[LLVM] Fix Maintainers.md formatting (NFC)
[llvm-project.git] / mlir / lib / IR / Builders.cpp
blob5397fbabc5c95eafb84ac6df03ee123ea6972a95
1 //===- Builders.cpp - Helpers for constructing MLIR Classes ---------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
9 #include "mlir/IR/Builders.h"
10 #include "mlir/IR/AffineExpr.h"
11 #include "mlir/IR/AffineMap.h"
12 #include "mlir/IR/BuiltinTypes.h"
13 #include "mlir/IR/Dialect.h"
14 #include "mlir/IR/IRMapping.h"
15 #include "mlir/IR/IntegerSet.h"
16 #include "mlir/IR/Matchers.h"
17 #include "mlir/IR/SymbolTable.h"
18 #include "llvm/ADT/SmallVectorExtras.h"
19 #include "llvm/Support/raw_ostream.h"
21 using namespace mlir;
23 //===----------------------------------------------------------------------===//
24 // Locations.
25 //===----------------------------------------------------------------------===//
27 Location Builder::getUnknownLoc() { return UnknownLoc::get(context); }
29 Location Builder::getFusedLoc(ArrayRef<Location> locs, Attribute metadata) {
30 return FusedLoc::get(locs, metadata, context);
33 //===----------------------------------------------------------------------===//
34 // Types.
35 //===----------------------------------------------------------------------===//
37 FloatType Builder::getFloat4E2M1FNType() {
38 return FloatType::getFloat4E2M1FN(context);
41 FloatType Builder::getFloat6E2M3FNType() {
42 return FloatType::getFloat6E2M3FN(context);
45 FloatType Builder::getFloat6E3M2FNType() {
46 return FloatType::getFloat6E3M2FN(context);
49 FloatType Builder::getFloat8E5M2Type() {
50 return FloatType::getFloat8E5M2(context);
53 FloatType Builder::getFloat8E4M3Type() {
54 return FloatType::getFloat8E4M3(context);
57 FloatType Builder::getFloat8E4M3FNType() {
58 return FloatType::getFloat8E4M3FN(context);
61 FloatType Builder::getFloat8E5M2FNUZType() {
62 return FloatType::getFloat8E5M2FNUZ(context);
65 FloatType Builder::getFloat8E4M3FNUZType() {
66 return FloatType::getFloat8E4M3FNUZ(context);
69 FloatType Builder::getFloat8E4M3B11FNUZType() {
70 return FloatType::getFloat8E4M3B11FNUZ(context);
73 FloatType Builder::getFloat8E3M4Type() {
74 return FloatType::getFloat8E3M4(context);
77 FloatType Builder::getFloat8E8M0FNUType() {
78 return FloatType::getFloat8E8M0FNU(context);
81 FloatType Builder::getBF16Type() { return FloatType::getBF16(context); }
83 FloatType Builder::getF16Type() { return FloatType::getF16(context); }
85 FloatType Builder::getTF32Type() { return FloatType::getTF32(context); }
87 FloatType Builder::getF32Type() { return FloatType::getF32(context); }
89 FloatType Builder::getF64Type() { return FloatType::getF64(context); }
91 FloatType Builder::getF80Type() { return FloatType::getF80(context); }
93 FloatType Builder::getF128Type() { return FloatType::getF128(context); }
95 IndexType Builder::getIndexType() { return IndexType::get(context); }
97 IntegerType Builder::getI1Type() { return IntegerType::get(context, 1); }
99 IntegerType Builder::getI2Type() { return IntegerType::get(context, 2); }
101 IntegerType Builder::getI4Type() { return IntegerType::get(context, 4); }
103 IntegerType Builder::getI8Type() { return IntegerType::get(context, 8); }
105 IntegerType Builder::getI16Type() { return IntegerType::get(context, 16); }
107 IntegerType Builder::getI32Type() { return IntegerType::get(context, 32); }
109 IntegerType Builder::getI64Type() { return IntegerType::get(context, 64); }
111 IntegerType Builder::getIntegerType(unsigned width) {
112 return IntegerType::get(context, width);
115 IntegerType Builder::getIntegerType(unsigned width, bool isSigned) {
116 return IntegerType::get(
117 context, width, isSigned ? IntegerType::Signed : IntegerType::Unsigned);
120 FunctionType Builder::getFunctionType(TypeRange inputs, TypeRange results) {
121 return FunctionType::get(context, inputs, results);
124 TupleType Builder::getTupleType(TypeRange elementTypes) {
125 return TupleType::get(context, elementTypes);
128 NoneType Builder::getNoneType() { return NoneType::get(context); }
130 //===----------------------------------------------------------------------===//
131 // Attributes.
132 //===----------------------------------------------------------------------===//
134 NamedAttribute Builder::getNamedAttr(StringRef name, Attribute val) {
135 return NamedAttribute(getStringAttr(name), val);
138 UnitAttr Builder::getUnitAttr() { return UnitAttr::get(context); }
140 BoolAttr Builder::getBoolAttr(bool value) {
141 return BoolAttr::get(context, value);
144 DictionaryAttr Builder::getDictionaryAttr(ArrayRef<NamedAttribute> value) {
145 return DictionaryAttr::get(context, value);
148 IntegerAttr Builder::getIndexAttr(int64_t value) {
149 return IntegerAttr::get(getIndexType(), APInt(64, value));
152 IntegerAttr Builder::getI64IntegerAttr(int64_t value) {
153 return IntegerAttr::get(getIntegerType(64), APInt(64, value));
156 DenseIntElementsAttr Builder::getBoolVectorAttr(ArrayRef<bool> values) {
157 return DenseIntElementsAttr::get(
158 VectorType::get(static_cast<int64_t>(values.size()), getI1Type()),
159 values);
162 DenseIntElementsAttr Builder::getI32VectorAttr(ArrayRef<int32_t> values) {
163 return DenseIntElementsAttr::get(
164 VectorType::get(static_cast<int64_t>(values.size()), getIntegerType(32)),
165 values);
168 DenseIntElementsAttr Builder::getI64VectorAttr(ArrayRef<int64_t> values) {
169 return DenseIntElementsAttr::get(
170 VectorType::get(static_cast<int64_t>(values.size()), getIntegerType(64)),
171 values);
174 DenseIntElementsAttr Builder::getIndexVectorAttr(ArrayRef<int64_t> values) {
175 return DenseIntElementsAttr::get(
176 VectorType::get(static_cast<int64_t>(values.size()), getIndexType()),
177 values);
180 DenseFPElementsAttr Builder::getF32VectorAttr(ArrayRef<float> values) {
181 return DenseFPElementsAttr::get(
182 VectorType::get(static_cast<float>(values.size()), getF32Type()), values);
185 DenseFPElementsAttr Builder::getF64VectorAttr(ArrayRef<double> values) {
186 return DenseFPElementsAttr::get(
187 VectorType::get(static_cast<double>(values.size()), getF64Type()),
188 values);
191 DenseBoolArrayAttr Builder::getDenseBoolArrayAttr(ArrayRef<bool> values) {
192 return DenseBoolArrayAttr::get(context, values);
195 DenseI8ArrayAttr Builder::getDenseI8ArrayAttr(ArrayRef<int8_t> values) {
196 return DenseI8ArrayAttr::get(context, values);
199 DenseI16ArrayAttr Builder::getDenseI16ArrayAttr(ArrayRef<int16_t> values) {
200 return DenseI16ArrayAttr::get(context, values);
203 DenseI32ArrayAttr Builder::getDenseI32ArrayAttr(ArrayRef<int32_t> values) {
204 return DenseI32ArrayAttr::get(context, values);
207 DenseI64ArrayAttr Builder::getDenseI64ArrayAttr(ArrayRef<int64_t> values) {
208 return DenseI64ArrayAttr::get(context, values);
211 DenseF32ArrayAttr Builder::getDenseF32ArrayAttr(ArrayRef<float> values) {
212 return DenseF32ArrayAttr::get(context, values);
215 DenseF64ArrayAttr Builder::getDenseF64ArrayAttr(ArrayRef<double> values) {
216 return DenseF64ArrayAttr::get(context, values);
219 DenseIntElementsAttr Builder::getI32TensorAttr(ArrayRef<int32_t> values) {
220 return DenseIntElementsAttr::get(
221 RankedTensorType::get(static_cast<int64_t>(values.size()),
222 getIntegerType(32)),
223 values);
226 DenseIntElementsAttr Builder::getI64TensorAttr(ArrayRef<int64_t> values) {
227 return DenseIntElementsAttr::get(
228 RankedTensorType::get(static_cast<int64_t>(values.size()),
229 getIntegerType(64)),
230 values);
233 DenseIntElementsAttr Builder::getIndexTensorAttr(ArrayRef<int64_t> values) {
234 return DenseIntElementsAttr::get(
235 RankedTensorType::get(static_cast<int64_t>(values.size()),
236 getIndexType()),
237 values);
240 IntegerAttr Builder::getI32IntegerAttr(int32_t value) {
241 // The APInt always uses isSigned=true here because we accept the value
242 // as int32_t.
243 return IntegerAttr::get(getIntegerType(32),
244 APInt(32, value, /*isSigned=*/true));
247 IntegerAttr Builder::getSI32IntegerAttr(int32_t value) {
248 return IntegerAttr::get(getIntegerType(32, /*isSigned=*/true),
249 APInt(32, value, /*isSigned=*/true));
252 IntegerAttr Builder::getUI32IntegerAttr(uint32_t value) {
253 return IntegerAttr::get(getIntegerType(32, /*isSigned=*/false),
254 APInt(32, (uint64_t)value, /*isSigned=*/false));
257 IntegerAttr Builder::getI16IntegerAttr(int16_t value) {
258 return IntegerAttr::get(getIntegerType(16), APInt(16, value));
261 IntegerAttr Builder::getI8IntegerAttr(int8_t value) {
262 // The APInt always uses isSigned=true here because we accept the value
263 // as int8_t.
264 return IntegerAttr::get(getIntegerType(8),
265 APInt(8, value, /*isSigned=*/true));
268 IntegerAttr Builder::getIntegerAttr(Type type, int64_t value) {
269 if (type.isIndex())
270 return IntegerAttr::get(type, APInt(64, value));
271 // TODO: Avoid implicit trunc?
272 // See https://github.com/llvm/llvm-project/issues/112510.
273 return IntegerAttr::get(type, APInt(type.getIntOrFloatBitWidth(), value,
274 type.isSignedInteger(),
275 /*implicitTrunc=*/true));
278 IntegerAttr Builder::getIntegerAttr(Type type, const APInt &value) {
279 return IntegerAttr::get(type, value);
282 FloatAttr Builder::getF64FloatAttr(double value) {
283 return FloatAttr::get(getF64Type(), APFloat(value));
286 FloatAttr Builder::getF32FloatAttr(float value) {
287 return FloatAttr::get(getF32Type(), APFloat(value));
290 FloatAttr Builder::getF16FloatAttr(float value) {
291 return FloatAttr::get(getF16Type(), value);
294 FloatAttr Builder::getFloatAttr(Type type, double value) {
295 return FloatAttr::get(type, value);
298 FloatAttr Builder::getFloatAttr(Type type, const APFloat &value) {
299 return FloatAttr::get(type, value);
302 StringAttr Builder::getStringAttr(const Twine &bytes) {
303 return StringAttr::get(context, bytes);
306 ArrayAttr Builder::getArrayAttr(ArrayRef<Attribute> value) {
307 return ArrayAttr::get(context, value);
310 ArrayAttr Builder::getBoolArrayAttr(ArrayRef<bool> values) {
311 auto attrs = llvm::map_to_vector<8>(
312 values, [this](bool v) -> Attribute { return getBoolAttr(v); });
313 return getArrayAttr(attrs);
316 ArrayAttr Builder::getI32ArrayAttr(ArrayRef<int32_t> values) {
317 auto attrs = llvm::map_to_vector<8>(
318 values, [this](int32_t v) -> Attribute { return getI32IntegerAttr(v); });
319 return getArrayAttr(attrs);
321 ArrayAttr Builder::getI64ArrayAttr(ArrayRef<int64_t> values) {
322 auto attrs = llvm::map_to_vector<8>(
323 values, [this](int64_t v) -> Attribute { return getI64IntegerAttr(v); });
324 return getArrayAttr(attrs);
327 ArrayAttr Builder::getIndexArrayAttr(ArrayRef<int64_t> values) {
328 auto attrs = llvm::map_to_vector<8>(values, [this](int64_t v) -> Attribute {
329 return getIntegerAttr(IndexType::get(getContext()), v);
331 return getArrayAttr(attrs);
334 ArrayAttr Builder::getF32ArrayAttr(ArrayRef<float> values) {
335 auto attrs = llvm::map_to_vector<8>(
336 values, [this](float v) -> Attribute { return getF32FloatAttr(v); });
337 return getArrayAttr(attrs);
340 ArrayAttr Builder::getF64ArrayAttr(ArrayRef<double> values) {
341 auto attrs = llvm::map_to_vector<8>(
342 values, [this](double v) -> Attribute { return getF64FloatAttr(v); });
343 return getArrayAttr(attrs);
346 ArrayAttr Builder::getStrArrayAttr(ArrayRef<StringRef> values) {
347 auto attrs = llvm::map_to_vector<8>(
348 values, [this](StringRef v) -> Attribute { return getStringAttr(v); });
349 return getArrayAttr(attrs);
352 ArrayAttr Builder::getTypeArrayAttr(TypeRange values) {
353 auto attrs = llvm::map_to_vector<8>(
354 values, [](Type v) -> Attribute { return TypeAttr::get(v); });
355 return getArrayAttr(attrs);
358 ArrayAttr Builder::getAffineMapArrayAttr(ArrayRef<AffineMap> values) {
359 auto attrs = llvm::map_to_vector<8>(
360 values, [](AffineMap v) -> Attribute { return AffineMapAttr::get(v); });
361 return getArrayAttr(attrs);
364 TypedAttr Builder::getZeroAttr(Type type) {
365 if (llvm::isa<FloatType>(type))
366 return getFloatAttr(type, 0.0);
367 if (llvm::isa<IndexType>(type))
368 return getIndexAttr(0);
369 if (llvm::dyn_cast<IntegerType>(type))
370 return getIntegerAttr(type,
371 APInt(llvm::cast<IntegerType>(type).getWidth(), 0));
372 if (llvm::isa<RankedTensorType, VectorType>(type)) {
373 auto vtType = llvm::cast<ShapedType>(type);
374 auto element = getZeroAttr(vtType.getElementType());
375 if (!element)
376 return {};
377 return DenseElementsAttr::get(vtType, element);
379 return {};
382 TypedAttr Builder::getOneAttr(Type type) {
383 if (llvm::isa<FloatType>(type))
384 return getFloatAttr(type, 1.0);
385 if (llvm::isa<IndexType>(type))
386 return getIndexAttr(1);
387 if (llvm::dyn_cast<IntegerType>(type))
388 return getIntegerAttr(type,
389 APInt(llvm::cast<IntegerType>(type).getWidth(), 1));
390 if (llvm::isa<RankedTensorType, VectorType>(type)) {
391 auto vtType = llvm::cast<ShapedType>(type);
392 auto element = getOneAttr(vtType.getElementType());
393 if (!element)
394 return {};
395 return DenseElementsAttr::get(vtType, element);
397 return {};
400 //===----------------------------------------------------------------------===//
401 // Affine Expressions, Affine Maps, and Integer Sets.
402 //===----------------------------------------------------------------------===//
404 AffineExpr Builder::getAffineDimExpr(unsigned position) {
405 return mlir::getAffineDimExpr(position, context);
408 AffineExpr Builder::getAffineSymbolExpr(unsigned position) {
409 return mlir::getAffineSymbolExpr(position, context);
412 AffineExpr Builder::getAffineConstantExpr(int64_t constant) {
413 return mlir::getAffineConstantExpr(constant, context);
416 AffineMap Builder::getEmptyAffineMap() { return AffineMap::get(context); }
418 AffineMap Builder::getConstantAffineMap(int64_t val) {
419 return AffineMap::get(/*dimCount=*/0, /*symbolCount=*/0,
420 getAffineConstantExpr(val));
423 AffineMap Builder::getDimIdentityMap() {
424 return AffineMap::get(/*dimCount=*/1, /*symbolCount=*/0, getAffineDimExpr(0));
427 AffineMap Builder::getMultiDimIdentityMap(unsigned rank) {
428 SmallVector<AffineExpr, 4> dimExprs;
429 dimExprs.reserve(rank);
430 for (unsigned i = 0; i < rank; ++i)
431 dimExprs.push_back(getAffineDimExpr(i));
432 return AffineMap::get(/*dimCount=*/rank, /*symbolCount=*/0, dimExprs,
433 context);
436 AffineMap Builder::getSymbolIdentityMap() {
437 return AffineMap::get(/*dimCount=*/0, /*symbolCount=*/1,
438 getAffineSymbolExpr(0));
441 AffineMap Builder::getSingleDimShiftAffineMap(int64_t shift) {
442 // expr = d0 + shift.
443 auto expr = getAffineDimExpr(0) + shift;
444 return AffineMap::get(/*dimCount=*/1, /*symbolCount=*/0, expr);
447 AffineMap Builder::getShiftedAffineMap(AffineMap map, int64_t shift) {
448 SmallVector<AffineExpr, 4> shiftedResults;
449 shiftedResults.reserve(map.getNumResults());
450 for (auto resultExpr : map.getResults())
451 shiftedResults.push_back(resultExpr + shift);
452 return AffineMap::get(map.getNumDims(), map.getNumSymbols(), shiftedResults,
453 context);
456 //===----------------------------------------------------------------------===//
457 // OpBuilder
458 //===----------------------------------------------------------------------===//
460 /// Insert the given operation at the current insertion point and return it.
461 Operation *OpBuilder::insert(Operation *op) {
462 if (block) {
463 block->getOperations().insert(insertPoint, op);
464 if (listener)
465 listener->notifyOperationInserted(op, /*previous=*/{});
467 return op;
470 Block *OpBuilder::createBlock(Region *parent, Region::iterator insertPt,
471 TypeRange argTypes, ArrayRef<Location> locs) {
472 assert(parent && "expected valid parent region");
473 assert(argTypes.size() == locs.size() && "argument location mismatch");
474 if (insertPt == Region::iterator())
475 insertPt = parent->end();
477 Block *b = new Block();
478 b->addArguments(argTypes, locs);
479 parent->getBlocks().insert(insertPt, b);
480 setInsertionPointToEnd(b);
482 if (listener)
483 listener->notifyBlockInserted(b, /*previous=*/nullptr, /*previousIt=*/{});
484 return b;
487 /// Add new block with 'argTypes' arguments and set the insertion point to the
488 /// end of it. The block is placed before 'insertBefore'.
489 Block *OpBuilder::createBlock(Block *insertBefore, TypeRange argTypes,
490 ArrayRef<Location> locs) {
491 assert(insertBefore && "expected valid insertion block");
492 return createBlock(insertBefore->getParent(), Region::iterator(insertBefore),
493 argTypes, locs);
496 /// Create an operation given the fields represented as an OperationState.
497 Operation *OpBuilder::create(const OperationState &state) {
498 return insert(Operation::create(state));
501 /// Creates an operation with the given fields.
502 Operation *OpBuilder::create(Location loc, StringAttr opName,
503 ValueRange operands, TypeRange types,
504 ArrayRef<NamedAttribute> attributes,
505 BlockRange successors,
506 MutableArrayRef<std::unique_ptr<Region>> regions) {
507 OperationState state(loc, opName, operands, types, attributes, successors,
508 regions);
509 return create(state);
512 LogicalResult OpBuilder::tryFold(Operation *op,
513 SmallVectorImpl<Value> &results) {
514 assert(results.empty() && "expected empty results");
515 ResultRange opResults = op->getResults();
517 results.reserve(opResults.size());
518 auto cleanupFailure = [&] {
519 results.clear();
520 return failure();
523 // If this operation is already a constant, there is nothing to do.
524 if (matchPattern(op, m_Constant()))
525 return cleanupFailure();
527 // Try to fold the operation.
528 SmallVector<OpFoldResult, 4> foldResults;
529 if (failed(op->fold(foldResults)))
530 return cleanupFailure();
532 // An in-place fold does not require generation of any constants.
533 if (foldResults.empty())
534 return success();
536 // A temporary builder used for creating constants during folding.
537 OpBuilder cstBuilder(context);
538 SmallVector<Operation *, 1> generatedConstants;
540 // Populate the results with the folded results.
541 Dialect *dialect = op->getDialect();
542 for (auto [foldResult, expectedType] :
543 llvm::zip_equal(foldResults, opResults.getTypes())) {
545 // Normal values get pushed back directly.
546 if (auto value = llvm::dyn_cast_if_present<Value>(foldResult)) {
547 results.push_back(value);
548 continue;
551 // Otherwise, try to materialize a constant operation.
552 if (!dialect)
553 return cleanupFailure();
555 // Ask the dialect to materialize a constant operation for this value.
556 Attribute attr = foldResult.get<Attribute>();
557 auto *constOp = dialect->materializeConstant(cstBuilder, attr, expectedType,
558 op->getLoc());
559 if (!constOp) {
560 // Erase any generated constants.
561 for (Operation *cst : generatedConstants)
562 cst->erase();
563 return cleanupFailure();
565 assert(matchPattern(constOp, m_Constant()));
567 generatedConstants.push_back(constOp);
568 results.push_back(constOp->getResult(0));
571 // If we were successful, insert any generated constants.
572 for (Operation *cst : generatedConstants)
573 insert(cst);
575 return success();
578 /// Helper function that sends block insertion notifications for every block
579 /// that is directly nested in the given op.
580 static void notifyBlockInsertions(Operation *op,
581 OpBuilder::Listener *listener) {
582 for (Region &r : op->getRegions())
583 for (Block &b : r.getBlocks())
584 listener->notifyBlockInserted(&b, /*previous=*/nullptr,
585 /*previousIt=*/{});
588 Operation *OpBuilder::clone(Operation &op, IRMapping &mapper) {
589 Operation *newOp = op.clone(mapper);
590 newOp = insert(newOp);
592 // The `insert` call above handles the notification for inserting `newOp`
593 // itself. But if `newOp` has any regions, we need to notify the listener
594 // about any ops that got inserted inside those regions as part of cloning.
595 if (listener) {
596 // The `insert` call above notifies about op insertion, but not about block
597 // insertion.
598 notifyBlockInsertions(newOp, listener);
599 auto walkFn = [&](Operation *walkedOp) {
600 listener->notifyOperationInserted(walkedOp, /*previous=*/{});
601 notifyBlockInsertions(walkedOp, listener);
603 for (Region &region : newOp->getRegions())
604 region.walk<WalkOrder::PreOrder>(walkFn);
607 return newOp;
610 Operation *OpBuilder::clone(Operation &op) {
611 IRMapping mapper;
612 return clone(op, mapper);
615 void OpBuilder::cloneRegionBefore(Region &region, Region &parent,
616 Region::iterator before, IRMapping &mapping) {
617 region.cloneInto(&parent, before, mapping);
619 // Fast path: If no listener is attached, there is no more work to do.
620 if (!listener)
621 return;
623 // Notify about op/block insertion.
624 for (auto it = mapping.lookup(&region.front())->getIterator(); it != before;
625 ++it) {
626 listener->notifyBlockInserted(&*it, /*previous=*/nullptr,
627 /*previousIt=*/{});
628 it->walk<WalkOrder::PreOrder>([&](Operation *walkedOp) {
629 listener->notifyOperationInserted(walkedOp, /*previous=*/{});
630 notifyBlockInsertions(walkedOp, listener);
635 void OpBuilder::cloneRegionBefore(Region &region, Region &parent,
636 Region::iterator before) {
637 IRMapping mapping;
638 cloneRegionBefore(region, parent, before, mapping);
641 void OpBuilder::cloneRegionBefore(Region &region, Block *before) {
642 cloneRegionBefore(region, *before->getParent(), before->getIterator());