[LLVM] Fix Maintainers.md formatting (NFC)
[llvm-project.git] / mlir / lib / IR / AffineExpr.cpp
blob2291d64c50a56045f106ff354dfd4ae83a2e6e7c
1 //===- AffineExpr.cpp - MLIR Affine Expr Classes --------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
9 #include <cmath>
10 #include <cstdint>
11 #include <limits>
12 #include <utility>
14 #include "AffineExprDetail.h"
15 #include "mlir/IR/AffineExpr.h"
16 #include "mlir/IR/AffineExprVisitor.h"
17 #include "mlir/IR/AffineMap.h"
18 #include "mlir/IR/IntegerSet.h"
19 #include "mlir/Support/TypeID.h"
20 #include "llvm/ADT/STLExtras.h"
21 #include "llvm/Support/MathExtras.h"
22 #include <numeric>
23 #include <optional>
25 using namespace mlir;
26 using namespace mlir::detail;
28 using llvm::divideCeilSigned;
29 using llvm::divideFloorSigned;
30 using llvm::divideSignedWouldOverflow;
31 using llvm::mod;
33 MLIRContext *AffineExpr::getContext() const { return expr->context; }
35 AffineExprKind AffineExpr::getKind() const { return expr->kind; }
37 /// Walk all of the AffineExprs in `e` in postorder. This is a private factory
38 /// method to help handle lambda walk functions. Users should use the regular
39 /// (non-static) `walk` method.
40 template <typename WalkRetTy>
41 WalkRetTy mlir::AffineExpr::walk(AffineExpr e,
42 function_ref<WalkRetTy(AffineExpr)> callback) {
43 struct AffineExprWalker
44 : public AffineExprVisitor<AffineExprWalker, WalkRetTy> {
45 function_ref<WalkRetTy(AffineExpr)> callback;
47 AffineExprWalker(function_ref<WalkRetTy(AffineExpr)> callback)
48 : callback(callback) {}
50 WalkRetTy visitAffineBinaryOpExpr(AffineBinaryOpExpr expr) {
51 return callback(expr);
53 WalkRetTy visitConstantExpr(AffineConstantExpr expr) {
54 return callback(expr);
56 WalkRetTy visitDimExpr(AffineDimExpr expr) { return callback(expr); }
57 WalkRetTy visitSymbolExpr(AffineSymbolExpr expr) { return callback(expr); }
60 return AffineExprWalker(callback).walkPostOrder(e);
62 // Explicitly instantiate for the two supported return types.
63 template void mlir::AffineExpr::walk(AffineExpr e,
64 function_ref<void(AffineExpr)> callback);
65 template WalkResult
66 mlir::AffineExpr::walk(AffineExpr e,
67 function_ref<WalkResult(AffineExpr)> callback);
69 // Dispatch affine expression construction based on kind.
70 AffineExpr mlir::getAffineBinaryOpExpr(AffineExprKind kind, AffineExpr lhs,
71 AffineExpr rhs) {
72 if (kind == AffineExprKind::Add)
73 return lhs + rhs;
74 if (kind == AffineExprKind::Mul)
75 return lhs * rhs;
76 if (kind == AffineExprKind::FloorDiv)
77 return lhs.floorDiv(rhs);
78 if (kind == AffineExprKind::CeilDiv)
79 return lhs.ceilDiv(rhs);
80 if (kind == AffineExprKind::Mod)
81 return lhs % rhs;
83 llvm_unreachable("unknown binary operation on affine expressions");
86 /// This method substitutes any uses of dimensions and symbols (e.g.
87 /// dim#0 with dimReplacements[0]) and returns the modified expression tree.
88 AffineExpr
89 AffineExpr::replaceDimsAndSymbols(ArrayRef<AffineExpr> dimReplacements,
90 ArrayRef<AffineExpr> symReplacements) const {
91 switch (getKind()) {
92 case AffineExprKind::Constant:
93 return *this;
94 case AffineExprKind::DimId: {
95 unsigned dimId = llvm::cast<AffineDimExpr>(*this).getPosition();
96 if (dimId >= dimReplacements.size())
97 return *this;
98 return dimReplacements[dimId];
100 case AffineExprKind::SymbolId: {
101 unsigned symId = llvm::cast<AffineSymbolExpr>(*this).getPosition();
102 if (symId >= symReplacements.size())
103 return *this;
104 return symReplacements[symId];
106 case AffineExprKind::Add:
107 case AffineExprKind::Mul:
108 case AffineExprKind::FloorDiv:
109 case AffineExprKind::CeilDiv:
110 case AffineExprKind::Mod:
111 auto binOp = llvm::cast<AffineBinaryOpExpr>(*this);
112 auto lhs = binOp.getLHS(), rhs = binOp.getRHS();
113 auto newLHS = lhs.replaceDimsAndSymbols(dimReplacements, symReplacements);
114 auto newRHS = rhs.replaceDimsAndSymbols(dimReplacements, symReplacements);
115 if (newLHS == lhs && newRHS == rhs)
116 return *this;
117 return getAffineBinaryOpExpr(getKind(), newLHS, newRHS);
119 llvm_unreachable("Unknown AffineExpr");
122 AffineExpr AffineExpr::replaceDims(ArrayRef<AffineExpr> dimReplacements) const {
123 return replaceDimsAndSymbols(dimReplacements, {});
126 AffineExpr
127 AffineExpr::replaceSymbols(ArrayRef<AffineExpr> symReplacements) const {
128 return replaceDimsAndSymbols({}, symReplacements);
131 /// Replace dims[offset ... numDims)
132 /// by dims[offset + shift ... shift + numDims).
133 AffineExpr AffineExpr::shiftDims(unsigned numDims, unsigned shift,
134 unsigned offset) const {
135 SmallVector<AffineExpr, 4> dims;
136 for (unsigned idx = 0; idx < offset; ++idx)
137 dims.push_back(getAffineDimExpr(idx, getContext()));
138 for (unsigned idx = offset; idx < numDims; ++idx)
139 dims.push_back(getAffineDimExpr(idx + shift, getContext()));
140 return replaceDimsAndSymbols(dims, {});
143 /// Replace symbols[offset ... numSymbols)
144 /// by symbols[offset + shift ... shift + numSymbols).
145 AffineExpr AffineExpr::shiftSymbols(unsigned numSymbols, unsigned shift,
146 unsigned offset) const {
147 SmallVector<AffineExpr, 4> symbols;
148 for (unsigned idx = 0; idx < offset; ++idx)
149 symbols.push_back(getAffineSymbolExpr(idx, getContext()));
150 for (unsigned idx = offset; idx < numSymbols; ++idx)
151 symbols.push_back(getAffineSymbolExpr(idx + shift, getContext()));
152 return replaceDimsAndSymbols({}, symbols);
155 /// Sparse replace method. Return the modified expression tree.
156 AffineExpr
157 AffineExpr::replace(const DenseMap<AffineExpr, AffineExpr> &map) const {
158 auto it = map.find(*this);
159 if (it != map.end())
160 return it->second;
161 switch (getKind()) {
162 default:
163 return *this;
164 case AffineExprKind::Add:
165 case AffineExprKind::Mul:
166 case AffineExprKind::FloorDiv:
167 case AffineExprKind::CeilDiv:
168 case AffineExprKind::Mod:
169 auto binOp = llvm::cast<AffineBinaryOpExpr>(*this);
170 auto lhs = binOp.getLHS(), rhs = binOp.getRHS();
171 auto newLHS = lhs.replace(map);
172 auto newRHS = rhs.replace(map);
173 if (newLHS == lhs && newRHS == rhs)
174 return *this;
175 return getAffineBinaryOpExpr(getKind(), newLHS, newRHS);
177 llvm_unreachable("Unknown AffineExpr");
180 /// Sparse replace method. Return the modified expression tree.
181 AffineExpr AffineExpr::replace(AffineExpr expr, AffineExpr replacement) const {
182 DenseMap<AffineExpr, AffineExpr> map;
183 map.insert(std::make_pair(expr, replacement));
184 return replace(map);
186 /// Returns true if this expression is made out of only symbols and
187 /// constants (no dimensional identifiers).
188 bool AffineExpr::isSymbolicOrConstant() const {
189 switch (getKind()) {
190 case AffineExprKind::Constant:
191 return true;
192 case AffineExprKind::DimId:
193 return false;
194 case AffineExprKind::SymbolId:
195 return true;
197 case AffineExprKind::Add:
198 case AffineExprKind::Mul:
199 case AffineExprKind::FloorDiv:
200 case AffineExprKind::CeilDiv:
201 case AffineExprKind::Mod: {
202 auto expr = llvm::cast<AffineBinaryOpExpr>(*this);
203 return expr.getLHS().isSymbolicOrConstant() &&
204 expr.getRHS().isSymbolicOrConstant();
207 llvm_unreachable("Unknown AffineExpr");
210 /// Returns true if this is a pure affine expression, i.e., multiplication,
211 /// floordiv, ceildiv, and mod is only allowed w.r.t constants.
212 bool AffineExpr::isPureAffine() const {
213 switch (getKind()) {
214 case AffineExprKind::SymbolId:
215 case AffineExprKind::DimId:
216 case AffineExprKind::Constant:
217 return true;
218 case AffineExprKind::Add: {
219 auto op = llvm::cast<AffineBinaryOpExpr>(*this);
220 return op.getLHS().isPureAffine() && op.getRHS().isPureAffine();
223 case AffineExprKind::Mul: {
224 // TODO: Canonicalize the constants in binary operators to the RHS when
225 // possible, allowing this to merge into the next case.
226 auto op = llvm::cast<AffineBinaryOpExpr>(*this);
227 return op.getLHS().isPureAffine() && op.getRHS().isPureAffine() &&
228 (llvm::isa<AffineConstantExpr>(op.getLHS()) ||
229 llvm::isa<AffineConstantExpr>(op.getRHS()));
231 case AffineExprKind::FloorDiv:
232 case AffineExprKind::CeilDiv:
233 case AffineExprKind::Mod: {
234 auto op = llvm::cast<AffineBinaryOpExpr>(*this);
235 return op.getLHS().isPureAffine() &&
236 llvm::isa<AffineConstantExpr>(op.getRHS());
239 llvm_unreachable("Unknown AffineExpr");
242 // Returns the greatest known integral divisor of this affine expression.
243 int64_t AffineExpr::getLargestKnownDivisor() const {
244 AffineBinaryOpExpr binExpr(nullptr);
245 switch (getKind()) {
246 case AffineExprKind::DimId:
247 [[fallthrough]];
248 case AffineExprKind::SymbolId:
249 return 1;
250 case AffineExprKind::CeilDiv:
251 [[fallthrough]];
252 case AffineExprKind::FloorDiv: {
253 // If the RHS is a constant and divides the known divisor on the LHS, the
254 // quotient is a known divisor of the expression.
255 binExpr = llvm::cast<AffineBinaryOpExpr>(*this);
256 auto rhs = llvm::dyn_cast<AffineConstantExpr>(binExpr.getRHS());
257 // Leave alone undefined expressions.
258 if (rhs && rhs.getValue() != 0) {
259 int64_t lhsDiv = binExpr.getLHS().getLargestKnownDivisor();
260 if (lhsDiv % rhs.getValue() == 0)
261 return std::abs(lhsDiv / rhs.getValue());
263 return 1;
265 case AffineExprKind::Constant:
266 return std::abs(llvm::cast<AffineConstantExpr>(*this).getValue());
267 case AffineExprKind::Mul: {
268 binExpr = llvm::cast<AffineBinaryOpExpr>(*this);
269 return binExpr.getLHS().getLargestKnownDivisor() *
270 binExpr.getRHS().getLargestKnownDivisor();
272 case AffineExprKind::Add:
273 [[fallthrough]];
274 case AffineExprKind::Mod: {
275 binExpr = llvm::cast<AffineBinaryOpExpr>(*this);
276 return std::gcd((uint64_t)binExpr.getLHS().getLargestKnownDivisor(),
277 (uint64_t)binExpr.getRHS().getLargestKnownDivisor());
280 llvm_unreachable("Unknown AffineExpr");
283 bool AffineExpr::isMultipleOf(int64_t factor) const {
284 AffineBinaryOpExpr binExpr(nullptr);
285 uint64_t l, u;
286 switch (getKind()) {
287 case AffineExprKind::SymbolId:
288 [[fallthrough]];
289 case AffineExprKind::DimId:
290 return factor * factor == 1;
291 case AffineExprKind::Constant:
292 return llvm::cast<AffineConstantExpr>(*this).getValue() % factor == 0;
293 case AffineExprKind::Mul: {
294 binExpr = llvm::cast<AffineBinaryOpExpr>(*this);
295 // It's probably not worth optimizing this further (to not traverse the
296 // whole sub-tree under - it that would require a version of isMultipleOf
297 // that on a 'false' return also returns the largest known divisor).
298 return (l = binExpr.getLHS().getLargestKnownDivisor()) % factor == 0 ||
299 (u = binExpr.getRHS().getLargestKnownDivisor()) % factor == 0 ||
300 (l * u) % factor == 0;
302 case AffineExprKind::Add:
303 case AffineExprKind::FloorDiv:
304 case AffineExprKind::CeilDiv:
305 case AffineExprKind::Mod: {
306 binExpr = llvm::cast<AffineBinaryOpExpr>(*this);
307 return std::gcd((uint64_t)binExpr.getLHS().getLargestKnownDivisor(),
308 (uint64_t)binExpr.getRHS().getLargestKnownDivisor()) %
309 factor ==
313 llvm_unreachable("Unknown AffineExpr");
316 bool AffineExpr::isFunctionOfDim(unsigned position) const {
317 if (getKind() == AffineExprKind::DimId) {
318 return *this == mlir::getAffineDimExpr(position, getContext());
320 if (auto expr = llvm::dyn_cast<AffineBinaryOpExpr>(*this)) {
321 return expr.getLHS().isFunctionOfDim(position) ||
322 expr.getRHS().isFunctionOfDim(position);
324 return false;
327 bool AffineExpr::isFunctionOfSymbol(unsigned position) const {
328 if (getKind() == AffineExprKind::SymbolId) {
329 return *this == mlir::getAffineSymbolExpr(position, getContext());
331 if (auto expr = llvm::dyn_cast<AffineBinaryOpExpr>(*this)) {
332 return expr.getLHS().isFunctionOfSymbol(position) ||
333 expr.getRHS().isFunctionOfSymbol(position);
335 return false;
338 AffineBinaryOpExpr::AffineBinaryOpExpr(AffineExpr::ImplType *ptr)
339 : AffineExpr(ptr) {}
340 AffineExpr AffineBinaryOpExpr::getLHS() const {
341 return static_cast<ImplType *>(expr)->lhs;
343 AffineExpr AffineBinaryOpExpr::getRHS() const {
344 return static_cast<ImplType *>(expr)->rhs;
347 AffineDimExpr::AffineDimExpr(AffineExpr::ImplType *ptr) : AffineExpr(ptr) {}
348 unsigned AffineDimExpr::getPosition() const {
349 return static_cast<ImplType *>(expr)->position;
352 /// Returns true if the expression is divisible by the given symbol with
353 /// position `symbolPos`. The argument `opKind` specifies here what kind of
354 /// division or mod operation called this division. It helps in implementing the
355 /// commutative property of the floordiv and ceildiv operations. If the argument
356 ///`exprKind` is floordiv and `expr` is also a binary expression of a floordiv
357 /// operation, then the commutative property can be used otherwise, the floordiv
358 /// operation is not divisible. The same argument holds for ceildiv operation.
359 static bool canSimplifyDivisionBySymbol(AffineExpr expr, unsigned symbolPos,
360 AffineExprKind opKind,
361 bool fromMul = false) {
362 // The argument `opKind` can either be Modulo, Floordiv or Ceildiv only.
363 assert((opKind == AffineExprKind::Mod || opKind == AffineExprKind::FloorDiv ||
364 opKind == AffineExprKind::CeilDiv) &&
365 "unexpected opKind");
366 switch (expr.getKind()) {
367 case AffineExprKind::Constant:
368 return cast<AffineConstantExpr>(expr).getValue() == 0;
369 case AffineExprKind::DimId:
370 return false;
371 case AffineExprKind::SymbolId:
372 return (cast<AffineSymbolExpr>(expr).getPosition() == symbolPos);
373 // Checks divisibility by the given symbol for both operands.
374 case AffineExprKind::Add: {
375 AffineBinaryOpExpr binaryExpr = cast<AffineBinaryOpExpr>(expr);
376 return canSimplifyDivisionBySymbol(binaryExpr.getLHS(), symbolPos,
377 opKind) &&
378 canSimplifyDivisionBySymbol(binaryExpr.getRHS(), symbolPos, opKind);
380 // Checks divisibility by the given symbol for both operands. Consider the
381 // expression `(((s1*s0) floordiv w) mod ((s1 * s2) floordiv p)) floordiv s1`,
382 // this is a division by s1 and both the operands of modulo are divisible by
383 // s1 but it is not divisible by s1 always. The third argument is
384 // `AffineExprKind::Mod` for this reason.
385 case AffineExprKind::Mod: {
386 AffineBinaryOpExpr binaryExpr = cast<AffineBinaryOpExpr>(expr);
387 return canSimplifyDivisionBySymbol(binaryExpr.getLHS(), symbolPos,
388 AffineExprKind::Mod) &&
389 canSimplifyDivisionBySymbol(binaryExpr.getRHS(), symbolPos,
390 AffineExprKind::Mod);
392 // Checks if any of the operand divisible by the given symbol.
393 case AffineExprKind::Mul: {
394 AffineBinaryOpExpr binaryExpr = cast<AffineBinaryOpExpr>(expr);
395 return canSimplifyDivisionBySymbol(binaryExpr.getLHS(), symbolPos, opKind,
396 true) ||
397 canSimplifyDivisionBySymbol(binaryExpr.getRHS(), symbolPos, opKind,
398 true);
400 // Floordiv and ceildiv are divisible by the given symbol when the first
401 // operand is divisible, and the affine expression kind of the argument expr
402 // is same as the argument `opKind`. This can be inferred from commutative
403 // property of floordiv and ceildiv operations and are as follow:
404 // (exp1 floordiv exp2) floordiv exp3 = (exp1 floordiv exp3) floordiv exp2
405 // (exp1 ceildiv exp2) ceildiv exp3 = (exp1 ceildiv exp3) ceildiv expr2
406 // It will fail 1.if operations are not same. For example:
407 // (exps1 ceildiv exp2) floordiv exp3 can not be simplified. 2.if there is a
408 // multiplication operation in the expression. For example:
409 // (exps1 ceildiv exp2) mul exp3 ceildiv exp4 can not be simplified.
410 case AffineExprKind::FloorDiv:
411 case AffineExprKind::CeilDiv: {
412 AffineBinaryOpExpr binaryExpr = cast<AffineBinaryOpExpr>(expr);
413 if (opKind != expr.getKind())
414 return false;
415 if (fromMul)
416 return false;
417 return canSimplifyDivisionBySymbol(binaryExpr.getLHS(), symbolPos,
418 expr.getKind());
421 llvm_unreachable("Unknown AffineExpr");
424 /// Divides the given expression by the given symbol at position `symbolPos`. It
425 /// considers the divisibility condition is checked before calling itself. A
426 /// null expression is returned whenever the divisibility condition fails.
427 static AffineExpr symbolicDivide(AffineExpr expr, unsigned symbolPos,
428 AffineExprKind opKind) {
429 // THe argument `opKind` can either be Modulo, Floordiv or Ceildiv only.
430 assert((opKind == AffineExprKind::Mod || opKind == AffineExprKind::FloorDiv ||
431 opKind == AffineExprKind::CeilDiv) &&
432 "unexpected opKind");
433 switch (expr.getKind()) {
434 case AffineExprKind::Constant:
435 if (cast<AffineConstantExpr>(expr).getValue() != 0)
436 return nullptr;
437 return getAffineConstantExpr(0, expr.getContext());
438 case AffineExprKind::DimId:
439 return nullptr;
440 case AffineExprKind::SymbolId:
441 return getAffineConstantExpr(1, expr.getContext());
442 // Dividing both operands by the given symbol.
443 case AffineExprKind::Add: {
444 AffineBinaryOpExpr binaryExpr = cast<AffineBinaryOpExpr>(expr);
445 return getAffineBinaryOpExpr(
446 expr.getKind(), symbolicDivide(binaryExpr.getLHS(), symbolPos, opKind),
447 symbolicDivide(binaryExpr.getRHS(), symbolPos, opKind));
449 // Dividing both operands by the given symbol.
450 case AffineExprKind::Mod: {
451 AffineBinaryOpExpr binaryExpr = cast<AffineBinaryOpExpr>(expr);
452 return getAffineBinaryOpExpr(
453 expr.getKind(),
454 symbolicDivide(binaryExpr.getLHS(), symbolPos, expr.getKind()),
455 symbolicDivide(binaryExpr.getRHS(), symbolPos, expr.getKind()));
457 // Dividing any of the operand by the given symbol.
458 case AffineExprKind::Mul: {
459 AffineBinaryOpExpr binaryExpr = cast<AffineBinaryOpExpr>(expr);
460 if (!canSimplifyDivisionBySymbol(binaryExpr.getLHS(), symbolPos, opKind))
461 return binaryExpr.getLHS() *
462 symbolicDivide(binaryExpr.getRHS(), symbolPos, opKind);
463 return symbolicDivide(binaryExpr.getLHS(), symbolPos, opKind) *
464 binaryExpr.getRHS();
466 // Dividing first operand only by the given symbol.
467 case AffineExprKind::FloorDiv:
468 case AffineExprKind::CeilDiv: {
469 AffineBinaryOpExpr binaryExpr = cast<AffineBinaryOpExpr>(expr);
470 return getAffineBinaryOpExpr(
471 expr.getKind(),
472 symbolicDivide(binaryExpr.getLHS(), symbolPos, expr.getKind()),
473 binaryExpr.getRHS());
476 llvm_unreachable("Unknown AffineExpr");
479 /// Populate `result` with all summand operands of given (potentially nested)
480 /// addition. If the given expression is not an addition, just populate the
481 /// expression itself.
482 /// Example: Add(Add(7, 8), Mul(9, 10)) will return [7, 8, Mul(9, 10)].
483 static void getSummandExprs(AffineExpr expr, SmallVector<AffineExpr> &result) {
484 auto addExpr = dyn_cast<AffineBinaryOpExpr>(expr);
485 if (!addExpr || addExpr.getKind() != AffineExprKind::Add) {
486 result.push_back(expr);
487 return;
489 getSummandExprs(addExpr.getLHS(), result);
490 getSummandExprs(addExpr.getRHS(), result);
493 /// Return "true" if `candidate` is a negated expression, i.e., Mul(-1, expr).
494 /// If so, also return the non-negated expression via `expr`.
495 static bool isNegatedAffineExpr(AffineExpr candidate, AffineExpr &expr) {
496 auto mulExpr = dyn_cast<AffineBinaryOpExpr>(candidate);
497 if (!mulExpr || mulExpr.getKind() != AffineExprKind::Mul)
498 return false;
499 if (auto lhs = dyn_cast<AffineConstantExpr>(mulExpr.getLHS())) {
500 if (lhs.getValue() == -1) {
501 expr = mulExpr.getRHS();
502 return true;
505 if (auto rhs = dyn_cast<AffineConstantExpr>(mulExpr.getRHS())) {
506 if (rhs.getValue() == -1) {
507 expr = mulExpr.getLHS();
508 return true;
511 return false;
514 /// Return "true" if `lhs` % `rhs` is guaranteed to evaluate to zero based on
515 /// the fact that `lhs` contains another modulo expression that ensures that
516 /// `lhs` is divisible by `rhs`. This is a common pattern in the resulting IR
517 /// after loop peeling.
519 /// Example: lhs = ub - ub % step
520 /// rhs = step
521 /// => (ub - ub % step) % step is guaranteed to evaluate to 0.
522 static bool isModOfModSubtraction(AffineExpr lhs, AffineExpr rhs,
523 unsigned numDims, unsigned numSymbols) {
524 // TODO: Try to unify this function with `getBoundForAffineExpr`.
525 // Collect all summands in lhs.
526 SmallVector<AffineExpr> summands;
527 getSummandExprs(lhs, summands);
528 // Look for Mul(-1, Mod(x, rhs)) among the summands. If x matches the
529 // remaining summands, then lhs % rhs is guaranteed to evaluate to 0.
530 for (int64_t i = 0, e = summands.size(); i < e; ++i) {
531 AffineExpr current = summands[i];
532 AffineExpr beforeNegation;
533 if (!isNegatedAffineExpr(current, beforeNegation))
534 continue;
535 AffineBinaryOpExpr innerMod = dyn_cast<AffineBinaryOpExpr>(beforeNegation);
536 if (!innerMod || innerMod.getKind() != AffineExprKind::Mod)
537 continue;
538 if (innerMod.getRHS() != rhs)
539 continue;
540 // Sum all remaining summands and subtract x. If that expression can be
541 // simplified to zero, then the remaining summands and x are equal.
542 AffineExpr diff = getAffineConstantExpr(0, lhs.getContext());
543 for (int64_t j = 0; j < e; ++j)
544 if (i != j)
545 diff = diff + summands[j];
546 diff = diff - innerMod.getLHS();
547 diff = simplifyAffineExpr(diff, numDims, numSymbols);
548 auto constExpr = dyn_cast<AffineConstantExpr>(diff);
549 if (constExpr && constExpr.getValue() == 0)
550 return true;
552 return false;
555 /// Simplify a semi-affine expression by handling modulo, floordiv, or ceildiv
556 /// operations when the second operand simplifies to a symbol and the first
557 /// operand is divisible by that symbol. It can be applied to any semi-affine
558 /// expression. Returned expression can either be a semi-affine or pure affine
559 /// expression.
560 static AffineExpr simplifySemiAffine(AffineExpr expr, unsigned numDims,
561 unsigned numSymbols) {
562 switch (expr.getKind()) {
563 case AffineExprKind::Constant:
564 case AffineExprKind::DimId:
565 case AffineExprKind::SymbolId:
566 return expr;
567 case AffineExprKind::Add:
568 case AffineExprKind::Mul: {
569 AffineBinaryOpExpr binaryExpr = cast<AffineBinaryOpExpr>(expr);
570 return getAffineBinaryOpExpr(
571 expr.getKind(),
572 simplifySemiAffine(binaryExpr.getLHS(), numDims, numSymbols),
573 simplifySemiAffine(binaryExpr.getRHS(), numDims, numSymbols));
575 // Check if the simplification of the second operand is a symbol, and the
576 // first operand is divisible by it. If the operation is a modulo, a constant
577 // zero expression is returned. In the case of floordiv and ceildiv, the
578 // symbol from the simplification of the second operand divides the first
579 // operand. Otherwise, simplification is not possible.
580 case AffineExprKind::FloorDiv:
581 case AffineExprKind::CeilDiv:
582 case AffineExprKind::Mod: {
583 AffineBinaryOpExpr binaryExpr = cast<AffineBinaryOpExpr>(expr);
584 AffineExpr sLHS =
585 simplifySemiAffine(binaryExpr.getLHS(), numDims, numSymbols);
586 AffineExpr sRHS =
587 simplifySemiAffine(binaryExpr.getRHS(), numDims, numSymbols);
588 if (isModOfModSubtraction(sLHS, sRHS, numDims, numSymbols))
589 return getAffineConstantExpr(0, expr.getContext());
590 AffineSymbolExpr symbolExpr = dyn_cast<AffineSymbolExpr>(
591 simplifySemiAffine(binaryExpr.getRHS(), numDims, numSymbols));
592 if (!symbolExpr)
593 return getAffineBinaryOpExpr(expr.getKind(), sLHS, sRHS);
594 unsigned symbolPos = symbolExpr.getPosition();
595 if (!canSimplifyDivisionBySymbol(binaryExpr.getLHS(), symbolPos,
596 expr.getKind()))
597 return getAffineBinaryOpExpr(expr.getKind(), sLHS, sRHS);
598 if (expr.getKind() == AffineExprKind::Mod)
599 return getAffineConstantExpr(0, expr.getContext());
600 return symbolicDivide(sLHS, symbolPos, expr.getKind());
603 llvm_unreachable("Unknown AffineExpr");
606 static AffineExpr getAffineDimOrSymbol(AffineExprKind kind, unsigned position,
607 MLIRContext *context) {
608 auto assignCtx = [context](AffineDimExprStorage *storage) {
609 storage->context = context;
612 StorageUniquer &uniquer = context->getAffineUniquer();
613 return uniquer.get<AffineDimExprStorage>(
614 assignCtx, static_cast<unsigned>(kind), position);
617 AffineExpr mlir::getAffineDimExpr(unsigned position, MLIRContext *context) {
618 return getAffineDimOrSymbol(AffineExprKind::DimId, position, context);
621 AffineSymbolExpr::AffineSymbolExpr(AffineExpr::ImplType *ptr)
622 : AffineExpr(ptr) {}
623 unsigned AffineSymbolExpr::getPosition() const {
624 return static_cast<ImplType *>(expr)->position;
627 AffineExpr mlir::getAffineSymbolExpr(unsigned position, MLIRContext *context) {
628 return getAffineDimOrSymbol(AffineExprKind::SymbolId, position, context);
631 AffineConstantExpr::AffineConstantExpr(AffineExpr::ImplType *ptr)
632 : AffineExpr(ptr) {}
633 int64_t AffineConstantExpr::getValue() const {
634 return static_cast<ImplType *>(expr)->constant;
637 bool AffineExpr::operator==(int64_t v) const {
638 return *this == getAffineConstantExpr(v, getContext());
641 AffineExpr mlir::getAffineConstantExpr(int64_t constant, MLIRContext *context) {
642 auto assignCtx = [context](AffineConstantExprStorage *storage) {
643 storage->context = context;
646 StorageUniquer &uniquer = context->getAffineUniquer();
647 return uniquer.get<AffineConstantExprStorage>(assignCtx, constant);
650 SmallVector<AffineExpr>
651 mlir::getAffineConstantExprs(ArrayRef<int64_t> constants,
652 MLIRContext *context) {
653 return llvm::to_vector(llvm::map_range(constants, [&](int64_t constant) {
654 return getAffineConstantExpr(constant, context);
655 }));
658 /// Simplify add expression. Return nullptr if it can't be simplified.
659 static AffineExpr simplifyAdd(AffineExpr lhs, AffineExpr rhs) {
660 auto lhsConst = dyn_cast<AffineConstantExpr>(lhs);
661 auto rhsConst = dyn_cast<AffineConstantExpr>(rhs);
662 // Fold if both LHS, RHS are a constant and the sum does not overflow.
663 if (lhsConst && rhsConst) {
664 int64_t sum;
665 if (llvm::AddOverflow(lhsConst.getValue(), rhsConst.getValue(), sum)) {
666 return nullptr;
668 return getAffineConstantExpr(sum, lhs.getContext());
671 // Canonicalize so that only the RHS is a constant. (4 + d0 becomes d0 + 4).
672 // If only one of them is a symbolic expressions, make it the RHS.
673 if (isa<AffineConstantExpr>(lhs) ||
674 (lhs.isSymbolicOrConstant() && !rhs.isSymbolicOrConstant())) {
675 return rhs + lhs;
678 // At this point, if there was a constant, it would be on the right.
680 // Addition with a zero is a noop, return the other input.
681 if (rhsConst) {
682 if (rhsConst.getValue() == 0)
683 return lhs;
685 // Fold successive additions like (d0 + 2) + 3 into d0 + 5.
686 auto lBin = dyn_cast<AffineBinaryOpExpr>(lhs);
687 if (lBin && rhsConst && lBin.getKind() == AffineExprKind::Add) {
688 if (auto lrhs = dyn_cast<AffineConstantExpr>(lBin.getRHS()))
689 return lBin.getLHS() + (lrhs.getValue() + rhsConst.getValue());
692 // Detect "c1 * expr + c_2 * expr" as "(c1 + c2) * expr".
693 // c1 is rRhsConst, c2 is rLhsConst; firstExpr, secondExpr are their
694 // respective multiplicands.
695 std::optional<int64_t> rLhsConst, rRhsConst;
696 AffineExpr firstExpr, secondExpr;
697 AffineConstantExpr rLhsConstExpr;
698 auto lBinOpExpr = dyn_cast<AffineBinaryOpExpr>(lhs);
699 if (lBinOpExpr && lBinOpExpr.getKind() == AffineExprKind::Mul &&
700 (rLhsConstExpr = dyn_cast<AffineConstantExpr>(lBinOpExpr.getRHS()))) {
701 rLhsConst = rLhsConstExpr.getValue();
702 firstExpr = lBinOpExpr.getLHS();
703 } else {
704 rLhsConst = 1;
705 firstExpr = lhs;
708 auto rBinOpExpr = dyn_cast<AffineBinaryOpExpr>(rhs);
709 AffineConstantExpr rRhsConstExpr;
710 if (rBinOpExpr && rBinOpExpr.getKind() == AffineExprKind::Mul &&
711 (rRhsConstExpr = dyn_cast<AffineConstantExpr>(rBinOpExpr.getRHS()))) {
712 rRhsConst = rRhsConstExpr.getValue();
713 secondExpr = rBinOpExpr.getLHS();
714 } else {
715 rRhsConst = 1;
716 secondExpr = rhs;
719 if (rLhsConst && rRhsConst && firstExpr == secondExpr)
720 return getAffineBinaryOpExpr(
721 AffineExprKind::Mul, firstExpr,
722 getAffineConstantExpr(*rLhsConst + *rRhsConst, lhs.getContext()));
724 // When doing successive additions, bring constant to the right: turn (d0 + 2)
725 // + d1 into (d0 + d1) + 2.
726 if (lBin && lBin.getKind() == AffineExprKind::Add) {
727 if (auto lrhs = dyn_cast<AffineConstantExpr>(lBin.getRHS())) {
728 return lBin.getLHS() + rhs + lrhs;
732 // Detect and transform "expr - q * (expr floordiv q)" to "expr mod q", where
733 // q may be a constant or symbolic expression. This leads to a much more
734 // efficient form when 'c' is a power of two, and in general a more compact
735 // and readable form.
737 // Process '(expr floordiv c) * (-c)'.
738 if (!rBinOpExpr)
739 return nullptr;
741 auto lrhs = rBinOpExpr.getLHS();
742 auto rrhs = rBinOpExpr.getRHS();
744 AffineExpr llrhs, rlrhs;
746 // Check if lrhsBinOpExpr is of the form (expr floordiv q) * q, where q is a
747 // symbolic expression.
748 auto lrhsBinOpExpr = dyn_cast<AffineBinaryOpExpr>(lrhs);
749 // Check rrhsConstOpExpr = -1.
750 auto rrhsConstOpExpr = dyn_cast<AffineConstantExpr>(rrhs);
751 if (rrhsConstOpExpr && rrhsConstOpExpr.getValue() == -1 && lrhsBinOpExpr &&
752 lrhsBinOpExpr.getKind() == AffineExprKind::Mul) {
753 // Check llrhs = expr floordiv q.
754 llrhs = lrhsBinOpExpr.getLHS();
755 // Check rlrhs = q.
756 rlrhs = lrhsBinOpExpr.getRHS();
757 auto llrhsBinOpExpr = dyn_cast<AffineBinaryOpExpr>(llrhs);
758 if (!llrhsBinOpExpr || llrhsBinOpExpr.getKind() != AffineExprKind::FloorDiv)
759 return nullptr;
760 if (llrhsBinOpExpr.getRHS() == rlrhs && lhs == llrhsBinOpExpr.getLHS())
761 return lhs % rlrhs;
764 // Process lrhs, which is 'expr floordiv c'.
765 // expr + (expr // c * -c) = expr % c
766 AffineBinaryOpExpr lrBinOpExpr = dyn_cast<AffineBinaryOpExpr>(lrhs);
767 if (!lrBinOpExpr || rhs.getKind() != AffineExprKind::Mul ||
768 lrBinOpExpr.getKind() != AffineExprKind::FloorDiv)
769 return nullptr;
771 llrhs = lrBinOpExpr.getLHS();
772 rlrhs = lrBinOpExpr.getRHS();
773 auto rlrhsConstOpExpr = dyn_cast<AffineConstantExpr>(rlrhs);
774 // We don't support modulo with a negative RHS.
775 bool isPositiveRhs = rlrhsConstOpExpr && rlrhsConstOpExpr.getValue() > 0;
777 if (isPositiveRhs && lhs == llrhs && rlrhs == -rrhs) {
778 return lhs % rlrhs;
780 return nullptr;
783 AffineExpr AffineExpr::operator+(int64_t v) const {
784 return *this + getAffineConstantExpr(v, getContext());
786 AffineExpr AffineExpr::operator+(AffineExpr other) const {
787 if (auto simplified = simplifyAdd(*this, other))
788 return simplified;
790 StorageUniquer &uniquer = getContext()->getAffineUniquer();
791 return uniquer.get<AffineBinaryOpExprStorage>(
792 /*initFn=*/{}, static_cast<unsigned>(AffineExprKind::Add), *this, other);
795 /// Simplify a multiply expression. Return nullptr if it can't be simplified.
796 static AffineExpr simplifyMul(AffineExpr lhs, AffineExpr rhs) {
797 auto lhsConst = dyn_cast<AffineConstantExpr>(lhs);
798 auto rhsConst = dyn_cast<AffineConstantExpr>(rhs);
800 if (lhsConst && rhsConst) {
801 int64_t product;
802 if (llvm::MulOverflow(lhsConst.getValue(), rhsConst.getValue(), product)) {
803 return nullptr;
805 return getAffineConstantExpr(product, lhs.getContext());
808 if (!lhs.isSymbolicOrConstant() && !rhs.isSymbolicOrConstant())
809 return nullptr;
811 // Canonicalize the mul expression so that the constant/symbolic term is the
812 // RHS. If both the lhs and rhs are symbolic, swap them if the lhs is a
813 // constant. (Note that a constant is trivially symbolic).
814 if (!rhs.isSymbolicOrConstant() || isa<AffineConstantExpr>(lhs)) {
815 // At least one of them has to be symbolic.
816 return rhs * lhs;
819 // At this point, if there was a constant, it would be on the right.
821 // Multiplication with a one is a noop, return the other input.
822 if (rhsConst) {
823 if (rhsConst.getValue() == 1)
824 return lhs;
825 // Multiplication with zero.
826 if (rhsConst.getValue() == 0)
827 return rhsConst;
830 // Fold successive multiplications: eg: (d0 * 2) * 3 into d0 * 6.
831 auto lBin = dyn_cast<AffineBinaryOpExpr>(lhs);
832 if (lBin && rhsConst && lBin.getKind() == AffineExprKind::Mul) {
833 if (auto lrhs = dyn_cast<AffineConstantExpr>(lBin.getRHS()))
834 return lBin.getLHS() * (lrhs.getValue() * rhsConst.getValue());
837 // When doing successive multiplication, bring constant to the right: turn (d0
838 // * 2) * d1 into (d0 * d1) * 2.
839 if (lBin && lBin.getKind() == AffineExprKind::Mul) {
840 if (auto lrhs = dyn_cast<AffineConstantExpr>(lBin.getRHS())) {
841 return (lBin.getLHS() * rhs) * lrhs;
845 return nullptr;
848 AffineExpr AffineExpr::operator*(int64_t v) const {
849 return *this * getAffineConstantExpr(v, getContext());
851 AffineExpr AffineExpr::operator*(AffineExpr other) const {
852 if (auto simplified = simplifyMul(*this, other))
853 return simplified;
855 StorageUniquer &uniquer = getContext()->getAffineUniquer();
856 return uniquer.get<AffineBinaryOpExprStorage>(
857 /*initFn=*/{}, static_cast<unsigned>(AffineExprKind::Mul), *this, other);
860 // Unary minus, delegate to operator*.
861 AffineExpr AffineExpr::operator-() const {
862 return *this * getAffineConstantExpr(-1, getContext());
865 // Delegate to operator+.
866 AffineExpr AffineExpr::operator-(int64_t v) const { return *this + (-v); }
867 AffineExpr AffineExpr::operator-(AffineExpr other) const {
868 return *this + (-other);
871 static AffineExpr simplifyFloorDiv(AffineExpr lhs, AffineExpr rhs) {
872 auto lhsConst = dyn_cast<AffineConstantExpr>(lhs);
873 auto rhsConst = dyn_cast<AffineConstantExpr>(rhs);
875 if (!rhsConst || rhsConst.getValue() == 0)
876 return nullptr;
878 if (lhsConst) {
879 if (divideSignedWouldOverflow(lhsConst.getValue(), rhsConst.getValue()))
880 return nullptr;
881 return getAffineConstantExpr(
882 divideFloorSigned(lhsConst.getValue(), rhsConst.getValue()),
883 lhs.getContext());
886 // Fold floordiv of a multiply with a constant that is a multiple of the
887 // divisor. Eg: (i * 128) floordiv 64 = i * 2.
888 if (rhsConst == 1)
889 return lhs;
891 // Simplify `(expr * lrhs) floordiv rhsConst` when `lrhs` is known to be a
892 // multiple of `rhsConst`.
893 auto lBin = dyn_cast<AffineBinaryOpExpr>(lhs);
894 if (lBin && lBin.getKind() == AffineExprKind::Mul) {
895 if (auto lrhs = dyn_cast<AffineConstantExpr>(lBin.getRHS())) {
896 // `rhsConst` is known to be a nonzero constant.
897 if (lrhs.getValue() % rhsConst.getValue() == 0)
898 return lBin.getLHS() * (lrhs.getValue() / rhsConst.getValue());
902 // Simplify (expr1 + expr2) floordiv divConst when either expr1 or expr2 is
903 // known to be a multiple of divConst.
904 if (lBin && lBin.getKind() == AffineExprKind::Add) {
905 int64_t llhsDiv = lBin.getLHS().getLargestKnownDivisor();
906 int64_t lrhsDiv = lBin.getRHS().getLargestKnownDivisor();
907 // rhsConst is known to be a nonzero constant.
908 if (llhsDiv % rhsConst.getValue() == 0 ||
909 lrhsDiv % rhsConst.getValue() == 0)
910 return lBin.getLHS().floorDiv(rhsConst.getValue()) +
911 lBin.getRHS().floorDiv(rhsConst.getValue());
914 return nullptr;
917 AffineExpr AffineExpr::floorDiv(uint64_t v) const {
918 return floorDiv(getAffineConstantExpr(v, getContext()));
920 AffineExpr AffineExpr::floorDiv(AffineExpr other) const {
921 if (auto simplified = simplifyFloorDiv(*this, other))
922 return simplified;
924 StorageUniquer &uniquer = getContext()->getAffineUniquer();
925 return uniquer.get<AffineBinaryOpExprStorage>(
926 /*initFn=*/{}, static_cast<unsigned>(AffineExprKind::FloorDiv), *this,
927 other);
930 static AffineExpr simplifyCeilDiv(AffineExpr lhs, AffineExpr rhs) {
931 auto lhsConst = dyn_cast<AffineConstantExpr>(lhs);
932 auto rhsConst = dyn_cast<AffineConstantExpr>(rhs);
934 if (!rhsConst || rhsConst.getValue() == 0)
935 return nullptr;
937 if (lhsConst) {
938 if (divideSignedWouldOverflow(lhsConst.getValue(), rhsConst.getValue()))
939 return nullptr;
940 return getAffineConstantExpr(
941 divideCeilSigned(lhsConst.getValue(), rhsConst.getValue()),
942 lhs.getContext());
945 // Fold ceildiv of a multiply with a constant that is a multiple of the
946 // divisor. Eg: (i * 128) ceildiv 64 = i * 2.
947 if (rhsConst.getValue() == 1)
948 return lhs;
950 // Simplify `(expr * lrhs) ceildiv rhsConst` when `lrhs` is known to be a
951 // multiple of `rhsConst`.
952 auto lBin = dyn_cast<AffineBinaryOpExpr>(lhs);
953 if (lBin && lBin.getKind() == AffineExprKind::Mul) {
954 if (auto lrhs = dyn_cast<AffineConstantExpr>(lBin.getRHS())) {
955 // `rhsConst` is known to be a nonzero constant.
956 if (lrhs.getValue() % rhsConst.getValue() == 0)
957 return lBin.getLHS() * (lrhs.getValue() / rhsConst.getValue());
961 return nullptr;
964 AffineExpr AffineExpr::ceilDiv(uint64_t v) const {
965 return ceilDiv(getAffineConstantExpr(v, getContext()));
967 AffineExpr AffineExpr::ceilDiv(AffineExpr other) const {
968 if (auto simplified = simplifyCeilDiv(*this, other))
969 return simplified;
971 StorageUniquer &uniquer = getContext()->getAffineUniquer();
972 return uniquer.get<AffineBinaryOpExprStorage>(
973 /*initFn=*/{}, static_cast<unsigned>(AffineExprKind::CeilDiv), *this,
974 other);
977 static AffineExpr simplifyMod(AffineExpr lhs, AffineExpr rhs) {
978 auto lhsConst = dyn_cast<AffineConstantExpr>(lhs);
979 auto rhsConst = dyn_cast<AffineConstantExpr>(rhs);
981 // mod w.r.t zero or negative numbers is undefined and preserved as is.
982 if (!rhsConst || rhsConst.getValue() < 1)
983 return nullptr;
985 if (lhsConst) {
986 // mod never overflows.
987 return getAffineConstantExpr(mod(lhsConst.getValue(), rhsConst.getValue()),
988 lhs.getContext());
991 // Fold modulo of an expression that is known to be a multiple of a constant
992 // to zero if that constant is a multiple of the modulo factor. Eg: (i * 128)
993 // mod 64 is folded to 0, and less trivially, (i*(j*4*(k*32))) mod 128 = 0.
994 if (lhs.getLargestKnownDivisor() % rhsConst.getValue() == 0)
995 return getAffineConstantExpr(0, lhs.getContext());
997 // Simplify (expr1 + expr2) mod divConst when either expr1 or expr2 is
998 // known to be a multiple of divConst.
999 auto lBin = dyn_cast<AffineBinaryOpExpr>(lhs);
1000 if (lBin && lBin.getKind() == AffineExprKind::Add) {
1001 int64_t llhsDiv = lBin.getLHS().getLargestKnownDivisor();
1002 int64_t lrhsDiv = lBin.getRHS().getLargestKnownDivisor();
1003 // rhsConst is known to be a positive constant.
1004 if (llhsDiv % rhsConst.getValue() == 0)
1005 return lBin.getRHS() % rhsConst.getValue();
1006 if (lrhsDiv % rhsConst.getValue() == 0)
1007 return lBin.getLHS() % rhsConst.getValue();
1010 // Simplify (e % a) % b to e % b when b evenly divides a
1011 if (lBin && lBin.getKind() == AffineExprKind::Mod) {
1012 auto intermediate = dyn_cast<AffineConstantExpr>(lBin.getRHS());
1013 if (intermediate && intermediate.getValue() >= 1 &&
1014 mod(intermediate.getValue(), rhsConst.getValue()) == 0) {
1015 return lBin.getLHS() % rhsConst.getValue();
1019 return nullptr;
1022 AffineExpr AffineExpr::operator%(uint64_t v) const {
1023 return *this % getAffineConstantExpr(v, getContext());
1025 AffineExpr AffineExpr::operator%(AffineExpr other) const {
1026 if (auto simplified = simplifyMod(*this, other))
1027 return simplified;
1029 StorageUniquer &uniquer = getContext()->getAffineUniquer();
1030 return uniquer.get<AffineBinaryOpExprStorage>(
1031 /*initFn=*/{}, static_cast<unsigned>(AffineExprKind::Mod), *this, other);
1034 AffineExpr AffineExpr::compose(AffineMap map) const {
1035 SmallVector<AffineExpr, 8> dimReplacements(map.getResults());
1036 return replaceDimsAndSymbols(dimReplacements, {});
1038 raw_ostream &mlir::operator<<(raw_ostream &os, AffineExpr expr) {
1039 expr.print(os);
1040 return os;
1043 /// Constructs an affine expression from a flat ArrayRef. If there are local
1044 /// identifiers (neither dimensional nor symbolic) that appear in the sum of
1045 /// products expression, `localExprs` is expected to have the AffineExpr
1046 /// for it, and is substituted into. The ArrayRef `flatExprs` is expected to be
1047 /// in the format [dims, symbols, locals, constant term].
1048 AffineExpr mlir::getAffineExprFromFlatForm(ArrayRef<int64_t> flatExprs,
1049 unsigned numDims,
1050 unsigned numSymbols,
1051 ArrayRef<AffineExpr> localExprs,
1052 MLIRContext *context) {
1053 // Assert expected numLocals = flatExprs.size() - numDims - numSymbols - 1.
1054 assert(flatExprs.size() - numDims - numSymbols - 1 == localExprs.size() &&
1055 "unexpected number of local expressions");
1057 auto expr = getAffineConstantExpr(0, context);
1058 // Dimensions and symbols.
1059 for (unsigned j = 0; j < numDims + numSymbols; j++) {
1060 if (flatExprs[j] == 0)
1061 continue;
1062 auto id = j < numDims ? getAffineDimExpr(j, context)
1063 : getAffineSymbolExpr(j - numDims, context);
1064 expr = expr + id * flatExprs[j];
1067 // Local identifiers.
1068 for (unsigned j = numDims + numSymbols, e = flatExprs.size() - 1; j < e;
1069 j++) {
1070 if (flatExprs[j] == 0)
1071 continue;
1072 auto term = localExprs[j - numDims - numSymbols] * flatExprs[j];
1073 expr = expr + term;
1076 // Constant term.
1077 int64_t constTerm = flatExprs[flatExprs.size() - 1];
1078 if (constTerm != 0)
1079 expr = expr + constTerm;
1080 return expr;
1083 /// Constructs a semi-affine expression from a flat ArrayRef. If there are
1084 /// local identifiers (neither dimensional nor symbolic) that appear in the sum
1085 /// of products expression, `localExprs` is expected to have the AffineExprs for
1086 /// it, and is substituted into. The ArrayRef `flatExprs` is expected to be in
1087 /// the format [dims, symbols, locals, constant term]. The semi-affine
1088 /// expression is constructed in the sorted order of dimension and symbol
1089 /// position numbers. Note: local expressions/ids are used for mod, div as well
1090 /// as symbolic RHS terms for terms that are not pure affine.
1091 static AffineExpr getSemiAffineExprFromFlatForm(ArrayRef<int64_t> flatExprs,
1092 unsigned numDims,
1093 unsigned numSymbols,
1094 ArrayRef<AffineExpr> localExprs,
1095 MLIRContext *context) {
1096 assert(!flatExprs.empty() && "flatExprs cannot be empty");
1098 // Assert expected numLocals = flatExprs.size() - numDims - numSymbols - 1.
1099 assert(flatExprs.size() - numDims - numSymbols - 1 == localExprs.size() &&
1100 "unexpected number of local expressions");
1102 AffineExpr expr = getAffineConstantExpr(0, context);
1104 // We design indices as a pair which help us present the semi-affine map as
1105 // sum of product where terms are sorted based on dimension or symbol
1106 // position: <keyA, keyB> for expressions of the form dimension * symbol,
1107 // where keyA is the position number of the dimension and keyB is the
1108 // position number of the symbol. For dimensional expressions we set the index
1109 // as (position number of the dimension, -1), as we want dimensional
1110 // expressions to appear before symbolic and product of dimensional and
1111 // symbolic expressions having the dimension with the same position number.
1112 // For symbolic expression set the index as (position number of the symbol,
1113 // maximum of last dimension and symbol position) number. For example, we want
1114 // the expression we are constructing to look something like: d0 + d0 * s0 +
1115 // s0 + d1*s1 + s1.
1117 // Stores the affine expression corresponding to a given index.
1118 DenseMap<std::pair<unsigned, signed>, AffineExpr> indexToExprMap;
1119 // Stores the constant coefficient value corresponding to a given
1120 // dimension, symbol or a non-pure affine expression stored in `localExprs`.
1121 DenseMap<std::pair<unsigned, signed>, int64_t> coefficients;
1122 // Stores the indices as defined above, and later sorted to produce
1123 // the semi-affine expression in the desired form.
1124 SmallVector<std::pair<unsigned, signed>, 8> indices;
1126 // Example: expression = d0 + d0 * s0 + 2 * s0.
1127 // indices = [{0,-1}, {0, 0}, {0, 1}]
1128 // coefficients = [{{0, -1}, 1}, {{0, 0}, 1}, {{0, 1}, 2}]
1129 // indexToExprMap = [{{0, -1}, d0}, {{0, 0}, d0 * s0}, {{0, 1}, s0}]
1131 // Adds entries to `indexToExprMap`, `coefficients` and `indices`.
1132 auto addEntry = [&](std::pair<unsigned, signed> index, int64_t coefficient,
1133 AffineExpr expr) {
1134 assert(!llvm::is_contained(indices, index) &&
1135 "Key is already present in indices vector and overwriting will "
1136 "happen in `indexToExprMap` and `coefficients`!");
1138 indices.push_back(index);
1139 coefficients.insert({index, coefficient});
1140 indexToExprMap.insert({index, expr});
1143 // Design indices for dimensional or symbolic terms, and store the indices,
1144 // constant coefficient corresponding to the indices in `coefficients` map,
1145 // and affine expression corresponding to indices in `indexToExprMap` map.
1147 // Ensure we do not have duplicate keys in `indexToExpr` map.
1148 unsigned offsetSym = 0;
1149 signed offsetDim = -1;
1150 for (unsigned j = numDims; j < numDims + numSymbols; ++j) {
1151 if (flatExprs[j] == 0)
1152 continue;
1153 // For symbolic expression set the index as <position number
1154 // of the symbol, max(dimCount, symCount)> number,
1155 // as we want symbolic expressions with the same positional number to
1156 // appear after dimensional expressions having the same positional number.
1157 std::pair<unsigned, signed> indexEntry(
1158 j - numDims, std::max(numDims, numSymbols) + offsetSym++);
1159 addEntry(indexEntry, flatExprs[j],
1160 getAffineSymbolExpr(j - numDims, context));
1163 // Denotes semi-affine product, modulo or division terms, which has been added
1164 // to the `indexToExpr` map.
1165 SmallVector<bool, 4> addedToMap(flatExprs.size() - numDims - numSymbols - 1,
1166 false);
1167 unsigned lhsPos, rhsPos;
1168 // Construct indices for product terms involving dimension, symbol or constant
1169 // as lhs/rhs, and store the indices, constant coefficient corresponding to
1170 // the indices in `coefficients` map, and affine expression corresponding to
1171 // in indices in `indexToExprMap` map.
1172 for (const auto &it : llvm::enumerate(localExprs)) {
1173 AffineExpr expr = it.value();
1174 if (flatExprs[numDims + numSymbols + it.index()] == 0)
1175 continue;
1176 AffineExpr lhs = cast<AffineBinaryOpExpr>(expr).getLHS();
1177 AffineExpr rhs = cast<AffineBinaryOpExpr>(expr).getRHS();
1178 if (!((isa<AffineDimExpr>(lhs) || isa<AffineSymbolExpr>(lhs)) &&
1179 (isa<AffineDimExpr>(rhs) || isa<AffineSymbolExpr>(rhs) ||
1180 isa<AffineConstantExpr>(rhs)))) {
1181 continue;
1183 if (isa<AffineConstantExpr>(rhs)) {
1184 // For product/modulo/division expressions, when rhs of modulo/division
1185 // expression is constant, we put 0 in place of keyB, because we want
1186 // them to appear earlier in the semi-affine expression we are
1187 // constructing. When rhs is constant, we place 0 in place of keyB.
1188 if (isa<AffineDimExpr>(lhs)) {
1189 lhsPos = cast<AffineDimExpr>(lhs).getPosition();
1190 std::pair<unsigned, signed> indexEntry(lhsPos, offsetDim--);
1191 addEntry(indexEntry, flatExprs[numDims + numSymbols + it.index()],
1192 expr);
1193 } else {
1194 lhsPos = cast<AffineSymbolExpr>(lhs).getPosition();
1195 std::pair<unsigned, signed> indexEntry(
1196 lhsPos, std::max(numDims, numSymbols) + offsetSym++);
1197 addEntry(indexEntry, flatExprs[numDims + numSymbols + it.index()],
1198 expr);
1200 } else if (isa<AffineDimExpr>(lhs)) {
1201 // For product/modulo/division expressions having lhs as dimension and rhs
1202 // as symbol, we order the terms in the semi-affine expression based on
1203 // the pair: <keyA, keyB> for expressions of the form dimension * symbol,
1204 // where keyA is the position number of the dimension and keyB is the
1205 // position number of the symbol.
1206 lhsPos = cast<AffineDimExpr>(lhs).getPosition();
1207 rhsPos = cast<AffineSymbolExpr>(rhs).getPosition();
1208 std::pair<unsigned, signed> indexEntry(lhsPos, rhsPos);
1209 addEntry(indexEntry, flatExprs[numDims + numSymbols + it.index()], expr);
1210 } else {
1211 // For product/modulo/division expressions having both lhs and rhs as
1212 // symbol, we design indices as a pair: <keyA, keyB> for expressions
1213 // of the form dimension * symbol, where keyA is the position number of
1214 // the dimension and keyB is the position number of the symbol.
1215 lhsPos = cast<AffineSymbolExpr>(lhs).getPosition();
1216 rhsPos = cast<AffineSymbolExpr>(rhs).getPosition();
1217 std::pair<unsigned, signed> indexEntry(
1218 lhsPos, std::max(numDims, numSymbols) + offsetSym++);
1219 addEntry(indexEntry, flatExprs[numDims + numSymbols + it.index()], expr);
1221 addedToMap[it.index()] = true;
1224 for (unsigned j = 0; j < numDims; ++j) {
1225 if (flatExprs[j] == 0)
1226 continue;
1227 // For dimensional expressions we set the index as <position number of the
1228 // dimension, 0>, as we want dimensional expressions to appear before
1229 // symbolic ones and products of dimensional and symbolic expressions
1230 // having the dimension with the same position number.
1231 std::pair<unsigned, signed> indexEntry(j, offsetDim--);
1232 addEntry(indexEntry, flatExprs[j], getAffineDimExpr(j, context));
1235 // Constructing the simplified semi-affine sum of product/division/mod
1236 // expression from the flattened form in the desired sorted order of indices
1237 // of the various individual product/division/mod expressions.
1238 llvm::sort(indices);
1239 for (const std::pair<unsigned, unsigned> index : indices) {
1240 assert(indexToExprMap.lookup(index) &&
1241 "cannot find key in `indexToExprMap` map");
1242 expr = expr + indexToExprMap.lookup(index) * coefficients.lookup(index);
1245 // Local identifiers.
1246 for (unsigned j = numDims + numSymbols, e = flatExprs.size() - 1; j < e;
1247 j++) {
1248 // If the coefficient of the local expression is 0, continue as we need not
1249 // add it in out final expression.
1250 if (flatExprs[j] == 0 || addedToMap[j - numDims - numSymbols])
1251 continue;
1252 auto term = localExprs[j - numDims - numSymbols] * flatExprs[j];
1253 expr = expr + term;
1256 // Constant term.
1257 int64_t constTerm = flatExprs.back();
1258 if (constTerm != 0)
1259 expr = expr + constTerm;
1260 return expr;
1263 SimpleAffineExprFlattener::SimpleAffineExprFlattener(unsigned numDims,
1264 unsigned numSymbols)
1265 : numDims(numDims), numSymbols(numSymbols), numLocals(0) {
1266 operandExprStack.reserve(8);
1269 // In pure affine t = expr * c, we multiply each coefficient of lhs with c.
1271 // In case of semi affine multiplication expressions, t = expr * symbolic_expr,
1272 // introduce a local variable p (= expr * symbolic_expr), and the affine
1273 // expression expr * symbolic_expr is added to `localExprs`.
1274 LogicalResult SimpleAffineExprFlattener::visitMulExpr(AffineBinaryOpExpr expr) {
1275 assert(operandExprStack.size() >= 2);
1276 SmallVector<int64_t, 8> rhs = operandExprStack.back();
1277 operandExprStack.pop_back();
1278 SmallVector<int64_t, 8> &lhs = operandExprStack.back();
1280 // Flatten semi-affine multiplication expressions by introducing a local
1281 // variable in place of the product; the affine expression
1282 // corresponding to the quantifier is added to `localExprs`.
1283 if (!isa<AffineConstantExpr>(expr.getRHS())) {
1284 SmallVector<int64_t, 8> mulLhs(lhs);
1285 MLIRContext *context = expr.getContext();
1286 AffineExpr a = getAffineExprFromFlatForm(lhs, numDims, numSymbols,
1287 localExprs, context);
1288 AffineExpr b = getAffineExprFromFlatForm(rhs, numDims, numSymbols,
1289 localExprs, context);
1290 return addLocalVariableSemiAffine(mulLhs, rhs, a * b, lhs, lhs.size());
1293 // Get the RHS constant.
1294 int64_t rhsConst = rhs[getConstantIndex()];
1295 for (int64_t &lhsElt : lhs)
1296 lhsElt *= rhsConst;
1298 return success();
1301 LogicalResult SimpleAffineExprFlattener::visitAddExpr(AffineBinaryOpExpr expr) {
1302 assert(operandExprStack.size() >= 2);
1303 const auto &rhs = operandExprStack.back();
1304 auto &lhs = operandExprStack[operandExprStack.size() - 2];
1305 assert(lhs.size() == rhs.size());
1306 // Update the LHS in place.
1307 for (unsigned i = 0, e = rhs.size(); i < e; i++) {
1308 lhs[i] += rhs[i];
1310 // Pop off the RHS.
1311 operandExprStack.pop_back();
1312 return success();
1316 // t = expr mod c <=> t = expr - c*q and c*q <= expr <= c*q + c - 1
1318 // A mod expression "expr mod c" is thus flattened by introducing a new local
1319 // variable q (= expr floordiv c), such that expr mod c is replaced with
1320 // 'expr - c * q' and c * q <= expr <= c * q + c - 1 are added to localVarCst.
1322 // In case of semi-affine modulo expressions, t = expr mod symbolic_expr,
1323 // introduce a local variable m (= expr mod symbolic_expr), and the affine
1324 // expression expr mod symbolic_expr is added to `localExprs`.
1325 LogicalResult SimpleAffineExprFlattener::visitModExpr(AffineBinaryOpExpr expr) {
1326 assert(operandExprStack.size() >= 2);
1328 SmallVector<int64_t, 8> rhs = operandExprStack.back();
1329 operandExprStack.pop_back();
1330 SmallVector<int64_t, 8> &lhs = operandExprStack.back();
1331 MLIRContext *context = expr.getContext();
1333 // Flatten semi affine modulo expressions by introducing a local
1334 // variable in place of the modulo value, and the affine expression
1335 // corresponding to the quantifier is added to `localExprs`.
1336 if (!isa<AffineConstantExpr>(expr.getRHS())) {
1337 SmallVector<int64_t, 8> modLhs(lhs);
1338 AffineExpr dividendExpr = getAffineExprFromFlatForm(
1339 lhs, numDims, numSymbols, localExprs, context);
1340 AffineExpr divisorExpr = getAffineExprFromFlatForm(rhs, numDims, numSymbols,
1341 localExprs, context);
1342 AffineExpr modExpr = dividendExpr % divisorExpr;
1343 return addLocalVariableSemiAffine(modLhs, rhs, modExpr, lhs, lhs.size());
1346 int64_t rhsConst = rhs[getConstantIndex()];
1347 if (rhsConst <= 0)
1348 return failure();
1350 // Check if the LHS expression is a multiple of modulo factor.
1351 unsigned i, e;
1352 for (i = 0, e = lhs.size(); i < e; i++)
1353 if (lhs[i] % rhsConst != 0)
1354 break;
1355 // If yes, modulo expression here simplifies to zero.
1356 if (i == lhs.size()) {
1357 std::fill(lhs.begin(), lhs.end(), 0);
1358 return success();
1361 // Add a local variable for the quotient, i.e., expr % c is replaced by
1362 // (expr - q * c) where q = expr floordiv c. Do this while canceling out
1363 // the GCD of expr and c.
1364 SmallVector<int64_t, 8> floorDividend(lhs);
1365 uint64_t gcd = rhsConst;
1366 for (int64_t lhsElt : lhs)
1367 gcd = std::gcd(gcd, (uint64_t)std::abs(lhsElt));
1368 // Simplify the numerator and the denominator.
1369 if (gcd != 1) {
1370 for (int64_t &floorDividendElt : floorDividend)
1371 floorDividendElt = floorDividendElt / static_cast<int64_t>(gcd);
1373 int64_t floorDivisor = rhsConst / static_cast<int64_t>(gcd);
1375 // Construct the AffineExpr form of the floordiv to store in localExprs.
1377 AffineExpr dividendExpr = getAffineExprFromFlatForm(
1378 floorDividend, numDims, numSymbols, localExprs, context);
1379 AffineExpr divisorExpr = getAffineConstantExpr(floorDivisor, context);
1380 AffineExpr floorDivExpr = dividendExpr.floorDiv(divisorExpr);
1381 int loc;
1382 if ((loc = findLocalId(floorDivExpr)) == -1) {
1383 addLocalFloorDivId(floorDividend, floorDivisor, floorDivExpr);
1384 // Set result at top of stack to "lhs - rhsConst * q".
1385 lhs[getLocalVarStartIndex() + numLocals - 1] = -rhsConst;
1386 } else {
1387 // Reuse the existing local id.
1388 lhs[getLocalVarStartIndex() + loc] = -rhsConst;
1390 return success();
1393 LogicalResult
1394 SimpleAffineExprFlattener::visitCeilDivExpr(AffineBinaryOpExpr expr) {
1395 return visitDivExpr(expr, /*isCeil=*/true);
1397 LogicalResult
1398 SimpleAffineExprFlattener::visitFloorDivExpr(AffineBinaryOpExpr expr) {
1399 return visitDivExpr(expr, /*isCeil=*/false);
1402 LogicalResult SimpleAffineExprFlattener::visitDimExpr(AffineDimExpr expr) {
1403 operandExprStack.emplace_back(SmallVector<int64_t, 32>(getNumCols(), 0));
1404 auto &eq = operandExprStack.back();
1405 assert(expr.getPosition() < numDims && "Inconsistent number of dims");
1406 eq[getDimStartIndex() + expr.getPosition()] = 1;
1407 return success();
1410 LogicalResult
1411 SimpleAffineExprFlattener::visitSymbolExpr(AffineSymbolExpr expr) {
1412 operandExprStack.emplace_back(SmallVector<int64_t, 32>(getNumCols(), 0));
1413 auto &eq = operandExprStack.back();
1414 assert(expr.getPosition() < numSymbols && "inconsistent number of symbols");
1415 eq[getSymbolStartIndex() + expr.getPosition()] = 1;
1416 return success();
1419 LogicalResult
1420 SimpleAffineExprFlattener::visitConstantExpr(AffineConstantExpr expr) {
1421 operandExprStack.emplace_back(SmallVector<int64_t, 32>(getNumCols(), 0));
1422 auto &eq = operandExprStack.back();
1423 eq[getConstantIndex()] = expr.getValue();
1424 return success();
1427 LogicalResult SimpleAffineExprFlattener::addLocalVariableSemiAffine(
1428 ArrayRef<int64_t> lhs, ArrayRef<int64_t> rhs, AffineExpr localExpr,
1429 SmallVectorImpl<int64_t> &result, unsigned long resultSize) {
1430 assert(result.size() == resultSize &&
1431 "`result` vector passed is not of correct size");
1432 int loc;
1433 if ((loc = findLocalId(localExpr)) == -1) {
1434 if (failed(addLocalIdSemiAffine(lhs, rhs, localExpr)))
1435 return failure();
1437 std::fill(result.begin(), result.end(), 0);
1438 if (loc == -1)
1439 result[getLocalVarStartIndex() + numLocals - 1] = 1;
1440 else
1441 result[getLocalVarStartIndex() + loc] = 1;
1442 return success();
1445 // t = expr floordiv c <=> t = q, c * q <= expr <= c * q + c - 1
1446 // A floordiv is thus flattened by introducing a new local variable q, and
1447 // replacing that expression with 'q' while adding the constraints
1448 // c * q <= expr <= c * q + c - 1 to localVarCst (done by
1449 // IntegerRelation::addLocalFloorDiv).
1451 // A ceildiv is similarly flattened:
1452 // t = expr ceildiv c <=> t = (expr + c - 1) floordiv c
1454 // In case of semi affine division expressions, t = expr floordiv symbolic_expr
1455 // or t = expr ceildiv symbolic_expr, introduce a local variable q (= expr
1456 // floordiv/ceildiv symbolic_expr), and the affine floordiv/ceildiv is added to
1457 // `localExprs`.
1458 LogicalResult SimpleAffineExprFlattener::visitDivExpr(AffineBinaryOpExpr expr,
1459 bool isCeil) {
1460 assert(operandExprStack.size() >= 2);
1462 MLIRContext *context = expr.getContext();
1463 SmallVector<int64_t, 8> rhs = operandExprStack.back();
1464 operandExprStack.pop_back();
1465 SmallVector<int64_t, 8> &lhs = operandExprStack.back();
1467 // Flatten semi affine division expressions by introducing a local
1468 // variable in place of the quotient, and the affine expression corresponding
1469 // to the quantifier is added to `localExprs`.
1470 if (!isa<AffineConstantExpr>(expr.getRHS())) {
1471 SmallVector<int64_t, 8> divLhs(lhs);
1472 AffineExpr a = getAffineExprFromFlatForm(lhs, numDims, numSymbols,
1473 localExprs, context);
1474 AffineExpr b = getAffineExprFromFlatForm(rhs, numDims, numSymbols,
1475 localExprs, context);
1476 AffineExpr divExpr = isCeil ? a.ceilDiv(b) : a.floorDiv(b);
1477 return addLocalVariableSemiAffine(divLhs, rhs, divExpr, lhs, lhs.size());
1480 // This is a pure affine expr; the RHS is a positive constant.
1481 int64_t rhsConst = rhs[getConstantIndex()];
1482 if (rhsConst <= 0)
1483 return failure();
1485 // Simplify the floordiv, ceildiv if possible by canceling out the greatest
1486 // common divisors of the numerator and denominator.
1487 uint64_t gcd = std::abs(rhsConst);
1488 for (int64_t lhsElt : lhs)
1489 gcd = std::gcd(gcd, (uint64_t)std::abs(lhsElt));
1490 // Simplify the numerator and the denominator.
1491 if (gcd != 1) {
1492 for (int64_t &lhsElt : lhs)
1493 lhsElt = lhsElt / static_cast<int64_t>(gcd);
1495 int64_t divisor = rhsConst / static_cast<int64_t>(gcd);
1496 // If the divisor becomes 1, the updated LHS is the result. (The
1497 // divisor can't be negative since rhsConst is positive).
1498 if (divisor == 1)
1499 return success();
1501 // If the divisor cannot be simplified to one, we will have to retain
1502 // the ceil/floor expr (simplified up until here). Add an existential
1503 // quantifier to express its result, i.e., expr1 div expr2 is replaced
1504 // by a new identifier, q.
1505 AffineExpr a =
1506 getAffineExprFromFlatForm(lhs, numDims, numSymbols, localExprs, context);
1507 AffineExpr b = getAffineConstantExpr(divisor, context);
1509 int loc;
1510 AffineExpr divExpr = isCeil ? a.ceilDiv(b) : a.floorDiv(b);
1511 if ((loc = findLocalId(divExpr)) == -1) {
1512 if (!isCeil) {
1513 SmallVector<int64_t, 8> dividend(lhs);
1514 addLocalFloorDivId(dividend, divisor, divExpr);
1515 } else {
1516 // lhs ceildiv c <=> (lhs + c - 1) floordiv c
1517 SmallVector<int64_t, 8> dividend(lhs);
1518 dividend.back() += divisor - 1;
1519 addLocalFloorDivId(dividend, divisor, divExpr);
1522 // Set the expression on stack to the local var introduced to capture the
1523 // result of the division (floor or ceil).
1524 std::fill(lhs.begin(), lhs.end(), 0);
1525 if (loc == -1)
1526 lhs[getLocalVarStartIndex() + numLocals - 1] = 1;
1527 else
1528 lhs[getLocalVarStartIndex() + loc] = 1;
1529 return success();
1532 // Add a local identifier (needed to flatten a mod, floordiv, ceildiv expr).
1533 // The local identifier added is always a floordiv of a pure add/mul affine
1534 // function of other identifiers, coefficients of which are specified in
1535 // dividend and with respect to a positive constant divisor. localExpr is the
1536 // simplified tree expression (AffineExpr) corresponding to the quantifier.
1537 void SimpleAffineExprFlattener::addLocalFloorDivId(ArrayRef<int64_t> dividend,
1538 int64_t divisor,
1539 AffineExpr localExpr) {
1540 assert(divisor > 0 && "positive constant divisor expected");
1541 for (SmallVector<int64_t, 8> &subExpr : operandExprStack)
1542 subExpr.insert(subExpr.begin() + getLocalVarStartIndex() + numLocals, 0);
1543 localExprs.push_back(localExpr);
1544 numLocals++;
1545 // dividend and divisor are not used here; an override of this method uses it.
1548 LogicalResult SimpleAffineExprFlattener::addLocalIdSemiAffine(
1549 ArrayRef<int64_t> lhs, ArrayRef<int64_t> rhs, AffineExpr localExpr) {
1550 for (SmallVector<int64_t, 8> &subExpr : operandExprStack)
1551 subExpr.insert(subExpr.begin() + getLocalVarStartIndex() + numLocals, 0);
1552 localExprs.push_back(localExpr);
1553 ++numLocals;
1554 // lhs and rhs are not used here; an override of this method uses them.
1555 return success();
1558 int SimpleAffineExprFlattener::findLocalId(AffineExpr localExpr) {
1559 SmallVectorImpl<AffineExpr>::iterator it;
1560 if ((it = llvm::find(localExprs, localExpr)) == localExprs.end())
1561 return -1;
1562 return it - localExprs.begin();
1565 /// Simplify the affine expression by flattening it and reconstructing it.
1566 AffineExpr mlir::simplifyAffineExpr(AffineExpr expr, unsigned numDims,
1567 unsigned numSymbols) {
1568 // Simplify semi-affine expressions separately.
1569 if (!expr.isPureAffine())
1570 expr = simplifySemiAffine(expr, numDims, numSymbols);
1572 SimpleAffineExprFlattener flattener(numDims, numSymbols);
1573 // has poison expression
1574 if (failed(flattener.walkPostOrder(expr)))
1575 return expr;
1576 ArrayRef<int64_t> flattenedExpr = flattener.operandExprStack.back();
1577 if (!expr.isPureAffine() &&
1578 expr == getAffineExprFromFlatForm(flattenedExpr, numDims, numSymbols,
1579 flattener.localExprs,
1580 expr.getContext()))
1581 return expr;
1582 AffineExpr simplifiedExpr =
1583 expr.isPureAffine()
1584 ? getAffineExprFromFlatForm(flattenedExpr, numDims, numSymbols,
1585 flattener.localExprs, expr.getContext())
1586 : getSemiAffineExprFromFlatForm(flattenedExpr, numDims, numSymbols,
1587 flattener.localExprs,
1588 expr.getContext());
1590 flattener.operandExprStack.pop_back();
1591 assert(flattener.operandExprStack.empty());
1592 return simplifiedExpr;
1595 std::optional<int64_t> mlir::getBoundForAffineExpr(
1596 AffineExpr expr, unsigned numDims, unsigned numSymbols,
1597 ArrayRef<std::optional<int64_t>> constLowerBounds,
1598 ArrayRef<std::optional<int64_t>> constUpperBounds, bool isUpper) {
1599 // Handle divs and mods.
1600 if (auto binOpExpr = dyn_cast<AffineBinaryOpExpr>(expr)) {
1601 // If the LHS of a floor or ceil is bounded and the RHS is a constant, we
1602 // can compute an upper bound.
1603 if (binOpExpr.getKind() == AffineExprKind::FloorDiv) {
1604 auto rhsConst = dyn_cast<AffineConstantExpr>(binOpExpr.getRHS());
1605 if (!rhsConst || rhsConst.getValue() < 1)
1606 return std::nullopt;
1607 auto bound =
1608 getBoundForAffineExpr(binOpExpr.getLHS(), numDims, numSymbols,
1609 constLowerBounds, constUpperBounds, isUpper);
1610 if (!bound)
1611 return std::nullopt;
1612 return divideFloorSigned(*bound, rhsConst.getValue());
1614 if (binOpExpr.getKind() == AffineExprKind::CeilDiv) {
1615 auto rhsConst = dyn_cast<AffineConstantExpr>(binOpExpr.getRHS());
1616 if (rhsConst && rhsConst.getValue() >= 1) {
1617 auto bound =
1618 getBoundForAffineExpr(binOpExpr.getLHS(), numDims, numSymbols,
1619 constLowerBounds, constUpperBounds, isUpper);
1620 if (!bound)
1621 return std::nullopt;
1622 return divideCeilSigned(*bound, rhsConst.getValue());
1624 return std::nullopt;
1626 if (binOpExpr.getKind() == AffineExprKind::Mod) {
1627 // lhs mod c is always <= c - 1 and non-negative. In addition, if `lhs` is
1628 // bounded such that lb <= lhs <= ub and lb floordiv c == ub floordiv c
1629 // (same "interval"), then lb mod c <= lhs mod c <= ub mod c.
1630 auto rhsConst = dyn_cast<AffineConstantExpr>(binOpExpr.getRHS());
1631 if (rhsConst && rhsConst.getValue() >= 1) {
1632 int64_t rhsConstVal = rhsConst.getValue();
1633 auto lb = getBoundForAffineExpr(binOpExpr.getLHS(), numDims, numSymbols,
1634 constLowerBounds, constUpperBounds,
1635 /*isUpper=*/false);
1636 auto ub =
1637 getBoundForAffineExpr(binOpExpr.getLHS(), numDims, numSymbols,
1638 constLowerBounds, constUpperBounds, isUpper);
1639 if (ub && lb &&
1640 divideFloorSigned(*lb, rhsConstVal) ==
1641 divideFloorSigned(*ub, rhsConstVal))
1642 return isUpper ? mod(*ub, rhsConstVal) : mod(*lb, rhsConstVal);
1643 return isUpper ? rhsConstVal - 1 : 0;
1647 // Flatten the expression.
1648 SimpleAffineExprFlattener flattener(numDims, numSymbols);
1649 auto simpleResult = flattener.walkPostOrder(expr);
1650 // has poison expression
1651 if (failed(simpleResult))
1652 return std::nullopt;
1653 ArrayRef<int64_t> flattenedExpr = flattener.operandExprStack.back();
1654 // TODO: Handle local variables. We can get hold of flattener.localExprs and
1655 // get bound on the local expr recursively.
1656 if (flattener.numLocals > 0)
1657 return std::nullopt;
1658 int64_t bound = 0;
1659 // Substitute the constant lower or upper bound for the dimensional or
1660 // symbolic input depending on `isUpper` to determine the bound.
1661 for (unsigned i = 0, e = numDims + numSymbols; i < e; ++i) {
1662 if (flattenedExpr[i] > 0) {
1663 auto &constBound = isUpper ? constUpperBounds[i] : constLowerBounds[i];
1664 if (!constBound)
1665 return std::nullopt;
1666 bound += *constBound * flattenedExpr[i];
1667 } else if (flattenedExpr[i] < 0) {
1668 auto &constBound = isUpper ? constLowerBounds[i] : constUpperBounds[i];
1669 if (!constBound)
1670 return std::nullopt;
1671 bound += *constBound * flattenedExpr[i];
1674 // Constant term.
1675 bound += flattenedExpr.back();
1676 return bound;