[LLVM] Fix Maintainers.md formatting (NFC)
[llvm-project.git] / mlir / lib / IR / AffineMap.cpp
blobea3c0723b07759bd297e8e61e16e878f524994f2
1 //===- AffineMap.cpp - MLIR Affine Map Classes ----------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
9 #include "mlir/IR/AffineMap.h"
10 #include "AffineMapDetail.h"
11 #include "mlir/IR/AffineExpr.h"
12 #include "mlir/IR/Builders.h"
13 #include "mlir/IR/BuiltinAttributes.h"
14 #include "mlir/IR/BuiltinTypes.h"
15 #include "llvm/ADT/STLExtras.h"
16 #include "llvm/ADT/SmallBitVector.h"
17 #include "llvm/ADT/SmallSet.h"
18 #include "llvm/ADT/SmallVector.h"
19 #include "llvm/ADT/StringRef.h"
20 #include "llvm/Support/MathExtras.h"
21 #include "llvm/Support/raw_ostream.h"
22 #include <iterator>
23 #include <numeric>
24 #include <optional>
25 #include <type_traits>
27 using namespace mlir;
29 using llvm::divideCeilSigned;
30 using llvm::divideFloorSigned;
31 using llvm::mod;
33 namespace {
35 // AffineExprConstantFolder evaluates an affine expression using constant
36 // operands passed in 'operandConsts'. Returns an IntegerAttr attribute
37 // representing the constant value of the affine expression evaluated on
38 // constant 'operandConsts', or nullptr if it can't be folded.
39 class AffineExprConstantFolder {
40 public:
41 AffineExprConstantFolder(unsigned numDims, ArrayRef<Attribute> operandConsts)
42 : numDims(numDims), operandConsts(operandConsts) {}
44 /// Attempt to constant fold the specified affine expr, or return null on
45 /// failure.
46 IntegerAttr constantFold(AffineExpr expr) {
47 if (auto result = constantFoldImpl(expr))
48 return IntegerAttr::get(IndexType::get(expr.getContext()), *result);
49 return nullptr;
52 bool hasPoison() const { return hasPoison_; }
54 private:
55 std::optional<int64_t> constantFoldImpl(AffineExpr expr) {
56 switch (expr.getKind()) {
57 case AffineExprKind::Add:
58 return constantFoldBinExpr(
59 expr, [](int64_t lhs, int64_t rhs) { return lhs + rhs; });
60 case AffineExprKind::Mul:
61 return constantFoldBinExpr(
62 expr, [](int64_t lhs, int64_t rhs) { return lhs * rhs; });
63 case AffineExprKind::Mod:
64 return constantFoldBinExpr(
65 expr, [this](int64_t lhs, int64_t rhs) -> std::optional<int64_t> {
66 if (rhs < 1) {
67 hasPoison_ = true;
68 return std::nullopt;
70 return mod(lhs, rhs);
71 });
72 case AffineExprKind::FloorDiv:
73 return constantFoldBinExpr(
74 expr, [this](int64_t lhs, int64_t rhs) -> std::optional<int64_t> {
75 if (rhs == 0) {
76 hasPoison_ = true;
77 return std::nullopt;
79 return divideFloorSigned(lhs, rhs);
80 });
81 case AffineExprKind::CeilDiv:
82 return constantFoldBinExpr(
83 expr, [this](int64_t lhs, int64_t rhs) -> std::optional<int64_t> {
84 if (rhs == 0) {
85 hasPoison_ = true;
86 return std::nullopt;
88 return divideCeilSigned(lhs, rhs);
89 });
90 case AffineExprKind::Constant:
91 return cast<AffineConstantExpr>(expr).getValue();
92 case AffineExprKind::DimId:
93 if (auto attr = llvm::dyn_cast_or_null<IntegerAttr>(
94 operandConsts[cast<AffineDimExpr>(expr).getPosition()]))
95 return attr.getInt();
96 return std::nullopt;
97 case AffineExprKind::SymbolId:
98 if (auto attr = llvm::dyn_cast_or_null<IntegerAttr>(
99 operandConsts[numDims +
100 cast<AffineSymbolExpr>(expr).getPosition()]))
101 return attr.getInt();
102 return std::nullopt;
104 llvm_unreachable("Unknown AffineExpr");
107 // TODO: Change these to operate on APInts too.
108 std::optional<int64_t> constantFoldBinExpr(
109 AffineExpr expr,
110 llvm::function_ref<std::optional<int64_t>(int64_t, int64_t)> op) {
111 auto binOpExpr = cast<AffineBinaryOpExpr>(expr);
112 if (auto lhs = constantFoldImpl(binOpExpr.getLHS()))
113 if (auto rhs = constantFoldImpl(binOpExpr.getRHS()))
114 return op(*lhs, *rhs);
115 return std::nullopt;
118 // The number of dimension operands in AffineMap containing this expression.
119 unsigned numDims;
120 // The constant valued operands used to evaluate this AffineExpr.
121 ArrayRef<Attribute> operandConsts;
122 bool hasPoison_{false};
125 } // namespace
127 /// Returns a single constant result affine map.
128 AffineMap AffineMap::getConstantMap(int64_t val, MLIRContext *context) {
129 return get(/*dimCount=*/0, /*symbolCount=*/0,
130 {getAffineConstantExpr(val, context)});
133 /// Returns an identity affine map (d0, ..., dn) -> (dp, ..., dn) on the most
134 /// minor dimensions.
135 AffineMap AffineMap::getMinorIdentityMap(unsigned dims, unsigned results,
136 MLIRContext *context) {
137 assert(dims >= results && "Dimension mismatch");
138 auto id = AffineMap::getMultiDimIdentityMap(dims, context);
139 return AffineMap::get(dims, 0, id.getResults().take_back(results), context);
142 AffineMap AffineMap::getFilteredIdentityMap(
143 MLIRContext *ctx, unsigned numDims,
144 llvm::function_ref<bool(AffineDimExpr)> keepDimFilter) {
145 auto identityMap = getMultiDimIdentityMap(numDims, ctx);
147 // Apply filter to results.
148 llvm::SmallBitVector dropDimResults(numDims);
149 for (auto [idx, resultExpr] : llvm::enumerate(identityMap.getResults()))
150 dropDimResults[idx] = !keepDimFilter(cast<AffineDimExpr>(resultExpr));
152 return identityMap.dropResults(dropDimResults);
155 bool AffineMap::isMinorIdentity() const {
156 return getNumDims() >= getNumResults() &&
157 *this ==
158 getMinorIdentityMap(getNumDims(), getNumResults(), getContext());
161 SmallVector<unsigned> AffineMap::getBroadcastDims() const {
162 SmallVector<unsigned> broadcastedDims;
163 for (const auto &[resIdx, expr] : llvm::enumerate(getResults())) {
164 if (auto constExpr = dyn_cast<AffineConstantExpr>(expr)) {
165 if (constExpr.getValue() != 0)
166 continue;
167 broadcastedDims.push_back(resIdx);
171 return broadcastedDims;
174 /// Returns true if this affine map is a minor identity up to broadcasted
175 /// dimensions which are indicated by value 0 in the result.
176 bool AffineMap::isMinorIdentityWithBroadcasting(
177 SmallVectorImpl<unsigned> *broadcastedDims) const {
178 if (broadcastedDims)
179 broadcastedDims->clear();
180 if (getNumDims() < getNumResults())
181 return false;
182 unsigned suffixStart = getNumDims() - getNumResults();
183 for (const auto &idxAndExpr : llvm::enumerate(getResults())) {
184 unsigned resIdx = idxAndExpr.index();
185 AffineExpr expr = idxAndExpr.value();
186 if (auto constExpr = dyn_cast<AffineConstantExpr>(expr)) {
187 // Each result may be either a constant 0 (broadcasted dimension).
188 if (constExpr.getValue() != 0)
189 return false;
190 if (broadcastedDims)
191 broadcastedDims->push_back(resIdx);
192 } else if (auto dimExpr = dyn_cast<AffineDimExpr>(expr)) {
193 // Or it may be the input dimension corresponding to this result position.
194 if (dimExpr.getPosition() != suffixStart + resIdx)
195 return false;
196 } else {
197 return false;
200 return true;
203 /// Return true if this affine map can be converted to a minor identity with
204 /// broadcast by doing a permute. Return a permutation (there may be
205 /// several) to apply to get to a minor identity with broadcasts.
206 /// Ex:
207 /// * (d0, d1, d2) -> (0, d1) maps to minor identity (d1, 0 = d2) with
208 /// perm = [1, 0] and broadcast d2
209 /// * (d0, d1, d2) -> (d0, 0) cannot be mapped to a minor identity by
210 /// permutation + broadcast
211 /// * (d0, d1, d2, d3) -> (0, d1, d3) maps to minor identity (d1, 0 = d2, d3)
212 /// with perm = [1, 0, 2] and broadcast d2
213 /// * (d0, d1) -> (d1, 0, 0, d0) maps to minor identity (d0, d1) with extra
214 /// leading broadcat dimensions. The map returned would be (0, 0, d0, d1) with
215 /// perm = [3, 0, 1, 2]
216 bool AffineMap::isPermutationOfMinorIdentityWithBroadcasting(
217 SmallVectorImpl<unsigned> &permutedDims) const {
218 unsigned projectionStart =
219 getNumResults() < getNumInputs() ? getNumInputs() - getNumResults() : 0;
220 permutedDims.clear();
221 SmallVector<unsigned> broadcastDims;
222 permutedDims.resize(getNumResults(), 0);
223 // If there are more results than input dimensions we want the new map to
224 // start with broadcast dimensions in order to be a minor identity with
225 // broadcasting.
226 unsigned leadingBroadcast =
227 getNumResults() > getNumInputs() ? getNumResults() - getNumInputs() : 0;
228 llvm::SmallBitVector dimFound(std::max(getNumInputs(), getNumResults()),
229 false);
230 for (const auto &idxAndExpr : llvm::enumerate(getResults())) {
231 unsigned resIdx = idxAndExpr.index();
232 AffineExpr expr = idxAndExpr.value();
233 // Each result may be either a constant 0 (broadcast dimension) or a
234 // dimension.
235 if (auto constExpr = dyn_cast<AffineConstantExpr>(expr)) {
236 if (constExpr.getValue() != 0)
237 return false;
238 broadcastDims.push_back(resIdx);
239 } else if (auto dimExpr = dyn_cast<AffineDimExpr>(expr)) {
240 if (dimExpr.getPosition() < projectionStart)
241 return false;
242 unsigned newPosition =
243 dimExpr.getPosition() - projectionStart + leadingBroadcast;
244 permutedDims[resIdx] = newPosition;
245 dimFound[newPosition] = true;
246 } else {
247 return false;
250 // Find a permuation for the broadcast dimension. Since they are broadcasted
251 // any valid permutation is acceptable. We just permute the dim into a slot
252 // without an existing dimension.
253 unsigned pos = 0;
254 for (auto dim : broadcastDims) {
255 while (pos < dimFound.size() && dimFound[pos]) {
256 pos++;
258 permutedDims[dim] = pos++;
260 return true;
263 /// Returns an AffineMap representing a permutation.
264 AffineMap AffineMap::getPermutationMap(ArrayRef<unsigned> permutation,
265 MLIRContext *context) {
266 assert(!permutation.empty() &&
267 "Cannot create permutation map from empty permutation vector");
268 const auto *m = llvm::max_element(permutation);
269 auto permutationMap = getMultiDimMapWithTargets(*m + 1, permutation, context);
270 assert(permutationMap.isPermutation() && "Invalid permutation vector");
271 return permutationMap;
273 AffineMap AffineMap::getPermutationMap(ArrayRef<int64_t> permutation,
274 MLIRContext *context) {
275 SmallVector<unsigned> perm = llvm::map_to_vector(
276 permutation, [](int64_t i) { return static_cast<unsigned>(i); });
277 return AffineMap::getPermutationMap(perm, context);
280 AffineMap AffineMap::getMultiDimMapWithTargets(unsigned numDims,
281 ArrayRef<unsigned> targets,
282 MLIRContext *context) {
283 SmallVector<AffineExpr, 4> affExprs;
284 for (unsigned t : targets)
285 affExprs.push_back(getAffineDimExpr(t, context));
286 AffineMap result = AffineMap::get(/*dimCount=*/numDims, /*symbolCount=*/0,
287 affExprs, context);
288 return result;
291 /// Creates an affine map each for each list of AffineExpr's in `exprsList`
292 /// while inferring the right number of dimensional and symbolic inputs needed
293 /// based on the maximum dimensional and symbolic identifier appearing in the
294 /// expressions.
295 template <typename AffineExprContainer>
296 static SmallVector<AffineMap, 4>
297 inferFromExprList(ArrayRef<AffineExprContainer> exprsList,
298 MLIRContext *context) {
299 if (exprsList.empty())
300 return {};
301 int64_t maxDim = -1, maxSym = -1;
302 getMaxDimAndSymbol(exprsList, maxDim, maxSym);
303 SmallVector<AffineMap, 4> maps;
304 maps.reserve(exprsList.size());
305 for (const auto &exprs : exprsList)
306 maps.push_back(AffineMap::get(/*dimCount=*/maxDim + 1,
307 /*symbolCount=*/maxSym + 1, exprs, context));
308 return maps;
311 SmallVector<AffineMap, 4>
312 AffineMap::inferFromExprList(ArrayRef<ArrayRef<AffineExpr>> exprsList,
313 MLIRContext *context) {
314 return ::inferFromExprList(exprsList, context);
317 SmallVector<AffineMap, 4>
318 AffineMap::inferFromExprList(ArrayRef<SmallVector<AffineExpr, 4>> exprsList,
319 MLIRContext *context) {
320 return ::inferFromExprList(exprsList, context);
323 uint64_t AffineMap::getLargestKnownDivisorOfMapExprs() {
324 uint64_t gcd = 0;
325 for (AffineExpr resultExpr : getResults()) {
326 uint64_t thisGcd = resultExpr.getLargestKnownDivisor();
327 gcd = std::gcd(gcd, thisGcd);
329 if (gcd == 0)
330 gcd = std::numeric_limits<uint64_t>::max();
331 return gcd;
334 AffineMap AffineMap::getMultiDimIdentityMap(unsigned numDims,
335 MLIRContext *context) {
336 SmallVector<AffineExpr, 4> dimExprs;
337 dimExprs.reserve(numDims);
338 for (unsigned i = 0; i < numDims; ++i)
339 dimExprs.push_back(mlir::getAffineDimExpr(i, context));
340 return get(/*dimCount=*/numDims, /*symbolCount=*/0, dimExprs, context);
343 MLIRContext *AffineMap::getContext() const { return map->context; }
345 bool AffineMap::isIdentity() const {
346 if (getNumDims() != getNumResults())
347 return false;
348 ArrayRef<AffineExpr> results = getResults();
349 for (unsigned i = 0, numDims = getNumDims(); i < numDims; ++i) {
350 auto expr = dyn_cast<AffineDimExpr>(results[i]);
351 if (!expr || expr.getPosition() != i)
352 return false;
354 return true;
357 bool AffineMap::isSymbolIdentity() const {
358 if (getNumSymbols() != getNumResults())
359 return false;
360 ArrayRef<AffineExpr> results = getResults();
361 for (unsigned i = 0, numSymbols = getNumSymbols(); i < numSymbols; ++i) {
362 auto expr = dyn_cast<AffineDimExpr>(results[i]);
363 if (!expr || expr.getPosition() != i)
364 return false;
366 return true;
369 bool AffineMap::isEmpty() const {
370 return getNumDims() == 0 && getNumSymbols() == 0 && getNumResults() == 0;
373 bool AffineMap::isSingleConstant() const {
374 return getNumResults() == 1 && isa<AffineConstantExpr>(getResult(0));
377 bool AffineMap::isConstant() const {
378 return llvm::all_of(getResults(), llvm::IsaPred<AffineConstantExpr>);
381 int64_t AffineMap::getSingleConstantResult() const {
382 assert(isSingleConstant() && "map must have a single constant result");
383 return cast<AffineConstantExpr>(getResult(0)).getValue();
386 SmallVector<int64_t> AffineMap::getConstantResults() const {
387 assert(isConstant() && "map must have only constant results");
388 SmallVector<int64_t> result;
389 for (auto expr : getResults())
390 result.emplace_back(cast<AffineConstantExpr>(expr).getValue());
391 return result;
394 unsigned AffineMap::getNumDims() const {
395 assert(map && "uninitialized map storage");
396 return map->numDims;
398 unsigned AffineMap::getNumSymbols() const {
399 assert(map && "uninitialized map storage");
400 return map->numSymbols;
402 unsigned AffineMap::getNumResults() const { return getResults().size(); }
403 unsigned AffineMap::getNumInputs() const {
404 assert(map && "uninitialized map storage");
405 return map->numDims + map->numSymbols;
407 ArrayRef<AffineExpr> AffineMap::getResults() const {
408 assert(map && "uninitialized map storage");
409 return map->results();
411 AffineExpr AffineMap::getResult(unsigned idx) const {
412 return getResults()[idx];
415 unsigned AffineMap::getDimPosition(unsigned idx) const {
416 return cast<AffineDimExpr>(getResult(idx)).getPosition();
419 std::optional<unsigned> AffineMap::getResultPosition(AffineExpr input) const {
420 if (!isa<AffineDimExpr>(input))
421 return std::nullopt;
423 for (unsigned i = 0, numResults = getNumResults(); i < numResults; i++) {
424 if (getResult(i) == input)
425 return i;
428 return std::nullopt;
431 /// Folds the results of the application of an affine map on the provided
432 /// operands to a constant if possible. Returns false if the folding happens,
433 /// true otherwise.
434 LogicalResult AffineMap::constantFold(ArrayRef<Attribute> operandConstants,
435 SmallVectorImpl<Attribute> &results,
436 bool *hasPoison) const {
437 // Attempt partial folding.
438 SmallVector<int64_t, 2> integers;
439 partialConstantFold(operandConstants, &integers, hasPoison);
441 // If all expressions folded to a constant, populate results with attributes
442 // containing those constants.
443 if (integers.empty())
444 return failure();
446 auto range = llvm::map_range(integers, [this](int64_t i) {
447 return IntegerAttr::get(IndexType::get(getContext()), i);
449 results.append(range.begin(), range.end());
450 return success();
453 AffineMap AffineMap::partialConstantFold(ArrayRef<Attribute> operandConstants,
454 SmallVectorImpl<int64_t> *results,
455 bool *hasPoison) const {
456 assert(getNumInputs() == operandConstants.size());
458 // Fold each of the result expressions.
459 AffineExprConstantFolder exprFolder(getNumDims(), operandConstants);
460 SmallVector<AffineExpr, 4> exprs;
461 exprs.reserve(getNumResults());
463 for (auto expr : getResults()) {
464 auto folded = exprFolder.constantFold(expr);
465 if (exprFolder.hasPoison() && hasPoison) {
466 *hasPoison = true;
467 return {};
469 // If did not fold to a constant, keep the original expression, and clear
470 // the integer results vector.
471 if (folded) {
472 exprs.push_back(
473 getAffineConstantExpr(folded.getInt(), folded.getContext()));
474 if (results)
475 results->push_back(folded.getInt());
476 } else {
477 exprs.push_back(expr);
478 if (results) {
479 results->clear();
480 results = nullptr;
485 return get(getNumDims(), getNumSymbols(), exprs, getContext());
488 /// Walk all of the AffineExpr's in this mapping. Each node in an expression
489 /// tree is visited in postorder.
490 void AffineMap::walkExprs(llvm::function_ref<void(AffineExpr)> callback) const {
491 for (auto expr : getResults())
492 expr.walk(callback);
495 /// This method substitutes any uses of dimensions and symbols (e.g.
496 /// dim#0 with dimReplacements[0]) in subexpressions and returns the modified
497 /// expression mapping. Because this can be used to eliminate dims and
498 /// symbols, the client needs to specify the number of dims and symbols in
499 /// the result. The returned map always has the same number of results.
500 AffineMap AffineMap::replaceDimsAndSymbols(ArrayRef<AffineExpr> dimReplacements,
501 ArrayRef<AffineExpr> symReplacements,
502 unsigned numResultDims,
503 unsigned numResultSyms) const {
504 SmallVector<AffineExpr, 8> results;
505 results.reserve(getNumResults());
506 for (auto expr : getResults())
507 results.push_back(
508 expr.replaceDimsAndSymbols(dimReplacements, symReplacements));
509 return get(numResultDims, numResultSyms, results, getContext());
512 /// Sparse replace method. Apply AffineExpr::replace(`expr`, `replacement`) to
513 /// each of the results and return a new AffineMap with the new results and
514 /// with the specified number of dims and symbols.
515 AffineMap AffineMap::replace(AffineExpr expr, AffineExpr replacement,
516 unsigned numResultDims,
517 unsigned numResultSyms) const {
518 SmallVector<AffineExpr, 4> newResults;
519 newResults.reserve(getNumResults());
520 for (AffineExpr e : getResults())
521 newResults.push_back(e.replace(expr, replacement));
522 return AffineMap::get(numResultDims, numResultSyms, newResults, getContext());
525 /// Sparse replace method. Apply AffineExpr::replace(`map`) to each of the
526 /// results and return a new AffineMap with the new results and with the
527 /// specified number of dims and symbols.
528 AffineMap AffineMap::replace(const DenseMap<AffineExpr, AffineExpr> &map,
529 unsigned numResultDims,
530 unsigned numResultSyms) const {
531 SmallVector<AffineExpr, 4> newResults;
532 newResults.reserve(getNumResults());
533 for (AffineExpr e : getResults())
534 newResults.push_back(e.replace(map));
535 return AffineMap::get(numResultDims, numResultSyms, newResults, getContext());
538 AffineMap
539 AffineMap::replace(const DenseMap<AffineExpr, AffineExpr> &map) const {
540 SmallVector<AffineExpr, 4> newResults;
541 newResults.reserve(getNumResults());
542 for (AffineExpr e : getResults())
543 newResults.push_back(e.replace(map));
544 return AffineMap::inferFromExprList(newResults, getContext()).front();
547 AffineMap AffineMap::dropResults(const llvm::SmallBitVector &positions) const {
548 auto exprs = llvm::to_vector<4>(getResults());
549 // TODO: this is a pretty terrible API .. is there anything better?
550 for (auto pos = positions.find_last(); pos != -1;
551 pos = positions.find_prev(pos))
552 exprs.erase(exprs.begin() + pos);
553 return AffineMap::get(getNumDims(), getNumSymbols(), exprs, getContext());
556 AffineMap AffineMap::compose(AffineMap map) const {
557 assert(getNumDims() == map.getNumResults() && "Number of results mismatch");
558 // Prepare `map` by concatenating the symbols and rewriting its exprs.
559 unsigned numDims = map.getNumDims();
560 unsigned numSymbolsThisMap = getNumSymbols();
561 unsigned numSymbols = numSymbolsThisMap + map.getNumSymbols();
562 SmallVector<AffineExpr, 8> newDims(numDims);
563 for (unsigned idx = 0; idx < numDims; ++idx) {
564 newDims[idx] = getAffineDimExpr(idx, getContext());
566 SmallVector<AffineExpr, 8> newSymbols(numSymbols - numSymbolsThisMap);
567 for (unsigned idx = numSymbolsThisMap; idx < numSymbols; ++idx) {
568 newSymbols[idx - numSymbolsThisMap] =
569 getAffineSymbolExpr(idx, getContext());
571 auto newMap =
572 map.replaceDimsAndSymbols(newDims, newSymbols, numDims, numSymbols);
573 SmallVector<AffineExpr, 8> exprs;
574 exprs.reserve(getResults().size());
575 for (auto expr : getResults())
576 exprs.push_back(expr.compose(newMap));
577 return AffineMap::get(numDims, numSymbols, exprs, map.getContext());
580 SmallVector<int64_t, 4> AffineMap::compose(ArrayRef<int64_t> values) const {
581 assert(getNumSymbols() == 0 && "Expected symbol-less map");
582 SmallVector<AffineExpr, 4> exprs;
583 exprs.reserve(values.size());
584 MLIRContext *ctx = getContext();
585 for (auto v : values)
586 exprs.push_back(getAffineConstantExpr(v, ctx));
587 auto resMap = compose(AffineMap::get(0, 0, exprs, ctx));
588 SmallVector<int64_t, 4> res;
589 res.reserve(resMap.getNumResults());
590 for (auto e : resMap.getResults())
591 res.push_back(cast<AffineConstantExpr>(e).getValue());
592 return res;
595 size_t AffineMap::getNumOfZeroResults() const {
596 size_t res = 0;
597 for (auto expr : getResults()) {
598 auto constExpr = dyn_cast<AffineConstantExpr>(expr);
599 if (constExpr && constExpr.getValue() == 0)
600 res++;
603 return res;
606 AffineMap AffineMap::dropZeroResults() {
607 auto exprs = llvm::to_vector(getResults());
608 SmallVector<AffineExpr> newExprs;
610 for (auto expr : getResults()) {
611 auto constExpr = dyn_cast<AffineConstantExpr>(expr);
612 if (!constExpr || constExpr.getValue() != 0)
613 newExprs.push_back(expr);
615 return AffineMap::get(getNumDims(), getNumSymbols(), newExprs, getContext());
618 bool AffineMap::isProjectedPermutation(bool allowZeroInResults) const {
619 if (getNumSymbols() > 0)
620 return false;
622 // Having more results than inputs means that results have duplicated dims or
623 // zeros that can't be mapped to input dims.
624 if (getNumResults() > getNumInputs())
625 return false;
627 SmallVector<bool, 8> seen(getNumInputs(), false);
628 // A projected permutation can have, at most, only one instance of each input
629 // dimension in the result expressions. Zeros are allowed as long as the
630 // number of result expressions is lower or equal than the number of input
631 // expressions.
632 for (auto expr : getResults()) {
633 if (auto dim = dyn_cast<AffineDimExpr>(expr)) {
634 if (seen[dim.getPosition()])
635 return false;
636 seen[dim.getPosition()] = true;
637 } else {
638 auto constExpr = dyn_cast<AffineConstantExpr>(expr);
639 if (!allowZeroInResults || !constExpr || constExpr.getValue() != 0)
640 return false;
644 // Results are either dims or zeros and zeros can be mapped to input dims.
645 return true;
648 bool AffineMap::isPermutation() const {
649 if (getNumDims() != getNumResults())
650 return false;
651 return isProjectedPermutation();
654 AffineMap AffineMap::getSubMap(ArrayRef<unsigned> resultPos) const {
655 SmallVector<AffineExpr, 4> exprs;
656 exprs.reserve(resultPos.size());
657 for (auto idx : resultPos)
658 exprs.push_back(getResult(idx));
659 return AffineMap::get(getNumDims(), getNumSymbols(), exprs, getContext());
662 AffineMap AffineMap::getSliceMap(unsigned start, unsigned length) const {
663 return AffineMap::get(getNumDims(), getNumSymbols(),
664 getResults().slice(start, length), getContext());
667 AffineMap AffineMap::getMajorSubMap(unsigned numResults) const {
668 if (numResults == 0)
669 return AffineMap();
670 if (numResults > getNumResults())
671 return *this;
672 return getSliceMap(0, numResults);
675 AffineMap AffineMap::getMinorSubMap(unsigned numResults) const {
676 if (numResults == 0)
677 return AffineMap();
678 if (numResults > getNumResults())
679 return *this;
680 return getSliceMap(getNumResults() - numResults, numResults);
683 /// Implementation detail to compress multiple affine maps with a compressionFun
684 /// that is expected to be either compressUnusedDims or compressUnusedSymbols.
685 /// The implementation keeps track of num dims and symbols across the different
686 /// affine maps.
687 static SmallVector<AffineMap> compressUnusedListImpl(
688 ArrayRef<AffineMap> maps,
689 llvm::function_ref<AffineMap(AffineMap)> compressionFun) {
690 if (maps.empty())
691 return SmallVector<AffineMap>();
692 SmallVector<AffineExpr> allExprs;
693 allExprs.reserve(maps.size() * maps.front().getNumResults());
694 unsigned numDims = maps.front().getNumDims(),
695 numSymbols = maps.front().getNumSymbols();
696 for (auto m : maps) {
697 assert(numDims == m.getNumDims() && numSymbols == m.getNumSymbols() &&
698 "expected maps with same num dims and symbols");
699 llvm::append_range(allExprs, m.getResults());
701 AffineMap unifiedMap = compressionFun(
702 AffineMap::get(numDims, numSymbols, allExprs, maps.front().getContext()));
703 unsigned unifiedNumDims = unifiedMap.getNumDims(),
704 unifiedNumSymbols = unifiedMap.getNumSymbols();
705 ArrayRef<AffineExpr> unifiedResults = unifiedMap.getResults();
706 SmallVector<AffineMap> res;
707 res.reserve(maps.size());
708 for (auto m : maps) {
709 res.push_back(AffineMap::get(unifiedNumDims, unifiedNumSymbols,
710 unifiedResults.take_front(m.getNumResults()),
711 m.getContext()));
712 unifiedResults = unifiedResults.drop_front(m.getNumResults());
714 return res;
717 AffineMap mlir::compressDims(AffineMap map,
718 const llvm::SmallBitVector &unusedDims) {
719 return projectDims(map, unusedDims, /*compressDimsFlag=*/true);
722 AffineMap mlir::compressUnusedDims(AffineMap map) {
723 return compressDims(map, getUnusedDimsBitVector({map}));
726 SmallVector<AffineMap> mlir::compressUnusedDims(ArrayRef<AffineMap> maps) {
727 return compressUnusedListImpl(
728 maps, [](AffineMap m) { return compressUnusedDims(m); });
731 AffineMap mlir::compressSymbols(AffineMap map,
732 const llvm::SmallBitVector &unusedSymbols) {
733 return projectSymbols(map, unusedSymbols, /*compressSymbolsFlag=*/true);
736 AffineMap mlir::compressUnusedSymbols(AffineMap map) {
737 return compressSymbols(map, getUnusedSymbolsBitVector({map}));
740 SmallVector<AffineMap> mlir::compressUnusedSymbols(ArrayRef<AffineMap> maps) {
741 return compressUnusedListImpl(
742 maps, [](AffineMap m) { return compressUnusedSymbols(m); });
745 AffineMap mlir::foldAttributesIntoMap(Builder &b, AffineMap map,
746 ArrayRef<OpFoldResult> operands,
747 SmallVector<Value> &remainingValues) {
748 SmallVector<AffineExpr> dimReplacements, symReplacements;
749 int64_t numDims = 0;
750 for (int64_t i = 0; i < map.getNumDims(); ++i) {
751 if (auto attr = operands[i].dyn_cast<Attribute>()) {
752 dimReplacements.push_back(
753 b.getAffineConstantExpr(cast<IntegerAttr>(attr).getInt()));
754 } else {
755 dimReplacements.push_back(b.getAffineDimExpr(numDims++));
756 remainingValues.push_back(operands[i].get<Value>());
759 int64_t numSymbols = 0;
760 for (int64_t i = 0; i < map.getNumSymbols(); ++i) {
761 if (auto attr = operands[i + map.getNumDims()].dyn_cast<Attribute>()) {
762 symReplacements.push_back(
763 b.getAffineConstantExpr(cast<IntegerAttr>(attr).getInt()));
764 } else {
765 symReplacements.push_back(b.getAffineSymbolExpr(numSymbols++));
766 remainingValues.push_back(operands[i + map.getNumDims()].get<Value>());
769 return map.replaceDimsAndSymbols(dimReplacements, symReplacements, numDims,
770 numSymbols);
773 AffineMap mlir::simplifyAffineMap(AffineMap map) {
774 SmallVector<AffineExpr, 8> exprs;
775 for (auto e : map.getResults()) {
776 exprs.push_back(
777 simplifyAffineExpr(e, map.getNumDims(), map.getNumSymbols()));
779 return AffineMap::get(map.getNumDims(), map.getNumSymbols(), exprs,
780 map.getContext());
783 AffineMap mlir::removeDuplicateExprs(AffineMap map) {
784 auto results = map.getResults();
785 SmallVector<AffineExpr, 4> uniqueExprs(results);
786 uniqueExprs.erase(llvm::unique(uniqueExprs), uniqueExprs.end());
787 return AffineMap::get(map.getNumDims(), map.getNumSymbols(), uniqueExprs,
788 map.getContext());
791 AffineMap mlir::inversePermutation(AffineMap map) {
792 if (map.isEmpty())
793 return map;
794 assert(map.getNumSymbols() == 0 && "expected map without symbols");
795 SmallVector<AffineExpr, 4> exprs(map.getNumDims());
796 for (const auto &en : llvm::enumerate(map.getResults())) {
797 auto expr = en.value();
798 // Skip non-permutations.
799 if (auto d = dyn_cast<AffineDimExpr>(expr)) {
800 if (exprs[d.getPosition()])
801 continue;
802 exprs[d.getPosition()] = getAffineDimExpr(en.index(), d.getContext());
805 SmallVector<AffineExpr, 4> seenExprs;
806 seenExprs.reserve(map.getNumDims());
807 for (auto expr : exprs)
808 if (expr)
809 seenExprs.push_back(expr);
810 if (seenExprs.size() != map.getNumInputs())
811 return AffineMap();
812 return AffineMap::get(map.getNumResults(), 0, seenExprs, map.getContext());
815 AffineMap mlir::inverseAndBroadcastProjectedPermutation(AffineMap map) {
816 assert(map.isProjectedPermutation(/*allowZeroInResults=*/true));
817 MLIRContext *context = map.getContext();
818 AffineExpr zero = mlir::getAffineConstantExpr(0, context);
819 // Start with all the results as 0.
820 SmallVector<AffineExpr, 4> exprs(map.getNumInputs(), zero);
821 for (unsigned i : llvm::seq(unsigned(0), map.getNumResults())) {
822 // Skip zeros from input map. 'exprs' is already initialized to zero.
823 if (auto constExpr = dyn_cast<AffineConstantExpr>(map.getResult(i))) {
824 assert(constExpr.getValue() == 0 &&
825 "Unexpected constant in projected permutation");
826 (void)constExpr;
827 continue;
830 // Reverse each dimension existing in the original map result.
831 exprs[map.getDimPosition(i)] = getAffineDimExpr(i, context);
833 return AffineMap::get(map.getNumResults(), /*symbolCount=*/0, exprs, context);
836 AffineMap mlir::concatAffineMaps(ArrayRef<AffineMap> maps) {
837 unsigned numResults = 0, numDims = 0, numSymbols = 0;
838 for (auto m : maps)
839 numResults += m.getNumResults();
840 SmallVector<AffineExpr, 8> results;
841 results.reserve(numResults);
842 for (auto m : maps) {
843 for (auto res : m.getResults())
844 results.push_back(res.shiftSymbols(m.getNumSymbols(), numSymbols));
846 numSymbols += m.getNumSymbols();
847 numDims = std::max(m.getNumDims(), numDims);
849 return AffineMap::get(numDims, numSymbols, results,
850 maps.front().getContext());
853 /// Common implementation to project out dimensions or symbols from an affine
854 /// map based on the template type.
855 /// Additionally, if 'compress' is true, the projected out dimensions or symbols
856 /// are also dropped from the resulting map.
857 template <typename AffineDimOrSymExpr>
858 static AffineMap projectCommonImpl(AffineMap map,
859 const llvm::SmallBitVector &toProject,
860 bool compress) {
861 static_assert(llvm::is_one_of<AffineDimOrSymExpr, AffineDimExpr,
862 AffineSymbolExpr>::value,
863 "expected AffineDimExpr or AffineSymbolExpr");
865 constexpr bool isDim = std::is_same<AffineDimOrSymExpr, AffineDimExpr>::value;
866 int64_t numDimOrSym = (isDim) ? map.getNumDims() : map.getNumSymbols();
867 SmallVector<AffineExpr> replacements;
868 replacements.reserve(numDimOrSym);
870 auto createNewDimOrSym = (isDim) ? getAffineDimExpr : getAffineSymbolExpr;
872 using replace_fn_ty =
873 std::function<AffineExpr(AffineExpr, ArrayRef<AffineExpr>)>;
874 replace_fn_ty replaceDims = [](AffineExpr e,
875 ArrayRef<AffineExpr> replacements) {
876 return e.replaceDims(replacements);
878 replace_fn_ty replaceSymbols = [](AffineExpr e,
879 ArrayRef<AffineExpr> replacements) {
880 return e.replaceSymbols(replacements);
882 replace_fn_ty replaceNewDimOrSym = (isDim) ? replaceDims : replaceSymbols;
884 MLIRContext *context = map.getContext();
885 int64_t newNumDimOrSym = 0;
886 for (unsigned dimOrSym = 0; dimOrSym < numDimOrSym; ++dimOrSym) {
887 if (toProject.test(dimOrSym)) {
888 replacements.push_back(getAffineConstantExpr(0, context));
889 continue;
891 int64_t newPos = compress ? newNumDimOrSym++ : dimOrSym;
892 replacements.push_back(createNewDimOrSym(newPos, context));
894 SmallVector<AffineExpr> resultExprs;
895 resultExprs.reserve(map.getNumResults());
896 for (auto e : map.getResults())
897 resultExprs.push_back(replaceNewDimOrSym(e, replacements));
899 int64_t numDims = (compress && isDim) ? newNumDimOrSym : map.getNumDims();
900 int64_t numSyms = (compress && !isDim) ? newNumDimOrSym : map.getNumSymbols();
901 return AffineMap::get(numDims, numSyms, resultExprs, context);
904 AffineMap mlir::projectDims(AffineMap map,
905 const llvm::SmallBitVector &projectedDimensions,
906 bool compressDimsFlag) {
907 return projectCommonImpl<AffineDimExpr>(map, projectedDimensions,
908 compressDimsFlag);
911 AffineMap mlir::projectSymbols(AffineMap map,
912 const llvm::SmallBitVector &projectedSymbols,
913 bool compressSymbolsFlag) {
914 return projectCommonImpl<AffineSymbolExpr>(map, projectedSymbols,
915 compressSymbolsFlag);
918 AffineMap mlir::getProjectedMap(AffineMap map,
919 const llvm::SmallBitVector &projectedDimensions,
920 bool compressDimsFlag,
921 bool compressSymbolsFlag) {
922 map = projectDims(map, projectedDimensions, compressDimsFlag);
923 if (compressSymbolsFlag)
924 map = compressUnusedSymbols(map);
925 return map;
928 llvm::SmallBitVector mlir::getUnusedDimsBitVector(ArrayRef<AffineMap> maps) {
929 unsigned numDims = maps[0].getNumDims();
930 llvm::SmallBitVector numDimsBitVector(numDims, true);
931 for (AffineMap m : maps) {
932 for (unsigned i = 0; i < numDims; ++i) {
933 if (m.isFunctionOfDim(i))
934 numDimsBitVector.reset(i);
937 return numDimsBitVector;
940 llvm::SmallBitVector mlir::getUnusedSymbolsBitVector(ArrayRef<AffineMap> maps) {
941 unsigned numSymbols = maps[0].getNumSymbols();
942 llvm::SmallBitVector numSymbolsBitVector(numSymbols, true);
943 for (AffineMap m : maps) {
944 for (unsigned i = 0; i < numSymbols; ++i) {
945 if (m.isFunctionOfSymbol(i))
946 numSymbolsBitVector.reset(i);
949 return numSymbolsBitVector;
952 AffineMap
953 mlir::expandDimsToRank(AffineMap map, int64_t rank,
954 const llvm::SmallBitVector &projectedDimensions) {
955 auto id = AffineMap::getMultiDimIdentityMap(rank, map.getContext());
956 AffineMap proj = id.dropResults(projectedDimensions);
957 return map.compose(proj);
960 //===----------------------------------------------------------------------===//
961 // MutableAffineMap.
962 //===----------------------------------------------------------------------===//
964 MutableAffineMap::MutableAffineMap(AffineMap map)
965 : results(map.getResults()), numDims(map.getNumDims()),
966 numSymbols(map.getNumSymbols()), context(map.getContext()) {}
968 void MutableAffineMap::reset(AffineMap map) {
969 results.clear();
970 numDims = map.getNumDims();
971 numSymbols = map.getNumSymbols();
972 context = map.getContext();
973 llvm::append_range(results, map.getResults());
976 bool MutableAffineMap::isMultipleOf(unsigned idx, int64_t factor) const {
977 return results[idx].isMultipleOf(factor);
980 // Simplifies the result affine expressions of this map. The expressions
981 // have to be pure for the simplification implemented.
982 void MutableAffineMap::simplify() {
983 // Simplify each of the results if possible.
984 // TODO: functional-style map
985 for (unsigned i = 0, e = getNumResults(); i < e; i++) {
986 results[i] = simplifyAffineExpr(getResult(i), numDims, numSymbols);
990 AffineMap MutableAffineMap::getAffineMap() const {
991 return AffineMap::get(numDims, numSymbols, results, context);