfileInstr() != CodeGenOptions::ProfileNone) {
948 switch (CGM.isFunctionBlockedFromProfileInstr(Fn, Loc)) {
949 case ProfileList::Skip:
950 Fn->addFnAttr(llvm::Attribute::SkipProfile);
951 break;
952 case ProfileList::Forbid:
953 Fn->addFnAttr(llvm::Attribute::NoProfile);
954 break;
955 case ProfileList::Allow:
956 break;
960 unsigned Count, Offset;
961 if (const auto *Attr =
962 D ? D->getAttr<PatchableFunctionEntryAttr>() : nullptr) {
963 Count = Attr->getCount();
964 Offset = Attr->getOffset();
965 } else {
966 Count = CGM.getCodeGenOpts().PatchableFunctionEntryCount;
967 Offset = CGM.getCodeGenOpts().PatchableFunctionEntryOffset;
969 if (Count && Offset <= Count) {
970 Fn->addFnAttr("patchable-function-entry", std::to_string(Count - Offset));
971 if (Offset)
972 Fn->addFnAttr("patchable-function-prefix", std::to_string(Offset));
974 // Instruct that functions for COFF/CodeView targets should start with a
975 // patchable instruction, but only on x86/x64. Don't forward this to ARM/ARM64
976 // backends as they don't need it -- instructions on these architectures are
977 // always atomically patchable at runtime.
978 if (CGM.getCodeGenOpts().HotPatch &&
979 getContext().getTargetInfo().getTriple().isX86() &&
980 getContext().getTargetInfo().getTriple().getEnvironment() !=
981 llvm::Triple::CODE16)
982 Fn->addFnAttr("patchable-function", "prologue-short-redirect");
984 // Add no-jump-tables value.
985 if (CGM.getCodeGenOpts().NoUseJumpTables)
986 Fn->addFnAttr("no-jump-tables", "true");
988 // Add no-inline-line-tables value.
989 if (CGM.getCodeGenOpts().NoInlineLineTables)
990 Fn->addFnAttr("no-inline-line-tables");
992 // Add profile-sample-accurate value.
993 if (CGM.getCodeGenOpts().ProfileSampleAccurate)
994 Fn->addFnAttr("profile-sample-accurate");
996 if (!CGM.getCodeGenOpts().SampleProfileFile.empty())
997 Fn->addFnAttr("use-sample-profile");
999 if (D && D->hasAttr<CFICanonicalJumpTableAttr>())
1000 Fn->addFnAttr("cfi-canonical-jump-table");
1002 if (D && D->hasAttr<NoProfileFunctionAttr>())
1003 Fn->addFnAttr(llvm::Attribute::NoProfile);
1005 if (D && D->hasAttr<HybridPatchableAttr>())
1006 Fn->addFnAttr(llvm::Attribute::HybridPatchable);
1008 if (D) {
1009 // Function attributes take precedence over command line flags.
1010 if (auto *A = D->getAttr<FunctionReturnThunksAttr>()) {
1011 switch (A->getThunkType()) {
1012 case FunctionReturnThunksAttr::Kind::Keep:
1013 break;
1014 case FunctionReturnThunksAttr::Kind::Extern:
1015 Fn->addFnAttr(llvm::Attribute::FnRetThunkExtern);
1016 break;
1018 } else if (CGM.getCodeGenOpts().FunctionReturnThunks)
1019 Fn->addFnAttr(llvm::Attribute::FnRetThunkExtern);
1022 if (FD && (getLangOpts().OpenCL ||
1023 ((getLangOpts().HIP || getLangOpts().OffloadViaLLVM) &&
1024 getLangOpts().CUDAIsDevice))) {
1025 // Add metadata for a kernel function.
1026 EmitKernelMetadata(FD, Fn);
1029 if (FD && FD->hasAttr<ClspvLibclcBuiltinAttr>()) {
1030 Fn->setMetadata("clspv_libclc_builtin",
1031 llvm::MDNode::get(getLLVMContext(), {}));
1034 // If we are checking function types, emit a function type signature as
1035 // prologue data.
1036 if (FD && SanOpts.has(SanitizerKind::Function)) {
1037 if (llvm::Constant *PrologueSig = getPrologueSignature(CGM, FD)) {
1038 llvm::LLVMContext &Ctx = Fn->getContext();
1039 llvm::MDBuilder MDB(Ctx);
1040 Fn->setMetadata(
1041 llvm::LLVMContext::MD_func_sanitize,
1042 MDB.createRTTIPointerPrologue(
1043 PrologueSig, getUBSanFunctionTypeHash(FD->getType())));
1047 // If we're checking nullability, we need to know whether we can check the
1048 // return value. Initialize the flag to 'true' and refine it in EmitParmDecl.
1049 if (SanOpts.has(SanitizerKind::NullabilityReturn)) {
1050 auto Nullability = FnRetTy->getNullability();
1051 if (Nullability && *Nullability == NullabilityKind::NonNull &&
1052 !FnRetTy->isRecordType()) {
1053 if (!(SanOpts.has(SanitizerKind::ReturnsNonnullAttribute) &&
1054 CurCodeDecl && CurCodeDecl->getAttr<ReturnsNonNullAttr>()))
1055 RetValNullabilityPrecondition =
1056 llvm::ConstantInt::getTrue(getLLVMContext());
1060 // If we're in C++ mode and the function name is "main", it is guaranteed
1061 // to be norecurse by the standard (3.6.1.3 "The function main shall not be
1062 // used within a program").
1064 // OpenCL C 2.0 v2.2-11 s6.9.i:
1065 // Recursion is not supported.
1067 // HLSL
1068 // Recursion is not supported.
1070 // SYCL v1.2.1 s3.10:
1071 // kernels cannot include RTTI information, exception classes,
1072 // recursive code, virtual functions or make use of C++ libraries that
1073 // are not compiled for the device.
1074 if (FD &&
1075 ((getLangOpts().CPlusPlus && FD->isMain()) || getLangOpts().OpenCL ||
1076 getLangOpts().HLSL || getLangOpts().SYCLIsDevice ||
1077 (getLangOpts().CUDA && FD->hasAttr<CUDAGlobalAttr>())))
1078 Fn->addFnAttr(llvm::Attribute::NoRecurse);
1080 llvm::RoundingMode RM = getLangOpts().getDefaultRoundingMode();
1081 llvm::fp::ExceptionBehavior FPExceptionBehavior =
1082 ToConstrainedExceptMD(getLangOpts().getDefaultExceptionMode());
1083 Builder.setDefaultConstrainedRounding(RM);
1084 Builder.setDefaultConstrainedExcept(FPExceptionBehavior);
1085 if ((FD && (FD->UsesFPIntrin() || FD->hasAttr<StrictFPAttr>())) ||
1086 (!FD && (FPExceptionBehavior != llvm::fp::ebIgnore ||
1087 RM != llvm::RoundingMode::NearestTiesToEven))) {
1088 Builder.setIsFPConstrained(true);
1089 Fn->addFnAttr(llvm::Attribute::StrictFP);
1092 // If a custom alignment is used, force realigning to this alignment on
1093 // any main function which certainly will need it.
1094 if (FD && ((FD->isMain() || FD->isMSVCRTEntryPoint()) &&
1095 CGM.getCodeGenOpts().StackAlignment))
1096 Fn->addFnAttr("stackrealign");
1098 // "main" doesn't need to zero out call-used registers.
1099 if (FD && FD->isMain())
1100 Fn->removeFnAttr("zero-call-used-regs");
1102 llvm::BasicBlock *EntryBB = createBasicBlock("entry", CurFn);
1104 // Create a marker to make it easy to insert allocas into the entryblock
1105 // later. Don't create this with the builder, because we don't want it
1106 // folded.
1107 llvm::Value *Undef = llvm::UndefValue::get(Int32Ty);
1108 AllocaInsertPt = new llvm::BitCastInst(Undef, Int32Ty, "allocapt", EntryBB);
1110 ReturnBlock = getJumpDestInCurrentScope("return");
1112 Builder.SetInsertPoint(EntryBB);
1114 // If we're checking the return value, allocate space for a pointer to a
1115 // precise source location of the checked return statement.
1116 if (requiresReturnValueCheck()) {
1117 ReturnLocation = CreateDefaultAlignTempAlloca(Int8PtrTy, "return.sloc.ptr");
1118 Builder.CreateStore(llvm::ConstantPointerNull::get(Int8PtrTy),
1119 ReturnLocation);
1122 // Emit subprogram debug descriptor.
1123 if (CGDebugInfo *DI = getDebugInfo()) {
1124 // Reconstruct the type from the argument list so that implicit parameters,
1125 // such as 'this' and 'vtt', show up in the debug info. Preserve the calling
1126 // convention.
1127 DI->emitFunctionStart(GD, Loc, StartLoc,
1128 DI->getFunctionType(FD, RetTy, Args), CurFn,
1129 CurFuncIsThunk);
1132 if (ShouldInstrumentFunction()) {
1133 if (CGM.getCodeGenOpts().InstrumentFunctions)
1134 CurFn->addFnAttr("instrument-function-entry", "__cyg_profile_func_enter");
1135 if (CGM.getCodeGenOpts().InstrumentFunctionsAfterInlining)
1136 CurFn->addFnAttr("instrument-function-entry-inlined",
1137 "__cyg_profile_func_enter");
1138 if (CGM.getCodeGenOpts().InstrumentFunctionEntryBare)
1139 CurFn->addFnAttr("instrument-function-entry-inlined",
1140 "__cyg_profile_func_enter_bare");
1143 // Since emitting the mcount call here impacts optimizations such as function
1144 // inlining, we just add an attribute to insert a mcount call in backend.
1145 // The attribute "counting-function" is set to mcount function name which is
1146 // architecture dependent.
1147 if (CGM.getCodeGenOpts().InstrumentForProfiling) {
1148 // Calls to fentry/mcount should not be generated if function has
1149 // the no_instrument_function attribute.
1150 if (!CurFuncDecl || !CurFuncDecl->hasAttr<NoInstrumentFunctionAttr>()) {
1151 if (CGM.getCodeGenOpts().CallFEntry)
1152 Fn->addFnAttr("fentry-call", "true");
1153 else {
1154 Fn->addFnAttr("instrument-function-entry-inlined",
1155 getTarget().getMCountName());
1157 if (CGM.getCodeGenOpts().MNopMCount) {
1158 if (!CGM.getCodeGenOpts().CallFEntry)
1159 CGM.getDiags().Report(diag::err_opt_not_valid_without_opt)
1160 << "-mnop-mcount" << "-mfentry";
1161 Fn->addFnAttr("mnop-mcount");
1164 if (CGM.getCodeGenOpts().RecordMCount) {
1165 if (!CGM.getCodeGenOpts().CallFEntry)
1166 CGM.getDiags().Report(diag::err_opt_not_valid_without_opt)
1167 << "-mrecord-mcount" << "-mfentry";
1168 Fn->addFnAttr("mrecord-mcount");
1173 if (CGM.getCodeGenOpts().PackedStack) {
1174 if (getContext().getTargetInfo().getTriple().getArch() !=
1175 llvm::Triple::systemz)
1176 CGM.getDiags().Report(diag::err_opt_not_valid_on_target)
1177 << "-mpacked-stack";
1178 Fn->addFnAttr("packed-stack");
1181 if (CGM.getCodeGenOpts().WarnStackSize != UINT_MAX &&
1182 !CGM.getDiags().isIgnored(diag::warn_fe_backend_frame_larger_than, Loc))
1183 Fn->addFnAttr("warn-stack-size",
1184 std::to_string(CGM.getCodeGenOpts().WarnStackSize));
1186 if (RetTy->isVoidType()) {
1187 // Void type; nothing to return.
1188 ReturnValue = Address::invalid();
1190 // Count the implicit return.
1191 if (!endsWithReturn(D))
1192 ++NumReturnExprs;
1193 } else if (CurFnInfo->getReturnInfo().getKind() == ABIArgInfo::Indirect) {
1194 // Indirect return; emit returned value directly into sret slot.
1195 // This reduces code size, and affects correctness in C++.
1196 auto AI = CurFn->arg_begin();
1197 if (CurFnInfo->getReturnInfo().isSRetAfterThis())
1198 ++AI;
1199 ReturnValue = makeNaturalAddressForPointer(
1200 &*AI, RetTy, CurFnInfo->getReturnInfo().getIndirectAlign(), false,
1201 nullptr, nullptr, KnownNonNull);
1202 if (!CurFnInfo->getReturnInfo().getIndirectByVal()) {
1203 ReturnValuePointer =
1204 CreateDefaultAlignTempAlloca(ReturnValue.getType(), "result.ptr");
1205 Builder.CreateStore(ReturnValue.emitRawPointer(*this),
1206 ReturnValuePointer);
1208 } else if (CurFnInfo->getReturnInfo().getKind() == ABIArgInfo::InAlloca &&
1209 !hasScalarEvaluationKind(CurFnInfo->getReturnType())) {
1210 // Load the sret pointer from the argument struct and return into that.
1211 unsigned Idx = CurFnInfo->getReturnInfo().getInAllocaFieldIndex();
1212 llvm::Function::arg_iterator EI = CurFn->arg_end();
1213 --EI;
1214 llvm::Value *Addr = Builder.CreateStructGEP(
1215 CurFnInfo->getArgStruct(), &*EI, Idx);
1216 llvm::Type *Ty =
1217 cast<llvm::GetElementPtrInst>(Addr)->getResultElementType();
1218 ReturnValuePointer = Address(Addr, Ty, getPointerAlign());
1219 Addr = Builder.CreateAlignedLoad(Ty, Addr, getPointerAlign(), "agg.result");
1220 ReturnValue = Address(Addr, ConvertType(RetTy),
1221 CGM.getNaturalTypeAlignment(RetTy), KnownNonNull);
1222 } else {
1223 ReturnValue = CreateIRTemp(RetTy, "retval");
1225 // Tell the epilog emitter to autorelease the result. We do this
1226 // now so that various specialized functions can suppress it
1227 // during their IR-generation.
1228 if (getLangOpts().ObjCAutoRefCount &&
1229 !CurFnInfo->isReturnsRetained() &&
1230 RetTy->isObjCRetainableType())
1231 AutoreleaseResult = true;
1234 EmitStartEHSpec(CurCodeDecl);
1236 PrologueCleanupDepth = EHStack.stable_begin();
1238 // Emit OpenMP specific initialization of the device functions.
1239 if (getLangOpts().OpenMP && CurCodeDecl)
1240 CGM.getOpenMPRuntime().emitFunctionProlog(*this, CurCodeDecl);
1242 if (FD && getLangOpts().HLSL) {
1243 // Handle emitting HLSL entry functions.
1244 if (FD->hasAttr<HLSLShaderAttr>()) {
1245 CGM.getHLSLRuntime().emitEntryFunction(FD, Fn);
1247 CGM.getHLSLRuntime().setHLSLFunctionAttributes(FD, Fn);
1250 EmitFunctionProlog(*CurFnInfo, CurFn, Args);
1252 if (const CXXMethodDecl *MD = dyn_cast_if_present<CXXMethodDecl>(D);
1253 MD && !MD->isStatic()) {
1254 bool IsInLambda =
1255 MD->getParent()->isLambda() && MD->getOverloadedOperator() == OO_Call;
1256 if (MD->isImplicitObjectMemberFunction())
1257 CGM.getCXXABI().EmitInstanceFunctionProlog(*this);
1258 if (IsInLambda) {
1259 // We're in a lambda; figure out the captures.
1260 MD->getParent()->getCaptureFields(LambdaCaptureFields,
1261 LambdaThisCaptureField);
1262 if (LambdaThisCaptureField) {
1263 // If the lambda captures the object referred to by '*this' - either by
1264 // value or by reference, make sure CXXThisValue points to the correct
1265 // object.
1267 // Get the lvalue for the field (which is a copy of the enclosing object
1268 // or contains the address of the enclosing object).
1269 LValue ThisFieldLValue = EmitLValueForLambdaField(LambdaThisCaptureField);
1270 if (!LambdaThisCaptureField->getType()->isPointerType()) {
1271 // If the enclosing object was captured by value, just use its
1272 // address. Sign this pointer.
1273 CXXThisValue = ThisFieldLValue.getPointer(*this);
1274 } else {
1275 // Load the lvalue pointed to by the field, since '*this' was captured
1276 // by reference.
1277 CXXThisValue =
1278 EmitLoadOfLValue(ThisFieldLValue, SourceLocation()).getScalarVal();
1281 for (auto *FD : MD->getParent()->fields()) {
1282 if (FD->hasCapturedVLAType()) {
1283 auto *ExprArg = EmitLoadOfLValue(EmitLValueForLambdaField(FD),
1284 SourceLocation()).getScalarVal();
1285 auto VAT = FD->getCapturedVLAType();
1286 VLASizeMap[VAT->getSizeExpr()] = ExprArg;
1289 } else if (MD->isImplicitObjectMemberFunction()) {
1290 // Not in a lambda; just use 'this' from the method.
1291 // FIXME: Should we generate a new load for each use of 'this'? The
1292 // fast register allocator would be happier...
1293 CXXThisValue = CXXABIThisValue;
1296 // Check the 'this' pointer once per function, if it's available.
1297 if (CXXABIThisValue) {
1298 SanitizerSet SkippedChecks;
1299 SkippedChecks.set(SanitizerKind::ObjectSize, true);
1300 QualType ThisTy = MD->getThisType();
1302 // If this is the call operator of a lambda with no captures, it
1303 // may have a static invoker function, which may call this operator with
1304 // a null 'this' pointer.
1305 if (isLambdaCallOperator(MD) && MD->getParent()->isCapturelessLambda())
1306 SkippedChecks.set(SanitizerKind::Null, true);
1308 EmitTypeCheck(
1309 isa<CXXConstructorDecl>(MD) ? TCK_ConstructorCall : TCK_MemberCall,
1310 Loc, CXXABIThisValue, ThisTy, CXXABIThisAlignment, SkippedChecks);
1314 // If any of the arguments have a variably modified type, make sure to
1315 // emit the type size, but only if the function is not naked. Naked functions
1316 // have no prolog to run this evaluation.
1317 if (!FD || !FD->hasAttr<NakedAttr>()) {
1318 for (const VarDecl *VD : Args) {
1319 // Dig out the type as written from ParmVarDecls; it's unclear whether
1320 // the standard (C99 6.9.1p10) requires this, but we're following the
1321 // precedent set by gcc.
1322 QualType Ty;
1323 if (const ParmVarDecl *PVD = dyn_cast<ParmVarDecl>(VD))
1324 Ty = PVD->getOriginalType();
1325 else
1326 Ty = VD->getType();
1328 if (Ty->isVariablyModifiedType())
1329 EmitVariablyModifiedType(Ty);
1332 // Emit a location at the end of the prologue.
1333 if (CGDebugInfo *DI = getDebugInfo())
1334 DI->EmitLocation(Builder, StartLoc);
1335 // TODO: Do we need to handle this in two places like we do with
1336 // target-features/target-cpu?
1337 if (CurFuncDecl)
1338 if (const auto *VecWidth = CurFuncDecl->getAttr<MinVectorWidthAttr>())
1339 LargestVectorWidth = VecWidth->getVectorWidth();
1341 if (CGM.shouldEmitConvergenceTokens())
1342 ConvergenceTokenStack.push_back(getOrEmitConvergenceEntryToken(CurFn));
1345 void CodeGenFunction::EmitFunctionBody(const Stmt *Body) {
1346 incrementProfileCounter(Body);
1347 maybeCreateMCDCCondBitmap();
1348 if (const CompoundStmt *S = dyn_cast<CompoundStmt>(Body))
1349 EmitCompoundStmtWithoutScope(*S);
1350 else
1351 EmitStmt(Body);
1354 /// When instrumenting to collect profile data, the counts for some blocks
1355 /// such as switch cases need to not include the fall-through counts, so
1356 /// emit a branch around the instrumentation code. When not instrumenting,
1357 /// this just calls EmitBlock().
1358 void CodeGenFunction::EmitBlockWithFallThrough(llvm::BasicBlock *BB,
1359 const Stmt *S) {
1360 llvm::BasicBlock *SkipCountBB = nullptr;
1361 // Do not skip over the instrumentation when single byte coverage mode is
1362 // enabled.
1363 if (HaveInsertPoint() && CGM.getCodeGenOpts().hasProfileClangInstr() &&
1364 !llvm::EnableSingleByteCoverage) {
1365 // When instrumenting for profiling, the fallthrough to certain
1366 // statements needs to skip over the instrumentation code so that we
1367 // get an accurate count.
1368 SkipCountBB = createBasicBlock("skipcount");
1369 EmitBranch(SkipCountBB);
1371 EmitBlock(BB);
1372 uint64_t CurrentCount = getCurrentProfileCount();
1373 incrementProfileCounter(S);
1374 setCurrentProfileCount(getCurrentProfileCount() + CurrentCount);
1375 if (SkipCountBB)
1376 EmitBlock(SkipCountBB);
1379 /// Tries to mark the given function nounwind based on the
1380 /// non-existence of any throwing calls within it. We believe this is
1381 /// lightweight enough to do at -O0.
1382 static void TryMarkNoThrow(llvm::Function *F) {
1383 // LLVM treats 'nounwind' on a function as part of the type, so we
1384 // can't do this on functions that can be overwritten.
1385 if (F->isInterposable()) return;
1387 for (llvm::BasicBlock &BB : *F)
1388 for (llvm::Instruction &I : BB)
1389 if (I.mayThrow())
1390 return;
1392 F->setDoesNotThrow();
1395 QualType CodeGenFunction::BuildFunctionArgList(GlobalDecl GD,
1396 FunctionArgList &Args) {
1397 const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl());
1398 QualType ResTy = FD->getReturnType();
1400 const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD);
1401 if (MD && MD->isImplicitObjectMemberFunction()) {
1402 if (CGM.getCXXABI().HasThisReturn(GD))
1403 ResTy = MD->getThisType();
1404 else if (CGM.getCXXABI().hasMostDerivedReturn(GD))
1405 ResTy = CGM.getContext().VoidPtrTy;
1406 CGM.getCXXABI().buildThisParam(*this, Args);
1409 // The base version of an inheriting constructor whose constructed base is a
1410 // virtual base is not passed any arguments (because it doesn't actually call
1411 // the inherited constructor).
1412 bool PassedParams = true;
1413 if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(FD))
1414 if (auto Inherited = CD->getInheritedConstructor())
1415 PassedParams =
1416 getTypes().inheritingCtorHasParams(Inherited, GD.getCtorType());
1418 if (PassedParams) {
1419 for (auto *Param : FD->parameters()) {
1420 Args.push_back(Param);
1421 if (!Param->hasAttr<PassObjectSizeAttr>())
1422 continue;
1424 auto *Implicit = ImplicitParamDecl::Create(
1425 getContext(), Param->getDeclContext(), Param->getLocation(),
1426 /*Id=*/nullptr, getContext().getSizeType(), ImplicitParamKind::Other);
1427 SizeArguments[Param] = Implicit;
1428 Args.push_back(Implicit);
1432 if (MD && (isa<CXXConstructorDecl>(MD) || isa<CXXDestructorDecl>(MD)))
1433 CGM.getCXXABI().addImplicitStructorParams(*this, ResTy, Args);
1435 return ResTy;
1438 void CodeGenFunction::GenerateCode(GlobalDecl GD, llvm::Function *Fn,
1439 const CGFunctionInfo &FnInfo) {
1440 assert(Fn && "generating code for null Function");
1441 const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl());
1442 CurGD = GD;
1444 FunctionArgList Args;
1445 QualType ResTy = BuildFunctionArgList(GD, Args);
1447 CGM.getTargetCodeGenInfo().checkFunctionABI(CGM, FD);
1449 if (FD->isInlineBuiltinDeclaration()) {
1450 // When generating code for a builtin with an inline declaration, use a
1451 // mangled name to hold the actual body, while keeping an external
1452 // definition in case the function pointer is referenced somewhere.
1453 std::string FDInlineName = (Fn->getName() + ".inline").str();
1454 llvm::Module *M = Fn->getParent();
1455 llvm::Function *Clone = M->getFunction(FDInlineName);
1456 if (!Clone) {
1457 Clone = llvm::Function::Create(Fn->getFunctionType(),
1458 llvm::GlobalValue::InternalLinkage,
1459 Fn->getAddressSpace(), FDInlineName, M);
1460 Clone->addFnAttr(llvm::Attribute::AlwaysInline);
1462 Fn->setLinkage(llvm::GlobalValue::ExternalLinkage);
1463 Fn = Clone;
1464 } else {
1465 // Detect the unusual situation where an inline version is shadowed by a
1466 // non-inline version. In that case we should pick the external one
1467 // everywhere. That's GCC behavior too. Unfortunately, I cannot find a way
1468 // to detect that situation before we reach codegen, so do some late
1469 // replacement.
1470 for (const FunctionDecl *PD = FD->getPreviousDecl(); PD;
1471 PD = PD->getPreviousDecl()) {
1472 if (LLVM_UNLIKELY(PD->isInlineBuiltinDeclaration())) {
1473 std::string FDInlineName = (Fn->getName() + ".inline").str();
1474 llvm::Module *M = Fn->getParent();
1475 if (llvm::Function *Clone = M->getFunction(FDInlineName)) {
1476 Clone->replaceAllUsesWith(Fn);
1477 Clone->eraseFromParent();
1479 break;
1484 // Check if we should generate debug info for this function.
1485 if (FD->hasAttr<NoDebugAttr>()) {
1486 // Clear non-distinct debug info that was possibly attached to the function
1487 // due to an earlier declaration without the nodebug attribute
1488 Fn->setSubprogram(nullptr);
1489 // Disable debug info indefinitely for this function
1490 DebugInfo = nullptr;
1493 // The function might not have a body if we're generating thunks for a
1494 // function declaration.
1495 SourceRange BodyRange;
1496 if (Stmt *Body = FD->getBody())
1497 BodyRange = Body->getSourceRange();
1498 else
1499 BodyRange = FD->getLocation();
1500 CurEHLocation = BodyRange.getEnd();
1502 // Use the location of the start of the function to determine where
1503 // the function definition is located. By default use the location
1504 // of the declaration as the location for the subprogram. A function
1505 // may lack a declaration in the source code if it is created by code
1506 // gen. (examples: _GLOBAL__I_a, __cxx_global_array_dtor, thunk).
1507 SourceLocation Loc = FD->getLocation();
1509 // If this is a function specialization then use the pattern body
1510 // as the location for the function.
1511 if (const FunctionDecl *SpecDecl = FD->getTemplateInstantiationPattern())
1512 if (SpecDecl->hasBody(SpecDecl))
1513 Loc = SpecDecl->getLocation();
1515 Stmt *Body = FD->getBody();
1517 if (Body) {
1518 // Coroutines always emit lifetime markers.
1519 if (isa<CoroutineBodyStmt>(Body))
1520 ShouldEmitLifetimeMarkers = true;
1522 // Initialize helper which will detect jumps which can cause invalid
1523 // lifetime markers.
1524 if (ShouldEmitLifetimeMarkers)
1525 Bypasses.Init(Body);
1528 // Emit the standard function prologue.
1529 StartFunction(GD, ResTy, Fn, FnInfo, Args, Loc, BodyRange.getBegin());
1531 // Save parameters for coroutine function.
1532 if (Body && isa_and_nonnull<CoroutineBodyStmt>(Body))
1533 llvm::append_range(FnArgs, FD->parameters());
1535 // Ensure that the function adheres to the forward progress guarantee, which
1536 // is required by certain optimizations.
1537 // In C++11 and up, the attribute will be removed if the body contains a
1538 // trivial empty loop.
1539 if (checkIfFunctionMustProgress())
1540 CurFn->addFnAttr(llvm::Attribute::MustProgress);
1542 // Generate the body of the function.
1543 PGO.assignRegionCounters(GD, CurFn);
1544 if (isa<CXXDestructorDecl>(FD))
1545 EmitDestructorBody(Args);
1546 else if (isa<CXXConstructorDecl>(FD))
1547 EmitConstructorBody(Args);
1548 else if (getLangOpts().CUDA &&
1549 !getLangOpts().CUDAIsDevice &&
1550 FD->hasAttr<CUDAGlobalAttr>())
1551 CGM.getCUDARuntime().emitDeviceStub(*this, Args);
1552 else if (isa<CXXMethodDecl>(FD) &&
1553 cast<CXXMethodDecl>(FD)->isLambdaStaticInvoker()) {
1554 // The lambda static invoker function is special, because it forwards or
1555 // clones the body of the function call operator (but is actually static).
1556 EmitLambdaStaticInvokeBody(cast<CXXMethodDecl>(FD));
1557 } else if (isa<CXXMethodDecl>(FD) &&
1558 isLambdaCallOperator(cast<CXXMethodDecl>(FD)) &&
1559 !FnInfo.isDelegateCall() &&
1560 cast<CXXMethodDecl>(FD)->getParent()->getLambdaStaticInvoker() &&
1561 hasInAllocaArg(cast<CXXMethodDecl>(FD))) {
1562 // If emitting a lambda with static invoker on X86 Windows, change
1563 // the call operator body.
1564 // Make sure that this is a call operator with an inalloca arg and check
1565 // for delegate call to make sure this is the original call op and not the
1566 // new forwarding function for the static invoker.
1567 EmitLambdaInAllocaCallOpBody(cast<CXXMethodDecl>(FD));
1568 } else if (FD->isDefaulted() && isa<CXXMethodDecl>(FD) &&
1569 (cast<CXXMethodDecl>(FD)->isCopyAssignmentOperator() ||
1570 cast<CXXMethodDecl>(FD)->isMoveAssignmentOperator())) {
1571 // Implicit copy-assignment gets the same special treatment as implicit
1572 // copy-constructors.
1573 emitImplicitAssignmentOperatorBody(Args);
1574 } else if (Body) {
1575 EmitFunctionBody(Body);
1576 } else
1577 llvm_unreachable("no definition for emitted function");
1579 // C++11 [stmt.return]p2:
1580 // Flowing off the end of a function [...] results in undefined behavior in
1581 // a value-returning function.
1582 // C11 6.9.1p12:
1583 // If the '}' that terminates a function is reached, and the value of the
1584 // function call is used by the caller, the behavior is undefined.
1585 if (getLangOpts().CPlusPlus && !FD->hasImplicitReturnZero() && !SawAsmBlock &&
1586 !FD->getReturnType()->isVoidType() && Builder.GetInsertBlock()) {
1587 bool ShouldEmitUnreachable =
1588 CGM.getCodeGenOpts().StrictReturn ||
1589 !CGM.MayDropFunctionReturn(FD->getASTContext(), FD->getReturnType());
1590 if (SanOpts.has(SanitizerKind::Return)) {
1591 SanitizerScope SanScope(this);
1592 llvm::Value *IsFalse = Builder.getFalse();
1593 EmitCheck(std::make_pair(IsFalse, SanitizerKind::Return),
1594 SanitizerHandler::MissingReturn,
1595 EmitCheckSourceLocation(FD->getLocation()), std::nullopt);
1596 } else if (ShouldEmitUnreachable) {
1597 if (CGM.getCodeGenOpts().OptimizationLevel == 0)
1598 EmitTrapCall(llvm::Intrinsic::trap);
1600 if (SanOpts.has(SanitizerKind::Return) || ShouldEmitUnreachable) {
1601 Builder.CreateUnreachable();
1602 Builder.ClearInsertionPoint();
1606 // Emit the standard function epilogue.
1607 FinishFunction(BodyRange.getEnd());
1609 // If we haven't marked the function nothrow through other means, do
1610 // a quick pass now to see if we can.
1611 if (!CurFn->doesNotThrow())
1612 TryMarkNoThrow(CurFn);
1615 /// ContainsLabel - Return true if the statement contains a label in it. If
1616 /// this statement is not executed normally, it not containing a label means
1617 /// that we can just remove the code.
1618 bool CodeGenFunction::ContainsLabel(const Stmt *S, bool IgnoreCaseStmts) {
1619 // Null statement, not a label!
1620 if (!S) return false;
1622 // If this is a label, we have to emit the code, consider something like:
1623 // if (0) { ... foo: bar(); } goto foo;
1625 // TODO: If anyone cared, we could track __label__'s, since we know that you
1626 // can't jump to one from outside their declared region.
1627 if (isa<LabelStmt>(S))
1628 return true;
1630 // If this is a case/default statement, and we haven't seen a switch, we have
1631 // to emit the code.
1632 if (isa<SwitchCase>(S) && !IgnoreCaseStmts)
1633 return true;
1635 // If this is a switch statement, we want to ignore cases below it.
1636 if (isa<SwitchStmt>(S))
1637 IgnoreCaseStmts = true;
1639 // Scan subexpressions for verboten labels.
1640 for (const Stmt *SubStmt : S->children())
1641 if (ContainsLabel(SubStmt, IgnoreCaseStmts))
1642 return true;
1644 return false;
1647 /// containsBreak - Return true if the statement contains a break out of it.
1648 /// If the statement (recursively) contains a switch or loop with a break
1649 /// inside of it, this is fine.
1650 bool CodeGenFunction::containsBreak(const Stmt *S) {
1651 // Null statement, not a label!
1652 if (!S) return false;
1654 // If this is a switch or loop that defines its own break scope, then we can
1655 // include it and anything inside of it.
1656 if (isa<SwitchStmt>(S) || isa<WhileStmt>(S) || isa<DoStmt>(S) ||
1657 isa<ForStmt>(S))
1658 return false;
1660 if (isa<BreakStmt>(S))
1661 return true;
1663 // Scan subexpressions for verboten breaks.
1664 for (const Stmt *SubStmt : S->children())
1665 if (containsBreak(SubStmt))
1666 return true;
1668 return false;
1671 bool CodeGenFunction::mightAddDeclToScope(const Stmt *S) {
1672 if (!S) return false;
1674 // Some statement kinds add a scope and thus never add a decl to the current
1675 // scope. Note, this list is longer than the list of statements that might
1676 // have an unscoped decl nested within them, but this way is conservatively
1677 // correct even if more statement kinds are added.
1678 if (isa<IfStmt>(S) || isa<SwitchStmt>(S) || isa<WhileStmt>(S) ||
1679 isa<DoStmt>(S) || isa<ForStmt>(S) || isa<CompoundStmt>(S) ||
1680 isa<CXXForRangeStmt>(S) || isa<CXXTryStmt>(S) ||
1681 isa<ObjCForCollectionStmt>(S) || isa<ObjCAtTryStmt>(S))
1682 return false;
1684 if (isa<DeclStmt>(S))
1685 return true;
1687 for (const Stmt *SubStmt : S->children())
1688 if (mightAddDeclToScope(SubStmt))
1689 return true;
1691 return false;
1694 /// ConstantFoldsToSimpleInteger - If the specified expression does not fold
1695 /// to a constant, or if it does but contains a label, return false. If it
1696 /// constant folds return true and set the boolean result in Result.
1697 bool CodeGenFunction::ConstantFoldsToSimpleInteger(const Expr *Cond,
1698 bool &ResultBool,
1699 bool AllowLabels) {
1700 // If MC/DC is enabled, disable folding so that we can instrument all
1701 // conditions to yield complete test vectors. We still keep track of
1702 // folded conditions during region mapping and visualization.
1703 if (!AllowLabels && CGM.getCodeGenOpts().hasProfileClangInstr() &&
1704 CGM.getCodeGenOpts().MCDCCoverage)
1705 return false;
1707 llvm::APSInt ResultInt;
1708 if (!ConstantFoldsToSimpleInteger(Cond, ResultInt, AllowLabels))
1709 return false;
1711 ResultBool = ResultInt.getBoolValue();
1712 return true;
1715 /// ConstantFoldsToSimpleInteger - If the specified expression does not fold
1716 /// to a constant, or if it does but contains a label, return false. If it
1717 /// constant folds return true and set the folded value.
1718 bool CodeGenFunction::ConstantFoldsToSimpleInteger(const Expr *Cond,
1719 llvm::APSInt &ResultInt,
1720 bool AllowLabels) {
1721 // FIXME: Rename and handle conversion of other evaluatable things
1722 // to bool.
1723 Expr::EvalResult Result;
1724 if (!Cond->EvaluateAsInt(Result, getContext()))
1725 return false; // Not foldable, not integer or not fully evaluatable.
1727 llvm::APSInt Int = Result.Val.getInt();
1728 if (!AllowLabels && CodeGenFunction::ContainsLabel(Cond))
1729 return false; // Contains a label.
1731 ResultInt = Int;
1732 return true;
1735 /// Strip parentheses and simplistic logical-NOT operators.
1736 const Expr *CodeGenFunction::stripCond(const Expr *C) {
1737 while (const UnaryOperator *Op = dyn_cast<UnaryOperator>(C->IgnoreParens())) {
1738 if (Op->getOpcode() != UO_LNot)
1739 break;
1740 C = Op->getSubExpr();
1742 return C->IgnoreParens();
1745 /// Determine whether the given condition is an instrumentable condition
1746 /// (i.e. no "&&" or "||").
1747 bool CodeGenFunction::isInstrumentedCondition(const Expr *C) {
1748 const BinaryOperator *BOp = dyn_cast<BinaryOperator>(stripCond(C));
1749 return (!BOp || !BOp->isLogicalOp());
1752 /// EmitBranchToCounterBlock - Emit a conditional branch to a new block that
1753 /// increments a profile counter based on the semantics of the given logical
1754 /// operator opcode. This is used to instrument branch condition coverage for
1755 /// logical operators.
1756 void CodeGenFunction::EmitBranchToCounterBlock(
1757 const Expr *Cond, BinaryOperator::Opcode LOp, llvm::BasicBlock *TrueBlock,
1758 llvm::BasicBlock *FalseBlock, uint64_t TrueCount /* = 0 */,
1759 Stmt::Likelihood LH /* =None */, const Expr *CntrIdx /* = nullptr */) {
1760 // If not instrumenting, just emit a branch.
1761 bool InstrumentRegions = CGM.getCodeGenOpts().hasProfileClangInstr();
1762 if (!InstrumentRegions || !isInstrumentedCondition(Cond))
1763 return EmitBranchOnBoolExpr(Cond, TrueBlock, FalseBlock, TrueCount, LH);
1765 llvm::BasicBlock *ThenBlock = nullptr;
1766 llvm::BasicBlock *ElseBlock = nullptr;
1767 llvm::BasicBlock *NextBlock = nullptr;
1769 // Create the block we'll use to increment the appropriate counter.
1770 llvm::BasicBlock *CounterIncrBlock = createBasicBlock("lop.rhscnt");
1772 // Set block pointers according to Logical-AND (BO_LAnd) semantics. This
1773 // means we need to evaluate the condition and increment the counter on TRUE:
1775 // if (Cond)
1776 // goto CounterIncrBlock;
1777 // else
1778 // goto FalseBlock;
1780 // CounterIncrBlock:
1781 // Counter++;
1782 // goto TrueBlock;
1784 if (LOp == BO_LAnd) {
1785 ThenBlock = CounterIncrBlock;
1786 ElseBlock = FalseBlock;
1787 NextBlock = TrueBlock;
1790 // Set block pointers according to Logical-OR (BO_LOr) semantics. This means
1791 // we need to evaluate the condition and increment the counter on FALSE:
1793 // if (Cond)
1794 // goto TrueBlock;
1795 // else
1796 // goto CounterIncrBlock;
1798 // CounterIncrBlock:
1799 // Counter++;
1800 // goto FalseBlock;
1802 else if (LOp == BO_LOr) {
1803 ThenBlock = TrueBlock;
1804 ElseBlock = CounterIncrBlock;
1805 NextBlock = FalseBlock;
1806 } else {
1807 llvm_unreachable("Expected Opcode must be that of a Logical Operator");
1810 // Emit Branch based on condition.
1811 EmitBranchOnBoolExpr(Cond, ThenBlock, ElseBlock, TrueCount, LH);
1813 // Emit the block containing the counter increment(s).
1814 EmitBlock(CounterIncrBlock);
1816 // Increment corresponding counter; if index not provided, use Cond as index.
1817 incrementProfileCounter(CntrIdx ? CntrIdx : Cond);
1819 // Go to the next block.
1820 EmitBranch(NextBlock);
1823 /// EmitBranchOnBoolExpr - Emit a branch on a boolean condition (e.g. for an if
1824 /// statement) to the specified blocks. Based on the condition, this might try
1825 /// to simplify the codegen of the conditional based on the branch.
1826 /// \param LH The value of the likelihood attribute on the True branch.
1827 /// \param ConditionalOp Used by MC/DC code coverage to track the result of the
1828 /// ConditionalOperator (ternary) through a recursive call for the operator's
1829 /// LHS and RHS nodes.
1830 void CodeGenFunction::EmitBranchOnBoolExpr(
1831 const Expr *Cond, llvm::BasicBlock *TrueBlock, llvm::BasicBlock *FalseBlock,
1832 uint64_t TrueCount, Stmt::Likelihood LH, const Expr *ConditionalOp) {
1833 Cond = Cond->IgnoreParens();
1835 if (const BinaryOperator *CondBOp = dyn_cast<BinaryOperator>(Cond)) {
1836 // Handle X && Y in a condition.
1837 if (CondBOp->getOpcode() == BO_LAnd) {
1838 MCDCLogOpStack.push_back(CondBOp);
1840 // If we have "1 && X", simplify the code. "0 && X" would have constant
1841 // folded if the case was simple enough.
1842 bool ConstantBool = false;
1843 if (ConstantFoldsToSimpleInteger(CondBOp->getLHS(), ConstantBool) &&
1844 ConstantBool) {
1845 // br(1 && X) -> br(X).
1846 incrementProfileCounter(CondBOp);
1847 EmitBranchToCounterBlock(CondBOp->getRHS(), BO_LAnd, TrueBlock,
1848 FalseBlock, TrueCount, LH);
1849 MCDCLogOpStack.pop_back();
1850 return;
1853 // If we have "X && 1", simplify the code to use an uncond branch.
1854 // "X && 0" would have been constant folded to 0.
1855 if (ConstantFoldsToSimpleInteger(CondBOp->getRHS(), ConstantBool) &&
1856 ConstantBool) {
1857 // br(X && 1) -> br(X).
1858 EmitBranchToCounterBlock(CondBOp->getLHS(), BO_LAnd, TrueBlock,
1859 FalseBlock, TrueCount, LH, CondBOp);
1860 MCDCLogOpStack.pop_back();
1861 return;
1864 // Emit the LHS as a conditional. If the LHS conditional is false, we
1865 // want to jump to the FalseBlock.
1866 llvm::BasicBlock *LHSTrue = createBasicBlock("land.lhs.true");
1867 // The counter tells us how often we evaluate RHS, and all of TrueCount
1868 // can be propagated to that branch.
1869 uint64_t RHSCount = getProfileCount(CondBOp->getRHS());
1871 ConditionalEvaluation eval(*this);
1873 ApplyDebugLocation DL(*this, Cond);
1874 // Propagate the likelihood attribute like __builtin_expect
1875 // __builtin_expect(X && Y, 1) -> X and Y are likely
1876 // __builtin_expect(X && Y, 0) -> only Y is unlikely
1877 EmitBranchOnBoolExpr(CondBOp->getLHS(), LHSTrue, FalseBlock, RHSCount,
1878 LH == Stmt::LH_Unlikely ? Stmt::LH_None : LH);
1879 EmitBlock(LHSTrue);
1882 incrementProfileCounter(CondBOp);
1883 setCurrentProfileCount(getProfileCount(CondBOp->getRHS()));
1885 // Any temporaries created here are conditional.
1886 eval.begin(*this);
1887 EmitBranchToCounterBlock(CondBOp->getRHS(), BO_LAnd, TrueBlock,
1888 FalseBlock, TrueCount, LH);
1889 eval.end(*this);
1890 MCDCLogOpStack.pop_back();
1891 return;
1894 if (CondBOp->getOpcode() == BO_LOr) {
1895 MCDCLogOpStack.push_back(CondBOp);
1897 // If we have "0 || X", simplify the code. "1 || X" would have constant
1898 // folded if the case was simple enough.
1899 bool ConstantBool = false;
1900 if (ConstantFoldsToSimpleInteger(CondBOp->getLHS(), ConstantBool) &&
1901 !ConstantBool) {
1902 // br(0 || X) -> br(X).
1903 incrementProfileCounter(CondBOp);
1904 EmitBranchToCounterBlock(CondBOp->getRHS(), BO_LOr, TrueBlock,
1905 FalseBlock, TrueCount, LH);
1906 MCDCLogOpStack.pop_back();
1907 return;
1910 // If we have "X || 0", simplify the code to use an uncond branch.
1911 // "X || 1" would have been constant folded to 1.
1912 if (ConstantFoldsToSimpleInteger(CondBOp->getRHS(), ConstantBool) &&
1913 !ConstantBool) {
1914 // br(X || 0) -> br(X).
1915 EmitBranchToCounterBlock(CondBOp->getLHS(), BO_LOr, TrueBlock,
1916 FalseBlock, TrueCount, LH, CondBOp);
1917 MCDCLogOpStack.pop_back();
1918 return;
1920 // Emit the LHS as a conditional. If the LHS conditional is true, we
1921 // want to jump to the TrueBlock.
1922 llvm::BasicBlock *LHSFalse = createBasicBlock("lor.lhs.false");
1923 // We have the count for entry to the RHS and for the whole expression
1924 // being true, so we can divy up True count between the short circuit and
1925 // the RHS.
1926 uint64_t LHSCount =
1927 getCurrentProfileCount() - getProfileCount(CondBOp->getRHS());
1928 uint64_t RHSCount = TrueCount - LHSCount;
1930 ConditionalEvaluation eval(*this);
1932 // Propagate the likelihood attribute like __builtin_expect
1933 // __builtin_expect(X || Y, 1) -> only Y is likely
1934 // __builtin_expect(X || Y, 0) -> both X and Y are unlikely
1935 ApplyDebugLocation DL(*this, Cond);
1936 EmitBranchOnBoolExpr(CondBOp->getLHS(), TrueBlock, LHSFalse, LHSCount,
1937 LH == Stmt::LH_Likely ? Stmt::LH_None : LH);
1938 EmitBlock(LHSFalse);
1941 incrementProfileCounter(CondBOp);
1942 setCurrentProfileCount(getProfileCount(CondBOp->getRHS()));
1944 // Any temporaries created here are conditional.
1945 eval.begin(*this);
1946 EmitBranchToCounterBlock(CondBOp->getRHS(), BO_LOr, TrueBlock, FalseBlock,
1947 RHSCount, LH);
1949 eval.end(*this);
1950 MCDCLogOpStack.pop_back();
1951 return;
1955 if (const UnaryOperator *CondUOp = dyn_cast<UnaryOperator>(Cond)) {
1956 // br(!x, t, f) -> br(x, f, t)
1957 // Avoid doing this optimization when instrumenting a condition for MC/DC.
1958 // LNot is taken as part of the condition for simplicity, and changing its
1959 // sense negatively impacts test vector tracking.
1960 bool MCDCCondition = CGM.getCodeGenOpts().hasProfileClangInstr() &&
1961 CGM.getCodeGenOpts().MCDCCoverage &&
1962 isInstrumentedCondition(Cond);
1963 if (CondUOp->getOpcode() == UO_LNot && !MCDCCondition) {
1964 // Negate the count.
1965 uint64_t FalseCount = getCurrentProfileCount() - TrueCount;
1966 // The values of the enum are chosen to make this negation possible.
1967 LH = static_cast<Stmt::Likelihood>(-LH);
1968 // Negate the condition and swap the destination blocks.
1969 return EmitBranchOnBoolExpr(CondUOp->getSubExpr(), FalseBlock, TrueBlock,
1970 FalseCount, LH);
1974 if (const ConditionalOperator *CondOp = dyn_cast<ConditionalOperator>(Cond)) {
1975 // br(c ? x : y, t, f) -> br(c, br(x, t, f), br(y, t, f))
1976 llvm::BasicBlock *LHSBlock = createBasicBlock("cond.true");
1977 llvm::BasicBlock *RHSBlock = createBasicBlock("cond.false");
1979 // The ConditionalOperator itself has no likelihood information for its
1980 // true and false branches. This matches the behavior of __builtin_expect.
1981 ConditionalEvaluation cond(*this);
1982 EmitBranchOnBoolExpr(CondOp->getCond(), LHSBlock, RHSBlock,
1983 getProfileCount(CondOp), Stmt::LH_None);
1985 // When computing PGO branch weights, we only know the overall count for
1986 // the true block. This code is essentially doing tail duplication of the
1987 // naive code-gen, introducing new edges for which counts are not
1988 // available. Divide the counts proportionally between the LHS and RHS of
1989 // the conditional operator.
1990 uint64_t LHSScaledTrueCount = 0;
1991 if (TrueCount) {
1992 double LHSRatio =
1993 getProfileCount(CondOp) / (double)getCurrentProfileCount();
1994 LHSScaledTrueCount = TrueCount * LHSRatio;
1997 cond.begin(*this);
1998 EmitBlock(LHSBlock);
1999 incrementProfileCounter(CondOp);
2001 ApplyDebugLocation DL(*this, Cond);
2002 EmitBranchOnBoolExpr(CondOp->getLHS(), TrueBlock, FalseBlock,
2003 LHSScaledTrueCount, LH, CondOp);
2005 cond.end(*this);
2007 cond.begin(*this);
2008 EmitBlock(RHSBlock);
2009 EmitBranchOnBoolExpr(CondOp->getRHS(), TrueBlock, FalseBlock,
2010 TrueCount - LHSScaledTrueCount, LH, CondOp);
2011 cond.end(*this);
2013 return;
2016 if (const CXXThrowExpr *Throw = dyn_cast<CXXThrowExpr>(Cond)) {
2017 // Conditional operator handling can give us a throw expression as a
2018 // condition for a case like:
2019 // br(c ? throw x : y, t, f) -> br(c, br(throw x, t, f), br(y, t, f)
2020 // Fold this to:
2021 // br(c, throw x, br(y, t, f))
2022 EmitCXXThrowExpr(Throw, /*KeepInsertionPoint*/false);
2023 return;
2026 // Emit the code with the fully general case.
2027 llvm::Value *CondV;
2029 ApplyDebugLocation DL(*this, Cond);
2030 CondV = EvaluateExprAsBool(Cond);
2033 // If not at the top of the logical operator nest, update MCDC temp with the
2034 // boolean result of the evaluated condition.
2035 if (!MCDCLogOpStack.empty()) {
2036 const Expr *MCDCBaseExpr = Cond;
2037 // When a nested ConditionalOperator (ternary) is encountered in a boolean
2038 // expression, MC/DC tracks the result of the ternary, and this is tied to
2039 // the ConditionalOperator expression and not the ternary's LHS or RHS. If
2040 // this is the case, the ConditionalOperator expression is passed through
2041 // the ConditionalOp parameter and then used as the MCDC base expression.
2042 if (ConditionalOp)
2043 MCDCBaseExpr = ConditionalOp;
2045 maybeUpdateMCDCCondBitmap(MCDCBaseExpr, CondV);
2048 llvm::MDNode *Weights = nullptr;
2049 llvm::MDNode *Unpredictable = nullptr;
2051 // If the branch has a condition wrapped by __builtin_unpredictable,
2052 // create metadata that specifies that the branch is unpredictable.
2053 // Don't bother if not optimizing because that metadata would not be used.
2054 auto *Call = dyn_cast<CallExpr>(Cond->IgnoreImpCasts());
2055 if (Call && CGM.getCodeGenOpts().OptimizationLevel != 0) {
2056 auto *FD = dyn_cast_or_null<FunctionDecl>(Call->getCalleeDecl());
2057 if (FD && FD->getBuiltinID() == Builtin::BI__builtin_unpredictable) {
2058 llvm::MDBuilder MDHelper(getLLVMContext());
2059 Unpredictable = MDHelper.createUnpredictable();
2063 // If there is a Likelihood knowledge for the cond, lower it.
2064 // Note that if not optimizing this won't emit anything.
2065 llvm::Value *NewCondV = emitCondLikelihoodViaExpectIntrinsic(CondV, LH);
2066 if (CondV != NewCondV)
2067 CondV = NewCondV;
2068 else {
2069 // Otherwise, lower profile counts. Note that we do this even at -O0.
2070 uint64_t CurrentCount = std::max(getCurrentProfileCount(), TrueCount);
2071 Weights = createProfileWeights(TrueCount, CurrentCount - TrueCount);
2074 Builder.CreateCondBr(CondV, TrueBlock, FalseBlock, Weights, Unpredictable);
2077 /// ErrorUnsupported - Print out an error that codegen doesn't support the
2078 /// specified stmt yet.
2079 void CodeGenFunction::ErrorUnsupported(const Stmt *S, const char *Type) {
2080 CGM.ErrorUnsupported(S, Type);
2083 /// emitNonZeroVLAInit - Emit the "zero" initialization of a
2084 /// variable-length array whose elements have a non-zero bit-pattern.
2086 /// \param baseType the inner-most element type of the array
2087 /// \param src - a char* pointing to the bit-pattern for a single
2088 /// base element of the array
2089 /// \param sizeInChars - the total size of the VLA, in chars
2090 static void emitNonZeroVLAInit(CodeGenFunction &CGF, QualType baseType,
2091 Address dest, Address src,
2092 llvm::Value *sizeInChars) {
2093 CGBuilderTy &Builder = CGF.Builder;
2095 CharUnits baseSize = CGF.getContext().getTypeSizeInChars(baseType);
2096 llvm::Value *baseSizeInChars
2097 = llvm::ConstantInt::get(CGF.IntPtrTy, baseSize.getQuantity());
2099 Address begin = dest.withElementType(CGF.Int8Ty);
2100 llvm::Value *end = Builder.CreateInBoundsGEP(begin.getElementType(),
2101 begin.emitRawPointer(CGF),
2102 sizeInChars, "vla.end");
2104 llvm::BasicBlock *originBB = CGF.Builder.GetInsertBlock();
2105 llvm::BasicBlock *loopBB = CGF.createBasicBlock("vla-init.loop");
2106 llvm::BasicBlock *contBB = CGF.createBasicBlock("vla-init.cont");
2108 // Make a loop over the VLA. C99 guarantees that the VLA element
2109 // count must be nonzero.
2110 CGF.EmitBlock(loopBB);
2112 llvm::PHINode *cur = Builder.CreatePHI(begin.getType(), 2, "vla.cur");
2113 cur->addIncoming(begin.emitRawPointer(CGF), originBB);
2115 CharUnits curAlign =
2116 dest.getAlignment().alignmentOfArrayElement(baseSize);
2118 // memcpy the individual element bit-pattern.
2119 Builder.CreateMemCpy(Address(cur, CGF.Int8Ty, curAlign), src, baseSizeInChars,
2120 /*volatile*/ false);
2122 // Go to the next element.
2123 llvm::Value *next =
2124 Builder.CreateInBoundsGEP(CGF.Int8Ty, cur, baseSizeInChars, "vla.next");
2126 // Leave if that's the end of the VLA.
2127 llvm::Value *done = Builder.CreateICmpEQ(next, end, "vla-init.isdone");
2128 Builder.CreateCondBr(done, contBB, loopBB);
2129 cur->addIncoming(next, loopBB);
2131 CGF.EmitBlock(contBB);
2134 void
2135 CodeGenFunction::EmitNullInitialization(Address DestPtr, QualType Ty) {
2136 // Ignore empty classes in C++.
2137 if (getLangOpts().CPlusPlus) {
2138 if (const RecordType *RT = Ty->getAs<RecordType>()) {
2139 if (cast<CXXRecordDecl>(RT->getDecl())->isEmpty())
2140 return;
2144 if (DestPtr.getElementType() != Int8Ty)
2145 DestPtr = DestPtr.withElementType(Int8Ty);
2147 // Get size and alignment info for this aggregate.
2148 CharUnits size = getContext().getTypeSizeInChars(Ty);
2150 llvm::Value *SizeVal;
2151 const VariableArrayType *vla;
2153 // Don't bother emitting a zero-byte memset.
2154 if (size.isZero()) {
2155 // But note that getTypeInfo returns 0 for a VLA.
2156 if (const VariableArrayType *vlaType =
2157 dyn_cast_or_null<VariableArrayType>(
2158 getContext().getAsArrayType(Ty))) {
2159 auto VlaSize = getVLASize(vlaType);
2160 SizeVal = VlaSize.NumElts;
2161 CharUnits eltSize = getContext().getTypeSizeInChars(VlaSize.Type);
2162 if (!eltSize.isOne())
2163 SizeVal = Builder.CreateNUWMul(SizeVal, CGM.getSize(eltSize));
2164 vla = vlaType;
2165 } else {
2166 return;
2168 } else {
2169 SizeVal = CGM.getSize(size);
2170 vla = nullptr;
2173 // If the type contains a pointer to data member we can't memset it to zero.
2174 // Instead, create a null constant and copy it to the destination.
2175 // TODO: there are other patterns besides zero that we can usefully memset,
2176 // like -1, which happens to be the pattern used by member-pointers.
2177 if (!CGM.getTypes().isZeroInitializable(Ty)) {
2178 // For a VLA, emit a single element, then splat that over the VLA.
2179 if (vla) Ty = getContext().getBaseElementType(vla);
2181 llvm::Constant *NullConstant = CGM.EmitNullConstant(Ty);
2183 llvm::GlobalVariable *NullVariable =
2184 new llvm::GlobalVariable(CGM.getModule(), NullConstant->getType(),
2185 /*isConstant=*/true,
2186 llvm::GlobalVariable::PrivateLinkage,
2187 NullConstant, Twine());
2188 CharUnits NullAlign = DestPtr.getAlignment();
2189 NullVariable->setAlignment(NullAlign.getAsAlign());
2190 Address SrcPtr(NullVariable, Builder.getInt8Ty(), NullAlign);
2192 if (vla) return emitNonZeroVLAInit(*this, Ty, DestPtr, SrcPtr, SizeVal);
2194 // Get and call the appropriate llvm.memcpy overload.
2195 Builder.CreateMemCpy(DestPtr, SrcPtr, SizeVal, false);
2196 return;
2199 // Otherwise, just memset the whole thing to zero. This is legal
2200 // because in LLVM, all default initializers (other than the ones we just
2201 // handled above) are guaranteed to have a bit pattern of all zeros.
2202 Builder.CreateMemSet(DestPtr, Builder.getInt8(0), SizeVal, false);
2205 llvm::BlockAddress *CodeGenFunction::GetAddrOfLabel(const LabelDecl *L) {
2206 // Make sure that there is a block for the indirect goto.
2207 if (!IndirectBranch)
2208 GetIndirectGotoBlock();
2210 llvm::BasicBlock *BB = getJumpDestForLabel(L).getBlock();
2212 // Make sure the indirect branch includes all of the address-taken blocks.
2213 IndirectBranch->addDestination(BB);
2214 return llvm::BlockAddress::get(CurFn, BB);
2217 llvm::BasicBlock *CodeGenFunction::GetIndirectGotoBlock() {
2218 // If we already made the indirect branch for indirect goto, return its block.
2219 if (IndirectBranch) return IndirectBranch->getParent();
2221 CGBuilderTy TmpBuilder(*this, createBasicBlock("indirectgoto"));
2223 // Create the PHI node that indirect gotos will add entries to.
2224 llvm::Value *DestVal = TmpBuilder.CreatePHI(Int8PtrTy, 0,
2225 "indirect.goto.dest");
2227 // Create the indirect branch instruction.
2228 IndirectBranch = TmpBuilder.CreateIndirectBr(DestVal);
2229 return IndirectBranch->getParent();
2232 /// Computes the length of an array in elements, as well as the base
2233 /// element type and a properly-typed first element pointer.
2234 llvm::Value *CodeGenFunction::emitArrayLength(const ArrayType *origArrayType,
2235 QualType &baseType,
2236 Address &addr) {
2237 const ArrayType *arrayType = origArrayType;
2239 // If it's a VLA, we have to load the stored size. Note that
2240 // this is the size of the VLA in bytes, not its size in elements.
2241 llvm::Value *numVLAElements = nullptr;
2242 if (isa<VariableArrayType>(arrayType)) {
2243 numVLAElements = getVLASize(cast<VariableArrayType>(arrayType)).NumElts;
2245 // Walk into all VLAs. This doesn't require changes to addr,
2246 // which has type T* where T is the first non-VLA element type.
2247 do {
2248 QualType elementType = arrayType->getElementType();
2249 arrayType = getContext().getAsArrayType(elementType);
2251 // If we only have VLA components, 'addr' requires no adjustment.
2252 if (!arrayType) {
2253 baseType = elementType;
2254 return numVLAElements;
2256 } while (isa<VariableArrayType>(arrayType));
2258 // We get out here only if we find a constant array type
2259 // inside the VLA.
2262 // We have some number of constant-length arrays, so addr should
2263 // have LLVM type [M x [N x [...]]]*. Build a GEP that walks
2264 // down to the first element of addr.
2265 SmallVector<llvm::Value*, 8> gepIndices;
2267 // GEP down to the array type.
2268 llvm::ConstantInt *zero = Builder.getInt32(0);
2269 gepIndices.push_back(zero);
2271 uint64_t countFromCLAs = 1;
2272 QualType eltType;
2274 llvm::ArrayType *llvmArrayType =
2275 dyn_cast<llvm::ArrayType>(addr.getElementType());
2276 while (llvmArrayType) {
2277 assert(isa<ConstantArrayType>(arrayType));
2278 assert(cast<ConstantArrayType>(arrayType)->getZExtSize() ==
2279 llvmArrayType->getNumElements());
2281 gepIndices.push_back(zero);
2282 countFromCLAs *= llvmArrayType->getNumElements();
2283 eltType = arrayType->getElementType();
2285 llvmArrayType =
2286 dyn_cast<llvm::ArrayType>(llvmArrayType->getElementType());
2287 arrayType = getContext().getAsArrayType(arrayType->getElementType());
2288 assert((!llvmArrayType || arrayType) &&
2289 "LLVM and Clang types are out-of-synch");
2292 if (arrayType) {
2293 // From this point onwards, the Clang array type has been emitted
2294 // as some other type (probably a packed struct). Compute the array
2295 // size, and just emit the 'begin' expression as a bitcast.
2296 while (arrayType) {
2297 countFromCLAs *= cast<ConstantArrayType>(arrayType)->getZExtSize();
2298 eltType = arrayType->getElementType();
2299 arrayType = getContext().getAsArrayType(eltType);
2302 llvm::Type *baseType = ConvertType(eltType);
2303 addr = addr.withElementType(baseType);
2304 } else {
2305 // Create the actual GEP.
2306 addr = Address(Builder.CreateInBoundsGEP(addr.getElementType(),
2307 addr.emitRawPointer(*this),
2308 gepIndices, "array.begin"),
2309 ConvertTypeForMem(eltType), addr.getAlignment());
2312 baseType = eltType;
2314 llvm::Value *numElements
2315 = llvm::ConstantInt::get(SizeTy, countFromCLAs);
2317 // If we had any VLA dimensions, factor them in.
2318 if (numVLAElements)
2319 numElements = Builder.CreateNUWMul(numVLAElements, numElements);
2321 return numElements;
2324 CodeGenFunction::VlaSizePair CodeGenFunction::getVLASize(QualType type) {
2325 const VariableArrayType *vla = getContext().getAsVariableArrayType(type);
2326 assert(vla && "type was not a variable array type!");
2327 return getVLASize(vla);
2330 CodeGenFunction::VlaSizePair
2331 CodeGenFunction::getVLASize(const VariableArrayType *type) {
2332 // The number of elements so far; always size_t.
2333 llvm::Value *numElements = nullptr;
2335 QualType elementType;
2336 do {
2337 elementType = type->getElementType();
2338 llvm::Value *vlaSize = VLASizeMap[type->getSizeExpr()];
2339 assert(vlaSize && "no size for VLA!");
2340 assert(vlaSize->getType() == SizeTy);
2342 if (!numElements) {
2343 numElements = vlaSize;
2344 } else {
2345 // It's undefined behavior if this wraps around, so mark it that way.
2346 // FIXME: Teach -fsanitize=undefined to trap this.
2347 numElements = Builder.CreateNUWMul(numElements, vlaSize);
2349 } while ((type = getContext().getAsVariableArrayType(elementType)));
2351 return { numElements, elementType };
2354 CodeGenFunction::VlaSizePair
2355 CodeGenFunction::getVLAElements1D(QualType type) {
2356 const VariableArrayType *vla = getContext().getAsVariableArrayType(type);
2357 assert(vla && "type was not a variable array type!");
2358 return getVLAElements1D(vla);
2361 CodeGenFunction::VlaSizePair
2362 CodeGenFunction::getVLAElements1D(const VariableArrayType *Vla) {
2363 llvm::Value *VlaSize = VLASizeMap[Vla->getSizeExpr()];
2364 assert(VlaSize && "no size for VLA!");
2365 assert(VlaSize->getType() == SizeTy);
2366 return { VlaSize, Vla->getElementType() };
2369 void CodeGenFunction::EmitVariablyModifiedType(QualType type) {
2370 assert(type->isVariablyModifiedType() &&
2371 "Must pass variably modified type to EmitVLASizes!");
2373 EnsureInsertPoint();
2375 // We're going to walk down into the type and look for VLA
2376 // expressions.
2377 do {
2378 assert(type->isVariablyModifiedType());
2380 const Type *ty = type.getTypePtr();
2381 switch (ty->getTypeClass()) {
2383 #define TYPE(Class, Base)
2384 #define ABSTRACT_TYPE(Class, Base)
2385 #define NON_CANONICAL_TYPE(Class, Base)
2386 #define DEPENDENT_TYPE(Class, Base) case Type::Class:
2387 #define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(Class, Base)
2388 #include "clang/AST/TypeNodes.inc"
2389 llvm_unreachable("unexpected dependent type!");
2391 // These types are never variably-modified.
2392 case Type::Builtin:
2393 case Type::Complex:
2394 case Type::Vector:
2395 case Type::ExtVector:
2396 case Type::ConstantMatrix:
2397 case Type::Record:
2398 case Type::Enum:
2399 case Type::Using:
2400 case Type::TemplateSpecialization:
2401 case Type::ObjCTypeParam:
2402 case Type::ObjCObject:
2403 case Type::ObjCInterface:
2404 case Type::ObjCObjectPointer:
2405 case Type::BitInt:
2406 llvm_unreachable("type class is never variably-modified!");
2408 case Type::Elaborated:
2409 type = cast<ElaboratedType>(ty)->getNamedType();
2410 break;
2412 case Type::Adjusted:
2413 type = cast<AdjustedType>(ty)->getAdjustedType();
2414 break;
2416 case Type::Decayed:
2417 type = cast<DecayedType>(ty)->getPointeeType();
2418 break;
2420 case Type::Pointer:
2421 type = cast<PointerType>(ty)->getPointeeType();
2422 break;
2424 case Type::BlockPointer:
2425 type = cast<BlockPointerType>(ty)->getPointeeType();
2426 break;
2428 case Type::LValueReference:
2429 case Type::RValueReference:
2430 type = cast<ReferenceType>(ty)->getPointeeType();
2431 break;
2433 case Type::MemberPointer:
2434 type = cast<MemberPointerType>(ty)->getPointeeType();
2435 break;
2437 case Type::ArrayParameter:
2438 case Type::ConstantArray:
2439 case Type::IncompleteArray:
2440 // Losing element qualification here is fine.
2441 type = cast<ArrayType>(ty)->getElementType();
2442 break;
2444 case Type::VariableArray: {
2445 // Losing element qualification here is fine.
2446 const VariableArrayType *vat = cast<VariableArrayType>(ty);
2448 // Unknown size indication requires no size computation.
2449 // Otherwise, evaluate and record it.
2450 if (const Expr *sizeExpr = vat->getSizeExpr()) {
2451 // It's possible that we might have emitted this already,
2452 // e.g. with a typedef and a pointer to it.
2453 llvm::Value *&entry = VLASizeMap[sizeExpr];
2454 if (!entry) {
2455 llvm::Value *size = EmitScalarExpr(sizeExpr);
2457 // C11 6.7.6.2p5:
2458 // If the size is an expression that is not an integer constant
2459 // expression [...] each time it is evaluated it shall have a value
2460 // greater than zero.
2461 if (SanOpts.has(SanitizerKind::VLABound)) {
2462 SanitizerScope SanScope(this);
2463 llvm::Value *Zero = llvm::Constant::getNullValue(size->getType());
2464 clang::QualType SEType = sizeExpr->getType();
2465 llvm::Value *CheckCondition =
2466 SEType->isSignedIntegerType()
2467 ? Builder.CreateICmpSGT(size, Zero)
2468 : Builder.CreateICmpUGT(size, Zero);
2469 llvm::Constant *StaticArgs[] = {
2470 EmitCheckSourceLocation(sizeExpr->getBeginLoc()),
2471 EmitCheckTypeDescriptor(SEType)};
2472 EmitCheck(std::make_pair(CheckCondition, SanitizerKind::VLABound),
2473 SanitizerHandler::VLABoundNotPositive, StaticArgs, size);
2476 // Always zexting here would be wrong if it weren't
2477 // undefined behavior to have a negative bound.
2478 // FIXME: What about when size's type is larger than size_t?
2479 entry = Builder.CreateIntCast(size, SizeTy, /*signed*/ false);
2482 type = vat->getElementType();
2483 break;
2486 case Type::FunctionProto:
2487 case Type::FunctionNoProto:
2488 type = cast<FunctionType>(ty)->getReturnType();
2489 break;
2491 case Type::Paren:
2492 case Type::TypeOf:
2493 case Type::UnaryTransform:
2494 case Type::Attributed:
2495 case Type::BTFTagAttributed:
2496 case Type::HLSLAttributedResource:
2497 case Type::SubstTemplateTypeParm:
2498 case Type::MacroQualified:
2499 case Type::CountAttributed:
2500 // Keep walking after single level desugaring.
2501 type = type.getSingleStepDesugaredType(getContext());
2502 break;
2504 case Type::Typedef:
2505 case Type::Decltype:
2506 case Type::Auto:
2507 case Type::DeducedTemplateSpecialization:
2508 case Type::PackIndexing:
2509 // Stop walking: nothing to do.
2510 return;
2512 case Type::TypeOfExpr:
2513 // Stop walking: emit typeof expression.
2514 EmitIgnoredExpr(cast<TypeOfExprType>(ty)->getUnderlyingExpr());
2515 return;
2517 case Type::Atomic:
2518 type = cast<AtomicType>(ty)->getValueType();
2519 break;
2521 case Type::Pipe:
2522 type = cast<PipeType>(ty)->getElementType();
2523 break;
2525 } while (type->isVariablyModifiedType());
2528 Address CodeGenFunction::EmitVAListRef(const Expr* E) {
2529 if (getContext().getBuiltinVaListType()->isArrayType())
2530 return EmitPointerWithAlignment(E);
2531 return EmitLValue(E).getAddress();
2534 Address CodeGenFunction::EmitMSVAListRef(const Expr *E) {
2535 return EmitLValue(E).getAddress();
2538 void CodeGenFunction::EmitDeclRefExprDbgValue(const DeclRefExpr *E,
2539 const APValue &Init) {
2540 assert(Init.hasValue() && "Invalid DeclRefExpr initializer!");
2541 if (CGDebugInfo *Dbg = getDebugInfo())
2542 if (CGM.getCodeGenOpts().hasReducedDebugInfo())
2543 Dbg->EmitGlobalVariable(E->getDecl(), Init);
2546 CodeGenFunction::PeepholeProtection
2547 CodeGenFunction::protectFromPeepholes(RValue rvalue) {
2548 // At the moment, the only aggressive peephole we do in IR gen
2549 // is trunc(zext) folding, but if we add more, we can easily
2550 // extend this protection.
2552 if (!rvalue.isScalar()) return PeepholeProtection();
2553 llvm::Value *value = rvalue.getScalarVal();
2554 if (!isa<llvm::ZExtInst>(value)) return PeepholeProtection();
2556 // Just make an extra bitcast.
2557 assert(HaveInsertPoint());
2558 llvm::Instruction *inst = new llvm::BitCastInst(value, value->getType(), "",
2559 Builder.GetInsertBlock());
2561 PeepholeProtection protection;
2562 protection.Inst = inst;
2563 return protection;
2566 void CodeGenFunction::unprotectFromPeepholes(PeepholeProtection protection) {
2567 if (!protection.Inst) return;
2569 // In theory, we could try to duplicate the peepholes now, but whatever.
2570 protection.Inst->eraseFromParent();
2573 void CodeGenFunction::emitAlignmentAssumption(llvm::Value *PtrValue,
2574 QualType Ty, SourceLocation Loc,
2575 SourceLocation AssumptionLoc,
2576 llvm::Value *Alignment,
2577 llvm::Value *OffsetValue) {
2578 if (Alignment->getType() != IntPtrTy)
2579 Alignment =
2580 Builder.CreateIntCast(Alignment, IntPtrTy, false, "casted.align");
2581 if (OffsetValue && OffsetValue->getType() != IntPtrTy)
2582 OffsetValue =
2583 Builder.CreateIntCast(OffsetValue, IntPtrTy, true, "casted.offset");
2584 llvm::Value *TheCheck = nullptr;
2585 if (SanOpts.has(SanitizerKind::Alignment)) {
2586 llvm::Value *PtrIntValue =
2587 Builder.CreatePtrToInt(PtrValue, IntPtrTy, "ptrint");
2589 if (OffsetValue) {
2590 bool IsOffsetZero = false;
2591 if (const auto *CI = dyn_cast<llvm::ConstantInt>(OffsetValue))
2592 IsOffsetZero = CI->isZero();
2594 if (!IsOffsetZero)
2595 PtrIntValue = Builder.CreateSub(PtrIntValue, OffsetValue, "offsetptr");
2598 llvm::Value *Zero = llvm::ConstantInt::get(IntPtrTy, 0);
2599 llvm::Value *Mask =
2600 Builder.CreateSub(Alignment, llvm::ConstantInt::get(IntPtrTy, 1));
2601 llvm::Value *MaskedPtr = Builder.CreateAnd(PtrIntValue, Mask, "maskedptr");
2602 TheCheck = Builder.CreateICmpEQ(MaskedPtr, Zero, "maskcond");
2604 llvm::Instruction *Assumption = Builder.CreateAlignmentAssumption(
2605 CGM.getDataLayout(), PtrValue, Alignment, OffsetValue);
2607 if (!SanOpts.has(SanitizerKind::Alignment))
2608 return;
2609 emitAlignmentAssumptionCheck(PtrValue, Ty, Loc, AssumptionLoc, Alignment,
2610 OffsetValue, TheCheck, Assumption);
2613 void CodeGenFunction::emitAlignmentAssumption(llvm::Value *PtrValue,
2614 const Expr *E,
2615 SourceLocation AssumptionLoc,
2616 llvm::Value *Alignment,
2617 llvm::Value *OffsetValue) {
2618 QualType Ty = E->getType();
2619 SourceLocation Loc = E->getExprLoc();
2621 emitAlignmentAssumption(PtrValue, Ty, Loc, AssumptionLoc, Alignment,
2622 OffsetValue);
2625 llvm::Value *CodeGenFunction::EmitAnnotationCall(llvm::Function *AnnotationFn,
2626 llvm::Value *AnnotatedVal,
2627 StringRef AnnotationStr,
2628 SourceLocation Location,
2629 const AnnotateAttr *Attr) {
2630 SmallVector<llvm::Value *, 5> Args = {
2631 AnnotatedVal,
2632 CGM.EmitAnnotationString(AnnotationStr),
2633 CGM.EmitAnnotationUnit(Location),
2634 CGM.EmitAnnotationLineNo(Location),
2636 if (Attr)
2637 Args.push_back(CGM.EmitAnnotationArgs(Attr));
2638 return Builder.CreateCall(AnnotationFn, Args);
2641 void CodeGenFunction::EmitVarAnnotations(const VarDecl *D, llvm::Value *V) {
2642 assert(D->hasAttr<AnnotateAttr>() && "no annotate attribute");
2643 for (const auto *I : D->specific_attrs<AnnotateAttr>())
2644 EmitAnnotationCall(CGM.getIntrinsic(llvm::Intrinsic::var_annotation,
2645 {V->getType(), CGM.ConstGlobalsPtrTy}),
2646 V, I->getAnnotation(), D->getLocation(), I);
2649 Address CodeGenFunction::EmitFieldAnnotations(const FieldDecl *D,
2650 Address Addr) {
2651 assert(D->hasAttr<AnnotateAttr>() && "no annotate attribute");
2652 llvm::Value *V = Addr.emitRawPointer(*this);
2653 llvm::Type *VTy = V->getType();
2654 auto *PTy = dyn_cast<llvm::PointerType>(VTy);
2655 unsigned AS = PTy ? PTy->getAddressSpace() : 0;
2656 llvm::PointerType *IntrinTy =
2657 llvm::PointerType::get(CGM.getLLVMContext(), AS);
2658 llvm::Function *F = CGM.getIntrinsic(llvm::Intrinsic::ptr_annotation,
2659 {IntrinTy, CGM.ConstGlobalsPtrTy});
2661 for (const auto *I : D->specific_attrs<AnnotateAttr>()) {
2662 // FIXME Always emit the cast inst so we can differentiate between
2663 // annotation on the first field of a struct and annotation on the struct
2664 // itself.
2665 if (VTy != IntrinTy)
2666 V = Builder.CreateBitCast(V, IntrinTy);
2667 V = EmitAnnotationCall(F, V, I->getAnnotation(), D->getLocation(), I);
2668 V = Builder.CreateBitCast(V, VTy);
2671 return Address(V, Addr.getElementType(), Addr.getAlignment());
2674 CodeGenFunction::CGCapturedStmtInfo::~CGCapturedStmtInfo() { }
2676 CodeGenFunction::SanitizerScope::SanitizerScope(CodeGenFunction *CGF)
2677 : CGF(CGF) {
2678 assert(!CGF->IsSanitizerScope);
2679 CGF->IsSanitizerScope = true;
2682 CodeGenFunction::SanitizerScope::~SanitizerScope() {
2683 CGF->IsSanitizerScope = false;
2686 void CodeGenFunction::InsertHelper(llvm::Instruction *I,
2687 const llvm::Twine &Name,
2688 llvm::BasicBlock::iterator InsertPt) const {
2689 LoopStack.InsertHelper(I);
2690 if (IsSanitizerScope)
2691 I->setNoSanitizeMetadata();
2694 void CGBuilderInserter::InsertHelper(
2695 llvm::Instruction *I, const llvm::Twine &Name,
2696 llvm::BasicBlock::iterator InsertPt) const {
2697 llvm::IRBuilderDefaultInserter::InsertHelper(I, Name, InsertPt);
2698 if (CGF)
2699 CGF->InsertHelper(I, Name, InsertPt);
2702 // Emits an error if we don't have a valid set of target features for the
2703 // called function.
2704 void CodeGenFunction::checkTargetFeatures(const CallExpr *E,
2705 const FunctionDecl *TargetDecl) {
2706 // SemaChecking cannot handle below x86 builtins because they have different
2707 // parameter ranges with different TargetAttribute of caller.
2708 if (CGM.getContext().getTargetInfo().getTriple().isX86()) {
2709 unsigned BuiltinID = TargetDecl->getBuiltinID();
2710 if (BuiltinID == X86::BI__builtin_ia32_cmpps ||
2711 BuiltinID == X86::BI__builtin_ia32_cmpss ||
2712 BuiltinID == X86::BI__builtin_ia32_cmppd ||
2713 BuiltinID == X86::BI__builtin_ia32_cmpsd) {
2714 const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(CurCodeDecl);
2715 llvm::StringMap<bool> TargetFetureMap;
2716 CGM.getContext().getFunctionFeatureMap(TargetFetureMap, FD);
2717 llvm::APSInt Result =
2718 *(E->getArg(2)->getIntegerConstantExpr(CGM.getContext()));
2719 if (Result.getSExtValue() > 7 && !TargetFetureMap.lookup("avx"))
2720 CGM.getDiags().Report(E->getBeginLoc(), diag::err_builtin_needs_feature)
2721 << TargetDecl->getDeclName() << "avx";
2724 return checkTargetFeatures(E->getBeginLoc(), TargetDecl);
2727 // Emits an error if we don't have a valid set of target features for the
2728 // called function.
2729 void CodeGenFunction::checkTargetFeatures(SourceLocation Loc,
2730 const FunctionDecl *TargetDecl) {
2731 // Early exit if this is an indirect call.
2732 if (!TargetDecl)
2733 return;
2735 // Get the current enclosing function if it exists. If it doesn't
2736 // we can't check the target features anyhow.
2737 const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(CurCodeDecl);
2738 if (!FD)
2739 return;
2741 // Grab the required features for the call. For a builtin this is listed in
2742 // the td file with the default cpu, for an always_inline function this is any
2743 // listed cpu and any listed features.
2744 unsigned BuiltinID = TargetDecl->getBuiltinID();
2745 std::string MissingFeature;
2746 llvm::StringMap<bool> CallerFeatureMap;
2747 CGM.getContext().getFunctionFeatureMap(CallerFeatureMap, FD);
2748 // When compiling in HipStdPar mode we have to be conservative in rejecting
2749 // target specific features in the FE, and defer the possible error to the
2750 // AcceleratorCodeSelection pass, wherein iff an unsupported target builtin is
2751 // referenced by an accelerator executable function, we emit an error.
2752 bool IsHipStdPar = getLangOpts().HIPStdPar && getLangOpts().CUDAIsDevice;
2753 if (BuiltinID) {
2754 StringRef FeatureList(CGM.getContext().BuiltinInfo.getRequiredFeatures(BuiltinID));
2755 if (!Builtin::evaluateRequiredTargetFeatures(
2756 FeatureList, CallerFeatureMap) && !IsHipStdPar) {
2757 CGM.getDiags().Report(Loc, diag::err_builtin_needs_feature)
2758 << TargetDecl->getDeclName()
2759 << FeatureList;
2761 } else if (!TargetDecl->isMultiVersion() &&
2762 TargetDecl->hasAttr<TargetAttr>()) {
2763 // Get the required features for the callee.
2765 const TargetAttr *TD = TargetDecl->getAttr<TargetAttr>();
2766 ParsedTargetAttr ParsedAttr =
2767 CGM.getContext().filterFunctionTargetAttrs(TD);
2769 SmallVector<StringRef, 1> ReqFeatures;
2770 llvm::StringMap<bool> CalleeFeatureMap;
2771 CGM.getContext().getFunctionFeatureMap(CalleeFeatureMap, TargetDecl);
2773 for (const auto &F : ParsedAttr.Features) {
2774 if (F[0] == '+' && CalleeFeatureMap.lookup(F.substr(1)))
2775 ReqFeatures.push_back(StringRef(F).substr(1));
2778 for (const auto &F : CalleeFeatureMap) {
2779 // Only positive features are "required".
2780 if (F.getValue())
2781 ReqFeatures.push_back(F.getKey());
2783 if (!llvm::all_of(ReqFeatures, [&](StringRef Feature) {
2784 if (!CallerFeatureMap.lookup(Feature)) {
2785 MissingFeature = Feature.str();
2786 return false;
2788 return true;
2789 }) && !IsHipStdPar)
2790 CGM.getDiags().Report(Loc, diag::err_function_needs_feature)
2791 << FD->getDeclName() << TargetDecl->getDeclName() << MissingFeature;
2792 } else if (!FD->isMultiVersion() && FD->hasAttr<TargetAttr>()) {
2793 llvm::StringMap<bool> CalleeFeatureMap;
2794 CGM.getContext().getFunctionFeatureMap(CalleeFeatureMap, TargetDecl);
2796 for (const auto &F : CalleeFeatureMap) {
2797 if (F.getValue() && (!CallerFeatureMap.lookup(F.getKey()) ||
2798 !CallerFeatureMap.find(F.getKey())->getValue()) &&
2799 !IsHipStdPar)
2800 CGM.getDiags().Report(Loc, diag::err_function_needs_feature)
2801 << FD->getDeclName() << TargetDecl->getDeclName() << F.getKey();
2806 void CodeGenFunction::EmitSanitizerStatReport(llvm::SanitizerStatKind SSK) {
2807 if (!CGM.getCodeGenOpts().SanitizeStats)
2808 return;
2810 llvm::IRBuilder<> IRB(Builder.GetInsertBlock(), Builder.GetInsertPoint());
2811 IRB.SetCurrentDebugLocation(Builder.getCurrentDebugLocation());
2812 CGM.getSanStats().create(IRB, SSK);
2815 void CodeGenFunction::EmitKCFIOperandBundle(
2816 const CGCallee &Callee, SmallVectorImpl<llvm::OperandBundleDef> &Bundles) {
2817 const FunctionProtoType *FP =
2818 Callee.getAbstractInfo().getCalleeFunctionProtoType();
2819 if (FP)
2820 Bundles.emplace_back("kcfi", CGM.CreateKCFITypeId(FP->desugar()));
2823 llvm::Value *CodeGenFunction::FormAArch64ResolverCondition(
2824 const MultiVersionResolverOption &RO) {
2825 llvm::SmallVector<StringRef, 8> CondFeatures;
2826 for (const StringRef &Feature : RO.Conditions.Features)
2827 CondFeatures.push_back(Feature);
2828 if (!CondFeatures.empty()) {
2829 return EmitAArch64CpuSupports(CondFeatures);
2831 return nullptr;
2834 llvm::Value *CodeGenFunction::FormX86ResolverCondition(
2835 const MultiVersionResolverOption &RO) {
2836 llvm::Value *Condition = nullptr;
2838 if (!RO.Conditions.Architecture.empty()) {
2839 StringRef Arch = RO.Conditions.Architecture;
2840 // If arch= specifies an x86-64 micro-architecture level, test the feature
2841 // with __builtin_cpu_supports, otherwise use __builtin_cpu_is.
2842 if (Arch.starts_with("x86-64"))
2843 Condition = EmitX86CpuSupports({Arch});
2844 else
2845 Condition = EmitX86CpuIs(Arch);
2848 if (!RO.Conditions.Features.empty()) {
2849 llvm::Value *FeatureCond = EmitX86CpuSupports(RO.Conditions.Features);
2850 Condition =
2851 Condition ? Builder.CreateAnd(Condition, FeatureCond) : FeatureCond;
2853 return Condition;
2856 static void CreateMultiVersionResolverReturn(CodeGenModule &CGM,
2857 llvm::Function *Resolver,
2858 CGBuilderTy &Builder,
2859 llvm::Function *FuncToReturn,
2860 bool SupportsIFunc) {
2861 if (SupportsIFunc) {
2862 Builder.CreateRet(FuncToReturn);
2863 return;
2866 llvm::SmallVector<llvm::Value *, 10> Args(
2867 llvm::make_pointer_range(Resolver->args()));
2869 llvm::CallInst *Result = Builder.CreateCall(FuncToReturn, Args);
2870 Result->setTailCallKind(llvm::CallInst::TCK_MustTail);
2872 if (Resolver->getReturnType()->isVoidTy())
2873 Builder.CreateRetVoid();
2874 else
2875 Builder.CreateRet(Result);
2878 void CodeGenFunction::EmitMultiVersionResolver(
2879 llvm::Function *Resolver, ArrayRef<MultiVersionResolverOption> Options) {
2881 llvm::Triple::ArchType ArchType =
2882 getContext().getTargetInfo().getTriple().getArch();
2884 switch (ArchType) {
2885 case llvm::Triple::x86:
2886 case llvm::Triple::x86_64:
2887 EmitX86MultiVersionResolver(Resolver, Options);
2888 return;
2889 case llvm::Triple::aarch64:
2890 EmitAArch64MultiVersionResolver(Resolver, Options);
2891 return;
2892 case llvm::Triple::riscv32:
2893 case llvm::Triple::riscv64:
2894 EmitRISCVMultiVersionResolver(Resolver, Options);
2895 return;
2897 default:
2898 assert(false && "Only implemented for x86, AArch64 and RISC-V targets");
2902 static int getPriorityFromAttrString(StringRef AttrStr) {
2903 SmallVector<StringRef, 8> Attrs;
2905 AttrStr.split(Attrs, ';');
2907 // Default Priority is zero.
2908 int Priority = 0;
2909 for (auto Attr : Attrs) {
2910 if (Attr.consume_front("priority=")) {
2911 int Result;
2912 if (!Attr.getAsInteger(0, Result)) {
2913 Priority = Result;
2918 return Priority;
2921 void CodeGenFunction::EmitRISCVMultiVersionResolver(
2922 llvm::Function *Resolver, ArrayRef<MultiVersionResolverOption> Options) {
2924 if (getContext().getTargetInfo().getTriple().getOS() !=
2925 llvm::Triple::OSType::Linux) {
2926 CGM.getDiags().Report(diag::err_os_unsupport_riscv_fmv);
2927 return;
2930 llvm::BasicBlock *CurBlock = createBasicBlock("resolver_entry", Resolver);
2931 Builder.SetInsertPoint(CurBlock);
2932 EmitRISCVCpuInit();
2934 bool SupportsIFunc = getContext().getTargetInfo().supportsIFunc();
2935 bool HasDefault = false;
2936 unsigned DefaultIndex = 0;
2938 SmallVector<CodeGenFunction::MultiVersionResolverOption, 10> CurrOptions(
2939 Options);
2941 llvm::stable_sort(
2942 CurrOptions, [](const CodeGenFunction::MultiVersionResolverOption &LHS,
2943 const CodeGenFunction::MultiVersionResolverOption &RHS) {
2944 return getPriorityFromAttrString(LHS.Conditions.Features[0]) >
2945 getPriorityFromAttrString(RHS.Conditions.Features[0]);
2948 // Check the each candidate function.
2949 for (unsigned Index = 0; Index < CurrOptions.size(); Index++) {
2951 if (CurrOptions[Index].Conditions.Features[0].starts_with("default")) {
2952 HasDefault = true;
2953 DefaultIndex = Index;
2954 continue;
2957 Builder.SetInsertPoint(CurBlock);
2959 std::vector<std::string> TargetAttrFeats =
2960 getContext()
2961 .getTargetInfo()
2962 .parseTargetAttr(CurrOptions[Index].Conditions.Features[0])
2963 .Features;
2965 if (TargetAttrFeats.empty())
2966 continue;
2968 // FeaturesCondition: The bitmask of the required extension has been
2969 // enabled by the runtime object.
2970 // (__riscv_feature_bits.features[i] & REQUIRED_BITMASK) ==
2971 // REQUIRED_BITMASK
2973 // When condition is met, return this version of the function.
2974 // Otherwise, try the next version.
2976 // if (FeaturesConditionVersion1)
2977 // return Version1;
2978 // else if (FeaturesConditionVersion2)
2979 // return Version2;
2980 // else if (FeaturesConditionVersion3)
2981 // return Version3;
2982 // ...
2983 // else
2984 // return DefaultVersion;
2986 // TODO: Add a condition to check the length before accessing elements.
2987 // Without checking the length first, we may access an incorrect memory
2988 // address when using different versions.
2989 llvm::SmallVector<StringRef, 8> CurrTargetAttrFeats;
2991 for (auto &Feat : TargetAttrFeats) {
2992 StringRef CurrFeat = Feat;
2993 if (CurrFeat.starts_with('+'))
2994 CurrTargetAttrFeats.push_back(CurrFeat.substr(1));
2997 Builder.SetInsertPoint(CurBlock);
2998 llvm::Value *FeatsCondition = EmitRISCVCpuSupports(CurrTargetAttrFeats);
3000 llvm::BasicBlock *RetBlock = createBasicBlock("resolver_return", Resolver);
3001 CGBuilderTy RetBuilder(*this, RetBlock);
3002 CreateMultiVersionResolverReturn(
3003 CGM, Resolver, RetBuilder, CurrOptions[Index].Function, SupportsIFunc);
3004 llvm::BasicBlock *ElseBlock = createBasicBlock("resolver_else", Resolver);
3006 Builder.SetInsertPoint(CurBlock);
3007 Builder.CreateCondBr(FeatsCondition, RetBlock, ElseBlock);
3009 CurBlock = ElseBlock;
3012 // Finally, emit the default one.
3013 if (HasDefault) {
3014 Builder.SetInsertPoint(CurBlock);
3015 CreateMultiVersionResolverReturn(CGM, Resolver, Builder,
3016 CurrOptions[DefaultIndex].Function,
3017 SupportsIFunc);
3018 return;
3021 // If no generic/default, emit an unreachable.
3022 Builder.SetInsertPoint(CurBlock);
3023 llvm::CallInst *TrapCall = EmitTrapCall(llvm::Intrinsic::trap);
3024 TrapCall->setDoesNotReturn();
3025 TrapCall->setDoesNotThrow();
3026 Builder.CreateUnreachable();
3027 Builder.ClearInsertionPoint();
3030 void CodeGenFunction::EmitAArch64MultiVersionResolver(
3031 llvm::Function *Resolver, ArrayRef<MultiVersionResolverOption> Options) {
3032 assert(!Options.empty() && "No multiversion resolver options found");
3033 assert(Options.back().Conditions.Features.size() == 0 &&
3034 "Default case must be last");
3035 bool SupportsIFunc = getContext().getTargetInfo().supportsIFunc();
3036 assert(SupportsIFunc &&
3037 "Multiversion resolver requires target IFUNC support");
3038 bool AArch64CpuInitialized = false;
3039 llvm::BasicBlock *CurBlock = createBasicBlock("resolver_entry", Resolver);
3041 for (const MultiVersionResolverOption &RO : Options) {
3042 Builder.SetInsertPoint(CurBlock);
3043 llvm::Value *Condition = FormAArch64ResolverCondition(RO);
3045 // The 'default' or 'all features enabled' case.
3046 if (!Condition) {
3047 CreateMultiVersionResolverReturn(CGM, Resolver, Builder, RO.Function,
3048 SupportsIFunc);
3049 return;
3052 if (!AArch64CpuInitialized) {
3053 Builder.SetInsertPoint(CurBlock, CurBlock->begin());
3054 EmitAArch64CpuInit();
3055 AArch64CpuInitialized = true;
3056 Builder.SetInsertPoint(CurBlock);
3059 llvm::BasicBlock *RetBlock = createBasicBlock("resolver_return", Resolver);
3060 CGBuilderTy RetBuilder(*this, RetBlock);
3061 CreateMultiVersionResolverReturn(CGM, Resolver, RetBuilder, RO.Function,
3062 SupportsIFunc);
3063 CurBlock = createBasicBlock("resolver_else", Resolver);
3064 Builder.CreateCondBr(Condition, RetBlock, CurBlock);
3067 // If no default, emit an unreachable.
3068 Builder.SetInsertPoint(CurBlock);
3069 llvm::CallInst *TrapCall = EmitTrapCall(llvm::Intrinsic::trap);
3070 TrapCall->setDoesNotReturn();
3071 TrapCall->setDoesNotThrow();
3072 Builder.CreateUnreachable();
3073 Builder.ClearInsertionPoint();
3076 void CodeGenFunction::EmitX86MultiVersionResolver(
3077 llvm::Function *Resolver, ArrayRef<MultiVersionResolverOption> Options) {
3079 bool SupportsIFunc = getContext().getTargetInfo().supportsIFunc();
3081 // Main function's basic block.
3082 llvm::BasicBlock *CurBlock = createBasicBlock("resolver_entry", Resolver);
3083 Builder.SetInsertPoint(CurBlock);
3084 EmitX86CpuInit();
3086 for (const MultiVersionResolverOption &RO : Options) {
3087 Builder.SetInsertPoint(CurBlock);
3088 llvm::Value *Condition = FormX86ResolverCondition(RO);
3090 // The 'default' or 'generic' case.
3091 if (!Condition) {
3092 assert(&RO == Options.end() - 1 &&
3093 "Default or Generic case must be last");
3094 CreateMultiVersionResolverReturn(CGM, Resolver, Builder, RO.Function,
3095 SupportsIFunc);
3096 return;
3099 llvm::BasicBlock *RetBlock = createBasicBlock("resolver_return", Resolver);
3100 CGBuilderTy RetBuilder(*this, RetBlock);
3101 CreateMultiVersionResolverReturn(CGM, Resolver, RetBuilder, RO.Function,
3102 SupportsIFunc);
3103 CurBlock = createBasicBlock("resolver_else", Resolver);
3104 Builder.CreateCondBr(Condition, RetBlock, CurBlock);
3107 // If no generic/default, emit an unreachable.
3108 Builder.SetInsertPoint(CurBlock);
3109 llvm::CallInst *TrapCall = EmitTrapCall(llvm::Intrinsic::trap);
3110 TrapCall->setDoesNotReturn();
3111 TrapCall->setDoesNotThrow();
3112 Builder.CreateUnreachable();
3113 Builder.ClearInsertionPoint();
3116 // Loc - where the diagnostic will point, where in the source code this
3117 // alignment has failed.
3118 // SecondaryLoc - if present (will be present if sufficiently different from
3119 // Loc), the diagnostic will additionally point a "Note:" to this location.
3120 // It should be the location where the __attribute__((assume_aligned))
3121 // was written e.g.
3122 void CodeGenFunction::emitAlignmentAssumptionCheck(
3123 llvm::Value *Ptr, QualType Ty, SourceLocation Loc,
3124 SourceLocation SecondaryLoc, llvm::Value *Alignment,
3125 llvm::Value *OffsetValue, llvm::Value *TheCheck,
3126 llvm::Instruction *Assumption) {
3127 assert(isa_and_nonnull<llvm::CallInst>(Assumption) &&
3128 cast<llvm::CallInst>(Assumption)->getCalledOperand() ==
3129 llvm::Intrinsic::getDeclaration(
3130 Builder.GetInsertBlock()->getParent()->getParent(),
3131 llvm::Intrinsic::assume) &&
3132 "Assumption should be a call to llvm.assume().");
3133 assert(&(Builder.GetInsertBlock()->back()) == Assumption &&
3134 "Assumption should be the last instruction of the basic block, "
3135 "since the basic block is still being generated.");
3137 if (!SanOpts.has(SanitizerKind::Alignment))
3138 return;
3140 // Don't check pointers to volatile data. The behavior here is implementation-
3141 // defined.
3142 if (Ty->getPointeeType().isVolatileQualified())
3143 return;
3145 // We need to temorairly remove the assumption so we can insert the
3146 // sanitizer check before it, else the check will be dropped by optimizations.
3147 Assumption->removeFromParent();
3150 SanitizerScope SanScope(this);
3152 if (!OffsetValue)
3153 OffsetValue = Builder.getInt1(false); // no offset.
3155 llvm::Constant *StaticData[] = {EmitCheckSourceLocation(Loc),
3156 EmitCheckSourceLocation(SecondaryLoc),
3157 EmitCheckTypeDescriptor(Ty)};
3158 llvm::Value *DynamicData[] = {EmitCheckValue(Ptr),
3159 EmitCheckValue(Alignment),
3160 EmitCheckValue(OffsetValue)};
3161 EmitCheck({std::make_pair(TheCheck, SanitizerKind::Alignment)},
3162 SanitizerHandler::AlignmentAssumption, StaticData, DynamicData);
3165 // We are now in the (new, empty) "cont" basic block.
3166 // Reintroduce the assumption.
3167 Builder.Insert(Assumption);
3168 // FIXME: Assumption still has it's original basic block as it's Parent.
3171 llvm::DebugLoc CodeGenFunction::SourceLocToDebugLoc(SourceLocation Location) {
3172 if (CGDebugInfo *DI = getDebugInfo())
3173 return DI->SourceLocToDebugLoc(Location);
3175 return llvm::DebugLoc();
3178 llvm::Value *
3179 CodeGenFunction::emitCondLikelihoodViaExpectIntrinsic(llvm::Value *Cond,
3180 Stmt::Likelihood LH) {
3181 switch (LH) {
3182 case Stmt::LH_None:
3183 return Cond;
3184 case Stmt::LH_Likely:
3185 case Stmt::LH_Unlikely:
3186 // Don't generate llvm.expect on -O0 as the backend won't use it for
3187 // anything.
3188 if (CGM.getCodeGenOpts().OptimizationLevel == 0)
3189 return Cond;
3190 llvm::Type *CondTy = Cond->getType();
3191 assert(CondTy->isIntegerTy(1) && "expecting condition to be a boolean");
3192 llvm::Function *FnExpect =
3193 CGM.getIntrinsic(llvm::Intrinsic::expect, CondTy);
3194 llvm::Value *ExpectedValueOfCond =
3195 llvm::ConstantInt::getBool(CondTy, LH == Stmt::LH_Likely);
3196 return Builder.CreateCall(FnExpect, {Cond, ExpectedValueOfCond},
3197 Cond->getName() + ".expval");
3199 llvm_unreachable("Unknown Likelihood");
3202 llvm::Value *CodeGenFunction::emitBoolVecConversion(llvm::Value *SrcVec,
3203 unsigned NumElementsDst,
3204 const llvm::Twine &Name) {
3205 auto *SrcTy = cast<llvm::FixedVectorType>(SrcVec->getType());
3206 unsigned NumElementsSrc = SrcTy->getNumElements();
3207 if (NumElementsSrc == NumElementsDst)
3208 return SrcVec;
3210 std::vector<int> ShuffleMask(NumElementsDst, -1);
3211 for (unsigned MaskIdx = 0;
3212 MaskIdx < std::min<>(NumElementsDst, NumElementsSrc); ++MaskIdx)
3213 ShuffleMask[MaskIdx] = MaskIdx;
3215 return Builder.CreateShuffleVector(SrcVec, ShuffleMask, Name);
3218 void CodeGenFunction::EmitPointerAuthOperandBundle(
3219 const CGPointerAuthInfo &PointerAuth,
3220 SmallVectorImpl<llvm::OperandBundleDef> &Bundles) {
3221 if (!PointerAuth.isSigned())
3222 return;
3224 auto *Key = Builder.getInt32(PointerAuth.getKey());
3226 llvm::Value *Discriminator = PointerAuth.getDiscriminator();
3227 if (!Discriminator)
3228 Discriminator = Builder.getSize(0);
3230 llvm::Value *Args[] = {Key, Discriminator};
3231 Bundles.emplace_back("ptrauth", Args);
3234 static llvm::Value *EmitPointerAuthCommon(CodeGenFunction &CGF,
3235 const CGPointerAuthInfo &PointerAuth,
3236 llvm::Value *Pointer,
3237 unsigned IntrinsicID) {
3238 if (!PointerAuth)
3239 return Pointer;
3241 auto Key = CGF.Builder.getInt32(PointerAuth.getKey());
3243 llvm::Value *Discriminator = PointerAuth.getDiscriminator();
3244 if (!Discriminator) {
3245 Discriminator = CGF.Builder.getSize(0);
3248 // Convert the pointer to intptr_t before signing it.
3249 auto OrigType = Pointer->getType();
3250 Pointer = CGF.Builder.CreatePtrToInt(Pointer, CGF.IntPtrTy);
3252 // call i64 @llvm.ptrauth.sign.i64(i64 %pointer, i32 %key, i64 %discriminator)
3253 auto Intrinsic = CGF.CGM.getIntrinsic(IntrinsicID);
3254 Pointer = CGF.EmitRuntimeCall(Intrinsic, {Pointer, Key, Discriminator});
3256 // Convert back to the original type.
3257 Pointer = CGF.Builder.CreateIntToPtr(Pointer, OrigType);
3258 return Pointer;
3261 llvm::Value *
3262 CodeGenFunction::EmitPointerAuthSign(const CGPointerAuthInfo &PointerAuth,
3263 llvm::Value *Pointer) {
3264 if (!PointerAuth.shouldSign())
3265 return Pointer;
3266 return EmitPointerAuthCommon(*this, PointerAuth, Pointer,
3267 llvm::Intrinsic::ptrauth_sign);
3270 static llvm::Value *EmitStrip(CodeGenFunction &CGF,
3271 const CGPointerAuthInfo &PointerAuth,
3272 llvm::Value *Pointer) {
3273 auto StripIntrinsic = CGF.CGM.getIntrinsic(llvm::Intrinsic::ptrauth_strip);
3275 auto Key = CGF.Builder.getInt32(PointerAuth.getKey());
3276 // Convert the pointer to intptr_t before signing it.
3277 auto OrigType = Pointer->getType();
3278 Pointer = CGF.EmitRuntimeCall(
3279 StripIntrinsic, {CGF.Builder.CreatePtrToInt(Pointer, CGF.IntPtrTy), Key});
3280 return CGF.Builder.CreateIntToPtr(Pointer, OrigType);
3283 llvm::Value *
3284 CodeGenFunction::EmitPointerAuthAuth(const CGPointerAuthInfo &PointerAuth,
3285 llvm::Value *Pointer) {
3286 if (PointerAuth.shouldStrip()) {
3287 return EmitStrip(*this, PointerAuth, Pointer);
3289 if (!PointerAuth.shouldAuth()) {
3290 return Pointer;
3293 return EmitPointerAuthCommon(*this, PointerAuth, Pointer,
3294 llvm::Intrinsic::ptrauth_auth);